Stan Bershadskiy, Crysfel Villa

Foreword by: Christopher Chedeau
Frontend Engineer at Facebook

React Native

COOKDhOOK

Take your React Native application development to the
next level with this large collection of recipes

LI Packt

React Native Cookbook

Take your React Native application development to the next
level with this large collection of recipes

Stan Bershadskiy
Crysfel Villa

Packh

BIRMINGHAM - MUMBAI

React Native Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2016
Production reference: 1161216
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78646-255-8

www . packtpub.com

http://www.packtpub.com

Credits

Authors Copy Editor

Stan Bershadskiy Safis Editing
Crysfel Villa

Reviewer Project Coordinator
Brice Mason Ritika Manoj
Commissioning Editor Proofreader
Ashwin Nair Safis Editing
Acquisition Editor Indexer

Shweta Pant Francy Puthiry

Content Development Editor Graphics

Arun Nadar Jason Monteiro

Technical Editor Production Coordinator

Shivani Kiran Mistry Melwyn Dsa

Foreword

Web development has for a long time been about working around the various browser
quirks and use a convoluted subset of what is provided, called "best practices", in order to
build dynamic applications on a platform that has originally been designed for static pages.

Jordan Walke, a Facebook engineer, came at this problem with a different mindset: instead
of trying to make what exists work, what if we designed an ideal solution and adapt it to
make it work under the existing constraints? This is how React was born.

React introduced a lot of concepts borrowed from many fields of computer science to the
web development world. The core idea is to declare what your application should look like
at any point in time by composing components written using a real programming language.

During a hackathon, four people: Jordan Walke, Ashwin Bharambe, Lin He, and myself,
tried to use React to render native iOS components such as UIView, Ullmage, and UlLabel
instead of the web equivalent, <div>, <image>, and . The crazy thing is that it actually
worked!

Then, our mantra became "how can we bring the best of both worlds?". From the Web, we
borrowed the fast iteration speed and the awesome developer experience with ideas like the
element inspector and redbox. Native challenged us to provide an amazing user experience
with an acute attention to detail, strong performance, and great gesture support.

As we got to a point where we used it in production and it provided value, we decided to
open source it. We knew it was going to be make some buzz, but we had no idea that it
would explode as it did. One of our big focuses was to make it a community project, and we
worked hard to get core contributors from outside of Facebook. We now have half of the
commits contributed by the community!

It's very humbling to see that contributions extended way beyond code. In the digital space,
we've seen a huge amount of tutorials and libraries, and it extended to the physical world,
with various meetups and conferences all over the world. I'm proud to see that Stan and
Crysfel dedicated their time to produce this amazing book about React Native.

React was born out of the frustration that it's way too hard to build software. I hope that
this book will help you build awesome and successful user interfaces that will bring real
value to your business!

Christopher Chedeau

Frontend Engineer at Facebook

About the Authors

Stan Bershadskiy is an architect at Modus Create and holds a Master's in Computer Science
from NYIT. While doing full-stack development, he found working on the frontend most
enjoyable because of the speed one can develop and switch focus toward JavaScript. Stan
likes to involve himself in anything JavaScript-related, particularly around building rich
applications for desktop, web, and mobile. He is located in New York City and can be
found co-organizing NYC.JS meetups. More recently, he has focused on promoting React
Native by presenting at conferences and publishing blog posts. You can follow him on
Twitter at @stan229.

First and foremost, I'd like to thank my wife Lika. You have been my strongest supporter
and more importantly putting up with me working on the book all hours of the night. You
have been at my side from the first word I wrote, to the edits I just completed at 4 AM. To
my son, Aiden, you are the center of my world. There’s nothing that brightens my day like
seeing you. I simply wouldn’t be able to write this book without the support of my wife,
son, and parents.

I'd like to thank Crysfel for inviting me on-board to write this book and the work we did
together. Brice Mason, you are an amazing colleague and editor. You did an incredible job
reviewing the book, you are far more thorough than I ever could be. A special thank you
goes out to Christopher Chedeau for embodying the spirit of the React Native community
and writing an exemplary foreword.

A very special thank you goes to Jay Garcia. You have been my mentor, sounding board,
facilitator, and just an excellent friend. You have helped me with this book in far more
ways than I can list. Lastly, a thank you goes out to everyone at Modus Create for
supporting me not only during the writing of this book but being the absolute best place to
work at.

Crysfel Villa is a senior software engineer at Modus Create. He's a passionate JavaScript
coder and an accomplished software developer with over 10 years of experience in technical
training, consulting, and systems analysis. Crysfel loves to write about emerging
technologies and he has deployed several apps to the Apple Store using React Native. He
currently lives in NY and can be found attending tech meetups throughout the city. You can
follow him on Twitter at Gcrysfel.

It has been a very difficult journey to complete this project. I worked on this book while I
was in Japan, Korea, Mexico, and NY. Working overseas, on vacations, visiting family and
friends, holidays and what not. I'd like to thank my wife Hazel for the huge help she did,
reviewing my scripts, sometimes late at night. I wouldn't be able to accomplish this project
without her help.

I would also like to thank my dad Felipe, my two youngest brothers Victor and Jaziel, my
in-laws and friends for their support, just by continue asking me about the book and
encouraging me to continue working hard on it, many thanks to all of them. Special thanks
to Brice, who found some missing steps on recipes, suggested things to improve and overall
helping us to complete the book on time.

About the Reviewer

Brice Mason is a husband, father, developer, writer, and speaker with over 15 years of
software development experience. As a senior engineer at Modus Create, he's been
fortunate to contribute to the delivery of several enterprise-level desktop and mobile
applications using JavaScript. When not writing code or writing about code, Brice enjoys
spending time with his wife and son. You can reach him via Twitter at @bricemason.

I would like to thank Stan, Crysfel, and the terrific folks at Packt Publishing for including
me in this project. Special thanks to my wife Heather and son Chase for allowing me the
extra time to help contribute to this great book.

www.PacktPub.com

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub. com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

» Mapt

https://www.packtpub.com/mapt

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?

e Fully searchable across every book published by Packt
e Copy and paste, print, and bookmark content
¢ On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback

Thank you for purchasing this Packt book. We take our commitment to improving our
content and products to meet your needs seriously —that's why your feedback is so
valuable. Whatever your feelings about your purchase, please consider leaving a review on
this book's Amazon page. Not only will this help us, more importantly it will also help
others in the community to make an informed decision about the resources that they invest
in to learn.

You can also review for us on a regular basis by joining our reviewers' club. If you're
interested in joining, or would like to learn more about the benefits we offer, please
contact us: customerreviews@packtpub.com.

Table of Contents

Preface 1
Chapter 1: Getting Started 8
Introduction 8
Adding styles to text and containers 9
Getting ready 9
How to do it... 9
How it works... 12
There's more... 13
Using images to mimic a video player 15
Getting ready 15
How to do it... 15
How it works... 19
There's more... 20
Creating a toggle button 20
Getting ready 20
How to do it... 20
How it works... 25
There's more... 26
Displaying a list of items 27
Getting ready 27
How to do it... 27
How it works... 33
There's more... 34
Adding tabs to the viewport 34
Getting ready 34
How to do it... 34
Using flexbox to create a profile page 38
Getting ready 38
How to do it... 39
How it works... 46
There's more... 46
Setting up a navigator 46
Getting ready 47
How to do it... 47

There's more... 57
Chapter 2: Implementing Complex User Interfaces 58
Introduction 58
Creating a reusable button with theme support 58
Getting ready 59
How to do it... 59
How it works... 65
Building a complex layout for tablets using flexbox 66
Getting ready 67
How to do it... 67
There's more... 76
Including custom fonts on iOS 76
Getting ready 76
How to do it... 77
How it works... 83
There's more... 84
Including custom fonts on Android 84
Getting ready 84
How to do it... 84
Using font icons 87
Getting ready 87
How to do it... 87
There's more... 91
Dealing with universal apps 92
Getting ready 92
How to do it... 93
How it works... 102
Detecting orientation changes 103
Getting ready 103
How to do it... 103
How it works... 110
There's more... 111
Using a WebView to open external websites 112
How to do it... 112
How it works... 119
Rendering simple HTML elements using native components 119
Getting ready 120
How to do it... 120
How it works... 123

[ii]

[iii]

How to create a form component 124
Getting ready 124
How to do it... 124
How it works... 129

Chapter 3: Animating the User Interface 131

Introduction 131

Simple animations 132
Getting ready 132
How to do it... 132
How it works... 136
There's more... 137

Running several animations at the same time 138
Getting ready 138
How to do it... 138
How it works... 142

Animating notifications 143
Getting ready 143
How to do it... 143
How it works... 152
There's more... 153

Expanding and collapsing containers 153
Getting ready 154
How to do it... 154
How it works... 159

Loading animation 160
Getting ready 160
How to do it... 161
How it works... 166

Removing items from a list component 167
Getting ready 167
How to do it... 168
How it works... 175

Creating a Facebook reactions widget 176
Getting ready 177
How to do it... 177
How it works... 185

Display images in full screen 186
Getting ready 186
How to do it... 186

How it works... 194

Chapter 4: Working with Application Logic and Data 196
Introduction 196
Storing and retrieving data locally 197

Getting ready 197
How to do it... 197
How it works... 201
Retrieving data from a Remote API 202
Getting ready 202
How to do it... 202
How it works... 205
Sending data to a Remote API 205
Getting ready 206
How to do it... 206
How it works... 210
Establishing real-time communications with WebSockets 211
Getting ready 211
How to do it... 212
How it works... 216
There's more... 217
Integrate persistent database functionality with Realm 217
Getting ready 218
How to do it... 218
How it works... 221
Mask the application upon network connection loss 222
Getting ready 222
How to do it... 223
How it works... 226
There's more... 227
Synchronizing locally persisted data with a Remote API 227
Getting ready 227
How to do it... 228
How it works... 231
Logging in with Facebook 232
Getting ready 232
How to do it... 232
How it works... 238
Sharing content on Facebook 238

Getting ready 239

[iv]

How to do it... 239
How it works... 240
Tracking application events with Facebook Analytics 241
Getting ready 241
How to do it... 241
How it works... 244
Chapter 5: Implementing Redux 245
Introduction 245
Installing Redux and preparing our project 246
How to do it... 246
How it works... 248
Defining actions 249
Getting ready 249
How to do it... 249
How it works... 250
There's more... 251
Defining reducers 251
Getting ready 252
How to do it... 252
How it works... 254
Setting up the store 255
How to do it... 256
How it works... 257
Communicating with a Remote API 258
How to do it... 258
How it works... 262
Connecting the store with the views 264
Getting ready 264
How to do it... 264
How it works... 268
Storing offline content using Redux 270
Getting ready 270
How to do it... 270
Showing network connectivity status 272
Getting ready 272
How to do it... 273
How it works... 276
Chapter 6: Adding Native Functionality 278

[v]

Introduction
Exposing custom iOS modules
Getting ready
How to do it...
How it works...
There's more...
Rendering custom iOS view components
How to do it...
How it works...
Exposing custom Android modules
Getting ready
How to do it...
How it works...
Rendering custom Android view components
How to do it...
How it works...
Handling the Android back button
Getting ready
How to do it...
How it works...
Reacting to changes in application state
How to do it...
How it works...
There's more...
Copy and pasting content
Getting ready
How to do it...
How it works...
Receiving push notifications
Getting ready
How to do it...
How it works...
Authenticating via TouchlID or fingerprint sensor
Getting ready
How to do it...
How it works...
Hiding application content when multitasking
Getting ready
How to do it...

[vi]

278
279
280
280
284
285
285
285
290
291
201
291
296
297
207
302
303
303
303
309
309
310
312
312
313
313
313
318
319
319
320
323
324
324
324
331
331
331
331

How it works... 335
Background processing on iOS 335
Getting ready 336
How to do it... 336
How it works 339
Background processing on Android 339
Getting ready 340
How to do it... 340
How it works... 344
Playing audio files on iOS 344
Getting ready 345
How to do it... 345
How it works... 348
Playing audio files on Android 349
Getting ready 349
How to do it... 349
How it works... 354
Chapter 7: Architecting for Multiple Platforms 355
Introduction 355
Building for the Universal Windows Platform 356
Getting ready 357
How to do it... 357
How it works... 360
There's more... 360
See also 360
Building for Mac OS X Desktop 360
Getting ready 361
How to do it... 361
How it works... 362
There's more... 362
Building for Apple tvOS 363
Getting ready 363
How to do it... 363
How it works... 365
Creating platform specific Ul Components 365
Getting ready 366
How to do it... 366
How it works... 368

There's more...

[vii]

369

Extending Ul Components for platform-specific experiences 370
Getting ready 370
How to do it... 370
How it works... 374

Best practices for sharing code between platforms 375
How to do it... 375

Chapter 8: Integration with Applications 377

Introduction 377

Embedding a React Native application inside an iOS application 378
Getting ready 379
How to do it... 380
How it works... 386

Communicating from an iOS application to React Native 387
Getting ready 387
How to do it... 387
How it works... 391

Communicating from React Native to an iOS application container 392
Getting ready 392
How to do it... 392
How it works... 396

Handling being invoked by external iOS application 397
How to do it... 397
How it works... 400

Embedding a React Native application inside an Android application 400
Getting ready 400
How to do it... 401
How it works... 406

Communicating from an Android application to React Native 407
Getting ready 407
How to do it... 407
How it works... 411

Communicating from React Native to an Android application container 412
Getting ready 412
How to do it... 412
How it works... 417

Handling being invoked by external Android application 417
How to do it... 417
How it works... 419

Invoking an external iOS and Android application 420

[viii]

How to do it... 420
How it works... 423
Chapter 9: Deploying Our App 424
Introduction 424
Deploying development builds to an iOS device 425
Getting ready 425
How to do it... 425
How it works... 426
Deploying development builds to an Android device 426
Getting ready 426
How to do it... 427
There's more... 428
How it works... 428
Deploying testing builds to HockeyApp 428
Getting ready 428
How to do it... 429
How it works... 433
Deploying testing iOS builds to TestFlight 434
Getting ready 434
How to do it... 435
How it works... 438
Deploying production builds to the Apple app store 438
Getting ready 438
How to do it... 439
How it works... 442
Deploying production builds to Google Play Store 442
Getting ready 443
How to do it... 443
How it works... 444
Deploying Over-The-Air updates 444
Getting ready 445
How to do it... 445
How it works... 449
Optimizing React Native application size 449
Getting ready 450
How to do it... 450
How it works... 451
Chapter 10: Automated Testing 452

[ix]

Installing the environment 452
Getting ready 453
How to do it... 453

Running the Inspector to access the elements 458
Getting ready 458
How to do it... 459

Integrating Appium with Mocha 460
Getting ready 460
How to do it... 461
How it works... 462

Selecting and typing into input texts 463
Getting ready 463
How to do it... 464
How it works... 467
There's more... 468

Pressing a button and testing the result 468
Getting ready 468
How to do it... 468
How it works... 471

Chapter 11: Optimizing the Performance of Our App 473

Introduction 473

Optimizing our JavaScript code 474
Getting ready 474
How to do it... 475
How it works... 476

Optimizing the performance of our custom Ul components 477
Getting ready 477
How to do it... 477
How it works... 478
See also 478

Keeping our animations running at 60 FPS 479
Getting ready 479
How to do it... 479
How it works... 483
There's more... 483

Getting the most out of ListView 484
Getting ready 484
How to do it... 484
How it works... 486

[x]

Index

See also
Boosting the performance of our app
Getting ready
How to do it...
How it works...
Optimizing the performance of native iOS module
Getting ready
How to do it...
How it works...
Optimizing the performance of native Android modules
Getting ready
How to do it...
How it works...
Optimizing the performance of native iOS Ul components
Getting ready
How to do it...
How it works...
Optimizing the performance of native Android Ul components
Getting ready
How to do it...
How it works...

486
487
487
487
488
488
489
489
490
490
491
491
492
492
493
493
494
494
495
495
497

498

[xi]

Preface

React has taken the web development world by storm. It is only natural that its unique
architecture and strong third-party support be applied to native application development.
Using JavaScript, you can build a truly native application that renders native Ul
components and accesses native device functionality. This book will take you through the
basics of React Native development all the way through some more advanced concepts.

In this book, we will cover topics in React Native ranging from adding basic UI components
to successfully deploying for multiple target platforms. Since this is a cookbook, each topic
will be described in its own recipe. The book follows a top-down approach, beginning with
building rich Uls. These Uls will be created with both built-in and custom components that
you will create, style, and animate. You will then learn about different strategies for
working with data, including leveraging the popular Redux library. Then you will have the
opportunity to step further into exposing native device functionality. Finally, we will
discuss how to bring our application to production and maintain its reliability.

The recipes in this book will break down how you can accomplish a particular task. They
will also dive into some of the more important concepts supporting the task. After reading
the book, you should feel very comfortable tackling any aspect of React Native
development.

What this book covers

Chapter 1, Getting Started, shows you how to perform everyday scenarios using React
Native. You will add some basic UI components that come with the framework to your
view and style them accordingly.

Chapter 2, Implementing Complex User Interfaces, steps a bit further into the creation of Uls.
In this chapter, you will learn how to create custom view components using JavaScript and
JSX, as well as add them to customized layouts.

Chapter 3, Animating the User Interface, teaches you how to make your application feel more
alive with animations. You will start off with basic layout animations and end up having
mastered the Animated library and building custom animations.

Preface

Chapter 4, Working with Application Logic and Data, covers what’s involved in dealing with
data. You will learn everything there is to know about dealing with data whether it is sitting
locally or on a remote server. The chapter also covers storing your data in a native database
as well as integration with the Facebook SDK.

Chapter 5, Implementing Redux, explores the extremely popular Redux library that is
commonly used with React and React Native. You will learn how to make Redux fit in your
application and control all things related to the application logic and data.

Chapter 6, Adding Native Functionality, shows you how to take your React Native
development past the JavaScript layer and leverage the full power of the device. You will
learn how to add custom modules and UI components that are implemented using the
device’s native language. You will then take it on level further by leveraging native
functionality that is not available out of the box, such as multithreading, fingerprint
detection, and more.

Chapter 7, Architecting for Multiple Platforms, explains how to deal with the many platforms
you can deploy your React Native application to. You will learn how to build a React
Native application for different platforms such as Windows 10 and Mac OS desktop. The
chapter also teaches you how to deal with coding for specific platforms and the best
practices for sharing code across them.

Chapter 8, Integration with Applications, teaches you how to work with existing iOS and
Android applications that you may have. You will learn not only how to render a React
Native application inside a larger existing native app, but also how to communicate bi-
directionally between them.

Chapter 9, Deploying Our App, guides you through the one of the most critical process of
application development, deploying. You will learn how to deploy your application at
different stages of development, including deploying to the app stores. You will also learn
how to perform over-the-air updates to your already deployed React Native apps.

Chapter 10, Automated Testing, shows you how to set up automated testing for your React
Native application. You will learn how to create functional tests using Appium and Mocha.
You will also be able to take your tests and run them on an iOS device for a real-world
experience.

[2]

Preface

Chapter 11, Optimizing the Performance of Our App, explores how to get the most out of
React Native applications. This chapter covers everything related to performance and
memory optimization. You will be provided with various tips, tricks, and best practices on
how to get the most out of your app.

What you need for this book

For this book, you will require the following:

e Node,js (v4+), Watchman (latest)

e For iOS development, you should be running Mac OS and have XCode 8.0+
installed

e For Android development, you should have Android Studio 2.2+ installed

Who this book is for

This book is intended for developers who may be either just starting out or already
experienced with React Native development. Existing knowledge of JavaScript ES2015 is
highly recommended. A basic understanding of iOS development with Objective-C or Swift
and Java for Android development is optional, but may help readers when adding custom
native functionality.

Sections

In this book, you will find several headings that appear frequently (Getting ready, How to
do it, How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready

This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it...

This section contains the steps required to follow the recipe.

[3]

Preface

How it works...

This section usually consists of a detailed explanation of what happened in the previous
section.

There's more...

This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also

This section provides helpful links to other useful information for the recipe.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Create a
new user for JIRA in the database and grant the user access to the jiradb database we just
created using the following command:"

A block of code is set as follows:

<Contextpath="/jira"docBase="${catalina.home}
/atlassian— jira" reloadable="false" useHttpOnly="true">

Any command-line input or output is written as follows:
mysql —u root -p

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Select System info from the
Administration panel."

Warnings or important notes appear in a box like this.

[4]

Preface

8 Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors .

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code

You can download the example code files for this book from your account at http://www.p
acktpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.c
om/supportand register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.
Hover the mouse pointer on the SUPPORT tab at the top.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box.

Select the book for which you're looking to download the code files.
Choose from the drop-down menu where you purchased this book from.
Click on Code Download.

NSk N

[5]

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR /7-Zip for Windows
e Zipeg /iZip / UnRarX for Mac
e 7-Zip [/ PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/React-Native-Cookbook. We also have other code
bundles from our rich catalog of books and videos available at https://github.com/Packt
Publishing/. Check them out!

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/conten
t/supportand enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

[6]

https://github.com/PacktPublishing/React-Native-Cookbook
https://github.com/PacktPublishing/React-Native-Cookbook
https://github.com/PacktPublishing/React-Native-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions

If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

[7]

Getting Started

In this chapter, we will cover the following recipes:

Adding styles to text and containers
¢ Using images to mimic a video player

Creating a toggle button

Displaying a list of items

Adding tabs to the viewport

Using flexbox to create a profile page

Setting up a navigator

Introduction

React Native is a fast-growing library. Over the last year it has become very popular among
the open source community. There's a new release every other week that improves
performance, adds new components, or provides access to new APIs on the device.

While this is great for the most part, it comes with a drawback. Sometimes, things on our
project will break with a new release; we need to be very careful when updating our
projects. As a rule of thumb, never update to the latest version without reading the release
notes, which usually describe the breaking changes. On top of that, we need to make sure
that any of the third-party libraries we are using in our projects are up to date with the new
release.

In this chapter, we will learn about the most common components within the library. This
book aims to reach out to developers who have already completed the Getting Started Guide
on the React Native documentation, which means we will jump right to the good stuff and
avoid things such as installing the environment and Hello World examples.

Getting Started

To step through all the recipes in this chapter, we will have to create a new app, so make
sure you have your environment up and running. I recommend you follow the
documentation on the React Native official website, then run the following commands on
your terminal for each recipe, where AnAppName is the name of your app:

react—-native init —--verbose AnAppName
cd AnAppName

react—-native run-android
react—-native run-ios

v v »n

Adding styles to text and containers

We have several components at our disposal, but containers and texts are the most common
and useful components to create layouts or other components. In this recipe, we will see
how to use containers and text, but most importantly we will see how styles work in React
Native.

We will create a UI for a simple music player; we won't be using icons for now, but we will
add them later.

Getting ready

Please follow the instructions in the introduction in order to create a new app with the
name ContainersText.

How to do it...

1. Let's start by creating an src folder in the root of the project. This is where all our
JavaScript code will be placed.

2. Create a new JavaScript called MainApp. js:

[91

Getting Started

Name A
v | | ContainersText
» [android
index.android.js
® index.ios.js
b [ios
» [] node_modules

package.json

v I src
B MmainApp.js

3. In the MainApp. js file, we are going to create a stateless component; this

component will mimic a small music player. For now, it will only display the
name of the song and a bar to show the progress:

import React from 'react';
import { StyleSheet, Text, View } from 'react-native';

4. Once we have imported the dependencies, we can write the component as

follows:
const MainApp = () => {
const name = '0l1 - Hey, this is my life';
return (

<View style={styles.container}>
<View style={styles.innerContainer} />
<Text style={styles.title}>
<Text style={styles.subtitle}>Playing:</Text> {name}
</Text>
</View>
)i
bi

5. We have our component ready, so now we need to add some styles in order to
add colors and font styles:

const styles = StyleSheet.create ({
container: {
margin: 10,
marginTop: 100,
backgroundColor: '#e67e22',
borderRadius: 5,
}V

innerContainer: {

[10]

Getting Started

backgroundColor: '#d35400',
height: 50,
width: 150,
borderTopLeftRadius: 5,
borderBottomLeftRadius: 5,

s

title: {
fontSize: 18,
fontWeight: '200°',
color: '"#fff',
position: 'absolute',
backgroundColor: 'transparent',
top: 12,
left: 10,

s

subtitle: {
fontWeight: 'bold',

s

1) i

6. In order to use this component outside of this file, we need to export it, as
follows:

export default MainApp;

7. The next step is to import our new component in the index.ios.js and
index.android. js files. The code will be the same for both platforms:

import React, { Component } from 'react';
import { AppRegistry } from 'react-native';
import MainApp from './src/MainApp';

AppRegistry.registerComponent ('ContainersText', () => MainApp);

8. In order to see our changes in the simulators, we need to reload the app. For iOS,
you can press cmd + R; for Android, click on the menu button and then the refresh

button:

[11]

Getting Started

iPhone 6 - iPhone 6 / i0S 9.2 (13C75) ® © ® Genymotion for personal use - Samsung Galaxy S6 - 6.0.0 - API 23 - 1440x2560 (72...
Carrier & 9:09 PM (-

Playing: 01 - Hey, this is my life
Playing: 01 - Hey, this is my life

[VI)

D

How it works...

Let's take a look at what we did in the previous recipe. In steps 3 to 6 we created our
component with the necessary styles. There are several things going on in these steps, so
let's dig deeper.

In step 3, we included the dependencies of our component. In this case, we will use a View,
which is a container; if you are familiar with web development, a View is similar to a div.
We can add more Views inside other Views, Texts, Lists, and any other custom
component that we create or import from a third-party library.

In step 4, we defined the name of our component. In this case, it will be MainApp. As a
convention, we should always use the same name for the file and for the component. As
you can see, this is a stateless component, which means it doesn't have any state; it's a pure
function and doesn't support any of the life cycle methods.

We are defining a name constant, but in real-world applications this data should come from
the props. In the return we are defining the JSX that we are going to need to render our
component, along with a reference to the styles.

[12]

Getting Started

Each component has a property called style; this property receives an object with all the
styles that we want to apply to the given component. Styles are not inherited (except for the
Text component) to the children components, which means we need to set individual styles
for each component.

In step 5, we defined the styles for our component. We are using the stylesheet APIto
create all our styles. As previously mentioned, all we need is an object containing the styles;
however, by using the stylesheet APl instead of a simple plain object, we gain some
performance optimizations, as the styles will be reused for every renderer as opposed to
creating an object every time the render method gets executed.

The properties in the styles object are very straightforward. If you are a web developer it,
should be really easy to get used to this, because it's similar to CSS; however, it's not the
same. We have margins, paddings, width, height, border width, border color,
border radius, and many more properties. I recommend you take a look at the
documentation to find out all the available properties.

In step 7, we only imported our new component and used it as the component that will
bootstrap our app.

There's more...

I'd like to call to your attention to the definition of the title style in step 5. Here, we have
defined a property called backgroundColor and set t ransparent as its value. As a good
exercise, let's comment this line of code and see the result:

[13]

Getting Started

iPhone 6 - iPhone 6 / i0S 9.2 (13C75)
Carrier & 9:44 PM -

Playing: 01 - Hey, this is my life

On iOS, the text will have an orange background color and it might not be what we really
want to accomplish in our UL In order to fix this, we need to set the background color of the
text as transparent. But the question is, why is this happening? The reason is that React
Native adds some optimizations to the text by setting the color from the parent's
background color. This will improve the rendering performance because the rendering
engine will not have to calculate the pixels around each letter of the text and the rendering
will be executed faster.

Think carefully when setting the background color as t ransparent. If the
component is going to be updating the content very frequently, there
might be some performance issues with text, especially if the text is too
long.

[14]

Getting Started

Using images to mimic a video player

Images are an important part of any UL. Whether we use them to display icons, avatars, or
pictures, with React Native you can do all of that. In this recipe, we will use images to create
a video player. We will also display the icons from the local device, and a large image from
a remote server on Amazon S3.

Getting ready

In order to follow the steps in this recipe, its necessary to create an empty app using the
React Native CLI. Follow the instructions in the introduction of this chapter if you don't
know to create an empty app. We are going to name it LoadingImages.

We are going to display a few images in our app to mimic a video player, so make sure to
download the assets for this recipe.

How to do it...

1. The first thing we are going to do is to create a new folder called src. Inside this
folder, we need to create a file called MainApp. js, and an images folder to store
our icons. Our project should look as follows:

» [android
index.android.js
index.ios.js
» [ios
» [node_modules
package.json
v M src
v [l images
B full-screen.png
hd-sign.png

3 play.png
sound.png
B MainApp.js

[15]

Getting Started

2. In the MainApp. js file, we are going to include all the dependencies we'll need
for this component:

import React from 'react';
import { StyleSheet, View, Image } from 'react-native';

3. We need to require the images that will be displayed in our component. By
defining a constant we can use the same image in different places. We might need
to restart the package server to successfully load the images, especially if we are
using Windows:

const playIcon = require('./images/play.png');

const volumeIcon = require('./images/sound.png');

const hdIcon = require('./images/hd-sign.png');

const fullScreenIcon = require('./images/full-screen.png');

const remotelmage = {

uri:
'https://s3.amazonaws.com/crysfel/
public/book/new-york.jpg' };

4. We are going to use a stateless component to render the JSX. We'll use all the
images we have declared in the previous step:

const MainApp = () => {
return (
<Image source={remotelmage} style={styles.fullscreen}>
<View style={styles.container}>
<Image source={playIcon} style={styles.icon} />
<Image source={volumeIcon} style={styles.icon} />
<View style={styles.progress}>
<View style={styles.progressBar} />
</View>
<Image source={hdIcon} style={styles.icon} />
<Image source={fullScreenIcon} style={styles.icon} />
</View>
</Image>
)i
bi

[16]

Getting Started

5. Once we have the elements that we are going to render, we need to define the
styles for each element:

const styles = StyleSheet.create ({
fullscreen: {
flex: 1,
I
container: {
position: 'absolute',
backgroundColor: '#202020',
borderRadius: 5,
flexDirection: 'row',
height: 50,
padding: 5,
paddingTop: 16,
bottom: 30,
right: 10,
left: 10,
borderwWidth: 1,
borderColor: '#303030',
I
icon: {
tintColor: '#fff',
height: 16,
width: 16,
marginLeft: 5,
marginRight: 5,
I
progress: A
backgroundColor: '#000',
borderRadius: 7,
flex: 1,
height: 14,
margin: 10,
marginTop: 2,
I
progressBar: {
backgroundColor: '#bflélc',
borderRadius: 5,
height: 10,
margin: 2,
width: 80,

[17]

Getting Started

6. In order to use our component, we need to export it. This is a very simple step
that requires only one line of code:

export default MainApp;

7. Finally, we need to import our new component inside index.ios. js and
index.android. js:

import React, { Component } from 'react';

import { AppRegistry } from 'react-native';

import MainApp from './src/MainApp';
AppRegistry.registerComponent ('LoadingImages', () => MainApp);

8. We are done! Just refresh the app on the simulators and you should see
something like this:

iPhone 6 - iPhone 6 / iOS 9.2 (13C75)

[18]

Getting Started

How it works...

In step 2, we required the Image component; this is the component responsible for
rendering images from the local filesystem on the device or from a remote server.

In step 3, we required all the images. It's a good practice to require the images outside of the
component in order to only require them once, and then we can use them in our
component. On every renderer, React Native will use the same image; if we are dealing
with dynamic images from a remote server, then we should require them on every renderer.

The require function accepts the path of the image as a parameter; the path is relative to
the folder that our class is. For remote images, we need to use an object defining the uri
where our file is.

In step 4, a stateless component was declared. We are using the remoteImage as the
background of our app. In order to set an image in the background, we need to define all
the other elements as children of the image. There's not a backgroundUrl property, such as
in CSS.

The source property of the Image accepts an object to load remote images or a reference to
the required file. It's very important to explicitly require every image that we want to use,
because, when we prepare our app for distribution, images will be added to the bundle
automatically. This is the reason we should avoid doing things like the following:

const iconName = playing ? 'pause' : 'play';
const icon = require (iconName) ;

The preceding code will not include the images in the final bundle. As a result, we will have
errors when trying to access these images. Instead, we should refactor our code as follows:

const pause = require('pause');
const play = require('playing');
const icon = playing ? pause : play;

This way, the bundle will include both images when preparing our app for distribution,
and we will decide dynamically which image to display.

In step 5, we defined the styles. Most of the properties are self-explanatory; the tintColor
property might be a bit confusing, but this property is basically setting the color of the
image, in this case, to white. I will talk more about flex in separate recipes, but for now let's
just say that flexDirection: 'row' is allowing us to align the icons horizontally.

In step 7, we included the MainApp class in the iOS and Android index files. After this, we
should be able to run our application on the simulators.

[19]

Getting Started

There's more...

In this recipe, we have used flexbox to horizontally arrange the controls of the player. If you
want to learn more about flexbox, take a look at Using flexbox to create a profile page. For more
advanced content, you should go to chapter 2, Implementing Complex User Interfaces.

Creating a toggle button

We all know that buttons are an essential Ul component in every application. We use
buttons for navigation, to trigger API calls, and so on. In this recipe, we will create a toggle
button, which by default is going to be unselected. When the user taps on it, we will change
the styles of the button to make it look selected.

We will learn how to detect the tap event, use an image as the UI, keep the state of the
button, and add styles based on the component state.

Getting ready

Let's create a new app using the React Native CLI. We are going to name it
ButtonsAndEvents. We are going to use one image in this recipe; make sure to download
the assets for this recipe or feel free to use your own image.

How to do it...

1. We need to create an src folder where our source will be stored; inside this
folder we will create an images folder and a MainApp. js file:

> android
index.android.js
index.ios.js
> ios
> node_modules
npm-debug.log
package.json
v I src
v [l images

0 plain-heart.png
MainApp.js

[20]

Getting Started

2. Let's import the dependencies for this class:

import React, { Component } from 'react';
import {

StyleSheet,

View,

Image,

Text,

TouchableHighlight,
} from 'react-native';

const heartIcon = require('./images/plain-heart.png');

3. For this particular recipe, we need to keep the state of the button when pressed;
therefore, we need to create a class that extends from Component, as follows:

class MainApp extends Component {
state = {
liked: false,
bi

_onPressBtn = () => {
// We will define the content on step 6

render () A
// We will define the content on step 4

}

4. We need to define the content of our new component inside the render method;
here, we are going to define the Image button and a Text underneath:

render () A
return (
<View style={styles.container}>
<TouchableHighlight
style={styles.btn}
underlayColor="#fefefe"
>
<Image
source={heartIcon}
style={styles.icon}
/>
</TouchableHighlight>
<Text style={styles.text}>Do you like this app?</Text>
</View>

[21]

Getting Started

)
}

5. Let's define some styles to set dimensions, position, margins, colors, and so on:

const styles = StyleSheet.create ({
container: {
marginTop: 50,
alignItems: 'center',
}I
btn: {
borderRadius: 5,
padding: 10,
}I
icon: {
width: 180,
height: 180,
tintColor: '#f1f1f1°',
}I
liked: {
tintColor: '#e74c3c',
}I
text: |
marginTop: 20,
}I
}) i

[22]

Getting Started

6. If we run the project on the simulators, we should have something similar to the
following screenshot:

® © ® Genymotion for personal use - Samsung Galaxy S6 - 6.0.0 - API 23 - 1440x2560 (72... iPhone 6s Plus - iPhone 6s Plus / i0S 9.2 (13C75)
Carrier & 2:46 PM -

$

o)

Do you like this app?

Do you like this app?

)

i

G D

7. In order to respond to the tap event, we need to define the content of the
_onPressBtn function and assign it as a callback to the onPress property:

class MainApp extends Component {

state = {
liked: false,
i
_onPressBtn = () => {

this.setState ({
liked: !'this.state.liked,
)i

[23]

Getting Started

render () A
return (
<View style={styles.container}>
<TouchableHighlight
onPress={this._onPressBtn}
style={styles.btn}

underlayColor="#fefefe"

<Image source={heartIcon} style={styles.icon} />
</TouchableHighlight>
<Text style={styles.text}>Do you like this app?</Text>
</View>
)i

}

8. If we test our code, we won't see anything changing on the Ul even though the
state on the component is changing when we press the button. Let's add a
different color to the image when the state changes; that way, we will be able to
see some response from the Ul:

render () A
const likedStyles = this.state.liked ? styles.liked : null;
return (
<View style={styles.container}>
<TouchableHighlight

onPress={this._onPressBtn}

style={styles.btn}

underlayColor="#fefefe"

<Image
source={heartIcon}
style={[styles.icon, likedStyles]}
/>
</TouchableHighlight>

<Text style={styles.text}>Do you like this app?</Text>
</View>

)i

9. We are almost done with this class; the only thing that is missing is the export.
At the bottom of the file we can add the following line:

export default MainApp;

[24]

Getting Started

10. Finally, we need to update the index.ios. js and index.android. js files to
import and use our new class:

import React, { Component } from 'react';
import { AppRegistry } from 'react-native';
import MainApp from './src/MainApp';

AppRegistry.registerComponent
('ButtonsAndEvents', () => MainApp);

How it works...

In step 2, we imported the TouchableHighlight component. This is the component
responsible for handling the touch event.

When the user touches the active area, the content will be highlighted based on the
underlayColor value we have set.

In step 3, we defined the state of the Component. In this case, there's only one property on
the state, but we can add as many as needed. In chapter 2, Implementing Complex User
Interfaces, we will see more recipes about handling the state in more complex scenarios.

In step 6, we used the set State method to change the value of the 1iked property. This
method is inherited from the Component class that we are extending.

In step 7, based on the current state of the 1iked property, we used the styles to set the
color of the image to red, or we returned a null to avoid applying any styles. When
assigning the styles to the Image component, we used an array to assign many objects; this
is very handy because, internally, the component will merge all the styles into one single
object. The objects with the highest index will overwrite the properties from the lowest
object index in the array:

[25]

Getting Started

iPhone 6 - iPhone 6 / iOS 9.2 (13C75)

Do you like this app?

® 00 Genymotion for personal use - Samsung Galaxy S6 - 6.0.0 - API 23 - 1440x2560 (720x1280, 320dpi) - 192.168.56.101

5:08
A\’ g

Do you like this app?

There's more...

In a real application, we are going to use several buttons, sometimes with an icon aligned to
the left, a label, different sizes, and colors, and so on. It's highly recommended to create a
reusable component to avoid duplicating code all over our app. In chapter 2, Implementing
Complex User Interfaces, we will create a button component to handle some of these
scenarios.

[26]

Getting Started

Displaying a list of items

Lists are everywhere: A list of orders on the user's history, a list of available items in a store,
a list of songs to play; basically, any application will need to display information in a list.

For this recipe, we are going to display several items in a 1ist component. We are going to
define a JSON file with some data, then we are going to load this file using a simple
require to finally render each item with a nice but simple layout.

Getting ready

Let's start by creating an empty app-in this case we will name it List Items. We are going
to need an icon to display on each item, so please download the assets for this recipe or use
your own . png image.

How to do it...

1. We will start by creating an src folder. Inside this folder we will have the
MainApp. js file and the sales. json file:

» [android
index.android.js
index.ios.js
» [ios
| node_modules
package.json
v Il src
v [l images
basket.png

@ MainApp.js
. sales.json

2. Inside the sales. json file, we will define the data that we are going to display
on the list. Here's some sample data:

[

{"items": 5, "address": "140 Broadway, New York, NY 11101",
"total": 38, "date": "May 15, 2016"}

[27]

Getting Started

3. To avoid cluttering the pages of this book, I've only defined one record, but go
ahead and add more content to the array. Copying and pasting the same object

multiple times will do the trick. In addition, you could change some values on the
data.

4. Let's open the index.ios. js and index.android. js files, remove the existing
code, and add the following to import dependencies and register the app:

import React, { Component } from 'react';
import { AppRegistry } from 'react-native';
import MainApp from './src/MainApp';

AppRegistry.registerComponent ('ListItems', () => MainApp);

5. In the previous step, we imported the MainApp component, but it's not defined
yet. Let's open the src/MainApp. js file and import the dependencies:

import React, { Component } from 'react';
import {
StyleSheet,
View,
ListView,
Image,
Text,
} from 'react-native';
import data from './sales.json';

const basketIcon = require('./images/basket.png');

6. Now we need to create the class to render the list of items. We are going to keep
the sales data on the state; that way, we could insert or remove elements easily:

class MainApp extends Component {
constructor (props) A
super (props) ;
var ds = new ListView.DataSource ({
rowHasChanged: (rl, r2) => rl !== r2
)i

this.state = {
dataSource: ds.cloneWithRows (data),

bi

renderRow (record) {
// Defined on step 8

[28]

Getting Started

render () A
// Defined on step 7

export default MainApp;

7. In the render method, we need to define the ListView component and we will
use the renderRow method to render each item. The dataSource property
defines the array of elements that we are going to render on the list:

render () A
return (
<View style={styles.mainContainer}>
<Text style={styles.title}>Sales</Text>
<ListView
dataSource={this.state.dataSource}
renderRow={this.renderRow}
/>
</View>
)
}

8. Now we can define the content of renderRow. This method receives each object
containing all the information we need. We are going to display the data in three
columns. In the first column we will show an icon, in the second column we will
show the number of items for each sale and the address where this order will
ship, and the third column will display the date and the total:

renderRow (record) {
return (
<View style={styles.row}>
<View style={styles.iconContainer}>
<Image source={basketIcon} style={styles.icon} />
</View>
<View style={styles.info}>
<Text style={styles.items}>{record.items} Items</Text>
<Text style={styles.address}>{record.address}</Text>
</View>
<View style={styles.total}>
<Text style={styles.date}>{record.date}</Text>
<Text style={styles.price}>${record.total}</Text>
</View>
</View>
)i

[29]

Getting Started

9. Once we have the JSX defined, it's time to add the styles. First, we will define
colors, margins, paddings, and so on for the main container, and the title and the
row container. In order to create the three columns for each row, we need to use
the flexDirection: 'row' property. We will learn more about this property in
another recipe in this chapter:

const styles = StyleSheet.create ({
mainContainer: {
flex: 1,
backgroundColor: '#fff',
}I
title: {
backgroundColor: '#0f1b29',
color: '#fff',
fontSize: 18,
fontWeight: 'bold',
padding: 10,
paddingTop: 40,
textAlign: 'center',
}I
row: A
borderColor: '#f1f1f1',
borderBottomWidth: 1,
flexDirection: 'row',
marginLeft: 10,
marginRight: 10,
paddingTop: 20,
paddingBottom: 20,
}I

[30]

Getting Started

10. If we refresh the simulators, we should see something similar to the following
screenshot:

® © ® =0 Genymotion for personal use - Samsung Galaxy S6 - 5.0.0 - API 21 - 1440x2560 (.

PAM726 g

iPhone 6 - iPhone 6 / i0S 9.2 (13C75)

5 ltems May 15, 201
140 Broadway, New York, NY 11101$38
5ltems May 15, 2

140 Broadway, New York, NY 11101338

7 ltems Jun 21, 2
2 Washington St, New York, NY 10004 $92

7 ltems Jun 21
2 Washington St, New York, NY 10004$92

(

11/ L\
\1/
\1/ JA\
\1/
2 ltems Jul 16, 2016
Aw Spring St New York, NY 10012$34 <+
W/ :! 2 ltems Jul16,201¢ 198
13 Spring St New York, NY 10012334
\l/ o
:: 9 Items Feb 28, 2(
19 E Houston St New York, NY 10012$85
\l ” : : 9 ltems Feb 28,
19 E Houston St New York, NY 10012885
\l/ o
z : 12 Items Mar 30
50 W 17 @5th Ave, New York, NY 10001$19 =
\”l :: 12 ltems Mar ! -
50 W 17 @5th Ave, New York, NY 10001819
\ll/ o
: : 3 ltems May 05, 20
867 Broadway New York, NY 10003$21 Q)
Ly a0

11. Now, inside the stylesheet definition, let's add styles to the icon. We are going
to add a yellow circle as the background and change the color of the icon to
white:

iconContainer: {
alignItems: 'center',
backgroundColor: '#feb401',
borderColor: '#feafl2',
borderRadius: 25,
borderWidth: 1,
justifyContent: 'center',
height: 50,
width: 50,

}I

icon: {
tintColor: '#fff',
height: 22,
width: 22,

[31]

Getting Started

}I

12. After this change, we will see a nice icon on the left side of each row, as shown in
the following screenshot:

® © ® o Genymotion for personal use - Samsung Galaxy S6 - 5.0.0 - AP 21 - 1440x2560 (.

T —

5 ltems May 15, 2016
140 Broadway, New York, NY 11101$38

5 ltems May 15, 20"
140 Broadway, New York, NY 11101$38

7 Items Jun 21, 20
2 Washington St, New York, NY 10004$92
7 ltems Jun 21,2

2 Washington St, New York, NY 10004392

2 ltems Jul 16, 2016
13 Spring St New York, NY 10012$34
2 ltems Jul 16,2016 <+
13 Spring St New York, NY 10012834
<«
9 Items Feb 28, 201t
') 19 E Houston St New York, NY 10012$85
9 [tems Feb 28, 2C
19 E Houston St New York, NY 10012$85
12 Items Mar 30, Z
50 W 17 @5th Ave, New York, NY 10001$19
12 ltems Mar 30
50 W 17 @5th Ave, New York, NY 10001819 -
= 3 Items May 05, 2016
= 867 Broadway New York, NY 10003$21
3 ltems May 05,201 e
867 Broadway New York, NY 10003321
» 9 Items Dec 10, 2015

140 Broadwav. NY. 11101$52

13. Finally, the styles for the text. We need to set the color, size, fontWeight,
padding and a few other things:

info: {
flex: 1,
paddingLeft: 25,
paddingRight: 25,

}I

items: {
fontWeight: 'bold',
fontSize: 16,
marginBottom: 5,

}I

address: {
color: '#ccc',
fontSize: 14,

}I

[32]

Getting Started

total: {
width: 80,
by
date: {
fontSize: 12,
marginBottom: 5,
by
price: |
color: '#lcade6l',
fontSize: 25,
fontWeight: 'bold',
by

14. The end result should look similar to the following screenshot:

® © ©® -0 Genymotion for personal se - Samsung Galaxy S6 - 5.0.0 - API 21 - 1440x2560 (

iPhone 6 - iPhone 6 / i0S 9.2 (13C75)

CLRT746 g
°]
5 Iltems May 15, 2016
$38 5 ltems May 15,2016
$38
7 Items Jun 21, 2016
$92 7 ltems Jun 21,2016
$92
2 Items Jul 16, 2016
$34 “
2 ltems Jul 16,2016
‘_
$34 .
9 Items Feb 28, 2016 o
$85
9 ltems Feb 28,2016
12 Items Mar 30, 2016 $85
$19
[=1
12 ltems Mar 30,2016
=
3 ltems May 05, 2016 $1 9
=
$21
O

How it works...

In step 6, we create the data source and added data to the state. The
ListView.DataSource class implements performance data processing for the ListView
component. The rowhHasChanged property is required, and it should be a function to
compare the next element.

[33]

Getting Started

When filling up the data source with data, we need to call the c1lonewithRows method and
send an array of records.

If we want to add more data, we should call again the clonewithRows method with an
array containing the previous and new data. The data source will make sure to compute the
differences and re-render the list if necessary.

In step 7, we define the JSX to render the list. Only two properties are required for the list,
the data source we already have from step 6, and the renderRow.

The renderRow property accepts a function as a value; this function needs to return the JSX
for each row.

There's more...

We have created a simple layout using flexbox; however, there's another recipe in this
chapter where we will dive into more detail about using flexbox.

Once we have our list, the chances are that we are going to need to see the detail of each
order. We will have to use the TouchableHighlight component as the main container for
each row, so go ahead and give it a try. If you are not sure how to use the
TouchableHighlight component, take a look at the Creating a toggle button recipe in this
chapter.

Adding tabs to the viewport

Tabs are a very common component, especially in iOS apps. In this recipe, we will learn
how to use the tabs component on iOS devices only. As of now, we don't have support for
Android, and if we really want to use tabs, we would have to use a third-party library to
add similar functionality.

Getting ready

We need to create an empty app using the React Native CLI. We will name it
TabsComponent. Then we will create an src folder in the root of the project where we are
going to define all our JavaScript code. We are going to use four different icons, but feel free
to use your own or make sure to download the assets for this recipe.

[34]

Getting Started

How to do it...

1. Let's start by importing all the dependencies for this component, as well as the
images we are going to use for the icons:

import React, { Component } from 'react';
import {

StyleSheet,

View,

Image,

Text,

TabBarIOS
} from 'react-native';

const homeIcon = require('./images/home.png');
const favIcon = require('./images/star.png');
const blogIcon = require('./images/notebook.png');
const profilelIcon = require('./images/user.png');

2. In order to select a tab, we need to keep the current selection on the state,
therefore we need to use a class, which will look something like this:

class MainApp extends Component {
state = {
selected: 'home',
bi

selectTab (id) |
// Defined on step 5

renderTab (options) {
// Defined on step 4

render () A
// Defined on step 3

[35]

Getting Started

3. Inside of the render method, we need to define the tab component, along with
each tab that we want to show. In this case, we are going to use the renderTab
method to build the JSX, which will allow us to reduce our code base by calling a
single function with different options:

render () {
return (
<TabBarIOS
tintColor="#42b49a"

{this.renderTab (
{title: 'Home', id: 'home', icon: homelIcon}) }
{this.renderTab (
{title: 'Favorites', id: 'favorites', icon: favIcon})}
{this.renderTab (
{title: 'Blog', id: 'blog', icon: blogIcon})}
{this.renderTab (
{title: 'Profile', id: 'profile', icon: profilelcon})}
</TabBarIOS>
)
I

4. For the renderTab method, we need to define a few properties, such as the title
of the tab, the icon, weather it is selected or not, and a callback function to define
the actual selection. For now, we will use the same content for each tab, but in
real-world applications we would pass the main content as a parameter as well.
One of the most important properties here is the selected property. We can
only have one tab selected at a time, and we will use the state to keep the current
selection:

renderTab (options) {
return (
<TabBarIOS.Item
title={options.title}
selected={this.state.selected === options.id}
onPress={ () => this.selectTab(options.id) }
icon={options.icon}

<View style={styles.container}>
<Image source={options.icon} style={styles.icon} />
<Text style={styles.title}>{options.title}</Text>
</View>
</TabBarIOS.Item>
)i

[36]

Getting Started

5. In the previous step, we are calling the selectTab function when the tab item is
pressed. The idea here is to call this function when the user presses any of the
tabs. We will send the id as a parameter and then we will set the current
selection on the state:

selectTab (id) |
this.setState ({
selected: id,
)i
I

6. Let's add some styles to center the content on the screen and set a nice color to the
image of each tab. We will also export the component in order to be able to
import it anywhere else:

const styles = StyleSheet.create ({
container: {

flex: 1,
alignItems: 'center',
justifyContent: 'center',
}I
title: {

fontSize: 20,
marginTop: 20,
}I
icon: {
width: 30,
height: 30,
tintColor: '#42b49a'
}I
b

export default MainApp;

7. Finally, we need to update the index.ios. js file to import our new class:
import React, { Component } from 'react';
import { AppRegistry } from 'react-native';

import MainApp from './src/MainApp';

AppRegistry.registerComponent ('TabsComponent', () => MainApp) ;

[37]

Getting Started

8. The final result should look similar to the following screenshot:

iPhone 6 - iPhone 6 / iOS 9.2 (13C75)
Carrier ¥ 6:06 PM (—

Home

Using flexbox to create a profile page

In this recipe, we will learn about flexbox. In the previous recipes in this chapter we've been
using flexbox to create some layouts, but in this recipe we will focus on the properties we
have at our disposal to create a profile page.

Getting ready

We need to create an empty app using the React Native CLI-let's name it SimpleLayout.
We are going to use a few icons and an image to show in the profile page. You can use your
own or download the assets for this recipe.

[38]

Getting Started

How to do it...

1.

2.

Let's start by creating an src folder in the root of the project. Then we need to
create the MainApp. js file where we are going to define the code for this recipe.

In the new file, let's import the dependencies of our class, just a few basic
components, the profileImage and some icons. Make sure to create the
images folder and add some icons there, as well as the user profile image:

import React, { Component } from 'react';
import {

StyleSheet,

View,

Image,

Text,
} from 'react-native';

const profileImage = require('./images/user-profile.jpg');
const friendsIcon = require('./images/profile.png');

const favIcon = require('./images/plain-heart.png');

const msgIcon = require('./images/chat.png');

We are going to create a class. It will have the user's data on the state and two
methods to render the JSX. As a rule of thumb, we should always try to split the
JSX into reusable methods, which will allow us to have a more readable code
base:

class MainApp extends Component {

state = {
name: 'Crysfel',
lastName: 'Villa Roman',
occupation: 'Software Engineer’,

friends: '1,200"',
favorites: '2,491"',
comments: '4,832',

bi

renderStat (options) |
// Defined on step 5

render () A
// Defined on step 4

[39]

Getting Started

4. Inside the render method, we are going to set the profile image as the
background of the app. Then we need a container to move the user's information
to the bottom of the screen. Inside the container, we will define two more
containers, one for the basic information and one to show the number of
friends, favorites, and comments:

render () A

const {
name,
lastName,
occupation,
friends,
favorites,
comments,

} = this.state;

return (
<Image source={profileImage} style={styles.container}>
<View style={styles.info}>

<View style={styles.personal}>
<Text style={styles.name}>{name}
{lastName}
</Text>
<Text style={styles.occupation}>

{occupation.toUpperCase () }

</Text>

</View>

<View style={styles.stats}>
{this.renderStat (
{ icon: friendsIcon,value: friends, selected: true })}
{this.renderStat ({ icon: favIcon,value: favorites })}
{this.renderStat ({ icon: msglcon,value: comments })}

</View>

</View>
</Image>
)
}

5. In the renderstat method, we are going to define just a container with an
Image and Text. This method receives an object of properties with the values to
use; if the selected property is t rue, we are going to add specific styles for this:

renderStat (options) {
return (
<View style={styles.stat}>
<Image

[40]

Getting Started

source={options.icon}
style={[styles.icon, options.selected ?

styles.selected : null]l}
/>
<Text style={styles.counter}>{options.value}</Text>
</View>

)i
}

6. Now we should export our new class, which will allow us to use it anywhere
else:

export default MainApp;

7. In order to test our new component, we need to import it into the index.i0s.js
and index.android. js files:

import React, { Component } from 'react';
import { AppRegistry } from 'react-native';
import MainApp from './src/MainApp';

AppRegistry.registerComponent ('SimpleLayout', () => MainApp);

8. We are now ready to start creating our layout! Without any styles defined, our
app should look something like the following screenshot. It doesn't look good at
all, but we have the JSX in place:

[41]

Getting Started

iPhone 6 - iPhone 6 / i0S 9.2 (13C75)
Qrysfel lla Roman 9:42 PM
SOFTWARE ENGINEER

9. First, we will fix the background image. You can see that the image is huge and
doesn't fit on the screen. In order to fix this issue, we need to set the width and

height to null. We also need to set flex: 1, which will automatically get the
height of the parent:

const styles = StyleSheet.create ({
container: {

flex: 1,
height: null,
width: null,

}I

1)

[42]

Getting Started

10. Now we are going to move the information container to the bottom of the screen.
To accomplish this, we need to set the position to absolute and the bottom,
left, and right to O:

info: {
backgroundColor: 'rgba(0,0,0,0.5)"',
bottom: O,
left: O,
position: 'absolute',
right: 0,
}I

11. While this works as expected, we could reduce our code by using the
StyleSheet.absoluteFillObject object, which basically contains the
absolute position and all four sides to set 0. In our case, we need the top to be
null. The following code is exactly the same as the previous one:

info: {
...StyleSheet.absoluteFillObject,
backgroundColor: 'rgba(0,0,0,0.5)"',
top: null,

}I

12. We are going to set the fontSize, color, and some padding for the personal
information data:

personal: {
padding: 30,
b

name: A
color: '#fff',
fontFamily: 'Helvetica',

fontSize: 30,
fontWeight: 'bold',
}I
occupation: {
color: '#d6eclb',
marginTop: 5,

by

[43]

Getting Started

13. At this point we should have something similar to the following screenshot:

® © ® 0 Genymotion for personal use - Samsung Galaxy S6 - 5.0.0 - AP| 21 - 1440x2560 (...

Crysfel Villa Roman

SOFTWARE ENGINEER

Crysfel Villa Roman

SOFTWARE ENGINEER

14. We are getting there! Now let's style the icons for friends, favorites, and
comments. We are going to define the tintColor, width, height, color, and

marginTop:

selected: {
tintColor: '#d6eclb',
}I
icon: {
tintColor: '#504f9f"',
height: 30,
width: 30,
}I
counter: {
color: '"#fff',
fontSize: 15,
marginTop: 5,
}I

[44]

Getting Started

15. Finally, we are going to arrange the icons horizontally by changing the
flexDirection to row. We are also adding some additional styles to set the
backgroundColor, padding, and a borderLeftWidth:

stats: {

flexDirection: 'row',
}I
stat: {

alignItems: 'center',

backgroundColor: '#7675b7',
borderColor: '#6eb6dbl’,
borderLeftWidth: 1,
flex: 1,
padding: 10,

}I

16. After all these styles have been applied, let's reload the simulator and see what
we have so far:

® © ® <o Genymotion for personal use - Samsung Galaxy S6 - 5.0.0 - API 21 - 1440x2560 (...

¥4 =826

iPhone 6 - iPhone 6 / i0S 9.2 (13C75)

Crysfel Villa Roman

SOFTWARE ENGINEER

2

Crysfel Villa Roman

SOF E ENGINEER

2

[45]

Getting Started

How it works...

This profile is looking really good, and it was really simple to accomplish it just by using
flexbox. We have arranged the icons horizontally; we have used an image as a background,
we set the position of the container to absolute so we could move it around the screen. We
can use many of these techniques in real-world applications to create amazing layouts.

When using flexbox, we have two directions, row and column:

e row: Allows us to arrange the children of the container horizontally

e column: This is the default direction, and arranges the children of the container
vertically

When setting flex:1 in any of the children of the container, we are making that child
flexible.

If we have three children (as in this recipe) and each of the elements has flex: 1, the layout
engine will render all of them to have the same width. If we change the orientation of the
device from portrait to landscape, the render engine will render the three children with the
new width according to the orientation.

Flexbox is great to support different screen resolutions as well. As you can see in the
previous image, the iOS and Android simulators have different resolutions, and the layout
looks good on both devices.

There's more...

There's a lot more to talk about flexbox, but for now let's just touch the surface. In chapter
2, Implementing Complex User Interfaces, we will learn more about layouts. We will create a
complex layout to use all the other available properties.

Setting up a navigator

One of the most popular features in React Native is the navigator. This component allows
us to add or remove views easily. When we add a new view, the navigator will transition
with a nice animation to the new view, and when removing the latest view, the navigator
will go to the previous view with a nice animation as well.

[46]

Getting Started

Getting ready

Before we start working on this recipe, we need to create a new app using the React Native
CLI-let's name it UsingNavigator. We are going to create a simple music app similar to
Spotify. At the home page, we will display a list of songs, and we are going to display the
details, whenever any of these songs are tapped.

For this recipe, we are going to use three classes, so let's create an src folder where all our
code will be. Then we'll create three files, MainApp. js, Home. s, and Detail. js.

How to do it...

1. This time, we are going to start by updating the index.ios.js and
index.android. js files. We are going to require the MainApp class, which, for
now, is empty, because we want to test our app while adding the new features:

import React, { Component } from 'react';
import { AppRegistry } from 'react-native';
import MainApp from './src/MainApp';

AppRegistry.registerComponent ('UsingNavigator', () => MainApp);

2. Let's create the main class. Here, we are going to import all the views that we
want to display in the navigator, as well as the dependencies for this component:

import React, { Component } from 'react';

import {
StyleSheet,
Navigator,
} from 'react-native';
import Home from './Home';
import Detail from './Detail';

3. Once we have the dependencies, we need to create the class. Inside the render
method, we will only define the Navigator. This component will be responsible
for loading the correct scene based on the route. Using the configureScene
property, we can set the default animation for all transitions. For this example,
we will animate the new view from the bottom to the top of the screen, but we
can also define an animation from left to right, or any other direction. I
recommend you go to the documentation to see all the available options that we
have:

[471]

Getting Started

class MainApp extends Component {

renderScene (route, navigator) {
// Defined on step 4

render () A

return (
<Navigator

ref="navigator"
style={styles.container}
configureScene={ (route) =>
Navigator.SceneConfigs.FloatFromBottom}
initialRoute={{}}
renderScene={this.renderScene}

const styles = StyleSheet.create ({
container: {
flex: 1,
by
1)
export default MainApp;

4. The renderScene method will get executed every time we push or pop a scene.
Here, we need to decide which view we will render by returning the component
based on the route. We could have as many views as needed. In this case, we only

have the Detail and the Home:

renderScene (route, navigator) {
if (route.song) {
return (

<Detail song={route.song} navigator={navigator} />

)i

return <Home navigator={navigator} />;

[48]

Getting Started

5. We are done with the main class. Now we can work on the Home component. We
will start by importing all the dependencies for this class:

import React, { Component } from 'react';
import {

StyleSheet,

View,

Image,

Text,

ScrollView,

TouchableHighlight,
} from 'react—-native';

6. We are going to define the data for the songs in the state of the component. We
will have several sections with a list of songs, for example, ' Just for you',
'"Recently played’',and 'Popular music'. For now, I will define the
structure of one section only, because I don't want to clutter this book, but you
can duplicate the same structure of data to create more sections. Here's what the
class looks like with the data:

class Home extends Component {
state = {
forYou: { // Please duplicate this data
title: 'Just for you',

root:
'https://s3.amazonaws.com/crysfel/public/book/01/07"',
songs: [
{title:'Some nice song', image: 'l.Jpg'},
{title:'One more nice song', image: '2.jpg'},
{title:'Here is one more song', image: '3.jpg'},

{title:'Really nice song', image: '4.jpg'},
{title:'I love this song', image: '5.jpg'},
{title:'This is a song', image: '6.7Jpg'},
]I
}I
bi

onSelectSong (song) {
// Defined on step 10
}

renderSong (section, song, index) {
// Defined on step 9
3

renderSection (options) {
// Defined on step 8

[49]

Getting Started

render () A
// Defined on step 7

}

export default Home;

7. In the render method, we are going to define a title bar and three sections.
Remember to duplicate the data on the state in order for this to work correctly:

render () A
const {
forYou,
played, // Name of the duplicated data
popular, // Name of the duplicated data
} = this.state;

return (
<View style={styles.container}>
<Text style={styles.title}>Home</Text>
{this.renderSection (forYou) }
{this.renderSection (played) }
{this.renderSection (popular) }
</View>
)i
3

8. For each section, we are calling the rendersection method, which will render
the title of the section and the list of songs in this group. We are going to use the
Scrollview component to allow the user to scroll through the list horizontally.
To render the songs, we need to loop the songs array of each section. We can do
this by using the map method and an arrow function:

renderSection (options) {
return (
<View style={styles.section}>
<Text
style={styles.sectionTitle}

{options.title.toUpperCase () }

</Text>

<ScrollView
horizontal
showsHorizontalScrollIndicator={false}>

{

options.songs.map (

[50]

Getting Started

(song, index) =>
this.renderSong (options, song, index)

)

}

</ScrollView>
</View>
)i
}

9. Now we need to render the song. We will display the image and the title for each
song. The image is hosted on Amazon S3. We are going to use the
TouchableHighlight component because we want to detect the press event to
show the detail of each song. It's important to mention that this component only
accepts a single child; therefore, we need to use a wrapper to group the image
and the title; otherwise, we will get errors:

renderSong (section, song, index) {

return (
<TouchableHighlight
onPress={ () => this.onSelectSong(song) }

style={styles.song} key={index}
>
<View>
<Image
source={{uri: ${section.root}/${song.image} }}
style={styles.image}
/>
<Text style={styles.songTitle}>{song.title}</Text>
</View>
</TouchableHighlight>
)i
3

10. In the previous step, we are calling the onselectSong method when the user
presses the button. This function is the one that will run the transition on the
navigator. All we need to do is call the push method on the navigator and pass
the details object. The renderscene method will check if the song object is there,
and will show the scene that we need:

onSelectSong (song) {

this.props.navigator.push({song});

}

[51]

Getting Started

11. We are done with JSX. Now we need to add some styles to make this look pretty.
Let's start by adding styles to the title bar and the main container:

const styles = StyleSheet.create ({
container: {
flex: 1,
backgroundColor: '#0clbla',
}l
title: {
backgroundColor: '#37b298',
color: '#fff',
padding: 10,
paddingTop: 30,
textAlign: 'center',
fontWeight: 'bold',
fontSize: 18,

L VRN

[52]

Getting Started

12. Next, let's style the sectionTitle, the image, and the songTitle, something
really simple—just adding some padding, color, and setting the width and height
for each image:

section: {
padding: 10,
}I
sectionTitle: {
color: '#fff',
fontWeight: '200°',
paddingBottom: 10,
}I
song: |
backgroundColor: '#081412"',
marginRight: 10,
}I
image: {
width: 120,
height: 120,
}I
songTitle: {
color: '#flfl1f1',
fontWeight: '200',
fontSize: 12,
flex: 1,
padding: 5,
width: 100,

[53]

Getting Started

® © ® <o Genymotion for personal use - Samsung Galaxy S6 - 5.0.0 - API 21 - 1440x2560 (..

C®diannae g

J

Some nice song One more nice Here's one mo
song

RECENTLY PLAYED

"

/.

This is a song

8 |

POPULAR MUSIC This is a song Really nice song Some nice sor

POPULAR MUSIC

I love thi

13. It's looking amazing! We can now scroll the list of each section horizontally. If we
tap on any of the songs, we will get an error because we haven't defined the
detail view. Let's start by importing the dependencies on the Detail. js file. We
are going to import the PropTypes object. This object allows us to define the
types of property our component will support. This step is very important
because we can receive data from other components by using properties. In this
example, we will receive the data from the home component, which will be an
object with the song's data:

import React, { Component, PropTypes } from 'react';
import {

StyleSheet,

View,

Image,

Text,
} from 'react-native';

const { object } = PropTypes;

const root =
'https://s3.amazonaws.com/crysfel/public/book/01/07";

[54]

Getting Started

14. The class is a lot simpler. We are only defining the image and title from the song
that we will receive in the properties; then we will display a list of other songs
from the same artist. To make things a lot simpler, this list will be a hardcoded
list of Text elements:

class Detail extends Component {
static propTypes = {
song: object,
navigator: object,

bi

render () A
const { song } = this.props;

return (
<View style={styles.container}>
<View style={styles.info}>

<Image
source={{uri: "${root}/${song.image} }}
style={styles.image}

/>

<Text style={styles.title}>{song.title}</Text>
<View style={styles.playContainer}>
<Text style={styles.play}>Play song</Text>

</View>

</View>

<Text style={styles.other}>01 - One more song</Text>

<Text style={styles.other}>02 - Other song here</Text>

<Text style={styles.other}>

03 - This is the last song</Text>

<Text style={styles.other}>

04 - Maybe this is the last song?</Text>

<Text style={styles.other}>

05 - Why not one more song?</Text>

<Text style={styles.other}>

06 - Finally this is the last song</Text>

</View>
)i

export default Detail;

[55]

Getting Started

15. Now let's style this component. We are going to display the image as a circle, and
then we will display the title of the song we are receiving:

const styles = StyleSheet.create ({
container: {
backgroundColor: '#0clbla',
flex: 1,
}I
info: {
padding: 50,
alignItems: 'center',
}I
image: {
width: 150,
height: 150,
borderRadius: 75,
}I
title: |
fontSize: 20,
fontWeight: '200°',
color: '#fff',
marginTop: 23,
}I
)i

16. Finally, we will display the list of additional songs and the play button, which is
really simple:

playContainer: {
backgroundColor: '#37b298',
padding: 10,
paddingRight: 50,
paddingLeft: 50,
borderRadius: 10,
marginTop: 20,

}I

play: {
color: '#fff',

}I

other: {
color: '"#f1f1f1',
padding: 10,
marginRight: 10,
marginLeft: 10,
backgroundColor: '#081412"',
marginBottom: 1,

H

[56]

Getting Started

17. At this point, we should have something similar to the following screenshot:

iPhone 6 - iPhone 6 / i0S 9.2 (13C75) L 11:54 ¢

b

Play song Some nice song

| lov

Play song

01 - One more song

02 - Other song here

03 - This is the last song - One more song
- Maybe this is the last song? - Other song here
- OWhy not one more song?

- This is the last song
- Finally this is the last song ~Maybe this is the last song?

- OWhy not one more song?

- Finally this is the last song

There's more...

The navigator is a very important component. Almost every application requires some
sort of navigator to add some nice transitions. In this recipe, we covered the cross-platform
navigator, which works on iOS and Android. This is because everything is on the JavaScript
side. If we require something native, we should take a look at NavigatorI0Os and
ViewPagerAndroid.

[57]

Implementing Complex User
Interfaces

In this chapter, we will cover the following recipes:

¢ Creating a reusable button with theme support

e Building a complex layout for tablets using flexbox

¢ Including custom fonts on iOS

¢ Including custom fonts on Android

¢ Using font icons

¢ Dealing with universal apps

¢ Detecting orientation changes

¢ Using a WebView to open external websites

¢ Rendering simple HTML elements using native components
e How to create a form component

Introduction

In this chapter, we will implement complex user interfaces. We will learn more about using
flexbox to create components that work on different screen sizes, how to detect orientation
changes, how to work with universal apps, among many other things.

It's important to mention that we will create an empty app for each recipe in this chapter. If
you are not sure how to do this using the React Native CLI, I recommend you read the first
chapter of this book.

Implementing Complex User Interfaces

Creating a reusable button with theme
support

Reusability is very important when developing software; we should avoid repeating the
same thing over and over again, and instead we need to create small components that we
can reuse as many times as needed.

In this recipe, we will create a button component, and we are also going to define several
properties to change it's look and feel. While going through this recipe we will learn how to
use props and how to dynamically apply different styles to a component.

Getting ready

We need to create an empty app using the React Native CLI, let's name it
CustomComponents. Feel free to use any other name, just make sure to use the same name
in step number 9.

How to do it...

1. In an empty app, we need to create an src folder at the root level of our project.
Inside this folder, we need a JavaScript file called MainApp. js. We also need one
more folder called Button with index.qs and styles. s files:

Name ~

android
® index.android.js
H index.ios.js
ios
node_modules
package.json
src
Button
H index.js
= styles.js
E MainApp.js

[59]

Implementing Complex User Interfaces

2. Let's start by importing the dependencies for our new component. In this case,
we will create a Button component; therefore, we'll use the Text,
TouchableOpacity, and View components.

If we would like to add support for icons, we should import the Image
component as well, but to keep things simple we're not going to cover
that in this recipe.

We will define the styles in a different file later in this recipe, but for
now, let's just import them all. Open the src/Button/index. js file
and add the following code:

import React, { Component, PropTypes } from 'react';
import {
Text,
TouchableOpacity,
View,
} from 'react-native';
import Base, { Default, Danger, Info, Success } from './styles';

3. Now that we have our dependencies imported, let's define the class for this
component. We are going to need some properties and two methods only. It's
also required that we export this component so we can use it elsewhere:

const { array, string, object, bool, func, any } = PropTypes;
class Button extends Component {
static propTypes = {
// Defined on step 4
bi

getTheme () {
// Defined on step 5

}

render () A
// Defined on step 6

export default Button; // Don't forget to export it!

[60]

Implementing Complex User Interfaces

4. Let's define the properties for this component. The children property will
receive all the children components defined for the button, which means we
can use images as well.

We are going to define some Boolean configurations for the styles, for
example, danger, info, and success. When true, we will assign the
appropriate styles to the button. The style prop will receive additional

styles for the main container; this will make our new component more
flexible.

The onPress prop will receive a callback function that will be executed
when the user presses the button:

static propTypes = {
children: any,
danger: bool,
info: bool,
style: View.propTypes.style,
success: bool,
onPress: func,

}i

5. We need to select the styles to apply to our component based on the given props.
For this, we will define the get Theme method. This method will check if any of
the props are true and will return the appropriate styles; otherwise, it will
return the default style:

getTheme () {
const { danger, info, success } = this.props;

if (info) {
return Info;

}

if (success) {
return Success;

}

if (danger) {
return Danger;

}

return Default;

[61]

Implementing Complex User Interfaces

6. It's required that all components have a render method. Here, we need to return
the JSX elements for this component. In this case, we will get the styles for the
given props and apply them to the TouchableOpacity component.

We are also defining a label for the button; inside this label, we will
render the children prop. If a callback function is received, then it will
be executed when the user presses this component:

render () A
const theme = this.getTheme();
const {
children,
onPress,
style,
rounded,
} = this.props;

return (
<TouchableOpacity
activeOpacity={0.8}
style={][
Base.main,
theme.main,
rounded ? Base.rounded : null ,
style,
1}
onPress={onPress}
>
<Text style={[Base.label, theme.label]}>{children}</Text>

</TouchableOpacity>
)i
}

7. We are almost done with our component; styles are still missing, but first let's
work on the MainApp. js. We need to import the dependencies as well as the

Button component we have created.

We are going to display an alert message when the user clicks the
button; therefore, we need to import the Alert component. This
component works on iOS and Android:

import React from 'react';

import { Alert, StyleSheet, View } from 'react-native';
import Button from './Button';

[62]

Implementing Complex User Interfaces

8. Once we have all the dependencies, let's define a stateless component that
renders a few buttons:

The first button will use the default theme; the second button will use
the success styles, which we will style with a nice green color as a
background. The last button will display an alert when it gets pressed.
For that, we need to define the callback function that will only use the
Alert component. Here, we will just set the title and the message:

function onPressBtn () {

Alert.alert ('Alert', 'You clicked this button!');
}
const MainApp = () => (

<View style={styles.container}>
<Button style={styles.btn}> My first button
</Button>
<Button success style={styles.btn}> Success button
</Button>
<Button info style={styles.btn}> Info button
</Button>
<Button danger rounded style={styles.btn}
onPress={onPressBtn}> Rounded button </Button>
</View>
)i
export default MainApp;

9. We are going to use some styles for each button; we just need to add a margin:

const styles = StyleSheet.create ({
container: {

flex: 1,
alignItems: 'center',
justifyContent: 'center',
}I
btn: {

margin: 10,
b
P
Now we need to register our app in the index.ios.js and
index.android. js files:

import React, { Component } from 'react';

import { AppRegistry } from 'react-native';
import MainApp from './src/MainApp';

[63]

Implementing Complex User Interfaces

AppRegistry.registerComponent ('CustomComponents', () => MainApp);

10. If we try to run the app now, we will get some errors. This is because we haven't

11.

declared the styles of our button. Let's work on that now. Inside the styles. js
file, we need to define the base styles. These styles will be applied to every
instance of the button. Here, we will define a radius, padding, font color, and all
the common styles that we need for this component:

import { StyleSheet } from 'react-native';

const BaseStyles = StyleSheet.create ({
main: {
padding: 10,
borderRadius: 3,
} 4
label: {
color: '"#fff',
} 4
rounded: {
borderRadius: 20,
} 4
P
Once we have the common styles for our button, we need to define the styles for
the Danger, Info, Success, and Default themes. For that, we are going to

define different objects for each theme, and then inside each theme we will use
the same object but with specific styles for that theme.

To keep things simple, we are only going to change the
backgroundColor, but we do have the option to use as many style
properties as needed:

const Danger = StyleSheet.create ({
main: |
backgroundColor: '#e74c3c',

}V

P i

const Info = StyleSheet.create ({
main: {
backgroundColor: '#3498db"',
}V
)i

const Success = StyleSheet.create ({
main: {

[64]

Implementing Complex User Interfaces

backgroundColor: '#labc9c',
I
)i
const Default = StyleSheet.create ({
main: A
backgroundColor: 'rgba(0O ,0 ,0, 0)',
I
label: {
color: '#333',
I
)i
12. Finally, let's export the styles; this step is necessary because, in the button
component we are importing the common styles as well as all the available
themes:

export default BaseStyles;

export {
Danger,
Info,
Success,
Default,
}i
iPhone 6 - iPhone 6 / i0S 9.2 (13C75) © © © - Genymotion for parsonal use - Samsung Galaxy S5 - 500 - API21 - 14402560
Carrier & 10:20 PM - W4 E922

My first button My first button

Sucess button Sucess button

Info butt <«
Info button
&

Rounded button
Rounded button

[65]

Implementing Complex User Interfaces

How it works...

In this example, we are using the TouchableOpacity component. This component allows
us to define a nice animation that changes the opacity when the user presses the button.

We can use the activeOpacity property to set the opacity value when the button gets
pressed. The value can be any number between 0 and 1, where 0 is completely transparent.

If we press the last button, we will see a native Alert message, as shown in the following
screenshot:

iPhone 6 - iPhone 6 /0S 9.2 (13C75) ® © ® -0 Genymotion for personal use - Samsung Galaxy S6 - 5.0.0 - API 21 - 14402560 (...

PiB932 g

Q

Alert Alert

You clicked this button!

You clicked this button!

OK

Building a complex layout for tablets using
flexbox

Flexbox is really convenient when it comes to creating responsive layouts. React Native uses
flexbox as a layout system, and if you are already familiar with these concepts it will be
really easy for you to start creating layout of any kind.

[66]

Implementing Complex User Interfaces

In this recipe, we will create a layout to display a list of blog posts. Each post will be a small
card with an image, an excerpt, and a button to read more. We will use flexbox to arrange the
posts on the main container based on the screen size; this will allow us to handle the screen
rotation by properly aligning the cards as landscape or portrait.

Getting ready

In order to follow the steps in this recipe, it is necessary to create an empty app using the
React Native CLI. We are going to name the new app ComplexLayout.

How to do it...

Let's start by creating all the files and folders we will need for this recipe:

1. First, we need a src folder where we will write all our code; inside that folder we
need aMainApp. js file and a Post folder, where we will have the code for the
post component. Here, we should create the index. js and styles. js files.
Finally, we need a data. json file where we will define a list of posts. Our
project should look as shown in the following screenshot:

Name

»> android

H index.android.js
index.ios.js
»> ios

> node_modules
package.json

data.json
H| MainApp.js
v Post
H index.js
H styles.js

[67]

Implementing Complex User Interfaces

2. Let's open the index.android. js and index.ios. js files. We need to delete
the current code and import the MainApp component, then use the AppRegistry
to register and bootstrap the app:

import React, { Component } from 'react';
import { AppRegistry } from 'react-native';
import MainApp from './src/MainApp';

AppRegistry.registerComponent ('ComplexLayout', () => MainApp);

3. At the moment the MainApp component doesn't exist, so if we try to run or
refresh the simulator, it will fail. Let's work on this component. First, we need to
import the dependencies for this class.

We are going to use a ListView component to render the list of posts;
we also need to display Text and View as containers. We are going to
create a custom Post component to render each post on the list, and
don't forget to also load the . json file with the data:

import React, { Component } from 'react';

import { ListView, StyleSheet, Text, View } from 'react-native';
import Post from './Post';

import data from './data.json';

4. Let's create the class for the MainApp component; here, we will use the data from
the . json file to create the dataSource for the list.

In the render method, we are going to define something very simple, a
top toolbar and the list component. We are going to use the Post
component for every record and the datasource from the state.

If you have any questions regarding the ListView component, you
should take a look at the recipe in chapter 1, Getting Started, where we
created a list of orders:

class MainApp extends Component {
constructor (props) A
super (props) ;
const ds = new ListView.DataSource ({
rowHasChanged: (rl, r2) => rl !== r2,
}) i
this.state = {
dataSource: ds.cloneWithRows (data.posts),

Fi

[68]

Implementing Complex User Interfaces

render () A

return (
<View style={styles.container}>
<View style={styles.toolbar}>

<Text style={styles.title}>Latest posts</Text>

</View>
<ListView
dataSource={this.state.dataSource}
renderRow={post => <Post {...post} />}
style={styles.list}
contentContainerStyle={styles.content}
/>
</View>

)

const styles = StyleSheet.create ({
// Defined on step 13
1)

export default MainApp;

5. Two files are still missing: the . json file with the data and the post component.
In this step, we will create the data that we are going to use for each post.

To make things simple, I will only define one record of data, but feel free
to copy and paste the same record as many times as you want. You
should change the title and the image; I have uploaded six images to
Amazon S3, 01. jpg to 06. jpg, in case you want to use them for this

example:
{
"posts": [

{
"title": "Creating custom components",
llimgll . llOl . jpg",
"content": "In this post we will learn how...
"author": "Crysfel villa"

by

// Add more records here

]

[69]

"
’

Implementing Complex User Interfaces

6. Now that we have the data, we are ready to work on the Post component. Here,
we need to display the image, title, and button. In this case, we will use a stateless
component.

{{uri:"

The following code uses all the components we know from chapter 1,
Getting Started. If something is unclear, please review that chapter again.

This component receives the data as a parameter, and then we use it on
the components; for example, in the source property of the image, we
define the URL to Amazon S3 and use the parameter to set the name of
the image. As mentioned before, we can use JPG images from 01 to 06:

import React, { PropTypes } from 'react';
import {Image, Text, TouchableOpacity, View} from 'react-native';
import styles from './styles';

const Post = ({ content, img, title }) => (
<View style={styles.main}>
<Image
source=

https://s3.amazonaws.com/crysfel/public/book/02/01/${img}" }}
style={styles.image}
/>
<View style={styles.content}>
<Text style={styles.title}>{title}</Text>
<Text>{content}</Text>
</View>
<TouchableOpacity style={styles.button} activeOpacity={0.8}>
<Text style={styles.buttonText}>Read more</Text>
</TouchableOpacity>
</View>
)i
const { string } = PropTypes;
Post.propTypes = {
content: string,
title: string,
img: string,

bi

export default Post;

[70]

Implementing Complex User Interfaces

7. Once we have defined the component, we also need to define the styles for each
post. Open the styles. js file and write the following code:

import { StyleSheet } from 'react-native';
const styles = StyleSheet.create ({
// Defined in later steps

P

export default styles;

8. If we try to run the app, we will be able to successfully see the data from the
. son file on the screen; however, we haven't applied any styles:

Pad Alr2 - IPad AIr2 /108 9.2 (13C75)
T1:08 PM 1007 -

the ideals uniaue o help people in their daly lies.

iment to think about the things you have done. You nead to ask yourselif its really wor

obies, s funes

the ideals unigue o help people in their daily lives.

the ideals unigue thei

eople in thei

eople i their daily fves.

 the deais unioie o help people intheir daly lives.

9. We have everything we need on the screen; we are now ready to start working on
the layout. First, let's add the styles to the main post container: width, height,
borderRadius, and a few others. Open the src/Post/styles. js file and add
the following code:

const styles = StyleSheet.create ({
main: {
backgroundColor: '#fff',
borderRadius: 3,
height: 340,
margin: 5,
overflow: 'hidden',
width: 240,
}!

[71]

Implementing Complex User Interfaces

10. By now, we should see small boxes vertically aligned. That's some progress, but
let's add some styles to the image so we can see it onscreen.

The resizeMode property will allow us to set how we want to resize the
image; in this case, by selecting cover, the image will keep the aspect

ratio:
image: {
backgroundColor: '#ccc',
height: 120,
resizeMode: 'cover',

by

11. For the content of the post, we want to take all the available height on the card;
therefore, we need to make it flexible and add some padding. For the title, we
will only change the font size and add amargin to the bottom:

content: {
padding: 10,
flex: 1,

}I

title: {
fontSize: 18,
marginBottom: 5,

b

12. Finally, for the button, we will set the backgroundColor to green and the text to
white. We also need to add some spacing;:

button: {
backgroundColor: '#labc9c',
borderRadius: 3,
padding: 10,
margin: 10,
}I
buttonText: {
color: '"#fff',
textAlign: 'center',

b

[72]

Implementing Complex User Interfaces

If we refresh the simulator, we should see our posts in small cards.
Currently, the cards are arranged vertically, but we need to render all of
them horizontally. We are going to fix that in the following steps:

iPad Air2 - iPad Air 2 /108 8.2 (18075)
Latessts Tis2eM 100% m_-»

Creating custom
components

N

Using redux with React

T
(
0

13. If we try to scroll through the content, our current implementation will not work.
For now, we can only see the first three items on the list. In order to fix this
problem, we need to set the height of the main container to fit the screen; for this,

we will use flexbox. Let's open the MainApp. js file and add the following styles
to the main container:

const styles = StyleSheet.create ({
container: {
flex: 1,

}I

F) i

Now if we try again to scroll down, we will be able to see the list of
posts that we defined in the data. json file.

14. We need to show a toolbar at the top. For that, we just need to define some
paddings and colors. This is a really simple step:

toolbar: {
backgroundColor: '#34495e"',
padding: 10,
paddingTop: 20,

}I

title: {

[73]

Implementing Complex User Interfaces

color: '"#fff',
fontSize: 20,
textAlign: 'center',

}I

15. Let's add some simple styles to the list, just a nice background color and some
padding:

list: |
backgroundColor: '#f0f3f4',
flex: 1,
paddingTop: 5,
paddingBottom: 5,

by

Here, the f1ex property is making sure the list takes all the available
height on the screen. We only have two components here: the toolbar
and the list; the toolbar is taking about 50 px. If we make the list flexible,
it will take all the available space, which is exactly what we want when

rotating the device or when running the app in different screen
resolutions:

iPad Ar - Pad AIr2 /08 9.2.(13C75)

Latest posts

Latest posts

Creating custom
components
Creating custom

components

Native

16. We are almost done with this app; all we need to do is arrange the cards

horizontally and make sure to render the cards in the row. This can be achieved
with flexbox in three simple steps:

content: {

flexDirection: 'row',
flexWrap: 'wrap',

[74]

Implementing Complex User Interfaces

justifyContent: 'space-around',

First, we need to add these styles to the contentContainerStyle prop
in the list component. Internally, the list will apply these styles to the
items container.

We need to change the flexDirection to row; this will horizontally
align the cards on the list; however, there's a problem: we can only see
one single row of posts, and we can't scroll horizontally.

To fix the problem, we need to wrap the items. We do this setting
flexWrap, which will automatically move the items that don't fit in the
view to the next.

We've achieved our layout; however, if we run our app on an Android
device, we will see that there's a lot of space on the right side of the
screen. In order to fix this problem, we will need to distribute that space
between the items; to do that, we can use the justifyContent property
and set it to space-around, which will automatically distribute the
space around the items evenly:

Creating custom
components

Latest posts

Creating custom Learning a new language
components Native ite As many of you aleady know, |
out

Using redux with React Is it really worth it?
Native

Start playing pianoinless Climbing the Mount Fuji Creating a custom Using redux with React

han a L component Native

In this post we wil lear how to In this post e il earm how to
the

ideais
0 help people in thei dally lives.

We are done with our layout and it's looking really good. If you try
rotating the device from landscape to portrait, the cards will
automatically be arranged.

[75]

Implementing Complex User Interfaces

There's more...

There are some differences between iPad and the Android tablet; there are only three cards
on Android and a lot of space between each card. In order to fix this problem, I would
recommend calculating the width of each card based on the screen resolution; you should
take a look at the Dealing with universal apps recipe in this chapter to learn more about
handling dimensions.

Including custom fonts on iOS

At some point, we are going to need to display text with a custom font family; until now,
we have been using the default font, but we can use any other that we like.

In this recipe, we will import a few fonts in Xcode and then we will display a text
using different font families. We will also use different styles of a single font, such as bold
and italic.

Getting ready

In order to work on this example, we need some fonts. You can use whatever fonts you
want; I recommend going to Google fonts and downloading your favorites. For this recipe,
we will use the Roboto font. Just make sure to use TTF. I've already prepared a few fonts that
you can download from PacktPub's website.

Once you have the fonts ready, let's create an empty app using the React Native CLL; we
will name it CustomFontsIos. If you don't know how to do this, go to Chapter 1, Getting
Started, and take a look at the first recipe.

[76]

Implementing Complex User Interfaces

How to do it...

In order to use fonts on iOS devices, we need to import those fonts in a TTF format using
Xcode. This is a simple process, but if we don't do it properly, things can go wrong.

1. Let's start by creating a new Fonts folder in the Project Navigator:

[XON I 4 /A CustomFontslos) i iPhone 6s Plus Finished running CustomFontslos on iPhone 6s Plus 14 = ¢ Qg m
BRQaAO©=o @ |8 No Selection <o NG}
v [& CustomFontslos M Identity and Type
Name | New Group
> CustomFor E Relative fo G -
ocation | Relative to Grou
» [Libraries 2 F
i
I (A Full Path /Users/Crysfel/Workspace/
> Products react/react-native-
cookbook/ch2/tip3/
CustomFontslos/ios
Text Settings
Indent Using |_Spaces B
Widths. 2|3 27
Tab Indent
Wrap lines
No Editor
= »
2016-09-25 15:04:39.248 [warn][tid:main][RCTEventEmitter.m:54]
Sending “websocketFailed' with no listeners registered.
2016-09-25 15:04:39.282 [info]
[tid: con. facebook. react . Javascript] Running application
“CustomFontsIos" with appParams: {“rootTag":1," mltulProps
{}}. _DEV__ === true, development-level warning are 0
performance optimizations are OFF 0Doea
Message from debugger: Terminated due to signal 15
No Matches
+(® OFE| Aoz S All Output & W00 8o

[771

Implementing Complex User Interfaces

2. Now we need to import to Xcode all the fonts that we want to use, this is very
simple—just drag all the font files from the folder on your system and drop them
all inside the Fonts group on Xcode. After dropping them, you will see a
confirmation message. Make sure to select Add to targets; this is a very important
step because by selecting this option the fonts will be included in the build:

() 7 CustomFontslos) i iPhone 6s Plus Finished running CustomFontslos on iPhone 6s Plus 14 E Qo OO
BRE QAOC=o @ =8 Choose options for adding these files: <a> Do
v [& CustomFontslos M
v Fonts Destination: & Copy items if needed
> CustomFonts|o?
» B Libraries Added folders: © Create groups
. Create folder references
> B Brocicts Add to targets: € /A CustomFontslos
CustomFontslosTests
No Selection
Cancel | Finish—]
E »
2016-09-25 15:04:39.248 [warn][tid:main] [RCTEventEnitter.n:54]
Sending ‘websocketFailed with no listeners registered.
2016-09-25 15:04:39.282 [info]
[tid: con. facebook. react. JavaScript] Running application
“CustomFontsTos" with appParams: {"rootTag":1,"initialProps":
{}}. _DEV_ === true, development-level warning are ON,
performance optimizations are OFF D068
Message from debugger: Terminated due to signal 15
No Matches
+ (@ Q|| Auot @ Al Output & 00| 88 (@

If we forget to select the target, the fonts will not be included in the app
and we won't be able to use them. I've made this mistake before, and if
you are new to Native Development it will take you some time to
figure out the issue. Click on Finish to complete the import.

[781

Implementing Complex User Interfaces

3. If, for some reason, we forget to select Add to targets, we can always select the
file and check or uncheck this option directly from Xcode. Make sure all fonts
that you need are included:

00 e p /A, CustomFontslos) @ iPhone 6s Plus Finished running CustomFontslos on iPhone 6s Plus i = o <o Ea 0O

B8 QA © = o @ |8]< | CustonFonsios) [Fonts) u IndieFlowertf) No Selection <a> 0 ®

v \g" CustomFontslos Idenity and Type

M
Name | IndieFlower.ttf
v Fonts 'E?GH\\)KLH Type | Default - TrueType® Ope... [JJ
§ DancingScript-Regular.ttf Location | Relative to Group B

IndieFlower.ttf

1] Full Path /Users/Crysfel/Workspace/
react/react-native-

v 14 Roboto \ S TUVWX Y2 S
IndieFlower.ttf
& Roboto-Bold.ttf N

On Demand Resource Tags

& Roboto-ltalic.ttf

& Roboto-Light.ttf ie _c n\-\“‘\y |m T
\

& Roboto-Regular.ttf Localize

Target Membership

nOquS+& /A CustomFontslos

CustomFontslosTests

4 .'23(4 5 f Source Control

Repository react-native-cookbook
= Type Git

= »
Current Branch master
Version {77239
tus_No chanaes
B e S L
perfornance optinizations are OFF ‘ D0 e
Message from debugger: Terminated due to signal 15
No Matches
+ @ OF|| Ao @ All Output & WIHm| s (@

Additionally, we can group the styles of fonts. For this example, all the
files for Roboto's font are grouped; this will help us to organize our
project.

4. We are almost done with the setup; we just need to include the fonts in the
Info.plist file. I personally like to edit this file using the source code editor.
Right-click on the file and select Open As | Source Code. Then, write the next
code inside the <dict> tags:

<key>UIAppFonts</key>

<array>
<string>Roboto-Light.ttf</string>
<string>Roboto-Regular.ttf</string>
<string>Roboto-Italic.ttf</string>

[791

Implementing Complex User Interfaces

<string>Roboto-Bold.ttf</string>
<string>Roboto-Thin.ttf</string>

<string>DancingScript-Regular.ttf</string>
<string>IndieFlower.ttf</string>

</array>
[] e > /A CustomFontslos) i iPhone 6s Plus Finished running CustomFontslos on iPhone 6s Plus 14 @ < O e O
B8 Qs o o B |[B|< & CustomFontslos) ' CustomFontslos) - Info.plist) No Selection <h> n o
v [& CustomFontslos '] Key Type Value Identity and Type
v B Fonts vlnfoFrmatmn Pr:z:r:/ st(l . = Name [Info.plst
v Fonts provided by application items)
% DancingScript-Regular.ttf .
Item 0 String Roboto-Light.ttf Type | Default - Property List XML i
¥ IndieFlower.ttf Tt B st Roboto-Regular tf N
em String oboto-Regular.
v B Fobolo fom > Roboon ‘9 = Location | Relative to Group]
R em ring toboto-ltalic: CustomFontslos/Info.plist &8
S N ftem 3 String Robota-Bold.ttf Full Path /Users/Crysfel/Workspace/
¥ Roboto-Italic.ttf Item 4 String Roboto-Thin.ttf react/react-native-
& Roboto-Light.ttf Item 5 String DancingScript-Regular.tf éaﬂkbﬂzk/ch?/ﬂ/w;/
ustomFontslos/io
¥ Roboto-Regular.tf Item & String IndieFlower.ttf CustomFontslos/Info.plist ©
& Roboto-Thin.ttf Localization native development r... 3 String en B
v B GustomFontslos Executable file 4 String S(EXECUTABLE_NAME) On Demand Resource Tags
s Bundle identifier 4 String org.reactjs.native.example.$(PRODUCT_NAME:rfc1034identifier)
InfoDictionary version s String 6.0
h AppDelegate.h -
Bundle name 4 Sting $(PRODUGT_NAME) Locatnat
ocallzation
iipebeecaiey Bundle OS Type code 4 Sting APPL
lneossacassei] Bundle versions string, short 4 Sting 1.0 Localize...
Bundle creator OS Type code s String 2277
M Target Membership
LaunchScre Bundle version 4 String 1 7 A GustomFontsl
m main.m Application requires iPhone envir... 4 Boolean YES . x CustomFontslos
» B Libreries Launch screen interface file base... 4 String LaunchScreen () CustomFontslosTests
» Bl CustomFontsloaTests » Required device capabilities 2 Amay (1 item)
> B Froducts. » Supported interface orientations 4 Aray @items) O]
View controller-based status bar... 4 Boolean NO = Repository react-native-cookbook
NSLocationWhenlnUseUsageDes... 4 String Type Git
» App Transport Security Settings 4 Dictionary (1 item) Current Branch master
Version 77239
status No changes
Location /Users/Crysfel/Workspace/
react/react-native-cookbook/
ch2/tip3/CustomFontslos/ios/
= » CustomFontslos/Info.plist
2016-09-25 15:04:39.248 [warn][tid:main] [RCTEventEnitter.m:54]
Sending ‘websocketFailed with no listeners registered.
2016-09-25 15:04:39.282 [info]
[tid: con. facehook. react. JavaScript] Running application
“CustonFontsTos" with appParams: {"rootTag":1,"initialProps":
__DEV__ === true, development-level warning are ON,
performance optimizations are OFF bDOeH
Message from debugger: Terminated due to signal 15
No Matches
+ (@ OF|| Ao ® Al Output & OO | &8 (@

You can also use the Property List editor and enter the fonts one by one.

5. We are done with the setup; we should be able to use all the new fonts in our
app. Let's open the index.ios. js file and add some text to test the new fonts:

import React from 'react';
import {

AppRegistry,

StyleSheet,

Text,

View,
} from 'react-native';

[80]

Implementing Complex User Interfaces

const CustomFontsIos = () => (
<View style={styles.container}>
<Text style={styles.base}>Welcome to React Native!</Text>
<Text style={[styles.base, styles.italic]}>Welcome to React

Native!

</Text>

<Text style={[styles.base, styles.light]}>Welcome to React
Native!

</Text>

<Text style={[styles.base, styles.bold]}>Welcome to React
Native!

</Text>

<Text style={[styles.base, styles.dancing]}>Welcome to React
Native! </Text>

<Text style={[styles.base, styles.indie]}>Welcome to React
Native! </Text>

</View>

)

const styles = StyleSheet.create ({
// Defined on step 6
)i

AppRegistry.registerComponent (
'CustomFontsIos', () => CustomFontsIos

)

6. If we run the app now, we should see the text using the default font. Let's center
the text on the screen and define the base styles:

const styles = StyleSheet.create ({
container: {

flex: 1,
justifyContent: 'center',
alignItems: 'center',

backgroundColor: '#e74c3c',
}I
base: {
color: '"#fff',
fontFamily: 'Roboto',
fontSize: 25,
textAlign: 'center',
margin: 5,

b

[81]

Implementing Complex User Interfaces

iPhone 6s Plus - iPhone 6s Plus / i0S 9.2 (13C75)

Welcome to React Native!
Welcome to React Native!
Welcome to React Native!

Welcome to React Native!

Welcome to React Native!
Welcome to React Native!

We can see that the text is using our new font! We did this just by using
the fontFamily property and assigning the font name.

7. Let's use different styles of the same font family; we have two weights available
and the italic style for the Roboto font:

light: {

fontWeight: '300"',
}I
bold: {

fontWeight: 'bold',
}I

italic: {
fontStyle: 'italic',
b

8. It's looking good! Finally, let's use the other two font families that we have
available:

dancing: {
fontFamily: 'Dancing Script',

b
indie: {

fontFamily: 'Indie Flower',
b

[82]

Implementing Complex User Interfaces

iPhone 6s Plus - iPhone 6s Plus /i0S 9.2 (13C75)

Welcome to React Native!
Welcome to React Native!

Welcome to React Native!

Welesme ts React Native!

welcome fo React bative!

How it works...

It's worth mentioning how to get the name of the font that we are using. The simplest way,
if you are on a Mac, is to right click on the file and click the Get Info option in the menu.
Under the General properties, there's the Full Name.

We can also get the font's name through code: open the
ios/CustomFontsIos/AppDelegate.m file and around line 20, after the
*jsCodeLocation variable, paste the following.

for (NSString* family in [UIFont familyNames])
{
NSLog (@"%$@", family);
for (NSString* name in [UIFont fontNamesForFamilyName: family])
{
NSLog (@" %@Q@", name);
}
}

After running the app again, we should be able to see the result on the Xcode console.

[83]

Implementing Complex User Interfaces

There's more...

In this recipe, we only added fonts to iOS. In the next recipe, we will add the same fonts on
Android, and we will use the same JavaScript code and styles.

Including custom fonts on Android

In this recipe, we will include the same fonts we included on iOS, and we will use exactly
the same example app.

Importing the fonts is pretty straightforward, but we need to follow some guidelines in
order to make it work. There are some limitations on Android; we will learn a workaround
to solve the issue regarding font weight.

Getting ready

As with the previous recipe, we need some fonts to work with. Android supports TTF and
OTF formats. For this example, we will use the same fonts we did in the previous recipe.

How to do it...

To include custom fonts on Android, let's perform the following steps:

1. We need to copy the font files to
project_name/android/app/src/main/assets/fonts. This is the exact
location where we need to add all of our font files. If the assets and fonts
folders don't exist, go ahead and create them:

[84]

Implementing Complex User Interfaces

Name ~

v CustomFontsAndroid
v android
v app
BUCK
> build
build.gradle
proguard-rules.pro
v src
v main
AndroidManifest.xml

v assets
v s
& dancingscript.ttf
& indieflower.ttf
& roboto_bold.ttf
& roboto_italic.ttf
& roboto_light.ttf
& roboto_thin.ttf
& roboto.ttf
4 java
> res
> build
build.gradle
»> gradle

2. React Native will automatically load all the font files in this location. Internally,
the ReactFontManager class will look for the tt £ and ot f files, but we need to
make sure to rename the font files following these guidelines:

e The name should be lowercase

¢ There shouldn't be any spaces in the name
e Use an underscore to define the style, for example, roboto_bold

3. Once we complete step 3, all we need to do is run the app on the device or
simulator. The fonts should be available at this point and we should be able to
use them in our app. We are going to use the same code as in the previous recipe;
please follow all the steps from step number 5 until the end of the recipe. You
should see something similar to the following screenshot:

[85]

Implementing Complex User Interfaces

000 Genymotion for personal use - Samsung Galaxy S6 - 5.0.0 - API 21 - 1440x2560 (1440x2560, 640dp) - 192.168.56.101

Welcome to React Native!
Welcome to React Native!

Welcome to React Native!

Welcome to React Native!

Welcome to React Native!

Welcome to React Native!

4. As we can see, the last two fonts are not working as expected. There's also
another issue with the font weight when we set it to 1ight. To fix the problem
with the last two lines of text, we need to change the value of the fontFamily
property. We need to use the exact same name as in the tt £ file:

dancing: {

fontFamily: 'dancingscript',
}V
indie: {

fontFamily: 'indieflower',

by

5. If we refresh the app, we should be able to see the two custom fonts. React Native
internally loads the fonts and assigns the name of the font using the filename.

6. To fix the issue regarding font weight we need to use a workaround. This is
because, currently, React Native only supports bold as a value. If you take a look
at the source code on GitHub, you will see that it's only possible to use bold.
What we need to do is set the fontFamily to the name of the file that contains
the thin style; let's update our code as follows:

light: {
fontFamily: 'roboto_thin',
// fontWeight: '300',

by

[86]

Implementing Complex User Interfaces

It should look as shown in the following screenshot:

Genymotion for personal g Galaxy S6 - 5.0.0 - API 21 -), 640dp) - 192.168.56.101

$il430 g

Welcome to React Native!
Welcome to React Native!
Welcome to React Native!

Welcome to React Native!
Welesme ts React: Native!

welcome to React Mative!

Now we have the same result as in the iOS app.

Using font icons

When dealing with images, we need to think about supporting different screen densities
and resolutions. For that, we will have to create different versions of the same image and
will need to change the size and the name so that React Native uses the correct image for
the given resolution. While this works fine, we will have to spend time maintaining all the
images. In addition, the size of our app will increase because we need to bundle all those
images.

We already have solved that problem on the Web by using fonts or SVGs, and it's a pretty
good solution. In this recipe, we will use fonts to render icons and solve the problem of
screen density.

For this recipe, we will use a third-party library to help us render the icons. The name of
this library is react-native-vector-icons by Joel Arvidsson. We will also learn how to
install other libraries using npm.

Getting ready

We need to create an empty app using the React Native CLI, we are going to name it
FontIcons.

[87]

Implementing Complex User Interfaces

How to do it...

Font icons can be used using the following steps:

1. The first step is to install the third-party library using npm; this is a very simple
step: just open your terminal and at the root of the project run the following
command:

$ npm install react-native-vector-icons --save

By running this command, the code will be downloaded from the npm
repositories. A few popular fonts will be downloaded as well, for
example, Font Awesome, Evil Icons, Material Icons, and a few others.

2. Once the previous command is complete, we need to install the library for iOS
(Xcode) and Android. The easiest way to do this is by using the React Native CLI.
Just run the following command:

$ react-native link

This command will install the fonts for iOS and Android; this means
there's no need to copy and paste the font files to the android folder or
use Xcode to import the files. Remember previous recipes for using
custom fonts? Everything is automatic now!

3. Let's open the index.ios. js and index.android. js files and add the
following code to bootstrap our app:

import React from 'react';

import MainApp from './src/MainApp';

import { AppRegistry } from 'react-native';
AppRegistry.registerComponent ('FontIcons', () => MainApp);

4. Now let's create an src folder and a MainApp. js file inside it. We are going to
render several icons in this component. First, we need to import the dependencies
for this class:

import React, { Component } from 'react';
import EvilIcon from 'react-native-vector-icons/EvilIcons';
import FAIcon from 'react-native-vector-icons/FontAwesome';
import {

StyleSheet,

View,
}

from 'react-native';

[88]

Implementing Complex User Interfaces

We need to import each set of icons. In this case, we are importing Evil
and FontAwesome icons. We will be able to use any of the icons
available in each set, and we can import all the sets that we need. At the
time of writing, we can use the following sets out of the box:

¢ Entypo by Daniel Bruce (411 icons)

e Evillcons by Alexander Madyankin and Roman Shamin (v1.8.0, 70
icons)

¢ FontAwesome by Dave Gandy (v4.7.0, 675 icons)

¢ Foundation by ZURB, Inc. (v3.0, 283 icons)

e Jonicons by Ben Sperry (v3.0.0, 859 icons)

e Materiallcons by Google, Inc. (v3.0.1, 932 icons)

e Octicons by Github, Inc. (v4.4.0, 172 icons)

e Zocial by Sam Collins (v1.0, 100 icons)

¢ SimpleLinelcons by Sabbir and Contributors (v2.4.1, 189 icons)

5. Once we have imported the dependencies and the sets of icons, we can create the
component that will only render a few icons for each set:

const MainApp = () => (
<View style={styles.content}>
<View style={styles.row}>
<EvilIcon style={styles.icon} name="user" size={50}
color="#e67e22" />
<EvilIcon style={styles.icon} name="search" size={50}
color="#e67e22" />
<EvilIcon style={styles.icon} name="trophy" size={50}
color="#e67e22" />
<EvilIcon style={styles.icon} name="location" size={50}
color="#e67e22" />
<EvilIcon style={styles.icon} name="gear" size={50}
color="#e67e22" />
</View>
<View style={styles.row}>
<FAIcon style={styles.icon} name="briefcase" size={40}
color="#c0392b" />
<FAIcon style={styles.icon} name="calendar" size={40}
color="#c0392b" />
<FAIcon style={styles.icon} name="camera-retro" size={40}
color="#c0392b" />
<FAIcon style={styles.icon} name="globe" size={40}
color="#c0392b" />
<FAIcon style={styles.icon} name="print" size={40}
color="#c0392b" />

[89]

Implementing Complex User Interfaces

</View>
</View>
)i

const styles = StyleSheet.create ({
// Defined on step 6
1)

export default MainApp;

This is a very simple component; we are only rendering five icons for
each set. | recommend opening the documentation for each set (you can
just Google the name of the set) and seeing the available icons. Then, all
that is required is to define the name property with the icon's name that
we want to render, we can also define size and styles.

6. If we try to run the project as it is, we should be able to see the icons; however,
let's add some styles to the containers to arrange the icons horizontally:

const styles = StyleSheet.create ({
content: {

flex: 1,
justifyContent: 'center',
alignItems: 'center',
}I
row: A
flexDirection: 'row',
}I
icon: {

margin: 10,
by
1)

[90]

Implementing Complex User Interfaces

All we need to do is use flexbox to center the content and then set the
direction to row to horizontally render each row. Additionally, we are
adding 10 pixels of margin:

® © ® oo Genymotion for personal use - Samsung Galaxy S6 - 5.0.0 - API 21 - 1440x2560 (... iPhone 6 - iPhone 6 / i0S 9.2 (13C75)
€4 H 740 Carrier & 10:18 PM -

There's more...

If something goes wrong, we need to make sure the fonts are installed properly on each
platform. For Android, we need to make sure the font files are defined on
android/app/src/main/assets/fonts. ForiOS, we need to make sure the fonts are
included on Xcode and added to the Info.plist file.

This library also includes support for the iOS tab panel; however, that component is not
supported on Android, so I would recommend just using the simple icon component to
render the icons in any place where required. There is an option to create a tab component
that works on Android and iOS and then internally use these icons.

[91]

Implementing Complex User Interfaces

Dealing with universal apps

One of the benefits of using React Native is its ability to easily create universal apps. We can
share a lot of code for phone and tablet apps. The layouts might be different at some point,
but we can reuse the small pieces for both devices.

In this recipe, we will build an app that runs on phones and tablets. The tablet version will
include a different layout, but we will reuse the same internal components.

Getting ready

For this recipe, we will show a list of contacts. For now, we will load the data from a . json
file; later on, in the book, we will explore how to load remote data from a REST APL

Let's open the following URL and copy the generated JSON to a file called src/data. json.
We will use this data to render the list of contacts http://api.randomuser.me/?results
=20:

Name ~
v DeviceDetection
» android
H index.android.js
H index.ios.js
» ios
» node_modules
package.json
v src

You might want to register to this service and get a key; otherwise, they will only allow you
to make a few requests to the assets and API, and since we are going to load the images
from there, it's a good idea to get a key.

[92]

http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20

Implementing Complex User Interfaces

How to do it...

1. Let's open the index.ios.js and index.android. js files. Then, add the
following code, which basically imports the MainApp class and then registers it as
the bootstrap component:

import React from 'react';
import MainApp from './src/MainApp';
import { AppRegistry } from 'react-native';

AppRegistry.registerComponent ('DeviceDetection', () => MainApp);

2. Now we need to create the src/MainApp. js file. Here, we are going to create
the main layout. This component will decide whether to render the phone or
tablet UI:

import React, { Component } from 'react';

import { StyleSheet, View, Text } from 'react-native';
import Dimensions from './utils/Dimensions’';

import data from './data.json';

class MainApp extends Component {
renderMaster () |
return (
<Text>Render on phone and tablets!!</Text>

renderDetail () {
if (Dimensions.isTablet ()) {
return (

<Text>Render on tablets only!!</Text>
)i

render () {
return (
<View style={styles.content}>
{this.renderMaster () }
{this.renderDetail () }
</View>
)i

[93]

Implementing Complex User Interfaces

const styles = StyleSheet.create ({
content: {
flex: 1,
flexDirection: 'row',

s

)i

export default MainApp;

This class its very straightforward. For now, we are only rendering two
texts. The renderDetail text should be displayed on tablets only and
renderMaster should be displayed on phones and tablets.

3. If we try to run our app as it is, it will fail with an error telling us that
the Dimensions modules cannot be found. Let's create this class! The purpose of
this utility class is to calculate whether the current device is a phone or tablet
based on the screen dimensions. We are going to create the isTablet and
isPhone methods, so under the src/utils/Dimensions. js file add the
following code:

import { Dimensions as RNDimensions, Alert } from 'react-native';

// Tablet portrait dimensions
const tablet = {

width: 552,

height: 960,
bi

class Dimensions {
// Defined on step 4 and 5
}

const dimensions = new Dimensions();
export default dimensions;

4. Let's create two methods in this class: one to get the dimensions in portrait and
the other to get the dimensions in landscape. Depending on the device rotation,
the values of width and height will change, which is why we need these two
methods to always get the correct values whether the device is 1andscape or

portrait:
getPortraitDimensions () {
const { width, height } = RNDimensions.get ("window");

return {
width: Math.min (width, height),

[94]

Implementing Complex User Interfaces

height: Math.max (width, height),
bi

getLandscapeDimensions () {
const { width, height } = RNDimensions.get ("window") ;

return {
width: Math.max (width, height),
height: Math.min(width, height),
bi
t

5. Now let's create our utility methods to let us know if we are running the app on a
tablet or a phone. To calculate this, we need to get the dimensions in portrait
mode and compare them with the dimensions we have defined for a tablet:

isPhone () {
const dim = this.getPortraitDimensions();
return dim.height < tablet.height;

isTablet () {
const dim = this.getPortraitDimensions();
return dim.height >= tablet.height;

If we try to run the app, it should work! We should be able to see the
two texts on the tablet and only one on the phone:

[95]

Implementing Complex User Interfaces

o0 Genymotion for personal use - Sony Xperia Tablet Z - 4.2.2 - API 17 - 1920x1200 (1920x1200, 320dpi) - 192.168.56.102

Render on phone and tablets!!'Render on tablets only!

)

[}
b
@«

iPhone 6 - iPhone 6 / i0S 9.2 (13C75)
Rexder an phone and tabletd!pm -

0

o d

il

6. The utility works, but it's not so useful for rendering texts. Let's work on the
master view first; here, we will render the list of contacts. In the same file
(MainApp. js), let's import the new component and update the renderMaster
method to return the JSX with our new component:

import UserList from './UserList'
class MainApp extends Component {
renderMaster () A
return (

<UserlList contacts={data.results} />

)

/]

[96]

Implementing Complex User Interfaces

7. Let's create a new src/UserList folder. Inside this folder, we need to create two
files: index. js, and styles. js. We are going to define the component in the
index file. The first thing we need to do is import the dependencies, create an
empty class, and export it as default:

import React, { Component } from 'react';
import {
StyleSheet,
View,
Text,
ListView,
Image,
TouchableOpacity,
} from 'react-native';
import styles from './styles';

class UserList extends Component {
// Defined on next steps

export default UserList;

8. We already know how to create a list. If you are not clear on how this component
works, you should read the recipe about list components in chapter 1, Getting
Started. In the constructor o<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>