

React Native Cookbook

Take your React Native application development to the next
level with this large collection of recipes

Stan Bershadskiy
Crysfel Villa

 BIRMINGHAM - MUMBAI

React Native Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2016

Production reference: 1161216

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78646-255-8

www.packtpub.com

http://www.packtpub.com

Credits

Authors

Stan Bershadskiy
Crysfel Villa

Copy Editor

Safis Editing

Reviewer

Brice Mason

Project Coordinator

Ritika Manoj

Commissioning Editor

Ashwin Nair

Proofreader

Safis Editing

Acquisition Editor

Shweta Pant

Indexer

Francy Puthiry

Content Development Editor

Arun Nadar

Graphics

Jason Monteiro

Technical Editor

Shivani Kiran Mistry

Production Coordinator

Melwyn Dsa

Foreword
Web development has for a long time been about working around the various browser
quirks and use a convoluted subset of what is provided, called "best practices", in order to
build dynamic applications on a platform that has originally been designed for static pages.

Jordan Walke, a Facebook engineer, came at this problem with a different mindset: instead
of trying to make what exists work, what if we designed an ideal solution and adapt it to
make it work under the existing constraints? This is how React was born.

React introduced a lot of concepts borrowed from many fields of computer science to the
web development world. The core idea is to declare what your application should look like
at any point in time by composing components written using a real programming language.

During a hackathon, four people: Jordan Walke, Ashwin Bharambe, Lin He, and myself,
tried to use React to render native iOS components such as UIView, UIImage, and UILabel
instead of the web equivalent, <div>, <image>, and . The crazy thing is that it actually
worked!

Then, our mantra became "how can we bring the best of both worlds?". From the Web, we
borrowed the fast iteration speed and the awesome developer experience with ideas like the
element inspector and redbox. Native challenged us to provide an amazing user experience
with an acute attention to detail, strong performance, and great gesture support.

As we got to a point where we used it in production and it provided value, we decided to
open source it. We knew it was going to be make some buzz, but we had no idea that it
would explode as it did. One of our big focuses was to make it a community project, and we
worked hard to get core contributors from outside of Facebook. We now have half of the
commits contributed by the community!

It's very humbling to see that contributions extended way beyond code. In the digital space,
we've seen a huge amount of tutorials and libraries, and it extended to the physical world,
with various meetups and conferences all over the world. I'm proud to see that Stan and
Crysfel dedicated their time to produce this amazing book about React Native.

React was born out of the frustration that it's way too hard to build software. I hope that
this book will help you build awesome and successful user interfaces that will bring real
value to your business!

Christopher Chedeau

Frontend Engineer at Facebook

About the Authors
Stan Bershadskiy is an architect at Modus Create and holds a Master's in Computer Science
from NYIT. While doing full-stack development, he found working on the frontend most
enjoyable because of the speed one can develop and switch focus toward JavaScript. Stan
likes to involve himself in anything JavaScript-related, particularly around building rich
applications for desktop, web, and mobile. He is located in New York City and can be
found co-organizing NYC.JS meetups. More recently, he has focused on promoting React
Native by presenting at conferences and publishing blog posts. You can follow him on
Twitter at @stan229.

First and foremost, I'd like to thank my wife Lika. You have been my strongest supporter
and more importantly putting up with me working on the book all hours of the night. You
have been at my side from the first word I wrote, to the edits I just completed at 4 AM. To
my son, Aiden, you are the center of my world. There's nothing that brightens my day like
seeing you. I simply wouldn’t be able to write this book without the support of my wife,
son, and parents.

I'd like to thank Crysfel for inviting me on-board to write this book and the work we did
together. Brice Mason, you are an amazing colleague and editor. You did an incredible job
reviewing the book, you are far more thorough than I ever could be. A special thank you
goes out to Christopher Chedeau for embodying the spirit of the React Native community
and writing an exemplary foreword.

A very special thank you goes to Jay Garcia. You have been my mentor, sounding board,
facilitator, and just an excellent friend. You have helped me with this book in far more
ways than I can list. Lastly, a thank you goes out to everyone at Modus Create for
supporting me not only during the writing of this book but being the absolute best place to
work at.

Crysfel Villa is a senior software engineer at Modus Create. He's a passionate JavaScript
coder and an accomplished software developer with over 10 years of experience in technical
training, consulting, and systems analysis. Crysfel loves to write about emerging
technologies and he has deployed several apps to the Apple Store using React Native. He
currently lives in NY and can be found attending tech meetups throughout the city. You can
follow him on Twitter at @crysfel.

It has been a very difficult journey to complete this project. I worked on this book while I
was in Japan, Korea, Mexico, and NY. Working overseas, on vacations, visiting family and
friends, holidays and what not. I'd like to thank my wife Hazel for the huge help she did,
reviewing my scripts, sometimes late at night. I wouldn't be able to accomplish this project
without her help.

I would also like to thank my dad Felipe, my two youngest brothers Victor and Jaziel, my
in-laws and friends for their support, just by continue asking me about the book and
encouraging me to continue working hard on it, many thanks to all of them. Special thanks
to Brice, who found some missing steps on recipes, suggested things to improve and overall
helping us to complete the book on time.

About the Reviewer
Brice Mason is a husband, father, developer, writer, and speaker with over 15 years of
software development experience. As a senior engineer at Modus Create, he's been
fortunate to contribute to the delivery of several enterprise-level desktop and mobile
applications using JavaScript. When not writing code or writing about code, Brice enjoys
spending time with his wife and son. You can reach him via Twitter at @bricemason.

I would like to thank Stan, Crysfel, and the terrific folks at Packt Publishing for including
me in this project. Special thanks to my wife Heather and son Chase for allowing me the
extra time to help contribute to this great book.

www.PacktPub.com
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

h t t p s ://w w w . p a c k t p u b . c o m /m a p t

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt
https://www.packtpub.com/mapt

Customer Feedback
Thank you for purchasing this Packt book. We take our commitment to improving our
content and products to meet your needs seriously—that's why your feedback is so
valuable. Whatever your feelings about your purchase, please consider leaving a review on
this book's Amazon page. Not only will this help us, more importantly it will also help
others in the community to make an informed decision about the resources that they invest
in to learn.

You can also review for us on a regular basis by joining our reviewers' club. If you're
interested in joining, or would like to learn more about the benefits we offer, please
contact us: customerreviews@packtpub.com.

Table of Contents
Preface 1

Chapter 1: Getting Started 8

Introduction 8
Adding styles to text and containers 9

Getting ready 9
How to do it… 9
How it works… 12
There's more… 13

Using images to mimic a video player 15
Getting ready 15
How to do it… 15
How it works… 19
There's more… 20

Creating a toggle button 20
Getting ready 20
How to do it… 20
How it works… 25
There's more… 26

Displaying a list of items 27
Getting ready 27
How to do it… 27
How it works… 33
There's more… 34

Adding tabs to the viewport 34
Getting ready 34
How to do it… 34

Using flexbox to create a profile page 38
Getting ready 38
How to do it… 39
How it works… 46
There's more… 46

Setting up a navigator 46
Getting ready 47
How to do it… 47

[ii]

There's more… 57

Chapter 2: Implementing Complex User Interfaces 58

Introduction 58
Creating a reusable button with theme support 58

Getting ready 59
How to do it… 59
How it works… 65

Building a complex layout for tablets using flexbox 66
Getting ready 67
How to do it… 67
There's more… 76

Including custom fonts on iOS 76
Getting ready 76
How to do it… 77
How it works… 83
There's more… 84

Including custom fonts on Android 84
Getting ready 84
How to do it… 84

Using font icons 87
Getting ready 87
How to do it… 87
There's more… 91

Dealing with universal apps 92
Getting ready 92
How to do it… 93
How it works… 102

Detecting orientation changes 103
Getting ready 103
How to do it… 103
How it works… 110
There's more… 111

Using a WebView to open external websites 112
How to do it… 112
How it works… 119

Rendering simple HTML elements using native components 119
Getting ready 120
How to do it… 120
How it works… 123

[iii]

How to create a form component 124
Getting ready 124
How to do it… 124
How it works… 129

Chapter 3: Animating the User Interface 131

Introduction 131
Simple animations 132

Getting ready 132
How to do it… 132
How it works… 136
There's more… 137

Running several animations at the same time 138
Getting ready 138
How to do it… 138
How it works… 142

Animating notifications 143
Getting ready 143
How to do it… 143
How it works… 152
There's more… 153

Expanding and collapsing containers 153
Getting ready 154
How to do it… 154
How it works… 159

Loading animation 160
Getting ready 160
How to do it… 161
How it works… 166

Removing items from a list component 167
Getting ready 167
How to do it… 168
How it works… 175

Creating a Facebook reactions widget 176
Getting ready 177
How to do it… 177
How it works… 185

Display images in full screen 186
Getting ready 186
How to do it… 186

[iv]

How it works… 194

Chapter 4: Working with Application Logic and Data 196

Introduction 196
Storing and retrieving data locally 197

Getting ready 197
How to do it… 197
How it works… 201

Retrieving data from a Remote API 202
Getting ready 202
How to do it… 202
How it works… 205

Sending data to a Remote API 205
Getting ready 206
How to do it… 206
How it works… 210

Establishing real-time communications with WebSockets 211
Getting ready 211
How to do it… 212
How it works… 216
There's more… 217

Integrate persistent database functionality with Realm 217
Getting ready 218
How to do it… 218
How it works… 221

Mask the application upon network connection loss 222
Getting ready 222
How to do it… 223
How it works… 226
There's more… 227

Synchronizing locally persisted data with a Remote API 227
Getting ready 227
How to do it… 228
How it works… 231

Logging in with Facebook 232
Getting ready 232
How to do it… 232
How it works… 238

Sharing content on Facebook 238
Getting ready 239

[v]

How to do it… 239
How it works… 240

Tracking application events with Facebook Analytics 241
Getting ready 241
How to do it… 241
How it works… 244

Chapter 5: Implementing Redux 245

Introduction 245
Installing Redux and preparing our project 246

How to do it… 246
How it works… 248

Defining actions 249
Getting ready 249
How to do it… 249
How it works… 250
There's more… 251

Defining reducers 251
Getting ready 252
How to do it… 252
How it works… 254

Setting up the store 255
How to do it… 256
How it works… 257

Communicating with a Remote API 258
How to do it… 258
How it works… 262

Connecting the store with the views 264
Getting ready 264
How to do it… 264
How it works… 268

Storing offline content using Redux 270
Getting ready 270
How to do it… 270

Showing network connectivity status 272
Getting ready 272
How to do it… 273
How it works… 276

Chapter 6: Adding Native Functionality 278

[vi]

Introduction 278
Exposing custom iOS modules 279

Getting ready 280
How to do it… 280
How it works… 284
There's more… 285

Rendering custom iOS view components 285
How to do it… 285
How it works… 290

Exposing custom Android modules 291
Getting ready 291
How to do it… 291
How it works… 296

Rendering custom Android view components 297
How to do it… 297
How it works… 302

Handling the Android back button 303
Getting ready 303
How to do it… 303
How it works… 309

Reacting to changes in application state 309
How to do it… 310
How it works… 312
There's more… 312

Copy and pasting content 313
Getting ready 313
How to do it… 313
How it works… 318

Receiving push notifications 319
Getting ready 319
How to do it… 320
How it works… 323

Authenticating via TouchID or fingerprint sensor 324
Getting ready 324
How to do it… 324
How it works… 331

Hiding application content when multitasking 331
Getting ready 331
How to do it… 331

[vii]

How it works… 335
Background processing on iOS 335

Getting ready 336
How to do it… 336
How it works 339

Background processing on Android 339
Getting ready 340
How to do it… 340
How it works… 344

Playing audio files on iOS 344
Getting ready 345
How to do it… 345
How it works… 348

Playing audio files on Android 349
Getting ready 349
How to do it… 349
How it works… 354

Chapter 7: Architecting for Multiple Platforms 355

Introduction 355
Building for the Universal Windows Platform 356

Getting ready 357
How to do it… 357
How it works… 360
There's more… 360
See also 360

Building for Mac OS X Desktop 360
Getting ready 361
How to do it… 361
How it works… 362
There's more… 362

Building for Apple tvOS 363
Getting ready 363
How to do it… 363
How it works… 365

Creating platform specific UI Components 365
Getting ready 366
How to do it… 366
How it works… 368
There's more… 369

[viii]

Extending UI Components for platform-specific experiences 370
Getting ready 370
How to do it… 370
How it works… 374

Best practices for sharing code between platforms 375
How to do it… 375

Chapter 8: Integration with Applications 377

Introduction 377
Embedding a React Native application inside an iOS application 378

Getting ready 379
How to do it… 380
How it works… 386

Communicating from an iOS application to React Native 387
Getting ready 387
How to do it… 387
How it works… 391

Communicating from React Native to an iOS application container 392
Getting ready 392
How to do it… 392
How it works… 396

Handling being invoked by external iOS application 397
How to do it… 397
How it works… 400

Embedding a React Native application inside an Android application 400
Getting ready 400
How to do it… 401
How it works… 406

Communicating from an Android application to React Native 407
Getting ready 407
How to do it… 407
How it works… 411

Communicating from React Native to an Android application container 412
Getting ready 412
How to do it… 412
How it works… 417

Handling being invoked by external Android application 417
How to do it… 417
How it works… 419

Invoking an external iOS and Android application 420

[ix]

How to do it… 420
How it works… 423

Chapter 9: Deploying Our App 424

Introduction 424
Deploying development builds to an iOS device 425

Getting ready 425
How to do it… 425
How it works… 426

Deploying development builds to an Android device 426
Getting ready 426
How to do it… 427
There's more… 428
How it works… 428

Deploying testing builds to HockeyApp 428
Getting ready 428
How to do it… 429
How it works… 433

Deploying testing iOS builds to TestFlight 434
Getting ready 434
How to do it… 435
How it works… 438

Deploying production builds to the Apple app store 438
Getting ready 438
How to do it… 439
How it works… 442

Deploying production builds to Google Play Store 442
Getting ready 443
How to do it… 443
How it works… 444

Deploying Over-The-Air updates 444
Getting ready 445
How to do it… 445
How it works… 449

Optimizing React Native application size 449
Getting ready 450
How to do it… 450
How it works… 451

Chapter 10: Automated Testing 452

[x]

Installing the environment 452
Getting ready 453
How to do it… 453

Running the Inspector to access the elements 458
Getting ready 458
How to do it… 459

Integrating Appium with Mocha 460
Getting ready 460
How to do it… 461
How it works… 462

Selecting and typing into input texts 463
Getting ready 463
How to do it… 464
How it works… 467
There's more… 468

Pressing a button and testing the result 468
Getting ready 468
How to do it… 468
How it works… 471

Chapter 11: Optimizing the Performance of Our App 473

Introduction 473
Optimizing our JavaScript code 474

Getting ready 474
How to do it… 475
How it works… 476

Optimizing the performance of our custom UI components 477
Getting ready 477
How to do it… 477
How it works… 478
See also 478

Keeping our animations running at 60 FPS 479
Getting ready 479
How to do it… 479
How it works… 483
There's more… 483

Getting the most out of ListView 484
Getting ready 484
How to do it… 484
How it works… 486

[xi]

See also 486
Boosting the performance of our app 487

Getting ready 487
How to do it… 487
How it works… 488

Optimizing the performance of native iOS module 488
Getting ready 489
How to do it… 489
How it works… 490

Optimizing the performance of native Android modules 490
Getting ready 491
How to do it… 491
How it works… 492

Optimizing the performance of native iOS UI components 492
Getting ready 493
How to do it… 493
How it works… 494

Optimizing the performance of native Android UI components 494
Getting ready 495
How to do it… 495
How it works… 497

Index 498

Preface
React has taken the web development world by storm. It is only natural that its unique
architecture and strong third-party support be applied to native application development.
Using JavaScript, you can build a truly native application that renders native UI
components and accesses native device functionality. This book will take you through the
basics of React Native development all the way through some more advanced concepts.

In this book, we will cover topics in React Native ranging from adding basic UI components
to successfully deploying for multiple target platforms. Since this is a cookbook, each topic
will be described in its own recipe. The book follows a top-down approach, beginning with
building rich UIs. These UIs will be created with both built-in and custom components that
you will create, style, and animate. You will then learn about different strategies for
working with data, including leveraging the popular Redux library. Then you will have the
opportunity to step further into exposing native device functionality. Finally, we will
discuss how to bring our application to production and maintain its reliability.

The recipes in this book will break down how you can accomplish a particular task. They
will also dive into some of the more important concepts supporting the task. After reading
the book, you should feel very comfortable tackling any aspect of React Native
development.

What this book covers
Chapter 1, Getting Started, shows you how to perform everyday scenarios using React
Native. You will add some basic UI components that come with the framework to your
view and style them accordingly.

Chapter 2, Implementing Complex User Interfaces, steps a bit further into the creation of UIs.
In this chapter, you will learn how to create custom view components using JavaScript and
JSX, as well as add them to customized layouts.

Chapter 3, Animating the User Interface, teaches you how to make your application feel more
alive with animations. You will start off with basic layout animations and end up having
mastered the Animated library and building custom animations.

Preface

[2]

Chapter 4, Working with Application Logic and Data, covers what’s involved in dealing with
data. You will learn everything there is to know about dealing with data whether it is sitting
locally or on a remote server. The chapter also covers storing your data in a native database
as well as integration with the Facebook SDK.

Chapter 5, Implementing Redux, explores the extremely popular Redux library that is
commonly used with React and React Native. You will learn how to make Redux fit in your
application and control all things related to the application logic and data.

Chapter 6, Adding Native Functionality, shows you how to take your React Native
development past the JavaScript layer and leverage the full power of the device. You will
learn how to add custom modules and UI components that are implemented using the
device’s native language. You will then take it on level further by leveraging native
functionality that is not available out of the box, such as multithreading, fingerprint
detection, and more.

Chapter 7, Architecting for Multiple Platforms, explains how to deal with the many platforms
you can deploy your React Native application to. You will learn how to build a React
Native application for different platforms such as Windows 10 and Mac OS desktop. The
chapter also teaches you how to deal with coding for specific platforms and the best
practices for sharing code across them.

Chapter 8, Integration with Applications, teaches you how to work with existing iOS and
Android applications that you may have. You will learn not only how to render a React
Native application inside a larger existing native app, but also how to communicate bi-
directionally between them.

Chapter 9, Deploying Our App, guides you through the one of the most critical process of
application development, deploying. You will learn how to deploy your application at
different stages of development, including deploying to the app stores. You will also learn
how to perform over-the-air updates to your already deployed React Native apps.

Chapter 10, Automated Testing, shows you how to set up automated testing for your React
Native application. You will learn how to create functional tests using Appium and Mocha.
You will also be able to take your tests and run them on an iOS device for a real-world
experience.

Preface

[3]

Chapter 11, Optimizing the Performance of Our App, explores how to get the most out of
React Native applications. This chapter covers everything related to performance and
memory optimization. You will be provided with various tips, tricks, and best practices on
how to get the most out of your app.

What you need for this book
For this book, you will require the following:

Node.js (v4+), Watchman (latest)
For iOS development, you should be running Mac OS and have XCode 8.0+
installed
For Android development, you should have Android Studio 2.2+ installed

Who this book is for
This book is intended for developers who may be either just starting out or already
experienced with React Native development. Existing knowledge of JavaScript ES2015 is
highly recommended. A basic understanding of iOS development with Objective-C or Swift
and Java for Android development is optional, but may help readers when adding custom
native functionality.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to
do it, How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

Preface

[4]

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Create a
new user for JIRA in the database and grant the user access to the jiradb database we just
created using the following command:"

A block of code is set as follows:

<Contextpath="/jira"docBase="${catalina.home}
/atlassian- jira" reloadable="false" useHttpOnly="true">

Any command-line input or output is written as follows:

 mysql -u root -p

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Select System info from the
Administration panel."

Warnings or important notes appear in a box like this.

Preface

[5]

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors .

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at h t t p ://w w w . p

a c k t p u b . c o m . If you purchased this book elsewhere, you can visit h t t p ://w w w . p a c k t p u b . c

o m /s u p p o r t and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.
Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

http://www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[6]

You can also download the code files by clicking on the Code Files button on the book's
webpage at the Packt Publishing website. This page can be accessed by entering the book's
name in the Search box. Please note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
https://github.com/PacktPublishing/React-Native-Cookbook. We also have other code
bundles from our rich catalog of books and videos available at h t t p s ://g i t h u b . c o m /P a c k t

P u b l i s h i n g /. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting h t t p ://w w w . p a c k t p u b . c o m /s u b m i t - e r r a t a , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title.

To view the previously submitted errata, go to h t t p s ://w w w . p a c k t p u b . c o m /b o o k s /c o n t e n

t /s u p p o r t and enter the name of the book in the search field. The required information will
appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

https://github.com/PacktPublishing/React-Native-Cookbook
https://github.com/PacktPublishing/React-Native-Cookbook
https://github.com/PacktPublishing/React-Native-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[7]

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you valuable
content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the problem.

1
Getting Started

In this chapter, we will cover the following recipes:

Adding styles to text and containers
Using images to mimic a video player
Creating a toggle button
Displaying a list of items
Adding tabs to the viewport
Using flexbox to create a profile page
Setting up a navigator

Introduction
React Native is a fast-growing library. Over the last year it has become very popular among
the open source community. There's a new release every other week that improves
performance, adds new components, or provides access to new APIs on the device.

While this is great for the most part, it comes with a drawback. Sometimes, things on our
project will break with a new release; we need to be very careful when updating our
projects. As a rule of thumb, never update to the latest version without reading the release
notes, which usually describe the breaking changes. On top of that, we need to make sure
that any of the third-party libraries we are using in our projects are up to date with the new
release.

In this chapter, we will learn about the most common components within the library. This
book aims to reach out to developers who have already completed the Getting Started Guide
on the React Native documentation, which means we will jump right to the good stuff and
avoid things such as installing the environment and Hello World examples.

Getting Started

[9]

To step through all the recipes in this chapter, we will have to create a new app, so make
sure you have your environment up and running. I recommend you follow the
documentation on the React Native official website, then run the following commands on
your terminal for each recipe, where AnAppName is the name of your app:

 $ react-native init --verbose AnAppName
 $ cd AnAppName
 $ react-native run-android
 $ react-native run-ios

Adding styles to text and containers
We have several components at our disposal, but containers and texts are the most common
and useful components to create layouts or other components. In this recipe, we will see
how to use containers and text, but most importantly we will see how styles work in React
Native.

We will create a UI for a simple music player; we won't be using icons for now, but we will
add them later.

Getting ready
Please follow the instructions in the introduction in order to create a new app with the
name ContainersText.

How to do it…
Let's start by creating an src folder in the root of the project. This is where all our1.
JavaScript code will be placed.
Create a new JavaScript called MainApp.js:2.

Getting Started

[10]

In the MainApp.js file, we are going to create a stateless component; this3.
component will mimic a small music player. For now, it will only display the
name of the song and a bar to show the progress:

 import React from 'react';
 import { StyleSheet, Text, View } from 'react-native';

Once we have imported the dependencies, we can write the component as4.
follows:

 const MainApp = () => {
 const name = '01 - Hey, this is my life';

 return (
 <View style={styles.container}>
 <View style={styles.innerContainer} />
 <Text style={styles.title}>
 <Text style={styles.subtitle}>Playing:</Text> {name}
 </Text>
 </View>
);
 };

We have our component ready, so now we need to add some styles in order to5.
add colors and font styles:

 const styles = StyleSheet.create({
 container: {
 margin: 10,
 marginTop: 100,
 backgroundColor: '#e67e22',
 borderRadius: 5,
 },
 innerContainer: {

Getting Started

[11]

 backgroundColor: '#d35400',
 height: 50,
 width: 150,
 borderTopLeftRadius: 5,
 borderBottomLeftRadius: 5,
 },
 title: {
 fontSize: 18,
 fontWeight: '200',
 color: '#fff',
 position: 'absolute',
 backgroundColor: 'transparent',
 top: 12,
 left: 10,
 },
 subtitle: {
 fontWeight: 'bold',
 },
 });

In order to use this component outside of this file, we need to export it, as6.
follows:

 export default MainApp;

The next step is to import our new component in the index.ios.js and7.
index.android.js files. The code will be the same for both platforms:

 import React, { Component } from 'react';
 import { AppRegistry } from 'react-native';
 import MainApp from './src/MainApp';

 AppRegistry.registerComponent('ContainersText', () => MainApp);

In order to see our changes in the simulators, we need to reload the app. For iOS,8.
you can press cmd + R; for Android, click on the menu button and then the refresh
button:

Getting Started

[12]

How it works…
Let's take a look at what we did in the previous recipe. In steps 3 to 6 we created our
component with the necessary styles. There are several things going on in these steps, so
let's dig deeper.

In step 3, we included the dependencies of our component. In this case, we will use a View,
which is a container; if you are familiar with web development, a View is similar to a div.
We can add more Views inside other Views, Texts, Lists, and any other custom
component that we create or import from a third-party library.

In step 4, we defined the name of our component. In this case, it will be MainApp. As a
convention, we should always use the same name for the file and for the component. As
you can see, this is a stateless component, which means it doesn't have any state; it's a pure
function and doesn't support any of the life cycle methods.

We are defining a name constant, but in real-world applications this data should come from
the props. In the return we are defining the JSX that we are going to need to render our
component, along with a reference to the styles.

Getting Started

[13]

Each component has a property called style; this property receives an object with all the
styles that we want to apply to the given component. Styles are not inherited (except for the
Text component) to the children components, which means we need to set individual styles
for each component.

In step 5, we defined the styles for our component. We are using the StyleSheet API to
create all our styles. As previously mentioned, all we need is an object containing the styles;
however, by using the StyleSheet API instead of a simple plain object, we gain some
performance optimizations, as the styles will be reused for every renderer as opposed to
creating an object every time the render method gets executed.

The properties in the styles object are very straightforward. If you are a web developer it,
should be really easy to get used to this, because it's similar to CSS; however, it's not the
same. We have margins, paddings, width, height, border width, border color,
border radius, and many more properties. I recommend you take a look at the
documentation to find out all the available properties.

In step 7, we only imported our new component and used it as the component that will
bootstrap our app.

There's more…
I'd like to call to your attention to the definition of the title style in step 5. Here, we have
defined a property called backgroundColor and set transparent as its value. As a good
exercise, let's comment this line of code and see the result:

Getting Started

[14]

On iOS, the text will have an orange background color and it might not be what we really
want to accomplish in our UI. In order to fix this, we need to set the background color of the
text as transparent. But the question is, why is this happening? The reason is that React
Native adds some optimizations to the text by setting the color from the parent's
background color. This will improve the rendering performance because the rendering
engine will not have to calculate the pixels around each letter of the text and the rendering
will be executed faster.

Think carefully when setting the background color as transparent. If the
component is going to be updating the content very frequently, there
might be some performance issues with text, especially if the text is too
long.

Getting Started

[15]

Using images to mimic a video player
Images are an important part of any UI. Whether we use them to display icons, avatars, or
pictures, with React Native you can do all of that. In this recipe, we will use images to create
a video player. We will also display the icons from the local device, and a large image from
a remote server on Amazon S3.

Getting ready
In order to follow the steps in this recipe, its necessary to create an empty app using the
React Native CLI. Follow the instructions in the introduction of this chapter if you don't
know to create an empty app. We are going to name it LoadingImages.

We are going to display a few images in our app to mimic a video player, so make sure to
download the assets for this recipe.

How to do it…
The first thing we are going to do is to create a new folder called src. Inside this1.
folder, we need to create a file called MainApp.js, and an images folder to store
our icons. Our project should look as follows:

Getting Started

[16]

In the MainApp.js file, we are going to include all the dependencies we'll need2.
for this component:

 import React from 'react';
 import { StyleSheet, View, Image } from 'react-native';

We need to require the images that will be displayed in our component. By3.
defining a constant we can use the same image in different places. We might need
to restart the package server to successfully load the images, especially if we are
using Windows:

 const playIcon = require('./images/play.png');
 const volumeIcon = require('./images/sound.png');
 const hdIcon = require('./images/hd-sign.png');
 const fullScreenIcon = require('./images/full-screen.png');
 const remoteImage = {
 uri:
 'https://s3.amazonaws.com/crysfel/
 public/book/new-york.jpg' };

We are going to use a stateless component to render the JSX. We'll use all the4.
images we have declared in the previous step:

 const MainApp = () => {
 return (
 <Image source={remoteImage} style={styles.fullscreen}>
 <View style={styles.container}>
 <Image source={playIcon} style={styles.icon} />
 <Image source={volumeIcon} style={styles.icon} />
 <View style={styles.progress}>
 <View style={styles.progressBar} />
 </View>
 <Image source={hdIcon} style={styles.icon} />
 <Image source={fullScreenIcon} style={styles.icon} />
 </View>
 </Image>
);
 };

Getting Started

[17]

Once we have the elements that we are going to render, we need to define the5.
styles for each element:

 const styles = StyleSheet.create({
 fullscreen: {
 flex: 1,
 },
 container: {
 position: 'absolute',
 backgroundColor: '#202020',
 borderRadius: 5,
 flexDirection: 'row',
 height: 50,
 padding: 5,
 paddingTop: 16,
 bottom: 30,
 right: 10,
 left: 10,
 borderWidth: 1,
 borderColor: '#303030',
 },
 icon: {
 tintColor: '#fff',
 height: 16,
 width: 16,
 marginLeft: 5,
 marginRight: 5,
 },
 progress: {
 backgroundColor: '#000',
 borderRadius: 7,
 flex: 1,
 height: 14,
 margin: 10,
 marginTop: 2,
 },
 progressBar: {
 backgroundColor: '#bf161c',
 borderRadius: 5,
 height: 10,
 margin: 2,
 width: 80,
 },
 });

Getting Started

[18]

In order to use our component, we need to export it. This is a very simple step6.
that requires only one line of code:

 export default MainApp;

Finally, we need to import our new component inside index.ios.js and7.
index.android.js:

 import React, { Component } from 'react';
 import { AppRegistry } from 'react-native';
 import MainApp from './src/MainApp';
 AppRegistry.registerComponent('LoadingImages', () => MainApp);

We are done! Just refresh the app on the simulators and you should see8.
something like this:

Getting Started

[19]

How it works…
In step 2, we required the Image component; this is the component responsible for
rendering images from the local filesystem on the device or from a remote server.

In step 3, we required all the images. It's a good practice to require the images outside of the
component in order to only require them once, and then we can use them in our
component. On every renderer, React Native will use the same image; if we are dealing
with dynamic images from a remote server, then we should require them on every renderer.

The require function accepts the path of the image as a parameter; the path is relative to
the folder that our class is. For remote images, we need to use an object defining the uri
where our file is.

In step 4, a stateless component was declared. We are using the remoteImage as the
background of our app. In order to set an image in the background, we need to define all
the other elements as children of the image. There's not a backgroundUrl property, such as
in CSS.

The source property of the Image accepts an object to load remote images or a reference to
the required file. It's very important to explicitly require every image that we want to use,
because, when we prepare our app for distribution, images will be added to the bundle
automatically. This is the reason we should avoid doing things like the following:

const iconName = playing ? 'pause' : 'play';
const icon = require(iconName);

The preceding code will not include the images in the final bundle. As a result, we will have
errors when trying to access these images. Instead, we should refactor our code as follows:

const pause = require('pause');
const play = require('playing');
const icon = playing ? pause : play;

This way, the bundle will include both images when preparing our app for distribution,
and we will decide dynamically which image to display.

In step 5, we defined the styles. Most of the properties are self-explanatory; the tintColor
property might be a bit confusing, but this property is basically setting the color of the
image, in this case, to white. I will talk more about flex in separate recipes, but for now let's
just say that flexDirection: 'row' is allowing us to align the icons horizontally.

In step 7, we included the MainApp class in the iOS and Android index files. After this, we
should be able to run our application on the simulators.

Getting Started

[20]

There's more…
In this recipe, we have used flexbox to horizontally arrange the controls of the player. If you
want to learn more about flexbox, take a look at Using flexbox to create a profile page. For more
advanced content, you should go to Chapter 2, Implementing Complex User Interfaces.

Creating a toggle button
We all know that buttons are an essential UI component in every application. We use
buttons for navigation, to trigger API calls, and so on. In this recipe, we will create a toggle
button, which by default is going to be unselected. When the user taps on it, we will change
the styles of the button to make it look selected.

We will learn how to detect the tap event, use an image as the UI, keep the state of the
button, and add styles based on the component state.

Getting ready
Let's create a new app using the React Native CLI. We are going to name it
ButtonsAndEvents. We are going to use one image in this recipe; make sure to download
the assets for this recipe or feel free to use your own image.

How to do it…
We need to create an src folder where our source will be stored; inside this1.
folder we will create an images folder and a MainApp.js file:

Getting Started

[21]

Let's import the dependencies for this class:2.

 import React, { Component } from 'react';
 import {
 StyleSheet,
 View,
 Image,
 Text,
 TouchableHighlight,
 } from 'react-native';

 const heartIcon = require('./images/plain-heart.png');

For this particular recipe, we need to keep the state of the button when pressed;3.
therefore, we need to create a class that extends from Component, as follows:

 class MainApp extends Component {
 state = {
 liked: false,
 };

 _onPressBtn = () => {
 // We will define the content on step 6
 }

 render() {
 // We will define the content on step 4
 }
 }

We need to define the content of our new component inside the render method;4.
here, we are going to define the Image button and a Text underneath:

 render() {
 return (
 <View style={styles.container}>
 <TouchableHighlight
 style={styles.btn}
 underlayColor="#fefefe"
 >
 <Image
 source={heartIcon}
 style={styles.icon}
 />
 </TouchableHighlight>
 <Text style={styles.text}>Do you like this app?</Text>
 </View>

Getting Started

[22]

);
 }

Let's define some styles to set dimensions, position, margins, colors, and so on:5.

 const styles = StyleSheet.create({
 container: {
 marginTop: 50,
 alignItems: 'center',
 },
 btn: {
 borderRadius: 5,
 padding: 10,
 },
 icon: {
 width: 180,
 height: 180,
 tintColor: '#f1f1f1',
 },
 liked: {
 tintColor: '#e74c3c',
 },
 text: {
 marginTop: 20,
 },
 });

Getting Started

[23]

If we run the project on the simulators, we should have something similar to the6.
following screenshot:

In order to respond to the tap event, we need to define the content of the7.
_onPressBtn function and assign it as a callback to the onPress property:

 class MainApp extends Component {
 state = {
 liked: false,
 };

 _onPressBtn = () => {
 this.setState({
 liked: !this.state.liked,
 });
 }

Getting Started

[24]

 render() {
 return (
 <View style={styles.container}>
 <TouchableHighlight
 onPress={this._onPressBtn}
 style={styles.btn}
 underlayColor="#fefefe"
 >
 <Image source={heartIcon} style={styles.icon} />
 </TouchableHighlight>
 <Text style={styles.text}>Do you like this app?</Text>
 </View>
);
 }
 }

If we test our code, we won't see anything changing on the UI, even though the8.
state on the component is changing when we press the button. Let's add a
different color to the image when the state changes; that way, we will be able to
see some response from the UI:

 render() {
 const likedStyles = this.state.liked ? styles.liked : null;
 return (
 <View style={styles.container}>
 <TouchableHighlight
 onPress={this._onPressBtn}
 style={styles.btn}
 underlayColor="#fefefe"
 >
 <Image
 source={heartIcon}
 style={[styles.icon, likedStyles]}
 />
 </TouchableHighlight>
 <Text style={styles.text}>Do you like this app?</Text>
 </View>
);
 }

We are almost done with this class; the only thing that is missing is the export.9.
At the bottom of the file we can add the following line:

 export default MainApp;

Getting Started

[25]

Finally, we need to update the index.ios.js and index.android.js files to10.
import and use our new class:

 import React, { Component } from 'react';
 import { AppRegistry } from 'react-native';
 import MainApp from './src/MainApp';

 AppRegistry.registerComponent
 ('ButtonsAndEvents', () => MainApp);

How it works…
In step 2, we imported the TouchableHighlight component. This is the component
responsible for handling the touch event.

When the user touches the active area, the content will be highlighted based on the
underlayColor value we have set.

In step 3, we defined the state of the Component. In this case, there's only one property on
the state, but we can add as many as needed. In Chapter 2, Implementing Complex User
Interfaces, we will see more recipes about handling the state in more complex scenarios.

In step 6, we used the setState method to change the value of the liked property. This
method is inherited from the Component class that we are extending.

In step 7, based on the current state of the liked property, we used the styles to set the
color of the image to red, or we returned a null to avoid applying any styles. When
assigning the styles to the Image component, we used an array to assign many objects; this
is very handy because, internally, the component will merge all the styles into one single
object. The objects with the highest index will overwrite the properties from the lowest
object index in the array:

Getting Started

[26]

There's more…
In a real application, we are going to use several buttons, sometimes with an icon aligned to
the left, a label, different sizes, and colors, and so on. It's highly recommended to create a
reusable component to avoid duplicating code all over our app. In Chapter 2, Implementing
Complex User Interfaces, we will create a button component to handle some of these
scenarios.

Getting Started

[27]

Displaying a list of items
Lists are everywhere: A list of orders on the user's history, a list of available items in a store,
a list of songs to play; basically, any application will need to display information in a list.

For this recipe, we are going to display several items in a list component. We are going to
define a JSON file with some data, then we are going to load this file using a simple
require to finally render each item with a nice but simple layout.

Getting ready
Let's start by creating an empty app–in this case we will name it ListItems. We are going
to need an icon to display on each item, so please download the assets for this recipe or use
your own .png image.

How to do it…
We will start by creating an src folder. Inside this folder we will have the1.
MainApp.js file and the sales.json file:

Inside the sales.json file, we will define the data that we are going to display2.
on the list. Here's some sample data:

 [
 {"items": 5, "address": "140 Broadway, New York, NY 11101",
 "total": 38, "date": "May 15, 2016"}
]

Getting Started

[28]

To avoid cluttering the pages of this book, I've only defined one record, but go3.
ahead and add more content to the array. Copying and pasting the same object
multiple times will do the trick. In addition, you could change some values on the
data.
Let's open the index.ios.js and index.android.js files, remove the existing4.
code, and add the following to import dependencies and register the app:

 import React, { Component } from 'react';
 import { AppRegistry } from 'react-native';
 import MainApp from './src/MainApp';

 AppRegistry.registerComponent('ListItems', () => MainApp);

In the previous step, we imported the MainApp component, but it's not defined5.
yet. Let's open the src/MainApp.js file and import the dependencies:

 import React, { Component } from 'react';
 import {
 StyleSheet,
 View,
 ListView,
 Image,
 Text,
 } from 'react-native';
 import data from './sales.json';

 const basketIcon = require('./images/basket.png');

Now we need to create the class to render the list of items. We are going to keep6.
the sales data on the state; that way, we could insert or remove elements easily:

 class MainApp extends Component {
 constructor(props) {
 super(props);
 var ds = new ListView.DataSource({
 rowHasChanged: (r1, r2) => r1 !== r2
 });

 this.state = {
 dataSource: ds.cloneWithRows(data),
 };
 }

 renderRow(record) {
 // Defined on step 8
 }

Getting Started

[29]

 render() {
 // Defined on step 7
 }
 }

 export default MainApp;

In the render method, we need to define the ListView component and we will7.
use the renderRow method to render each item. The dataSource property
defines the array of elements that we are going to render on the list:

 render() {
 return (
 <View style={styles.mainContainer}>
 <Text style={styles.title}>Sales</Text>
 <ListView
 dataSource={this.state.dataSource}
 renderRow={this.renderRow}
 />
 </View>
);
 }

Now we can define the content of renderRow. This method receives each object8.
containing all the information we need. We are going to display the data in three
columns. In the first column we will show an icon, in the second column we will
show the number of items for each sale and the address where this order will
ship, and the third column will display the date and the total:

 renderRow(record) {
 return (
 <View style={styles.row}>
 <View style={styles.iconContainer}>
 <Image source={basketIcon} style={styles.icon} />
 </View>
 <View style={styles.info}>
 <Text style={styles.items}>{record.items} Items</Text>
 <Text style={styles.address}>{record.address}</Text>
 </View>
 <View style={styles.total}>
 <Text style={styles.date}>{record.date}</Text>
 <Text style={styles.price}>${record.total}</Text>
 </View>
 </View>
);
 }

Getting Started

[30]

Once we have the JSX defined, it's time to add the styles. First, we will define9.
colors, margins, paddings, and so on for the main container, and the title and the
row container. In order to create the three columns for each row, we need to use
the flexDirection: 'row' property. We will learn more about this property in
another recipe in this chapter:

 const styles = StyleSheet.create({
 mainContainer: {
 flex: 1,
 backgroundColor: '#fff',
 },
 title: {
 backgroundColor: '#0f1b29',
 color: '#fff',
 fontSize: 18,
 fontWeight: 'bold',
 padding: 10,
 paddingTop: 40,
 textAlign: 'center',
 },
 row: {
 borderColor: '#f1f1f1',
 borderBottomWidth: 1,
 flexDirection: 'row',
 marginLeft: 10,
 marginRight: 10,
 paddingTop: 20,
 paddingBottom: 20,
 },
 });

Getting Started

[31]

If we refresh the simulators, we should see something similar to the following10.
screenshot:

Now, inside the StyleSheet definition, let's add styles to the icon. We are going11.
to add a yellow circle as the background and change the color of the icon to
white:

 iconContainer: {
 alignItems: 'center',
 backgroundColor: '#feb401',
 borderColor: '#feaf12',
 borderRadius: 25,
 borderWidth: 1,
 justifyContent: 'center',
 height: 50,
 width: 50,
 },
 icon: {
 tintColor: '#fff',
 height: 22,
 width: 22,

Getting Started

[32]

 },

After this change, we will see a nice icon on the left side of each row, as shown in12.
the following screenshot:

Finally, the styles for the text. We need to set the color, size, fontWeight,13.
padding and a few other things:

 info: {
 flex: 1,
 paddingLeft: 25,
 paddingRight: 25,
 },
 items: {
 fontWeight: 'bold',
 fontSize: 16,
 marginBottom: 5,
 },
 address: {
 color: '#ccc',
 fontSize: 14,
 },

Getting Started

[33]

 total: {
 width: 80,
 },
 date: {
 fontSize: 12,
 marginBottom: 5,
 },
 price: {
 color: '#1cad61',
 fontSize: 25,
 fontWeight: 'bold',
 },

The end result should look similar to the following screenshot:14.

How it works…
In step 6, we create the data source and added data to the state. The
ListView.DataSource class implements performance data processing for the ListView
component. The rowhHasChanged property is required, and it should be a function to
compare the next element.

Getting Started

[34]

When filling up the data source with data, we need to call the cloneWithRows method and
send an array of records.

If we want to add more data, we should call again the cloneWithRows method with an
array containing the previous and new data. The data source will make sure to compute the
differences and re-render the list if necessary.

In step 7, we define the JSX to render the list. Only two properties are required for the list,
the data source we already have from step 6, and the renderRow.

The renderRow property accepts a function as a value; this function needs to return the JSX
for each row.

There's more…
We have created a simple layout using flexbox; however, there's another recipe in this
chapter where we will dive into more detail about using flexbox.

Once we have our list, the chances are that we are going to need to see the detail of each
order. We will have to use the TouchableHighlight component as the main container for
each row, so go ahead and give it a try. If you are not sure how to use the
TouchableHighlight component, take a look at the Creating a toggle button recipe in this
chapter.

Adding tabs to the viewport
Tabs are a very common component, especially in iOS apps. In this recipe, we will learn
how to use the tabs component on iOS devices only. As of now, we don't have support for
Android, and if we really want to use tabs, we would have to use a third-party library to
add similar functionality.

Getting ready
We need to create an empty app using the React Native CLI. We will name it
TabsComponent. Then we will create an src folder in the root of the project where we are
going to define all our JavaScript code. We are going to use four different icons, but feel free
to use your own or make sure to download the assets for this recipe.

Getting Started

[35]

How to do it…
Let's start by importing all the dependencies for this component, as well as the1.
images we are going to use for the icons:

 import React, { Component } from 'react';
 import {
 StyleSheet,
 View,
 Image,
 Text,
 TabBarIOS
 } from 'react-native';

 const homeIcon = require('./images/home.png');
 const favIcon = require('./images/star.png');
 const blogIcon = require('./images/notebook.png');
 const profileIcon = require('./images/user.png');

In order to select a tab, we need to keep the current selection on the state,2.
therefore we need to use a class, which will look something like this:

 class MainApp extends Component {
 state = {
 selected: 'home',
 };

 selectTab(id) {
 // Defined on step 5
 }

 renderTab(options) {
 // Defined on step 4
 }

 render() {
 // Defined on step 3
 }
 }

Getting Started

[36]

Inside of the render method, we need to define the tab component, along with 3.
each tab that we want to show. In this case, we are going to use the renderTab
method to build the JSX, which will allow us to reduce our code base by calling a
single function with different options:

 render() {
 return (
 <TabBarIOS
 tintColor="#42b49a"
 >
 {this.renderTab(
 {title: 'Home', id: 'home', icon: homeIcon})}
 {this.renderTab(
 {title: 'Favorites', id: 'favorites', icon: favIcon})}
 {this.renderTab(
 {title: 'Blog', id: 'blog', icon: blogIcon})}
 {this.renderTab(
 {title: 'Profile', id: 'profile', icon: profileIcon})}
 </TabBarIOS>
);
 }

For the renderTab method, we need to define a few properties, such as the title4.
of the tab, the icon, weather it is selected or not, and a callback function to define
the actual selection. For now, we will use the same content for each tab, but in
real-world applications we would pass the main content as a parameter as well.
One of the most important properties here is the selected property. We can
only have one tab selected at a time, and we will use the state to keep the current
selection:

 renderTab(options) {
 return (
 <TabBarIOS.Item
 title={options.title}
 selected={this.state.selected === options.id}
 onPress={() => this.selectTab(options.id)}
 icon={options.icon}
 >
 <View style={styles.container}>
 <Image source={options.icon} style={styles.icon} />
 <Text style={styles.title}>{options.title}</Text>
 </View>
 </TabBarIOS.Item>
);
 }

Getting Started

[37]

In the previous step, we are calling the selectTab function when the tab item is5.
pressed. The idea here is to call this function when the user presses any of the
tabs. We will send the id as a parameter and then we will set the current
selection on the state:

 selectTab(id) {
 this.setState({
 selected: id,
 });
 }

Let's add some styles to center the content on the screen and set a nice color to the6.
image of each tab. We will also export the component in order to be able to
import it anywhere else:

 const styles = StyleSheet.create({
 container: {
 flex: 1,
 alignItems: 'center',
 justifyContent: 'center',
 },
 title: {
 fontSize: 20,
 marginTop: 20,
 },
 icon: {
 width: 30,
 height: 30,
 tintColor: '#42b49a'
 },
 });

 export default MainApp;

Finally, we need to update the index.ios.js file to import our new class:7.

 import React, { Component } from 'react';
 import { AppRegistry } from 'react-native';
 import MainApp from './src/MainApp';

 AppRegistry.registerComponent('TabsComponent', () => MainApp);

Getting Started

[38]

The final result should look similar to the following screenshot:8.

Using flexbox to create a profile page
In this recipe, we will learn about flexbox. In the previous recipes in this chapter we've been
using flexbox to create some layouts, but in this recipe we will focus on the properties we
have at our disposal to create a profile page.

Getting ready
We need to create an empty app using the React Native CLI–let's name it SimpleLayout.
We are going to use a few icons and an image to show in the profile page. You can use your
own or download the assets for this recipe.

Getting Started

[39]

How to do it…
Let's start by creating an src folder in the root of the project. Then we need to1.
create the MainApp.js file where we are going to define the code for this recipe.
In the new file, let's import the dependencies of our class, just a few basic2.
components, the profileImage and some icons. Make sure to create the
images folder and add some icons there, as well as the user profile image:

 import React, { Component } from 'react';
 import {
 StyleSheet,
 View,
 Image,
 Text,
 } from 'react-native';

 const profileImage = require('./images/user-profile.jpg');
 const friendsIcon = require('./images/profile.png');
 const favIcon = require('./images/plain-heart.png');
 const msgIcon = require('./images/chat.png');

We are going to create a class. It will have the user's data on the state and two3.
methods to render the JSX. As a rule of thumb, we should always try to split the
JSX into reusable methods, which will allow us to have a more readable code
base:

 class MainApp extends Component {
 state = {
 name: 'Crysfel',
 lastName: 'Villa Roman',
 occupation: 'Software Engineer',
 friends: '1,200',
 favorites: '2,491',
 comments: '4,832',
 };

 renderStat(options) {
 // Defined on step 5
 }

 render() {
 // Defined on step 4
 }
 }

Getting Started

[40]

Inside the render method, we are going to set the profile image as the4.
background of the app. Then we need a container to move the user's information
to the bottom of the screen. Inside the container, we will define two more
containers, one for the basic information and one to show the number of
friends, favorites, and comments:

 render() {
 const {
 name,
 lastName,
 occupation,
 friends,
 favorites,
 comments,
 } = this.state;

 return (
 <Image source={profileImage} style={styles.container}>
 <View style={styles.info}>
 <View style={styles.personal}>
 <Text style={styles.name}>{name}
 {lastName}
 </Text>
 <Text style={styles.occupation}>
 {occupation.toUpperCase()}
 </Text>
 </View>
 <View style={styles.stats}>
 {this.renderStat(
 { icon: friendsIcon,value: friends, selected: true })}
 {this.renderStat({ icon: favIcon,value: favorites })}
 {this.renderStat({ icon: msgIcon,value: comments })}
 </View>
 </View>
 </Image>
);
 }

In the renderStat method, we are going to define just a container with an5.
Image and Text. This method receives an object of properties with the values to
use; if the selected property is true, we are going to add specific styles for this:

 renderStat(options) {
 return (
 <View style={styles.stat}>
 <Image

Getting Started

[41]

 source={options.icon}
 style={[styles.icon, options.selected ?
 styles.selected : null]}
 />
 <Text style={styles.counter}>{options.value}</Text>
 </View>
);
 }

Now we should export our new class, which will allow us to use it anywhere6.
else:

 export default MainApp;

In order to test our new component, we need to import it into the index.ios.js7.
and index.android.js files:

 import React, { Component } from 'react';
 import { AppRegistry } from 'react-native';
 import MainApp from './src/MainApp';

 AppRegistry.registerComponent('SimpleLayout', () => MainApp);

We are now ready to start creating our layout! Without any styles defined, our8.
app should look something like the following screenshot. It doesn't look good at
all, but we have the JSX in place:

Getting Started

[42]

First, we will fix the background image. You can see that the image is huge and9.
doesn't fit on the screen. In order to fix this issue, we need to set the width and
height to null. We also need to set flex:1, which will automatically get the
height of the parent:

 const styles = StyleSheet.create({
 container: {
 flex: 1,
 height: null,
 width: null,
 },
 });

Getting Started

[43]

Now we are going to move the information container to the bottom of the screen.10.
To accomplish this, we need to set the position to absolute and the bottom,
left, and right to 0:

 info: {
 backgroundColor: 'rgba(0,0,0,0.5)',
 bottom: 0,
 left: 0,
 position: 'absolute',
 right: 0,
 },

While this works as expected, we could reduce our code by using the11.
StyleSheet.absoluteFillObject object, which basically contains the
absolute position and all four sides to set 0. In our case, we need the top to be
null. The following code is exactly the same as the previous one:

 info: {
 ...StyleSheet.absoluteFillObject,
 backgroundColor: 'rgba(0,0,0,0.5)',
 top: null,
 },

We are going to set the fontSize, color, and some padding for the personal12.
information data:

 personal: {
 padding: 30,
 },
 name: {
 color: '#fff',
 fontFamily: 'Helvetica',
 fontSize: 30,
 fontWeight: 'bold',
 },
 occupation: {
 color: '#d6ec1b',
 marginTop: 5,
 },

Getting Started

[44]

At this point we should have something similar to the following screenshot:13.

We are getting there! Now let's style the icons for friends, favorites, and14.
comments. We are going to define the tintColor, width, height, color, and
marginTop:

 selected: {
 tintColor: '#d6ec1b',
 },
 icon: {
 tintColor: '#504f9f',
 height: 30,
 width: 30,
 },
 counter: {
 color: '#fff',
 fontSize: 15,
 marginTop: 5,
 },

Getting Started

[45]

Finally, we are going to arrange the icons horizontally by changing the15.
flexDirection to row. We are also adding some additional styles to set the
backgroundColor, padding, and a borderLeftWidth:

 stats: {
 flexDirection: 'row',
 },
 stat: {
 alignItems: 'center',
 backgroundColor: '#7675b7',
 borderColor: '#6e6db1',
 borderLeftWidth: 1,
 flex: 1,
 padding: 10,
 },

After all these styles have been applied, let's reload the simulator and see what16.
we have so far:

Getting Started

[46]

How it works…
This profile is looking really good, and it was really simple to accomplish it just by using
flexbox. We have arranged the icons horizontally; we have used an image as a background,
we set the position of the container to absolute so we could move it around the screen. We
can use many of these techniques in real-world applications to create amazing layouts.

When using flexbox, we have two directions, row and column:

row: Allows us to arrange the children of the container horizontally
column: This is the default direction, and arranges the children of the container
vertically

When setting flex:1 in any of the children of the container, we are making that child
flexible.

If we have three children (as in this recipe) and each of the elements has flex:1, the layout
engine will render all of them to have the same width. If we change the orientation of the
device from portrait to landscape, the render engine will render the three children with the
new width according to the orientation.

Flexbox is great to support different screen resolutions as well. As you can see in the
previous image, the iOS and Android simulators have different resolutions, and the layout
looks good on both devices.

There's more…
There's a lot more to talk about flexbox, but for now let's just touch the surface. In Chapter
2, Implementing Complex User Interfaces, we will learn more about layouts. We will create a
complex layout to use all the other available properties.

Setting up a navigator
One of the most popular features in React Native is the navigator. This component allows
us to add or remove views easily. When we add a new view, the navigator will transition
with a nice animation to the new view, and when removing the latest view, the navigator
will go to the previous view with a nice animation as well.

Getting Started

[47]

Getting ready
Before we start working on this recipe, we need to create a new app using the React Native
CLI–let's name it UsingNavigator. We are going to create a simple music app similar to
Spotify. At the home page, we will display a list of songs, and we are going to display the
details, whenever any of these songs are tapped.

For this recipe, we are going to use three classes, so let's create an src folder where all our
code will be. Then we'll create three files, MainApp.js, Home.js, and Detail.js.

How to do it…
This time, we are going to start by updating the index.ios.js and1.
index.android.js files. We are going to require the MainApp class, which, for
now, is empty, because we want to test our app while adding the new features:

 import React, { Component } from 'react';
 import { AppRegistry } from 'react-native';
 import MainApp from './src/MainApp';

 AppRegistry.registerComponent('UsingNavigator', () => MainApp);

Let's create the main class. Here, we are going to import all the views that we2.
want to display in the navigator, as well as the dependencies for this component:

 import React, { Component } from 'react';
 import {
 StyleSheet,
 Navigator,
 } from 'react-native';
 import Home from './Home';
 import Detail from './Detail';

Once we have the dependencies, we need to create the class. Inside the render3.
method, we will only define the Navigator. This component will be responsible
for loading the correct scene based on the route. Using the configureScene
property, we can set the default animation for all transitions. For this example,
we will animate the new view from the bottom to the top of the screen, but we
can also define an animation from left to right, or any other direction. I
recommend you go to the documentation to see all the available options that we
have:

Getting Started

[48]

 class MainApp extends Component {

 renderScene(route, navigator) {
 // Defined on step 4
 }

 render() {

 return (
 <Navigator
 ref="navigator"
 style={styles.container}
 configureScene={(route) =>
 Navigator.SceneConfigs.FloatFromBottom}
 initialRoute={{}}
 renderScene={this.renderScene}
 />
);
 }
 }

 const styles = StyleSheet.create({
 container: {
 flex: 1,
 },
 });
 export default MainApp;

The renderScene method will get executed every time we push or pop a scene.4.
Here, we need to decide which view we will render by returning the component
based on the route. We could have as many views as needed. In this case, we only
have the Detail and the Home:

 renderScene(route, navigator) {
 if (route.song) {
 return (
 <Detail song={route.song} navigator={navigator} />
);
 }

 return <Home navigator={navigator} />;
 }

Getting Started

[49]

We are done with the main class. Now we can work on the Home component. We5.
will start by importing all the dependencies for this class:

 import React, { Component } from 'react';
 import {
 StyleSheet,
 View,
 Image,
 Text,
 ScrollView,
 TouchableHighlight,
 } from 'react-native';

We are going to define the data for the songs in the state of the component. We6.
will have several sections with a list of songs, for example, 'Just for you',
'Recently played', and 'Popular music'. For now, I will define the
structure of one section only, because I don't want to clutter this book, but you
can duplicate the same structure of data to create more sections. Here's what the
class looks like with the data:

 class Home extends Component {
 state = {
 forYou: { // Please duplicate this data
 title: 'Just for you',
 root:
 'https://s3.amazonaws.com/crysfel/public/book/01/07',
 songs: [
 {title:'Some nice song', image: '1.jpg'},
 {title:'One more nice song', image: '2.jpg'},
 {title:'Here is one more song', image: '3.jpg'},
 {title:'Really nice song', image: '4.jpg'},
 {title:'I love this song', image: '5.jpg'},
 {title:'This is a song', image: '6.jpg'},
],
 },
 };

 onSelectSong(song) {
 // Defined on step 10
 }

 renderSong(section, song, index){
 // Defined on step 9
 }

 renderSection(options) {
 // Defined on step 8

Getting Started

[50]

 }

 render() {
 // Defined on step 7
 }
 }
 export default Home;

In the render method, we are going to define a title bar and three sections.7.
Remember to duplicate the data on the state in order for this to work correctly:

 render() {
 const {
 forYou,
 played, // Name of the duplicated data
 popular, // Name of the duplicated data
 } = this.state;

 return (
 <View style={styles.container}>
 <Text style={styles.title}>Home</Text>
 {this.renderSection(forYou)}
 {this.renderSection(played)}
 {this.renderSection(popular)}
 </View>
);
 }

For each section, we are calling the renderSection method, which will render8.
the title of the section and the list of songs in this group. We are going to use the
ScrollView component to allow the user to scroll through the list horizontally.
To render the songs, we need to loop the songs array of each section. We can do
this by using the map method and an arrow function:

 renderSection(options) {
 return (
 <View style={styles.section}>
 <Text
 style={styles.sectionTitle}
 >
 {options.title.toUpperCase()}
 </Text>
 <ScrollView
 horizontal
 showsHorizontalScrollIndicator={false}>
 {
 options.songs.map(

Getting Started

[51]

 (song, index) =>
 this.renderSong(options, song, index)
)
 }
 </ScrollView>
 </View>
);
 }

Now we need to render the song. We will display the image and the title for each9.
song. The image is hosted on Amazon S3. We are going to use the
TouchableHighlight component because we want to detect the press event to
show the detail of each song. It's important to mention that this component only
accepts a single child; therefore, we need to use a wrapper to group the image
and the title; otherwise, we will get errors:

 renderSong(section, song, index){
 return (
 <TouchableHighlight
 onPress={() => this.onSelectSong(song)}
 style={styles.song} key={index}
 >
 <View>
 <Image
 source={{uri:`${section.root}/${song.image}`}}
 style={styles.image}
 />
 <Text style={styles.songTitle}>{song.title}</Text>
 </View>
 </TouchableHighlight>
);
 }

In the previous step, we are calling the onSelectSong method when the user10.
presses the button. This function is the one that will run the transition on the
navigator. All we need to do is call the push method on the navigator and pass
the details object. The renderScene method will check if the song object is there,
and will show the scene that we need:

 onSelectSong(song) {
 this.props.navigator.push({song});
 }

Getting Started

[52]

We are done with JSX. Now we need to add some styles to make this look pretty.11.
Let's start by adding styles to the title bar and the main container:

 const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#0c1b1a',
 },
 title: {
 backgroundColor: '#37b298',
 color: '#fff',
 padding: 10,
 paddingTop: 30,
 textAlign: 'center',
 fontWeight: 'bold',
 fontSize: 18,
 },
 });

Getting Started

[53]

Next, let's style the sectionTitle, the image, and the songTitle, something12.
really simple–just adding some padding, color, and setting the width and height
for each image:

 section: {
 padding: 10,
 },
 sectionTitle: {
 color: '#fff',
 fontWeight: '200',
 paddingBottom: 10,
 },
 song: {
 backgroundColor: '#081412',
 marginRight: 10,
 },
 image: {
 width: 120,
 height: 120,
 },
 songTitle: {
 color: '#f1f1f1',
 fontWeight: '200',
 fontSize: 12,
 flex: 1,
 padding: 5,
 width: 100,
 }

Getting Started

[54]

It's looking amazing! We can now scroll the list of each section horizontally. If we13.
tap on any of the songs, we will get an error because we haven't defined the
detail view. Let's start by importing the dependencies on the Detail.js file. We
are going to import the PropTypes object. This object allows us to define the
types of property our component will support. This step is very important
because we can receive data from other components by using properties. In this
example, we will receive the data from the home component, which will be an
object with the song's data:

 import React, { Component, PropTypes } from 'react';
 import {
 StyleSheet,
 View,
 Image,
 Text,
 } from 'react-native';

 const { object } = PropTypes;
 const root =
 'https://s3.amazonaws.com/crysfel/public/book/01/07';

Getting Started

[55]

The class is a lot simpler. We are only defining the image and title from the song14.
that we will receive in the properties; then we will display a list of other songs
from the same artist. To make things a lot simpler, this list will be a hardcoded
list of Text elements:

 class Detail extends Component {
 static propTypes = {
 song: object,
 navigator: object,
 };

 render() {
 const { song } = this.props;

 return (
 <View style={styles.container}>
 <View style={styles.info}>
 <Image
 source={{uri: `${root}/${song.image}`}}
 style={styles.image}
 />
 <Text style={styles.title}>{song.title}</Text>
 <View style={styles.playContainer}>
 <Text style={styles.play}>Play song</Text>
 </View>
 </View>
 <Text style={styles.other}>01 - One more song</Text>
 <Text style={styles.other}>02 - Other song here</Text>
 <Text style={styles.other}>
 03 - This is the last song</Text>
 <Text style={styles.other}>
 04 - Maybe this is the last song?</Text>
 <Text style={styles.other}>
 05 - Why not one more song?</Text>
 <Text style={styles.other}>
 06 - Finally this is the last song</Text>
 </View>
);
 }
 }

 export default Detail;

Getting Started

[56]

Now let's style this component. We are going to display the image as a circle, and15.
then we will display the title of the song we are receiving:

 const styles = StyleSheet.create({
 container: {
 backgroundColor: '#0c1b1a',
 flex: 1,
 },
 info: {
 padding: 50,
 alignItems: 'center',
 },
 image: {
 width: 150,
 height: 150,
 borderRadius: 75,
 },
 title: {
 fontSize: 20,
 fontWeight: '200',
 color: '#fff',
 marginTop: 23,
 },
 });

Finally, we will display the list of additional songs and the play button, which is16.
really simple:

 playContainer: {
 backgroundColor: '#37b298',
 padding: 10,
 paddingRight: 50,
 paddingLeft: 50,
 borderRadius: 10,
 marginTop: 20,
 },
 play: {
 color: '#fff',
 },
 other: {
 color: '#f1f1f1',
 padding: 10,
 marginRight: 10,
 marginLeft: 10,
 backgroundColor: '#081412',
 marginBottom: 1,
 },

Getting Started

[57]

At this point, we should have something similar to the following screenshot:17.

There's more…
The navigator is a very important component. Almost every application requires some
sort of navigator to add some nice transitions. In this recipe, we covered the cross-platform
navigator, which works on iOS and Android. This is because everything is on the JavaScript
side. If we require something native, we should take a look at NavigatorIOS and
ViewPagerAndroid.

2
Implementing Complex User

Interfaces
In this chapter, we will cover the following recipes:

Creating a reusable button with theme support
Building a complex layout for tablets using flexbox
Including custom fonts on iOS
Including custom fonts on Android
Using font icons
Dealing with universal apps
Detecting orientation changes
Using a WebView to open external websites
Rendering simple HTML elements using native components
How to create a form component

Introduction
In this chapter, we will implement complex user interfaces. We will learn more about using
flexbox to create components that work on different screen sizes, how to detect orientation
changes, how to work with universal apps, among many other things.

It's important to mention that we will create an empty app for each recipe in this chapter. If
you are not sure how to do this using the React Native CLI, I recommend you read the first
chapter of this book.

Implementing Complex User Interfaces

[59]

Creating a reusable button with theme
support
Reusability is very important when developing software; we should avoid repeating the
same thing over and over again, and instead we need to create small components that we
can reuse as many times as needed.

In this recipe, we will create a button component, and we are also going to define several
properties to change it's look and feel. While going through this recipe we will learn how to
use props and how to dynamically apply different styles to a component.

Getting ready
We need to create an empty app using the React Native CLI, let's name it
CustomComponents. Feel free to use any other name, just make sure to use the same name
in step number 9.

How to do it…
In an empty app, we need to create an src folder at the root level of our project.1.
Inside this folder, we need a JavaScript file called MainApp.js. We also need one
more folder called Button with index.js and styles.js files:

Implementing Complex User Interfaces

[60]

Let's start by importing the dependencies for our new component. In this case,2.
we will create a Button component; therefore, we'll use the Text,
TouchableOpacity, and View components.

If we would like to add support for icons, we should import the Image
component as well, but to keep things simple we're not going to cover
that in this recipe.

We will define the styles in a different file later in this recipe, but for
now, let's just import them all. Open the src/Button/index.js file
and add the following code:

 import React, { Component, PropTypes } from 'react';
 import {
 Text,
 TouchableOpacity,
 View,
 } from 'react-native';
 import Base, { Default, Danger, Info, Success } from './styles';

Now that we have our dependencies imported, let's define the class for this3.
component. We are going to need some properties and two methods only. It's
also required that we export this component so we can use it elsewhere:

 const { array, string, object, bool, func, any } = PropTypes;

 class Button extends Component {
 static propTypes = {
 // Defined on step 4
 };

 getTheme() {
 // Defined on step 5
 }

 render() {
 // Defined on step 6
 }
 }

 export default Button; // Don't forget to export it!

Implementing Complex User Interfaces

[61]

Let's define the properties for this component. The children property will4.
receive all the children components defined for the button, which means we
can use images as well.

We are going to define some Boolean configurations for the styles, for
example, danger, info, and success. When true, we will assign the
appropriate styles to the button. The style prop will receive additional
styles for the main container; this will make our new component more
flexible.

The onPress prop will receive a callback function that will be executed
when the user presses the button:

 static propTypes = {
 children: any,
 danger: bool,
 info: bool,
 style: View.propTypes.style,
 success: bool,
 onPress: func,
 };

We need to select the styles to apply to our component based on the given props.5.
For this, we will define the getTheme method. This method will check if any of
the props are true and will return the appropriate styles; otherwise, it will
return the default style:

 getTheme() {
 const { danger, info, success } = this.props;

 if (info) {
 return Info;
 }

 if (success) {
 return Success;
 }

 if (danger) {
 return Danger;
 }

 return Default;
 }

Implementing Complex User Interfaces

[62]

It's required that all components have a render method. Here, we need to return6.
the JSX elements for this component. In this case, we will get the styles for the
given props and apply them to the TouchableOpacity component.

We are also defining a label for the button; inside this label, we will
render the children prop. If a callback function is received, then it will
be executed when the user presses this component:

 render() {
 const theme = this.getTheme();
 const {
 children,
 onPress,
 style,
 rounded,
 } = this.props;

 return (
 <TouchableOpacity
 activeOpacity={0.8}
 style={[
 Base.main,
 theme.main,
 rounded ? Base.rounded : null ,
 style,
]}
 onPress={onPress}
 >
 <Text style={[Base.label, theme.label]}>{children}</Text>
 </TouchableOpacity>
);
 }

We are almost done with our component; styles are still missing, but first let's7.
work on the MainApp.js. We need to import the dependencies as well as the
Button component we have created.

We are going to display an alert message when the user clicks the
button; therefore, we need to import the Alert component. This
component works on iOS and Android:

 import React from 'react';
 import { Alert, StyleSheet, View } from 'react-native';
 import Button from './Button';

Implementing Complex User Interfaces

[63]

Once we have all the dependencies, let's define a stateless component that8.
renders a few buttons:

The first button will use the default theme; the second button will use
the success styles, which we will style with a nice green color as a
background. The last button will display an alert when it gets pressed.
For that, we need to define the callback function that will only use the
Alert component. Here, we will just set the title and the message:

 function onPressBtn() {
 Alert.alert('Alert', 'You clicked this button!');
 }

 const MainApp = () => (
 <View style={styles.container}>
 <Button style={styles.btn}> My first button
 </Button>
 <Button success style={styles.btn}> Success button
 </Button>
 <Button info style={styles.btn}> Info button
 </Button>
 <Button danger rounded style={styles.btn}
 onPress={onPressBtn}> Rounded button </Button>
 </View>
);
 export default MainApp;

We are going to use some styles for each button; we just need to add a margin:9.

 const styles = StyleSheet.create({
 container: {
 flex: 1,
 alignItems: 'center',
 justifyContent: 'center',
 },
 btn: {
 margin: 10,
 },
 });

Now we need to register our app in the index.ios.js and
index.android.js files:

 import React, { Component } from 'react';
 import { AppRegistry } from 'react-native';
 import MainApp from './src/MainApp';

Implementing Complex User Interfaces

[64]

 AppRegistry.registerComponent('CustomComponents', () => MainApp);

If we try to run the app now, we will get some errors. This is because we haven't10.
declared the styles of our button. Let's work on that now. Inside the styles.js
file, we need to define the base styles. These styles will be applied to every
instance of the button. Here, we will define a radius, padding, font color, and all
the common styles that we need for this component:

 import { StyleSheet } from 'react-native';

 const BaseStyles = StyleSheet.create({
 main: {
 padding: 10,
 borderRadius: 3,
 },
 label: {
 color: '#fff',
 },
 rounded: {
 borderRadius: 20,
 },
 });

Once we have the common styles for our button, we need to define the styles for11.
the Danger, Info, Success, and Default themes. For that, we are going to
define different objects for each theme, and then inside each theme we will use
the same object but with specific styles for that theme.

To keep things simple, we are only going to change the
backgroundColor, but we do have the option to use as many style
properties as needed:

 const Danger = StyleSheet.create({
 main: {
 backgroundColor: '#e74c3c',
 },
 });

 const Info = StyleSheet.create({
 main: {
 backgroundColor: '#3498db',
 },
 });

 const Success = StyleSheet.create({
 main: {

Implementing Complex User Interfaces

[65]

 backgroundColor: '#1abc9c',
 },
 });

 const Default = StyleSheet.create({
 main: {
 backgroundColor: 'rgba(0 ,0 ,0, 0)',
 },
 label: {
 color: '#333',
 },
 });

Finally, let's export the styles; this step is necessary because, in the button12.
component we are importing the common styles as well as all the available
themes:

 export default BaseStyles;
 export {
 Danger,
 Info,
 Success,
 Default,
 };

Implementing Complex User Interfaces

[66]

How it works…
In this example, we are using the TouchableOpacity component. This component allows
us to define a nice animation that changes the opacity when the user presses the button.

We can use the activeOpacity property to set the opacity value when the button gets
pressed. The value can be any number between 0 and 1, where 0 is completely transparent.

If we press the last button, we will see a native Alert message, as shown in the following
screenshot:

Building a complex layout for tablets using
flexbox
Flexbox is really convenient when it comes to creating responsive layouts. React Native uses
flexbox as a layout system, and if you are already familiar with these concepts it will be
really easy for you to start creating layout of any kind.

Implementing Complex User Interfaces

[67]

In this recipe, we will create a layout to display a list of blog posts. Each post will be a small
card with an image, an excerpt, and a button to read more. We will use flexbox to arrange the
posts on the main container based on the screen size; this will allow us to handle the screen
rotation by properly aligning the cards as landscape or portrait.

Getting ready
In order to follow the steps in this recipe, it is necessary to create an empty app using the
React Native CLI. We are going to name the new app ComplexLayout.

How to do it…
Let's start by creating all the files and folders we will need for this recipe:

First, we need a src folder where we will write all our code; inside that folder we1.
need a MainApp.js file and a Post folder, where we will have the code for the
post component. Here, we should create the index.js and styles.js files.
Finally, we need a data.json file where we will define a list of posts. Our
project should look as shown in the following screenshot:

Implementing Complex User Interfaces

[68]

Let's open the index.android.js and index.ios.js files. We need to delete2.
the current code and import the MainApp component, then use the AppRegistry
to register and bootstrap the app:

 import React, { Component } from 'react';
 import { AppRegistry } from 'react-native';
 import MainApp from './src/MainApp';

 AppRegistry.registerComponent('ComplexLayout', () => MainApp);

At the moment the MainApp component doesn't exist, so if we try to run or3.
refresh the simulator, it will fail. Let's work on this component. First, we need to
import the dependencies for this class.

We are going to use a ListView component to render the list of posts;
we also need to display Text and View as containers. We are going to
create a custom Post component to render each post on the list, and
don't forget to also load the .json file with the data:

 import React, { Component } from 'react';
 import { ListView, StyleSheet, Text, View } from 'react-native';
 import Post from './Post';
 import data from './data.json';

Let's create the class for the MainApp component; here, we will use the data from4.
the .json file to create the dataSource for the list.

In the render method, we are going to define something very simple, a
top toolbar and the list component. We are going to use the Post
component for every record and the datasource from the state.

If you have any questions regarding the ListView component, you
should take a look at the recipe in Chapter 1, Getting Started, where we
created a list of orders:

 class MainApp extends Component {
 constructor(props) {
 super(props);
 const ds = new ListView.DataSource({
 rowHasChanged: (r1, r2) => r1 !== r2,
 });
 this.state = {
 dataSource: ds.cloneWithRows(data.posts),
 };
 }

Implementing Complex User Interfaces

[69]

 render() {
 return (
 <View style={styles.container}>
 <View style={styles.toolbar}>
 <Text style={styles.title}>Latest posts</Text>
 </View>
 <ListView
 dataSource={this.state.dataSource}
 renderRow={post => <Post {...post} />}
 style={styles.list}
 contentContainerStyle={styles.content}
 />
 </View>
);
 }
 }

 const styles = StyleSheet.create({
 // Defined on step 13
 });

 export default MainApp;

Two files are still missing: the .json file with the data and the post component.5.
In this step, we will create the data that we are going to use for each post.

To make things simple, I will only define one record of data, but feel free
to copy and paste the same record as many times as you want. You
should change the title and the image; I have uploaded six images to
Amazon S3, 01.jpg to 06.jpg, in case you want to use them for this
example:

 {
 "posts": [
 {
 "title": "Creating custom components",
 "img":"01.jpg",
 "content": "In this post we will learn how...",
 "author": "Crysfel Villa"
 },
 // Add more records here
]
 }

Implementing Complex User Interfaces

[70]

Now that we have the data, we are ready to work on the Post component. Here,6.
we need to display the image, title, and button. In this case, we will use a stateless
component.

The following code uses all the components we know from Chapter 1,
Getting Started. If something is unclear, please review that chapter again.

This component receives the data as a parameter, and then we use it on
the components; for example, in the source property of the image, we
define the URL to Amazon S3 and use the parameter to set the name of
the image. As mentioned before, we can use JPG images from 01 to 06:

 import React, { PropTypes } from 'react';
 import {Image, Text, TouchableOpacity, View} from 'react-native';
 import styles from './styles';

 const Post = ({ content, img, title }) => (
 <View style={styles.main}>
 <Image
 source=
{{uri:`https://s3.amazonaws.com/crysfel/public/book/02/01/${img}`}}
 style={styles.image}
 />
 <View style={styles.content}>
 <Text style={styles.title}>{title}</Text>
 <Text>{content}</Text>
 </View>
 <TouchableOpacity style={styles.button} activeOpacity={0.8}>
 <Text style={styles.buttonText}>Read more</Text>
 </TouchableOpacity>
 </View>
);

 const { string } = PropTypes;
 Post.propTypes = {
 content: string,
 title: string,
 img: string,
 };

 export default Post;

Implementing Complex User Interfaces

[71]

Once we have defined the component, we also need to define the styles for each7.
post. Open the styles.js file and write the following code:

 import { StyleSheet } from 'react-native';

 const styles = StyleSheet.create({
 // Defined in later steps
 });

 export default styles;

If we try to run the app, we will be able to successfully see the data from the8.
.json file on the screen; however, we haven't applied any styles:

We have everything we need on the screen; we are now ready to start working on9.
the layout. First, let's add the styles to the main post container: width, height,
borderRadius, and a few others. Open the src/Post/styles.js file and add
the following code:

 const styles = StyleSheet.create({
 main: {
 backgroundColor: '#fff',
 borderRadius: 3,
 height: 340,
 margin: 5,
 overflow: 'hidden',
 width: 240,
 },
 });

Implementing Complex User Interfaces

[72]

By now, we should see small boxes vertically aligned. That's some progress, but10.
let's add some styles to the image so we can see it onscreen.

The resizeMode property will allow us to set how we want to resize the
image; in this case, by selecting cover, the image will keep the aspect
ratio:

 image: {
 backgroundColor: '#ccc',
 height: 120,
 resizeMode: 'cover',
 },

For the content of the post, we want to take all the available height on the card;11.
therefore, we need to make it flexible and add some padding. For the title, we
will only change the font size and add a margin to the bottom:

 content: {
 padding: 10,
 flex: 1,
 },
 title: {
 fontSize: 18,
 marginBottom: 5,
 },

Finally, for the button, we will set the backgroundColor to green and the text to12.
white. We also need to add some spacing:

 button: {
 backgroundColor: '#1abc9c',
 borderRadius: 3,
 padding: 10,
 margin: 10,
 },
 buttonText: {
 color: '#fff',
 textAlign: 'center',
 },

Implementing Complex User Interfaces

[73]

If we refresh the simulator, we should see our posts in small cards.
Currently, the cards are arranged vertically, but we need to render all of
them horizontally. We are going to fix that in the following steps:

If we try to scroll through the content, our current implementation will not work.13.
For now, we can only see the first three items on the list. In order to fix this
problem, we need to set the height of the main container to fit the screen; for this,
we will use flexbox. Let's open the MainApp.js file and add the following styles
to the main container:

 const styles = StyleSheet.create({
 container: {
 flex: 1,
 },
 });

Now if we try again to scroll down, we will be able to see the list of
posts that we defined in the data.json file.

We need to show a toolbar at the top. For that, we just need to define some14.
paddings and colors. This is a really simple step:

 toolbar: {
 backgroundColor: '#34495e',
 padding: 10,
 paddingTop: 20,
 },
 title: {

Implementing Complex User Interfaces

[74]

 color: '#fff',
 fontSize: 20,
 textAlign: 'center',
 },

Let's add some simple styles to the list, just a nice background color and some15.
padding:

 list: {
 backgroundColor: '#f0f3f4',
 flex: 1,
 paddingTop: 5,
 paddingBottom: 5,
 },

Here, the flex property is making sure the list takes all the available
height on the screen. We only have two components here: the toolbar
and the list; the toolbar is taking about 50 px. If we make the list flexible,
it will take all the available space, which is exactly what we want when
rotating the device or when running the app in different screen
resolutions:

We are almost done with this app; all we need to do is arrange the cards16.
horizontally and make sure to render the cards in the row. This can be achieved
with flexbox in three simple steps:

 content: {
 flexDirection: 'row',
 flexWrap: 'wrap',

Implementing Complex User Interfaces

[75]

 justifyContent: 'space-around',
 },

First, we need to add these styles to the contentContainerStyle prop
in the list component. Internally, the list will apply these styles to the
items container.

We need to change the flexDirection to row; this will horizontally
align the cards on the list; however, there's a problem: we can only see
one single row of posts, and we can't scroll horizontally.

To fix the problem, we need to wrap the items. We do this setting
flexWrap, which will automatically move the items that don't fit in the
view to the next.

We've achieved our layout; however, if we run our app on an Android
device, we will see that there's a lot of space on the right side of the
screen. In order to fix this problem, we will need to distribute that space
between the items; to do that, we can use the justifyContent property
and set it to space-around, which will automatically distribute the
space around the items evenly:

We are done with our layout and it's looking really good. If you try
rotating the device from landscape to portrait, the cards will
automatically be arranged.

Implementing Complex User Interfaces

[76]

There's more…
There are some differences between iPad and the Android tablet; there are only three cards
on Android and a lot of space between each card. In order to fix this problem, I would
recommend calculating the width of each card based on the screen resolution; you should
take a look at the Dealing with universal apps recipe in this chapter to learn more about
handling dimensions.

Including custom fonts on iOS
At some point, we are going to need to display text with a custom font family; until now,
we have been using the default font, but we can use any other that we like.

In this recipe, we will import a few fonts in Xcode and then we will display a text
using different font families. We will also use different styles of a single font, such as bold
and italic.

Getting ready
In order to work on this example, we need some fonts. You can use whatever fonts you
want; I recommend going to Google fonts and downloading your favorites. For this recipe,
we will use the Roboto font. Just make sure to use TTF. I've already prepared a few fonts that
you can download from PacktPub's website.

Once you have the fonts ready, let's create an empty app using the React Native CLI; we
will name it CustomFontsIos. If you don't know how to do this, go to Chapter 1, Getting
Started, and take a look at the first recipe.

Implementing Complex User Interfaces

[77]

How to do it…
In order to use fonts on iOS devices, we need to import those fonts in a TTF format using
Xcode. This is a simple process, but if we don't do it properly, things can go wrong.

Let's start by creating a new Fonts folder in the Project Navigator:1.

Implementing Complex User Interfaces

[78]

Now we need to import to Xcode all the fonts that we want to use, this is very2.
simple–just drag all the font files from the folder on your system and drop them
all inside the Fonts group on Xcode. After dropping them, you will see a
confirmation message. Make sure to select Add to targets; this is a very important
step because by selecting this option the fonts will be included in the build:

If we forget to select the target, the fonts will not be included in the app
and we won't be able to use them. I've made this mistake before, and if
you are new to Native Development it will take you some time to
figure out the issue. Click on Finish to complete the import.

Implementing Complex User Interfaces

[79]

If, for some reason, we forget to select Add to targets, we can always select the3.
file and check or uncheck this option directly from Xcode. Make sure all fonts
that you need are included:

Additionally, we can group the styles of fonts. For this example, all the
files for Roboto's font are grouped; this will help us to organize our
project.

We are almost done with the setup; we just need to include the fonts in the4.
Info.plist file. I personally like to edit this file using the source code editor.
Right-click on the file and select Open As | Source Code. Then, write the next
code inside the <dict> tags:

 <key>UIAppFonts</key>
 <array>
 <string>Roboto-Light.ttf</string>
 <string>Roboto-Regular.ttf</string>
 <string>Roboto-Italic.ttf</string>

Implementing Complex User Interfaces

[80]

 <string>Roboto-Bold.ttf</string>
 <string>Roboto-Thin.ttf</string>
 <string>DancingScript-Regular.ttf</string>
 <string>IndieFlower.ttf</string>
 </array>

You can also use the Property List editor and enter the fonts one by one.

We are done with the setup; we should be able to use all the new fonts in our5.
app. Let's open the index.ios.js file and add some text to test the new fonts:

 import React from 'react';
 import {
 AppRegistry,
 StyleSheet,
 Text,
 View,
 } from 'react-native';

Implementing Complex User Interfaces

[81]

 const CustomFontsIos = () => (
 <View style={styles.container}>
 <Text style={styles.base}>Welcome to React Native!</Text>
 <Text style={[styles.base, styles.italic]}>Welcome to React
Native!
 </Text>
 <Text style={[styles.base, styles.light]}>Welcome to React
Native!
 </Text>
 <Text style={[styles.base, styles.bold]}>Welcome to React
Native!
 </Text>
 <Text style={[styles.base, styles.dancing]}>Welcome to React
Native! </Text>
 <Text style={[styles.base, styles.indie]}>Welcome to React
Native! </Text>
 </View>
);

 const styles = StyleSheet.create({
 // Defined on step 6
 });

 AppRegistry.registerComponent(
 'CustomFontsIos', () => CustomFontsIos
);

If we run the app now, we should see the text using the default font. Let's center6.
the text on the screen and define the base styles:

 const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#e74c3c',
 },
 base: {
 color: '#fff',
 fontFamily: 'Roboto',
 fontSize: 25,
 textAlign: 'center',
 margin: 5,
 },
 });

Implementing Complex User Interfaces

[82]

We can see that the text is using our new font! We did this just by using
the fontFamily property and assigning the font name.

Let's use different styles of the same font family; we have two weights available7.
and the italic style for the Roboto font:

 light: {
 fontWeight: '300',
 },
 bold: {
 fontWeight: 'bold',
 },
 italic: {
 fontStyle: 'italic',
 },

It's looking good! Finally, let's use the other two font families that we have8.
available:

 dancing: {
 fontFamily: 'Dancing Script',
 },
 indie: {
 fontFamily: 'Indie Flower',
 },

Implementing Complex User Interfaces

[83]

How it works…
It's worth mentioning how to get the name of the font that we are using. The simplest way,
if you are on a Mac, is to right click on the file and click the Get Info option in the menu.
Under the General properties, there's the Full Name.

We can also get the font's name through code: open the
ios/CustomFontsIos/AppDelegate.m file and around line 20, after the
*jsCodeLocation variable, paste the following.

for (NSString* family in [UIFont familyNames])
 {
 NSLog(@"%@", family);
 for (NSString* name in [UIFont fontNamesForFamilyName: family])
 {
 NSLog(@" %@", name);
 }
 }

After running the app again, we should be able to see the result on the Xcode console.

Implementing Complex User Interfaces

[84]

There's more…
In this recipe, we only added fonts to iOS. In the next recipe, we will add the same fonts on
Android, and we will use the same JavaScript code and styles.

Including custom fonts on Android
In this recipe, we will include the same fonts we included on iOS, and we will use exactly
the same example app.

Importing the fonts is pretty straightforward, but we need to follow some guidelines in
order to make it work. There are some limitations on Android; we will learn a workaround
to solve the issue regarding font weight.

Getting ready
As with the previous recipe, we need some fonts to work with. Android supports TTF and
OTF formats. For this example, we will use the same fonts we did in the previous recipe.

How to do it…
To include custom fonts on Android, let's perform the following steps:

We need to copy the font files to1.
project_name/android/app/src/main/assets/fonts. This is the exact
location where we need to add all of our font files. If the assets and fonts
folders don't exist, go ahead and create them:

Implementing Complex User Interfaces

[85]

React Native will automatically load all the font files in this location. Internally,2.
the ReactFontManager class will look for the ttf and otf files, but we need to
make sure to rename the font files following these guidelines:

The name should be lowercase
There shouldn't be any spaces in the name
Use an underscore to define the style, for example, roboto_bold

Once we complete step 3, all we need to do is run the app on the device or3.
simulator. The fonts should be available at this point and we should be able to
use them in our app. We are going to use the same code as in the previous recipe;
please follow all the steps from step number 5 until the end of the recipe. You
should see something similar to the following screenshot:

Implementing Complex User Interfaces

[86]

As we can see, the last two fonts are not working as expected. There's also4.
another issue with the font weight when we set it to light. To fix the problem
with the last two lines of text, we need to change the value of the fontFamily
property. We need to use the exact same name as in the ttf file:

 dancing: {
 fontFamily: 'dancingscript',
 },
 indie: {
 fontFamily: 'indieflower',
 },

If we refresh the app, we should be able to see the two custom fonts. React Native5.
internally loads the fonts and assigns the name of the font using the filename.
To fix the issue regarding font weight we need to use a workaround. This is6.
because, currently, React Native only supports bold as a value. If you take a look
at the source code on GitHub, you will see that it's only possible to use bold.
What we need to do is set the fontFamily to the name of the file that contains
the thin style; let's update our code as follows:

 light: {
 fontFamily: 'roboto_thin',
 // fontWeight: '300',
 },

Implementing Complex User Interfaces

[87]

It should look as shown in the following screenshot:

Now we have the same result as in the iOS app.

Using font icons
When dealing with images, we need to think about supporting different screen densities
and resolutions. For that, we will have to create different versions of the same image and
will need to change the size and the name so that React Native uses the correct image for
the given resolution. While this works fine, we will have to spend time maintaining all the
images. In addition, the size of our app will increase because we need to bundle all those
images.

We already have solved that problem on the Web by using fonts or SVGs, and it's a pretty
good solution. In this recipe, we will use fonts to render icons and solve the problem of
screen density.

For this recipe, we will use a third-party library to help us render the icons. The name of
this library is react-native-vector-icons by Joel Arvidsson. We will also learn how to
install other libraries using npm.

Getting ready
We need to create an empty app using the React Native CLI, we are going to name it
FontIcons.

Implementing Complex User Interfaces

[88]

How to do it…
Font icons can be used using the following steps:

The first step is to install the third-party library using npm; this is a very simple1.
step: just open your terminal and at the root of the project run the following
command:

 $ npm install react-native-vector-icons --save

By running this command, the code will be downloaded from the npm
repositories. A few popular fonts will be downloaded as well, for
example, Font Awesome, Evil Icons, Material Icons, and a few others.

Once the previous command is complete, we need to install the library for iOS2.
(Xcode) and Android. The easiest way to do this is by using the React Native CLI.
Just run the following command:

 $ react-native link

This command will install the fonts for iOS and Android; this means
there's no need to copy and paste the font files to the android folder or
use Xcode to import the files. Remember previous recipes for using
custom fonts? Everything is automatic now!

Let's open the index.ios.js and index.android.js files and add the3.
following code to bootstrap our app:

 import React from 'react';
 import MainApp from './src/MainApp';
 import { AppRegistry } from 'react-native';
 AppRegistry.registerComponent('FontIcons', () => MainApp);

Now let's create an src folder and a MainApp.js file inside it. We are going to4.
render several icons in this component. First, we need to import the dependencies
for this class:

 import React, { Component } from 'react';
 import EvilIcon from 'react-native-vector-icons/EvilIcons';
 import FAIcon from 'react-native-vector-icons/FontAwesome';
 import {
 StyleSheet,
 View,
 }
 from 'react-native';

Implementing Complex User Interfaces

[89]

We need to import each set of icons. In this case, we are importing Evil
and FontAwesome icons. We will be able to use any of the icons
available in each set, and we can import all the sets that we need. At the
time of writing, we can use the following sets out of the box:

Entypo by Daniel Bruce (411 icons)
EvilIcons by Alexander Madyankin and Roman Shamin (v1.8.0, 70
icons)
FontAwesome by Dave Gandy (v4.7.0, 675 icons)
Foundation by ZURB, Inc. (v3.0, 283 icons)
Ionicons by Ben Sperry (v3.0.0, 859 icons)
MaterialIcons by Google, Inc. (v3.0.1, 932 icons)
Octicons by Github, Inc. (v4.4.0, 172 icons)
Zocial by Sam Collins (v1.0, 100 icons)
SimpleLineIcons by Sabbir and Contributors (v2.4.1, 189 icons)

Once we have imported the dependencies and the sets of icons, we can create the5.
component that will only render a few icons for each set:

 const MainApp = () => (
 <View style={styles.content}>
 <View style={styles.row}>
 <EvilIcon style={styles.icon} name="user" size={50}
color="#e67e22" />
 <EvilIcon style={styles.icon} name="search" size={50}
color="#e67e22" />
 <EvilIcon style={styles.icon} name="trophy" size={50}
color="#e67e22" />
 <EvilIcon style={styles.icon} name="location" size={50}
color="#e67e22" />
 <EvilIcon style={styles.icon} name="gear" size={50}
color="#e67e22" />
 </View>
 <View style={styles.row}>
 <FAIcon style={styles.icon} name="briefcase" size={40}
color="#c0392b" />
 <FAIcon style={styles.icon} name="calendar" size={40}
color="#c0392b" />
 <FAIcon style={styles.icon} name="camera-retro" size={40}
color="#c0392b" />
 <FAIcon style={styles.icon} name="globe" size={40}
color="#c0392b" />
 <FAIcon style={styles.icon} name="print" size={40}
color="#c0392b" />

Implementing Complex User Interfaces

[90]

 </View>
 </View>
);

 const styles = StyleSheet.create({
 // Defined on step 6
 });

 export default MainApp;

This is a very simple component; we are only rendering five icons for
each set. I recommend opening the documentation for each set (you can
just Google the name of the set) and seeing the available icons. Then, all
that is required is to define the name property with the icon's name that
we want to render, we can also define size and styles.

If we try to run the project as it is, we should be able to see the icons; however,6.
let's add some styles to the containers to arrange the icons horizontally:

 const styles = StyleSheet.create({
 content: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 },
 row: {
 flexDirection: 'row',
 },
 icon: {
 margin: 10,
 },
 });

Implementing Complex User Interfaces

[91]

All we need to do is use flexbox to center the content and then set the
direction to row to horizontally render each row. Additionally, we are
adding 10 pixels of margin:

There's more…
If something goes wrong, we need to make sure the fonts are installed properly on each
platform. For Android, we need to make sure the font files are defined on
android/app/src/main/assets/fonts. For iOS, we need to make sure the fonts are
included on Xcode and added to the Info.plist file.

This library also includes support for the iOS tab panel; however, that component is not
supported on Android, so I would recommend just using the simple icon component to
render the icons in any place where required. There is an option to create a tab component
that works on Android and iOS and then internally use these icons.

Implementing Complex User Interfaces

[92]

Dealing with universal apps
One of the benefits of using React Native is its ability to easily create universal apps. We can
share a lot of code for phone and tablet apps. The layouts might be different at some point,
but we can reuse the small pieces for both devices.

In this recipe, we will build an app that runs on phones and tablets. The tablet version will
include a different layout, but we will reuse the same internal components.

Getting ready
For this recipe, we will show a list of contacts. For now, we will load the data from a .json
file; later on, in the book, we will explore how to load remote data from a REST API.

Let's open the following URL and copy the generated JSON to a file called src/data.json.
We will use this data to render the list of contacts h t t p ://a p i . r a n d o m u s e r . m e /?r e s u l t s

=20:

You might want to register to this service and get a key; otherwise, they will only allow you
to make a few requests to the assets and API, and since we are going to load the images
from there, it's a good idea to get a key.

http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20
http://api.randomuser.me/?results=20

Implementing Complex User Interfaces

[93]

How to do it…
Let's open the index.ios.js and index.android.js files. Then, add the1.
following code, which basically imports the MainApp class and then registers it as
the bootstrap component:

 import React from 'react';
 import MainApp from './src/MainApp';
 import { AppRegistry } from 'react-native';

 AppRegistry.registerComponent('DeviceDetection', () => MainApp);

Now we need to create the src/MainApp.js file. Here, we are going to create2.
the main layout. This component will decide whether to render the phone or
tablet UI:

 import React, { Component } from 'react';
 import { StyleSheet, View, Text } from 'react-native';
 import Dimensions from './utils/Dimensions';
 import data from './data.json';

 class MainApp extends Component {
 renderMaster() {
 return (
 <Text>Render on phone and tablets!!</Text>
);
 }

 renderDetail() {
 if (Dimensions.isTablet()) {
 return (
 <Text>Render on tablets only!!</Text>
);
 }
 }

 render() {
 return (
 <View style={styles.content}>
 {this.renderMaster()}
 {this.renderDetail()}
 </View>
);
 }
 }

Implementing Complex User Interfaces

[94]

 const styles = StyleSheet.create({
 content: {
 flex: 1,
 flexDirection: 'row',
 },
 });

 export default MainApp;

This class its very straightforward. For now, we are only rendering two
texts. The renderDetail text should be displayed on tablets only and
renderMaster should be displayed on phones and tablets.

If we try to run our app as it is, it will fail with an error telling us that3.
the Dimensions modules cannot be found. Let's create this class! The purpose of
this utility class is to calculate whether the current device is a phone or tablet
based on the screen dimensions. We are going to create the isTablet and
isPhone methods, so under the src/utils/Dimensions.js file add the
following code:

 import { Dimensions as RNDimensions, Alert } from 'react-native';

 // Tablet portrait dimensions
 const tablet = {
 width: 552,
 height: 960,
 };

 class Dimensions {
 // Defined on step 4 and 5
 }

 const dimensions = new Dimensions();
 export default dimensions;

Let's create two methods in this class: one to get the dimensions in portrait and4.
the other to get the dimensions in landscape. Depending on the device rotation,
the values of width and height will change, which is why we need these two
methods to always get the correct values whether the device is landscape or
portrait:

 getPortraitDimensions() {
 const { width, height } = RNDimensions.get("window");

 return {
 width: Math.min(width, height),

Implementing Complex User Interfaces

[95]

 height: Math.max(width, height),
 };
 }

 getLandscapeDimensions() {
 const { width, height } = RNDimensions.get("window");

 return {
 width: Math.max(width, height),
 height: Math.min(width, height),
 };
 }

Now let's create our utility methods to let us know if we are running the app on a5.
tablet or a phone. To calculate this, we need to get the dimensions in portrait
mode and compare them with the dimensions we have defined for a tablet:

 isPhone() {
 const dim = this.getPortraitDimensions();
 return dim.height < tablet.height;
 }

 isTablet() {
 const dim = this.getPortraitDimensions();
 return dim.height >= tablet.height;
 }

If we try to run the app, it should work! We should be able to see the
two texts on the tablet and only one on the phone:

Implementing Complex User Interfaces

[96]

The utility works, but it's not so useful for rendering texts. Let's work on the6.
master view first; here, we will render the list of contacts. In the same file
(MainApp.js), let's import the new component and update the renderMaster
method to return the JSX with our new component:

 import UserList from './UserList'

 class MainApp extends Component {
 renderMaster() {
 return (
 <UserList contacts={data.results} />
);
 }

 //...

 }

Implementing Complex User Interfaces

[97]

Let's create a new src/UserList folder. Inside this folder, we need to create two7.
files: index.js, and styles.js. We are going to define the component in the
index file. The first thing we need to do is import the dependencies, create an
empty class, and export it as default:

 import React, { Component } from 'react';
 import {
 StyleSheet,
 View,
 Text,
 ListView,
 Image,
 TouchableOpacity,
 } from 'react-native';
 import styles from './styles';

 class UserList extends Component {
 // Defined on next steps
 }

 export default UserList;

We already know how to create a list. If you are not clear on how this component8.
works, you should read the recipe about list components in Chapter 1, Getting
Started. In the constructor of the class, we will create the datasource and then
add it to the state. The render method looks very simple:

 render() {
 return (
 <View style={styles.main}>
 <Text style={styles.toolbar}>My contacts!</Text>
 <ListView
 dataSource={this.state.dataSource}
 renderRow={this.renderContact}
 style={styles.main}
 />
 </View>
);
 }

Implementing Complex User Interfaces

[98]

As you can see, we need to define the renderContact method to render the9.
rows. We are using the TouchableOpacity component as the main wrapper;
this will allow us to use a callback function to perform some actions when record
is pressed. For now, we are not doing anything when pressing the button; we will
learn more about communicating components using redux in future chapters.
Also, make sure to use your key from the randomuser.me service. If you don't
have a key, just remove the query parameter; however, in this case the images
will only load a couple of times, before you eventually receive an error:

 renderContact = (contact) => {
 return (
 <TouchableOpacity style={styles.row}>
 <Image source={{uri: `${contact.picture.large}?key=XXXX-XXXX-
XXXX-XXXX`}} style={styles.img} />
 <View style={styles.info}>
 <Text style={styles.name}>
 {this.capitalize(contact.name.first)}
 {this.capitalize(contact.name.last)}
 </Text>
 <Text style={styles.phone}>{contact.phone}</Text>
 </View>
 </TouchableOpacity>
);
 }

We don't have a way to capitalize the texts using styles; we need to use JavaScript10.
for that. Let's create the capitalize function to set the first letter of the given
string to uppercase:

 capitalize(value) {
 return value[0].toUpperCase() + value.substring(1);
 }

We are almost done with this component; all that's left is the styles. Let's open11.
the src/UserList/styles.js file and start styling the main container and the
toolbar:

 import { StyleSheet } from 'react-native';

 const styles = StyleSheet.create({
 main: {
 flex: 1,
 backgroundColor: '#dde6e9',
 },
 toolbar: {

Implementing Complex User Interfaces

[99]

 backgroundColor: '#2989dd',
 color: '#fff',
 padding: 20,
 textAlign: 'center',
 fontSize: 20,
 },
 // More styles defined on step 12
 });

 export default styles;

Now for each record, we are going to render the image of each contact on the left,12.
and on the right side, the name and the phone number, which is really simple:

 row: {
 flexDirection: 'row',
 padding: 10,
 },
 img: {
 width: 70,
 height: 70,
 borderRadius: 35,
 },
 info: {
 marginLeft: 10,
 },
 name: {
 color: '#333',
 fontSize: 22,
 fontWeight: 'bold',
 },
 phone: {
 color: '#aaa',
 fontSize: 16,
 },

If we try to run our app, we should be able to see a really nice list on the
phone as well as the table, and the same component on two different
devices:

Implementing Complex User Interfaces

[100]

As of now, we are displaying two different layouts based on the current device!13.
Now we need to work on the user details view, which will show the selected
contact. Let's open the MainApp.js file, import the UserDetail views, and
update the renderDetail method, as follows:

 import UserDetail from './UserDetail'

 class MainApp extends Component {

 renderDetail() {
 if (Dimensions.isTablet()) {
 return (
 <UserDetail contact={data.results[0]} />
);
 }
 }

 //...
 }

As mentioned earlier, in this recipe we are not focusing on sending data
from one component to the other, but instead on rendering a different
layout in tablets and phones. Therefore, we will always send the first
record to the user details view for this recipe.

Implementing Complex User Interfaces

[101]

To make things simple and the recipe as short as possible, for the user details14.
view we will only display a toolbar and some text showing the first and last name
of the given record. We are going to use a stateless component:

 import React, { PropTypes } from 'react';
 import {
 View,
 Text,
 } from 'react-native';
 import styles from './styles';

 const UserList = ({ contact }) => (
 <View style={styles.main}>
 <Text style={styles.toolbar}>Details should go here!</Text>
 <Text>
 This is the detail view:{contact.name.first}
{contact.name.last}
 </Text>
 </View>
);

 UserList.propTypes = {
 contact: PropTypes.object,
 };

 export default UserList;

Finally, we need to style this component. We want to assign three-quarters of the15.
screen to the details page and one-quarter to the master list. This can be done
with flexbox with a simple style. We need to add the following code to the
src/UserDetail/styles.js file:

 import { StyleSheet } from 'react-native';

 const styles = StyleSheet.create({
 main: {
 flex: 3,
 backgroundColor: '#f0f3f4',
 },
 toolbar: {
 backgroundColor: '#2989dd',
 color: '#fff',
 padding: 20,
 textAlign: 'center',
 fontSize: 20,
 },
 });

Implementing Complex User Interfaces

[102]

 export default styles;

If we try to run our app again, we will see that on the tablet, it will
render a nice layout showing the list as well as the detail, while on the
phone it only shows the list of contacts:

How it works…
In step number 3, the first line imports the dependencies and React Native provides a class
to get the dimensions of the current device. This is what we need in order to figure out
whether our app is running on a phone or tablet.

In the same step we defined a tablet constant, which is an object containing the width
and height that we will use to calculate if the device is a tablet or not. The values of this
constant are based on the smallest Android tablet available on the market; however, if we
decide to drop Android support, we might want to use the iPad's dimensions instead.

In step number 4, we got the width and height by calling the
RNDimensions.get("window") method, and then we got the maximum and minimum
values depending on the orientation we wanted.

Implementing Complex User Interfaces

[103]

In step number 9, we used an arrow function to define the renderContact method; this is
a very important step, mainly to keep the correct binding scope. If we use a regular
function, we will have a problem when using it on the list as a callback function for each
record. The list will change the scope and we won't be able to access the this.capitalize
method.

Detecting orientation changes
When building complex interfaces, it's very common to render different UI components
based on the device's orientation. This is especially true when dealing with tablets.

In this recipe, we will render a menu based on the screen orientation. In landscape, we will
render an expanded menu with icons and texts, and in portrait we will only render the
icons.

Getting ready
To support orientation changes we are going to use a third-party library called react-
native-orientation by Yamill Vallecillo. It works for iOS and Android by listening to
the native orientation change on each platform. I've been using this library for a couple of
projects, and it works pretty well.

We will also use react-native-vector-icons by Joel Arvidsson. The Using font icons
recipe in this same chapter describes how to use this library.

How to do it…
The first thing we need to do is install the libraries using npm. Let's go to the root1.
of the project and run the following commands:

 $ npm install react-native-orientation --save
 $ npm install react-native-vector-icons --save
 $ react-native link

Implementing Complex User Interfaces

[104]

After we have installed and linked the library, we just need to add some2.
configurations. This will allow Android to set the orientation when rotating the
device. Let's open the
android/app/src/main/java/com/deviceorientation/MainActivity.ja

va class and add the following code:

 import android.content.Intent; // <--
 import android.content.res.Configuration; // <--

 public class MainActivity extends ReactActivity {

 //...

 @Override
 public void onConfigurationChanged(Configuration newConfig) {
 super.onConfigurationChanged(newConfig);
 Intent intent = new Intent("onConfigurationChanged");
 intent.putExtra("newConfig", newConfig);
 this.sendBroadcast(intent);
 }
 }

We are done with the setup; now let's start working on the app! Open the3.
index.ios.js and index.android.js files and add the following code:

 import React from 'react';
 import MainApp from './src/MainApp';
 import { AppRegistry } from 'react-native';

 AppRegistry.registerComponent('DeviceOrientation', () => MainApp);

Let's create the src/MainApp.js file. This is the main component of our app.4.
Here, we are going to listen for the orientation changes and send it to any
component that requires it. Let's import all the dependencies:

 import React, { Component } from 'react';
 import { Alert, StyleSheet, View, Text } from 'react-native';
 import Orientation from 'react-native-orientation';

 class MainApp extends Component {

 state = {
 orientation: null,
 };

 // Defined on step 5, 6, 7 and 8

Implementing Complex User Interfaces

[105]

 }

 const styles = StyleSheet.create({
 // Defined on step 9
 });

 export default MainApp;

When extending from the Component class, we automatically have several5.
methods available that will be automatically executed as part of the component's
lifecycle. I recommend you read the documentation to have a better
understanding of this important concept, but in a few words the component's
lifecycle allows us to execute code at a given stage of the cycle.

In this case, we need to set the initial value of the orientation when the
component is being created; therefore, we need to use the
componentWillMount method:

 componentWillMount() {
 const orientation = Orientation.getInitialOrientation();
 this.setState({
 orientation,
 });
 }

We have the initial orientation, but if we start rotating the device the state will6.
always have the initial orientation. We need to listen for the orientation changes;
for that, we will use two methods from the component's
lifecycle: componentDidMount to start listening and componentWillUnmount to
remove the listener:

 componentDidMount() {
 Orientation.addOrientationListener(this.onOrientationChange);
 }

 componentWillUnmount() {
 Orientation
 .removeOrientationListener(this.onOrientationChange);
 }

Every time the device is rotated, the onOrientationChange function will be7.
executed. This function is very simple. All we need to do is update the state:

 onOrientationChange = (orientation) => {
 this.setState({
 orientation,

Implementing Complex User Interfaces

[106]

 });
 }

In order to test our code, we need to define the render method; for now, we will8.
only show the content of the orientation that we have to state:

 render() {
 return (
 <Text>{this.state.orientation} </Text>
);
 }

If we try to run our app, we should be able to see landscape or portrait
on the screen, based on the current device's orientation.

Once the orientation library is working properly, we can focus on the UI. As9.
mentioned before, we will create a menu that renders the options slightly
differently based on the current orientation. Let's import this component and
update the render method:

 import Menu from './Menu';

 class MainApp extends Component {
 //...

 render() {
 return (
 <View style={styles.content}>
 <Menu orientation={this.state.orientation} />
 <View style={styles.main}>
 <Text>Main Content</Text>
 </View>
 </View>
);
 }
 }

There are a few styles that we need to define as well, something that is very10.
simple to do. Setting the flex direction to row will allow us to display the two
components horizontally, and then we can are define some colors and center the
main content:

 const styles = StyleSheet.create({
 content: {
 flex: 1,
 flexDirection: 'row',

Implementing Complex User Interfaces

[107]

 },
 main: {
 flex: 1,
 backgroundColor: '#ecf0f1',
 justifyContent: 'center',
 alignItems: 'center',
 }
 });

Let's focus on the Menu component; we need to create a new11.
src/Menu/index.js file. Here, we will define the Menu class. This component
will receive the orientation property and it will decide how to render the
options based on the orientation value. Let's start by importing the
dependencies for this class:

 import React, { Component, PropTypes } from 'react';
 import { StyleSheet, View, Text } from 'react-native';
 import Icon from 'react-native-vector-icons/Foundation';

Once we have imported all we need, let's define the main class. We are going to12.
define the orientation's PropType as a string. On the state, we will define an
array of options; for simplicity, I've defined a single option, but go ahead and
duplicate the same record as many times as you want. You should change the
values.

I recommend you take a look at the Foundation icons website to choose
the correct value; otherwise, you might get warnings when setting the
wrong value for the icon:

 class Menu extends Component {
 static propTypes = {
 orientation: PropTypes.string,
 };

 state = {
 options: [
 {title: 'Dashboard', icon: 'graph-pie'},
 // Please duplicate the above line
 // to add more options to the menu
],
 };

 // Defined on step 13 and 14
 }

 const styles = StyleSheet.create({

Implementing Complex User Interfaces

[108]

 // Defined on step 15
 });

 export default Menu;

The render method for this component will loop through the array of options13.
in the state:

 render() {
 return (
 <View style={styles.content}>
 {this.state.options.map(this.renderOption)}
 </View>
);
 }

Inside the JSX, there's a call to renderOption. In this method, we are going to14.
render the icon and the label for each option. Based on the orientation, we will
show or hide the label and change the icon's size:

 renderOption = (option, index) => {
 const isLandscape = this.props.orientation === 'LANDSCAPE';
 const title = isLandscape
 ? <Text style={styles.title}>{option.title}</Text>
 : null;
 const iconSize = isLandscape ? 27 : 35;

 return (
 <View key={index} style={[styles.option, styles.landscape]}>
 <Icon name={option.icon} size={iconSize} color="#fff" />
 {title}
 </View>
);
 }

Implementing Complex User Interfaces

[109]

Finally, we need to define the styles for the menu. First, we will set the15.
backgroundColor to a nice dark blue, and then for each option we will change
the flexDirection to render the icon and label horizontally. The rest of the
styles are only margins and paddings:

 const styles = StyleSheet.create({
 content: {
 backgroundColor: '#34495e',
 paddingTop: 50,
 },
 option: {
 flexDirection: 'row',
 paddingBottom: 10,
 },
 landscape: {
 paddingRight: 30,
 paddingLeft: 30,
 },
 title: {
 color: '#fff',
 fontSize: 16,
 margin: 5,
 marginLeft: 20,
 },
 });

If we try to run our application, it will display the menu on the initial
orientation, and then when we rotate the device, the labels will be
shown or hidden according to the orientation:

Implementing Complex User Interfaces

[110]

How it works…
The react-native-orientation library listens to orientation changes natively, and this
improves the performance while detecting a change.

We only need to define a single listener in the app, usually in the top level component.
Then, we send the orientation value to the children components. If we are using redux, we
should save the value in the global store and then send it to the children using the connect
function.

Implementing Complex User Interfaces

[111]

In step number 4, we created an empty class with an orientation property of the state.
We are going to use this property to save the current device orientation and then send it to
the children components.

In step 14, we looped though each option on the menu. When dynamically creating a new
component, we always need to set a key property. This property should be unique as its
used internally by React. In this case, we are sending the index of the loop iteration; that
way, we can assure that every item will have a unique key value.

There's more…
At the time of writing, there will be some issues on Android when installing the react-
native-orientation package. The callback function that sets the orientation will not
work on Android; fortunately, this has been fixed in the GitHub repository, but the code
has not been released to npm.

The fix should be released in a couple of weeks; I hope you don't have any problems just by
following the steps in the recipe. However, if you do need to get the code from GitHub
instead of npm, you only have to update your package.json file, like this:

{
 "name": "DeviceOrientation",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start": "node_modules/react-native/packager/packager.sh"
 },
 "dependencies": {
 "react": "15.3.2",
 "react-native": "^0.34.0",
 "react-native-orientation":
"git+https://github.com/yamill/react-native-orientation",
 "react-native-vector-icons": "^2.1.0"
 }
}

Next, we need to remove the node_modules folder and install everything again. Let's open
the terminal, navigate to the root of our project and run the following commands:

 $ rm -rf node_modules
 $ npm i

That should fix the problems.

Implementing Complex User Interfaces

[112]

Using a WebView to open external websites
For many apps, it's required that it can open external links, whether its to show a third-
party website, your online help, or the terms and conditions of your app.

In this recipe, we will see how to open a WebView by clicking on a button in our app and
dynamically setting the URL value.

How to do it…
Similar to our previous recipes, we will start by creating a new app using the1.
React Native CLI, and we will name it Browser. After the new project has been
created, open the index.ios.js and index.android.js files; we need to add
the following code to bootstrap our app:

 import React from 'react';
 import MainApp from './src/MainApp';
 import { AppRegistry } from 'react-native';

 AppRegistry.registerComponent('Browser', () => MainApp);

Now let's create the src/MainApp.js file. Here, we will define a Navigator2.
component to open the WebView when the user presses any of the available links.
Let's start by importing the dependencies for this class:

 import React, { Component } from 'react';
 import {
 TouchableOpacity,
 StyleSheet,
 View,
 Text,
 Navigator,
 } from 'react-native';

The main class will have a list of links to the state; we are going to3.
dynamically render buttons using this data. Please go ahead and duplicate the
same object on the list to add more links; all we need to define for each item is the
title and the url:

 class MainApp extends Component {

 state = {
 links: [

Implementing Complex User Interfaces

[113]

 {
 title:'My Blog',
 url: 'https://medium.com/@crysfel/latest'
 },
 // Please duplicate the previous record with other links
],
 };

 // Defined on later steps
 }

 const styles = StyleSheet.create({
 // Defined on later steps
 });

 export default MainApp;

It's required that every new component has a render method. In this case, we are4.
going to use a Navigator component to render the scenes of our app. The initial
route will be an empty object; we are going to show the next scenes with a nice
animation starting from the bottom to the top:

 render() {
 return (
 <Navigator
 ref="navigator"
 renderScene={this.renderScene}
 initialRoute={{}}
 configureScene={(route) => (
 Navigator.SceneConfigs.FloatFromBottom
)}
 />
);
 }

There's a call to the renderScene method. Here, we need to decide which5.
component to render based on the route.

In this example, we will only be showing two views. By default, we will
display the list of links, but if there's a url property on the route, we
will display the WebView instead.

For now, we will only display the default view. We will come back to
this method to update it and show the WebView in later steps:

 renderScene = (route, navigator) => {

Implementing Complex User Interfaces

[114]

 return (
 <View style={styles.content}>
 <Text>Home</Text>
 <View>
 {this.state.links.map(this.renderButton)}
 </View>
 </View>
);
 }

In the renderButton method, we need to create a button for each link. We need6.
to use the title property as the label, and when pressing the button, we need to
send the url as a parameter for the onPressButton callback:

 renderButton = (btn, index) => {
 return (
 <TouchableOpacity
 key={index}
 onPress={() => this.onPressButton(btn.url)}
 style={styles.btn}
 >
 <Text style={styles.text}>{btn.title}</Text>
 </TouchableOpacity>
);
 }

Before running our app, let's add some styles to those buttons, something really7.
simple, such as some colors and paddings:

 const styles = StyleSheet.create({
 content: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 },
 btn: {
 flex: 1,
 margin: 10,
 backgroundColor: '#c0392b',
 borderRadius: 3,
 padding: 10,
 paddingRight: 30,
 paddingLeft: 30,
 },
 text: {
 color: '#fff',
 textAlign: 'center',

Implementing Complex User Interfaces

[115]

 },
 });

If we try to run our app, we should be able to see the list of links.
However if we try to press any of them, an error will be thrown because
we haven't defined the callback function yet:

We are half-way through this recipe! Let's create the callback function of the press8.
event; in this function, we will use the navigator component to push the new
route. For this example, the route is an object that only contains a url property,
but we can define any property on the route object:

 onPressButton(url) {
 this.refs.navigator.push({ url });
 }

Implementing Complex User Interfaces

[116]

We need to update the renderScene method to check if the url property is9.
present on the route. If it's present, we need to return the Browser component
instead of the default view:

 renderScene = (route, navigator) => {
 if (route.url) {
 return (
 <Browser url={route.url} navigator={navigator} />
);
 }

 // ...
 }

Don't forget to import the Browser component at the top of the file:

 import Browser from './BrowserView';

We are done with the MainApp class, and now we need to focus on the Browser10.
component. Let's create a src/BrowserView/index.js file and import the
dependencies for this class. The WebView component works on Android and iOS
out of the box:

 import React, { Component, PropTypes } from 'react';
 import {
 Text,
 View,
 TouchableOpacity,
 WebView,
 StyleSheet,
 } from 'react-native';

For this component, we only need two props: the url, which is a string, and the11.
navigator as an object. The values of these props will be provided by the
parent class, which is MainApp:

 class BrowserView extends Component {
 static propTypes = {
 url: PropTypes.string,
 navigator: PropTypes.object,
 };

 // Defined on step 12 and 13
 }

 const styles = StyleSheet.create({

Implementing Complex User Interfaces

[117]

 // Defined on step 14
 });

 export default BrowserView;

For this view, we are going to have a top toolbar with a back button and a12.
WebView using all the available space. For the WebView, we will set the uri value
from the props that we receive from the parent class:

 render() {
 return (
 <View style={styles.container}>
 <TouchableOpacity
 style={styles.toolbar}
 onPress={() => this.goBack()}
 >
 <Text style={styles.text}>Back</Text>
 </TouchableOpacity>
 <WebView
 source={{ uri: this.props.url }}
 style={styles.content}
 />
 </View>
);
 }

When pressing the back button, we'll call the goBack function, which will13.
remove the current route from the navigator to show the previous route:

 goBack() {
 this.props.navigator.pop();
 }

To complete this component all we need to do is define a few styles, such as some14.
colors to the toolbar, and we also need to make the height of the WebView
flexible:

 const styles = StyleSheet.create({
 container: {
 flex: 1,
 },
 toolbar: {
 backgroundColor: '#e74c3c',
 padding: 20,
 },
 text: {
 color: '#fff',

Implementing Complex User Interfaces

[118]

 },
 content: {
 flex: 1,
 },
 });

If we try to run our app, we should be able to open the links when
pressing the buttons. There's one limitation on iOS, though: since iOS 9,
it's required that only secured URLs are opened, meaning only HTTPS
websites are allowed to successfully load on the WebView. There's a
workaround to fix this issue. You can temporally disable certain
domains in the Info.plist file, but for security reasons we should not
do that for productions apps:

Implementing Complex User Interfaces

[119]

How it works…
Using a WebView to open external sites is a great way to keep the user into our app. Many
apps out there do this, allowing the user to consume external content and then come back to
the app easily.

In step number 4, we defined the Navigator component. Here, it's very important to assign
the ref property, mainly because we need to access this component in a different method
on this same class.

In step number 6, we used an arrow function to bind the function to the scope of the current
class instance; this is necessary because we are using this function when looping through
the array of links.

In step number 8, we pushed the route to the navigator. A route is a plain JavaScript
object; here, we can define any property that we need. Usually we would send the required
data for the next view, but in this example only the url is needed.

It's also worth mentioning that the refs object in this class contains all the references
defined by the components. In this case, we only defined the navigator, but we could
define a ref prop on any other component.

In step number 13, we removed the current route. The pop method removes the latest route
from the stack, which means we can push as many routes as needed, and then we pop them
all.

Rendering simple HTML elements using
native components
We have learned how to use a WebView to render a third-party website; however,
sometimes we only need to render text with HTML tags on it.

In this recipe, we will render text in the HTML format using native components. To achieve
this, we will use a third-party library called react-native-htmlview by James Friend.

Implementing Complex User Interfaces

[120]

Getting ready
In order to follow the steps in this recipe, we need to create an empty app using the React
Native CLI. We will name our new app RenderHtml. Feel free to use any other name, just
make sure to use the correct name in step 2.

How to do it…
The first thing we need to do is install the library using npm. Open the terminal1.
and go to the root of the project, and then run the following commands:

 $ npm i react-native-htmlview --save

Once the installation is completed, let's open the index.ios.js and2.
index.android.js files to bootstrap our app:

 import React from 'react';
 import MainApp from './src/MainApp';
 import { AppRegistry } from 'react-native';

 AppRegistry.registerComponent('RenderHtml', () => MainApp);

We are going to load a JSON file from the filesystem. Let's create an3.
src/data.json file. Here, we will have a record with a content property with
a string as a value including simple HTML tags, for example, , <i>,
<a>, <h3>, and <p>. Please go ahead and add more text to the content property:

 {
 "title": "Learning a new skill",
 "content":
 "<p>Lorem ipsum dolor sit amet,
 consectetur adipisicing
 elit, sed do eiusmod tempor
 incididunt ut labore et
 <i>dolore magna aliqua</i>.
 </p>
 <h3>The problem with your current skills</h3>
 <p>...</p>"
 }

Implementing Complex User Interfaces

[121]

Now that we have some data to test with, we need to work on the MainApp4.
component. Let's create a new src/MainApp.js file and import all the
dependencies for this class:

 import React, { Component } from 'react';
 import {
 Alert,
 StyleSheet,
 ScrollView,
 View,
 Text,
 } from 'react-native';
 import HTMLView from 'react-native-htmlview';
 import data from './data.json';

The class for this component will be as simple as possible. We will only render a5.
top toolbar with the title property from the JSON file and the HTMLView
component with the content's data. If the content is too long, we will need to be
able to scroll down, so we are using the ScrollView component:

 class MainApp extends Component {
 onLinkPress(url) {
 Alert.alert('Link press', `URL: ${url}`);
 }

 render() {
 return (
 <View style={styles.main}>
 <Text style={styles.title}>{data.title}</Text>
 <ScrollView style={styles.content}>
 <HTMLView
 value={data.content}
 stylesheet={styles}
 onLinkPress={this.onLinkPress}
 />
 </ScrollView>
 </View>
);
 }
 }

 const styles = StyleSheet.create({
 // Defined on step 6
 });

 export default MainApp;

Implementing Complex User Interfaces

[122]

Before running our app, let's add some styles to add some colors to the toolbar,6.
set the height of the ScrollView to fit the available space, and most
importantly, set styles to the content:

 const styles = StyleSheet.create({
 main: {
 flex: 1,
 },
 content: {
 flex: 1,
 padding: 10,
 },
 title: {
 backgroundColor: '#c0392b',
 color: '#fff',
 padding: 20,
 fontSize: 20,
 textAlign: 'center',
 },
 p: {
 color: '#333',
 fontSize: 16,
 },
 h3: {
 fontSize: 18,
 fontWeight: 'bold',
 color: '#000',
 },
 a: {
 color: '#c0392b',
 fontWeight: 'normal',
 }
 });

Implementing Complex User Interfaces

[123]

How it works…
In step number 5, we created the HTMLView component. This component will receive the
HTML content that we want to render as a string; it will also receive a callback function to
be executed when a link is pressed inside the view. In this example, we are just showing an
alert message, but we could use a WebView to open the given URL.

Internally, the HTMLView component will parse the HTML string and will create a tree.
Then, each node will be replaced by a Text element and the node will be ignored if the tag
name is not supported.

At the time of writing, the supported tags on the input string are the following:

<pre>

<p>

<a>

Implementing Complex User Interfaces

[124]

<h1> <h2> <h3> <h4> <h5>

If we want to set custom styles to the content, we can use the element name. For example,
we have added styles to the p, h3, and a elements in step 6.

How to create a form component
Every application requires a way to input data, whether it's a simple registration and login
form or a more complex component with many input fields and controls.

In this recipe, we will create a form component to handle text inputs. We will collect data
using different keyboards and show an alert message with the resulting information.

Getting ready
We need to create an empty app using the React Native CLI, and we will name it
FormComponents.

How to do it…
We will start by bootstrapping our app. Let's open the index.ios.js and1.
index.android.js files and add the following code:

 import React from 'react';
 import MainApp from './src/MainApp';
 import { AppRegistry } from 'react-native';

 AppRegistry.registerComponent('FormComponents', () => MainApp);

Now we need to create a src/MainApp.jsfile and import the required2.
dependencies for this class:

 import React from 'react';
 import {
 Alert,
 StyleSheet,
 ScrollView,
 View,
 Text,

Implementing Complex User Interfaces

[125]

 TextInput,
 } from 'react-native';
 import UserForm from './UserForm';

Since this component is going to be very simple, we are going to create a stateless3.
component. We will only render a top toolbar inside a ScrollView for the
UserForm component:

 const MainApp = () => (
 <View style={styles.main}>
 <Text style={styles.toolbar}>Fitness App</Text>
 <ScrollView style={styles.content}>
 <UserForm />
 </ScrollView>
 </View>
);
 const styles = StyleSheet.create({
 // Defined on step 4
 });

 export default MainApp;

We should add some nice styles to these components, just some colors and4.
paddings as well as setting all the available height space to the scroller
component:

 const styles = StyleSheet.create({
 main: {
 flex: 1,
 backgroundColor: '#ecf0f1',
 },
 toolbar: {
 backgroundColor: '#1abc9c',
 padding: 20,
 color: '#fff',
 fontSize: 20,
 },
 content: {
 padding: 10,
 },
 });

Implementing Complex User Interfaces

[126]

We have defined the main component, now we need to work on the actual form.5.
Let's create a new JavaScript file under src/UserForm/index.js. Then let's
import all the dependencies for this class:

 import React, { Component } from 'react';
 import {
 Alert,
 StyleSheet,
 View,
 Text,
 TextInput,
 TouchableOpacity,
 } from 'react-native';

This is the class that will render the inputs and will keep track of the data. We are6.
going to save the data on state; therefore, we need to initialize the state as an
empty object:

 class UserForm extends Component {
 state = {};

 // Defined on steps 7, 8, 9 and 10
 }

 const styles = StyleSheet.create({
 // Defined on step 11
 });
 export default UserForm;

In the render method, we are going to define the components that we want to7.
display, in this case, only three text inputs and a button. We are going to define a
renderTextfield method that accepts a configuration object as a parameter; we
will define the name of the field, the label, and the keyboard type. In addition,
we will have a renderButton method that will render the save button:

 render() {
 return (
 <View style={styles.panel}>
 <Text style={styles.instructions}>
 Please enter your contact information
 </Text>
 {this.renderTextfield({ name: 'name', label: 'Your name' })}
 {this.renderTextfield({ name: 'phone', label: 'Your phone
number', keyboard: 'phone-pad' })}
 {this.renderTextfield({ name: 'email', label: 'Your email
address', keyboard: 'email-address'})}

Implementing Complex User Interfaces

[127]

 {this.renderButton()}
 </View>
);
 }

To render the text fields, we are going to use the TextInput component, this8.
component is provided by React Native, and it works on iOS and Android. There
are some differences that we need to be aware of, but many of the configurations
work on both platforms.

In this example, we will use the label as a placeholder; when the
user starts typing, the label will disappear. The keyboardType property
allows us to set the keyboard that we want to use; we have four
available keyboards on both platforms, default, numeric, email-
address, and phone-pad:

 renderTextfield(options) {
 return (
 <TextInput
 style={styles.textfield}
 onChangeText={(value) => this.setState({ [options.name]:
value })}
 placeholder={options.label}
 value={this.state[options.name]}
 keyboardType={options.keyboard || 'default'}
 />
);
 }

We already know how to render buttons and respond to the press action. If this is9.
not clear to you, I recommend you read the first recipe in this chapter, Creating a
reusable button with theme support about the buttons:

 renderButton() {
 return (
 <TouchableOpacity
 onPress={this.onPressButton}
 style={styles.btn}
 >
 <Text style={styles.btnText}>Save</Text>
 </TouchableOpacity>
);
 }

Implementing Complex User Interfaces

[128]

We need to define the onPressButton callback. Here, we will show an alert with10.
the input data that we have in the state:

 onPressButton = () => {
 const { name, phone, email } = this.state;

 Alert.alert('User's data',`Name: ${name}, Phone: ${phone},
 Email: ${email}`);
 }

We are almost done with this recipe! All we need to do is apply some nice styles11.
to the main container and the instructions, some colors, paddings and margins,
nothing really fancy:

 const styles = StyleSheet.create({
 panel: {
 backgroundColor: '#fff',
 borderRadius: 3,
 padding: 10,
 marginBottom: 20,
 },
 instructions: {
 color: '#bbb',
 fontSize: 16,
 marginTop: 15,
 marginBottom: 10,
 },
 });

Finally, the text inputs and the button. Let's just add dimensions, colors,12.
paddings, and margins:

 textfield: {
 height: 40,
 marginBottom: 10,
 },
 btn: {
 backgroundColor: '#34495e',
 borderRadius: 3,
 padding: 12,
 flex: 1,
 },
 btnText: {
 textAlign: 'center',
 color: '#fff',
 fontSize: 16,
 },

Implementing Complex User Interfaces

[129]

If we run our app, we should be able to see a nice form. It should work
on Android and iOS as expected:

How it works…
In step number 8, we defined the TextInput component. In React Native, we can use two
types of input, controlled, and uncontrolled components.

A controlled component will have a value property; the component will always display
the content of the value prop. This means that we need a way to change the value when the
user starts typing on the input. If we don't update that value, then the text in the input
won't change (even if the user tries to type something).

In order to update the value, we can use the onChangeText callback and set the new
value. In this example, we are using the state to keep track of the data and we are setting a
new key on the state with the content of the input.

Implementing Complex User Interfaces

[130]

An uncontrolled component, on the other hand, will not have a value prop assigned. We
can assign an initial value using the defaultValue prop. The uncontrolled components
have their own state, and we can get their value by using an onChangeText callback, just as
we can do it with controlled components.

3
Animating the User Interface

In this chapter, we will cover the following recipes:

Simple animations
Running several animations at the same time
Animating notifications
Expanding and collapsing containers
Loading animation
Removing items from a list component
Creating a Facebook reactions widget
Displaying images in full screen

Introduction
In order to provide a good user experience, we definitely need to add some animations to
call the user's attention, to go from one screen to the other, to highlight specific actions, or
just to add a distinctive touch to our product.

Compared with hybrid apps using PhoneGap, animations in React Native are very fluid.
We can animate many elements at the same time and we will get nice and fluid movements.

There's a limit, of course if we want to build a game and animate hundreds of elements at
the same time, the frame rate will drop considerably, especially because each frame is
calculated on the main JavaScript thread.

Animating the User Interface

[132]

There's a work in progress feature to move all the processing from JavaScript to the native
side. As of version 0.39, we can choose to use the native driver to run all these calculations
on the native world; unfortunately, this is not complete, and there are some issues when
running the native driver.

All the recipes in this chapter are using the JavaScript implementation. The React Native
team has promised to use the same API when moving all the processing to the native side,
so we don't need to worry about breaking changes on the existing API.

Simple animations
In this recipe, we will learn the basics of animations. We will use an image to create a
simple linear movement from the right to the left of the screen.

Getting ready
In order to go through this recipe, we need to create an empty app. We are going to call it
SimpleAnimations. If you are not clear on how to create an empty app, please go to
Chapter 1, Getting Started, and follow the steps in the first recipe.

We are going to use a PNG image; feel free to use any image that you want or download the
one provided for this recipe, which is a nice image of a cloud.

How to do it…
Let's create an src folder at the root of the project. Inside this folder, we are1.
going to need a MainApp.js file, where we are going to write all the code for this
recipe. As mentioned before, we are going to animate an image, so let's create an
images folder and paste our image there.

Animating the User Interface

[133]

Open the index.ios.js and index.android.js files and add the following2.
code:

 import React from 'react';
 import { AppRegistry } from 'react-native';
 import MainApp from './src/MainApp';

 AppRegistry.registerComponent('SimpleAnimations', () => MainApp);

Here, we are just importing the MainApp class (we are going to define it
shortly) and use it to bootstrap the app. If you are using a different name
when creating the app, please use it instead of SimpleAnimations.

Let's import the dependencies for the MainApp class. The Animated class will be3.
responsible for creating the values for the animation. It provides a few
components that are ready to be animated, and it also provides several methods
and helpers to run smooth animations.

The Easing class provides several helper methods for calculating
movements. For example, we can create exponentials, bounces, and
elastic movements among many others.

We are going to use the Dimensions class to get the current device size;
this way, we will know the exact position at which to initialize the
animation:

 import React, { Component } from 'react';
 import {
 Animated,
 Easing,
 Dimensions,
 StyleSheet,
 } from 'react-native';

We should initialize some constants that we are going to need in our program. In4.
this case, we are going to get the device dimensions, set the size of the image, and
require a nice image to move around:

 const { width, height } = Dimensions.get('window');
 const cloudImage = require('./images/cloudy.png');
 const imageWidth = 80;

Animating the User Interface

[134]

Now let's create the MainApp component. We are going to use two methods from5.
the components lifecycle system. If you are not familiar with this concept, please
go ahead and read the React documentation (h t t p ://r e a c t j s . c n /r e a c t /d o c s /c

o m p o n e n t - s p e c s . h t m l), there's already a really nice tutorial on how this works.
You can also read more about this in Chapter 2, Implementing Complex User
Interfaces, in this book, in the recipe about Detecting orientation changes:

 class MainApp extends Component {
 componentWillMount() {
 // Defined on step 6
 }

 componentDidMount() {
 // Defined on step 9
 }

 startAnimation () {
 // Defined on step 7
 }

 render() {
 // Defined on step 8
 }
 }

 const styles = StyleSheet.create({
 // Defined on step 10

 });

 export default MainApp;

In order to create an animation, we need to define a standard value to drive the6.
animation. Animated.Value is a class that handles the animation values for each
frame over time. The first thing we need to do is to create an instance of this class
when the component is created:

 componentWillMount() {
 this.animatedValue = new Animated.Value();
 }

In this case, we are using the componentWillMount method, but we
can also use the constructor or even the default values of a prop.

http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html
http://reactjs.cn/react/docs/component-specs.html

Animating the User Interface

[135]

Once we have created the animated value, we can define the animation. We are7.
going to create a loop when the image reaches the end of the animation we will
start the same animation again:

 startAnimation () {
 this.animatedValue.setValue(width);
 Animated.timing(
 this.animatedValue,
 {
 toValue: -imageWidth,
 duration: 6000,
 easing: Easing.linear,
 }
).start(() => this.startAnimation());
 }

We have our animation in place, however as of now we are only calculating the8.
values for each frame over time, but we are not doing anything with those values.
The next step is to render the image on the screen and set the property on the
styles that we want to animate. In this case, we want to move the element on the
x-axis, therefore we should update the left property:

 render() {
 return (
 <Animated.Image
 style={[
 styles.image,
 { left: this.animatedValue },
]}
 source={cloudImage}
 />
);
 }

If we refresh the simulator we will see the image on the screen, but it's not being9.
animated yet. In order to fix this, we need to call the startAnimation method.
We will start the animation once the component is fully rendered using the
componentDidMount lifecycle method:

 componentDidMount() {
 this.startAnimation();
 }

Animating the User Interface

[136]

If we run the app again we will see how the image it's moving at the top of the10.
screen, just what we want! As a final step, let's add some styles to the image:

 const styles = StyleSheet.create({
 image: {
 height: imageWidth,
 position: 'absolute',
 top: height/3,
 width: imageWidth,
 },
 });

How it works…
In step number 7, we set the animation values. The first line is resetting the initial value
every time we call this method. For this example, the initial value will be the width of the
device, this will move the image to the right side of the screen, we want to start our
animation from there.

Animating the User Interface

[137]

Then we use the Animated.timing function to create an animation based on time. For the
first parameter, we need to use the animatedValue we already have. The second
parameter is an object with configurations for the animation. In this case, we are going to set
the end value to minus the width of the image; this will place the image to the left side of
the screen. We will complete the animation there.

With the entire configuration in place, the Animated class will calculate all the frames
required in 6 seconds to perform a linear animation from right to left.

We have many other helpers, in this case, we are using a linear movement, but we could
use an elastic or bounce movement as well. Take a look at the Easing class documentation
and try setting different values to the easing property.

Once the animation is configured correctly we need to run it, we do this by calling the
start method. This method receives an optional callback function parameter; the callback
function will be executed when the animation is completed. In this case, we are running
again the same animation. This will create an infinite loop, which is what we want to
achieve.

In step number 8, we are rendering the image. If we want to animate an image we should
always use the Animate.Image component. Internally, this component will handle the
values of the animation and will set each value on every frame to the native component, this
will avoid running the render method on the JavaScript side on every frame, allowing us to
have smooth animations.

Along with the Image, we can also animate the View, Text, and ScrollView components.
There's support for all these four components out of the box, but we could always create a
new component and add support for animations. All these components are able to handle
the styles changes; all we need to do is pass the animatedValue to the property that we
want to animate, in this case, the left property, but we could use any of the available styles
on each component.

There's more…
There are some limitations with the current implementation; for example, we need to do
some additional calculations in order to use the opacity property or to rotate the image.
We will cover that in the next recipe.

Animating the User Interface

[138]

Running several animations at the same
time
In this recipe we will learn how to use the same animation values in several elements. This
way we will reuse the same values but by using an interpolation we will be able to get
different values for other elements.

The animation will be similar to the previous recipe. We will have two clouds: one will be
smaller with a slower movement, the other one will be a little bit bigger and will move
faster. At the center of the screen we will have a static plane. We won't add any animation
to the plane, but the moving clouds will create the illusion of movement.

Getting ready
Let's start this recipe by creating an empty app; we are going to call it
MultipleAnimations. Feel free to use any other name, just make sure to use the correct
name when registering the bootstrap component.

We are going to use three different images, two clouds and an airplane. You can use your
own assets or download the ones provided on for this recipe.

How to do it…
As always, let's create the src folder with a MainApp.js file; here we will write1.
all our code. In addition, we need to create an images folder and copy/paste the
3 assets here.

Then open the index.ios.js and index.android.js file and replace
with the following code. If you are using a different name for the app,
make sure to update the last line accordingly:

 import React from 'react';
 import { AppRegistry } from 'react-native';
 import MainApp from './src/MainApp';

 AppRegistry.registerComponent(
 'MultipleAnimations', () => MainApp
);

Animating the User Interface

[139]

Now we can work on the MainApp class, so let's add the dependencies. Take a2.
look at the first recipe in this same chapter if something is not clear in the
following code:

 import React, { Component } from 'react';
 import {
 View,
 Animated,
 Image,
 Easing,
 Dimensions,
 StyleSheet,
 } from 'react-native';

Additionally, we need to define some constants and require the images that we3.
are going to use for the animations:

 const { width, height } = Dimensions.get('window');
 const cloudImage = require('./images/cloud.png');
 const cloudsImage = require('./images/cloudy.png');
 const planeImage = require('./images/transport.png');
 const cloudWidth = 60;

In the next step we are going to create the animatedValue instance when the4.
component gets created, then we will start the animation when the component is
fully rendered. We are creating an animation that runs in an infinite loop, the
initial value will be 1 and the final value will be 0. If you are not clear about this
code, make sure to read the first recipe in this same chapter:

 class MainApp extends Component {
 componentWillMount() {
 this.animatedValue = new Animated.Value();
 }

 componentDidMount() {
 this.startAnimation();
 }

 startAnimation () {
 this.animatedValue.setValue(1);
 Animated.timing(
 this.animatedValue,
 {
 toValue: 0,
 duration: 6000,
 easing: Easing.linear,

Animating the User Interface

[140]

 }
).start(() => this.startAnimation());
 }

 render() {
 // Defined on step 5 and 6
 }
 }

 const styles = StyleSheet.create({
 // Defined on 7
 });

 export default MainApp;

The render method is going to be quite different, for this example, we are going5.
to animate two images using the same animatedValue. The animated value will
return values from 1 to 0, however, we want to move the clouds from right to left
and for that, we need to set the left value on each element.

In order to set the correct values, we need to interpolate the
animatedValue. For the smaller cloud we will set the initial left to the
width of the device, but for the bigger cloud we will set the initial left far
away from the right edge of the device. This will make the movement
distance bigger, therefore it will move faster:

 render() {
 const left1 = this.animatedValue.interpolate({
 inputRange: [0, 1],
 outputRange: [-cloudWidth, width],
 });

 const left2 = this.animatedValue.interpolate({
 inputRange: [0, 1],
 outputRange: [-cloudWidth*5, width + cloudWidth*5],
 });

 // Defined on step 6
 }

Once we have the correct left values, we need to define the elements we want to6.
animate. Here we will set the interpolated value to the left styles property:

 render() {
 // Defined on step 5

Animating the User Interface

[141]

 return (
 <View>
 <Animated.Image
 style={[
 styles.cloud1,
 { left: left1 },
]}
 source={cloudImage}
 />
 <Animated.Image
 style={[
 styles.cloud1,
 styles.cloud2,
 { left: left2 },
]}
 source={cloudsImage}
 />
 <Image
 style={[
 styles.cloud1,
 styles.plane,
]}
 source={planeImage}
 />
 </View>
);
 }

As for last step, we need to define some styles, just to set the width and height7.
of each cloud as well as assigning the top:

 const styles = StyleSheet.create({
 cloud1: {
 position: 'absolute',
 width: cloudWidth,
 height: cloudWidth,
 top: height/3 - cloudWidth/2,
 },
 cloud2: {
 width: cloudWidth*1.5,
 height: cloudWidth*1.5,
 top: height/2,
 },
 plane: {
 width: cloudWidth*1.3,
 height: cloudWidth*1.3,
 top: height/2 - cloudWidth,
 left: width/2 - cloudWidth/2,

Animating the User Interface

[142]

 }
 });

If we refresh our app, we should see a nice animation! It's running really
smoothly, as shown in the following screenshot:

How it works…
In step number 5, we defined the interpolations to get the left value for each cloud. The
interpolate method receives an object with two required configurations,
inputRange and outputRange.

The inputRange configuration receives an array of values, these values should always be
ascending values, and you could use negative values as long as the values are ascending.

The outputRange should match the number of values defined on inputRange, these are
the values that we need as a result of the interpolation.

For this case, inputRange goes from 0 to 1, which are the values of our animatedValue. In
outputRange, we defined the limits of the movement that we need.

Animating the User Interface

[143]

Animating notifications
In this recipe, we will create a notification component from scratch. When showing the
notification, the component will slide in from the top of the screen; after a few seconds, we
will automatically hide it by sliding it out.

Getting ready
We are going to create an app called NotificationsApp. You can use any other name that
you like, just make sure to use the correct name when registering the bootstrap component
in step number 2.

How to do it…
Let's start by creating an src folder at the root of the project, inside of this we will1.
create a MainApp.js file and a Notification folder. Inside the Notification
folder we need to create an index.js file:

Animating the User Interface

[144]

Open the index.ios.js and index.android.js files, remove the existing code2.
and replace with the following. Make sure to use the same name that you defined
when creating the app with the React Native CLI:

 import React from 'react';
 import { AppRegistry } from 'react-native';
 import MainApp from './src/MainApp';

 AppRegistry.registerComponent('NotificationsApp', () => MainApp);

Now let's work on the MainApp component. First, let's import all the required3.
dependencies:

 import React, { Component } from 'react';
 import {
 Text,
 TouchableOpacity,
 StyleSheet,
 View,
 } from 'react-native';
 import Notification from './Notification';

Once we have all the dependencies imported, we can define the main class. In4.
this case, we are going to initialize the state with a notify property equal to
false. We are going to use this property to show or hide the notification; by
default, the notification will not be shown on screen. To make things simple, we
will define the message property, in the state, with the text we want to display.

 class MainApp extends Component {
 state = {
 notify: false,
 message: 'Lorem ipsum dolor sit amet...',
 };

 onToggleNotification = () => {
 // Defined on step 7
 }

 render() {
 // Defined on step 5 and 6
 }
 }

 const styles = StyleSheet.create({
 // Defined on step 8
 });

Animating the User Interface

[145]

 export default MainApp;

Inside the render method, we need to show the notification only if the notify5.
property is true, we can achieve that by using an if statement:

 render() {
 const notify = this.state.notify
 ? <Notification
 autoHide
 message={this.state.message}
 onClose={this.onToggleNotification}
 />
 : null;
 // Defined on step 6
 }

In the previous step, we only defined the reference to the Notification6.
component, but we are not using it yet. Let's define return with all the JSX for
this app. To keep things simple, we are only going to define a toolbar, some text,
and a button to toggle the state of the notification when pressed:

 render() {
 // Previous code here...

 return (
 <View>
 <Text style={styles.toolbar}>Main toolbar</Text>
 <View style={styles.content}>
 <Text>Lorem ipsum...</Text>
 <TouchableOpacity
 onPress={this.onToggleNotification}
 style={styles.btn}
 >
 <Text style={styles.text}>Show notification</Text>
 </TouchableOpacity>
 <Text>Duis aute irure...</Text>
 {notify}
 </View>
 </View>
);
 }

Animating the User Interface

[146]

We need to define the method that toggles the notify property on the state,7.
this step is very simple:

 onToggleNotification = () => {
 this.setState({
 notify: !this.state.notify,
 });
 }

We are almost done with this class. The only thing left are the styles. In this case,8.
we will only add some styles such as color, padding, and margin, nothing
really special:

 const styles = StyleSheet.create({
 toolbar: {
 backgroundColor: '#8e44ad',
 color: '#fff',
 fontSize: 22,
 padding: 20,
 textAlign: 'center',
 },
 content: {
 padding: 10,
 overflow: 'hidden',
 },
 btn: {
 margin: 10,
 backgroundColor: '#9b59b6',
 borderRadius: 3,
 padding: 10,
 },
 text: {
 textAlign: 'center',
 color: '#fff',
 },
 });

Animating the User Interface

[147]

If we try to press the button an error will appear. Let's fix that by defining the9.
Notification component. Open the Nofitication/index.js and add the
required dependencies for this component:

 import React, { Component, PropTypes } from 'react';
 import {
 Animated,
 Easing,
 StyleSheet,
 Text,
 } from 'react-native';

Animating the User Interface

[148]

Once we have the dependencies imported, let's define the props and the initial10.
state of our new component. We are going to define something very simple, just a
prop to receive the message to display, and two callback functions to allow
running some actions when the notification appears on the screen and when it
gets closed. A prop to set a number of milliseconds to display the notification
before it auto hides:

 const { bool, func, number, string } = PropTypes;

 class Notification extends Component {
 static propTypes = {
 autoHide: bool,
 delay: number,
 message: string,
 onClose: func,
 onOpen: func,
 };

 static defaultProps = {
 delay: 5000,
 onClose: emptyFn,
 onOpen: emptyFn,
 };

 state = {
 height: -1000,
 };

 }

 function emptyFn() {}

 export default Notification;

It's time to work on the animation! We need to start the animation as soon as the11.
component gets rendered. If there's something not clear on the following code, I
recommend you to take a look at the first and second recipe in this same chapter:

 componentWillMount() {
 this.animatedValue = new Animated.Value();
 }

 componentDidMount() {
 this.startSlideIn();
 }

 getAnimation(value, autoHide) {

Animating the User Interface

[149]

 const { delay } = this.props;
 return Animated.timing(
 this.animatedValue,
 {
 toValue: value,
 duration: 500,
 easing: Easing.cubic,
 delay: autoHide ? delay : 0,
 }
);
 }

So far we defined a method to get the animation. For the slide in movement, we12.
need to calculate the values from 0 to 1, after the animation is completed, we
need to run the onOpen callback and in the case, the autoHide property is set to
true, we will automatically run the slide out animation to remove the
component:

 startSlideIn () {
 const { onOpen, autoHide } = this.props;

 this.animatedValue.setValue(0);
 this.getAnimation(1)
 .start(() => {
 onOpen();
 if (autoHide){
 this.startSlideOut();
 }
 });
 }

Similarly, for the slide out movement, we need to calculate the values from 1 to 0.13.
We are sending as a parameter the autoHide value to the getAnimation
method. This will automatically delay the animation for 5 seconds (or for any
other value we've defined). After the animation is completed, we need to run the
onClose callback function; this will remove the component on the MainApp class:

 startSlideOut() {
 const { autoHide, onClose } = this.props;

 this.animatedValue.setValue(1);
 this.getAnimation(0, autoHide)
 .start(() => onClose());
 }

Animating the User Interface

[150]

Finally, the render method. Here we will get the message value from the props.14.
We also need the height of the component to move the component to the initial
position of the animation; by default it's -1000 but we will set the correct value at
runtime on the next steps.

The animatedValue goes from 0 to 1 or 1 to 0, therefore we need to
interpolate it to get the actual values. The animation will go from minus
the height of the component to 0; this will result in a nice slide in/out
animation:

 render() {
 const { message } = this.props;
 const { height } = this.state;
 const top = this.animatedValue.interpolate({
 inputRange: [0, 1],
 outputRange: [-height, 0],
 });

 // Defined on step 15
 }

To keep things as simple as possible, we will return an Animated.View with a15.
text. Here we are setting the top style with the interpolation result, this means we
will animate the top style.

As mentioned before, we need to calculate the height of the component
at runtime. In order to achieve that, we need to use the onLayout
property of the view, this function will be called every time the layout
updates and will send as a parameter the new dimensions of this
component:

 render() {
 // Previous code here...

 return (
 <Animated.View
 onLayout={this.onLayoutChange}
 style={[
 styles.main,
 { top }
]}
 >
 <Text style={styles.text}>{message}</Text>
 </Animated.View>
);

Animating the User Interface

[151]

 }

The onLayoutChange method looks very simple; we only need to get the new16.
height and update the state.

This method receives an event; inside of this object, we have
some useful information. In this case, we will access the nativeEvent
object, then in the layout object, we can find the width and height, x
and y position on the screen of the Animated.View that called this
function:

 onLayoutChange = (event) => {
 const {layout: { height } } = event.nativeEvent;
 this.setState({ height });
 }

As the very last step, we will add some styles to the notification component. We17.
want this component to animate on top of anything else; therefore we need to set
the position as absolute, set the left and right to 0, and add some colors
and paddings:

 const styles = StyleSheet.create({
 main: {
 backgroundColor: 'rgba(0, 0, 0, 0.7)',
 padding: 10,
 position: 'absolute',
 left: 0,
 right: 0,
 },
 text: {
 color: '#fff',
 },
 });

Animating the User Interface

[152]

How it works…
In step 5, we defined the Notification component. This component receives three
parameters, a flag to automatically hide the component after a few seconds, the message
that we want to display and a callback function that will be executed when the notification
gets closed.

When the onClose callback gets executed, we will toggle the notify property to remove
the Notification instance and clear the memory.

In step 6, we defined the JSX to render the components of our app. It's important to render
the Notification component after the others this way, the component will automatically
appear on top of all other components. If we decide to render the Notification before the
other components, we will have to define a Index greater than any other component.

In step 10, we are defining the propTypes and the state of our component. The
defaultProps object sets the default values for each property; these values will be applied
in case no value is assigned to the given property.

Animating the User Interface

[153]

For the callback functions, we are defining an empty function. This way, we don't have to
check if those props have a value before trying to execute them.

For the initial state, we are defining the height property. The actual height value is
going to be calculated at runtime, based on the content received in the message prop.
Therefore, we need to initially render the component far away from the original position.
The reason for this is because there's a small delay when the layout is calculated and we
don't want to show the notification and then move it to the correct position.

In step 11, we are creating the animation. The getAnimation method receives two
parameters. One is the destination value and the another one is a flag to delay the
animation. We use this method in step 12 and 13.

In step 15, we are returning the JSX for this component. The onLayout function is very
useful to get the dimensions of the component when there are updates on the layout. For
example, if the device orientation changes, the dimensions might change, in that case, we
would like to update the initial or final coordinate for the animation.

There's more…
The current implementation works pretty well; however, there's a performance problem
and we need to address that. The onLayout method gets executed on every frame of the
animation, and we are updating the state on every frame, which leads to re-render the
component on every frame! We should not do this; instead, we should only update it once
to get the actual height.

To fix this we could add a simple validation just to update the state if the current value is
different than the initial value. This will avoid updating the state on every frame and we
won't force the render over and over again:

onLayoutChange = (event) => {
 const {layout: { height } } = event.nativeEvent;
 if (this.state.height === -1000) {
 this.setState({ height });
 }
}

This would be enough, but we can go further and make sure the height gets updated also
when the orientation changes; however, we will stop here, as this recipe is getting quite big
already.

Animating the User Interface

[154]

Expanding and collapsing containers
In this recipe, we will create a custom container with a title and content. When pressing
the title, the content will collapse or expand.

We will explore the layout animation API for this example, as it will help us to accomplish
our goal in a few steps only.

Getting ready
Let's start by creating a new app, using the React Native CLI. We will call it
CollapsibleApp, but feel free to use any other name.

Once we have created the app, let's create two files at the root of the project,
src/MainApp.js and src/Panel/index.js. These are the only two files we will be
working on.

How to do it…
Let's start by opening the index.ios.js file; remove the existing code and add1.
the following to bootstrap the app:

 import React from 'react';
 import { AppRegistry } from 'react-native';
 import MainApp from './src/MainApp';

 AppRegistry.registerComponent('CollapsibleApp', () => MainApp);

Now, let's open the index.android.js file and replace with the following code:2.

 import React from 'react';
 import { AppRegistry, UIManager } from 'react-native';
 import MainApp from './src/MainApp';

 const EnableAnimations = () => {
 if (UIManager.setLayoutAnimationEnabledExperimental) {
 UIManager.setLayoutAnimationEnabledExperimental(true);
 }

 return <MainApp />;
 }

Animating the User Interface

[155]

 AppRegistry.registerComponent('CollapsibleApp', () =>
EnableAnimations);

Let's focus on the Panel component. First, we need to import all the3.
dependencies that we are going to use for this class:

 import React, { Component, PropTypes } from 'react';
 import {
 View,
 LayoutAnimation,
 StyleSheet,
 Text,
 TouchableOpacity,
 } from 'react-native';

Once we have the dependencies, let's declare the properties this component will4.
receive. The propTypes object will contain a title property to set the main title
of the panel, a children property to receive the content of the panel, a style
property to add custom styles, an expanded property to initialize the container
and two callbacks that will be executed when expanding or collapsing the panel.

 const { any, bool, func, string } = PropTypes;

 class Panel extends Component {
 static propTypes = {
 children: any,
 title: string,
 expanded: bool,
 onCollapse: func,
 onExpand: func,
 style: any,
 };

 static defaultProps = {
 expanded: false,
 onCollapse: emptyFn,
 onExpand: emptyFn,
 };
 }

 function emptyFn() {}

 const styles = StyleSheet.create({
 // Defined on step
 });

 export default Panel;

Animating the User Interface

[156]

We are going to use the height property on the state to expand or collapse the5.
container. The first time this component gets created, we need to check the
expanded property in order to set the correct initial height. We will do this
check on the constructor:

 constructor(props) {
 super(props);

 this.state = {
 height: this.props.expanded ? null : 0,
 };
 }

Let's render the needed JSX elements for this component. We need to get the6.
height value from state and set it to the content's style view. When pressing
the title element, we will execute the onToggle method, defined in later steps,
to change the height value to the state:

 render() {
 const { children, style, title } = this.props;
 const { height } = this.state;

 return (
 <View style={[styles.main, style]}>
 <TouchableOpacity onPress={this.onToggle}>
 <Text style={styles.title}>
 {title}
 </Text>
 </TouchableOpacity>
 <View style={{ height }}>
 {children}
 </View>
 </View>
);
 }

As mentioned before the onToggle method, will get executed when pressing the7.
title element, here we will only toggle the height on the state. And call the
animation we want to use when updating the styles on the next render cycle:

 onToggle = () => {
 LayoutAnimation.spring();
 this.setState({
 height: this.state.height === null ? 0 : null,
 })
 }

Animating the User Interface

[157]

To complete this component, let's add some simple styles. We need to set the8.
overflow to hidden, otherwise, the content will be shown when the component
is collapsed:

 const styles = StyleSheet.create({
 main: {
 backgroundColor: '#fff',
 borderRadius: 3,
 overflow: 'hidden',
 },
 title: {
 fontWeight: 'bold',
 padding: 15,
 }
 });

Once we have our Panel component defined, let's use it on the MainApp class.9.
First, we need to require all the dependencies:

 import React from 'react';
 import {
 Text,
 StyleSheet,
 View,
 } from 'react-native';
 import Panel from './Panel';

In the previous step, we are importing the Panel component, we are going to10.
declare a few instances of this class on the JSX. Because we won't use the state or
any other components lifecycle, we will use a stateless component:

 const MainApp = () => (
 <View style={styles.main}>
 <Text style={styles.toolbar}>Animated containers</Text>
 <View style={styles.content}>
 <Panel

 style={styles.panel}
 >
 <Text>Lorem ipsum dolor sit amet...</Text>
 </Panel>
 <Panel

 style={styles.panel}
 >
 <Text>Lorem ipsum dolor...</Text>
 </Panel>

Animating the User Interface

[158]

 <Panel
 expanded

 style={styles.panel}
 >
 <Text>Lorem ipsum...</Text>
 <Text>Lorem ipsum...</Text>
 </Panel>
 </View>
 </View>
);
 export default MainClass;

Finally, let's add some styles to the toolbar and the main container. Something11.
very simple, just padding, margin, and color:

 const styles = StyleSheet.create({
 main: {
 flex: 1,
 },
 toolbar: {
 backgroundColor: '#3498db',
 color: '#fff',
 fontSize: 22,
 padding: 20,
 textAlign: 'center',
 },
 content: {
 padding: 10,
 backgroundColor: '#ecf0f1',
 flex: 1,
 },
 panel: {
 marginBottom: 10,
 }
 });

Animating the User Interface

[159]

How it works…
In step number 2, we are bootstrapping the Android app. The code here is quite different
than the iOS version because on Android we need to enable the layout animation API using
the UIManager. If we don't do this step, the layout animation won't work.

In step 4, we are declaring the props for the Panel class. Here we initialize the container as
collapsed by default, but if the expanded property is set to true, then we will render the
container expanded.

In step number 5, we are setting the initial height of the content. If the expanded prop is
set to true, then we should show the content. By setting the height value to null, the
layout system will calculate the height based on the content, otherwise, we need to set the
value to zero, this will hide the content when the component is collapsed.

Animating the User Interface

[160]

In step number 6, we are defining all the JSX for the Panel component. There are a couple
of concepts on this step. First, we get the children property from the props object, this
will contain any elements defined between <Panel> and </Panel> when using this
component on the MainApp class. This is very helpful because by using this property, we
are allowing this component to receive any other components as children.

In the same step, we are getting the height from the state and setting it as the styles of
the main View. This will update the height and automatically the component will expand
or collapse. We are also declaring the onPress callback; when pressing the title element, we
will toggle the height on the state.

In step number 7, we are toggling the height value. Here, we are using the
LayoutAnimation class. By calling the spring method, the layout system will animate
whatever changes happened on the layout on the next render. In this case, we are only
changing the height, but we can change anything else that we want, for example,
opacity, position, or color.

The LayoutAnimation class contains a couple of animations defined already, in this
example we are using the spring, but we can use the linear, easeInEaseOut, or create
your own using the configureNext method.

If we remove the LayoutAnimation we won't see any animation, the component will
expand and collapse by jumping from 0 to total height, but by adding that single line, we
will be able to see a really nice and smooth animation. It's that simple, React will do
everything for you. Of course, if you need more control over the animation you definitely
will need to use the Animation API instead.

Loading animation
In this recipe, we will continue working with the LayoutAnimation class. Here we will
create a button when the user presses the button we will show a loading indicator and
animate the styles.

Getting ready
Before we start, we need to create an empty app. We are going to call it ButtonLoading,
feel free to use any other name, just make sure to use the correct name when registering the
bootstrap component.

Animating the User Interface

[161]

In addition, we need to create the src/MainApp.js and src/Button/index.js files.

How to do it…
Open the index.ios.js file, remove the current code and add the following.1.
Make sure to use the name of the app, in this case, ButtonLoading:

 import React from 'react';
 import { AppRegistry } from 'react-native';
 import MainApp from './src/MainApp';

 AppRegistry.registerComponent('ButtonLoading', () => MainApp);

Open the index.android.js file, remove the existing code and add the2.
following. The code is a little bit different because for Android we need to enable
the layout animations:

 import React from 'react';
 import { AppRegistry, UIManager } from 'react-native';
 import MainApp from './src/MainApp';

 const EnableAnimations = () => {
 if (UIManager.setLayoutAnimationEnabledExperimental) {
 UIManager.setLayoutAnimationEnabledExperimental(true);
 }

 return <MainApp />;
 }

 AppRegistry.registerComponent('ButtonLoading', () =>
EnableAnimations);

Let's open the src/Button/index.js and import all the dependencies for this3.
component:

 import React, { Component, PropTypes } from 'react';
 import {
 ActivityIndicator,
 LayoutAnimation,
 StyleSheet,
 Text,
 TouchableOpacity,
 View,
 } from 'react-native';

Animating the User Interface

[162]

We are going to use only four props for this component, a label, a loading flag4.
to either show the loading indicator or the label, a callback function to execute it
when the button is pressed and custom styles:

 const { any, bool, func, string } = PropTypes;

 class Button extends Component {
 static propTypes = {
 label: string,
 onPress: func,
 loading: bool,
 style: any,
 };

 static defaultProps = {
 loading: false,
 onPress: emptyFn,
 };
 // Defined on later steps...
 }

 function emptyFn() {}

 export default Button;

The render method of this component will be as simple as possible; we will5.
render the label and the activity indicator depending on the loading prop:

 render() {
 const { loading, style } = this.props;

 return (
 <TouchableOpacity
 style={[
 styles.main,
 style,
 loading ? styles.loading : null,
]}
 activeOpacity={0.6}
 onPress={this.onPressButton}
 >
 <View>
 {this.renderLabel()}
 {this.renderActivityIndicator()}
 </View>
 </TouchableOpacity>
);

Animating the User Interface

[163]

 }

In order to render the label, we need to check if the loading prop is false,6.
then we return only a Text element with the label we received from the props:

 renderLabel() {
 const { label, loading } = this.props;
 if(!loading) {
 return (
 <Text style={styles.label}>{label}</Text>
);
 }
 }

To render the activity indicator, the loading prop should be true. If so, we will7.
return the ActivityIndicator component. It will be small and the color will
be white:

 renderActivityIndicator() {
 if (this.props.loading) {
 return (
 <ActivityIndicator size="small" color="#fff" />
);
 }
 }

One more method is pending in our class. We need to inform the parent of this8.
component that this button has been pressed; we do this by calling the onPress
callback. We are also using the LayoutAnimation to queue an animation on the
next render:

 onPressButton = () => {
 const { loading, onPress } = this.props;

 LayoutAnimation.easeInEaseOut();
 onPress(!loading);
 }

Animating the User Interface

[164]

To complete this component, we need to add some styles. We need to define9.
some colors, rounded corners, alignments, paddings and so on. For the loading
styles, we will update the paddings to create a nice circle when we show the
activity indicator:

 const styles = StyleSheet.create({
 main: {
 backgroundColor: '#e67e22',
 borderRadius: 20,
 padding: 10,
 paddingLeft: 50,
 paddingRight: 50,
 },
 label: {
 color: '#fff',
 fontWeight: 'bold',
 textAlign: 'center',
 backgroundColor: 'transparent',
 },
 loading: {
 padding: 10,
 paddingLeft: 10,
 paddingRight: 10,
 },
 });

We are done with the Button component. Now it's time to work on the MainApp10.
class, let's start by importing all the dependencies:

 import React, { Component } from 'react';
 import {
 Text,
 StyleSheet,
 View,
 } from 'react-native';
 import Button from './Button';

Animating the User Interface

[165]

The class is very simple, we will only define a loading property on the state to11.
handle the Button animation. We are also rendering a toolbar and a Button:

 class MainApp extends Component {

 state = {
 loading: false,
 };

 onPressBtn = (loading) => {
 this.setState({ loading });
 }

 render() {
 const { loading } = this.state;

 return (
 <View style={styles.main}>
 <Text style={styles.toolbar}>Animated containers</Text>
 <View style={styles.content}>
 <Button
 label="Login"
 loading={loading}
 onPress={this.onPressBtn}
 />
 </View>
 </View>
);
 }
 }

 export default MainApp;

Finally, we will add some styles. Just some colors, paddings, and alignments to12.
center the button on screen:

 const styles = StyleSheet.create({
 main: {
 flex: 1,
 },
 toolbar: {
 backgroundColor: '#f39c12',
 color: '#fff',
 fontSize: 22,
 padding: 20,
 textAlign: 'center',
 },

Animating the User Interface

[166]

 content: {
 padding: 10,
 backgroundColor: '#ecf0f1',
 flex: 1,
 alignItems: 'center',
 justifyContent: 'center',
 },
 });

How it works…
In step number 6, we are adding the render method. Here we are getting the loading
prop, and based on that value, we add the loading styles to the main container or not. We
are also calling two methods, one to render the label and the other one to render the activity
indicator.

In step number 8, we are executing the onPress callback. By default, we declared an empty
function; this way, we don't need to check if the value is present or not.

Animating the User Interface

[167]

The parent of this button should be responsible for updating the loading property when
running the onPress callback. From this component, we are only responsible for informing
the parent when this button has been pressed.

The LayoutAnimation.eadeInEasiOut method is only queuing an animation on the next
render phase, which means the animation is not executed right away. We are responsible
for changing the styles that we want to animate. If we don't change any styles, then we
won't see any animation.

The Button component doesn't know how the loading property gets updated. It might be
because of a fetch request, a time-out, or any other action. The parent component is the
responsible for updating the loading prop. Whenever changes happen, we apply the new
styles to the button and run a smooth animation.

In step 11, we are defining the content of the MainApp class. Here we define the Button
component that we already have. When the button is pressed, we are only updating the
state of the loading property. This way, we will show the animation every time the button is
pressed.

We are not doing anything else when pressing the button, but if we are using redux, we
should call an action here to fetch some data from an API.

Removing items from a list component
In this recipe, we will learn how to drag elements from a ListView to remove them. We are
going to use the PanResponder to handle the drag events.

Getting ready
We need to create an empty app. For this recipe, we will name it ListRemoveItems. Feel
free to use any other name, just make sure to use the correct name in step 1.

We also need to create three files: src/MainApp.js, src/ContactList/index.js, and
src/ContactList/ContactItem.js.

Animating the User Interface

[168]

How to do it…
Open the index.ios.js and index.android.js files, remove the existing1.
code, and add the following:

 import React from 'react';
 import { AppRegistry } from 'react-native';
 import MainApp from './src/MainApp';

 AppRegistry.registerComponent('ListRemoveItems', () => MainApp);

Let's start by importing the dependencies for the MainApp class. Open the2.
src/MainApp.js file and add the following code:

 import React from 'react';
 import {
 Text,
 StyleSheet,
 View,
 } from 'react-native';
 import ContactList from './ContactList';

This component will be very simple. All we need to render is a toolbar and the3.
ContactList component that we imported in the previous step:

 const MainApp = () => (
 <View style={styles.main}>
 <Text style={styles.toolbar}>Contacts</Text>
 <ContactList style={styles.content} />
 </View>
);

 const styles = StyleSheet.create({
 main: {
 flex: 1,
 },
 toolbar: {
 backgroundColor: '#2c3e50',
 color: '#fff',
 fontSize: 22,
 padding: 20,
 textAlign: 'center',
 },
 content: {
 padding: 10,
 flex: 1,

Animating the User Interface

[169]

 },
 });

 export default MainApp;

We have all we need to start working on the actual list. Let's open the4.
src/ContactList/index.js file and import all the dependencies:

 import React, { Component, PropTypes } from 'react';
 import {
 ListView,
 ScrollView,
 } from 'react-native';
 import ContactItem from './ContactItem';

Then we need to define some data. Ideally, we would fetch the data from an API;5.
however, to keep things simple and focus only on the drag functionality, let's just
define the data in this same file. For this example, I will define only two records,
but feel free to create more:

 const { any } = PropTypes;
 const data = [
 {id: 1, name: 'Crysfel Villa'},
 {id: 2, name: 'Stan Bershadskiy'},
 // Define more items here.
];

The state for this component will only contain two properties, the data for the6.
list and a Boolean value that will be updated when the dragging starts or ends:

 class ContactList extends Component {
 constructor(props) {
 super(props);

 this.ds = new ListView.DataSource({
 rowHasChanged: (r1, r2) => r1 !== r2
 });
 this.state = {
 dataSource: this.ds.cloneWithRows(data),
 swiping: false,
 };
 }
 // Defined at later steps
 }

 export default ContactList;

Animating the User Interface

[170]

The render method only needs to display the list. In the7.
renderScrollComponent property, we are enabling the scroll only when the
user is not swiping an item on the list. If the user is swiping, we are going to
disable the vertical scrolling:

 render() {
 const { dataSource, swiping } = this.state;

 return (
 <ListView
 key={data}
 enableEmptySections
 dataSource={dataSource}
 renderScrollComponent={
 (props) => <ScrollView {...props} scrollEnabled={!swiping}/>
 }
 renderRow={this.renderItem}
 />
);
 }

The renderItem method will return each item in the list. Here we need to send8.
the contact information as a prop and three callbacks:

 renderItem = (contact) => (
 <ContactItem
 contact={contact}
 onRemove={this.onRemoveContact}
 onDragEnd={this.onToggleSwipe}
 onDragStart={this.onToggleSwipe}
 />
);

We need to toggle the value of the swiping property on state; this will lock and9.
unlock the vertical scroll on the list:

 onToggleSwipe = () => {
 this.setState({ swiping: !this.state.swiping });
 }

When removing an item, we need to find the index of the given contact and10.
then remove it from the original list. After that, we need to update the
datasource on the state to re-render the list with the resulting data:

 onRemoveContact = (contact) => {
 const index = data.findIndex(

Animating the User Interface

[171]

 (item) => item.id === contact.id
);
 data.splice(index, 1);

 this.setState({
 dataSource: this.ds.cloneWithRows(data),
 });
 }

We are done with the list, now let's focus on the items. Let's open the11.
src/ContactList/ContactItem.js file and import the dependencies:

 import React, { Component, PropTypes } from 'react';
 import {
 Animated,
 Easing,
 PanResponder,
 StyleSheet,
 Text,
 TouchableHighlight,
 View,
 } from 'react-native';

We need to define the props for this component. The propTypes object will have12.
a contact object to receive the data to render, an onPress function to execute
when the item is pressed, an onRemove function to execute when the contact gets
removed and two functions to listen for the drag events. On the state, we only
need to define an animated value to hold the X and Y value of the dragging:

 const { func, object } = PropTypes;

 class ContactItem extends Component {
 static propTypes = {
 contact: object,
 onPress: func,
 onRemove: func,
 onDragStart: func,
 onDragEnd: func,
 };

 static defaultProps = {
 onPress: emptyFn,
 onRemove: emptyFn,
 onDragEnd: emptyFn,
 onDragStart: emptyFn,
 };

Animating the User Interface

[172]

 state = {
 pan: new Animated.ValueXY(),
 };
 }

 function emptyFn() {}

 export default ContactItem;

When the component is created, we need to configure PanResponder. We will13.
do this on componentWillMount. The PanResponder is responsible for
handling gestures; it provides a simple API to capture the events of the finger:

 componentWillMount() {
 this.panResponder = PanResponder.create({
 onMoveShouldSetPanResponderCapture: this.onShouldDrag,
 onPanResponderMove: Animated.event(
 [null, { dx: this.state.pan.x }]
),
 onPanResponderRelease: this.onReleaseItem,
 onPanResponderTerminate: this.onReleaseItem,
 });
 }

Now let's define the actual functions that will get executed for each callback14.
defined in the previous step. We can start with the onShouldDrag method:

 onShouldDrag = (e, gesture) => {
 const { dx } = gesture;
 return Math.abs(dx) > 2;
 }

The onReleaseItem is a little bit more complicated. We are going to split this15.
method into two steps. First, we need to figure out if the current item needs to be
removed or not, in order to do that we need to set a threshold:

 onReleaseItem = (e, gesture) => {
 const { onRemove, contact,onDragEnd } = this.props;
 const move = this.rowWidth - Math.abs(gesture.dx);
 let remove = false;
 let config = { // Animation to origin position
 toValue: { x: 0, y: 0 },
 duration: 500,
 };

 if (move < this.threshold) {
 remove = true;

Animating the User Interface

[173]

 if (gesture.dx > 0) {
 config = { // Animation to the right
 toValue: { x: this.rowWidth, y: 0 },
 duration: 100,
 };
 } else {
 config = { // Animation to the left
 toValue: { x: -this.rowWidth, y: 0 },
 duration: 100,
 };
 }
 }

 // Add the code here on the next step
 }

Once we have the configurations for the animation, we are ready to move the16.
item! We also need to execute the onDragEnd callback and if the item
<ie>need</ie>s to be removed, we need to run the onRemove function:

 onReleaseItem = (e, gesture) => {
 // Previous step...

 onDragEnd();
 Animated.spring(
 this.state.pan,
 config,
).start(() => {
 if (remove) {
 onRemove(contact);
 }
 });

We have all the dragging system in place. Now we need to define the render17.
method; something very simple, just a text to display the contacts name, the
touch element, the animated view, and a wrapper:

 render() {
 const { contact, onPress } = this.props;

 return (
 <View style={styles.row} onLayout={this.setThreshold}>
 <Animated.View
 style={[styles.pan, this.state.pan.getLayout()]}
 {...this.panResponder.panHandlers}
 >
 <TouchableHighlight

Animating the User Interface

[174]

 style={styles.info}
 onPress={() => onPress(contact)}
 underlayColor="#ecf0f1"
 >
 <Text>{contact.name}</Text>
 </TouchableHighlight>
 </Animated.View>
 </View>
);
 }

We need one more method on this class. The setThreshold will get the current18.
width of the row and set the threshold. In this case, it will be a third of the
width. These values are required to decide whether to remove the item or not:

 setThreshold = (event) => {
 const { layout: { width } } = event.nativeEvent;
 this.threshold = width/3;
 this.rowWidth = width;
 }

Finally, some styles for the row. By now we should be familiar with this code, we19.
are only adding some colors and paddings.

 const styles = StyleSheet.create({
 row: {
 backgroundColor: '#ecf0f1',
 borderBottomWidth: 1,
 borderColor: '#ecf0f1',
 flexDirection: 'row',
 },
 pan: {
 flex: 1,
 },
 info: {
 backgroundColor: '#fff',
 paddingBottom: 20,
 paddingLeft: 10,
 paddingTop: 20,
 },
 });

Animating the User Interface

[175]

How it works…
In step number 6, we are defining the swiping property in the state. This property is just a
flag that will be set to true when the dragging starts and false when is completed. We
need this information to lock the vertical scrolling on the list while dragging around the
item.

In step number 8, we are defining the content of each row in the list. The onDragStart
property receives the onToggleSwipe method that will be executed when the dragging
starts. We are also going to execute the same method when the dragging is completed.

In the same step, we are sending to each item the onRemoveContact method. As the name
suggests, we are going to remove from the list the current item when the user swipes it out.

In step 12, we are defining the props and state of the item component. So far, we have been
doing animation using a single value, but for this case, we need to handle the x and y
coordinates, therefore we need an instance of Animated.ValueXY. Internally this class
handles two Animated.Value instances, therefore the API is almost identical.

Animating the User Interface

[176]

In step 13, the pan responder gets created. The gesture system in React Native is very
similar to the event system on the web. There are two phases when there's a touch event,
the capture, and the bubble. In our case we need to use the capture phase to figure out if the
current event is pressing the item or it's trying to drag it.

The onMoveShouldSetPanResponderCapture will capture the event; then we need to
decide if we will drag the item or not by returning true or false.

The onPanResponderMove will get the values from the animation on each frame and it will
set it to the pan object in the state. We need to use Animated.event to access the
animation values for each frame; in this case, we only need to get the x value. Later we will
use this value to run a different animation and return the element to its original place or
remove it from the screen.

The onPanResponderRelease callback will be executed when the user releases the item. If
for any other reason the dragging gets interrupted, onPanResponderTerminate will get
executed.

In step 14, we need to check if the current event is a simple press or a dragging. We can do
this by checking the delta on the x-axis. If the touch event has been moved more than 2
pixels, then the user is trying to drag the item otherwise is trying to press the button. We
evaluate the difference as an absolute number because the movement could be from left to
right or right to left; we want to allow both movements.

In step 15, we need to get the distance with respect to the width of the device. If this
distance is lower than the threshold, then we need to remove these items. We are defining
the config object for each animation, by default it will return to the original position. But,
if we need to remove the item, we need to check the direction and set the configuration
accordingly.

In step 17, we are defining the JSX. We set the styles that we want to animate; in this case,
it's the left property. Instead of manually creating an object, we can call the getLayout
method from the animated value. It will return the top and left properties with the existing
values.

In that same step, we are setting the event handlers to the animated view. This will allow
binding the dragging configuration we have defined in the previous steps to this animated
view.

We are also calling the onPress callback with the current contact information.

Animating the User Interface

[177]

Creating a Facebook reactions widget
In this recipe, we will create a component similar to the Facebook's reaction widget. We will
have a like button image, when pressed we will show four icons with a slide-in animation
and opacity from 0 to 1.

Getting ready
Let's create an empty app called FacebookReactions; feel free to use any other name, just
make sure to use the correct one when registering the bootstrap component.

We are going to need some images to display a fake timeline, a picture of your cat will
work, just make sure it's about 900×600 pixels or so. We also need five icons to display the
emotions, such as like, angry, laughing, heart, and surprised. Feel free to use your own
assets or download the ones provided with this book.

Let's create three JavaScript files, src/MainApp.js, src/Reactions/index.js and
src/Reactions/Icon.js. We need to copy the pictures of our cat or the ones provided
with this book to src/images/, the reaction icons should be on src/Reactions/images/.

How to do it…
Open the index.ios.js and index.android.js files, remove the existing code1.
and add the following:

 import React from 'react';
 import { AppRegistry } from 'react-native';
 import MainApp from './src/MainApp';

 AppRegistry.registerComponent('FacebookReactions', () => MainApp);

We are going to create a fake timeline on the MainApp class, let's start by2.
importing the dependencies:

 import React from 'react';
 import {
 Dimensions,
 Image,
 Text,
 ScrollView,
 StyleSheet,

Animating the User Interface

[178]

 View,
 } from 'react-native';
 import Reactions from './Reactions'

First, we need to import some images to render in our timeline. The JSX is very3.
simple, just a toolbar, a ScrollView with two Images and two Reaction
components:

 const image1 = require('./images/01.jpg');
 const image2 = require('./images/02.jpg');
 const { width } = Dimensions.get('window');

 const MainApp = () => (
 <View style={styles.main}>
 <Text style={styles.toolbar}>Reactions</Text>
 <ScrollView style={styles.content}>
 <Image source={image1} style={styles.image}
resizeMode="cover" />
 <Reactions />

 <Image source={image2} style={styles.image}
resizeMode="cover" />
 <Reactions />
 </ScrollView>
 </View>
);

 export default MainApp;

Finally, we need the styles for this component. Nothing fancy, just some colors,4.
size to the image, and some paddings here and there:

 const styles = StyleSheet.create({
 main: {
 flex: 1,
 },
 toolbar: {
 backgroundColor: '#3498db',
 color: '#fff',
 fontSize: 22,
 padding: 20,
 textAlign: 'center',
 },
 content: {
 flex: 1,
 },
 image: {

Animating the User Interface

[179]

 width,
 height: 300,
 },
 });

We are ready to start working on the main component of this recipe.
Let's import the dependencies. We will work on the Icon component at
later steps:

 import React, { Component, PropTypes } from 'react';
 import {
 Image,
 Text,
 TouchableOpacity,
 StyleSheet,
 View,
 } from 'react-native';
 import Icon from './Icon';

Let's define the props and initial state; we also need to require the like icons to5.
show it on screen:

 const image = require('./images/like.png');
 const { array } = PropTypes;

 class Reactions extends Component {

 static propTypes = {
 icons: array,
 };

 static defaultProps = {
 icons: [
 'like', 'heart', 'angry', 'laughing', 'surprised',
],
 };

 state = {
 show: false,
 selected: '',
 };

 // Defined at later steps
 }

 export default Reactions;

Animating the User Interface

[180]

Let's define the functions that toggle the show value and the function that sets the6.
current selection in the state:

 onSelectReaction = (reaction) => {
 this.setState({
 selected: reaction,
 });
 this.toggleReactions();
 }

 toggleReactions = () => {
 this.setState({
 show: !this.state.show,
 });
 };

Now we need to define the JSX for this component. We are going to display an7.
image when pressed; we will call the toggleReactions method that we already
have:

 render() {
 const { style } = this.props;
 const { selected } = this.state;

 return (
 <View style={[style, styles.container]}>
 <TouchableOpacity onPress={this.toggleReactions}>
 <Image source={image} style={styles.icon} />
 </TouchableOpacity>
 <Text>{selected}</Text>
 {this.renderReactions()}
 </View>
);
 }

If you noticed, we are calling the renderReactions method. Here we will8.
render all the icons that we want to display when the user presses the main
button:

 renderReactions() {
 const { icons } = this.props;
 if (this.state.show) {
 return (
 <View style={styles.reactions}>
 { icons.map((name, index) => (
 <Icon
 key={index}

Animating the User Interface

[181]

 name={name}
 delay={index * 100}
 index={index}
 onPress={this.onSelectReaction}
 />
))
 }
 </View>
);
 }
 }

Finally, we need to set the styles for this component. Just sizing the image and9.
defining some paddings. The reactions container will have a 0 height; this is
because the icons will be floating and we don't want to add any extra space:

 const styles = StyleSheet.create({
 container: {
 padding: 10,
 },
 icon: {
 width: 30,
 height: 30,
 },
 reactions: {
 flexDirection: 'row',
 height: 0,
 },
 });

The icon component is missing if we try to run our app it will fail. Let's work on10.
this component; open the src/Reactions/Icon.js file and add the imports:

 import React, { Component, PropTypes } from 'react';
 import {
 Animated,
 Dimensions,
 Easing,
 Image,
 StyleSheet,
 TouchableOpacity,
 View,
 } from 'react-native';

Animating the User Interface

[182]

Let's get the PropTypes that we are going to use and require the images for each11.
reaction. We are going to use an object for the icons. This way, we will be able to
easily retrieve an image by the key name:

 const { func, number, string } = PropTypes;
 const icons = {
 angry: require('./images/angry.png'),
 heart: require('./images/heart.png'),
 laughing: require('./images/laughing.png'),
 like: require('./images/like.png'),
 surprised: require('./images/surprised.png'),
 };

Now we should define the properties this component will receive. We don't need12.
to define an initial state:

 class Icon extends Component {
 static propTypes = {
 delay: number,
 index: number,
 name: string,
 onPress: func,
 };

 static defaultProps = {
 delay: 0,
 onPress: emptyFn,
 };

 // Defined on next steps
 }

 function emptyFn() {}

 export default Icon;

The icons should appear on screen with a nice animation; therefore, we need to13.
create and run the animation when the component is mounted:

 componentWillMount() {
 this.animatedValue = new Animated.Value(0);
 }

 componentDidMount() {
 const { delay } = this.props;

 Animated.timing(

Animating the User Interface

[183]

 this.animatedValue,
 {
 toValue: 1,
 duration: 200,
 easing: Easing.elastic(1),
 delay,
 }
).start();
 }

When pressing the icon, we need to execute the onPress callback to inform the14.
parent a reaction was selected. We will send the name of the reaction as a
parameter:

 onPressIcon = () => {
 const { onPress, name } = this.props;
 onPress(name);
 }

The last piece of the puzzle is the render method. We need to define the JSX for15.
this component:

 render() {
 const { name, index, onPress } = this.props;
 const left = index * 50;
 const top = this.animatedValue.interpolate({
 inputRange: [0, 1],
 outputRange: [10, -95],
 });
 const opacity = this.animatedValue;

 return (
 <Animated.View
 style={[
 styles.icon,
 { top, left, opacity },
]}
 >
 <TouchableOpacity onPress={this.onPressIcon}>
 <Image source={icons[name]} style={styles.image} />
 </TouchableOpacity>
 </Animated.View>
);
 }

Animating the User Interface

[184]

As the very final step, we need to add the styles for each icon. We need the icons16.
to float, therefore we will set the position as absolute and the width and
height as 40 pixels. After this change, we should be able to run our app:

 const styles = StyleSheet.create({
 icon: {
 position: 'absolute',
 },
 image: {
 width: 40,
 height: 40,
 },
 });

Animating the User Interface

[185]

How it works…
In step 3, we are defining the Reactions component in the timeline. For now, we are not
focusing on handling data, but rather on displaying the UI. Therefore, we are not sending
any callback to get the selected value.

In step 5, we are defining the props, the default values, and the initial state. For the props
we only have an array of icons, we could also have some callbacks to let the parent know
when a reaction gets selected.

We have two properties in the state:

The show property is a Boolean value. We are going to toggle it when the user
presses the main button. When false we are not going to show the reactions;
when true, we will run the animation to show each icon.
The selected property will contain the current selection. Every time a new
reaction gets selected, we are going to update this property.

In step 8, we are rendering the icons. Here we need to send the name of the icon to every
instance created, we are also sending a delay of 100 milliseconds for each icon, this will
allow us to show the icons one after the other with a nice animation. The onPress prop
receives the method we already defined to set the state the selected reaction.

In step 12, we are defining the props this component will receive. The name property will
receive the image to display; in the previous step we required all the images in an object,
each image has a key, the property name should receive any of those values.

In step 13, the animation gets created. First, we create the animatedValue, as mentioned
before this it's the class responsible for holding the value for each frame in the animation.
As soon as the component is mounted, we run the animation. We will start from 0 to 1, with
a duration of 200 milliseconds, using an elastic movement and we will delay the animation
based on the received parameter.

In step 15, we defined the JSX for the Icon component. Here we will animate the top and
opacity properties. For the top property, we need to interpolate the values from the
animatedValue, we want to move the icon 95 pixels to the top from its original position.
The required values for the opacity property are from 0 to 1, therefore we don't need to
interpolate anything; we can just use the animatedValue as it is.

The left value is calculated based on the index; we are just moving the icon 50 pixels to
the left. This will avoid rendering the icons all in the sample place.

Animating the User Interface

[186]

Display images in full screen
In this recipe we will create a timeline of images, then we will allow the user to press any of
the images to display it with a black background and the image in the center of the screen.

We will use an opacity animation for the background and we will slide in the image from
their original position.

Getting ready
Let's create an empty app; we are going to call it PhotoViewer. Feel free to use any other
name, just make sure to set the correct name when registering the bootstrap component.

In addition, we need to create three files for this project. src/MainApp.js to display the
timeline, src/PostContainer/index.js to show each image in the timeline and
src/PhotoViewer/index.js to show the selected image in full screen.

How to do it…
Let's open the index.ios.js and index.android.js files. Remove the existing1.
code and add the following. Make sure to use the correct name for your app:

 import React from 'react';
 import { AppRegistry } from 'react-native';
 import MainApp from './src/MainApp';

 AppRegistry.registerComponent('PhotoViewer', () => MainApp);

We are going to display a timeline with images of the MainApp class. Let's2.
import all the dependencies, including the two other components we will create
in later steps:

 import React, { Component } from 'react';
 import {
 Dimensions,
 Image,
 Text,
 ScrollView,
 StyleSheet,
 View,
 } from 'react-native';
 import PostContainer from './PostContainer';

Animating the User Interface

[187]

 import PhotoViewer from './PhotoViewer';

As mentioned before, we are going to load the images from Amazon S3. In this3.
step, we are going to define the data that we are going to render. Just a simple
array of objects containing a title and the image:

 const path = 'https://s3.amazonaws.com/crysfel/public/book/03/08';
 const timeline = [
 { title: 'Enjoying the fireworks', image: `${path}/01.jpg` },
 { title: 'Climbing the Mount Fuji', image: `${path}/02.jpg` },
 { title: 'Check my last picture', image: `${path}/03.jpg` },
 { title: 'Sakuras are beautiful!', image: `${path}/04.jpg` },
];

Now we need to declare the initial state of this component. We will update the4.
selected and position properties when any of the images gets pressed:

 class MainApp extends Component {
 state = {
 selected: null,
 position: null,
 };
 // Defined on next steps
 }
 export default MainApp;

In order to update the state, we are going to declare two methods. One to set the5.
value of the image that has been pressed and one more to remove those values
when the viewer gets closed:

 showImage = (selected, position) => {
 this.setState({
 selected,
 position,
 });
 }

 closeViewer = () => {
 this.setState({
 selected: null,
 position: null,
 });
 }

Animating the User Interface

[188]

Now we are ready to work on the render method. Here, we need to render each6.
image inside a ScrollView, this way we will be able to scroll up and down:

 render() {
 return (
 <View style={styles.main}>
 <Text style={styles.toolbar}>Timeline</Text>
 <ScrollView style={styles.content}>
 {
 timeline.map((post, index) =>
 <PostContainer key={index} post={post}
 onPress={this.showImage} />
)
 }
 </ScrollView>
 {this.renderViewer()}
 </View>
);
 }

In the previous step, we are calling the renderViewer method. Here we will7.
show the viewer component only if there's a post selected in the state. We are
also sending the initial position to start the animation and a callback to close the
viewer:

 renderViewer() {
 const { selected, position } = this.state;

 if (selected) {
 return (
 <PhotoViewer
 post={selected}
 position={position}
 onClose={this.closeViewer}
 />
);
 }
 }

The styles for this component are very simple, only some colors and paddings.8.
Nothing much to explain here:

 const styles = StyleSheet.create({
 main: {
 backgroundColor: '#ecf0f1',
 flex: 1,
 },

Animating the User Interface

[189]

 toolbar: {
 backgroundColor: '#2c3e50',
 color: '#fff',
 fontSize: 22,
 padding: 20,
 textAlign: 'center',
 },
 content: {
 flex: 1,
 },
 });

The timeline is completed, but if we try to run our app it will fail. Let's work on9.
the PostContainer component by importing the dependencies:

 import React, { Component, PropTypes } from 'react';
 import {
 Dimensions,
 Image,
 Text,
 TouchableOpacity,
 StyleSheet,
 View,
 } from 'react-native';

We only need two props for this component. The post prop will receive the10.
main data for the component, basically the title and the image. The onPress
prop is a callback that we will need to run when the image gets pressed:

 const { width } = Dimensions.get('window');

 class PostContainer extends Component {
 static propTypes = {
 post: PropTypes.object,
 onPress: PropTypes.func,
 };

 static defaultProps = {
 onPress: emptyFn,
 };

 // Defined in the following steps
 }

 function emptyFn() {}

 export default PostContainer;

Animating the User Interface

[190]

This component will be inside of a ScrollView. This means its position will be11.
changing when the user starts scrolling the content. When pressing the image, we
need to get the current position on the screen and send this information to the
parent component:

 onPressImage = (event) => {
 const { onPress, post } = this.props;
 this.refs.main.measure((fx, fy, width, height, pageX, pageY) => {
 onPress(post, {
 width,
 height,
 pageX,
 pageY,
 });
 });
 }

It's time to define the JSX for this component. To keep things simple, we are only12.
going to render the image and the title:

 render() {
 const { post: { image, title } } = this.props;

 return (
 <View style={styles.main} ref="main">
 <TouchableOpacity
 onPress={this.onPressImage}
 activeOpacity={0.9}
 >
 <Image
 source={{uri: image}}
 style={styles.image}
 resizeMode="cover"
 />
 </TouchableOpacity>
 <Text style={styles.title}>{title}</Text>
 </View>
);
 }

As always, we need to define some styles for this component. We are going to13.
add some colors and paddings:

 const styles = StyleSheet.create({
 main: {
 backgroundColor: '#fff',
 marginBottom: 30,

Animating the User Interface

[191]

 paddingBottom: 10,
 },
 content: {
 flex: 1,
 },
 image: {
 width,
 height: 300,
 },
 title: {
 margin: 10,
 color: '#ccc',
 }
 });

If we run the app now, we should be able to see the timeline. However, if we14.
press any of the images, an error will be shown. We need to define the viewer, so
let's open the src/PhotoViewer/index.js file and import the dependencies:

 import React, { Component, PropTypes } from 'react';
 import {
 Animated,
 Dimensions,
 Easing,
 Text,
 TouchableOpacity,
 StyleSheet,
 } from 'react-native';

Let's define the props for this component. In order to center the image on the15.
screen, we need to know the height of the current device:

 const { width, height } = Dimensions.get('window');
 const { func, object } = PropTypes;

 class PhotoViewer extends Component {
 static propTypes = {
 onClose: func,
 post: object,
 position: object,
 };

 static defaultProps = {
 onClose: emptyFn,
 };

 // Defined on the following steps

Animating the User Interface

[192]

 }
 function emptyFn() {}

 export default PhotoViewer;

We want to run two animations when showing this component. Therefore, we16.
need initialize and run the animation when the component is mounted. The
animation is very simple, just going from 0 to 1 in 400 milliseconds, using a nice
easing movement:

 componentWillMount() {
 this.animatedValue = new Animated.Value(0);
 }

 componentDidMount() {
 Animated.timing(
 this.animatedValue,
 {
 toValue: 1,
 duration: 400,
 easing: Easing.in,
 }
).start();
 }

When pressing the close button; we need to run the onClose callback to inform17.
the parent this component needs to be removed:

 onPressBtn = () => {
 this.props.onClose();
 }

We are going to split the render method into two steps; first, we need to18.
interpolate the values for the animations:

 render() {
 const { post: { image, title }, position } = this.props;
 const top = this.animatedValue.interpolate({
 inputRange: [0, 1],
 outputRange: [position.pageY, height/2 - position.height/2],
 });
 const opacity = this.animatedValue;

 // Defined on step 19
 }

Animating the User Interface

[193]

We only need to define three elements. A View to animate the background, an19.
image to display the image from Amazon S3, and a close button. We are setting
the opacity style to the main view; this will run a nice animation from
transparent to black. The image will slide in and at the same time the opacity will
increase, creating a simple but nice effect:

 render() {
 // Defined on step 18

 return (
 <Animated.View
 style={[
 styles.main,
 { opacity },
]}
 >
 <Animated.Image
 source={{uri: image}}
 style={[
 styles.image,
 { top, opacity }
]}
 />
 <TouchableOpacity style={styles.closeBtn}
onPress={this.onPressBtn}>
 <Text style={styles.closeBtnText}>X</Text>
 </TouchableOpacity>
 </Animated.View>
);
 }

We are almost done! The last step on this recipe is to define the styles. We need to20.
set the position of the main container to absolute. This is because we want to
show the image on top of everything. We are also moving the close button to
the top right of the screen:

 const styles = StyleSheet.create({
 main: {
 backgroundColor: '#000',
 bottom: 0,
 left: 0,
 position: 'absolute',
 right: 0,
 top: 0,
 },
 image: {

Animating the User Interface

[194]

 width,
 height: 300,
 },
 closeBtn: {
 position: 'absolute',
 top: 20,
 right: 20,
 },
 closeBtnText: {
 color: '#fff',
 fontWeight: 'bold',
 },
 });

How it works…
In step 4, we are defining two properties in the state. The selected property will hold
the image's data that got pressed; this will be any of the objects defined in step 3. The
position property will contain the current y coordinate on the screen; we will need this
information to animate the image from its original position to the center of the screen.

In step 6, we loop the timeline array to render each post. We are using a PostContainer
element for each post, sending the post information along with the onPress callback to set
the pressed image in the state.

In step 11, we need to get the current position of the image. To achieve this, we need to use
the measure method from the component we want to get the information. This method
receives a callback function and retrieves very useful information such as the width and
height, but most importantly, the current position on the screen.

We are using a reference to access the component, this reference is declared when defining
the JSX on the next step.

In step 12, we are declaring the JSX of the component. In the main wrapper container, we
are setting the ref property; we need this to get the current position of the image.
Whenever we want to access a component on any of the methods of the current class, we
will use a reference. We can create references by simply setting the ref property and
assigning a name to any component.

Animating the User Interface

[195]

In step 18, we are interpolating the animations values to get the correct top values for each
frame. The output of that interpolation will start from the current position of the image to
the middle of the screen. This way, the values would be negative or positive, and the
animation will run from bottom to top or the other way around.

We don't need to interpolate the opacity, as the current animated value already goes from
0 to 1, as shown in the following screenshot:

4
Working with Application Logic

and Data
In this chapter, we will cover the following recipes:

Storing and retrieving data locally
Retrieving data from a Remote API
Sending data to a Remote API
Establishing real-time communications with WebSockets
Integrating persistent database functionality with Realm
Masking the application upon network connection loss
Synchronizing locally persisted data with a Remote API
Logging in with Facebook
Sharing content on Facebook
Tracking application events with Facebook Analytics

Introduction
One of the most important aspects of developing an application is handling data. This data
may come locally from the user, may be served by a remote server that exposes an API,
or for most business applications, will be some combination of both. You may wonder what
strategies are best for dealing with data, or how to even accomplish simple tasks such
as making an HTTP request. Luckily, React Native makes your life that much simpler by
providing mechanisms for easily dealing with data.

Working with Application Logic and Data

[197]

The open source community has taken things a step further and provided some excellent
modules that can be used with React Native. In this chapter, we will discuss how to work
with data in all aspects, and how it integrates into our React Native applications.

Storing and retrieving data locally
When developing a mobile app, we need to consider the network challenges. A well-
designed app will allow the user to continue using the app without internet connection.
This will require the app to save data locally on the device when there's no internet
connection, and then sync with the server when the network is available again.

Another challenge to overcome is the fact that network connectivity might be slow or
limited. In order to improve the performance of our app, we should save some data on the
local device to avoid stressing our server API.

In this recipe, we will learn about a simple and basic strategy to save and retrieve data
locally from the device. We will create a simple app with a text input and two buttons, one
to save the content of the field and one to load the existing content. We will use the
AsyncStorage class to achieve our goal.

Getting ready
We need to create an empty app named SavingLocally. You can use any other name, just
make sure you use the correct name when registering the app.

How to do it…
Let's start by creating a src/MainApp.js file. We are going to work on this file1.
to save and load the data on the local device.
Now, let's open the index.ios.js and index.android.js files. Remove the2.
existing code and add the following:

 import React from 'react';
 import { AppRegistry } from 'react-native';
 import MainApp from './src/MainApp';

 AppRegistry.registerComponent('SavingLocally', () => MainApp);

Working with Application Logic and Data

[198]

If we run our app now, it won't work. This is because we need to create the3.
MainApp component. Let's start by importing all the dependencies:

 import React, { Component } from 'react';
 import {
 Alert,
 AsyncStorage,
 StyleSheet,
 Text,
 TextInput,
 TouchableOpacity,
 View,
 } from 'react-native';

Now let's create the class. We are going to create a key constant to set the name of4.
the key we will use to save the content. On the state, we will have two
properties, one to keep the value from the text input component and one more to
load and show the current stored value:

 const key = '@MyApp:key';

 class MainApp extends Component {
 state = {
 text: '',
 storedValue: '',
 };

 // Defined at later steps
 }

 const styles = StyleSheet.create({
 // Defined at later steps
 });

 export default MainApp;

Let's start by loading the existing stored value. We will display the content on the5.
UI when the app loads, therefore we need to read the local value when the
component is about to be mounted:

 componentWillMount() {
 this.onLoad();
 }

Working with Application Logic and Data

[199]

The onLoad function loads the current content from the local storage. It's as easy6.
as just using the key for the data we want to retrieve:

 onLoad = async () => {
 try {
 const storedValue = await AsyncStorage.getItem(key);
 this.setState({ storedValue });
 } catch (error) {
 Alert.alert('Error', 'There was an error while loading the
data');
 }
 }

Saving the data is simple as well. We only need to use a key to save anything we7.
want:

 onSave = async () => {
 const { text } = this.state;

 try {
 await AsyncStorage.setItem(key, text);
 Alert.alert('Saved', 'Successfully saved on device');
 } catch (error) {
 Alert.alert('Error', 'There was an error while saving the
data');
 }
 }

Now we need to define a function to save the value from the input text to the8.
state. When the value of the input changes, we will get the new change and set
it to the state:

 onChange = (text) => {
 this.setState({ text });
 }

Our UI will be very simple, just a text to render the saved content, a text input9.
component to allow the user to enter a new value and two buttons. One button
will call the onLoad function to load the current value and the other will save the
value from the input:

 render() {
 const { storedValue, text } = this.state;

 return (
 <View style={styles.container}>

Working with Application Logic and Data

[200]

 <Text style={styles.preview}>{storedValue}</Text>
 <View>
 <TextInput
 style={styles.input}
 onChangeText={this.onChange}
 value={text}
 placeholder="Type something here..."
 />
 <TouchableOpacity onPress={this.onSave} style={styles.btn}>
 <Text>Save locally</Text>
 </TouchableOpacity>
 <TouchableOpacity onPress={this.onLoad} style={styles.btn}>
 <Text>Load data</Text>
 </TouchableOpacity>
 </View>
 </View>
);
 }

Finally, let's add some styles. We are just adding some colors, paddings, margins,10.
and things we have covered in Chapter 1, Getting Started:

 const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#fff',
 },
 preview: {
 backgroundColor: '#bdc3c7',
 width: 300,
 height: 80,
 padding: 10,
 borderRadius: 5,
 color: '#333',
 marginBottom: 50,
 },
 input: {
 backgroundColor: '#ecf0f1',
 borderRadius: 3,
 width: 300,
 height: 40,
 padding: 5,
 },
 btn: {
 backgroundColor: '#f39c12',
 padding: 10,

Working with Application Logic and Data

[201]

 borderRadius: 3,
 marginTop: 10,
 },
 });

How it works…
The AsyncStorage class allows us to save data on the local device. On iOS, this is
accomplished by using dictionaries on text files. On Android, things are slightly different–it
will use RocksDB or SQLite, depending on what's available.

It's not recommended to save sensitive information using this method, as the data is not
encrypted.

In step 6, we are loading the current saved data. The AsyncStorage API contains a
getItem method; this method receives the key we want to retrieve as a parameter. We are
using the await/async syntax here, as this call is asynchronous. After we get the value, we
just set it to state; this way we will be able to render the data on the view.

In step 7, we are saving the text from the state. Using the setItem method, we can set a
new key with any value we want. This call is asynchronous, therefore we either need to use
promises or the new await/async syntax.

Working with Application Logic and Data

[202]

Retrieving data from a Remote API
In previous chapters, we've been using the data from a JSON file or directly defined on the
source code. While that has been working for our previous examples, it's not what we
should do in real-world applications.

In this recipe, we will learn how to request data from an API. We will fetch a GET request
from a Heroku API to get a JSON response. For now, however, we are only going to display
the JSON in a text element.

This app will be really simple. We will have a text component where we are going to
display the response of the API. We will also add a button to request the data when
pressed.

Getting ready
We need to create an empty app, in this case, we'll name it RemoteApi. Feel free to use any
other name; just make sure you use the correct name when registering the app.

How to do it…
Let's start by opening the index.ios.js and index.android.js files. Remove1.
the previous code and add the following:

 import React, { Component } from 'react';
 import { AppRegistry } from 'react-native';
 import MainApp from './src/MainApp';

 AppRegistry.registerComponent('RemoteApi', () => MainApp);

As you can see, in the previous step we are importing the src/MainApp.js file.2.
We need to create this file and add all the dependencies for this class:

 import React, { PureComponent } from 'react';
 import {
 StyleSheet,
 Text,
 TextInput,
 TouchableOpacity,
 View
 } from 'react-native';

Working with Application Logic and Data

[203]

We are going to define a result property on the state. This property will hold3.
the response from the API. We need it to update the view when we get the
response:

 class MainApp extends PureComponent {
 state = {
 result: '',
 };

 // defined at later steps
 }

 const styles = StyleSheet.create({
 // defined at later steps

 });

 export default MainApp;

We need to send the request when the button gets pressed. Let's create a method4.
to handle the actual request:

 onLoad = async () => {
 this.setState({ result: 'Loading, please wait...' });

 const response = await
 fetch('https://my-bookmarks-api.herokuapp.com/api/bookmarks', {
 method: 'GET',
 });

 const result = await response.text();

 this.setState({ result });
 }

On the render method, we need to display the response. We can achieve this by5.
getting the result from the state. We will use a text input to display the result.
Editing will be disabled, and we will support multiline functionality. The button
will only call the onLoad function we already have from the previous step:

 render() {
 const { result } = this.state;

 return (
 <View style={styles.container}>
 <View>
 <TextInput

Working with Application Logic and Data

[204]

 style={styles.preview}
 value={result}
 placeholder="Result..."
 editable={false}
 multiline
 />
 <TouchableOpacity onPress={this.onLoad} style={styles.btn}>
 <Text>Load data</Text>
 </TouchableOpacity>
 </View>
 </View>
);
 }

Finally, let's add some styles–alignment, colors, margins, and paddings. Nothing6.
really fancy:

 const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#fff',
 },
 preview: {
 backgroundColor: '#bdc3c7',
 width: 300,
 height: 400,
 padding: 10,
 borderRadius: 5,
 color: '#333',
 marginBottom: 50,
 },
 btn: {
 backgroundColor: '#3498db',
 padding: 10,
 borderRadius: 3,
 marginTop: 10,
 },
 });

Working with Application Logic and Data

[205]

How it works…
In step 4, we are sending the request to the Heroku API. We are using the fetch method to
handle the requests. The first parameter is a string with the URL of the endpoint, the second
parameter is a configuration object; here, we are only defining the method as GET, but we
can also define headers, cookies, parameters, and so many other things.

We are also using async/await syntax, but we could also use promises to get the response
and finally set it to the state.

We are using an arrow function here to properly handle the scope. This will automatically
set the correct scope when this method is assigned to the onPress callback.

Sending data to a Remote API
In the previous recipe, we learned how to get data from an API using fetch. In this recipe,
we will learn how to POST data to the same endpoint to add new bookmarks.

Working with Application Logic and Data

[206]

Getting ready
Before going through this recipe, we need to create an empty app named SendingData.
You can use any other name; just make sure you set the correct name when registering the
app.

How to do it…
Let's open the index.ios.js and index.android.js files, remove the1.
previous code, and add the following:

 import React from 'react';
 import { AppRegistry } from 'react-native';
 import MainApp from './src/MainApp';

 AppRegistry.registerComponent('SendingData', () => MainApp);

Now we need to create the src/MainApp.js file, import the dependencies, and2.
define three properties on the state:

 import React, { PureComponent } from 'react';
 import {
 Alert,
 ScrollView,
 StyleSheet,
 Text,
 TextInput,
 TouchableOpacity,
 View
 } from 'react-native';

 const endpoint =
'https://my-bookmarks-api.herokuapp.com/api/bookmarks';

 class MainApp extends PureComponent {
 state = {
 result: '',
 title: '',
 url: '',
 };
 // Defined later
 }

 const styles = StyleSheet.create({

Working with Application Logic and Data

[207]

 // Defined later
 });

 export default MainApp;

After saving a new bookmark, we will request all the bookmarks from the API,3.
just to make sure the new data is saved correctly. We are going to define an
onLoad method to fetch the new data. This code is explained in the previous
recipe:

 onLoad = async () => {
 this.setState({ result: 'Loading, please wait...' });

 const response = await fetch(endpoint, {
 method: 'GET',
 });

 const result = await response.text();

 this.setState({ result });
 }

Let's work on saving the new data. First, we need to get the values from the4.
state. Additionally, we could run some validations to make sure the title and
the url are not empty. On the fetch call, we need to define the content type of
the request; in this case, we will send the data in a JSON format within the body
containing all the information. For now, we will hard code the category ID, which
is 1, but ideally, we should get this value from the category API. After the
response is completed, we get the JSON response, check if it was successful or
not, and show an alert message:

 onSave = async () => {
 const { title, url } = this.state;

 const response = await fetch(endpoint, {
 method: 'POST',
 headers: {
 'Content-Type': 'application/json;charset=UTF-8',
 },
 body: JSON.stringify({
 category_id: 1,
 title,
 url,
 }),
 });

Working with Application Logic and Data

[208]

 const result = await response.json();

 if (result.success === false) {
 Alert.alert('Error', 'There was an error while saving the
bookmark');
 } else {
 Alert.alert('Sucess', 'Bookmark successfully saved');
 this.onLoad();
 }
 }

The saving functionality is completed. Now we need the methods to save the5.
title and url to the state. These methods will be executed as the user types in
the input text to keep track of the values:

 onTitleChange = (title) => this.setState({ title });
 onUrlChange = (url) => this.setState({ url });

We have everything we need for the functionality, but the UI is missing. The6.
render method will display a toolbar, three input texts, and a button:

 render() {
 const { result, title, url } = this.state;

 return (
 <View style={styles.container}>
 <Text style={styles.toolbar}>Add a new bookmark</Text>
 <ScrollView style={styles.content}>
 <TextInput
 style={styles.input}
 onChangeText={this.onTitleChange}
 value={title}
 placeholder="Title"
 />
 <TextInput
 style={styles.input}
 onChangeText={this.onUrlChange}
 value={url}
 placeholder="URL (http://example.com)"
 />
 <TouchableOpacity onPress={this.onSave} style={styles.btn}>
 <Text>Save!</Text>
 </TouchableOpacity>
 <TextInput
 style={styles.preview}
 value={result}
 placeholder="Result..."

Working with Application Logic and Data

[209]

 editable={false}
 multiline
 />
 </ScrollView>
 </View>
);
 }

Finally, let's add the styles. Nothing really complicated here–just some colors,7.
margins, paddings, sizing, just the usual, actually:

 const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#fff',
 },
 toolbar: {
 backgroundColor: '#3498db',
 color: '#fff',
 textAlign: 'center',
 padding: 25,
 fontSize: 20,
 },
 content: {
 flex: 1,
 padding: 10,
 },
 preview: {
 backgroundColor: '#bdc3c7',
 flex: 1,
 height: 500,
 },
 input: {
 backgroundColor: '#ecf0f1',
 borderRadius: 3,
 height: 40,
 padding: 5,
 marginBottom: 10,
 flex: 1,
 },
 btn: {
 backgroundColor: '#3498db',
 padding: 10,
 borderRadius: 3,
 marginBottom: 30,
 },
 });

Working with Application Logic and Data

[210]

How it works…
In step 2, we are importing all the dependencies and defining three properties on the
state.

The result will contain the response from the server API; we will use it to display the
value on the UI.

We will use the title and url properties to hold the values from the input text
components; this will allow the user to define a new bookmark. We will send these values
to the API when pressing the Save button.

In step 6, we are declaring the elements on the UI. We are going to use two input text to get
the data for the new bookmark, which the user will be able to type. We will also use a
button to save the data by calling the onSave method when pressed. Finally, we will use an
input text to display the result, but the user won't be allowed to type anything in this field.

Working with Application Logic and Data

[211]

Establishing real-time communications with
WebSockets
In this recipe, we will integrate WebSockets in a React Native application. We are going to
create a simple chat app, where we will allow clients to send and receive messages to each
other.

Getting ready
In order to support WebSockets on React Native, we need to have a server to handle all the
clients that will be connected. The server should be able to broadcast a message when it
receives a message from any of the clients.

You can download the code for this recipe; it will contain a server folder with the code
needed to listen and send messages to clients. We need to have the server running before
writing any React Native code.

To keep things as simple as possible, we will run our server with Node.js 6.x. We will only
use the ws package from npm. If you have downloaded the code for this recipe, you will
only need to run the following commands from inside of the server folder:

 $ npm install --save ws
 $ npm start

That's it. You will have a simple WebSocket server up and running on port 3001. The code
for the server is actually really simple. In case you want to do it by yourself, here's the
minimal code to create the server. Don't forget to install the ws package:

const port = 3001;
const WebSocketServer = require('ws').Server;
const wss = new WebSocketServer({ port });
wss.on('connection', (ws) => {
 ws.on('message', (message) => {
 console.log('received: %s', message);

 wss.clients.forEach(client => {
 if (client !== ws) {
 client.send(message);
 }
 });
 });
});

Working with Application Logic and Data

[212]

console.log(`Web Socket Server running on port ${port}`);

We also need to create an empty React Native app. For this recipe, we will name it
WebSockets, but feel free to use any other name.

How to do it…
Once we have the WebSocket server running, we need to open the1.
index.ios.js and index.android.js files, remove the existing code, and add
the following:

 import React, { Component } from 'react';
 import { AppRegistry } from 'react-native';
 import MainApp from './src/MainApp';

 AppRegistry.registerComponent('WebSockets', () => MainApp);

Now let's create the src/MainApp.js file, where we will have all the shared2.
code for iOS and Android. Let's start by importing all the dependencies and
defining the state:

 import React, { Component } from 'react';
 import {
 Dimensions,
 ScrollView,
 StyleSheet,
 Text,
 TextInput,
 View,
 } from 'react-native';

 const { width } = Dimensions.get('window');

 class MainApp extends Component {
 state = {
 history: [],
 };
 // Defined at later steps
 }

 const styles = StyleSheet.create({
 // Defined at later steps
 });

 export default MainApp;

Working with Application Logic and Data

[213]

The first thing we need to do in order to integrate WebSockets into our app is to3.
connect to the socket and set up the callback functions for receiving messages,
errors, and when the connection is open or closed. We will do this when the
component has been created:

 componentWillMount() {
 this.ws = new WebSocket('ws://localhost:3001');

 this.ws.onopen = this.onOpenConnection;
 this.ws.onmessage = this.onMessageReceived;
 this.ws.onerror = this.onError;
 this.ws.onclose = this.onClose;
 }

Let's define the callbacks for open/closed connections and when receiving errors.4.
We are just going to log the actions, but in here we could show an alert message
when the connection is closed and the user is still using the app, or display an
alert error when an error is received:

 onOpenConnection = () => {
 console.log('Open!');
 }

 onError = (event) => {
 console.log('onerror', event.message);
 }

 onClose = (event) => {
 console.log('onclose', event.code, event.reason);
 }

When receiving a new message from the server, we need to add it to the5.
history on the state. This way we will be able to render the new content as
soon as it arrives:

 onMessageReceived = (event) => {
 this.setState({
 history: [
 ...this.state.history,
 { owner: false, msg: event.data },
],
 });
 }

Working with Application Logic and Data

[214]

Now let's send the message! We need to define a method that will get executed6.
when the user presses the Return key on the keyboard. We need to do two things
here. First add the new message to the history, and then send the message
through the socket:

 onSendMessage = () => {
 const { text } = this.state;

 this.setState({
 text: '',
 history: [
 ...this.state.history,
 { owner: true, msg: text },
],
 });
 this.ws.send(text);
 }

In the previous step, we got the text property from the state. We need to keep7.
track of the value whenever the user types something in the input. Therefore, we
have to create a function to listen to the keystrokes and save the value to the
state:

 onChangeText = (text) => {
 this.setState({ text });
 }

We have all the functionality in place. Let's work on the UI. On the render8.
method, we will have a toolbar, a scroll view to render all the messages on the
history, and an input text to allow the user to send a new message:

 render() {
 const { history, text } = this.state;

 return (
 <View style={styles.container}>
 <Text style={styles.toolbar}>Simple Chat</Text>
 <ScrollView style={styles.content}>
 { history.map(this.renderMessage) }
 </ScrollView>
 <View style={styles.inputContainer}>
 <TextInput
 style={styles.input}
 value={text}
 onChangeText={this.onChangeText}
 onSubmitEditing={this.onSendMessage}

Working with Application Logic and Data

[215]

 />
 </View>
 </View>
);
 }

To render the history messages, we loop through the history array and render9.
each message. In here, we need to check if the current message belongs to the
user on this device. Based on this, we will apply different styles:

 renderMessage(item, index){
 const kind = item.owner ? styles.me : styles.friend;

 return (
 <View style={[styles.msg, kind]} key={index}>
 <Text>{item.msg}</Text>
 </View>
);
 }

Finally, let's work on the styles! Let's add styles to the toolbar, the history10.
component, and the text input. We need to set the history container as flexible
because we want to take all the available vertical space.

 const styles = StyleSheet.create({
 container: {
 backgroundColor: '#ecf0f1',
 flex: 1,
 },
 toolbar: {
 backgroundColor: '#34495e',
 color: '#fff',
 fontSize: 20,
 padding: 25,
 textAlign: 'center',
 },
 content: {
 flex: 1,
 },
 inputContainer: {
 backgroundColor: '#bdc3c7',
 padding: 5,
 },
 input: {
 height: 40,
 backgroundColor: '#fff',
 },

Working with Application Logic and Data

[216]

 });

Now the styles for each message. We are going to create a common style's object11.
called msg. Then we will create styles for my messages and styles for other
people's messages. Only the color and alignment change:

 msg: {
 margin: 5,
 padding: 10,
 borderRadius: 10,
 },
 me: {
 alignSelf: 'flex-start',
 backgroundColor: '#1abc9c',
 marginRight: 100,
 },
 friend: {
 alignSelf: 'flex-end',
 backgroundColor: '#fff',
 marginLeft: 100,
 },

Working with Application Logic and Data

[217]

How it works…
In step 2, we are importing the dependencies and declaring the state. We are also getting
the width of the device because we are going to use this value for the styles. The history
property will have objects representing each message on the history. Each object will have
two properties only–a string with the actual message and a Boolean flag to figure out
whether this message was sent by the current user.

We could have more data here, such as the name of the user, a URL of the avatar image,
or anything else we need.

In step 3, we are connecting to the socket and setting up the callbacks. We need to specify
the server address as well as the port; in this case, the address is localhost and the port is
3001.

In step 5, we are defining the callback to execute when receiving a new message from the
server. We are using an arrow function because we need to set the scope of the function to
the current component. We are also adding a new object to the history array on the state.
The new object represents the new message. It just has two properties–owner, and msg.

In step 6, we are sending the message to the server. We need to add the message to the
history because the server will broadcast the message to all other clients, but not the author
of the message. In order to keep track of this message, we need to manually add it to the
history.

There's more…
In order to run the app on Genymotion to test the Android version, we need to forward the
port to successfully connect to the socket. Just run the following command on the
Terminal–make sure the $ANDROID_HOME has the correct reference to the Android SDK:

 $ANDROID_HOME/platform-tools/adb reverse tcp:3001 tcp:3001

Integrate persistent database functionality
with Realm
As your application becomes more and more complex, you will come to the point where
you need to store data on the device. This could be business data, such as user lists, to avoid
having to make expensive network connections to a Remote API. Maybe you don't have an

Working with Application Logic and Data

[218]

API at all and your application works as a self-sufficient entity. Regardless of the situation,
you may benefit from leveraging a database to store your data. There are several options on
the React Native front:

You can use AsyncStorage (we cover this in the Storing and retrieving data
locally recipe)
SQLite, or you can write an adapter to an OS-specific data provider, such
as CoreData, or use a mobile database such as Realm

Realm is an extremely fast, thread-safe, transactional, object-based database. It is primarily
designed for use by mobile devices, with a straightforward JavaScript API. It supports other
features, such as encryption, complex querying, UI bindings, and more. You can read all
about it at h t t p s ://r e a l m . i o /p r o d u c t s /r e a l m - m o b i l e - d a t a b a s e /.

In this recipe, we will walk through using Realm in React Native. We will create a simple
database, and perform basic operations, such as inserting records, updating, and deleting.
Most importantly, we will display all the records of our schema on the UI.

Getting ready
For this recipe, we will use an empty React Native application named RealmApp. For our
sample UI, we used react-native-button, for buttons to trigger database operations. To
install react-native-button execute the following command in the Terminal:

 $ npm install --save react-native-button

How to do it…
Open your Terminal and go into your React Native project directory. Execute the1.
following commands:

 $ npm install --save realm
 $ react-native link realm

Open index.ios.js and add the following imports:2.

 import Realm from 'realm';
 import Button from 'react-native-button';

https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/
https://realm.io/products/realm-mobile-database/

Working with Application Logic and Data

[219]

Next, we need to instantiate our Realm database and keep a reference to it in our3.
class. Add the following code to the class:

 class RealmApp extends Component {
 realm : undefined

 componentWillMount() {
 const realm = this.realm = new Realm({
 schema : [
 {
 name : 'User',
 properties : {
 firstName : 'string',
 lastName : 'string',
 email : 'string'
 }
 }
]
 });
 this.setState({users:realm.objects('User')});
 }

To create the User entries, we will use the random user generator API4.
(randomuser.me). Let's create a method that will fetch the data:

getRandomUser() {
 return
fetch('https://randomuser.me/api/').then((response)=>response.json());
}

We need some functionality to create User objects. Add the following function:5.

 createUser = () => {
 const realm = this.realm;

 this.getRandomUser().then((response) => {
 const user = response.results[0];
 const userName = user.name;
 realm.write(() => {
 realm.create('User', {
 firstName : userName.first,
 lastName : userName.last,
 email : user.email
 });
 this.setState({users:realm.objects('User')});
 });
 });

Working with Application Logic and Data

[220]

 }

Next, we should add a way to update an object in the database. Let's put in some6.
code to take the first record in the collection and change its information:

 updateUser = () => {
 const realm = this.realm;
 const users = realm.objects('User');

 realm.write(() => {
 if(users.length) {
 let firstUser = users.slice(0,1)[0];
 firstUser.firstName = 'Bob';
 firstUser.lastName = 'Cookbook';
 firstUser.email = 'react.native@cookbook.com';
 this.setState(users);
 }
 });
 }

Finally, let's say we need to reset the entire dataset. We need a way to delete7.
everything in the database:

 deleteUsers = () => {
 const realm = this.realm;
 realm.write(() => {
 realm.deleteAll();
 this.setState({users:realm.objects('User')});
 });
 }

Let's build our UI, which will render a list of User objects, and buttons to create,8.
update, and delete. Implement your render function with this:

 const realm = this.realm;
 return (
 <View style={styles.container}>
 <Text style={styles.welcome}>
 Welcome to Realm DB Test!
 </Text>
 <View style={styles.container}>
 <Button
 onPress={this.createUser}>
 Add User
 </Button>
 <Button
 onPress={this.updateUser}>

Working with Application Logic and Data

[221]

 Update First User
 </Button>
 <Button
 onPress={this.deleteUsers}>
 Remove All Users
 </Button>
 </View>
 <View style={styles.container}>
 <Text style={styles.welcome}>Users:</Text>
 {this.state.users.map((user, idx) => {
 return <Text key={idx}>{user.firstName} {user.lastName}
 {user.email}</Text>;
 })}
 </View>
 </View>
);

For Android, open index.android.js and repeat steps 2–8.9.
Running the application on either platform should look and function something10.
like these screenshots of the sample app:

Working with Application Logic and Data

[222]

How it works…
The Realm database is built in C++; its core is known as the Realm Object Store. There are
products that encapsulate this object store for each major platform (Java, Objective-C, Swift,
Xamarin, and as we know from our case, React Native). The React Native product is a
JavaScript adapter for Realm. From the React Native side, we do not need to worry about
the implementation; rather we get a very clean API to persist and retrieve data. Steps 5, 6,
and 7 show some basic Realm calls. If you would like to see what you can do with the API,
please refer to the documentation found at h t t p s ://r e a l m . i o /d o c s /r e a c t - n a t i v e /l a t e s

t /a p i /.

Mask the application upon network
connection loss
Internet connection is not always available, especially when people are moving around the
city, on the train, or hiking in the mountains. A good user experience will inform the user
when the connection is lost.

In this recipe, we will create an app that shows a message when a network connection is
lost.

Getting ready
We need to create an empty app named MaskNetwork. If you use a different name, make
sure you use the same when registering the app.

For Android, add the following permission to your AndroidManifest.xml:

<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/
https://realm.io/docs/react-native/latest/api/

Working with Application Logic and Data

[223]

How to do it…
Let's open the index.ios.js and index.android.js files, remove the existing1.
code, and add the following:

 import React, { Component } from 'react';
 import { AppRegistry } from 'react-native';
 import MainApp from './src/MainApp';

 AppRegistry.registerComponent('MaskNetwork', () => MainApp);

We will have the common code for iOS and Android on src/MainApp.js. Let's2.
start by importing the dependencies and adding two properties to the state:

 import React, { PureComponent } from 'react';
 import {
 NetInfo,
 StyleSheet,
 Text,
 View,
 } from 'react-native';

 class MainApp extends PureComponent {
 state = {
 online: null,
 offline: null,
 };
 // Defined at later steps
 }

 const styles = StyleSheet.create({
 // Defined at later steps
 });

 export default MainApp;

When the component gets created, we need to find out the initial network status.3.
We are going to use the NetInfo class to get the current status, and we also need
to set up a callback when the status changes:

 componentWillMount() {
 NetInfo.fetch().done(reach => {
 this.onConnectivityChange(reach);
 });

 NetInfo.addEventListener('change', this.onConnectivityChange);

Working with Application Logic and Data

[224]

 }

When the component is about to get destroyed, we need to remove the listener:4.

 componentWillUnmount() {
 NetInfo.removeEventListener('change', this.onConnectivityChange);
 }

The callback that will get executed when the network status changes, is only5.
going to check whether the current network type is none, and it will set the
state to true or false:

 onConnectivityChange = reach => {
 const type = reach.toLowerCase();
 this.setState({
 online: type !== 'none',
 offline: type === 'none',
 });
 }

Now we know when the network is on or off, but the UI is missing. Let's just6.
render a toolbar with some dummy text as the content:

 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.toolbar}>My Awesome App</Text>
 <Text style={styles.text}>Lorem...</Text>
 <Text style={styles.text}>Lorem ipsum...</Text>
 {this.renderMask()}
 </View>
);
 }

As you can see from the previous step, there's a renderMask function. This7.
function will return a message when the network is offline or nothing if it's
online:

 renderMask() {
 if (this.state.offline) {
 return (
 <View style={styles.mask}>
 <View style={styles.msg}>
 <Text style={styles.alert}>Seems like you do not have
 network connection anymore.</Text>
 <Text style={styles.alert}>You can still continue
 using the app, with limited content.</Text>

Working with Application Logic and Data

[225]

 </View>
 </View>
);
 }
 }

Finally, let's add the styles for our app. Something really simple–just styles for the8.
toolbar and the content:

 const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#F5FCFF',
 },
 toolbar: {
 backgroundColor: '#3498db',
 padding: 15,
 fontSize: 20,
 color: '#fff',
 textAlign: 'center',
 },
 text: {
 padding: 10,
 },
 });

For the message, we will render a dark mask before all content and a container9.
with the text at the center of the screen. For the mask, we need to set the position
to absolute, set the top, bottom, right, and left to zero, add opacity to the
background color, and justify and align the content to the center:

 mask: {
 alignItems: 'center',
 backgroundColor: 'rgba(0, 0, 0, 0.5)',
 bottom: 0,
 justifyContent: 'center',
 left: 0,
 position: 'absolute',
 top: 0,
 right: 0,
 },
 msg: {
 backgroundColor: '#ecf0f1',
 borderRadius: 10,
 height: 200,
 justifyContent: 'center',
 padding: 10,

Working with Application Logic and Data

[226]

 width: 300,
 },
 alert: {
 fontSize: 20,
 textAlign: 'center',
 margin: 5,
 },

How it works…
In step 2, we are importing the dependencies and creating the initial state properties. We
only declared two properties–online will be true when a network connection is available
and offline will be true when it's not available.

In step 3, we are getting the initial network status and setting up a listener to check when
the status changes. The network type that we will receive should be Wi-Fi, cell, unknown,
and none for iOS, and WIFI, MOBILE, NONE, and a few others on Android. Make sure to
read the documentation to see all the available values.

Working with Application Logic and Data

[227]

In step 5, when listening to network status changes, we need to lower case the network
type. This is because on Android, the value is upper case, and in iOS, it is lowercase. After
making sure that we will have the same value on both platforms, we need only check if
there's no connectivity to set the value of online and offline.

There's more…
In Chapter 5, Implementing Redux, we take this approach to detect the network connection
using Redux.

Synchronizing locally persisted data with a
Remote API
When working with a mobile app, network connectivity is something that is often taken for
granted. Sure, year after year great strides in availability and bandwidth are made, but
everyone still hits a point where they only have one bar and the picture they just sent over
iMessage is timing out. What if your application needs to make an API call for something in
your application, but you just lost connectivity? Fortunately for us, React Native has a
module that reacts to the network connectivity status. We can architect our application in a
way that supports the loss of connectivity, and then synchronizes our data by completing
an API call when the network connection restores.

This recipe will show a simple implementation of using the NetInfo module to control
whether or not our application will make an API call. If the connectivity is lost, we will keep
a reference of the pending request and complete it when the network access is restored. We
will be using a sample POST API provided by posttestserver.com. This API accepts POST
requests and writes the contents out to a file on the web server that you can later access.

Getting ready
For this recipe, we will use an empty React Native application named SyncData.

http://posttestserver.com/

Working with Application Logic and Data

[228]

How to do it…
Open index.ios.js in your IDE.1.
First, we're going to need to import the NetInfo module, as well as2.
TouchableOpacity for our Submit button.

 import {
 //...
 NetInfo,
 TouchableOpacity
 } from 'react-native';

Add an instance variable pendingSync to the class that will store the pending3.
request.

 class SyncData extends Component {
 pendingSync : undefined

Next, let's set up our state and, more importantly, get the current connection4.
status and attach a listener to monitor the changes in connectivity:

 componentWillMount() {
 this.setState({
 isConnected : undefined,
 syncStatus : undefined,
 serverResponse : undefined
 });

 NetInfo.isConnected.fetch().then(isConnected => {
 this.setState({isConnected});
 });
 NetInfo.isConnected.addEventListener('change',
this.onConnectedChange);
 }

Now we need to implement our event listener:5.

 onConnectedChange = (isConnected) => {
 var pendingSync = this.pendingSync;
 this.setState({isConnected});
 if(pendingSync) {
 this.setState({syncStatus : 'Syncing'});
 this.submitData(pendingSync).then(() => {
 this.setState({syncStatus : 'Sync Complete'});
 });
 }

Working with Application Logic and Data

[229]

 }

Next, we need to implement the API call that will be performed when there is an6.
active network connection:

 submitData(bodyData) {
 return fetch('https://posttestserver.com/post.php', {
 method : 'POST',
 body : JSON.stringify(bodyData)
 }).then((response) => {
 return response.text();
 }).then((responseText) => {
 this.setState({
 serverResponse : responseText
 });
 });
 }

The last thing we need to do before we work on our UI is create a handler for the7.
Submit Data button we will create. This will either perform the call immediately
or mark it as pending if there is no network connection:

 onSubmitPress = () => {
 var isConnected = this.state.isConnected,
 submitBody = {
 name : 'React Native Cookbook',
 timestamp : Date.now()
 };
 if(isConnected) {
 this.submitData(submitBody);
 } else {
 this.pendingSync = submitBody;
 this.setState({syncStatus : 'Pending'});
 }
 }

Working with Application Logic and Data

[230]

Now we can stub out our simple UI that will show us the connection status, sync8.
status, and the response from the API. Add the following to your render
method:

 const {
 isConnected,
 syncStatus,
 serverResponse
 } = this.state;
 return (
 <View style={styles.container}>
 <TouchableOpacity onPress={this.onSubmitPress}>
 <View style={styles.button}>
 <Text style={styles.buttonText}>Submit Data</Text>
 </View>
 </TouchableOpacity>
 <Text style={styles.instructions}>
 Connection Status: {isConnected ? 'Connected' :
'Disconnected'}
 </Text>
 <Text style={styles.instructions}>
 Sync Status: {syncStatus}
 </Text>
 <Text style={styles.instructions}>
 Server Response: {serverResponse}
 </Text>
 </View>
);

For Android, open index.android.js and repeat steps 2–8.9.
Open AndroidManifest.xml in ./android/app/src/main/ and add the10.
following line:

 <uses-permission
android:name="android.permission.ACCESS_NETWORK_STATE" />

Working with Application Logic and Data

[231]

When you run the app (we recommend running on a device for accuracy), you11.
should see something like this for the sync process:

How it works…
This recipe leverages the NetInfo module to control whether or not we can make an HTTP
request. If there is no connectivity, we place the arguments that we would send to the API
in a class variable. This logic is carried out in step 7. The two NetInfo method calls in step
4 retrieve the current network connection status and attach an event listener to the change
event. In step 5, once the connectivity changes to a positive state, we check to see if there is a
pending API call and complete the request. This recipe can be expanded on to support a
queue system of pending calls, which we would see in a more realistic scenario.

Working with Application Logic and Data

[232]

Logging in with Facebook
Facebook is the largest social media platform, with well over 1 billion users worldwide.
There is a pretty good chance that your user will have a Facebook account, and would want
to maybe even log in using their Facebook credentials. Your app can register and link with
their account. This will allow you to access data, such as their user information, pictures,
and even the ability to share content. Not only has Facebook given us this wonderful
framework of React Native, they also gave us a library to help facilitate connecting to the
Facebook SDK.

In this recipe, we will cover the first two bits of functionality–logging in and getting basic
user information from a Facebook account. We will use the Facebook iOS and Android SDK
wrapper for React Native, and present the login status, user ID, and username on our
sample UI.

Getting ready
For this recipe, we created a React Native application titled FbLogin. You will need to have
an active Facebook account to test the functionality.

How to do it…
Open your Terminal and go to your React Native project. Execute the following1.
command:

 $ react-native install react-native-fbsdk

Now we need to set up our iOS project. Please follow the Quick Start Guide. The2.
next several steps will be used as a companion to the guide at h t t p s ://d e v e l o p e

r s . f a c e b o o k . c o m /q u i c k s t a r t s /?p l a t f o r m =i o s .

https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios
https://developers.facebook.com/quickstarts/?platform=ios

Working with Application Logic and Data

[233]

Create a new app ID, and fill out the required information. Please note that you3.
cannot use any Facebook-related naming in your name. In our example we use
LoginTest:

Make sure you save your SDK files into ~/Documents/FacebookSDK.4.
Open Xcode and drag the .framework files to your project:5.

Open your project's Build Settings and add ~/Documents/FacebookSDK/ to the6.
Framework Search Paths.

Working with Application Logic and Data

[234]

In the Capabilities section of your project, enable Keychain Sharing:7.

Complete all the changes required for the Info.plist, including the8.
LSApplicationQueriesSchemes.
Back in your browser, the Quick Start Guide will ask for your Bundle Identifier.9.
It is found in your project's General Settings. These identifiers must match.

Switch back to Xcode and open AppDelegate.m. Add the following code:10.

 #import <FBSDKCoreKit/FBSDKCoreKit.h>
 - (BOOL)application:(UIApplication *)app
 openURL:(NSURL *)url

options:(NSDictionary<UIApplicationOpenURLOptionsKey,id> *)options {

 BOOL handled = [[FBSDKApplicationDelegate sharedInstance]
 application:application
 openURL:url

sourceApplication:options[UIApplicationOpenURLOptionsSourceApplicationKey]
 annotation:options[UIApplicationOpenURLOptionsAnnotationKey]
];
 return handled;
 }

Working with Application Logic and Data

[235]

In your didFinishingLaunchingWithOptions method, add the following line:11.

 [[FBSDKApplicationDelegate sharedInstance] application:application
 didFinishLaunchingWithOptions:launchOptions];

We're all set for the iOS setup. Now let's add a Facebook login button to our UI.12.
Open index.ios.js and add the following import and variable declaration:

 import FBSDK from 'react-native-fbsdk';

 const {
 LoginButton,
 AccessToken,
 GraphRequest,
 GraphRequestManager
 } = FBSDK;

Let's start with our render method. Add the following JSX:13.

 <LoginButton
 publishPermissions={["publish_actions"]}
 onLoginFinished={this.onLoginFinished}
 onLogoutFinished={this.onLogoutFinished}/>
 <View>
 <Text>Login Status:</Text>
 <Text>{this.state.status}</Text>
 <Text>User Name:</Text>
 <Text>{this.state.userName}</Text>
 </View>

Next, we need to implement the callbacks for the LoginButton, as well as define14.
the initial state for our view:

 componentWillMount() {
 this.setState({status : undefined, userName : undefined});
 }

 onLoginFinished = (error, result) => {
 var status;
 if (error) {
 status = `Error: ${error.message}`;
 } else if (result.isCancelled) {
 status = 'Login Cancelled';
 } else {
 AccessToken.getCurrentAccessToken().then(
 (data) => {
 status = `Success! UserID: ${data.userID}`;

Working with Application Logic and Data

[236]

 this.setState({status});
 this.getUserInfo(data);
 }
)
 }
 this.setState({status});
 }

 onLogoutFinished = () => {
 this.setState({status : 'Logged Out'});
 }

We need to make our call to get the user profile using the Graph API:15.

 getUserInfo(accessToken) {
 const infoRequest = new
GraphRequest('/me',null,this.onGraphResponse);
 new GraphRequestManager().addRequest(infoRequest).start();
 }

 onGraphResponse = (error, result) => {
 this.setState({userName : result.name});
 }

For Android functionality, we're going to work a bit backward. Repeat steps16.
12–15 for index.android.js.
Open your Android project in Android Studio. Open MainApplication.java17.
and add the following private field:

 private static CallbackManager mCallbackManager =
 CallbackManager.Factory.create();

Next, add the following methods:18.

 public void onCreate() {
 super.onCreate();
 FacebookSdk.sdkInitialize(getApplicationContext());
 }
 protected static CallbackManager getCallbackManager() {
 return mCallbackManager;
 }

Finally, we need to register the FBSDKPackage:19.

 protected List<ReactPackage> getPackages() {
 return Arrays.<ReactPackage>asList(
 new MainReactPackage(),

Working with Application Logic and Data

[237]

 new FBSDKPackage(mCallbackManager)
);
 }

Open MainActivity.java and add the following method:20.

 @Override public void onActivityResult(int requestCode, int
resultCode,
 Intent data) {
 super.onActivityResult(requestCode, resultCode, data);

MainApplication.getCallbackManager().onActivityResult(requestCode,
 resultCode, data);
 }

Follow the Quick Start Guide for Android to register the app ID and key hashes21.
for our application at h t t p s ://d e v e l o p e r s . f a c e b o o k . c o m /q u i c k s t a r t s /?p l a t f

o r m =a n d r o i d .
You will be asked for the Package Name and Default Activity Class Name. Enter22.
the following:

If you are prompted that your application is not in the Google Play store, press23.
Use this package name.
We're all set. You can now run the application on your device or simulator. See24.
our sample UI:

https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android
https://developers.facebook.com/quickstarts/?platform=android

Working with Application Logic and Data

[238]

How it works…
The React Native FBSDK module is a wrapper around the native iOS and Android
Facebook SDKs. It provides a common JavaScript API for interfacing with the native
Facebook SDK components, such as LoginButton, in our case. Since it is a collection of
native modules (see Exposing custom iOS modules and Exposing custom Android modules
recipes in Chapter 6, Adding Native Functionality for details on how these work), we still
have to go through the legwork of bootstrapping the individual SDKs on each platform.
Once the setup is complete, the JavaScript calls are piped through the native layer
identically on both platforms.

Sharing content on Facebook
Social media is an incredible platform to spread a message, image, or any sort of content out
to the world. Facebook is the de-facto leader in social media, with the furthest reach. We
live in a day and age where a celebrity's post on Facebook will generate worldwide news
coverage. How awesome would it be if you had a user who has a large social media
following share something on Facebook using your application?

Working with Application Logic and Data

[239]

In this recipe, we will use the Facebook SDK for React Native to share some content using
our application. We will have a button that will show the Facebook share dialog and link to
the Packt website.

Getting ready
For this recipe, we created a React Native application titled FbLogin. Your application
should have the Facebook SDK integrated. If you need assistance in doing so, please follow
the Logging in with Facebook recipe.

How to do it…
Open index.ios.js in your favorite IDE and add the following import and1.
variable declaration:

 import FBSDK from 'react-native-fbsdk';

 const {
 ShareDialog
 } = FBSDK;

Add the following to your render method to render the button and the status of2.
our share process:

 <TouchableOpacity onPress={this.onShareBtnPressed}>
 <View style={styles.button}>
 <Text style={styles.buttonText}>Share on Facebook</Text>
 </View>
 </TouchableOpacity>
 <Text>Share Success: {this.state.shareSuccess}</Text>

Next up, we need to define our initial state and implement our button callback:3.

 componentWillMount() {
 this.setState({shareSuccess : undefined});
 }

 onShareBtnPressed = () => {
 var shareSuccess;
 const shareLinkContent = {
 contentType: 'link',
 contentUrl: "https://packtpub.com",

Working with Application Logic and Data

[240]

 contentDescription: 'Packt Pub',
 };

 ShareDialog.canShow(shareLinkContent).then((canShow) => {
 if(canShow) {
 return ShareDialog.show(shareLinkContent);
 }
 }).then((result) => {
 if(result.isCancelled) {
 shareSuccess = 'Cancelled';
 } else {
 shareSuccess = 'Shared Successfully';
 }
 this.setState({shareSuccess});
 }, (error) => {
 shareSuccess = 'Error';
 this.setState({shareSuccess});
 });
 }

For Android, please replicate steps 1–3 for index.android.js.4.
We can now run our sample app and try sharing some content:5.

Working with Application Logic and Data

[241]

How it works…
This recipe uses the native Facebook share dialog. We pass in the link of Packt's homepage
as the content to share. An interesting bit to note is that you do not need an explicit login
call. If your app is already authenticated and linked with Facebook, it will handle the login
for you. If you are logged out, it will prompt you to log in through a Web View.

Tracking application events with Facebook
Analytics
Keeping track of what users do while active in your application is an important bit of
functionality to have. Metrics and analytics will help you understand which areas of your
application may need more focus to develop and enhance. Facebook provides an entire
platform for this to use in app development named Facebook Analytics. We can register
our application using the Analytics dashboard to track engagements and analyze important
metrics, such as sharing, purchases, and any custom events you may define.

This recipe will hook our sample application into Facebook Analytics and begin firing
launch events, as well as a few custom events when we share information.

Getting ready
For this recipe, we created a React Native application titled FbLogin. Your application
should have the Facebook SDK integrated. If you need assistance in doing so, please follow
the Logging in with Facebook recipe. The JavaScript code we will write in this recipe will be
very similar to the work we did in the Sharing content on Facebook recipe.

How to do it…
Open your React Native iOS project in Xcode. Open up AppDelegate.m and add1.
the following meeting:

 -(void)applicationDidBecomeActive:(UIApplication *)application {
 [FBSDKAppEvents activateApp];
 }

Working with Application Logic and Data

[242]

Now switch to your JavaScript IDE and open index.ios.js. Let's add our2.
imports and module references:

 import FBSDK from 'react-native-fbsdk';

 const {
 AppEventsLogger,
 ShareDialog
 } = FBSDK;

Add the following to your render method to render the button and the status of3.
our share process:

 <TouchableOpacity onPress={this.onShareBtnPressed}>
 <View style={styles.button}>
 <Text style={styles.buttonText}>Share on Facebook</Text>
 </View>
 </TouchableOpacity>
 <Text>Share Success: {this.state.shareSuccess}</Text>

Next up, we need to define our initial state and implement our button callback4.
that will show the ShareDialog and track its progress with custom app events:

 componentWillMount() {
 this.setState({shareSuccess : undefined});
 }

 onShareBtnPressed = () => {
 var shareSuccess;
 AppEventsLogger.logEvent('showShareDialog');
 const shareLinkContent = {
 contentType: 'link',
 contentUrl: "https://packtpub.com",
 contentDescription: 'Packt Pub',
 };
 ShareDialog.canShow(shareLinkContent).then((canShow) => {
 if(canShow) {
 return ShareDialog.show(shareLinkContent);
 }
 }).then((result) => {
 if(result.isCancelled) {
 shareSuccess = 'Cancelled';
 AppEventsLogger.logEvent('shareCancelled');
 } else {
 shareSuccess = 'Shared Successfully';
 AppEventsLogger.logEvent('sharedSuccessfully');
 }

Working with Application Logic and Data

[243]

 this.setState({shareSuccess});
 }, (error) => {
 shareSuccess = 'Error';
 AppEventsLogger.logEvent('shareError');
 this.setState({shareSuccess});
 });
 }

Now let's set up our Analytics for apps on Android. Open the project in Android5.
Studio and open MainApplication.java.
Add the following in the onCreate method:6.

 AppEventsLogger.activateApp(this);

Next, open index.android.js in your JavaScript IDE and repeat steps 2–4.7.
You can go ahead and run the application, and share some content.8.
The next day (this process takes time), visit the Facebook Analytics for Apps9.
dashboard at h t t p s ://w w w . f a c e b o o k . c o m /a n a l y t i c s /.
You will be presented with a list of applications. Click on your application name10.
(in our case it would be LoginTest).
Here you will be presented with various metrics that have been tracked:11.

https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/
https://www.facebook.com/analytics/

Working with Application Logic and Data

[244]

How it works…
This recipe builds on the Sharing content on Facebook recipe, but interjects custom app events
that are tracked in the Facebook Analytics for Apps dashboard. When we begin tracking
activations, as done in step 1 and 6, we are provided with a lot more information about the
users. These events are transmitted through the native Facebook SDK with metadata about
the session and user. If the user is logged in through the Facebook SDK and has lax privacy
settings, we would be able to see information such as their location, gender, and other
demographic information. There would have to be over 1,000 users at least 18 years of age
for results to be shown.

5
Implementing Redux

In this chapter, we will go step by step through the process of adding Redux to our app. We
will cover the following recipes:

Installing Redux and preparing our project
Defining actions
Defining reducers
Setting up the store
Communicating with a Remote API
Connecting the store with the views
Storing offline content using Redux
Showing network connectivity status

Introduction
At some point in our application, we will need a better way to handle the state of our
application and sending data across several components, and, overall, a robust architecture
to scale our application.

In simple words, Redux is a predictable state container. We can use Redux to handle the
global state of our app, which will allow us to send data to our components easily. All our
data will be in a single place, and from there, we can send it to any component or view that
we need to.

In order to have a better understanding of Redux, we will create an app through all the
recipes. All the recipes in this chapter will depend on each other.

Implementing Redux

[246]

We will be building an app to display bookmarks, something really simple. We are going to
use a ListView component to display categories from an API deployed on Heroku.

Installing Redux and preparing our project
In this recipe, we will install Redux in an empty application, and we will define the main
folder structure of our bookmarks application.

How to do it…
We need to create our application using the React Native CLI. By running the1.
following command, we will have our initial app:

 $ react-native init Bookmarks
 $ cd Bookmarks

Once we have the initial app, we need to install Redux; we can do that by using2.
npm or yarn. Feel free to use your favorite package manager:

 $ npm i --save redux
 $ npm i --save react-redux

Now let's create the folder structure for our application. First, we need to create3.
an src folder where we will have all our source code. Inside src, we will have
components, containers, views, redux, and MainApp.js:

Implementing Redux

[247]

Inside the redux folder, we need to create a modules folder with bookmarks and4.
categories folders inside, as well as an index.js file where we will initialize
all the modules. In each of the modules folders, we will have three files:
actions.js, reducer.js, and index.js:

Open the index.ios.js and index.android.js files, remove the existing5.
code, and add the following:

 import React from 'react';
 import { AppRegistry } from 'react-native';
 import MainApp from './src/MainApp';

 AppRegistry.registerComponent('Bookmarks', () => MainApp);

For now, the MainApp.js file will only contain an empty View; we will work on6.
this component in later recipes:

 import React, { Component } from 'react';
 import { StyleSheet, View } from 'react-native';

 class MainApp extends Component {
 render() {
 return (
 <View style={styles.container} />
);
 }
 }

Implementing Redux

[248]

 const styles = StyleSheet.create({
 container: {
 flex: 1,
 },
 });

 export default MainApp;

How it works…
In step 2, we installed the redux and react-redux libraries. The react-redux library
contains the necessary bindings to integrate Redux with React.

Redux is not exclusively designed to work with React; in fact, we can use Redux with any
other library out there. But, by using react-redux, we will be able to seamlessly integrate
Redux in our React Native application.

In step 3, we created the main folders we will use for our app:

The components folder will contain reusable components. The React community
calls them presentational components. In simple terms, these are the kind of
components that are not aware of any business logic or Redux actions. These
components only receive data via props, and should be reusable on any other
project. A button or panel would be a perfect example of a presentational
component.
The containers folder will contain components that directly receive data from
Redux and are able to call actions. In here we will define components such as a
header that displays the logged in user. Usually, these components internally use
presentational components.
The views folder will contain the main modules in our app, these classes use
containers and presentational components. In our application, we will have
categories and bookmarks as two different modules internally.
The redux folder will contain all the business logic of our app; in here we
shouldn't have any component or view.

In step 4, we created the two modules that we will have in our app. In this folder, we will
define all the actions, the reducer, and logic that we need to display our bookmarks and
categories:

The actions.js file will contain all the actions needed in the module; we will
talk more about the actions on the next recipe.

Implementing Redux

[249]

The reducer.js file will contain all the code to handle the data in the state. We
will dig deeper into this subject in later recipes.
The index.js on each module will have the public actions for each one of them.
We can have private and public actions; sometimes we only need an action
internally, within the module.

Defining actions
An action is a payload of information that sends data to the store; this is the only way views
can request or send data to the global state.

In this recipe, we will create the actions to load the initial bookmarks. For now, we will
define hardcoded data, but later on, we will request this data from an API on Heroku.

Getting ready
We will continue working on the code from the previous recipe. Make sure to follow those
steps in order to have Redux installed, as well as the folder structure that we will use for
this project.

How to do it…
First, we need to define the name of the action; let's open the1.
src/redux/modules/bookmarks/actions.js file. In this case, it's going to be
a constant that we are going to use later, in the action creator and in the reducer:

 export const LOAD_BOOKMARKS = 'bookmarks/load';

Now let's create an action creator as follows. Please duplicate the first bookmark2.
and change the IDs. For now, we are hardcoding these values, but later on this
same chapter we will request an API to load this data:

 export function loadBookmarks() {
 return {
 type: LOAD_BOOKMARKS,
 payload: [
 {
 id: 1,
 title: 'Testing 1',

Implementing Redux

[250]

 url: 'http://test.com',
 category: {
 id: 1,
 name: 'Games'
 },
 },
 // Define more bookmarks here
],
 };
 }

We can create as many action creations as needed. For example, if we want to add3.
a new bookmark, we need to define an action creator, as follows:

 export const ADD_BOOKMARK = 'bookmarks/add';

 export function addBookmark(bookmark) {
 return {
 type: ADD_BOOKMARK,
 payload: bookmark,
 };
 }

If we want to remove a bookmark; we need to define an action creator as follows.4.

 export const REMOVE_BOOKMARK = 'bookmarks/remove';

 export function removeBookmark(bookmark) {
 return {
 type: REMOVE_BOOKMARK,
 payload: bookmark,
 };
 }

Finally, let's define an action creator to update a bookmark, the code is very5.
similar to the previous steps:

 export const UPDATE_BOOKMARK = 'bookmarks/update';

 export function updateBookmark(bookmark) {
 return {
 type: UPDATE_BOOKMARK,
 payload: bookmark,
 };
 }

Implementing Redux

[251]

How it works…
In step 1, we are defining the action's type to load the existing bookmarks. We need to
define a constant because we are going to use it in a couple places, in the action creator, in
the reducer, and in our tests.

When defining an action name, it's recommended to set a namespace to
avoid conflicts with other action types.

In step 2, we are declaring an action creator. Actions are simple JavaScript objects that
define that something happens in our application. We use actions to send data to the store,
either from the views, from a fetch response, or a task that runs every X seconds.

There's only one single requirement: each action must have a type property. In addition,
it's recommended to define a payload property to send all the data that we want. In this
case, we are using an array of bookmarks, but in later steps we use a simple object.

An action is correct as long as we define the type property. If we want to
send anything else, we should use the payload property as defined by the
flux pattern. However, this is not required; we can even use a different
name, such as params or data.

Action creators are just functions that return actions; it's convenient to define the functions
to call the actions from the views by executing the action creator.

There's more…
Currently, we have defined the action creators that are simple functions. In order to use
them, we need to use the dispatch method from the store. We will learn more about the
store in later recipes.

Defining reducers
At this point, we have created some actions for our application–basically, a CRUD of
bookmarks. As mentioned previously, actions define that something happened; however,
we still need to figure out what to do with the data on the action. By using a reducer, we
can define how the data will be stored on the global state.

Implementing Redux

[252]

In this recipe, we will introduce a reducer to set the bookmarks, from the actions defined on
the previous recipe, to the global state.

Getting ready
This recipe depends on the previous recipe; make sure to start from the beginning of this
chapter to avoid any problems or confusion.

How to do it…
Let's start by opening the src/redux/modules/bookmarks/reducer.js file.1.
Then we need to import all the action types we defined in the previous recipe.

 import {
 LOAD_BOOKMARKS,
 ADD_BOOKMARK,
 REMOVE_BOOKMARK,
 UPDATE_BOOKMARK,
 } from './actions';

Now we should define the initial state. Basically, when the app gets initialized,2.
we will have an empty array of bookmarks.

 const initialState = {
 bookmarks: [],
 };

We can now define the reducer function. It will receive two parameters: the3.
current state and the action that has been dispatched:

 export default function reducer(state= initialState, action) {
 // Defined on steps 4,
 }

Inside the reducer function, we need to return the new state for the current4.
action:

 export function reducer(state= initialState, action) {
 switch (action.type) {
 case LOAD_BOOKMARKS:
 return {
 ...state,
 bookmarks: [...action.payload],

Implementing Redux

[253]

 };
 default:
 return state;
 }
 }

In order to add a new bookmark to the array, all we need to do is get the payload5.
of the action and include it in the new array:

 case ADD_BOOKMARK:
 return {
 ...state,
 bookmarks: [...state.bookmarks, action.payload],
 };

If we want to remove an item from the array, we can use the filter method:6.

 case REMOVE_BOOKMARK:
 return {
 ...state,
 bookmarks: state.bookmarks.filter(
 bookmark => bookmark.id !== action.payload.id
),
 };

Updating an item, it's a little bit trickier, as we need to find the bookmark and set7.
the new values. We can use the map method for this:

 case UPDATE_BOOKMARK:
 return {
 ...state,
 bookmarks: state.bookmarks.map(bookmark => {
 if(bookmark.id === action.payload.id) {
 return {
 ...action.payload,
 };
 }
 return bookmark;
 }),
 };

Implementing Redux

[254]

The final step is to combine all the reducers that we have; in this case, we only8.
have one, but later we will add another one for the categories. Therefore, it's a
good idea to prepare everything now. Let's open the src/redux/index.js file
and add the following code:

 import { combineReducers } from 'redux'
 import bookmarks from './modules/bookmarks/reducer'

 const reducers = combineReducers({ bookmarks,});

How it works…
In step 1, we are importing all the action types we declared in the previous recipe. We are
going to use these types to figure out how are we going to save the data from the actions of
the state.

In step 2, we defined the initial state of the reducer function. For now, we only have an
empty array of bookmarks, but we can have anything else that we need in order to initialize
our app.

In step 3, we are defining the reducer function, which receives two parameters. The first
parameter is the current state and the second parameter is the action that is being
dispatched.

We are setting the initial state if the given state is null. This way we make sure the
bookmarks array exists from the very beginning. This will avoid errors if the update or
remove actions get dispatched when there's nothing on the global state.

In step 4, we are setting the initial bookmarks from the load action to state. As you can see
we are not mutating the state, but instead, we are creating a new array with the given
bookmarks on the action.

The reducer function should be pure; this means there shouldn't be side effects on the
input values. Mutating the state or the action is considered a bad practice and we should
always avoid doing it. In this case, we are returning a new object with the previous state
and a new array containing the new bookmarks.

In addition, to prevent side effects, we should never execute any fetch or Ajax request inside
the reducer. We should never call any non-pure functions such as Math.random,
Date.now, or Guide.raw. Reducers should always be pure.

Implementing Redux

[255]

In step 5, we are adding a new element to the bookmarks array. But instead of using the
push method, we are creating a new array and appending the new element to the last
position. We do this to avoid mutating the original array on the state.

In step 6, we need to remove the bookmark from the state. The easiest way to do this is by
using the filter method; we only need to ignore the element with the ID that comes on
the payload's action. The filter method returns a new array with the filtered elements, in
this case, all other elements except the removed item.

In step 7, we update a bookmark. Because we need to keep this function pure, we use the
map method that returns a new array. Then, when the ID on the payload is equal to the ID
on the array, we create a new element with the payload values; otherwise, we just return
the existing element on the array.

In step 8, we use the combineReducers function to merge all the reducers into a single
global object that will be saved in the store. This function will call each reducer with the key
in the state that corresponds to that reducer; this function is exactly the same as the
following:

import bookmarksReducer from './modules/bookmarks/reducer';

const reducers = function(state, action) {
 return {
 bookmarks: bookmarksReducer(state.bookmarks, action),
 };
}

As you can see, the bookmark reducer has only been called on the part of the state that
needs. This will avoid sending all the data to a single reducer. Later, we will include the
categories reducer.

Setting up the store
The store is responsible for saving the information on the state. It's a single global object
that can be accessed via getState.

In this recipe, we will bring together the actions and the reducer we created in the previous
recipes. We will use the existing actions to start saving data on the store. We will also learn
how to log changes on the state by subscribing to the store changes.

Implementing Redux

[256]

How to do it…
Let's open the src/redux/index.js file and import the createStore function1.
from the redux package:

 import { combineReducers, createStore } from 'redux';

Creating the store is extremely simple; all we need to do is call the function from2.
step 1 and send the reducers as the first parameter:

 const store = createStore(reducers);
 export default store;

That's it! We are done setting up the store, so now let's run some tests. The next3.
steps in this recipe will be removed from the final project; these steps are just for
testing our setup. Let's start by importing the action creators we would like to
dispatch:

 import {
 loadBookmarks,
 addBookmark,
 removeBookmark,
 updateBookmark,
 } from './modules/bookmarks/actions';

Before dispatching any action, let's subscribe to the store. By doing this, we will4.
listen to any change in the state. For now, we will only log the state whenever
there's a change:

 const unsubscribe = store.subscribe(() =>
 console.log(store.getState())
);

Now we should dispatch some actions and see the resulting state on the5.
JavaScript console. Make sure to shake the device or the simulator and allow
remote debugging, to debug on Chrome:

 store.dispatch(loadBookmarks());

If we want to add a new bookmark, we should call the addBookmark action6.
creator with the data as a parameter:

 store.dispatch(addBookmark({
 id: 2,
 title: 'One more',

Implementing Redux

[257]

 url: 'http://other.com',
 }));

Updating an existing bookmark is exactly the same; however, we need to make7.
sure the id exists on the list, otherwise it will be ignored:

 store.dispatch(updateBookmark({
 id: 2,
 title: 'One more edited',
 url: 'http://other-edit.com',
 }));

To remove an item, we only need to send the id to the action creator; that's the8.
only thing the reducer is using to find the item on the list:

 store.dispatch(removeBookmark({ id: 1 }));

After running all these actions, we should stop listening to changes in the state.9.
To do this, we only need to call the unsubscribe function we have:

 unsubscribe();

Finally, we need to import the src/redux/index.js file into the MainApp.js10.
file. This will be enough to run our test and see the log messages on the
JavaScript console:

 import store from './redux';

How it works…
In step 3, we are importing the action creators. Even if we don't have a UI, we can test and
see how the state changes; we just need to call the action creators and then dispatch the
action.

Implementing Redux

[258]

In step 5, we use the dispatch method from the store instance. The dispatch takes an
action, which is created by the loadBookmarks function. Internally, the reducer will be
called and it will set the new bookmarks to the state.

When we have our UI in place, we will dispatch the actions in the same fashion from our
components, and then the state will get updated.

Communicating with a Remote API
We are currently loading the bookmarks from hardcoded data in the action; ideally, we
should make a request to an API to get the existing bookmarks.

In this recipe, we will create a middleware to fetch data from an API; we will create a
common code base to handle all the requests and automatically dispatch actions when the
request successfully completes or fails.

How to do it…
We will start by defining the action creator. Let's open the1.
src/redux/modules/categories/actions.js file and add the following
action types:

 export const LOAD_CATEGORIES = 'categ/LOAD_CATEGORIES';
 export const LOAD_CATEGORIES_SUCCESS = 'categ/LOAD_CATEGORIES_S';
 export const LOAD_CATEGORIES_FAIL = 'categ/LOAD_CATEGORIES_F';

The action creator will define two properties only, types and promise. In the2.
types property, we define the action types; the order of these actions in the array
is important. In the promise object, we define the url and the method used on
the fetch request. We can also define headers, or any other valid option the fetch
method accepts:

 export function loadCategories() {
 return {
 types: [
 LOAD_CATEGORIES,
 LOAD_CATEGORIES_SUCCESS,
 LOAD_CATEGORIES_FAIL
],
 promise: {
 url: 'https://my-bookmarks-api.herokuapp.com/api/categories',

Implementing Redux

[259]

 method: 'GET',
 },
 };
 }

Let's create a new src/redux/middleware folder to keep all the middleware in3.
a single place. Inside of this folder, we need to create the fetchMiddleware.js
file.
Once we have our file structure in place, we are ready to start working on our4.
first middleware. Let's define the main function; we need to make sure to export
it as default:

 export default function fetchMiddleware({ dispatch, getState }) {
 // Defined in next steps
 }

This function needs to return another function that will get executed between the5.
dispatch of an action and right before the action gets into the reducer:

 export default function fetchMiddleware({ dispatch, getState }) {
 return next => action => {
 // Defined in next steps
 };
 }

Let's work on the body of the inner function. We need to figure out if the current6.
action contains a promise property. If that's not the case, we need to ignore the
action and pass the action to the next middleware or the reducer:

 export default function fetchMiddleware({ dispatch, getState }) {
 return next => action => {
 const { promise, types, ...rest } = action;
 if (!promise) {
 return next(action);
 }
 // defined on later steps
 }
 }

Implementing Redux

[260]

If there's a promise property, we need to get the types in a separate constant.7.
This will allow us to dispatch the actions individually, at different times. After
getting each type, we will dispatch the REQUEST action to inform the reducer the
request has started:

 const [REQUEST, SUCCESS, FAILURE] = types;
 next({ ...rest, type: REQUEST });

The last step on the middleware actually triggers the fetch request, parses the8.
response to JSON, and dispatches the success or error actions:

 const actionPromise = fetch(promise.url, promise);

 actionPromise
 .then(response => response.json())
 .then(payload => next({ ...rest, payload, type: SUCCESS }))
 .catch(error => next({ ...rest, error, type: FAILURE }));

 return actionPromise;

In steps 1 and 2 we defined a new action creator that will call our new9.
middleware; however, we are not doing anything with the data we are receiving.
On this step, we will create the reducer for the categories–something really
simple just to save the categories from the API request to the state. Let's add the
following code to src/redux/modules/categories/reducer.js file:

 import { LOAD_CATEGORIES_SUCCESS } from './actions';

 const initialState = {
 all: [],
 };

 export default function reducer(state = initialState, action) {
 switch (action.type) {
 case LOAD_CATEGORIES_SUCCESS:
 return {
 ...state,
 all: [...action.payload.categories],
 };
 default:
 return state;
 }
 }

Implementing Redux

[261]

Now let's add the new reducer to the store. Open the src/redux/index.js file10.
and import the new reducer. Then we need to combine it with the bookmark's
reducer we already have from previous recipes:

 import categories from './modules/categories/reducer';

 const reducers = combineReducers({
 bookmarks,
 categories,
 });

The final step is to plug the new middleware to the Redux store. This is really11.
simple, we just need to import the applyMiddleware function from the redux
package and import all the middleware we have, in this case only one. Finally, on
the createStore function, we send, as a second parameter, the middleware that
we want to apply:

 import {applyMiddleware,combineReducers,createStore} from 'redux';
 import fetchMiddleware from './middleware/fetchMiddleware';

 const store = createStore(reducers,
applyMiddleware(fetchMiddleware));

That's all! We are done with our middleware! At this point we should be able to12.
request data from the API using the middleware. Let's write some code to test our
middleware:

 import { loadCategories } from './modules/categories/actions';
 const unsubscribe = store.subscribe(() =>
 console.log(store.getState())
);

 store.dispatch(loadCategories());

Implementing Redux

[262]

We are just importing the loadCategories action, subscribing to the store changes, and
then dispatching the action. If we enable remote debugging on the simulator, we will see
that after a few seconds, the state gets updated with the categories from the API:

How it works…
In step 1, we are defining three actions types. Each of these will be an action dispatched
when a fetch request is executed by the middleware:

LOAD_CATEGORIES will be dispatched just before the fetch request is executed.
LOAD_CATEGORIES_SUCCESS will be dispatched when the request is successfully
completed, meaning the server response is 200
LOAD_CATEGORIES_FAIL will be executed if there's an error on the network or
the server response is different than 200, for example, a 404 error

In step 2, we are defining the action creator. The returned action will only have two
properties, types and promise. The types property is an array that holds the three action
types we defined in step 1; each of these actions will be dispatched internally on the
middleware.

The order of the action types is very important. The first action will load before the fetch
request is triggered, then the success and failure types.

We are also defining the promise property, which is an object containing the url and the
method that will be used for this request. We can define in here any other option for the
fetch request, such as headers or the body on a post request.

Implementing Redux

[263]

If the promise object is defined on the action, the middleware will execute a fetch request
using the configurations defined here; otherwise, the middleware will ignore the action.

In step 3, we are defining the middleware. This function is receiving an object as a
parameter, and using an ES6 destructuring feature, we get the dispatch and getState
functions.

These two methods are provided by the middleware API. The dispatch method allows us
to dispatch a new action and the getState allows us to get the current state on the store.

We are not going to use these two functions in this middleware, but they are really helpful,
and sometimes, depending on our requirements, we will need it.

In step 5, we are returning a function; the body of this function returns another function.
Basically, we have a function within a function. If you are familiar with arrow functions,
this should be obvious. However, for those that are not familiar with arrow functions, the
same code could be defined as follows:

 export default function fetchMiddleware({ dispatch, getState }) {
 return function (next) {
 return function (action) {
 }};
 }

The first function provides the next method, which we will use to return control to the next
middleware or to the reducer. The second function will provide the current action being
dispatched; we will have access to all the data defined on the action creator.

In step 6, we are destructuring the action object. We need to get the promise and types
properties. We are going to use them in later steps.

In step 8, we triggered the fetch request. The fetch method returns a promise; we will
return this promise to allow the action creators to chain promises in case this is needed.

When the server responds, we are parsing the response to JSON. After that, we dispatch the
success action with the payload from the server response. If there's an error while parsing
the JSON or in the server response, the catch callback will get executed and we will dispatch
the failure action.

Implementing Redux

[264]

Connecting the store with the views
So far, we have set up the state, the middleware, and some actions to load data from
hardcoded data and from a remote API. But we are not showing anything on screen; our
react components don't have any access to the global state.

In this recipe we will enable components to access the store that we have defined, then we
will render the categories on a list.

Getting ready
This recipe depends on all the previous ones; make sure to follow each recipe from the
beginning.

On the first recipe of this chapter we installed the react-redux library. We are finally
going to use it here. Make sure you have already installed it; otherwise, use npm or yarn to
install it before going through the steps.

How to do it…
We will start by adding the store to a parent component, and then all the children1.
will have access to the store. On the src/MainApp.js file, we need to import the
Provider component from the redux package, the store that we created in
previous recipes, and the AppNavigator component that we will create in later
steps of this same recipe:

 import React from 'react';
 import { Provider } from 'react-redux';
 import store from './redux';
 import AppNavigator from './views/AppNavigator';

We will use a stateless component. We don't need styles or anything else, just the2.
Provider that receives the store and the AppNavigator to render the required
view:

 const MainApp = () => (
 <Provider store={store}>
 <AppNavigator />
 </Provider>
);

Implementing Redux

[265]

 export default MainApp;

Now let's work on the AppNavigator class. Let's create the3.
src/views/AppNavigator/index.js file; in here we will import the following
dependencies. Nothing really new, just a few components from React Native and
the Categories component, which will be a list of categories:

 import React, { Component } from 'react';
 import Categories from '../Categories';
 import {
 Navigator,
 Platform,
 StyleSheet,
 } from 'react-native';

We have covered the navigator component in Chapter 1, Getting Started;4.
therefore, I won't talk much about this component. In here we are just rendering
the initial view; in the next recipe, we will come back to this class to render a new
component based on the route:

 class AppNavigator extends Component {

 renderScene(route, navigator) {
 return <Categories navigator={navigator} />;
 }

 render() {
 return (
 <Navigator
 style={styles.container}
 configureScene={(route) => {
 if (Platform.OS === 'android') {
 return Navigator.SceneConfigs.FloatFromBottomAndroid;
 }

 return Navigator.SceneConfigs.FloatFromBottom;
 }}
 initialRoute={{}}
 renderScene={this.renderScene}
 />
);
 }
 }

 const styles = StyleSheet.create({
 container: {
 flex: 1,

Implementing Redux

[266]

 },
 });
 export default AppNavigator;

Now we need to work on the good stuff. We are going to render the list of5.
categories that comes from the server API. Let's create a
src/views/Categories/index.js file and import all the dependencies for this
class:

 import React, { Component, PropTypes } from 'react';
 import {
 ListView,
 Platform,
 StyleSheet,
 Text,
 View,
 } from 'react-native';
 import { connect } from 'react-redux';
 import { loadCategories } from
'../../redux/modules/categories/actions';

Let's define the class. We need a Categories property that will be an array of6.
data coming from the global state. When the component is about to mount, we
create the data source for the list; this might be empty at the beginning. On the
render method we define the list view component and render the name of the
category. Nothing fancy, just a simple list:

 class Categories extends Component {

 static propTypes = {
 categories: PropTypes.array,
 };

 componentWillMount() {
 this.ds = new ListView.DataSource({rowHasChanged: (r1, r2) =>
 r1 !== r2});
 this.state = {
 dataSource: this.ds.cloneWithRows(this.props.categories),
 };
 }

 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.toolbar}>Categories</Text>
 <ListView
 dataSource={this.state.dataSource}

Implementing Redux

[267]

 renderRow={(rowData) => <Text>{rowData.name}</Text>}
 enableEmptySections
 />
 </View>
);
 }
 };

This step is the most important in this recipe. In here we will map and connect7.
the data from state to the props on this component:

 const mapStateToProps = (state) => {
 return {
 categories: state.categories.all,
 };
 }

 export default connect(mapStateToProps)(Categories);

Once our component is connected to the store, we can call our actions from the8.
component itself. Let's load the categories from the API by dispatching the action
when the component is about to mount:

 componentWillMount() {
 // ...
 this.props.dispatch(loadCategories());
 }

We are almost done! The only thing left to complete the Redux integration with9.
this component, is to update the dataSource whenever there are any changes in
the categories array on the global state:

 componentWillReceiveProps(nextProps) {
 if (this.props.categories !== nextProps.categories) {
 this.setState({
 dataSource: this.ds.cloneWithRows(nextProps.categories),
 });
 }
 }

We are done with the Redux integration; let's just add some styles to our app. We10.
are going to use the Platform class to set a different padding to the top of the
toolbar. On iOS we need to set 30px, but only 10px on Android:

 const styles = StyleSheet.create({
 container: {
 backgroundColor: '#ecf0f1',

Implementing Redux

[268]

 flex: 1,
 },
 toolbar: {
 backgroundColor: '#3498db',
 color: '#fff',
 fontSize: 20,
 textAlign: 'center',
 padding: 10,
 ...Platform.select({
 ios: {
 paddingTop: 30,
 },
 android: {
 paddingTop: 10,
 },
 }),
 },
 });

Implementing Redux

[269]

How it works…
In step 2, we are defining the main component of our application. It's a very simple
component, all we need is to define the Provider component as the parent of all other
components. This component will provide access to the store to any of the children.

The AppNavigator will render the module that we want to display at the time. Initially, we
will display the list of categories from the API.

In step 5, we are importing the dependencies for the class. We are going to load the
categories from the API; therefore, we need to import the action that triggers the fetch
request.

We also need to import the connect method from the react-redux package. This method
allows us to map the state data to the props on the component; the method also provides a
dispatch method to the class to allow us to dispatch actions directly from the views.

In step 7, we are connecting the state to the props on our component. The connect method
accepts a function as a first parameter; in here we will set the value for each property from
the state. In this case, we are only getting the categories from the state, but usually, we
will pass much more data to our component.

When we get to the point where we are mapping so many properties in
here, it's usually a good sign that it's time to connect other children
components to the state.

The connect function returns a higher order function that takes the component we want to
connect, in this case, Categories. Internally, the connect method will set the store from
the provider we defined on the MainApp component and set the props values from the
state.

In step 8, we are loading the categories from the API. The connect method attached a
dispatch function as a property of the component. All we need to do is call the dispatch
with the action creator that we need, in this case, loadCategories.

Implementing Redux

[270]

In step 9, we are updating the dataSource to render the new data on the list. In order to
update the dataSource, we need to check if the new categories on the props are
different than the current ones. If that's the case, we will have to update the dataSource,
and the list will automatically render the new information.

Storing offline content using Redux
At some point we will need to locally store the global state of our application, this will
allow us to restore the state the next time the user opens the app. For example, we might
want to keep the current view the user is using on the state. This way we can show the same
view when the app gets loaded again.

We might also want to cache some information to avoid calling the API multiple times; this
will improve the performance, as well as the traffic on your server.

On Chapter 4, Working with Application Logic and Data, we learned about different methods
to store data on the device, so for this recipe, we will use AsyncStorage.

Getting ready
This recipe depends on the previous ones, so make sure to follow along with all the
previous recipes, as we will use the same store, middleware, actions, and so on.

How to do it…
In order to support storing the state, we are going to use the redux-persist1.
library. Let's start by installing it using npm or yarn, whichever is your favorite
package manager:

 $ npm i --save redux-persist

Open src/redux/index.js file and add the following dependencies to support2.
persisting the store:

 import { persistStore, autoRehydrate } from 'redux-persist';
 import { AsyncStorage } from 'react-native';

Implementing Redux

[271]

Now we need to slightly change the way we are creating the store. First we need3.
to apply the middleware that we need in our application; in this case it's only
one:

 const createAppStore =
applyMiddleware(fetchMiddleware)(createStore);

Then we need to call the autoRehydrate function, to load the store with the4.
saved data on the device. Finally, we need to persist the store, setting the
AsyncStorage as the engine storage:

 const store = autoRehydrate()(createAppStore)(reducers);

 persistStore(store, { storage: AsyncStorage });

We are done setting up the persistence. Now if we refresh the app the request5.
will be triggered and the state will be saved automatically. The next time we
refresh the app, the state will be loaded from the local device.
If we remove the loading action from the src/views/Categories/index.js,6.
we should still see the categories in the list. By commenting this line, we can
prove the data has been saved and loaded successfully:

 componentWillMount() {
 this.ds = new ListView.DataSource({
 rowHasChanged: (r1, r2) => r1 !== r2
 });
 this.state = {
 dataSource: this.ds.cloneWithRows(
 this.props.categories
),
 };
 // this.props.dispatch(loadCategories());
 }

Implementing Redux

[272]

Even though the data has been saved, we probably need to request to the server to get the
latest information again. But if the device doesn't have an Internet connection, it will
successfully load and display the data from the locally saved state.

A more advanced scenario would be the case where there's no Internet connection, but we
still want to allow the user to save new data. We can easily save the data on the state, and
the next time there's an Internet connection available, we should only synchronize the data
with the server.

Saving the state. It's very convenient and easy to do; with a little configuration, we have
everything in place.

Showing network connectivity status
In this recipe, we will learn how to use Redux to keep the state of the network status. When
we lose network connectivity, we will display an alert message to inform the user there's no
network available.

Implementing Redux

[273]

Getting ready
This recipe depends on the previous one. We are going to use the NetInfo class to listen to
network changes, then we will keep the status of the network an the store and display an
alert when the device is offline.

How to do it…
We will start by creating the action that we will trigger when the network status1.
changes. This action will receive the current type of network the device is
connected to, for example, wifi, cell, vpn, and so on. If the type is none, it
means the device is offline. Let's create the
src/redux/modules/network/actions.js file and add the following code:

 export const NETWORK_CHANGE = 'network/change'

 export function setConnectivity(network) {
 const status = network.toUpperCase();
 return {
 type: NETWORK_CHANGE,
 payload: {
 isOnline: status !== 'NONE',
 isOffline: status === 'NONE',
 },
 };
 }

The reducer is very simple: we just need to keep track of the two properties on2.
the action's payload. By default, the value of both properties will be null. Let's
create a new src/redux/modules/network/reducer.js file and add the
following code:

 import { NETWORK_CHANGE } from './actions';

 const initialState = {
 isOnline: null,
 inOffline: null,
 };

 export default function reducer(state = initialState, action) {
 switch (action.type) {
 case NETWORK_CHANGE:

Implementing Redux

[274]

 return {
 ...state,
 ...action.payload,
 };
 default:
 return state;
 }
 }

To complete the redux section, we need to combine the new reducer when3.
creating the store. Let's open the src/redux/index.js file and add the
following code to the existing one:

 import network from './modules/network/reducer';

 const reducers = combineReducers({
 bookmarks,
 categories,
 network,
 });

The next step is to set up the listener to network changes. Whenever the network4.
status changes, we will dispatch the setConnectivity action to set the new data
on the redux state. Let's open the src/views/AppNavigator/index.js file and
add the following dependencies:

 import { connect } from 'react-redux';
 import { setConnectivity } from
'../../redux/modules/network/actions';

 import {
 Navigator,
 NetInfo,
 Platform,
 StyleSheet,
 } from 'react-native';

When the component is about to mount, we need to set up the listener using the5.
NetInfo class:

 componentWillMount() {
 NetInfo.addEventListener(
 'change',
 this.onConnectivityChange,
);
 }

Implementing Redux

[275]

We should also remove the listener when the component is about to unmount:6.

 componentWillUnmount() {
 NetInfo.removeEventListener(
 'change',
 this.onConnectivityChange,
);
 }

Now we need to define the connectivity change callback function. This function7.
will dispatch the action creator to set the new status on the redux state:

 onConnectivityChange = (reach) => {
 this.props.dispatch(setConnectivity(reach));
 }

The final step on this component is to connect it to the Redux store. We don't8.
need to map any prop, therefore we will not define a mapping function; we can
just send nothing as the first parameter on the connect function:

 export default connect()(AppNavigator);

We are now listening to network changes and setting the status on the redux9.
state; all that is left is to actually show an alert message when there's no
connection on the device. Let's open the src/views/Categories/index.js file
and add the following mapping property:

 const mapStateToProps = (state) => {
 return {
 categories: state.categories.all,
 isOnline: state.network.isOnline,
 };
 }

Now, whenever the state changes we will have the new value on the isOnline10.
property of this component. All we need to do is check if the isOnline prop is
equal to false show an alert; we will do this on the render method as follows:

 render() {
 if (this.props.isOnline === false) {
 Alert.alert('Offline', 'You don't have internet connection');
 }
 // rest of the code here...
 }

Implementing Redux

[276]

Don't forget to import the Alert component to the class:11.

 import {
 Alert,
 ListView,
 Platform,
 StyleSheet,
 Text,
 View,
 } from 'react-native';

If we test our app, we should be able to see the Alert message when we turn off12.
the Wi-Fi. On iOS this is enough to test; however, on Android, we need to test on
an actual device, but before that, we need to set the permissions on the
android/app/src/main/AndroidManifest.xml file:

 <uses-permission
android:name="android.permission.ACCESS_NETWORK_STATE" />

Implementing Redux

[277]

How it works…
In step 1, we are creating the action to set the connectivity on the redux state. We need to
uppercase the network type because in iOS it is lowercase and in Android it is uppercase. If
we want our code to run on both platforms, we need to uppercase the value of the network.

In step 2, we created the reducer for the network status. In here we initialized the properties
as null, which means we don't know if the device is online or offline in the very beginning.
When checking for the connectivity status we should check for true/false values instead
of falsy values.

In step 4, we are importing the dependencies for the AppNavigator class. We are going to
use this component because it's the parent of all the other modules. We just need a
component that will be mounted at all times, mainly because we want to listen to the
changes all the time.

In step 7, we are using an arrow function to bind the method to the instance. This way, we
will be able to access the correct scope when the function gets executed.

6
Adding Native Functionality

In this chapter, we will cover the following recipes:

Exposing custom iOS modules
Rendering custom iOS view components
Exposing custom Android modules
Rendering custom Android view components
Handling the Android back button
Reacting to changes in application state
Copying and pasting content
Receiving push notifications
Authenticating via TouchID or fingerprint sensor
Hiding application content when multitasking
Background processing on iOS
Background processing on Android
Playing audio files on iOS
Playing audio files on Android

Introduction
One of the core principles in React Native development is writing JavaScript to build a truly
native mobile app. To accomplish this, many native APIs and UI components are exposed
through an abstraction layer and are accessed through the React Native bridge. Through the
native APIs, we can access functionality that is not available for mobile web applications,
such as vibration, camera roll, contacts, native alerts, or toasts, and much more.

Adding Native Functionality

[279]

By exposing the native view components, we are able to leverage all the rendering
performance the device has to offer, as we are not going through a WebView like in a
hybrid app. This gives us a native look and feel that adapts to the platform you are using
the application on. With React Native, we are able to render any native view component
including maps, lists, input fields, toolbars, picker, and so on.

While React Native comes with many built-in native modules and view components, we are
often in a position where we need some custom functionality leveraging the native
application layer that is not provided out of the box. Fortunately, there is an extremely rich
open source community supporting React Native that not only contributes to the library
itself, but also publishes libraries that export some common native modules and view
components. If you can't find a first or third-party library to accomplish what you need, you
can always build it yourself.

In this chapter, we will present recipes that cover exposing custom native functionality,
whether it is an API or view component, on both platforms. We will also show examples
that leverage either built-in or community modules. The recipes cover a range of topics
from rendering a basic button to creating a multithreaded process that does not block the
main application threads. All the recipes in this chapter require you to have a React Native
application already created.

Exposing custom iOS modules
As you begin writing exciting and engaging React Native applications, you will get to a
point where you need to execute some code on the native layer. This could be anything
from executing some data processing that is better suited to the native layer instead of
JavaScript for performance, accessing some native functionality that is not exposed, such as
file I/O, or leveraging existing native code from other applications or libraries in your React
Native app.

This recipe will walk you through the process of executing some native Objective-C or Swift
code and communicating with the JavaScript layer. We will build a native HelloManager
module that will greet our user with a message. We will also show how to execute native
Objective-C and Swift code, taking in arguments, and showing several ways of
communicating back with the UI (JavaScript) layer.

Adding Native Functionality

[280]

Getting ready
For this recipe, we created a React Native application titled NativeModule.

In this recipe, we will use the react-native-button library. To install it, run the
following command in the terminal from your project root directory:

 $ npm install react-native-button --save

How to do it…
To expose custom iOS modules, we perform following steps:

Open the iOS Project in Xcode. The project file is located in the ios/ directory of1.
your React Native application (for example,
./NativeModule/ios/NativeModule.xcodeproj).
Select and right-click on the group that matches your project name, and click on2.
New File…:

Select Cocoa Class and click Next.3.

Adding Native Functionality

[281]

Enter HelloManager for Class name and leave the Subclass of as NSObject and4.
Language as Objective-C:

Click Next and then you will have to choose into which directory you would like5.
to place your new class. Double-click the NativeModule directory to create the
class.
You will now be presented with the new Cocoa Class you created; this consists of6.
a header (.h) and an implementation (.m) file.
Open the header file (HelloManager.h) and add an import for7.
RCTBridgeModule.h and implement the protocol in your class:

 #import <Foundation/Foundation.h>
 #import "RCTBridgeModule.h"

 @interface HelloManager : NSObject <RCTBridgeModule>

 @end

Now open the implementation (HelloManager.m) file and let's begin adding8.
some basic functionality.

In order for our application to be able to access this module from the JavaScript9.
layer, we need to register it with the React Bridge. To do so, add
RCT_EXPORT_MODULE() after the @implementation tag:

Adding Native Functionality

[282]

 #import "HelloManager.h"

 @implementation HelloManager
 RCT_EXPORT_MODULE();

Next, we need to add our basic functionality. We will create a greetUser10.
method that will take two arguments, name and isAdmin. We will take these
arguments, create a greeting message using string concatenation, and then send it
back to the JavaScript layer via callback:

 RCT_EXPORT_METHOD(greetUser:
 (NSString *)name isAdmin:(BOOL *)isAdmin callback:
 (RCTResponseSenderBlock) callback) {
 NSString *greeting =
 [NSString stringWithFormat:
 @"Welcome %@, you %@ an administrator", name, isAdmin ?
 @"are" : @"are not"];
 callback(@[greeting]);
 }

Now we need to build our UI that will invoke the native HelloManager11.
greetUser method and display its output. Fortunately, the React Native bridge
does all the heavy lifting for us and leaves us with a simple-to-use JavaScript
object that mimics the NativeModules API. In this example, we will be using a
TextInput and Switch to provide the name and the isAdmin value for the
native modules method.

Open index.ios.js in the root of our project and add NativeModules,
TextInput, Switch to the import { ... } from 'react-native'
block.

We will also be using the react-native-button class. So add the following
after the previous import block:

 import Button from 'react-native-button';

Finally, we need to make a reference to our HelloManager object that exists
as a property of NativeModules. Add the following line of code before your
class definition:

 const HelloManager = NativeModules.HelloManager;

Adding Native Functionality

[283]

After importing all the necessary modules and submodules, it's time to put them12.
to use. First, we're going to prepare our initial state with a greetingMessage
that will be rendered. Inside our main class, add a componentWillMount
function:

 componentWillMount() {
 this.setState({
 greetingMessage: undefined
 });
 }

In our components render function, we're going to need to add the following:13.

TextInput to collect the user's name:

 <TextInput

 ref="userName"
 autoCorrect={false}
 style={styles.inputField}
 placeholder="User Name"
 onChangeText={(text) => this.setState({ userName: text }) }/>

Switch to set whether the user is an admin or not:

 <Text style={styles.label}>Admin</Text>
 <Switch style={styles.radio} onValueChange={(value) =>
 this.setState({ isAdmin: value }) }
 value={this.state.isAdmin}/>

Button which will make the call to the HelloManager greetUser method:

 <Button
 containerStyle={styles.buttonContainer}
 style={styles.buttonStyle}
 onPress={this.greetUserCallback}>
 Greet (callback)
 </Button>

Text to display the greetingMessage that will come back from the call:

 <View style={styles.flexContainer}>
 <Text>Response: </Text>
 <Text>{this.state.greetingMessage}</Text>
 </View>

Adding Native Functionality

[284]

With the UI rendering the necessary components, we now need to wire up the14.
Button press handler and make the native call. Add the following methods to
the class:

 greetUserCallback = () => {
 const state = this.state;

 HelloManager.greetUser(state.userName, state.isAdmin,
 this.displayResult);
 }

 displayResult = (result) => {
 this.refs.userName.blur();
 this.setState({ greetingMessage: result });
 }

How it works…
The work we did in this recipe will serve as the foundation for many of the following
recipes in this chapter. It also happens to be how Facebook themselves implement many of
their bundled native APIs.

There are several important concepts to keep in mind. Any native module class has to
extend RCTBridgeModule as it contains functionality to register our class onto the React
Native bridge. We register our class with the RCT_EXPORT_MODULE method call. The
RCT_EXPORT_METHOD call is used to register the methods once we have registered the
module. Registering the module, its respective methods and properties allows us to
interface with the native layer from the JavaScript.

In summary, after the last step, the greetUserCallback function is executed when you
press the button. The function makes a call to HelloManager.greetUser, then passes in
the userName and isAdmin properties from the state, and the displayResult function as
a callback. The displayResult sets the new greetingMessage on the state, causing a
refresh of the UI, and now the message is displayed.

Adding Native Functionality

[285]

There's more…
React Native supports three ways for the native module to communicate back to the
JavaScript layer: callbacks (covered in our step-by-step guide), promises, and events. To see
working examples of each one of these techniques, take a look at the source code bundled
with the book. If you are interested in writing native modules using the Swift language,
there is a working example of the same functionality bundled in the sample application.

Rendering custom iOS view components
While it is very important to leverage the devices processing power in executing code on
the native layer in our React Native application, it is equally important to leverage its
rendering power to show native UI components. React Native can render any UI
component that is an implementation of UIView inside an application. These components
can be lists, form fields, tables, graphics, and so on.

For this recipe, we created a React Native application titled NativeUIComponent.

In this recipe, we will take a native UIButton and expose it as a React Native view
component. You will be able to set the button label and attach a handler for when it is
tapped.

How to do it…
Open the iOS Project in Xcode. The project file is located in the ios/ directory of1.
your React Native application (for example, ./NativeUIComponent/ios/
NativeUIComponent.xcodeproj).
Select and right-click on the group that matches your project name and click on2.
New File…:

Adding Native Functionality

[286]

Select Cocoa Class and click Next.3.
Enter Button for Class name and set the Subclass of as UIView and Language4.
as Objective-C:

Click Next and then you will have to choose into which directory you would like5.
to place your new class. Double-click the NativeUIComponent directory to
create the class.

Adding Native Functionality

[287]

Repeat steps 2-5 with ButtonViewManager as the class and RCTViewManager as6.
the subclass.
First, we're going to implement our Button UI class. In the header (Button.h)7.
file, we will add an onTap property to wire up our tap event:

 #import <UIKit/UIKit.h>
 #import "RCTComponent.h"

 @interface Button : UIView

 @property (nonatomic, copy) RCTBubblingEventBlock onTap;

 @end

Next, open up the implementation file (Button.m). Here we will start off by
creating references for our UIButton instance and the string that will hold
the button label:

 #import "Button.h"
 #import "UIView+React.h"

 @implementation Button {
 UIButton *_button;
 NSString *_buttonText;
 }

The bridge will look for a setter for the buttonText property, in which we
will set the UIButton instance title field. Add the following setter to your
class:

 -(void) setButtonText:(NSString *)buttonText {
 NSLog(@"Set text %@", buttonText);
 _buttonText = buttonText;
 if(_button) {
 [_button setTitle:
 buttonText forState:UIControlStateNormal];
 [_button sizeToFit];
 }
 }

The other part of the arguments our button will accept is the onTap event
handler. We need to wire this to our UIButton instance through an action
selector:

 - (IBAction)onButtonTap:(id)sender {
 self.onTap(@{});

Adding Native Functionality

[288]

 }

Finally, we need to instantiate the UIButton and place it inside a React
Subview:

 -(void) layoutSubviews {
 [super layoutSubviews];
 if(_button == nil) {
 _button =
 [UIButton buttonWithType:UIButtonTypeRoundedRect];
 [_button addTarget:self action:@selector(onButtonTap:)
 forControlEvents:UIControlEventTouchUpInside];
 [_button setTitle:
 _buttonText forState:UIControlStateNormal];
 [_button sizeToFit];
 [self insertSubview:_button atIndex:0];
 }
 }

 - (void)insertReactSubview:
 (UIView *)view atIndex:(NSInteger)atIndex
 {
 [self addSubview:view];
 }

 - (void)removeReactSubview:(UIView *)subview
 {
 [subview removeFromSuperview];
 }

 - (void)removeFromSuperview
 {
 [super removeFromSuperview];
 }

Now we need to implement our ButtonViewManager, which will interface with8.
our React Native application. Open up the implementation
(ButtonViewManager.m) file and add the following:

 #import "ButtonViewManager.h"
 #import "Button.h"
 #import "UIView+React.h"

 @implementation ButtonViewManager
 RCT_EXPORT_MODULE()

 - (UIView *)view {

Adding Native Functionality

[289]

 Button *button = [[Button alloc] init];
 return button;
 }

 RCT_EXPORT_VIEW_PROPERTY(buttonText, NSString);
 RCT_EXPORT_VIEW_PROPERTY(onTap, RCTBubblingEventBlock);

 @end

Let's build out our UI to render this button. We're going to need our Button in its9.
own React Component. Create a Button.js file in your project's root directory
(where index.ios.js is located) and add the following code:

 import React, { Component } from 'react';
 import { requireNativeComponent } from 'react-native';

 export default class Button extends Component {
 render() {
 return <ButtonView {...this.props} />;
 }
 }

 Button.propTypes = {
 buttonText : React.PropTypes.string,
 onTap : React.PropTypes.func
 };

 var ButtonView = requireNativeComponent('ButtonView', Button);

Open our index.ios.js file and add the following code after the import {10.
... } from 'react-native' block:

 import Button from './Button';

Add the following to the class implementation:

 componentWillMount() {
 this.setState({
 count : 0
 });
 }
 onButtonTap = () => {
 let count = this.state.count;
 this.setState({
 count : count+1
 });
 }

Adding Native Functionality

[290]

 render() {
 return (
 <View style={styles.container}>
 <Button buttonText="Hello Packt"
 onTap={this.onButtonTap}
 style={{height: 40, width: 80}}/>
 <Text>Button Pressed Count: {this.state.count}</Text>
 </View>
);
 }

Your application should look and function like this:

How it works…
For this recipe, we exposed a basic native UI component. This is the same foundation of
how all the built-in UI components (for example, Slider, Picker, ListView, and so on)
are built. The most important requirement in creating UI components is that your
ViewManager extends RCTViewManager and returns an instance of UIView. In our case, we
are wrapping a UIButton with a React-specific UIView extension. This helps us with the
layout and styling of the component.

Adding Native Functionality

[291]

The next important factor is sending properties and reacting to component events. In the
step 8 code block, we are creating and returning an instance of our Button class and
registering the buttonText and onTap view properties that will come from the JavaScript
layer.

Exposing custom Android modules
Often you will find yourself writing React Native applications for both iOS and Android.
We have discussed how to go about creating native modules in iOS in the first recipe of this
chapter. Now it's time to put our green Android robot hats on and write some Java!

This recipe will take us through writing our first Android native module. We will mimic the
functionality of the Exposing custom iOS modules recipe, but for Android. We're going to
create a HelloManager native module with a greetUser method that takes a name and
isAdmin Boolean value arguments. It will return a greeting message that we will display.

Getting ready
For this recipe, we created a React Native application titled NativeModule.

In this recipe, we will use the react-native-button library. To install it, run the
following command in the terminal from your project root directory:

 $ npm install react-native-button --save

How to do it…
Open the Android project using Android Studio. In Android Studio, select Open1.
an existing Android Studio project and open the android directory of the
project:

Adding Native Functionality

[292]

Open up the left-hand Project explorer and expand the package structure until2.
you can see the Java source files (for example, app/java/com.nativemodule):

Right-click on the package and select New | Java Class. Use HelloManager for3.
the class name and leave the Kind field as Class.
Repeat step 3 for the HelloPackage class.4.
Now it's time to implement our HelloManager native module. So let's go ahead5.
and open up the HelloManager.java file.

First, we're going to have to import some classes that we will be using from
React Native:

 import com.facebook.react.bridge.Callback;
 import com.facebook.react.bridge.ReactApplicationContext;
 import com.facebook.react.bridge.ReactContextBaseJavaModule;

Adding Native Functionality

[293]

 import com.facebook.react.bridge.ReactMethod;

ReactContextBaseJavaModule is the base class for all React Native
modules. Now we need to instruct our HelloManager class to be a subclass
of it:

 public class HelloManager extends ReactContextBaseJavaModule {
 public HelloManager(ReactApplicationContext reactContext) {
 super(reactContext);
 }
 @Override
 public String getName() {
 return "HelloManager";
 }
 }

The getName method is used for the registration of the native module with
the React Native bridge. This is different than iOS native modules, as those
use the class name.

Now that we have set up our HelloManager, it's time to add the greetUser6.
method that will expect the name and isAdmin arguments, as well as the callback
to which it will post the greeting message:

 @ReactMethod
 public void greetUser
 (String name, Boolean isAdmin, Callback callback) {

 String greeting =
 "Welcome " + name + ", you " +
 (isAdmin ? "are" : "are not") + " an administrator";

 callback.invoke(greeting);
 }

Another step that is unique to Android is having to register the native module7.
with the application. This is a two-step process. First, we need to add our
HelloManager to the HelloPackage class we created earlier. Open up the
HelloPackage.java and add the following:

 public class HelloPackage implements ReactPackage {
 @Override
 public List
 <Class<? extends JavaScriptModule>> createJSModules() {
 return Collections.emptyList();
 }

Adding Native Functionality

[294]

 @Override
 public List
 <ViewManager> createViewManagers
 (ReactApplicationContext reactContext) {
 return Collections.emptyList();
 }

 @Override
 public List
 <NativeModule> createNativeModules
 (ReactApplicationContext reactContext) {
 List<NativeModule> modules = new ArrayList<>();

 modules.add(new HelloManager(reactContext));

 return modules;
 }
 }

Now we need to take our HelloPackage that holds the instance of8.
HelloManager and add it to our React Native application. Open
MainApplication.java and instantiate HelloPackage in the getPackages
method:

 @Override
 protected List<ReactPackage> getPackages() {
 return Arrays.<ReactPackage>asList(
 new MainReactPackage(),
 new HelloPackage()
);
 }

We're all set on the Java side of the spectrum, let's move on to the React world.9.
We need to build our UI that will invoke the native HelloManager greetUser
method and display its output. Fortunately, the React Native bridge does all the
heavy lifting for us and leaves us with a simple-to-use JavaScript object that
mimics the native modules API. In this example, we will be using a TextInput
and Switch to provide the name and the isAdmin value for the native modules
method.

This is the same exact functionality as iOS. If you have completed the
Exposing custom iOS modules recipe, the following steps are the same as steps
11-14.

Adding Native Functionality

[295]

Open index.android.js in the root of our project and add
NativeModules, TextInput, Switch to the import { ... } from
'react-native' block.

We will also be using the react-native-button class. So add the following
after the previous import block:

 import Button from 'react-native-button';

Finally, we need to make a reference to our HelloManager object that exists
as a property of NativeModules. Add this following line of code before your
class definition:

 const HelloManager = NativeModules.HelloManager;

After importing all the necessary modules and submodules, it's time to put them10.
to use. First, we're going to prepare our initial state with a greetingMessage
that will be rendered. Inside our main class, add a componentWillMount
function:

 componentWillMount() {
 this.setState({
 greetingMessage: undefined
 });
 }

In our component's render function, we're going to need to add the following:11.

TextInput to collect the user's name:

 <TextInput

 ref="userName"
 autoCorrect={false}
 style={styles.inputField}
 placeholder="User Name"
 onChangeText={(text) => this.setState({ userName: text }) }/>

Switch to set whether the user is an admin or not:

 <Text style={styles.label}>Admin</Text>
 <Switch style={styles.radio} onValueChange={(value) =>
 this.setState({ isAdmin: value }) } value=
 {this.state.isAdmin}/>

Adding Native Functionality

[296]

Button, which will make the call to the HelloManager greetUser method:

 <Button
 containerStyle={styles.buttonContainer}
 style={styles.buttonStyle}
 onPress={this.greetUserCallback}>
 Greet (callback)
 </Button>

Text to display the greetingMessage that will come back from the call:

 <View style={styles.flexContainer}>
 <Text>Response: </Text>
 <Text>{this.state.greetingMessage}</Text>
 </View>

With the UI rendering the necessary components, we now need to wire up the12.
Button's press handler and make the native call. Add the following methods to
the class:

 greetUserCallback = () => {
 const state = this.state;

 HelloManager.greetUser
 (state.userName, state.isAdmin, this.displayResult);
 }

 displayResult = (result) => {
 this.refs.userName.blur();
 this.setState({ greetingMessage: result });
 }

How it works…
This recipe covered the foundation for a lot of what we will be doing with React Native on
Android, exposing native functionality. All native module classes need to extend
ReactContextBaseJavaModule and implement the constructor and the getName method.
Methods that we want to expose need to have the @ReactMethod annotation. Creating a
React Native Android native module has more overhead in comparison to doing so on iOS,
as you have to wrap your module in a class that implements ReactPackage and register its
package with the application. This is done in steps 7 and 8.

Adding Native Functionality

[297]

The interaction of this recipe comes together in the last step. The greetUserCallback
function is executed when you press the Button. It makes a call to
HelloManager.greetUser, then passes in the userName and isAdmin properties from the
state, and the displayResult function as a callback. The displayResult sets the new
greetingMessage on the state, causing a refresh of the UI and now the message is
displayed.

Rendering custom Android view
components
A major reason why React Native is so popular today is its ability to render truly native UI
components. With native UI components on Android, we are leveraging not only the GPU
rendering power, but we get the native look and feel of the components. This includes not
only font and colors, but animations such as the ripple effect as well. In web or hybrid
applications, there are CSS polyfills to simulate a native animation; in React Native we're
getting the real deal, so to speak.

For this recipe, we created a React Native application titled NativeUIComponent.

In this recipe, we will take a native Button and expose it as a React Native view
component. You will be able to set the button label and attach a handler for when it is
tapped.

How to do it…
Open the Android project using Android Studio. In Android Studio, select Open1.
an existing Android Studio project and open the android directory of the
project:

Adding Native Functionality

[298]

Open up the left-hand Project explorer and expand the package structure until2.
you can see the Java source files (for example
app/java/com.nativeuicomponent):

Right-click on the package and select New | Java Class. Use3.
ButtonViewManager for the class name and leave the Kind field as Class.
Repeat step 3 for the ButtonPackage class.4.
Let's begin implementing our ButtonViewManager. While native modules have5.
a convention of having a suffix of module or manager, view components have a
suffix of ViewManager. They must be subclasses of
SimpleViewManager<View>. So let's open up our ButtonViewManager class
and instruct it to render a Button.

Adding Native Functionality

[299]

We're going to need to import our necessary dependencies for the class:

 import android.view.View;

 import android.widget.Button;

 import com.facebook.react.bridge.Arguments;
 import com.facebook.react.bridge.ReactContext;
 import com.facebook.react.bridge.WritableMap;
 import com.facebook.react.uimanager.SimpleViewManager;
 import com.facebook.react.uimanager.ThemedReactContext;
 import com.facebook.react.uimanager.annotations.ReactProp;
 import com.facebook.react.uimanager.events.RCTEventEmitter;

Now we can implement our ButtonViewManager; first we have to subclass
SimpleViewManager and implement the View.OnClickListener interface
so we can handle button presses:

 public class ButtonViewManager extends
 SimpleViewManager<Button> implements View.OnClickListener{
 @Override
 public String getName() {
 return "ButtonView";
 }
 }

We are ready to instantiate our Button, set its label, and attach the tap
handler. In the ButtonViewManager class, add the following methods:

 @Override
 protected Button createViewInstance
 (ThemedReactContext reactContext) {
 Button button = new Button(reactContext);
 button.setOnClickListener(this);
 return button;
 }
 @ReactProp(name = "buttonText")
 public void setButtonText
 (Button button, String buttonText) {
 button.setText(buttonText);
 }
 @Override
 public void onClick(View v) {
 WritableMap map = Arguments.createMap();
 ReactContext reactContext = (ReactContext) v.getContext();
 reactContext.getJSModule(RCTEventEmitter.class)
 .receiveEvent(v.getId(), "topChange", map);
 }

Adding Native Functionality

[300]

Just like with native modules, we need to add our ButtonViewManager to the6.
ButtonPackage, except here we're putting it in as a ViewManager and not a
NativeModule:

 public class ButtonPackage implements ReactPackage {

 @Override
 public List
 <Class<? extends JavaScriptModule>> createJSModules() {
 return Collections.emptyList();
 }

 @Override
 public List
 <ViewManager>
 createViewManagers
 (ReactApplicationContext reactContext) {
 return Arrays.<ViewManager>asList
 (new ButtonViewManager());
 }

 @Override
 public List
 <NativeModule>
 createNativeModules
 (ReactApplicationContext reactContext) {
 return Collections.emptyList();
 }
 }

To wrap up the Java side of things, we need to add the ButtonPackage to our7.
MainApplication packages. Open MainApplication.java and add the
following to getPackages:

 @Override
 protected List<ReactPackage> getPackages() {
 return Arrays.<ReactPackage>asList(
 new MainReactPackage(),
 new ButtonPackage()
);
 }

Adding Native Functionality

[301]

Let's build out our UI to render this button. We're going to need to our Button in8.
its own React component. Create a file Button.js in your project's root directory
(where index.android.js is located) and add the following code:

 import React, { Component } from 'react';
 import { requireNativeComponent, View } from 'react-native';

 export default class Button extends Component {
 onChange = (event) => {
 if(this.props.onTap) {
 this.props.onTap(event.nativeEvent.message);
 }
 }

 render() {
 return <ButtonView
 {...this.props} onChange={this.onChange} />;
 }
 }

 Button.propTypes = {
 buttonText : React.PropTypes.string,
 onTap : React.PropTypes.func,
 ...View.propTypes
 };

 var ButtonView = requireNativeComponent('ButtonView', Button, {
 nativeOnly: { onChange: true }
 });

Open our index.android.js file and add the following code after the import9.
{ ... } from 'react-native' block:

 import Button from './Button';

Add the following to the class implementation:

 componentWillMount() {
 this.setState({
 count : 0
 });
 }
 onButtonTap = () => {
 let count = this.state.count;
 this.setState({
 count : count+1
 });

Adding Native Functionality

[302]

 }

 render() {
 return (
 <View style={styles.container}>
 <Button buttonText=
 "Hello Packt" onTap=
 {this.onButtonTap} style={{height: 40, width: 80}}/>
 <Text>Button Pressed Count: {this.state.count}</Text>
 </View>
);
 }

Your application should look and function like this:

How it works…
Here we created a React Native UI component for Android. You may find yourself having
to create a good amount of native UI components if you want to have the true native
Android experience from material design in your application. Currently, there are more
third-party native UI components available for iOS, since it's been available to the public for
longer. Therefore, you may be put in a situation where you will have to create your own.
Fortunately, you can always refer back to this recipe to guide you.

Adding Native Functionality

[303]

The important bit in creating native UI components is that the ViewManager class has to
extend SimpleViewManager and has to render a type that extends View. In our recipe, we
render a Button view. For setting properties, we have to use the @ReactProp annotation.
When we need to communicate back to the JavaScript layer, we fire an event from the
native component. We implement this in step 5 of this recipe. In step 8, we create our
onChange listener in which we execute the event handler we originally passed in.

Handling the Android back button
An important feature that all Android devices have is a dedicated back button. By default,
the behavior of this back button is to go to the previous running activity. Since React Native
generally only has one main React Activity, this will take you out of your application.
Sometimes we may not want to have this default behavior, and use the back button inside
our React Native application.

This recipe will create a simple example using React Native's latest navigation
implementation NavigationExperimental and attach a back button listener to step back
through the navigation stack.

Getting ready
For this recipe, it may be a good idea to familiarize yourself with the
NavigationExperimental documentation. We have demonstrated this in the Adding
navigation to your application recipe in Chapter 1, Getting Started.

For this recipe, we created a React Native application titled BackButton.

How to do it…
In order to make a meaningful example of using the Android back button, we're1.
going to have to implement NavigationExperimental for our application. Let's
start off by making a Button component that will be used to manually between
navigation states. Create a file Button.js in your project's root directory (where
index.android.js is located) and add the following code:

 import React, { Component } from 'react';

 import {

Adding Native Functionality

[304]

 StyleSheet,
 Text,
 View,
 PixelRatio,
 TouchableOpacity
 } from 'react-native';

 export default class Button extends Component {
 render() {
 return (
 <TouchableOpacity
 style={styles.row}
 onPress={this.props.onPress}>
 <Text style={styles.buttonText}>
 {this.props.text}
 </Text>
 </TouchableOpacity>
)
 }
 }

 const styles = StyleSheet.create({
 row: {
 padding: 15,
 backgroundColor: 'white',
 borderBottomWidth: 1 / PixelRatio.get(),
 borderBottomColor: '#CDCDCD',
 },
 buttonText: {
 fontSize: 17,
 fontWeight: '500',
 }
 });

Now we're going to need a scene that will be rendered by the Navigator. This2.
scene will hold the Button we created in the previous step. Create a
file, InitialScene.js and add the following:

 import React, { Component } from 'react';

 import {
 StyleSheet,
 Text,
 View,
 PixelRatio,
 ScrollView
 } from 'react-native';

Adding Native Functionality

[305]

 import Button from './Button';
 export default class InitialScene extends Component {
 render () {
 return (
 <ScrollView style={styles.scrollView}>
 <Text style={styles.row}>
 Route: {this.props.route.key}
 </Text>
 <Button
 text="Next"
 onPress={this.props.onPushRoute}
 />
 <Button
 text="Back"
 onPress={this.props.onPopRoute}
 />
 </ScrollView>
);
 }
 }

You can add the following styles at the end of the file to give the scene some
styling:

 const styles = StyleSheet.create({
 navigator: {
 flex: 1,
 },
 scrollView: {
 marginTop: 64
 },
 row: {
 padding: 15,
 backgroundColor: 'white',
 borderBottomWidth: 1 / PixelRatio.get(),
 borderBottomColor: '#CDCDCD',
 },
 rowText: {
 fontSize: 17,
 },
 buttonText: {
 fontSize: 17,
 fontWeight: '500',
 },
 });

Adding Native Functionality

[306]

The next step is to implement the actual Navigator itself. This will contain the3.
NavigationCardStack, instructions on how to render a scene, and most
importantly in this case, our back button event handler. Let's get right into it;
create a Navigator.js file and add the following:

 import React, { Component } from 'react';

 import {
 StyleSheet,
 Text,
 View,
 NavigationExperimental
 } from 'react-native';

 import InitialScene from './InitialScene';

 const {
 CardStack : NavigationCardStack
 } = NavigationExperimental;
 export default class Navigator extends Component {
 constructor(props, context) {
 super(props, context);

 this._onPushRoute =
 this.props.onNavigationChange.bind(null, 'push');
 this._onPopRoute =
 this.props.onNavigationChange.bind(null, 'pop');
 }

 _renderScene = (sceneProps) => {
 return (
 <InitialScene
 route={sceneProps.scene.route}
 onPushRoute={this._onPushRoute}
 onPopRoute={this._onPopRoute}
 />
);
 }

 render() {
 return (
 <NavigationCardStack
 onNavigationBack={this._onPopRoute}
 navigationState={this.props.navigationState}
 renderScene={this._renderScene}
 style={{flex:1}}

Adding Native Functionality

[307]

 />
);
 }
 }

Here we're rendering our InitialScene component that we created and
putting it on the NavigationCardStack.

Now it's time to add support for the back button. We will be modifying our4.
Navigator since it holds the prop that handles navigation state change.

First we need to import BackAndroid from 'react-native', so add the
field to the import block after NavigationExperimental.

At the end of the constructor, we're going to add the event listener for the
back button:

 BackAndroid.addEventListener
 ('hardwareBackPress', this.onAndroidBackPress);

Lastly, we need to implement the callback that we passed into the event
listener:

 onAndroidBackPress = () => {
 if(this.props.navigationState.index) {
 this._onPopRoute();
 return true;
 }
 return false;
 }

To tie this all together, we need to render the Navigator from our applications5.
entry class. We will start by importing the necessary dependencies, open
index.android.js:

We need to import NavigationExperimental from 'react-native', our
Navigator component, and get a reference to StateUtils from
NavigationExperimental:

 import {
 AppRegistry,
 StyleSheet,
 Text,
 View,
 NavigationExperimental
 } from 'react-native';

Adding Native Functionality

[308]

 const {
 StateUtils : NavigationStateUtils
 } = NavigationExperimental;

 import Navigator from './Navigator';

Then to render the Navigator, overwrite the implementation of the
application class with the following:

 componentWillMount() {
 this.state = {
 navigationState : {
 index : 0,
 routes : [
 {key : 'Initial'}
]
 }
 };
 }

 _onNavigationChange = (type) => {
 let navigationState = this.state.navigationState,
 newNavigationState;
 switch (type) {
 case 'push':
 newNavigationState =
 NavigationStateUtils.push(navigationState, {
 key : 'Route-'+Date.now()
 });
 break;
 case 'pop':
 newNavigationState =
 NavigationStateUtils.pop(navigationState);
 break;
 }
 if(newNavigationState !== navigationState) {
 this.setState({navigationState : newNavigationState});
 }
 }

 render() {
 return (
 <Navigator
 navigationState={this.state.navigationState}
 onNavigationChange={this._onNavigationChange}
 />
);
 }

Adding Native Functionality

[309]

Your application should look as shown in the following screenshot, and you
should be able to use the back button to navigate up the stack:

How it works…
The Android back button handler is quite trivial to implement. It should, however, be
useful in a meaningful way that feels natural to the application. The implementation occurs
in step 4. To prevent the default action, in this case it would exit out of the application, we
have to return true from our event listener.

Reacting to changes in application state
The average mobile device user has several applications that they use on a consistent basis.
These can be their favorite social media platform, their second favorite, a game, a media
player, and hopefully your React Native app. This user may spend a short time in each
application because he or she is constantly jumping across applications. What if we wanted
to react to when the user leaves our app and re-enters? Maybe we need to sync data with
the server or just tell the user that we're happy to see him/her use the app again and please
rate us on the app store.

Adding Native Functionality

[310]

This recipe will show how we can react to changes in application state, that is, when the app
is in the background, inactive, or active (foreground). It is applicable to both iOS and
Android.

For this recipe, we created a React Native application titled ApplicationState.

How to do it…
Fortunately, React Native provides support for listening to changes through the1.
AppState module. Open your index.ios.js or index.android.js. The code
will be identical for both platforms.
Add AppState to the import { ... } from 'react-native' statement.2.
In the recipe, we're going to keep track of the previous state to see where the user3.
came from. If it's their first time entering the app, we will welcome them, if they
are returning, we will welcome them back. To do so, we need to keep a reference
to previous and currentAppStates:

 class ApplicationState extends Component {
 previousAppState : undefined
 currentAppState : undefined

We also need to store our status message on the state and display it on the view.4.
Add the following functions:

 componentWillMount() {
 this.currentAppState = 'active';
 this.setState({
 appStatus: 'Welcome!'
 });
 }

 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.welcome}>
 {this.state.appStatus}
 </Text>
 </View>
);
 }

Adding Native Functionality

[311]

Currently, we're not doing anything with the application state. We are just5.
displaying Welcome. Let's change that.

In your componentWillMount function, add the following to register an
event listener on AppStateChange:

 AppState.addEventListener('change', this.onAppStateChange);

Now we need to implement the event handler that will set the appStatus on
the state, based on what the new application state is:

 onAppStateChange = (appState) => {
 let appStatus;
 this.previousAppState = this.currentAppState;
 this.currentAppState = appState;
 switch(appState) {
 case 'inactive':
 appStatus = "I'm Hiding!";
 break;
 case 'background':
 appStatus = "I'm Hidden";
 break;
 case 'active':
 appStatus = 'Welcome Back!'
 break;
 }
 this.setState({appStatus});
 }

This is how the app will look on both iOS and Android:

Adding Native Functionality

[312]

How it works…
In this recipe, we use the built-in AppState module. The module listens to the Activity
events on Android. On iOS it uses NSNotificationCenter to register a listener on various
UIApplication events. Both platforms support the active and background states,
whereas the inactive state is currently iOS only.

There's more…
Android does not explicitly support the inactive state due to its multitasking
implementation. It goes between background and active states. To do the equivalent of
the iOS inactive state on Android, see the recipe on Hiding application content when
multitasking.

Adding Native Functionality

[313]

Copy and pasting content
One of the most used features in both desktop and mobile operating systems is the
clipboard to copy and paste content. A scenario may be the user filling out a form in your
awesome React Native app, where there is a field for a contact's e-mail address, a
particularly lengthy and cumbersome one. Instead of typing it with a few typos, it would be
easier to just open your contacts application and copy the e-mail from there and paste it into
your TextInput field.

This recipe will show a basic example on both Android and iOS of how we can copy and
paste text inside our React Native application. In our sample app, we will have both a static
Text view and a TextInput field that you can copy its contents to the clipboard. Also,
there will be a button that outputs the contents of the clipboard to the view.

Getting ready
For this recipe, we created a React Native application entitled CopyPaste.

In this recipe, we will use the react-native-button and react-native-tooltip
libraries. To install them, run the following command in the terminal from your project root
directory:

 $ npm install react-native-button react-native-tooltip --save
 $ rnpm link react-native-tooltip

How to do it…
Let's start off by creating a component that takes a Text view and puts its content1.
onto the Clipboard. We'll be building both iOS and Android versions of this
component. The implementation is slightly different as we can render the native
iOS tooltip easily thanks to the react-native-tooltip module, while Android
will have to settle with using a long-press. You are encouraged though to create
your own tooltip component, maybe of the native Android tooltip, to mimic the
same experience on both platforms.

Adding Native Functionality

[314]

Create a file ClipboardText.ios.js in your root project directory (where
your index.ios.js is located). First, we're going to import our
dependencies; take note of the Clipboard module from react-native as
well as the ToolTip that we installed earlier:

 import React, { Component, PropTypes } from 'react';

 import {
 Clipboard,
 Text,
 View
 } from 'react-native';

 import ToolTip from 'react-native-tooltip';

Now we're going to implement the class. We are going to have a
useTooltip prop flag that will decide whether we should show the native
tooltip on long-press, or to just put the string onto the clipboard as we will
for Android:

 export default class ClipboardText extends Component {
 propTypes : {
 useTooltip : PropTypes.bool
 }

 onClipboardCopy = () => {
 const sourceText = this.refs.sourceText.props.children;

 Clipboard.setString(sourceText);
 }

 render() {
 const toolTipActions = [
 {
 text : 'Copy',
 onPress : this.onClipboardCopy
 }
];
 if(this.props.useTooltip) {
 return (
 <View>
 <ToolTip
 actions={toolTipActions}
 underlayColor='transparent'
 longPress={true}
 arrowDirection='down'>
 <Text ref="sourceText" {...this.props}/>

Adding Native Functionality

[315]

 </ToolTip>
 </View>
);
 }
 return (
 <Text ref="sourceText" onLongPress={this.onClipboardCopy}
 {...this.props}/>
)
 }
 }

Let's create the Android-specific ClipboardText component now. Create a
file, ClipboardText.android.js, in the same location you did for step 1
and add the following code:

 import React, { Component } from 'react';
 import {
 Clipboard,
 Text
 } from 'react-native';

 export default class ClipboardText extends Component {
 onClipboardCopy = () => {
 const sourceText = this.refs.sourceText.props.children;

 Clipboard.setString(sourceText);
 }

 render() {
 return (
 <Text ref="sourceText" onLongPress={this.onClipboardCopy}
 {...this.props}/>
);
 }
 }

Adding Native Functionality

[316]

Now we can build our application view that will render our ClipboardText2.
component, as well as a TextInput, and finally a way to output the clipboard
contents. We'll start with iOS first so open up index.ios.js and add the
following imports:

 import {
 AppRegistry,
 StyleSheet,
 Text,
 View,
 Clipboard,
 TextInput
 } from 'react-native';

 import Button from 'react-native-button';

 import ClipboardText from './ClipboardText';

Before we figure out how we're going to render the page, we need to think about3.
how we're going to store the clipboard contents, and more importantly retrieve
them. Add the following functions to the CopyPaste class:

 componentWillMount() {
 this.getClipboardContent =
 this.getClipboardContent.bind(this);
 this.setState({
 clipboardContent : undefined
 });
 }

 async getClipboardContent() {
 const clipboardContent = await Clipboard.getString();

 this.setState({
 clipboardContent
 });
 }

Now that we have the plumbing done for copy and pasting, let's render the view4.
to support it. Add the following to your render method:

 <ClipboardText useTooltip=
 {true} style=
 {styles.header}>React Native Cookbook</ClipboardText>

Adding Native Functionality

[317]

If you want to add the TextInput that you can access the clipboard directly
from, you can add it this way:

 <TextInput style={styles.textInput} />

Finally, we need to display the clipboard contents and a Button to trigger
the output of the clipboard to the state:

 <View style={styles.row}>
 <Text style={styles.rowText}>
 Clipboard Content:
 </Text>
 <Text style={styles.content}>
 {this.state.clipboardContent}
 </Text>
 </View>
 <Button
 containerStyle={styles.buttonContainer}
 style={styles.buttonStyle}
 onPress={this.getClipboardContent}>
 Paste Clipboard
 </Button>

For Android, repeat steps 2-4. However, all the work will be done in5.
index.android.js. The only other note is that since our ClipboardText
component does not support rendering the tooltip for Android, we should
remove the useTooltip prop arguments:

 <ClipboardText style={styles.header}>React Native
 Cookbook</ClipboardText>

If you build the sample application from the source code, your iOS app
should look like this:

Adding Native Functionality

[318]

And your Android app will look like this:

Adding Native Functionality

[319]

How it works…
In this recipe, we built a simple component and application, wrapping the built-in
Clipboard API. The Clipboard module currently only supports content of type String,
even though the devices can copy and paste anything from images to map locations.

In step 1, we created our TextInput Clipboard wrapping component. For iOS, we were
able to enhance it to show a native menu with our custom options to mimic the experience
we see in a WebView. On Android, there is no existing third-party menu UI component
available. In step 3, we handle retrieving the content in the Clipboard. It is an
asynchronous process that we wrap using async/await to make it feel synchronous.

Receiving push notifications
In our ever-connected mobile world, it is important for our apps to encourage and entice us
to open them. They should communicate that there is some piece of information waiting for
us if we open the app that we must be aware of immediately. This is where the concept of
push notifications comes in. Push notifications have existed since 2009 on iOS and 2010 for
Android, and are frequently used by applications to let the user know of a change that they
should react to. This could be a time-duration process finished, or a message has been
posted directed at the user; the use cases are endless.

This recipe focuses solely on working with push notifications on both iOS and Android. We
are going to register our app with Apple APNS and Google GCM and successfully receive
push notifications.

Getting ready
This recipe assumes you have a working push notification server that communicates with
APNS and GCM. In the recipe, we will output the device token for you to register with your
server.

For this recipe, we created a React Native application titled PushNotifications.

In this recipe, we will use the react-native-push-notifications library. To install it,
run the following command in the terminal from your project root directory:

 $ npm install react-native-push-notification --save
 $ react-native link

Adding Native Functionality

[320]

Note: Push notifications for iOS require a physical device, you cannot test
this on a simulator. For Android, your AVD must have Google APIs
installed.

How to do it…
Before we begin writing React Native code to receive notifications, we have to1.
add the push notifications entitlement to our App ID. Open the iOS Project in
Xcode. The project file is located in the ios/ directory of your React Native
application (for example,
./PushNotifications/ios/PushNotifications.xcodeproj):
Before proceeding with the entitlement configuration, make sure you change2.
your Bundle Identifier to be meaningful. Select the PROJECT in the project
navigator sidebar, then select the application target. Under Bundle Identifier,
change it to be more meaningful. Generally the format is
com(org|net|...).companyname.appname:

Please refer to the following URL for adding the push notification entitlement3.
and generating a certificate for your server: h t t p s ://d e v e l o p e r . a p p l e . c o m /l i b
r a r y /i o s /d o c u m e n t a t i o n /I D E s /C o n c e p t u a l /A p p D i s t r i b u t i o n G u i d e /A d d i n g C a
p a b i l i t i e s /A d d i n g C a p a b i l i t i e s . h t m l #//a p p l e _ r e f /d o c /u i d /T P 40012582- C H
26- S W 6

https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6
https://developer.apple.com/library/ios/documentation/IDEs/Conceptual/AppDistributionGuide/AddingCapabilities/AddingCapabilities.html#//apple_ref/doc/uid/TP40012582-CH26-SW6

Adding Native Functionality

[321]

Now that our React Native app is ready to receive Apple push notifications, let's4.
write some code to do so. Open up your index.ios.js file and add the
following import:

 import PushNotification from 'react-native-push-notification';

Next, we need register for push notifications and in our sample app we will5.
display the message on the view:

 componentWillMount() {
 this.setState({
 notification : undefined
 });

 PushNotification.configure({
 onRegister : function (token) {
 console.log('register', token);
 },
 onNotification : this.onNotificationReceived
 });
 }

 onNotificationReceived = (notification) => {
 this.setState({
 notification : notification.message
 });
 }

Now if you want to display the notification message when it is received, just add6.
the following to your render method:

 <Text>{this.state.notification}</Text>

Adding Native Functionality

[322]

This is how our sample app looks running on a device:

It's time to move on to Android. This part is a bit more involved as there is7.
currently no out-of-the-box support from React Native.
Follow the Create an API project to get a configuration file and add the8.
configuration file to your project, ignoring the Gradle instructions, from h t t p s

://d e v e l o p e r s . g o o g l e . c o m /c l o u d - m e s s a g i n g /a n d r o i d /c l i e n t .

Make sure to store your server API key and sender ID somewhere for easy
retrieval.

Go to the following URL and follow the instructions on Android Installation (h t t9.
p s ://g i t h u b . c o m /z o 0r /r e a c t - n a t i v e - p u s h - n o t i f i c a t i o n /b l o b /m a s t e r /R E A D

M E . m d #a n d r o i d - i n s t a l l a t i o n):

https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://developers.google.com/cloud-messaging/android/client
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation
https://github.com/zo0r/react-native-push-notification/blob/master/README.md#android-installation

Adding Native Functionality

[323]

One feature that we may want to implement on Android that already exists on10.
iOS is to open up our app when the user taps a notification. Open
AndroidManifest.xml (it's located in ./app/src/main) and add the following
to our MainActivity definition:

 <intent-filter>
 <action android:name="OPEN_ACTIVITY_1" />
 <category android:name="android.intent.category.DEFAULT" />
 </intent-filter>

When you send notifications from your server, you have to ensure that you set11.
the click_action to 'OPEN_ACTIVITY_1':

 message.addNotification({
 title : 'Notification',
 body : 'Thanks for reading React Native Cookbook!',
 icon : 'ic_launcher',
 click_action : 'OPEN_ACTIVITY_1'
 });

Now that we're all set setting up our Android project, we can work on the UI.12.
Repeat steps 4-6 for index.android.js.
To register with the GCM service, we must make two changes to our13.
PushNotification.configure method. Add the following two properties:

 senderID : '<SenderIDFromGoogle>',
 requestPermissions : true

Now you should be able to successfully receive push notifications on
Android and open your application when you tap the notification.

How it works…
Push notifications are one of the more advanced recipes that we will be covering in this
chapter. The level of difficulty involves more in setting up our environments, rather than
reacting to them in our React Native application. Steps 3 and 8 focus on setting up our
development servers.

One important distinction between iOS and Android is the action that occurs when the user
taps on a notification. iOS defaults to open the application, to replicate this feature we
needed to add an intent-filter, as seen in step 11 and 12. If you do not want to auto-
launch your application, then skip step 11 and do not send the click_action in your
notification payload.

Adding Native Functionality

[324]

Authenticating via TouchID or fingerprint
sensor
These days, security is paramount in our applications, especially when there is any sort of
authentication. We hear about security breaches and leaked passwords daily in the news,
and companies are looking to implement added security measures in their apps. One such
measure may be fingerprint scanning via the iOS TouchID sensor or Android fingerprint
sensor. These are pretty secure mechanisms for authenticating with applications. Since
React Native can easily access the native layer and allow us to create native modules with
ease, there's no reason why we can't have fingerprint authentication in our apps for both
iOS and Android.

This recipe covers how we can go about scanning our fingerprint using either the TouchID
sensor or the Android fingerprint sensor (if it is equipped on your device, and you are
deploying for API Level 23+) and have the fingerprint verified.

Getting ready
For this recipe, we created a React Native application entitled FingerPrint.

In this recipe, we will use the react-native-button and react-native-touch-id
libraries. To install them, run the following command in the terminal from your project root
directory:

 $ npm install react-native-button react-native-touch-id --save

How to do it…
On the iOS side of things, we are in a fortunate position in that there is a1.
community module already out there to handle TouchID authentication. Open
index.ios.js and import our modules:

 import Button from 'react-native-button';
 import TouchID from 'react-native-touch-id';

Adding Native Functionality

[325]

Now, in the class, we're going to need to set up our initial state that will hold the2.
authentication status and an event handler for our button that will tell the OS to
authenticate with TouchID. Add the following methods to your main class:

 componentWillMount() {
 this.setState({
 authStatus : undefined
 });
 }
 onButtonPress = () => {
 TouchID.authenticate('React Native Cookbook')
 .then(this.onAuthSuccess)
 .catch(this.onAuthFailure);
 }
 onAuthSuccess = (success) => {
 this.setState({
 authStatus : 'Authenticated'
 });
 }
 onAuthFailure = (failure) => {
 this.setState({
 authStatus : 'Not Authenticated'
 });
 }

For our sample app, let's render our button that will start the authentication and a3.
way to display the authStatus. Implement the following render method:

 render() {
 return (
 <View style={styles.container}>
 <Button
 containerStyle={styles.buttonContainer}
 style={styles.buttonStyle}
 onPress={this.onButtonPress}>
 Authenticate
 </Button>
 <Text style={styles.instructions}>Authentication
 Status</Text>
 <Text style={styles.welcome}>{this.state.authStatus}
 </Text>
 </View>
); }

This is what we should see when we run our app:

Adding Native Functionality

[326]

Adding fingerprint authentication will require us to create our own native4.
module. Open the Android project using Android Studio. In Android Studio,
select Open an existing Android Studio project and open the android directory
of the project.
Right-click on the main package (com.fingerprint) and select New | Java5.
Class. Use Fingerprint for the class name and leave the Kind field as Class.
Repeat step 3 for the FingerprintModule and FingerprintPackage classes.6.
Open the Fingerprint class and add the following imports:7.

 import android.hardware.fingerprint.FingerprintManager;
 import android.os.CancellationSignal;

 import com.facebook.react.bridge.Arguments;
 import com.facebook.react.bridge.ReactContext;
 import com.facebook.react.bridge.WritableMap;
 import com.facebook.react.modules.core
 .DeviceEventManagerModule;

Adding Native Functionality

[327]

Now we're going to implement the class, our Fingerprint class should extend8.
FingerprintManager.AuthenticationCallback:

 private FingerprintManager fingerprintManager;
 private FingerprintManager.CryptoObject cryptoObject;
 private CancellationSignal cancellationSignal;
 private ReactContext reactContext;
 public Fingerprint(FingerprintManager fingerprintManager,
 ReactContext reactContext) {
 this.fingerprintManager = fingerprintManager;
 this.reactContext = reactContext;
 }
 public void setCryptoObject(FingerprintManager
 .CryptoObject cryptoObject) {
 this.cryptoObject = cryptoObject;
 }
 public void authenticate() {
 cancellationSignal = new CancellationSignal();
 fingerprintManager.authenticate
 (cryptoObject, cancellationSignal, 0, this, null);
 WritableMap params = Arguments.createMap();
 params.putString("authStatus", "Waiting for fingerprint");
 sendEvent("authStatus", params);
 }
 @Override
 public void onAuthenticationError
 (int errorCode, CharSequence errString) {
 WritableMap params = Arguments.createMap();
 params.putString("authStatus", "An error has occurred");
 sendEvent("authStatus", params);
 }
 @Override
 public void onAuthenticationFailed() {
 WritableMap params = Arguments.createMap();
 params.putString("authStatus", "Invalid fingerprint");
 sendEvent("authStatus", params);
 }
 @Override
 public void onAuthenticationSucceeded
 (FingerprintManager.AuthenticationResult result) {
 WritableMap params = Arguments.createMap();
 params.putString
 ("authStatus", "Authentication Successful!");
 sendEvent("authStatus", params);
 }
 @Override
 public void onAuthenticationHelp
 (int helpCode, CharSequence helpString) {

Adding Native Functionality

[328]

 }
 private void sendEvent(String eventName, WritableMap params) {
 reactContext.getJSModule
 (DeviceEventManagerModule.RCTDeviceEventEmitter.class)
 .emit(eventName, params);
 }

Now we're going to need create our React Native module wrapper around the9.
Fingerprint class. Open the FingerprintModule class and change it to the
following:

 public class FingerprintModule extends
 ReactContextBaseJavaModule{

 private FingerprintManager fingerprintManager;
 private Fingerprint fingerprint;

 public FingerprintModule
 (ReactApplicationContext reactApplicationContext) {
 super(reactApplicationContext);

 fingerprintManager = (FingerprintManager)
 reactApplicationContext.getSystemService
 (Context.FINGERPRINT_SERVICE);
 fingerprint = new Fingerprint
 (fingerprintManager, reactApplicationContext);
 }

 @Override
 public String getName() {
 return "Fingerprint";
 }

 @ReactMethod
 public void authenticate() {
 fingerprint.authenticate();
 }
 }

We're going to need to add our FingerprintModule to our10.
FingerprintPackage:

 public class FingerprintPackage implements ReactPackage {
 @Override
 public List
 <Class<? extends JavaScriptModule>> createJSModules() {
 return Collections.emptyList();

Adding Native Functionality

[329]

 }

 @Override
 public List
 <ViewManager> createViewManagers
 (ReactApplicationContext reactContext) {
 return Collections.emptyList();
 }

 @Override
 public List<NativeModule> createNativeModules(
 ReactApplicationContext reactContext) {
 List<NativeModule> modules = new ArrayList<>();

 modules.add(new FingerprintModule(reactContext));

 return modules;
 }
 }

Finally, we need to register the FingerprintPackage with our application so11.
we can use it in our React Native JavaScript. Open MainApplication.java and
add the following to the getPackages method:

 @Override
 protected List<ReactPackage> getPackages() {
 return Arrays.<ReactPackage>asList(
 new MainReactPackage(),
 new FingerprintPackage()
);
 }

Let's go ahead and implement the FingerprintModule and our UI. Open12.
index.android.js and import the following modules:

 import {
 AppRegistry,
 StyleSheet,
 Text,
 View,
 NativeModules,
 DeviceEventEmitter
 } from 'react-native';

 const {
 Fingerprint
 } = NativeModules;

Adding Native Functionality

[330]

 import Button from 'react-native-button';

Now we need to create and wire up the event handlers for authentication as we13.
did in step 2. Since we're using our own native module, the code will be a bit
different:

 componentWillMount() {
 this.setState({
 authStatus : undefined
 });
 DeviceEventEmitter.addListener
 ('authStatus', this.onAuthStatus);
 }
 onAuthStatus = (eventBody) => {
 const authStatus = eventBody.authStatus;
 this.setState({authStatus});
 }
 onButtonPress = () => {
 Fingerprint.authenticate();
 }

Fortunately, the render remains unchanged from the iOS version, so repeat step14.
3 and your application should look something like this:

Adding Native Functionality

[331]

How it works…
This recipe is an excellent example of when functionality is readily available and accessible
on one platform, but not so much on the other. In this case, we use react-native-touch-
id for handling the iOS Touch ID support, but since there is no available module for
Android, we have no choice but to create our own. We leverage what we learned in the
Exposing custom Android modules recipe and build a FingerPrint module in steps 4-11. Step
8 covers the actual implementation of the fingerprint scanning and reacting to the
authentication states. In this case, all the logic occurs in the FingerPrint class and the
FingerPrintModule just exposes a single authenticate method.

Hiding application content when
multitasking
Keeping the theme of application security going, we have to be wary sometimes of
unwanted eyes and hands touching our devices and potentially getting access to our
applications. In order to protect the user from prying eyes while looking at sensitive
information, we can mask our application when the application is hidden, but still active.
Once the user returns to the application, we would simply remove the mask and the user
can continue using the app as normal. A good example would be the Chase banking
application; it hides your sensitive banking information when the application is not in the
foreground.

This recipe will show you how to render an image to mask your application and remove it
once the application returns to the foreground or active state. We will cover both iOS and
Android; however, the implementation varies in its entirety. For iOS, we employ a pure
Objective-C implementation for optimal performance. For Android, we're going to have to
make some modifications to the MainActivity in order to send an event to our JavaScript
layer that the application has lost focus. We will handle the rendering of the image mask
there.

Getting ready
We're going to need to have an image handy that we want to use as the mask. In this recipe,
we used an image with the filename hidden.jpg.

For this recipe, we created a React Native application titled HideContent.

Adding Native Functionality

[332]

How to do it…
Open the iOS Project in Xcode. The project file is located in the ios/ directory of1.
your React Native application (for example,
./HideContent/ios/HideContent.xcodeproj).
Open the Images.xcassets file and drag your image to the left sidebar:2.

Open AppDelegate.m and add the following instance variable and methods:3.

 @implementation AppDelegate {
 UIImageView *imageView;
 }

 - (void)applicationWillResignActive:
 (UIApplication *)application {
 imageView = [[UIImageView alloc]
 initWithFrame:[self.window frame]];
 [imageView setImage:[UIImage imageNamed:@"hidden.jpg"]];
 [self.window addSubview:imageView];
 }

 - (void)applicationDidBecomeActive:
 (UIApplication *)application {
 if(imageView != nil) {
 [imageView removeFromSuperview];
 imageView = nil;
 }
 }

Adding Native Functionality

[333]

Run your application and double-press the Home button or open the
notifications center and you should see the following:

Open the Android project using Android Studio. In Android Studio, select Open4.
an existing Android Studio project and open the android directory of the
project.
Open MainActivity.java and add the following method:5.

 @Override
 public void onWindowFocusChanged(boolean hasFocus) {
 super.onWindowFocusChanged(hasFocus);
 if(getReactNativeHost()
 .getReactInstanceManager()
 .getCurrentReactContext() != null) {
 WritableMap params = Arguments.createMap();
 params.putBoolean("appHasFocus", hasFocus);
 getReactNativeHost().getReactInstanceManager()
 .getCurrentReactContext()
 .getJSModule(DeviceEventManagerModule
 .RCTDeviceEventEmitter.class)
 .emit("focusChange", params);
 }
 }

Adding Native Functionality

[334]

Copy our image (hidden.jpg) to the root of the React Native project (where6.
index.android.js is located).
Open index.android.js and add the image and DeviceEventEmitter to the7.
import { ... } from 'react-native' block.
Now we need to add an event listener for the focusChange event that will be8.
fired from the MainActivity. Add the following code into our main class:

 componentWillMount() {
 this.setState({
 showMask : undefined
 });
 this.subscription =
 DeviceEventEmitter.addListener
 ('focusChange', this.onFocusChange);
 }
 onFocusChange = (params) => {
 this.setState({showMask : !params.appHasFocus})
 }
 componentWillUnmount() {
 this.subscription.remove();
 }

To render the image mask, we need to modify the render method to show the9.
Image component. Add the following before the return statement in the render
method:

 if(this.state.showMask) {
 return (<Image source={require('./hidden.jpg')} />);
 }

Adding Native Functionality

[335]

Run your application and either shake to open the developer menu or swipe10.
down to view the control center, and you will see your image mask:

How it works…
In this recipe, we use two separate approaches for accomplishing the same task. For iOS, we
handle showing the image mask in the native layer exclusively, without relying on React
Native at all. The reason for this is to eliminate the round-trip over the bridge. The tradeoff
is that we are writing platform-specific native code, instead of using the inactive state
that is available to us. For Android, it is easier to rely on React Native and JavaScript to
handle the image masking, therefore we write a hook in our MainActivity that will fire a
custom event informing us that the application lost focus.

Background processing on iOS
Over the last several years, the functional gap for common applications between mobile and
desktop has shrunk. Users are demanding richer experiences and more robust processing
than the trivial applications that originally existed. To support this, the hardware had to be
upgraded to support the software demands. Most mobile devices today are powered by
multi-core processors, and the operating systems now provide developers easy abstractions
to execute code in the background without locking the application.

Adding Native Functionality

[336]

This recipe will cover the use of iOS's Grand Central Dispatch to execute asynchronous
background processing on a new thread and communicate back to our React Native
application when the processing is complete.

Getting ready
For this recipe, we created a React Native application titled Multithreading.

In this recipe, we will use the react-native-button library. To install it, run the
following command in the terminal from your project root directory:

 $ npm install react-native-button --save

How to do it…
Open the iOS Project in Xcode. The project file is located in the ios/ directory of1.
your React Native application (for example, ./Multithreading/ios/
Multithreading.xcodeproj).
Create a new Objective-C Cocoa class called BackgroundTaskManager.2.
Open BackgroundTaskManager.h and replace it with the following:3.

 #import <Foundation/Foundation.h>
 #import <dispatch/dispatch.h>
 #import "RCTBridgeModule.h"

 @interface BackgroundTaskManager : NSObject <RCTBridgeModule> {
 dispatch_queue_t backgroundQueue;
 }

 @end

Open BackgroundTaskManager.m and replace it with the following:4.

 #import "BackgroundTaskManager.h"
 #import "RCTBridge.h"
 #import "RCTEventDispatcher.h"

 @implementation BackgroundTaskManager

 @synthesize bridge = _bridge;

 RCT_EXPORT_MODULE();

Adding Native Functionality

[337]

 RCT_EXPORT_METHOD(loadInBackground) {
 backgroundQueue = dispatch_queue_create
 ("com.moduscreate.bgqueue", NULL);
 dispatch_async(backgroundQueue, ^{
 NSLog(@"processing background");
 [self.bridge.eventDispatcher sendAppEventWithName:
 @"backgroundProgress" body:@{@"status": @"Loading"}];
 [NSThread sleepForTimeInterval:5];
 NSLog(@"slept");
 dispatch_async(dispatch_get_main_queue(), ^{
 NSLog(@"Done processing; main thread");
 [self.bridge.eventDispatcher sendAppEventWithName:
 @"backgroundProgress" body:@{@"status": @"Done"}];
 });
 });
 }
 @end

Open index.ios.js and add NativeModules and NativeAppEventEmitter5.
to the import { ... } from 'react-native' block.
We also need to import the Button component and make a reference to our6.
BackgroundTaskManager native module:

 import Button from 'react-native-button';

 const BackgroundTaskManager =
 NativeModules.BackgroundTaskManager;

In our example, we will track the status of the background process, and7.
demonstrate that this process does not block the UI by having another button that
increments a counter. Let's prepare our event handlers for these buttons:

 componentWillMount() {
 var me = this;
 me.setState({
 backgroundTaskStatus : "Not Started",
 doNothingCount : 0
 });
 this.subscription =
 NativeAppEventEmitter.addListener
 ('backgroundProgress', (e) => {
 const backgroundTaskStatus = e.status;
 me.setState({backgroundTaskStatus});
 });
 }
 onButtonPress() {
 BackgroundTaskManager.loadInBackground();

Adding Native Functionality

[338]

 }
 onDoNothingPress = () => {
 this.setState({
 doNothingCount : this.state.doNothingCount+1
 });
 }

Now let's set up our UI to show the buttons, background process status, and8.
counter. Change the render method to the following:

 render() {
 return (
 <View style={styles.container}>
 <Button
 containerStyle={styles.buttonContainer}
 style={styles.buttonStyle}
 onPress={this.onButtonPress}>
 Run Task
 </Button>
 <Text style={styles.instructions}>
 Background Task Status:
 </Text>
 <Text style={styles.welcome}>
 {this.state.backgroundTaskStatus}
 </Text>
 <Text style={styles.instructions}>
 Pressing "Do Nothing" shows
 that the task is not blocking the main thread
 </Text>
 <Button
 containerStyle={
 [styles.buttonContainer, styles.altButtonContainer]}
 style={styles.buttonStyle}
 onPress={this.onDoNothingPress}>
 Do Nothing
 </Button>
 <Text style={styles.instructions}>
 Times "Do Nothing" Pressed:
 </Text>
 <Text style={styles.welcome}>
 {this.state.doNothingCount}
 </Text>
 </View>
);
 }

Adding Native Functionality

[339]

Run the application and you should see the following screen:9.

How it works
In this recipe, we create a native module as we did in the Exposing custom iOS modules
recipe, but we perform some arbitrary execution in the background. In our case, we spawn
a new thread, sleep it for 5 seconds, and then when it is done we let the UI know that the
process has been completed. We leverage the operating systems' Grand Central Dispatch
API to accomplish this.

An important part we highlight with the button we added in steps 7 and 8 is that if we were
running on a single native thread, our application would lock while the background process
is running. When you press a button, the bridge is invoked and messages are posted to the
native layer. If the native thread is currently busy sleeping, then we cannot process the
message. Fortunately, in our case we offloaded that processing using GCD to a new thread.

Adding Native Functionality

[340]

Background processing on Android
Multi-core processors were first introduced for Android in 2011. Generally, Android device
manufacturers have boasted impressive specifications in their CPUs. It is only natural that
the software should use the hardware to its full potential.

This recipe will cover using AsyncTask to execute short-running processes in the
background without blocking the main thread.

Getting ready
For this recipe, we created a React Native application titled Multithreading.

In this recipe, we will use the react-native-button library. To install it, run the
following command in the terminal from your project root directory:

 $ npm install react-native-button --save

How to do it…
Open the Android project using Android Studio. In Android Studio, select Open1.
an existing Android Studio project and open the android directory of the
project.
Create two new Java classes: BackgroundTaskManager and2.
BackgroundTaskPackage.
Open BackgroundTaskManager.java and let's begin implementing our native3.
module that will wrap an AsyncTask operation. Import the following
dependencies:

 import android.os.AsyncTask;

 import com.facebook.react.bridge.Arguments;
 import com.facebook.react.bridge.ReactApplicationContext;
 import com.facebook.react.bridge.ReactContextBaseJavaModule;
 import com.facebook.react.bridge.ReactMethod;
 import com.facebook.react.bridge.WritableMap;
 import com.facebook.react.modules
 .core.DeviceEventManagerModule;

Adding Native Functionality

[341]

In order to execute an AsyncTask, we need to have a private class subclass it.4.
Open BackgroundTaskManager.java and create a private inner
BackgroundLoadTask class:

 private class BackgroundLoadTask extends
 AsyncTask<String, String, String> {
 @Override
 protected String doInBackground(String... params) {
 publishProgress("Loading");
 try {
 Thread.sleep(5000);
 } catch(Exception e){
 e.printStackTrace();
 }
 return "Done";

 }

 @Override
 protected void onPostExecute(String s) {
 WritableMap params = Arguments.createMap();
 params.putString("status", "Done");
 sendEvent("backgroundProgress", params);
 }

 @Override
 protected void onProgressUpdate(String... values) {
 WritableMap params = Arguments.createMap();
 params.putString("status", "Loading");
 sendEvent("backgroundProgress", params);
 }
 }

Now we need to have our native module provide a way for our JavaScript layer5.
to start the BackgroundLoadTask. Implement the rest of the
BackgroundTaskManager class:

 public BackgroundTaskManager
 (ReactApplicationContext reactApplicationContext) {
 super(reactApplicationContext);
 }

 @Override
 public String getName() {
 return "BackgroundTaskManager";
 }

Adding Native Functionality

[342]

 @ReactMethod
 public void loadInBackground() {
 BackgroundLoadTask backgroundLoadTask =
 new BackgroundLoadTask();
 backgroundLoadTask.execute();
 }

 private void sendEvent
 (String eventName, WritableMap params) {
 getReactApplicationContext().getJSModule
 (DeviceEventManagerModule.RCTDeviceEventEmitter.class)
 .emit(eventName, params);
 }

Open index.android.js and add NativeModules and DeviceEventEmitter6.
to the import { ... } from 'react-native' block.
We also need to import the Button component and make a reference to our7.
BackgroundTaskManager native module:

 import Button from 'react-native-button';

 const BackgroundTaskManager =
 NativeModules.BackgroundTaskManager;

In our example, we will track the status of the background process, and8.
demonstrate that this process does not block the UI by having another button that
increments a counter. Let's prepare our event handlers for these buttons:

 componentWillMount() {
 var me = this;
 me.setState({
 backgroundTaskStatus : "Not Started",
 doNothingCount : 0
 });
 DeviceEventEmitter.addListener('backgroundProgress', (e) => {
 const backgroundTaskStatus = e.status;
 me.setState({backgroundTaskStatus});
 });
 }
 onButtonPress() {
 BackgroundTaskManager.loadInBackground();
 }
 onDoNothingPress = () => {
 this.setState({
 doNothingCount : this.state.doNothingCount+1
 });
 }

Adding Native Functionality

[343]

Now let's set up our UI to show the buttons, background process status, and9.
counter. Change the render method to the following:

 render() {
 return (
 <View style={styles.container}>
 <Button
 containerStyle={styles.buttonContainer}
 style={styles.buttonStyle}
 onPress={this.onButtonPress}>
 Run Task
 </Button>
 <Text style={styles.instructions}>
 Background Task Status:
 </Text>
 <Text style={styles.welcome}>
 {this.state.backgroundTaskStatus}
 </Text>
 <Text style={styles.instructions}>
 Pressing "Do Nothing" shows
 that the task is not blocking the main thread
 </Text>
 <Button
 containerStyle={
 [styles.buttonContainer, styles.altButtonContainer]}
 style={styles.buttonStyle}
 onPress={this.onDoNothingPress}>
 Do Nothing
 </Button>
 <Text style={styles.instructions}>
 Times "Do Nothing" Pressed:
 </Text>
 <Text style={styles.welcome}>
 {this.state.doNothingCount}
 </Text>
 </View>
);
 }

Adding Native Functionality

[344]

Run the application and you should see the following experience:10.

How it works…
In this recipe, we mimic the functionality we created in Background processing on iOS but for
Android. We create an Android native module, perform some arbitrary execution in the
background (sleep for 5 seconds), and update our UI upon completion. Android has several
options for performing multithreaded operations natively. In our situation, we chose to use
AsyncTask as it is geared towards short-running (several seconds) processes. It is also
relatively simple to implement and the operating system manages thread creation and
resource allocation.

Playing audio files on iOS
With the iPod and the digital music revolution, a digital portable media device became a
must-have for even the most casual music listeners. The smartphone has superseded the
media device, with many users storing large music libraries on their phones. It is only
natural for other applications to want to access the music library.

Adding Native Functionality

[345]

In this recipe, we will create a native module to show the iOS mediaPicker and then select a
music file to play. The file will play through the iOS native media player, allowing the
music to play in the background and be controlled by the iOS control center.

Getting ready
For this recipe, we created a React Native application titled AudioPlayer.

In this recipe, we will use the react-native-button library. To install it, run the
following command in the terminal from your project root directory:

 $ npm install react-native-button --save

Make sure you have music synced with your iOS device that is available in your media
library.

How to do it…
Open the iOS Project in Xcode. The project file is located in the ios/ directory of1.
your React Native application (for example, ./AudioPlayer/ios/
AudioPlayer.xcodeproj).
Create a new Objective-C Cocoa class called MediaManager.2.
Open the MediaManager header (.h) file and replace it with the following3.
imports and references for MPMediaPickerController and
MPMusicPlayerController:

 #import <Foundation/Foundation.h>
 #import <MediaPlayer/MediaPlayer.h>
 #import "RCTBridgeModule.h"
 #import "RCTEventDispatcher.h"

 @interface MediaManager : NSObject<RCTBridgeModule,
 MPMediaPickerControllerDelegate>

 @property (nonatomic, retain)
 MPMediaPickerController *mediaPicker;
 @property (nonatomic, retain)
 MPMusicPlayerController *musicPlayer;
 @end

Adding Native Functionality

[346]

First, we are going to need to tackle showing the native MediaPicker in our4.
MediaManager implementation. Add the following methods to show and hide
the mediaPicker:

 #import "AppDelegate.h"

 -(void)showMediaPicker {
 if(self.mediaPicker == nil) {
 self.mediaPicker =
 [[MPMediaPickerController alloc]
 initWithMediaTypes:MPMediaTypeAnyAudio];
 [self.mediaPicker setDelegate:self];
 [self.mediaPicker setAllowsPickingMultipleItems:NO];
 [self.mediaPicker setShowsCloudItems:NO];
 self.mediaPicker.prompt = @"Select song";
 }
 AppDelegate *delegate =
 (AppDelegate *)[[UIApplication sharedApplication] delegate];
 [delegate.window.rootViewController presentViewController:
 self.mediaPicker animated:YES completion:nil];
 }

 void hideMediaPicker() {
 AppDelegate *delegate =
 (AppDelegate *)[[UIApplication sharedApplication] delegate];
 [delegate.window.rootViewController
 dismissViewControllerAnimated:YES completion:nil];
 }

Next, we're going to need to implement the two actions that the mediaPicker5.
may have, picking a media item and cancelling the action. Add the following
code to MediaManager.m:

 @synthesize bridge = _bridge;
 @synthesize musicPlayer;
 -(void) mediaPicker:(MPMediaPickerController *)
 mediaPicker didPickMediaItems:
 (MPMediaItemCollection *)mediaItemCollection {
 MPMediaItem *mediaItem = mediaItemCollection.items[0];
 NSURL *assetURL =
 [mediaItem valueForProperty:MPMediaItemPropertyAssetURL];
 [self.bridge
 .eventDispatcher sendAppEventWithName:@"SongPlaying"
 body:[mediaItem valueForProperty:MPMediaItemPropertyTitle]];
 if(musicPlayer == nil) {
 musicPlayer = [MPMusicPlayerController systemMusicPlayer];
 }

Adding Native Functionality

[347]

 [musicPlayer setQueueWithItemCollection:mediaItemCollection];
 [musicPlayer play];

 hideMediaPicker();
 }

 -(void) mediaPickerDidCancel:
 (MPMediaPickerController *)mediaPicker {
 hideMediaPicker();
 }

We're going to need to expose our MediaManager to the React Native bridge and6.
create a method that will be invoked to show the mediaPicker:

 RCT_EXPORT_MODULE();
 RCT_EXPORT_METHOD(showSongs) {
 [self showMediaPicker];
 }

Open index.ios.js and add NativeModules and NativeAppEventEmitter7.
to the import { ... } from 'react-native' block.
We also need to import the Button component and make a reference to our8.
MediaManager native module:

 import Button from 'react-native-button';

 const MediaManager = NativeModules.MediaManager;

Our application will allow the user to pick a song and display the song name9.
afterwards. Let's create the necessary functions that will handle the button press
and setting the song title on the component's state:

 componentWillMount() {
 this.setState({
 songPlaying : undefined
 });
 this.subscription = NativeAppEventEmitter.addListener
 ('SongPlaying', this.onSongPlaying);
 }
 onSongPlaying = (songPlaying) => {
 this.setState({songPlaying});
 }
 onShowSongsPress() {
 MediaManager.showSongs();
 }

Adding Native Functionality

[348]

We are going to need to set up our UI with the Button and an area to display the10.
song information. Implement the following render method:

 render() {
 return (
 <View style={styles.container}>
 <Button
 containerStyle={styles.buttonContainer}
 style={styles.buttonStyle}
 onPress={this.onShowSongsPress}>
 Pick Song
 </Button>
 <Text style={styles.instructions}>Song Playing:</Text>
 <Text style={styles.welcome}>{this.state.songPlaying
 </Text>
 </View>
);
 }

We are ready to run our app now; pick a song and it will play!11.

Adding Native Functionality

[349]

How it works…
This recipe revolves around the Media Player iOS framework and wrapping its
functionality in a native module. The Media Player framework allows us to access the
native iPod library and play audio files from the library on the device using the same
functionality as if you were to use Music.app. In step 4, we show the mediaPicker and
handle the selection of a media item and subsequently playing the audio file using the
MediaPlayer (MPMusicPlayerController) in step 5.

Playing audio files on Android
A benefit that Google likes to claim that Android has over iOS is flexibility in dealing with
file storage. Android devices support external SD cards that can be filled with media files,
and do not need a proprietary method of adding multimedia as iOS does.

In this recipe, we will use Android's native mediaPicker, which is started from an intent.
We will then be able to pick a song and have it play through our application.

Getting ready
For this recipe, we created a React Native application titled AudioPlayer.

In this recipe, we will use the react-native-button library. To install it, run the
following command in the terminal from your project root directory:

 $ npm install react-native-button --save

Make sure you have music files available in your Music/ directory on your Android device
or emulator.

How to do it…
Open the Android project using Android Studio. In Android Studio, select Open1.
an existing Android Studio project and open the android directory of the
project.
Create two new Java classes: MediaManager and MediaPackage.2.

Adding Native Functionality

[350]

Our MediaManager will use intents to show the mediaPicker, MediaPlayer to3.
play music, and MediaMetadataRetriever to parse metadata information from
the audio file to send back to the JavaScript layer. Let's import all the
dependencies first into our MediaManager.java:

 import android.app.Activity;
 import android.content.Intent;
 import android.media.AudioManager;
 import android.media.MediaMetadataRetriever;
 import android.media.MediaPlayer;
 import android.net.Uri;
 import android.provider.MediaStore;

 import com.facebook.react.bridge.ActivityEventListener;
 import com.facebook.react.bridge.Arguments;
 import com.facebook.react.bridge.ReactApplicationContext;
 import com.facebook.react.bridge.ReactContextBaseJavaModule;
 import com.facebook.react.bridge.ReactMethod;
 import com.facebook.react.bridge.WritableMap;
 import com.facebook.react.modules.core.DeviceEventManagerModule;

Since we're creating a native module and starting intents, we need to add some4.
boilerplate code as well as implement our showSongs method:

 public class MediaManager extends ReactContextBaseJavaModule
 implements ActivityEventListener {

 private MediaPlayer mediaPlayer = null;
 private MediaMetadataRetriever mediaMetadataRetriever = null;

 public MediaManager
 (ReactApplicationContext reactApplicationContext) {
 super(reactApplicationContext);
 reactApplicationContext.addActivityEventListener(this);
 }

 @Override
 public String getName() {
 return "MediaManager";
 }

 @Override
 public void onCatalystInstanceDestroy() {
 super.onCatalystInstanceDestroy();
 mediaPlayer.stop();
 mediaPlayer.release();
 mediaPlayer = null;

Adding Native Functionality

[351]

 }

 @ReactMethod
 public void showSongs() {
 Activity activity = getCurrentActivity();
 Intent intent = new Intent(Intent.ACTION_PICK,
 MediaStore.Audio.Media.EXTERNAL_CONTENT_URI);
 activity.startActivityForResult(intent, 10);
 }

 @Override
 public void onActivityResult
 (Activity activity, int requestCode,
 int resultCode, Intent intent) {
 if (intent != null) {
 playSong(intent.getData());
 }
 }

 @Override
 public void onNewIntent(Intent intent) {}
 }

You may have noticed that in onActivityResult we call a playSong method.5.
This is where we're going to start the MediaPlayer, parse the song's metadata,
and send the event back to the JavaScript thread:

 private void playSong(Uri uri) {
 try {
 if (mediaPlayer != null) {
 mediaPlayer.stop();
 mediaPlayer.reset();
 } else {
 mediaMetadataRetriever =
 new MediaMetadataRetriever();
 mediaPlayer = new MediaPlayer();
 mediaPlayer.setAudioStreamType
 (AudioManager.STREAM_MUSIC);
 }
 mediaPlayer.setDataSource
 (getReactApplicationContext(), uri);
 mediaPlayer.prepare();
 mediaPlayer.start();
 mediaMetadataRetriever.setDataSource
 (getReactApplicationContext(), uri);
 String artist = mediaMetadataRetriever.extractMetadata
 (MediaMetadataRetriever.METADATA_KEY_ARTIST);
 String songTitle =

Adding Native Functionality

[352]

 mediaMetadataRetriever.extractMetadata
 (MediaMetadataRetriever.METADATA_KEY_TITLE);
 WritableMap params = Arguments.createMap();
 params.putString
 ("songPlaying", artist + " - " + songTitle);
 getReactApplicationContext()
 .getJSModule(DeviceEventManagerModule.
 RCTDeviceEventEmitter.class)
 .emit("SongPlaying", params);
 } catch (Exception ex) {
 ex.printStackTrace();
 }
 }

Open index.android.js and add NativeModules and6.
DeviceEventEmitter to the import { ... } from 'react-native' block.
We also need to import the Button component and make a reference to our7.
MediaManager native module:

 import Button from 'react-native-button';

 const MediaManager = NativeModules.MediaManager;

Our application will allow the user to pick a song and display the song name8.
afterwards. Let's create the necessary functions that will handle the button press
and setting the song title on the component's state:

 componentWillMount() {
 this.setState({
 songPlaying : undefined
 });
 this.subscription =
 DeviceEventEmitter.addListener
 ('SongPlaying', this.onSongPlaying);
 }
 onSongPlaying = (params) => {
 const songPlaying = params.songPlaying;
 this.setState({songPlaying});
 }
 onShowSongsPress() {
 MediaManager.showSongs();
 }

Adding Native Functionality

[353]

We are going to need to set up our UI with the Button and an area to display the9.
song information. Implement the following render method:

 render() {
 return (
 <View style={styles.container}>
 <Button
 containerStyle={styles.buttonContainer}
 style={styles.buttonStyle}
 onPress={this.onShowSongsPress}>
 Pick Song
 </Button>
 <Text style={styles.instructions}>Song Playing:</Text>
 <Text style={styles.welcome}>{this.state.songPlaying}
 </Text>
 </View>
);
 }

We are ready to run our app now; pick a song and it will play!10.

Adding Native Functionality

[354]

How it works…
This recipe focuses on playing audio files using the operating system's built-in audio
support. In contrast to iOS, Android does not have an operating system-level UI for media
playback. It requires the application to design and implement the UI. In step 4, we access
the audio files stored on the device by starting a picker intent. The operating system
provides us a MediaPlayer class that handles media playback. We cover how to play an
audio file in step 5.

7
Architecting for Multiple

Platforms
In this chapter, we will cover the following recipes:

Building for the Universal Windows Platform
Building for Mac OS X Desktop
Building for Apple tvOS
Creating platform specific UI Components
Extending UI Components for platform-specific experiences
Best practices for sharing code between platforms

Introduction
One of React Native's most underrated features is the architecture it is built on. The way it
was designed lends itself to building native applications on a number of different platforms.
When React Native was built it only supported iOS as a target platform, Android came
around six months later. The way Facebook treated adding Android support architecturally
was more of an add-on to what they have built for iOS instead of a critical change in the
framework. The following diagram shows an overview of how calls are executed in a React
Native application targeting Android:

Architecting for Multiple Platforms

[356]

There are several important things to note from the diagram above. First, WebKit's
JavaScriptCore is used as the JavaScript interpreter and to create messages for the Bridge to
execute. The Bridge then looks up the target module by passing in the iOS-based module
name to the Module Registry and gets the target-specific translation. In an abstract
summary to add support for a new target platform, you have to implement a Bridge that
takes JavaScript messages, invokes JavaScriptCore (or a comparable JavaScript VM), a
Module Registry that maps the iOS React Native components to target specific ones, and
finally the components themselves need to be implemented.

In this chapter, we will show you recipes on how to build React Native apps for some of the
more experimental target platforms. We will cover building for the Windows 10 platform,
Mac OS Desktop, and the new Apple TV. Once we know how to build apps for all these
platforms, including iOS and Android of course, we will present some recipes on how to
manage building UI Components for different platforms and minimizing your headache in
maintaining them.

Building for the Universal Windows Platform
At Facebook's F8 conference that happened on April 13th 2016, Microsoft announced its core
support of React Native. Microsoft added React Native support to Visual Studio Code,
became a core contributor to React Native itself and most importantly added support for
targeting the Universal Windows Platform. The Universal Windows Platform (UWP), is a
runtime that exists on all Windows 10 based devices and even the Xbox One. With React
Native's third-party Windows support, we can now target a substantially larger user-base
and make our apps even more accessible.

In this recipe we will cover building a React Native for Windows application. We will cover
environment setup, building our first app, and running it on an emulator.

Architecting for Multiple Platforms

[357]

Getting ready
To get started with React Native for Windows there's a good bit of leg work that needs to be
done. First and foremost, you need to be running Windows 10. If you are running Mac OS
X, you can either install it via BootCamp or use a virtualization package such as VirtualBox.
Once you have Windows 10 up and running you need to install Visual Studio 2015
community and the Windows 10 SDK. Once you have those installed you will need to
install Microsoft Emulator for Windows 10 mobile if you do not have a mobile device to test
on.

If you are running a Mac and just experimenting with Windows support
you can use an evaluation VM image available from modern.ie or
download an ISO from Microsoft Windows Evaluations. Both trials have a
90-day expiration, however with virtualization you can set snapshots and
roll back to them. Unfortunately, if you are using VirtualBox you will not
be able run the emulator as it does not support nested virtualization.

For this recipe we will create a React Native application titled WinApp. This app will be
created as we usually create a blank React Native application using the react-native
init command.

How to do it…
Open your command prompt and cd into your React Native project directory. (cd
WinApp).

Now we need to install rnpm-plugin-windows. This plugin for the react-1.
native-cli adds Windows functionality to our application as follows:

 $ npm install rnpm-plugin-windows --save-dev

Initialize the Windows project as follows:2.

 $ react-native windows

Architecting for Multiple Platforms

[358]

Open the Solution file in Visual Studio 2015. (File > Open >3.
Project/Solution). The solution file is located in the windows directory of
your project (WinApp.sln) as follows:

You may be prompted to Install Missing Components, please do so.4.
To run your sample app using the default settings, go back to your command5.
prompt and this time we're going to execute the windows specific react-
native command as follows:

 $ react-native run-windows

If you would like to run the application using a Mobile Emulator or your local6.
device through Visual Studio, then change the deployment target to x64 or x86.
You should then be able to choose Local Machine or Mobile Emulator as your
target platform as follows:

Architecting for Multiple Platforms

[359]

If you are using Visual Studio to start your application, then you have to open the7.
command prompt beforehand and start the packager, if it isn't already running,
as follows:

 $ react-native start

Run your application and you should see the following:8.

Architecting for Multiple Platforms

[360]

How it works…
To add Windows support to React Native, Microsoft followed the same pattern that
Facebook did when they added Android support. The major difference in Microsoft's
approach is that they use Chakra, their own JavaScript engine instead of bundling WebKit's
JavaScriptCore (JSC). Generally, this should have no impact on the developer. There may
be some scenarios where Chakra's compatibility with certain ES6/ES7 features may differ
from JSC's and may not be transpiled by Babel. Currently, there are no such concerns but it
may happen further down the road.

When creating a React Native Windows project, we start with a base react native
application and then use an rnpm plugin to add Windows support (step 2). This allows our
application to support iOS, Android and UWP.

There's more…
As discussed in the previous chapter, often when we develop a React Native application we
may need to add native functionality to our application that is not provided by the
framework. If you need to expose a native API or render a native UI component, then you
can follow the references below. You can also find implementations of these examples in the
sample source code included with the book.

See also
Creating Native Modules: h t t p s ://g i t h u b . c o m /R e a c t W i n d o w s /r e a c t - n a t i v e - w
i n d o w s /b l o b /m a s t e r /d o c s /N a t i v e M o d u l e s W i n d o w s . m d

Creating Native UI Components: h t t p s ://g i t h u b . c o m /R e a c t W i n d o w s /r e a c t - n a
t i v e - w i n d o w s /b l o b /m a s t e r /d o c s /N a t i v e C o m p o n e n t s W i n d o w s . m d

Building for Mac OS X Desktop
So far we have an excellent understanding of two core tenants of React Native. First and
foremost, with React Native you can write JavaScript and the framework will render a truly
native UI for your application. Secondly, the architecture can be extended to support almost
any deployment target. We mentioned in the previous recipe that you can now create a
React Native application for the entire Windows 10 family, including Mobile, Desktop, and
Xbox One. There should then be no reason why it isn't possible to build a React Native
application for Mac OS X desktop, especially since Cocoa and Cocoa Touch have some

https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeModulesWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md
https://github.com/ReactWindows/react-native-windows/blob/master/docs/NativeComponentsWindows.md

Architecting for Multiple Platforms

[361]

major similarities. Fortunately, a fork of React Native exists that supports building apps for
Mac OS X. React Native for Mac OS (formerly known as React Native Desktop) serves the
purpose of building desktop apps using the Cocoa API.

In this recipe, we will walk through building a desktop native application on Mac OS X
using React Native. This fork is still quite experimental and does not have major support
outside of the core committer and the community, so use it at your own discretion.

Getting ready
In order to create a React Native for a Mac OS X application you need the same
requirements as you normally would for an iOS application. You need to be running Mac
OS and have Xcode installed.

For this recipe we will create a React Native application titled MacApp.

How to do it…
React Native for Mac OS currently exists as a fork of React Native and has its own1.
set of tooling that mimics the React Native command line tools. Before we
bootstrap our application, we need to install React Native Mac OS CLI as follows:

 $ npm install -g react-native-macos-cli

Now we can initialize our desktop application. The process is the same as we2.
would follow with React Native, except the command is now react-native-
macos. See the following:

 $ react-native-macos init MacApp

Unfortunately, there is no run-{target} shortcut as there is for iOS and3.
Android so we're going to have to do it manually. Open up Xcode and open the
.xcodeproj file located in the macos/ directory of the application.
(./MacApp/macos/MacApp.xcodeproj)
You may notice that the target platform has now changed to My Mac. To start the4.
application, press the Play button.

Architecting for Multiple Platforms

[362]

Once you are running the application, if you need to access the developer menu,5.
it is on the top OS status bar.

How it works…
React Native for Mac OS is a fork of the React Native GitHub repository. The process used
to create and develop applications for Mac OS using this fork is the same as you would for
iOS. This fork replaces the framework's iOS UI Components relying on UIKit with their
Mac OS counterparts that use AppKit SDK. Therefore, you cannot build an application that
will target iOS and Mac OS using this fork. You would have to have two separate react
native applications.

There's more…
Owing to the common architecture between iOS and OS X we can easily
reuse many of our custom native modules that we may have created in the
past. If we are creating new custom native modules, we can easily follow
the same methodologies we covered in Chapter 6, Adding Native
Functionality. In the sample source code, we have included the
HelloManager Native Module that we built in first recipe of Chapter 6,
Adding Native Functionality, in a React Native Mac OS app.

Architecting for Multiple Platforms

[363]

Creating custom native UI Components follow a similar path except you are now exposing
components using Cocoa instead of Cocoa Touch. To see some examples of accomplishing
this it is recommended that you look at the source code of react-native-macos. There is
an included Cocoa version of the ButtonView that we created in second recipe of Chapter
6, Adding Native Functionality. You can see the implementation of the RCTButton and
RCTButtonManager here:

h t t p s ://g i t h u b . c o m /p t m t /r e a c t - n a t i v e - m a c o s /b l o b /m a s t e r /R e a c t /V i e w s /.

Building for Apple tvOS
The next great frontier in app development after desktop and mobile has become TVs. With
the release of the 4th generation of Apple TV in 2015, Apple opened up the platform for
developers to develop and publish apps for the Apple TV. Apple tvOS inherits many of the
core frameworks we use for iOS development, with some minor changes to handle the new
form factor and user control. This is a major benefit as React Native was built primarily for
iOS. So what do we need to do so that we can get React Native running on our Apple tvOS?
Just like in our previous recipe on Mac OS we're going to use a community fork of React
Native that has support for tvOS. The fork can be found on GitHub here: h t t p s ://g i t h u b .

c o m /d o u g l o w d e r /r e a c t - n a t i v e - a p p l e t v . It is still a bit immature and is missing CLI
tooling. However, all the automated tests built into React Native and the UIExplorer are
passing.

This recipe will get us up and running using React Native for Apple tvOS. We will show
you how to install the fork on your machine and create a React Native for Apple TV app. If
you have read the prior recipes, please note that this fork is even more experimental and
has less support than react-native-windows and react-native-macos. It is highly
recommended to have experience with React Native, Objective-C, and iOS development.

Getting ready
As with React Native for Mac OS and iOS development, we will need to be running a Mac
with the latest version of Xcode installed. This will include simulators for the Apple TV that
we will be using to test our application. You can also use a physical 4th generation Apple TV
if you are in possession of one.

Our sample app that we will clone will be named TVApp.

https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/ptmt/react-native-macos/blob/master/React/Views/
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv
https://github.com/douglowder/react-native-appletv

Architecting for Multiple Platforms

[364]

How to do it…
Since we're going to be working with a fork, we need to set up our local npm1.
environment. Execute the following command in your terminal:

 $ npm install -g sinopia && sinopia

Kill the sinopia node process after it runs.2.
Pull the react-native-appletv GitHub repository as follows:3.

 $ git clone https://github.com/douglowder/react-native-appletv

Now that we've pulled the repo, we should initialize the project as follows:4.

 $ cd react-native-appletv && npm install

Follow the instructions starting with modifying the config file and publishing to5.
sinopia found here: h t t p s ://w w w . n p m j s . c o m /p a c k a g e /r e a c t - n a t i v e - c l i .
With sinopia configured, we can initialize our app as follows:6.

 $ npm uninstall -g react-native-cli
 $ npm install -g react-native-cli
 $ react-native init TVApp

Open up Xcode and open the TVAppTV.xcodeproj file located in the ios/7.
directory of the application. (./TVApp/ios/TVAppTV.xcodeproj,note the TV
Suffix)
You should now be able to run the application on your Apple TV device or8.
simulator.
If you want to navigate through the application, you should show the Apple TV9.
Remote. You can open it by selecting Hardware > Show Apple TV Remote in
the toolbar or the keyboard shortcut Shift + Command + R. To scroll, you have to
hold the Alt/option key when you touch the trackpad.

https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli
https://www.npmjs.com/package/react-native-cli

Architecting for Multiple Platforms

[365]

How it works…
The tvOS fork of React Native adds Apple TV support to a React Native application. This is
slightly different than the Mac OS fork covered in the Building for OS X Desktop recipe, as
the functionality is replaced entirely from iOS to Mac OS. Here we can still deploy our
applications to iOS as well since both platforms use UIKit for rendering components.

With this fork we had to spoof npm into using a local repository for the react-native-cli
since this fork is not deployed to the public npm registry. We accomplished this using
sinopia in steps 5-6. After initializing the application using the local CLI, we are able to
continue with development as per our usual react native practices.

Creating platform specific UI Components
In this chapter we have covered some of the platforms that you can target using React
Native. We can build applications targeting anything from watches to desktops to game
consoles. While we may be inclined to try to keep our codebase identical across all the
platforms we develop for, this may take away from the user experience. In order to build a
better application, it may be worth taking the time to build components that feel like they
belong on their particular target.

In this recipe, we're going to take a look at a couple of strategies for making platform
specific UI Components. We will cover the built-in targets iOS and Android. These patterns
can be extended to other targets such as Windows or Mac OS. We will be creating a simple
Toolbar component that will have a different visual representation based on its platform.

Architecting for Multiple Platforms

[366]

Getting ready
For this recipe we will be working off a newly created React Native app named Platforms.

How to do it…
In our React Native project directory we are going to create a file1.
called Toolbar.ios.js and write the following code:

 import React, { Component } from 'react';
 import {
 Text,
 View,
 TouchableOpacity
 } from 'react-native';

 const Toolbar = ({items}) => (
 <View style={{flex:1, flexDirection:'row', marginTop : 24}}>
 {items.map(function (item, idx) {
 return (
 <TouchableOpacity key={idx}>
 <View style={{padding: 20}}>
 <Text>{item.title}</Text>
 </View>
 </TouchableOpacity>
)
 })}
 </View>
);
 export default Toolbar;

Now we need to modify our index.ios.js to use our new Toolbar component.2.
First add the following import before the class definition:

 import Toolbar from './Toolbar';

Overwrite the render function to now render the Toolbar as follows:3.

 render() {
 var toolbarItems = [
 {
 id : 1,
 title : 'Tab One',
 },
 {

Architecting for Multiple Platforms

[367]

 id : 2,
 title : 'Tab Two',
 },
 {
 id : 3,
 title : 'Tab Three',
 }
];

 return (
 <Toolbar items={toolbarItems}/>
);
 }

If you run the app you should see the following:4.

With the Toolbar iOS version being done, we have to build the Android5.
counterpart. Create a file Toolbar.android.js and add the following code:

 import React, { Component } from 'react';
 import {
 Text,

Architecting for Multiple Platforms

[368]

 View,
 TouchableNativeFeedback
 } from 'react-native';

 const Toolbar = ({items}) => (
 <View style={{flex:1, flexDirection:'column'}}>
 {items.map(function (item, idx) {
 return (
 <TouchableNativeFeedback key={idx}>
 <View style={{padding: 20}}>
 <Text>{item.title}</Text>
 </View>
 </TouchableNativeFeedback>
)
 })}
 </View>
);
 export default Toolbar;

Repeat steps 2 and 3 for index.android.js.6.
If you run the app on your Android device, you should see the following:7.

Architecting for Multiple Platforms

[369]

How it works…
This recipe showed how to create iOS and Android platform-specific modules. We
distinguish the classes by the suffix in their file name (.android or .ios). The react native
packager sends in the platform it is requesting code for and looks for the existence of a file
that matches the name with the platform in the suffix. If there is no platform-specific file,
then it falls back to see if there is a .js file. This file would be used for all platforms.

In this recipe the extent of differentiating work we did around the platforms was mostly
styling and touch interactions. This was a trivial change for the sake of the example but the
flexDirection defined in the Toolbar class as well as the Touchable module differs from
iOS and Android. The TouchableNativeFeedback module used on the Android version
is specific only to that platform.

There's more…
There is another option for executing code based on the platform inside your JavaScript.
Instead of creating .android and .ios files, you can have a single .js file and import the
Platform module. In code it would look something like the following:

import { Platform, Text } from 'react-native';

const PlatformText = () => {
 if(Platform.OS === 'ios') {
 return (<Text>iOS</Text>);
 } else if(Platform.OS === 'android') {
 return (<Text>Android</Text>);
 }
}

In the included source code there is a more involved example using a Toolbar component
that wraps TabBarIOS and ToolbarAndroid.

Architecting for Multiple Platforms

[370]

Extending UI Components for platform-
specific experiences
When developing a React Native application you will spend a significant portion of time
creating UI Components. These may be compositions of prebuilt UI Components or native
components that you are exposing. Remember that Facebook's goal with React Native is to
enable you to build incredible native experiences using JavaScript. iOS and Android have
two different design principles that is present in their native UI Components. While we
have great flexibility in regards to styling and interaction you may want your application to
look and behave like it fits on its target platform.

This recipe will show a technique of how to create a base component and extend it to look
and perform in a manner fitting for its platform. We will create a simple dummy button and
extend it for both iOS and Android. The platform-specific versions will have a look and feel
that matches their environment.

Getting ready
For this recipe we will be working off a newly created React Native app named
PlatformExt.

How to do it…
In our React Native project directory we are going to create a file1.
called BaseButton.js and write the following code:

 import React, { Component } from 'react';
 import {
 Text,
 View
 } from 'react-native';

 export default class BaseButton extends Component {
 _onButtonPress = () => {
 const onTap = this.props.onTap;
 if(onTap) {
 onTap();
 }
 }

Architecting for Multiple Platforms

[371]

 renderButtonContent(styles) {
 return (
 <View style={styles.button}>
 <Text style={styles.label}>{this.props.label}</Text>
 </View>
);
 }
 }

Next, we will create our iOS specific Button class. Create a file Button.ios.js2.
and add the following code:

 import React from 'react';
 import {
 StyleSheet,
 TouchableOpacity
 } from 'react-native';
 import BaseButton from './BaseButton';

 export default class Button extends BaseButton {
 render() {
 return (
 <TouchableOpacity onPress={this._onButtonPress}>
 {this.renderButtonContent(styles)}
 </TouchableOpacity>
);
 }
 }

 const styles = StyleSheet.create({
 button: {
 padding : 8,
 backgroundColor : '#007AFF'
 },
 label: {
 color : 'white',
 fontSize : 17,
 textAlign : 'center'
 }
 });

Now we need to modify our index.ios.js to use this new Button component3.
we created. First, we're going to need to import our Button module, add the
following after the import but before the class definition:

 import Button from './Button';

Architecting for Multiple Platforms

[372]

Next we're going to render the button, overwrite the render method with the4.
following:

 render() {
 return (
 <View style={styles.container}>
 <Button label="iOS Button" onTap={this.onTap}/>
 </View>
);
 }

We're also going to need to implement our onTap callback.5.

 onTap() {
 console.log('iOS button pressed');
 }

Running the application will show you a button that looks like this:6.

Architecting for Multiple Platforms

[373]

Now let's build the Android counterpart. Create a file Button.android.js and7.
write the following code:

 import React from 'react';
 import {
 StyleSheet,
 TouchableNativeFeedback
 } from 'react-native';
 import BaseButton from './BaseButton';

 export default class Button extends BaseButton {
 render() {
 return (
 <TouchableNativeFeedback onPress={this._onButtonPress}>
 {this.renderButtonContent(styles)}
 </TouchableNativeFeedback>
);
 }
 }

 const styles = StyleSheet.create({
 button: {
 padding : 20,
 backgroundColor : '#009688'
 },
 label: {
 color : 'white',
 fontSize : 14,
 textAlign : 'center'
 }
 });

Architecting for Multiple Platforms

[374]

Finally repeat steps 3-5 for index.android.js. You should change the log8.
output to say Android instead of iOS for better clarity, unless you want to be
confused of course. Once you run the application on your Android device you
should see the following:

How it works…
In this recipe we relied on ES6 classes and inheritance to create platform specific Button
components while sharing core functionality. The Button class implementations for each
platform render the same JSX for the button, but surround it with their specific Touchable
interaction. In step 1 we defined the BaseButton class, the platform specific Button classes
subclass the BaseButton to use its renderButtonContent and _onButtonPress
functions. In this situation, we are using the BaseButton class as if it were a mixin.
However, with ES6 classes we have the flexibility to overwrite or encapsulate these function
calls with subclass specific logic.

Architecting for Multiple Platforms

[375]

Best practices for sharing code between
platforms
In this chapter, we discussed developing React Native applications for different platforms.
While building our app we often develop for our favorite platform and then port to the
remaining target(s). Generally, just like with the development platform, the iOS
functionality of React Native is a bit more mature and stable than the Android counterpart.
It should be noted that React Native was built for iOS first and the Android functionality
hooks onto the existing architecture.

Whether you chose to port your application at the end or develop for multiple platforms at
the same time you should attempt to keep as much of the code the same as possible and
then branch off for platform specific code. This recipe will serve as a list of suggestions and
examples that you should keep in mind when developing for more than a single platform.

How to do it…
Native Modules: While you may not be able to share code for the module
implantation, your React JavaScript code should not need to be concerned. Use
the same module name and exported method signatures. See Exposing custom iOS
modules and Exposing custom Android modules recipes in Chapter 6, Adding Native
Functionality. You will see both modules are named HelloManager and the
modules are defined as follows:

 // iOS
 RCT_EXPORT_METHOD(greetUser:
 (NSString *)name isAdmin:
 (BOOL *)isAdmin callback:(RCTResponseSenderBlock) callback) {
 }
 // Android
 @ReactMethod
 public void greetUser(String name, Boolean isAdmin, Callback
callback) {
 }

Architecting for Multiple Platforms

[376]

Native UI Components: Just like with Native Modules, UI Components share
similar challenges that their implementation will be vastly different. Not only is
the language and environment different, but in terms of UI development
Android and iOS have very few similarities in their approaches. Regardless, the
JavaScript layer should never be concerned about this.

For UI Components, there is a convention of appending the platform to
the class name. For example, a native Button component will have a
ButtonIOS and ButtonAndroid class respectively. It is recommended
to create a Button class that will render the necessary class based on the
platform. The render method would look something like this (a full
example is included with the source code):

 // Button.js
 render() {
 if(Platform.OS === 'ios') {
 return <ButtonIOS {...this.props}/>
 } else if(Platform.OS === 'android') {
 return <ButtonAndroid {...this.props}/>
 } else {
 return <UnimplementedView/>
 }
 }

 // index.ios.js || index.android.js
 render() {
 return (
 <View style={styles.container}>
 <Button label="iOS Button" onPress={()=>{}}/>
 </View>
);
 }

React UI Components: When your components are created using JavaScript only
then your life is a bit simpler as you do not have to worry about porting native
code and making sure the API is the same or creating a wrapper around it. An
excellent practice for sharing code across platform-specific React components is
to leverage ES6's inheritance as done in the Extending UI Components for platform-
specific experiences recipe in this chapter.

8
Integration with Applications

In this chapter, we will cover the following recipes:

Embedding a React Native application inside an iOS application
Communicating from an iOS application to React Native
Communicating from React Native to an iOS application container
Handling being invoked by external iOS application
Embedding a React Native application inside an Android application
Communicating from an Android application to React Native
Communicating from React Native to an Android application container
Handling being invoked by external Android application
Invoking an external iOS and Android application

Introduction
React Native was introduced as a solution to build native applications using JavaScript. The
ultimate goal is that more developers can build truly native applications for multiple
platforms. An interesting consequence of building a React Native application in an existing
team is a situation where native developers and JavaScript developers have to work closely
together. This generally occurs when a team is looking to adopt React Native and has an
existing native application that they, want to leverage components from or integrate with.

Integration with Applications

[378]

The beauty of React Native rendering native UI views is that they can be easily embedded
inside existing applications. Often, companies have already built sophisticated native
applications that are critical to their line of business. There may be no immediate need to
rewrite their entire application(s) in React Native if the app is not broken. However, they
can begin leveraging both their JavaScript and native developers to build React Native
applications that can integrate into their existing application(s).

Facebook is currently using React Native sub-applications inside of their main Facebook
iOS app.

This chapter will focus exclusively on using React Native inside existing native iOS and
Android applications. We will cover rendering the application and facilitating
communication between the React Native application and its parent. Finally, we will also
cover how our React Native app can work with other installed applications.

When working on the Android recipes, it is recommended you enable
auto-import settings in Android Studio or use Alt+Enter to perform a
quick fix code completion for the class import.

Embedding a React Native application inside
an iOS application
There is a possibility that you may be in a company or have a client that has an active iOS
application out in the world. This app may be well built and used frequently by its users
with praise. You may be in a situation where you want to build some new functionality
using React Native. You can package this React Native application as a standalone app, or
you can render it inside your existing iOS application. This is the opposite of the material
covered in Rendering Custom iOS View Components recipe in Chapter 6, Adding Native
Functionality, as now we're rendering our React Native view inside a vanilla iOS
application.

This recipe will walk you through creating a blank iOS application and adding a sample
React Native app inside it. We will cover two ways of rendering the React Native
application: embedded inside the application as a nested view and a full-screen
implementation. The steps discussed in this recipe serve as a baseline for rendering React
Native applications inside vanilla applications.

Integration with Applications

[379]

Getting ready
This recipe will be referencing an iOS application named EmbedRN. We will walk through
creating the sample iOS application in this section. If you have an application already, you
can skip to the actual recipe instructions. Please ensure, however, that you have cocoapods
installed.

We need to install cocoapods if you do not have it already installed. Open your1.
terminal and execute the following command:

 sudo gem install cocoapods

Open Xcode and create a new Project using File|New|Project.2.
Select Single View Application and press Next:3.

Integration with Applications

[380]

Fill in the product name as EmbedRN and press Next:4.

Place the project as a sub-directory where you will hold both your React Native5.
project and this iOS project. (for example, EmbedApp/EmbedRN)

How to do it…
In the root project directory (./EmbedApp), create a package.json file and type1.
the following code:

 {
 "name": "EmbedApp",
 "version": "0.0.1",
 "private": true,
 "scripts": {
 "start":
 "node node_modules/react-native/local-cli/cli.js start"
 },
 "dependencies": {
 "react": "15.3.1",
 "react-native": "0.32.0"
 }
 }

Integration with Applications

[381]

In your terminal, run the following command:2.

 $ npm install

Now we need to create a cocoapods Podfile. In the directory where the iOS3.
project is (/EmbedApp/EmbedRN), run the following command:

 $ pod init

Open the Podfile and replace its contents with the following:4.

 target 'EmbedRN' do
 # Uncomment this line if you're using Swift or
 would like to use dynamic frameworks
 # use_frameworks!

 # Pods for EmbedRN
 pod 'React', :path =>
 '../node_modules/react-native', :subspecs => [
 'Core',
 'RCTText',
 'RCTNetwork',
 'RCTWebSocket', # needed for debugging
 # Add any other subspecs you want to use in your project
]
 end

Back in the terminal in the iOS project directory, run the following command:5.

 $ pod install

Go back to the root project directory, where we created package.json, and6.
create a file index.ios.js with the following code:

 import React, { Component } from 'react';
 import {
 AppRegistry,
 StyleSheet,
 View,
 Text
 } from 'react-native';

 class EmbedApp extends Component {
 render() {
 return (
 <View style={styles.container}>
 <Text>Hello in React Native</Text>

Integration with Applications

[382]

 </View>
);
 }
 }

 const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 }
 });

 AppRegistry.registerComponent('EmbedApp', () => EmbedApp);

In Xcode, close the project and re-open it through the .xcworkspace file that7.
was generated in step 5.
Open Main.storyboard and add two buttons with labels, Open React Native8.
Application and Open React Native Application Inside:

Add a Container View to your story board:9.

Integration with Applications

[383]

Create a new Cocoa Touch Class (File|New|File) named10.
EmbedViewController with a subclass called UIViewController.
Open Main.storyboard, select the child Embed View Controller Scene, and set11.
the class to be EmbedViewController:

Select the Embed segue object in the Embed View Controller Scene and give it12.
an identifier of embed.

Integration with Applications

[384]

Open ViewController.m and add the following imports:13.

 #import "RCTRootView.h"
 #import "EmbedViewController.h"

Update the interface definition to add the following property:14.

 @interface ViewController () {
 EmbedViewController *embedViewController;
 }

In ViewController.m, add the following methods to the implementation:15.

 - (IBAction)openRNAppButtonPressed:(id)sender {
 NSURL *jsCodeLocation = [NSURL
 URLWithString:
 @"http://localhost:8081/index.ios.bundle?platform=ios"];
 RCTRootView *rootView =
 [[RCTRootView alloc] initWithBundleURL : jsCodeLocation
 moduleName : @"EmbedApp"
 initialProperties : nil
 launchOptions : nil];
 UIViewController *vc = [[UIViewController alloc] init];
 vc.view = rootView;
 [self presentViewController:
 vc animated:YES completion:nil];
 }
 - (IBAction)openRNAppEmbeddedButtonPressed:(id)sender {
 NSURL *jsCodeLocation = [NSURL
 URLWithString:
 @"http://localhost:8081/index.ios.bundle?platform=ios"];
 RCTRootView *rootView =
 [[RCTRootView alloc] initWithBundleURL : jsCodeLocation
 moduleName : @"EmbedApp"
 initialProperties : nil
 launchOptions : nil];
 [embedViewController setView:rootView];
 }

 - (void) prepareForSegue:
 (UIStoryboardSegue *)segue sender:(id)sender {
 if([segue.identifier isEqualToString:@"embed"]) {
 embedViewController = segue.destinationViewController;
 }
 }

Integration with Applications

[385]

Now we need to wire up our button actions to the buttons. Open16.
Main.storyboard and Ctrl + click each one of the buttons, and add the following
Touch Up Inside actions:

Open React Native Application maps to openRNAppButtonPressed.

Open React Native App Inside maps to
openRNAppEmbeddedButtonPressed:

Add the following to Info.plist:17.

 <key>NSAppTransportSecurity</key>
 <dict>
 <key>NSExceptionDomains</key>
 <dict>
 <key>localhost</key>
 <dict>
 <key>NSTemporaryExceptionAllowsInsecureHTTPLoads
 </key>
 <true/>
 </dict>
 </dict>
 </dict>

In your root project directory, run the following command:18.

 $ react-native start

Integration with Applications

[386]

Once we run our application, we should get something that looks like the19.
following screenshot:

How it works…
In this recipe, we tackled rendering the React Native app in two different ways. The first
and most trivial way was to replace the application's main UIViewController instance
with our newly created one that will hold the RCTRootView. This is accomplished in the
openRNAppButtonPressed method. The second and slightly more involved method,
involves rendering the React Native app inline with the rest of the root application. To
accomplish this, we created a Container View that links to another UIViewController
instance. In this case, we replaced the embedViewController contents with our
RCTRootView instance. This was accomplished in the
openRNAppEmbeddedButtonPressed method. A final point to note: to set the
embedViewController reference, we needed to listen for the segue to the container. This
occurred in the prepareForSegue delegate method.

Integration with Applications

[387]

Communicating from an iOS application to
React Native
In the previous recipe, Embedding a React Native application inside an iOS application, we
learned how to render our React Native sub-application inside a potentially larger native
iOS app. Unless you're building a glorified application container/portal, what good is just
rendering the React Native application? What if we wanted to connect the React Native
application with our container so that it can consume information from the parent
application?

This recipe will cover that very thing, sending data from the parent iOS application to our
embedded React Native application. The React Native application can accept data when it is
first instantiated, and then at runtime. We will be covering how to accomplish both
methods. This recipe will use a UITextField in the iOS app and set up one-way binding to
the React Native application.

Getting ready
For this recipe, please ensure you have an iOS application with a React Native app
embedded inside a Container View. If you need guidance to accomplish this, please
complete the Embedding a React Native application inside an iOS application recipe and you will
then be able to move on.

How to do it…
In Xcode, open ViewController.m and add the following imports:1.

 #import "ViewController.h"
 #import "RCTRootView.h"
 #import "RCTBridge.h"
 #import "RCTEventDispatcher.h"
 #import "EmbedViewController.h"

Now we need to add a few instance variables to the ViewController class to2.
hold a reference to the React Native bridge :

 @interface ViewController () <RCTBridgeDelegate> {
 EmbedViewController *embedViewController;
 RCTBridge *_bridge;
 BOOL isRNRunning;

Integration with Applications

[388]

 }

Next, we need to create a reference that we will wire UITextField to the3.
following code:

 @property (weak, nonatomic)
 IBOutlet UITextField *userNameField;

Add the following methods to the ViewController implementation:4.

 - (NSURL *)sourceURLForBridge:(RCTBridge *)bridge {
 NSURL *jsCodeLocation = [NSURL
 URLWithString:
 @"http://localhost:8081/index.ios.bundle?platform=ios"];
 return jsCodeLocation;
 }
 - (IBAction)openRNAppEmbeddedButtonPressed:(id)sender {
 NSString *userName = _userNameField.text;
 NSDictionary *props = @{@"userName" : userName};
 if(_bridge == nil) {
 _bridge = [[RCTBridge alloc]
 initWithDelegate:self launchOptions:nil];
 }
 RCTRootView *rootView =
 [[RCTRootView alloc] initWithBridge :_bridge
 moduleName : @"EmbedApp"
 initialProperties : props];
 isRNRunning = true;
 [embedViewController setView:rootView];
 }

 - (IBAction)onUserNameChanged:(id)sender {
 if(isRNRunning == YES && _userNameField.text.length > 3) {
 [_bridge.eventDispatchersendAppEventWithName:
 @"UserNameChanged" body:
 @{@"userName" : _userNameField.text}];
 }
 }

Open Main.storyboard and add a Text Field and Label widget5.
called UserName:

Integration with Applications

[389]

Select the User Name field, show Connections Inspector and create the following6.
wirings by dragging the item to the ViewController.

A simple way to create connections from the storyboard is to use the
assistant editor with the ViewController implementation opened on the
right side.

Integration with Applications

[390]

Now we need to update our React Native application to complete the binding.7.
Open index.ios.js and import NativeAppEventEmitter.
Put the following functions inside the class definition:8.

 componentWillMount() {
 this.setState({
 userName : this.props.userName
 });
 NativeAppEventEmitter.addListener
 ('UserNameChanged', (body) => {
 this.setState({userName : body.userName});
 });
 }

 render() {
 return (
 <View style={styles.container}>
 <Text>Hello {this.state.userName}</Text>
 </View>
);
 }

In your root project directory, run the following command:9.

 $ react-native start

Once we run our application, we should get something that looks like this:10.

Integration with Applications

[391]

How it works…
The binding functionality was accomplished by using the React Native bridge
eventDispatcher. This was originally designed to be used with native modules, but as
long as you have access to the RCTBridge instance you can use it for any communication to
our React Native JavaScript layer. In step 4, we created a RCTBridge instance and used it to
launch our React Native application. This is the recommended way of launching React
Native applications, if you need to use them in multiple applications since it will use a
single JS runtime.

Integration with Applications

[392]

Communicating from React Native to an iOS
application container
Most React Native applications rely on some user input, be it a form field or actions against
some piece of data. It will probably be the case that our embedded React Native application
will be interacted with. Just like we learned how to update our React Native application in
the Communicating from an iOS application to React Native recipe, we should be able to update
our parent application.

This recipe will cover that very concept. We will render a user input element inside our
React Native application and set up a one-way binding from React Native to a UI
component rendered in the parent.

Getting ready
For this recipe, please ensure you have an iOS application with a React Native app
embedded inside a Container View. If you need guidance to accomplish this, please
complete the Embedding a React Native application inside an iOS application recipe and you will
then be able to move on.

How to do it…
In Xcode, open ViewController.m and add the following imports:1.

 #import "ViewController.h"
 #import "RCTRootView.h"
 #import "RCTBridge.h"
 #import "RCTEventDispatcher.h"
 #import "EmbedViewController.h"

Now we need to add a few instance variables to the ViewController class to2.
hold a reference to the React Native bridge:

 @interface ViewController () <RCTBridgeDelegate> {
 EmbedViewController *embedViewController;
 RCTBridge *_bridge;
 BOOL isRNRunning;
 }

Integration with Applications

[393]

Next, we need to create a reference that we will wire UITextField to:3.

 @property (weak, nonatomic)
 IBOutlet UITextField *userNameField;

Open the ViewController header file and add the following method4.
declaration:

 @interface ViewController : UIViewController
 - (void) updateUserNameField:(NSString *)userName;
 @end

Add the following methods to the ViewController implementation:5.

 - (NSURL *)sourceURLForBridge:(RCTBridge *)bridge {
 NSURL *jsCodeLocation = [NSURL
 URLWithString:
 @"http://localhost:8081/index.ios.bundle?platform=ios"];
 return jsCodeLocation;
 }

 - (void)viewDidLoad {
 [super viewDidLoad];
 [self openRNAppEmbeddedButtonPressed:nil];
 }

 - (IBAction)openRNAppEmbeddedButtonPressed:(id)sender {
 if(_bridge == nil) {
 _bridge = [[RCTBridge alloc] initWithDelegate:self
 launchOptions:nil];
 }
 RCTRootView *rootView =
 [[RCTRootView alloc] initWithBridge :_bridge
 moduleName : @"EmbedApp"
 initialProperties : nil];
 isRNRunning = true;
 [embedViewController setView:rootView];
 }

 - (void) prepareForSegue:
 (UIStoryboardSegue *)segue sender:(id)sender {
 if([segue.identifier isEqualToString:@"embed"]) {
 embedViewController =
 segue.destinationViewController;
 }
 }

Integration with Applications

[394]

 -(void) updateUserNameField:(NSString *)userName {
 [_userNameField setText:userName];
 }

Next, we're going to create the UserNameManager native module. Create a Cocoa6.
Touch Class called UserNameManager and add the following code to the
implementation:

If you are not familiar with creating a native module for React Native,
please refer to first recipe, Exposing custom iOS modules, in Chapter
6, Adding Native Functionality.

 #import "UserNameManager.h"
 #import "AppDelegate.h"
 #import "ViewController.h"

 @implementation UserNameManager
 RCT_EXPORT_MODULE();

 - (dispatch_queue_t)methodQueue
 {
 return dispatch_get_main_queue();
 }

 RCT_EXPORT_METHOD(setUserName: (NSString *)userName) {
 AppDelegate *delegate = (AppDelegate *)[[UIApplication
 sharedApplication] delegate];
 ViewController *controller =
 (ViewController*)delegate.window.rootViewController;
 [controller updateUserNameField:userName];
 }
 @end

Open Main.storyboard and add a Text Field and Label widget7.
called User Name

Integration with Applications

[395]

Create a Referencing Outlets from the UITextField to our userNameField8.
property:

Now let's switch to index.ios.js and set up our React Native application to9.
communicate with the parent. Add the following code to the import block:

 import {
 AppRegistry,
 StyleSheet,
 View,
 Text,
 TextInput,
 NativeModules
 } from 'react-native';
 const UserNameManager = NativeModules.UserNameManager;

Add the following code to the class implementation:10.

 componentWillMount() {
 this.setState({
 userName : ''
 });
 }
 onUserNameChange = (userName) => {

Integration with Applications

[396]

 this.setState({userName});
 UserNameManager.setUserName(userName);
 }
 render() {
 return (
 <View style={styles.container}>
 <Text>Embedded RN App</Text>
 <Text>Enter User Name</Text>
 <TextInput
 style={styles.userNameField}
 onChangeText={this.onUserNameChange}
 value={this.state.userName}
 />
 </View>
);
 }

In your root project directory, run the following command:11.

 $ react-native start

Once we run our application, we should get something that looks like this:12.

Integration with Applications

[397]

How it works…
To get our React Native application updating the native app containers, we created a native
module. This is the recommended way of communicating from JavaScript to the native
layer. However, since we had to update a native UI component, the operation had to be
performed on the main thread. This was achieved by implementing the methodQueue
method and instructing the module to execute on the main thread, this is done in step 5.

Handling being invoked by external iOS
application
What good is an application if it isn't being used? We want our app to be used by our
targeted users as much as possible. There are many ways of going about this, but one of the
important factors is our app needs to be accessible. It needs to be so accessible, that other
applications should feel inclined to link to it.

This recipe will describe how to set our application up to be invoked by other iOS
applications.

How to do it…
Open your React Native project in Xcode and open up the project's Build1.
Settings.
Add $(SRCROOT)/../node_modules/react-native/Libraries to your2.
Header Search Paths field as a recursive entry:

Integration with Applications

[398]

Next, we need to register the URL scheme that will be used by other applications.3.
Open Info.plist using the Source Code Editor (right click | Open As | Source
Code). For our example, we will register our application under the invoked://
scheme. Add the following XML code as a node of <dict>:

 <key>CFBundleURLTypes</key>
 <array>
 <dict>
 <key>CFBundleTypeRole</key>
 <string>Editor</string>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>invoked</string>
 </array>
 </dict>
 </array>

Add the following method to AppDelegate.m:4.

 #import "RCTLinkingManager.h"

 - (BOOL)application:(UIApplication *)
 application openURL:(NSURL *)url
 sourceApplication:(NSString *)
 sourceApplication annotation:(id)annotation
 {
 return [RCTLinkingManager application:application
 openURL:url
 sourceApplication:sourceApplication annotation:
 annotation];
 }

Now let's get our UI to react to being invoked by another app. Open5.
index.ios.js and import the Linking module from 'react-native'.
Add the following code to the class implementation:6.

 componentWillMount() {
 this.setState({
 status: 'App Running'
 });
 Linking.addEventListener('url', this.onAppInvoked);
 }
 componentWillUnmount() {
 Linking.removeEventListener('url', this.onAppInvoked);
 }
 onAppInvoked = (event) => {

Integration with Applications

[399]

 this.setState({
 status: `App Invoked by ${event.url}`
 });
 }
 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.instructions}>
 App Status:
 </Text>
 <Text style={styles.welcome}>
 {this.state.status}
 </Text>
 </View>
);
 }

Running the app and invoking it from another application will result in the7.
following UI:

Integration with Applications

[400]

How it works…
In this recipe, we register our URL schema for linking by editing the Info.plist file in
step 3. In step 4, we pass on the responsibility of reacting to our application being opened to
React Native by implementing the openURL method of AppDelegate and invoking
RCTLinkingManager.

Embedding a React Native application inside
an Android application
It is no secret that the Android platform holds the majority stake in the smartphone market
space. For this very reason, it is almost certain that if you were to build an application and
were looking to reach as many users as you could that you would build for Android as well
as iOS. For many developers and teams, this may not be what they look forward to.
Thankfully, Facebook made React Native to make our lives easier. However, there most
probably are Android applications that you or your company may have in production that
work just fine. But, you want to write the next feature using React Native, or you have a
React Native application that you want to embed inside this Android app. Fortunately,
Facebook has made this possible for you as well.

This recipe will dive into the steps needed to embed a React Native application inside an
existing Android app. We will display our React Native application inside a Container
View. The steps here are used as a baseline for the next recipes involving communication
with the React Native application.

Getting ready
In this section, we will create a sample Android application using Android Studio called
EmbedApp. If you have a base Android application you would like to work with, you can
skip these steps and proceed to the actual implementation:

Open Android Studio and create a new Project (File|New Project).1.
Set the Application to name to EmbedApp and fill out your company domain.2.
Press Next.
Leave Blank Activity selected as the default and press Next.3.
Leave the Activity properties as they are by default and press Finish.4.

Integration with Applications

[401]

How to do it…
Open your app's root folder in your terminal and run the following commands:1.

 $ npm init
 $ npm install --save react react-native
 $ curl -o .flowconfig
 https://raw.githubusercontent.com/facebook/react
 native/master/.flowconfig

Open package.json and add the following property as a member of the2.
scripts object:

 "start":
 "node node_modules/react-native/local-cli/cli.js start"

Create a file called index.android.js and add the following code:3.

 import React, { Component } from 'react';
 import {
 AppRegistry,
 StyleSheet,
 View,
 Text
 } from 'react-native';

 class EmbedApp extends Component {
 render() {
 return (
 <View style={styles.container}>
 <Text>Hello in React Native</Text>
 </View>
);
 }
 }

 const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 }
 });

 AppRegistry.registerComponent('EmbedApp', () => EmbedApp);

Integration with Applications

[402]

Back in Android Studio, open build.gradle (from the app module) and add the4.
following to the dependencies:

 compile 'com.facebook.react:react-native:+'

Open the other build.gradle and add the following line to the5.
allprojects.repositories object:

 maven {
 url "$rootDir/node_modules/react-native/android" }

Open AndroidManifest.xml and add the following permissions to the6.
<manifest> node:

 <uses-permission android:
 name="android.permission.INTERNET" />
 <uses-permission android:
 name="android.permission.SYSTEM_ALERT_WINDOW"/>

Add the following attribute to the <application> node:7.

 android:name=".EmbedApplication"

Create a new Java class called EmbedApplication and add the following code:8.

 public class EmbedApplication extends Application
 implements ReactApplication {
 private final ReactNativeHost mReactNativeHost =
 new ReactNativeHost(this) {
 @Override
 protected boolean getUseDeveloperSupport() {
 return BuildConfig.DEBUG;
 }
 @Override
 protected List<ReactPackage> getPackages() {
 return Arrays.<ReactPackage>asList(
 new MainReactPackage()
);
 }
 };
 @Override
 public ReactNativeHost getReactNativeHost() {
 return mReactNativeHost;
 }
 }

Integration with Applications

[403]

Create another new Java class with the name ReactFragment and write the9.
following:

 public abstract class ReactFragment extends Fragment {
 private ReactRootView mReactRootView;
 private ReactInstanceManager mReactInstanceManager;
 public abstract String getMainComponentName();
 @Override
 public void onAttach(Context context) {
 super.onAttach(context);
 mReactRootView = new ReactRootView(context);
 mReactInstanceManager =
 ((EmbedApplication) getActivity()
 .getApplication())
 .getReactNativeHost()
 .getReactInstanceManager();
 }
 @Override
 public ReactRootView onCreateView
 (LayoutInflater inflater,
 ViewGroup group, Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 return mReactRootView;
 }
 @Override
 public void onActivityCreated
 (Bundle savedInstanceState) {
 super.onActivityCreated(savedInstanceState);
 mReactRootView.startReactApplication(
 mReactInstanceManager,
 getMainComponentName(),
 null
);
 }
 }

Finally, create a Java class called EmbedFragment that will extend10.
ReactFragment.

 public class EmbedFragment extends ReactFragment {
 @Override
 public String getMainComponentName() {
 return "EmbedApp";
 }
 }

Integration with Applications

[404]

Open MainActivity.java and add implements11.
DefaultHardwareBackBtnHandler to the class definition.
Add the following methods:12.

 @Override
 public void invokeDefaultOnBackPressed() {
 super.onBackPressed();
 }
 @Override
 protected void onPause() {
 super.onPause();
 if (mReactInstanceManager != null) {
 mReactInstanceManager.onHostPause(this);
 }
 }
 @Override
 protected void onResume() {
 super.onResume();
 if (mReactInstanceManager != null) {
 mReactInstanceManager.onHostResume(this, this);
 }
 }
 @Override
 protected void onDestroy() {
 super.onDestroy();
 if (mReactInstanceManager != null) {
 mReactInstanceManager.onHostDestroy(this);
 }
 }
 @Override
 public void onBackPressed() {
 if (mReactInstanceManager != null) {
 mReactInstanceManager.onBackPressed();
 }
 else {
 super.onBackPressed();
 }
 }
 @Override
 public boolean onKeyUp
 (int keyCode, KeyEvent event) {
 if (keyCode == KeyEvent.KEYCODE_MENU &&
 mReactInstanceManager != null) {
 mReactInstanceManager.showDevOptionsDialog();
 return true;
 }
 return super.onKeyUp(keyCode, event);

Integration with Applications

[405]

 }

Add the following as a class field:13.

 private ReactInstanceManager mReactInstanceManager;

Replace your onCreate method with the following code:14.

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
 setSupportActionBar(toolbar);
 FloatingActionButton fab = (FloatingActionButton)
 findViewById(R.id.fab);
 fab.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 Fragment viewFragment = new EmbedFragment();
 getFragmentManager().beginTransaction()
 .add(R.id.container, viewFragment).commit();
 }
 });
 mReactInstanceManager = ((EmbedApplication)
 getApplication()).getReactNativeHost()
 .getReactInstanceManager();
 }

In your terminal, run the following command:15.

 $ react-native start

Integration with Applications

[406]

Now you can run your Android application, and you should see the following16.
after you press the Mail button:

How it works…
To accomplish rendering a React Native inside of our Android application, we had to
perform a few steps. First, we had to define an Application class that implements the
ReactApplication interface. Then we had to create a Fragment that would be
responsible for instantiating and rendering the ReactRootView. With a fragment, we are
able to render the React Native view in our MainActivity. In this recipe, we added the
fragment to our main Container View. This essentially replaces all of the application content
with the React Native application.

Integration with Applications

[407]

Communicating from an Android application
to React Native
Now that we have covered how to render our React Native application inside an Android
app in the Embedding a React Native application inside an Android application recipe, we need to
take that to the next level. Our React Native application should be more than a dummy UI.
It should be able to react to actions going on in its parent application.

In this recipe we will accomplish sending data from our Android application to our
embedded React Native app. The React Native application can accept data when it is first
instantiated, and then at runtime. We will be covering how to accomplish both methods.
This recipe will use EditText in the Android app and set up one-way binding to the React
Native application.

Getting ready
For this recipe please ensure you have an Android application with a React Native app
embedded. If you need guidance to accomplish this, please complete the Embedding a React
Native application inside an Android application recipe.

How to do it…
Open Android Studio in your Project and open content_main.xml.1.

Integration with Applications

[408]

Press the Text tab on the bottom to open the source editor and add/replace the2.
following nodes:

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text=
 "Press the Mail Icon to start
 the React Native application"
 android:id="@+id/textView" />
 <FrameLayout
 android:layout_width="match_parent"
 android:layout_height="300dp"
 android:layout_centerVertical="true"
 android:layout_alignParentStart="true"
 android:id="@+id/reactnativeembed"
 android:background="#FFF"></FrameLayout>
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="75dp"
 android:layout_below="@+id/textView"
 android:layout_centerHorizontal="true">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="User Name:"
 android:id="@+id/textView2"
 android:layout_weight="0.14" />
 <EditText
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/userName"
 android:layout_weight="0.78"
 android:inputType="text"
 android:singleLine="true"
 android:imeOptions="actionDone"/>
 </LinearLayout>

Integration with Applications

[409]

Open MainActivity.java and add the following class fields:3.

 private ReactInstanceManager mReactInstanceManager;
 private EditText userNameField;
 private Boolean isRNRunning = false;

Inside the onCreate method, set the userNameField property with the4.
following:

 userNameField = (EditText) findViewById(R.id.userName);

Replace FloatingActionButtononClickListener with the following:5.

 fab.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 Fragment viewFragment = new EmbedFragment();

Integration with Applications

[410]

 if (userNameField.getText().length() > 0) {
 Bundle launchOptions = new Bundle();
 launchOptions.putString("userName",
 userNameField.getText().toString());
 viewFragment.setArguments(launchOptions);
 }
 getFragmentManager().beginTransaction()
 .add(R.id.reactnativeembed, viewFragment).commit();
 isRNRunning = true;
 }
 });

Next, we need to add a TextChangedListener to our userNameField in the6.
onCreate method:

 userNameField.addTextChangedListener(new TextWatcher() {
 @Override
 public void beforeTextChanged
 (CharSequence s, int start, int count, int after) {}
 @Override
 public void onTextChanged
 (CharSequence s, int start, int before, int count) {}
 @Override
 public void afterTextChanged(Editable s) {
 if(isRNRunning) {
 sendUserNameChange(s.toString());
 }
 }
 });

The last change we need to make for our Activity is to add methods that will7.
send the event across the React Native bridge:

 private void sendUserNameChange(String userName) {
 WritableMap params = Arguments.createMap();
 params.putString("userName", userName);
 sendReactEvent("UserNameChanged", params);
 }
 private void sendReactEvent
 (String eventName, WritableMap params) {
 mReactInstanceManager.getCurrentReactContext()
 .getJSModule
 (DeviceEventManagerModule.RCTDeviceEventEmitter.class)
 .emit(eventName, params);
 }

Integration with Applications

[411]

Open index.android.js and import the NativeAppEventEmitter module8.
from react-native.
Add the following code to the class implementation:9.

 componentWillMount() {
 this.setState({
 userName : this.props.userName
 });
 NativeAppEventEmitter.addListener
 ('UserNameChanged', (body) => {
 this.setState({userName : body.userName});
 });
 }
 render() {
 return (
 <View style={styles.container}>
 <Text>Hello {this.state.userName}</Text>
 </View>
);
 }

Now, if you run the application, you can enter text in the User Name field and10.
start the React Native application:

Integration with Applications

[412]

How it works…
In this recipe, we render the fragment as an inline view. In step 2, we added an empty
FrameLayout that we target in step 5 to render the fragment. The binding functionality was
accomplished by using the React Native bridge RCTDeviceEventEmitter. This was
originally designed to be used with native modules, but as long as you have access to the
ReactContext instance you can use it for any communication with our React Native
JavaScript layer.

Communicating from React Native to an
Android application container
As we discussed in the Communicating from an Android application to React Native recipe, it is
extremely beneficial for our embedded application to be aware of what's going on around
it. We should also make an effort that our Android parent application can be informed
about what goes on inside the React Native application. The application should not only be
able to perform business logic, but it should be able to update its UI to reflect changes in the
embedded app.

This recipe shows us how to leverage native modules to update the native UI created inside
the Android application. We will have a text field in our React Native app that updates a
text field that is rendered in the host Android application.

Getting ready
For this recipe, please ensure you have an Android application with a React Native app
embedded. If you need guidance to accomplish this, please complete the Embedding a React
Native application inside an Android application recipe.

How to do it…
Open Android Studio to your Project and open content_main.xml.1.

Integration with Applications

[413]

Press the Text tab on the bottom to open the source editor and add/replace the2.
following nodes:

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text=
 "Press the Mail Icon to start
 the React Native application"
 android:id="@+id/textView" />
 <FrameLayout
 android:layout_width="match_parent"
 android:layout_height="300dp"
 android:layout_centerVertical="true"
 android:layout_alignParentStart="true"
 android:id="@+id/reactnativeembed"
 android:background="#FFF">
 </FrameLayout>
 <LinearLayout
 android:orientation="horizontal"
 android:layout_width="match_parent"
 android:layout_height="75dp"
 android:layout_below="@+id/textView"
 android:layout_centerHorizontal="true">
 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="User Name:"
 android:id="@+id/textView2"
 android:layout_weight="0.14" />
 <EditText
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:id="@+id/userName"
 android:layout_weight="0.78"
 android:inputType="text"
 android:singleLine="true"
 android:imeOptions="actionDone"/>
 </LinearLayout>

Integration with Applications

[414]

Create a Java class named UserNameManager. This will be a native module that3.
will serve the purpose of updating the EditText field we added to the layout.

If you are not familiar with creating a native module for React Native,
please refer to the Exposing custom Android modules recipe in Chapter
6, Adding Native Functionality.

Add the following code to UserNameManager.java:4.

 public class UserNameManager extends
 ReactContextBaseJavaModule {
 public UserNameManager(ReactApplicationContext
 reactApplicationContext) {
 super(reactApplicationContext);
 }

 @Override
 public String getName() {

Integration with Applications

[415]

 return "UserNameManager";
 }

 @ReactMethod
 public void setUserName(final String userName) {
 Activity mainActivity =
 getReactApplicationContext().getCurrentActivity();
 final EditText userNameField =
 (EditText) mainActivity.findViewById(R.id.userName);
 mainActivity.runOnUiThread(new Runnable() {
 @Override
 public void run() {
 userNameField.setText(userName);
 }
 });
 }
 }

Next, create a UserNamePackage Java class and add the following code:5.

 public class UserNamePackage implements ReactPackage {
 @Override
 public List<Class<? extends
 JavaScriptModule>> createJSModules() {
 return Collections.emptyList();
 }
 @Override
 public List<ViewManager>
 createViewManagers
 (ReactApplicationContext reactContext) {
 return Collections.emptyList();
 }
 @Override
 public List<NativeModule>
 createNativeModules
 (ReactApplicationContext reactContext) {
 List<NativeModule> modules = new ArrayList<>();
 modules.add(new UserNameManager(reactContext));
 return modules;
 }
 }

Add the UserNamePackage in the getPackages() in EmbedApplication.6.

Integration with Applications

[416]

Now we need to have our React Native UI render a TextField and call our7.
UserNameManager native module. Open index.android.js and import the
TextInput and NativeModules modules from 'react-native'.
Create a variable reference for the UserNameManager.8.

 const UserNameManager = NativeModules.UserNameManager;

Add the following code to the class implementation:9.

 componentWillMount() {
 this.setState({
 userName : ''
 });
 }
 onUserNameChange = (userName) => {
 this.setState({userName});
 UserNameManager.setUserName(userName);
 }
 render() {
 return (
 <View style={styles.container}>
 <Text>Embedded RN App</Text>
 <Text>Enter User Name</Text>
 <TextInput
 style={styles.userNameField}
 onChangeText={this.onUserNameChange}
 value={this.state.userName}
 />
 </View>
);
 }

Running the application, starting the React Native embedded app, and adding10.
text to the text field should resemble this screen shot:

Integration with Applications

[417]

How it works…
To get our React Native application to update the native app containers, we created a native
module. This is the recommended way of communicating from JavaScript to the native
layer. However, since we had to update a native UI component, the operation had to be
performed on the main thread. This is achieved by getting a reference to MainActivity
and calling the runOnUiThread method. This is done in the setUserName method of step
4.

Handling being invoked by external Android
application
Earlier in this chapter, we discussed the benefits of making our application available to
other apps to increase usage in the Handle being invoked by external iOS application recipe. It is
only fitting that we do not leave Android behind and show you how to accomplish deep
linking in this recipe.

Integration with Applications

[418]

How to do it…
Open your React Native Android project in Android Studio and open1.
AndroidManifest.xml.
For our example, we will register our application under the invoked:// scheme.2.
Change your <activity> node to the following:

 <activity
 android:name=".MainActivity"
 android:launchMode="singleTask"
 android:label="@string/app_name"
 android:configChanges="keyboard|keyboardHidden|
 orientation|
 screenSize">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name=
 "android.intent.category.LAUNCHER" />
 </intent-filter>
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name=
 "android.intent.category.DEFAULT"/>
 <category android:name=
 "android.intent.category.BROWSABLE"/>
 <data android:scheme="invoked"/>
 </intent-filter>
 </activity>

Now we need to open our index.android.js file and make our UI react to3.
being invoked.
Add the Linking module to the import block from 'react-native'.4.
Replace the implementation with the following code:5.

 componentWillMount() {
 this.setState({
 status: 'App Running'
 });
 Linking.addEventListener('url', this.onAppInvoked);
 }
 componentWillUnmount() {
 Linking.removeEventListener('url', this.onAppInvoked);
 }
 onAppInvoked = (event) => {
 this.setState({

Integration with Applications

[419]

 status: `App Invoked by ${event.url}`
 });
 }
 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.instructions}>
 App Status:
 </Text>
 <Text style={styles.welcome}>
 {this.state.status}
 </Text>
 </View>
);
 }

Running the application and invoking it from another app will look something6.
like this:

Integration with Applications

[420]

How it works…
In this recipe, we register our URL schema for linking by editing the
AndroidManifest.xml file in step 2. An important bit to note is the change of the
launchMode to singleTask. This prevents the operating system from creating multiple
instances of our React Activity. This is important if you want to be able to properly capture
the data passed along with the intent.

Invoking an external iOS and Android
application
The average iOS user has dozens of apps installed on their device. A substantial percentage
of them is used on a daily basis. Many of the apps today incorporate sharing and
integration with other applications. An example of this would be opening the iOS Maps
application for a particular address found in the host application. We can accomplish the
same with React Native.

In this recipe, we are going to explore how to switch applications and pass some context to
them on iOS. We will be using the built-in Linking module and opening the Maps, Phone,
and Safari browser applications.

How to do it…
Open your index.ios.js file and add the Linking module to our import block:1.

 import {
 //...
 TouchableOpacity,
 Linking
 } from 'react-native';

Next, we are going to create a generic method to link to the apps. Add the2.
following to the class implementation:

 openExternalApp(url) {
 Linking.openURL(url).catch(err => console.error('error
 opening external link', err));
 }

Integration with Applications

[421]

Finally, we will add a few examples to our render function. This will be the JSX:3.

 <View style={styles.container}>
 <TouchableOpacity onPress=
 {()=>this.openExternalApp('maps://')}>
 <View style={styles.button}>
 <Text style={styles.buttonText}>Open Maps</Text>
 </View>
 </TouchableOpacity>
 <TouchableOpacity onPress=
 {()=>this.openExternalApp('tel:18005551212')}>
 <View style={styles.button}>
 <Text style={styles.buttonText}>Open Phone</Text>
 </View>
 </TouchableOpacity>
 <TouchableOpacity onPress={()=>
 this.openExternalApp('http://packtpub.com')}>
 <View style={styles.button}>
 <Text style={styles.buttonText}>Open Safari</Text>
 </View>
 </TouchableOpacity>
 </View>

If we run the application, it should look something like this:4.

Integration with Applications

[422]

Open index.android.js and repeat steps 1 and 2.5.
Change your render function to return the following JSX:6.

 <View style={styles.container}>
 <TouchableOpacity onPress=
 {()=>this.openExternalApp('geo://')}>
 <View style={styles.button}>
 <Text style={styles.buttonText}>Open Maps</Text>
 </View>
 </TouchableOpacity>
 <TouchableOpacity onPress=
 {()=>this.openExternalApp('tel:18005551212')}>
 <View style={styles.button}>
 <Text style={styles.buttonText}>Open Phone</Text>
 </View>
 </TouchableOpacity>
 <TouchableOpacity onPress=
 {()=>this.openExternalApp('http://packtpub.com')}>
 <View style={styles.button}>
 <Text style={styles.buttonText}>Open Chrome</Text>
 </View>
 </TouchableOpacity>
 </View>

Running the app on Android should look and function like this:7.

Integration with Applications

[423]

How it works…
Fortunately, React Native handles all the heavy lifting of opening other applications in the
Linking API. For iOS, this involves executing the openURL method of the UIApplication
instance. For Android, an Intent is created with the URL. The target operating system then
attempts to open the URL.

9
Deploying Our App

In this chapter, we will cover the following recipes:

Deploying development builds to an iOS device
Deploying development builds to an Android device
Deploying testing builds to HockeyApp
Deploying testing iOS builds to TestFlight
Deploying production builds to the Apple app store
Deploying production builds to Google Play Store
Deploying over-the-air updates
Optimizing React Native application size

Introduction
So far throughout this book, we have discussed and showed you how to develop awesome
React Native applications. As you are developing your application, you are going to hit a
few stages. The first will be wanting to test your application on your personal iOS or
Android device. After you are satisfied with how the app is working on your phone, you're
going to want to share it with a select group of people and hopefully receive praise and
adoration. Finally, you're going to reach a point where you think the world is ready to see
your prized creation and you're going to release it to the designated app stores. This chapter
will walk you through each one of these steps, as well as taking it one step further with
pushing updates to your application and some optimization tips. For iOS, related
deployment tasks, please make sure you are an Apple Developer Program member so you
can sign your application.

Deploying Our App

[425]

Deploying development builds to an iOS
device
Let's say that you are some way into building the next greatest iPhone app that will shatter
app store records. You've spent the majority of your time testing your app using the iOS
Simulator that comes with Xcode. While the iOS Simulator is by far the best performing and
closest resembling method of running our application on an iOS device, it's still not the
same as the real thing. The iOS Simulator uses the computer's CPU and GPU to render the
Operating system simulation, so it may end up performing better than the actual device.
When you test on a physical device you can experience the intangible factors of using the
application, and see more realistic performance.

In this recipe, we will walk you through taking a React Native application and deploying it
to your iPhone or iPad.

Getting ready
We created a sample React Native application named TestDeployApp. Make sure your
device is connected via USB.

If you are not a member of the Apple Developer Program, you are able to
sign your devices for development needs. You can read more about
Apple's free (but limited) provisioning here: h t t p s ://g o o . g l /c Q A O d z

How to do it…
Open your React Native iOS project in XCode.1.
Open Project Editor and select the app target.2.
Under the Signing section, select your Team:3.

https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz
https://goo.gl/cQAOdz

Deploying Our App

[426]

Repeat step 3 for the Tests target (it will have your application name with a Tests4.
suffix).
Select your device in the Destination selector:5.

To start your application on the device, press the Play button. Please make sure6.
your device is plugged in and unlocked.

How it works…
Deploying our development build to the device simply involves running the application as
we would for the Simulator but targeting the device. We use the localhost packager to
create our bundle file. This file then gets saved locally on the device for the future. Please
note, though, that since this is a development build, the code is not the slightest bit
optimized. You will see a significant performance increase when moving to a production
release.

Deploying development builds to an Android
device
Naturally, when you develop an Android application, you need to test the application as
you are building it. There are several options you have for testing the application locally.
They involve running an Android emulator, the two most popular options being the one
packaged with the Android SDK tools and Genymotion. Unfortunately, these emulators
show poor performance and are cumbersome to use. The best solution is to use an actual
physical device.

This recipe will walk you through deploying a React Native application to a physical
Android device.

Deploying Our App

[427]

Getting ready
We created a sample React Native application named TestDeployApp. Make sure your
device is connected via USB.

How to do it…
Open your React Native Android project in Android Studio.1.
Press the Run button:2.

Make sure the Choose a running device radio button is selected and your device3.
is in the list; press OK:

Deploying Our App

[428]

There's more…
The React Native packager should start when you run the application. If it doesn't, please
manually start the packager. If you see an error screen with the message Could not get
BatchedBridge, please make sure your bundle is packaged correctly, or Could not connect
to development server, run the following command in the terminal:

 $ adb reverse tcp:8081 tcp:8081

How it works…
Deploying our development build to the device simply involves running the application as
we would for an emulator, but targeting the device. We use the localhost packager to create
our bundle file. This file then gets saved locally on the device for the future. The only caveat
is setting up communication between the device and the development machine. Running
the adb reverse command establishes a port forward from the device to the host
computer. Please note, though, that since this is a development build, the code is not
optimized the slightest bit. You will see a significant performance increase when moving to
a production release.

Deploying testing builds to HockeyApp
So, you've made some excellent progress building the next best mobile app using React
Native. You can see the finish line approaching, and you decide you want to open your app
up for some feedback from a select group of people. To accomplish this, you need to create
a signed build of your application that you will share with your group of testers. For a
proper testing build, you need two things: some form of analytics or reporting and most
importantly, a delivery mechanism. HockeyApp provides this and more for your testing
builds on both iOS, Android, and other popular platforms.

This recipe will walk us through deploying a React Native application to HockeyApp for
testing purposes. We will walk through both iOS and Android releases.

Getting ready
For this recipe, we will be using a simple React Native application called TestDeployApp.
For iOS deployments, you will need to be enrolled in the Apple Developer Program and
have cocoapods installed. Finally, you will need to have a HockeyApp account.

Deploying Our App

[429]

How to do it…
First we need to install the react-native-hockeyapp module in our1.
application. Open the Terminal, go to your application's root project directory
and enter the following command:

 $ npm install react-native-hockeyapp --save

Go into your ios/ directory and initialize your Podfile:2.

 $ pod init

Open your Podfile and add pod "HockeySDK" to your target.3.
Back in the Terminal, install the Podfile:4.

 $ pod install

Now let's open up Xcode and open our React Native project:5.
(ios/TestDeployApp.xcodeproj).
We recommend changing your Bundle Identifier to something more meaningful6.
than the default, so please change it in your General Settings dialog:

Drag and drop ./ios/Pods/Pods.xcodeproj into the Libraries group in your7.
project navigator.
Drag and drop RNHockeyApp.h/.m files located in ./node_modules/react-8.
native-hockeyapp/RNHockeyApp into the same Libraries group.
Now we need to go into HockeyApp and create our application there. Log in and9.
click New App.

Deploying Our App

[430]

We do not have our build ready yet so click Manually.10.
Fill out the fields to match the Title and Bundle Identifier that we defined earlier11.
in step 6. Press Save:

Make a note of the App ID.12.
Open index.ios.js and add the following code:13.

 import HockeyApp from 'react-native-hockeyapp';

 export default class
 TestDeployApp extends Component {
 componentWillMount() {
 HockeyApp.configure(YOUR_APP_ID_HERE, true);
 }

 componentDidMount() {
 HockeyApp.start();
 HockeyApp.checkForUpdate();
 }
 }

Deploying Our App

[431]

Back in XCode, set Generic iOS Device as your destination target and build14.
(cmd + B) the application.

You may see an error, Apple Mach-O Linker (Id). You can fix this by adding
-lc++ to the TestDeployAppTests Other Linker Flags in the Build
Settings:

Now we need to create our .ipa file. Click Product > Archive.15.

If you run into build errors. Please open the Podfile and change the
HockeySDK import to: pod "HockeySDK", :subspecs =>
['AlllFeaturesLib']

It will open the Archives list, press Export.16.
Select Save for Development Deployment and press Next.17.
Your Provisioning Team should automatically be selected, press Choose.18.
Leave the default Export settings and press Next.19.
On the summary, press Next.20.
Select the destination directory and press Export.21.
Back in the HockeyApp browser window, click Add Version.22.
Drag the .ipa file we just exported into the modal window.23.
Keep pressing Next and then finally click Done at the summary. You are now all24.
set; you can add users to your HockeyApp application and they will be able to
download your application.
Let's switch over to the Android side of things. Open Android Studio and open25.
your React Native project.

Deploying Our App

[432]

Open settings.gradle and edit it to include the following:26.

 include ':react-native-hockeyapp',
 ':app' project
 (':react-native-hockeyapp').projectDir =
 new File(rootProject.projectDir,
 '../node_modules/react-native-hockeyapp/android')

Open android/build.gradle and add the following to the dependencies27.
object:

 classpath 'net.hockeyapp.android:HockeySDK:3.7.0'

Open android/app/build.gradle and add the following to the dependencies28.
object:

 compile project(":react-native-hockeyapp")

Now open up AndroidManifest.xml and add the following activities in the29.
<application> node:

 <activity android:name=
 "net.hockeyapp.android.UpdateActivity" />
 <activity android:name=
 "net.hockeyapp.android.FeedbackActivity" />

Finally, we need to register the package in MainApplication.java. Your30.
getPackages method should contain the following:

 return Arrays.<ReactPackage>asList(
 new MainReactPackage(),
 new RNHockeyAppPackage(MainApplication.this)
);

Deploying Our App

[433]

Repeat steps 9–13 but the Platform should be set to Android:31.

Now we need to build our .apk file. If you are not sure how to do it, follow the 32.
steps in the React Native documentation at h t t p s ://f a c e b o o k . g i t h u b . i o /r e a c t

- n a t i v e /d o c s /s i g n e d - a p k - a n d r o i d . h t m l .
Repeat steps 22 and 23 for our Android project. Now you're all set!33.

How it works…
For this recipe, we are using HockeyApp for two main features. We are using it for its beta
distribution primarily, and we leverage its HockeySDK, which can support crash reporting,
metrics, feedback, authentication, and in our case, notifications for updates. For iOS, beta
distribution is done through the over-the-air enterprise distribution mechanism that is
hosted by HockeyApp. When you sign your application, you control which devices can
open the application. HockeyApp just sends the notifications and provides the URL for
downloading it through its enterprise app store. Android is quite a bit simpler as there is no
governance over how applications must be transferred. Therefore, HockeyApp hosts the
apk on a web server that the tester can download and install the application from.

https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html

Deploying Our App

[434]

Deploying testing iOS builds to TestFlight
Before HockeyApp, the de facto service for beta testing distribution of mobile applications
was TestFlight. In fact, it was so good that Apple purchased its parent company and
integrated it straight into iTunes Connect. TestFlight now serves as the application testing
platform for Apple. There are a few differences between TestFlight and HockeyApp to
consider. First and foremost, TestFlight became iOS only when it was purchased by Apple.
Secondly, there are two styles of testing in TestFlight, internal and external. Internal testing
involves sharing the application with Developer or Admin role members of your team.
There is a limit of 25 testers, with 10 devices each. External testing allows you to invite up
to 2,000 testers, who do not have to be members of your organization. This is important, as
these testers do not use up your device quota. External testing applications go through a
Beta App Review completed by Apple. This is not as strict as Apple's review for going to
the App Store, but is a good starting point.

This recipe focuses on taking our React Native app and deploying a testing build to
TestFlight. We will be setting up an internal test due to Apple's review process. The
procedure is the same for external testing.

Getting ready
For this recipe, we will be using a simple React Native application called TestDeployApp.
You will need to be enrolled in the Apple Developer Program and have your development
and distribution certificates set up in Xcode. Your application will need to have its AppIcon
set.

Deploying Our App

[435]

How to do it…
Open up Xcode and open our React Native project:1.
(ios/TestDeployApp.xcodeproj).
We recommend changing your Bundle Identifier to something more meaningful2.
than the default, so please change it in your General Settings dialog:

Log into your Apple Developer Program and go to the App IDs registration3.
at https//:developer.apple.com/account/ios/identifier/bundle.

Fill out the Name and Bundle ID for your project, then press Continue, followed4.
by Register and finally, Done:

https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle

Deploying Our App

[436]

Log into iTunes Connect https://itunesconnect.apple.com.5.
Open My Apps.6.
Press the Plus (+) button and select New App.7.

Fill out the Name and Language. Select the Bundle ID to match the one you just8.
created in step 4. Write a unique application reference for the SKU. Press Create:

Open the TestFlight section for your app and fill out the Localizable9.
Information.
Go back to XCode and lets create the .ipa file. Select Generic iOS Device for the10.
active scheme. Click Product | Archive.
It will open the Archives list; press Upload to App Store….11.
Your Provisioning Team should automatically be selected; press Choose.12.
After the archive is created, press Upload.13.
Wait till you receive an e-mail from iTunes Connect informing you that the build14.
has completed processing.
Go back to the iTunes Connect browser window and open the Internal Testing15.
view.

https://itunesconnect.apple.com
https://itunesconnect.apple.com

Deploying Our App

[437]

Click Select Version to Test and pick your build. Click Next:16.

At the Export Compliance screen press OK.17.
Add an internal tester and select the users you would like to test the application:18.

Finally, click Start Testing and confirm the modal. Your users should now get an19.
invitation e-mail to test your awesome app!

Deploying Our App

[438]

How it works…
TestFlight serves as a first-class citizen in the App Store publishing path. Apple has
integrated its support for application beta testing distribution directly into iTunes Connect.
You follow the same procedure as you would when you deploy to the App Store, however,
on iTunes Connect, you enable and configure the testing. For the user it is a seamless
experience: they are notified to install the TestFlight app. There it will hold a link to the
applications they can test. The developers benefit as they do not need to add any extra
libraries or code to support TestFlight as they would with HockeyApp.

Deploying production builds to the Apple
app store
You've spent the last significant portion of time, most likely more than you anticipated,
building and testing your killer React Native app. Finally, the time has come to get your
app in the Apple app store and release it to the masses.

This recipe will walk us through the process of preparing our production build and
submitting it to the Apple app store. This will stop right before we submit to the app store
itself, as this is outside of React Native's scope and would require us to have a truly
production-ready application. The rest of the process is pretty straightforward.

Getting ready
For this recipe we will be using a simple React Native application called TestDeployApp.
You will need to be enrolled in the Apple Developer Program and have your development
and distribution certificates setup in Xcode. For proper production deployments, you will
need to have AppIcon set and iTunes screenshots ready.

Deploying Our App

[439]

How to do it…
Open up Xcode and open our React Native project1.
(ios/TestDeployApp.xcodeproj).
We recommend changing your Bundle Identifier to something more meaningful2.
than the default, so please change it in your General Settings dialog:

If you want to test your application in Production Mode on your device, change3.
your scheme's Build Configuration (Product | Scheme | Edit Scheme…) to
Release:

Deploying Our App

[440]

Log into your Apple Developer Program and go to the App ID's registration at h t4.
t p s ://d e v e l o p e r . a p p l e . c o m /a c c o u n t /i o s /i d e n t i f i e r /b u n d l e .
Fill out the Name and Bundle ID for your project and press Continue:5.

Log into iTunes Connect at www.itunesconnect.apple.com.6.
Open My Apps.7.
Press the Plus (+) button and select New App.8.

https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
https://developer.apple.com/account/ios/identifier/bundle
http://www.itunesconnect.apple.com
http://www.itunesconnect.apple.com

Deploying Our App

[441]

Fill out the Name and Language. Select the Bundle ID to match the one you just9.
created in step 4. Write a unique application reference for the SKU. Press Create:

Go back to XCode and let's create the .ipa file. Select Generic iOS Device for the10.
active scheme. Click Product | Archive.
It will open the Archives list; press Upload to App Store….11.
Your Provisioning Team should automatically be selected, press Choose.12.
After the archive is created, press Upload.13.
Wait till you receive an email from iTunes Connect informing you that the build14.
has completed processing.
Under the App Store section, open App Information and select the category your15.
application will reside in.
Open the 1.0 Prepare for Submission section under iOS APP.16.

Deploying Our App

[442]

Fill out all the required fields, including App Screenshots, Description,17.
Keywords, and Support URL.

Under Build, Select a build before you submit your app and choose your build18.
that you submitted in step 13:

Fill out Copyright and App Review Information.19.
Click Submit for Review and cross your fingers!20.

How it works…
This process is standard for publishing iOS applications to the App Store. There are no
React Native specific steps we have to do in this case, since there are scripts added by the
framework that hook into Xcode. These scripts will run the React Native packager to build
the main.jsbundle file in release mode.

Deploying production builds to Google Play
Store
Your Android labor of love is finally coming to an end. The next greatest thing to hit
potentially almost 11,000 devices (yes, really) is ready to go live. How do you reach these
users? You need to deploy your app to the Google Play Store of course.

This recipe will walk us through the process of preparing our production build and
submitting it to the Google Play Store. This will stop right before we submit to the app store
itself, as this is outside React Native's scope and would require us to have a truly
production-ready application. The rest of the process is pretty straightforward.

Deploying Our App

[443]

Getting ready
For this recipe, we will be using a simple React Native application called TestDeployApp.
You will need to be registered for a Google Play Developer account. Finally, you will need
to have all the icons and screenshots ready for the Play Store for final publishing.

How to do it…
Open the React Native project in Android Studio.1.
Now we need to build our .apk file. If you are not sure how to do it, follow the 2.
steps in the React Native Documentation at h t t p s ://f a c e b o o k . g i t h u b . i o /r e a c

t - n a t i v e /d o c s /s i g n e d - a p k - a n d r o i d . h t m l .
In your browser, open the Google Play Developer Console: h t t p s ://p l a y . g o o g l3.
e . c o m /a p p s /p u b l i s h /.
Click Add new application.4.
Fill out the Title and clickUpload APK:5.

This will open the APK section of the Publish screen. Click Upload your first6.
APK to Production.

https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/
https://play.google.com/apps/publish/

Deploying Our App

[444]

Drag or select your APK file. After it uploads the page will be updated:7.

Next you need to go through the Store Listing, Content Rating, Pricing,8.
and Distribution sections and fill out all the necessary information.
Once you have satisfied all the requirements click Publish App and celebrate!9.

How it works…
This process is relatively standard for publishing Android applications to the Google Play
Store. All the React Native specifics are handled in step 2 and by the gradle
assembleRelease process. The assemble process runs the packager to create the JavaScript
bundle file, compile the Java classes, package them together with the resources, and finally
sign it into an apk.

Deploying Over-The-Air updates
An excellent side-effect of having our React Native application being written in JavaScript is
that the code is loaded at runtime. This is similar to how Cordova hybrid applications work.
We can leverage this functionality to push updates to our application Over-The-Air (OTA).
This lets us add features and bug fixes without having to go through the App Store
approval process. The only limitation to OTA updates for React Native is that we cannot
push compiled (Objective-C or Java) code. The code has to be JavaScript only. There are a
few popular services that provide cloud-based OTA application updates. We will be
highlighting CodePush, a service by Microsoft. We feel this is the most mature, frequently
updated and most importantly, easiest to integrate service.

Deploying Our App

[445]

This recipe will discuss setting up and pushing updates using CodePush for our React
Native application on both iOS and Android.

Getting ready
For this recipe we will be using a simple React Native application called TestDeployApp.
For our testing purposes we deployed the applications to physical devices running in
production/release mode. This is necessary for the application to look at the CodePush
servers for updates.

How to do it…
To use CodePush, we need to install the CLI and create a free account. In your1.
terminal, run the following commands:

 $ npm install -g code-push-cli
 $ code-push register

Now we need to register our app with CodePush. Make note of the deployment2.
keys for the applications; we will be using the staging key for this recipe. Run the
following command for your app in the terminal:

 $ code-push app add TestDeployApp

Still in the terminal, go into your React Native project directory and install the3.
React Native CodePush npm module:

 $ npm install --save react-native-code-push@latest

Now we need to link the Native Modules with our project. You will be prompted4.
for your deployment key for Android and iOS, use the staging key from step 2:

 $ react-native link react-native-code-push

Deploying Our App

[446]

Next, we need to set our React Native application up to leverage CodePush.5.
Open index.ios.js and add the following:

 import codePush from 'react-native-code-push';
 ...
 const codePushOptions = {
 updateDialog : true
 }
 AppRegistry.registerComponent('TestDeployApp',
 () => codePush(codePushOptions)(TestDeployApp));

Repeat step 5 for index.android.js.6.

To test our iOS application let's deploy to our iOS device. Open the project in7.
XCode and change your scheme's Build Configuration (Product | Scheme | Edit
Scheme…) to Release. Press Run:

Change some of the code in your index.ios.js.8.
In the terminal run the following command:9.

 $ code-push release-react
 TestDeployApp ios -m --description
 "Updating using CodePush"

Deploying Our App

[447]

Close and re-open your app on your iOS device and you should see the following10.
prompt and change:

After the prompt, the application will update itself to the latest version:11.

Deploying Our App

[448]

Now let's test on Android. First we need to create our .apk file. If you are not12.
sure how to do it, follow the steps in the React Native Documentation at h t t p s

://f a c e b o o k . g i t h u b . i o /r e a c t - n a t i v e /d o c s /s i g n e d - a p k - a n d r o i d . h t m l .
Make sure your Android device is plugged in and run the following command in13.
the terminal from the android/ directory:

 $ adb install
 app/build/outputs/apk/app-release.apk

Change some of the code in your index.android.js.14.
In the terminal, run the following command:15.

 $ code-push release-react TestDeployApp
 android -m --description "Updating using CodePush"

Close and re-open your app on your Android device and you should see the16.
following prompt and change:

https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html
https://facebook.github.io/react-native/docs/signed-apk-android.html

Deploying Our App

[449]

After the prompt, the application will update itself to the latest version:17.

How it works…
CodePush as well as other cloud-hosted OTA update platforms, works on the same
technique that has existed in React Native since its inception. React Native needs to load a
JavaScript bundle when it is initialized. When we are developing the application, it looks
for the React Native package that is running at localhost:3000. When we are deploying
our application, it looks for a file named main.jsbundle that is attached to the application.
Every time the application is opened it checks in with the CodePush API and sees if there is
an update for the application. If there is a new update it may prompt the user about it.
Download the new jsbundle file and restart the application.

Optimizing React Native application size
As we are ready to deploy our app to production, we may get to the point where we need
to shrink our application bundle size. There are several techniques we can employ to cut
some space off our packages. These may involve some sacrifices to supported devices or
asset quality. Naturally, with any space-saving operations there will be consequences;
otherwise they would be enabled by default.

Deploying Our App

[450]

This recipe will discuss some techniques to limit production package file size in both iOS
and Android React Native applications.

Getting ready
For this recipe we will be using a simple React Native application called TestDeployApp.
You also need to have code signing working for iOS and the ability to create apk files. If you
need help refer to any of the previous testing and production build recipes.

How to do it…
First we will start off with some optimizations with our bundled assets. Often,1.
you have to include image assets, external fonts, and other data files with your
application. Let's look at some optimization techniques for these.

For PNG and JPEG lossy compression, you can use a service such as
www.tinypng.com. The service claims that it can reduce file size
upwards of 70%.
If you use the react-native-vector-icons library, you will notice
that it bundles eight different font icon sets. Feel free to remove the
icon font libraries that you are not using.
SVG files can also be compressed and optimized. You can use the
service compressor.io for this.
Audio assets should be compressed to AAC or MP3.

On the JavaScript side of things, you have to keep in mind that Babel will take2.
your ES6/7/2015 code and transpile it. The transpilation will cause polyfills to
be generated and used for these features. This will result in a substantially larger
file size of your jsbundle. You can limit this by using fewer ES6 features. You
should consider though the debate of performance versus maintainability. You
can read more about this here at h t t p ://m o d u s c r e a t e . c o m /o p t i m i z e - e s 6- o u t p u

t - s i z e - p e r f o r m a n c e - v i a - b a b e l /.
For iOS there is not much we can do at the moment as all the best practices for3.
reducing ipa size are enabled on the release scheme. These practices include
enabling Bitcode for app thinning and setting the compiler optimization to
Fastest, Smallest [-Os].

http://www.tinypng.com
http://www.tinypng.com
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/
http://moduscreate.com/optimize-es6-output-size-performance-via-babel/

Deploying Our App

[451]

For Android there is some room for reducing the file apk file size. In Android4.
Studio, open android/app/build.gradle and change the following lines to
the following values:

 def enableSeparateBuildPerCPUArchitecture = true
 def enableProguardInReleaseBuilds = true

If you plan to only target ARM-based Android devices, we can prevent it from5.
building for x86 altogether. In build.gradle splits abi object, change the
following line to not have x86 anymore:

 include "armeabi-v7a"

How it works…
We discuss several techniques that you can employ for reducing your package bundle file
size. The smaller we keep our JavaScript bundle the faster the JavaScript interpreter will
parse the code and thus load the application. The smaller we keep our ipa and apk the
faster users will be able to download the application, and if our application is huge it may
mean the difference between marking as Wi-Fi only on the app stores. Asset optimizations
in step 1 should provide significant reduction, and the result should be negligible to the
user. JavaScript optimizations in step 2 will provide some marginal benefit to the user, but
may have a more significant negative impact on the developers. The Android optimizations
are relatively straightforward; however the Proguard enabling may impact native libraries
and require some specific rules.

10
Automated Testing

In this chapter, we will cover the following recipes:

Installing the environment
Running the inspector to access the elements
Integrating Appium with Mocha
Selecting and typing into input texts
Pressing a button and testing the result

In an ideal world, as developers, we receive the initial requirements at the beginning of the
project, we take all these requirements and create a beautiful piece of software that works as
it was defined. However, in the real world, this is not the case, requirements change as we
build a product. In addition, once we release our amazing product to production, we need
to keep adding new features and fixing issues, and things can get messy.

In order to keep a healthy code base, we need to hire a great QA Team that makes sure
every change doesn't break anything of the existing functionality. Manual testing is OK but
it might be expensive, therefore we should be able to automate our test. In this chapter, we
will cover how to test functionality; this is also called functional testing. We will test an app
from a previous recipe in this book we are going to use a real device to see if our final build
doesn't introduce any bug or problem before releasing it to the public.

We are going to use Appium to run our automated tests. Appium is an open source project
that, controls our device remotely. We can get elements in our app, such as buttons or
inputs, then perform actions on them; after that we can validate the result and make sure
everything runs as expected on every release. Appium runs an HTTP server; we can use
any language to send an HTTP request, and in this case we will use the JavaScript client.
The server sends instructions to the device to execute tasks remotely.

Automated Testing

[453]

Installing the environment
In this recipe, we will install and configure our environment to run automated tests using
Appium in a real device.

Getting ready
In order to go through this recipe, we need to have installed Node 6, Npm 3, Appium 1.5.3,
and XCode 7.3.1. We also need a device to test; in this recipe, I will be using an iPhone 5S
with iOS 8.4.

Download the Appium app from the home page: h t t p ://a p p i u m . i o /

At the time of writing the Appium app doesn't support XCode 8.1 because
Apple deprecated some internal APIs that allowed Appium to run.
Appium 1.6 adds support for XCode 8.1 but unfortunately the app is not
released yet and we need to manually build it from the source code and
hack around.

How to do it…
Installing Appium is extremely easy. Once you have downloaded the app, we1.
only need to copy the binary to the applications folder in our Mac as shown in the
following screenshot:

http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/
http://appium.io/

Automated Testing

[454]

Before opening the Appium App, we need to configure our device to enable UI2.
Automation. Connect your phone to your Mac and open XCode, then on the top
menu, select Window | Devices (cmd + shift + 2). From here, we are going to need
the Identifier number to configure Appium at later steps as shown in the
following screenshot:

Make sure your device is already registered on the Apple developer center
and the provisioning profile is installed on your phone. Otherwise you won't
be able to enable automation.

Automated Testing

[455]

On your phone, go to Settings | Developer and then Enable UI Automation. By3.
default, it's disabled; make sure it is green in order to allow running our
automated tests on this device as shown in the following screenshot:

As mentioned before, we are going to use one of the apps we have created in4.
previous chapters. Let's open the app created in Chapter 2, Implementing Complex
User Interfaces, recipe number 10. We are going to use this app because it has a
few input texts, a button, and an alert message. First, we need to make sure the
build will run in our device; the easiest way to do it is to open the
ch2/tip10/FormComponents/ios/ FormComponents.xcodeproj in XCode,
then select your device from the drop-down menu and click Run as shown in the
following screenshot:

Automated Testing

[456]

In order to successfully run the app on your device, you need to create and
install the iOS Certificates on your system. You can do this by following the
instructions on the Apple Developer platform: h t t p s ://d e v e l o p e r . a p p l e . c

o m .

Once the app is successfully running on your device, we need to copy the5.
FormComponents.app file to the desktop or any other destination that is
convenient for you. This is the app we are going to test using Appium:

https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com
https://developer.apple.com

Automated Testing

[457]

Now we are ready to configure Appium. Open the Appium app and set the6.
following configurations:

App Path: The IPA file that we want to test. This file should be signed
for development; we are going to use the app from step 5.
Force Device: The device we want to test our app. In this case, I'm
using my iPhone 5S.
Platform Version: The iOS version of the device where we are running
our app.
UDID: The phone's UDID; we can get this value from step 2 of this
recipe. This is required to automatically install the app in the device as
shown in the following screenshot:

Finally, we should be able to run the server. Let's click the Launch button at the7.
top-right corner. If we get 200 status responses from the server, we are ready to
start writing some tests as shown in the following screenshot:

Automated Testing

[458]

Running the Inspector to access the
elements
In order to write our tests, we need a way to access the native elements on screen. After
that, we should be able to input text on the fields, press the buttons, and run some
validations to check that our app is working as expected from our tests.

In this recipe, we will run the Appium Inspector to get an XPath value; we are going to use
this value to access the elements in our app through our JavaScript code in the tests.

Getting ready
In order to go through this recipe, it's necessary to complete the first recipe in this chapter.
The Appium server should be running, we should have a FormComponents.app file to
inspect, and don't forget to plug your phone to your Mac.

Automated Testing

[459]

Make sure to run the React Native Packager; this is necessary because we are using a
developer version of our app.

If you are having issues opening the inspector in step 1, make sure to have
ideviceinstaller installed, which is a command-line utility to install apps on iOS
platforms from the command line.

The Appium app comes with this utility, but sometimes the one included in the bundle
doesn't work on our platform. In order to fix this problem, we need to use brew to manually
install ideviceinstaller in our system:

 $ brew install ideviceinstaller

How to do it…
Once the Appium server is running, we can open the Inspector by clicking on the1.
magnifier icon at the top. This will install the app on your device, then it will run
the app on the device and will open the inspector app.

The inspector will show the initial view, which is the default splash screen of
the app. We need to click the Refresh button every time the phone shows a
different view to inspect that specific view:

Automated Testing

[460]

When the Inspector is running, we will see on the left a view of our app; in here,2.
we can click on any of the elements and we will get the details for that element on
the Details panel:

In the previous step, we inspected the details of the input text element. Once we3.
know the XPath value, we can use it to find that element in our JavaScript tests.
While the XPath displayed in the inspector will work perfectly, it might change if
the app gets updated or there are several updates to the UI; therefore, it would be
nice if we could use a more generic value; for example, we can use the following
XPath value instead:

 //UIATextField[@value='Your name']

In order to test our XPath values, we can get the XML representation of our views4.
and then use any XPath editor. In the inspector, we need to click the Copy XML
button; this will add to the clipboard the XML and we will be able to paste it
anywhere we want.

Integrating Appium with Mocha
In this recipe, we will set up a new project to write our tests; we are going to use Mocha,
chai, and the JavaScript Appium client to send commands to our device.

Automated Testing

[461]

Getting ready
For this recipe, we will create a new repository for our automated tests. All the files and
folders created here will not be on the same code base as our actual React Native app, it is
going to be a completely different project.

How to do it…
Let's start by creating a new folder for our project; we are going to have all our1.
tests in here. Open the terminal, go to the new directory, and initialize the new
node package with the following command:

 $ npm init

Now we need to install all the dependencies for this project. We are going to use2.
npm for this:

 $ npm install --save chai
 chai-as-promised mocha wd

Once we have all the dependencies installed, we need to create the folder3.
structure. Let's create two folders, src/config and src/features. In the config
folder, we will have the server Appium configurations; in the features folder, we
will create our actual tests:

Open the package.json located on the root folder and add the following code to4.
the scripts object. This will allow us to execute a simple command on the terminal
to run all our tests using mocha:

 "scripts": {
 "test": "./node_modules/mocha/bin/mocha
 ./src/features/"
 },

Automated Testing

[462]

Let's create the src/config/index.js file and define all the configurations that5.
we are going to need for this project:

 // The server appium server configurations
 exports.appium = {
 host: 'localhost',
 port: 4723,
 };

 // Capabilities
 exports.capabilities = {
 browserName: '',
 appiumVersion: '1.5.3',
 deviceName: 'iPhone 5S',
 platformVersion: '8.4',
 platformName: 'iOS',
 name: 'Sample Test',
 app: undefined
 };

That's all! We are ready to start writing our tests using Mocha!6.

How it works…
In step 2, we are adding all the dependencies for our automation project:

chai is an assertion library. It will help us to accept or reject our tests.
chai-as-promised is a library that allows chai to assert promises; we are going
to use it because the Appium client returns promises for each task, therefore
using this library will help us to keep a clean code base.
mocha is a test framework that will allow us to run asynchronous tests easily. We
can generate reports and run all our tests with a single command on the terminal.
wd is the Appium JavaScript client library. All it does is to send HTTP requests to
the server with the instructions that we need; for example, we can get elements
on the UI, type in text inputs, or press buttons.

On step 4, we are adding an alias to run our tests; this way, we can use npm to run all our
tests as follows:

 $ npm test

Automated Testing

[463]

On step 5, we are adding the configurations for Appium. We are going to define two objects,
one object will contain the host and port and the other object will set the device capabilities;
in here, we are defining the same configurations we did for the first recipe in this chapter.

If you noticed, we are not setting the app config, instead we are setting it to undefined, but
we can set the path where our app's file is located. We are not doing it because we have
already declared that on the Appium App and those properties will get applied if we don't
set anything here.

Selecting and typing into input texts
In this recipe, we will write our first test. We are going to get the three input texts and type
some values, then we will assert that the values are present in the fields.

Getting ready
For this recipe, we will continue working on the same project we created in the previous
recipe.

We need to make sure the Appium server is running; please take a look at recipe number 1
in this chapter.

We also need to make sure the inspector is not running, otherwise the device will be busy
running the app and won't be able to run our tests.

Just in case, I have to mention that the device should be connected to your Mac (sometimes
I've forgotten this important step) and the React Native Packager running.

We need the packager running because our app will try to load the latest JavaScript code. If
you are not using the development version of the app (meaning you didn't follow the steps
in recipe number 1) but instead you are testing a build that bundles the JavaScript, the
packager is not needed.

Automated Testing

[464]

How to do it…
Let's start by creating a new src/features/input.test.js file; we are going1.
to write our tests in here. It's important to name the files with the ending
*.test.js. This way, when running mocha, the tests will be loaded
automatically.
Now we need to import all the dependencies for our tests. Let's add the following2.
code at the top of the new file:

 const assert = require('assert');
 const wd = require('wd');
 const chai = require("chai");
 const chaiAsPromised = require("chai-as-promised");
 const config = require('../config');

We need to tell chai to use the promises and enable assertion chaining to work3.
with the Appium client:

 // enables chai assertion chaining
 chaiAsPromised.transferPromiseness =
 wd.transferPromiseness;

 chai.use(chaiAsPromised);
 chai.should();

Before the tests start, we need to connect to the Appium server and send the4.
configurations we have defined. By using the before hook, we can connect to the
server and initialize the driver. We are defining a driver variable at the top of the
test; we need to do this because when the tests are done, we want to close and
release the connection to Appium:

 describe('Main form', function() {
 let driver;

 // Setting the maximum waiting time
 this.timeout(300000);

 before(function () {
 driver = wd.promiseChainRemote(config.appium);

 return driver.init(config.capabilities);

Automated Testing

[465]

});
// Defined at later steps

});

It's very simple to release the connection, we just need to use the after hook to5.
close the session:

after(function () {
return driver.quit();

});

In order to get an element from our app, we need to know the XPath. In recipe6.
number 2, using the Appium Inspector, we were able to get the XPath for the
input fields; now it's time to use it. We are going to define a new test to enter a
text to the first input and then check when the value gets updated:

it('should enter a string to the input texts',
function() {

return driver
.elementByXPath
('//UIATextField[@value=\'Your name
\']')
 .type('Crysfel Villa')
.getValue()
.should.become('Crysfel Villa');

});

Now we are ready to run our first test. Make sure your phone is plugged to your7.
Mac and the Appium server is running. Then type the following command on the
terminal:

$ npm test

Automated Testing

[466]

After the tests are completed, we should see all tests green, meaning there are errors and we
are good to go.

Before running your tests, make sure to close the Appium Inspector,
otherwise the tests will fail because the device will be busy running the
inspector.

Automated Testing

[467]

We can continue adding new instructions to the chain. All of these are promises8.
because everything is happening in our device and it takes some time to run.
Here's an example of how to set new values to the three inputs:

it('should enter a string to the input texts',
function() {

return driver
.elementByXPath('//UIATextField[@value=
\'Your name\']')
.type('Crysfel Villa')
.getValue()
.should.become('Crysfel Villa')

.elementByXPath('//UIATextField[@value=
\'Your phone number\']')
.type('3829482783')
.getValue()
.should.become('3829482783')

.elementByXPath
('//UIAScrollView[1]/UIATextField[3]')
.type('crysfel@gmail.com')
.getValue()
.should.become('crysfel@gmail.com');

});

How it works…
In step 4, we are connecting the client to the Appium server. In here, we are using the
before hook; this function is automatically executed for us when the tests are about to
start. Mocha is the one responsible of doing this.

In step 5, we released the connection. Again, the after function gets executed
automatically by Mocha, after all tests are completed.

In step 6, we are creating a simple test. Using the driver, we find the input text with the
value Your name, then we use the type method to enter some text into the input; this
function will set the new value using the phone's keyboard.

Automated Testing

[468]

After the new value is typed, we get the current value from the input and execute two chai
methods to verify that the new value is the one we entered; if this is true then our test will
pass, otherwise it will fail.

There's more…
Sometimes the auto corrector will change the input value; make sure to either disable it on
your device or use a different value to avoid running into these scenarios.

Pressing a button and testing the result
Now that we know how to get elements using XPath, we can find the button that we have
and then press it to test whether there's an alert message.

Getting ready
In order to complete this recipe, we need to have the Appium server running, integrated
Mocha with WD (take a look at recipe number 3 in this chapter), and our device should be
plugged in to our Mac.

This recipe depends on the previous one; we will be updating the same files.

How to do it…
Let's open the src/features/input.test.js file; we are going to create a new1.
test to type an e-mail address and click the button. There are several steps that we
need to do in here:

 it('should show an alert with the email address', function()
{
 // Find the email input

 // Type an email address

 // Hide the keyboard

 // Press the button

Automated Testing

[469]

 // Validate that there's an alert message
 });

First, we need to find the input element. We have three inputs; in previous2.
recipes we have used the value property on the XPath to find the element, but in
this case, we are going to use the order position; in this case, the email field is the
third element on the form:

 return driver
 .elementByXPath
 ('//UIAScrollView[1]/UIATextField[3]')
 .clear()

Once we have found the input and cleared any previous value, we need to type3.
an email address and then hide the keyboard:

 return driver
 .elementByXPath
 ('//UIAScrollView[1]/UIATextField[3]')
 .clear()
 .type('crysfel@gmail.com')
 .hideKeyboard()

The next step is to find the button and press it. We are going to use the4.
elementById method to find the button using an ID; the ID is the label that we
are using for this button:

 return driver
 .elementByXPath
 ('//UIAScrollView[1]/UIATextField[3]')
 .clear()
 .type('crysfel@gmail.com')
 .hideKeyboard()

 .elementById('Save') // Finding the button
 .tap() // Pressing the button
 .sleep(1000) // Waiting 1 second

Automated Testing

[470]

Finally, we need to write the assertion. First we need to find the alert message,5.
get the value of the text displayed, and compare it with the entered values. For
the assertion, we are going to use chai promised:

 return driver
 .elementByXPath
 ('//UIAScrollView[1]/UIATextField[3]')
 .clear()
 .type('crysfel@gmail.com')
 .hideKeyboard()

 .elementById('Save')
 .tap()
 .sleep(1000)

 .elementByXPath
 ('//UIAAlert/UIAScrollView/UIAStaticText[2]')
 .getValue()
 .should.eventually.equal
 ('Name: Crysfel Villa,
 Phone: undefined, Email: crysfel@gmail.com');

We are done with our test; now we can run them all and see if everything is green6.
or red. Open the terminal, go to the project's root folder, and run the following
command, (make sure to have your phone plugged-in to your Mac and the
Appium server running):

 $ npm test

Automated Testing

[471]

How it works…
In step 2, we are finding the email input. In here we are also clearing any content that this
field might contain by calling the clear method. This step is not required, but it's a good
idea to make sure the input doesn't have anything from previous tests.

In step 3, we are typing the new value and hiding the keyboard. We need to hide the
keyboard in order to press the button successfully using Appium.

In step 4, we are finding and pressing the button. We need to wait 1 second because the
alert takes a few milliseconds to show up, there's a fancy animation that shows the alert and
if we don't wait that second, Appium might not find the element. By waiting we make sure
the alert will be there. If it's not there after 1 second, then there's an issue in our app.

Automated Testing

[472]

In step 5, we are defining the assertion. After finding the alert message by the XPath, we get
the text value for that element, then we validate that this value should eventually be equal
to the values we have entered on the previous steps.

It's important to use the eventually method on the assertion, because these are promises
that need to be fulfilled when the Appium server responds to the client.

11
Optimizing the Performance of

Our App
In this chapter, we will cover the following recipes:

Optimizing our JavaScript code
Optimizing the performance of custom UI components
Keeping our animations running at 60 FPS
Getting the most out of ListView
Boosting the performance of our app
Optimizing the performance of native iOS modules
Optimizing the performance of native Android modules
Optimizing the performance of native iOS UI components
Optimizing the performance of native Android UI components

Introduction
Performance is a key criterion of almost every single piece of technology in software
development. It is often debated, validated, and invalidated when discussing competing
products. React Native was introduced to solve the issue of poor performance that exists in
hybrid applications that wrap web applications in a native container. React Native has an
architecture that lends itself to not only feature development and flexibility but excellent
performance. Still, the out-of-the-box performance serves as a baseline and depends on how
you use the framework; it can go in either direction.

Optimizing the Performance of Our App

[474]

When thinking of performance in our React Native application, it is important to think
about the big picture of how React Native works. There are three major concepts of React
Native and their relative performance is depicted in the following diagram:

Optimizing our JavaScript code
It's safe to say that your React Native application will be written mostly using JavaScript.
You may have some native modules and custom UI components, but for the most part, all
your view and business logic will be written in JSX and JavaScript. Most likely, you will be
using language constructs introduced with ES6. These may be available natively by the
JavaScript interpreter bundled with React Native (JavaScriptCore) or polyfilled by the Babel
transpiler. Since JavaScript constitutes most of our application, this should be the first part
we optimize if we want to squeeze some performance out of our application.

This recipe will provide some helpful tips in optimizing JavaScript code to be as performant
as possible. There is an ongoing debate on performance versus readability. We will try to be
objective in our steps, and provide you with the steps to increase performance. It is up to
you to make an educated decision whether these performance optimizations are worth the
potential cost in readability and maintainability.

Getting ready
This recipe is not necessarily dependent on React Native as it focuses on the JavaScript used
to write a React application.

Optimizing the Performance of Our App

[475]

How to do it…
The first and foremost optimization to look for is speeding up iterations. Often,1.
you may be using functions that take iterator functions as arguments (forEach,
filter, map). These are generally going to be slower than doing a standard for
loop. Depending on the size of collection you are iterating, this may make a
difference. Here's an example of a faster filter function:

 var myArr = [1,2,3,4,5,6,7],
 newArr;
 // Slower:
 function filterFn(element) {
 return element > 2;
 }
 newArr = myArr.filter(filterFn);

 // Faster:
 function filterArray(array) {
 var length = array.length,
 myNewArr = [],
 element,
 i;

 for(i = 0; i < length; i++) {
 element = array[i];
 if(element > 2) {
 myNewArr.push(array[i]);
 }
 }
 return myNewArr;
 }

 newArr = filterArray(myArr);

More importantly, when optimizing iterations, is to make sure you are storing2.
variables you are accessing on the iteration somewhere close by:

 function findInArray(properties, appConfig) {
 for(var i = 0; i < properties.length; i++) {
 if(properties[i].someProperty ===
 appConfig.userConfig.permissions[0]) {
 // do something
 }
 }
 }

Optimizing the Performance of Our App

[476]

 function fasterFindInArray(properties, appConfig) {
 var matchPermission = appConfig.userConfig.permissions[0],
 length = properties.length,
 i = 0;
 for(; i < length; i++) {
 if(properties[i].someProperty === matchPermission) {
 // do something
 }
 }
 }

Optimize your logical expressions. Keep your fastest and closest executing3.
statements on the left:

 function canViewApp(user, isSuperUser) {
 if(getUserPermissions(user).canView || isSuperUser) {
 return true;
 }
 }

 function canViewApp(user, isSuperUser) {
 if(isSuperUser || getUserPermissions(user).canView) {
 return true;
 }
 }

While we may really enjoy ES6 constructs, please note that some of the features4.
execute slower than their ES5 implementations. These features can include for
of, generators, Object.assign, and some more. A good reference for
performance in relation to ES5 can be found here: h t t p s ://k p d e c k e r . g i t h u b . i o

/s i x - s p e e d /.
Avoid try-catch as it may impact optimizations of the interpreter (it does in5.
V8).
Arrays should have all members be of the same type. If you need to have a6.
collection where the type can vary, use an object.

How it works…
JavaScript performance is a topic of constant debate, sometimes heated. It is sometimes
difficult to keep up with the latest in performance metrics as Google, Apple, Mozilla, and
the global open source community is hard at work on their JavaScript engines. For React
Native, we focus on WebKit JavaScriptCore. The recipes in this chapter focus on using
lower-level functions that take up less memory and overall have to perform fewer

https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/
https://kpdecker.github.io/six-speed/

Optimizing the Performance of Our App

[477]

operations, thus lowering the time it takes for a task to complete.

Optimizing the performance of our custom
UI components
In building your React Native application, it's a safe bet that you will be creating custom UI
components. These components can either be compositions of several other components or
a component that builds off an existing component and adds some functionality. With the
added functionality, the complexity increases as well. The increased complexity leads to
more things going on and of course more things that can slow down. Fortunately, there are
some ways to make sure that our custom UI components are performing the best they can.
This recipe will show several techniques for getting the most out of our components.

Getting ready
This recipe requires you to have a React Native application with some custom components.
As these performance suggestions may or may not provide value to your application, we
will be listing some of them and you can choose whether or not to apply them to your code.

How to do it…
The first optimization we should look at is what we have in the state of our1.
component. We should make sure that all the objects we have in the state are
being used and can potentially change, causing a re-render. If they can be props,
please make sure they are props. If you could store an object's member as a
state instead of the entire object, please do so.
Let's take a look at our render function. Our overall goal is to keep this function2.
the fastest performing; we should limit any long-running processes. If you can,
cache computations and constant values outside the render function so they are
not instantiated every time.
If you have conditional JSX that may return in the render function, return as3.
early as possible. Here's a trivial example:

 // unoptimized
 render() {
 let output;
 const isAdminView = this.props.isAdminView;

Optimizing the Performance of Our App

[478]

 if(isAdminView) {
 output = (<AdminButton/>);
 } else {
 output = (
 <View style={styles.button}>
 <Text>{this.props.buttonLabel}</Text>
 </View>
);
 }
 return output;
 }

 // optimized
 render() {
 const isAdminView = this.props.isAdminView;
 if(isAdminView) {
 return (<AdminButton/>);
 }
 return (
 <View style={styles.button}>
 <Text>{this.props.buttonLabel}</Text>
 </View>
);
 }

The most important optimization we can make, however, is to skip the render4.
altogether if we can. This is done by implementing the
shouldComponentUpdate function and returning false, thus making the
component pure. Here's how we can make a component a PureComponent:

 import React, {
 PureComponent
 } from 'react';

 export default class Button extends PureComponent {//...}

How it works…
To say React component performance is important is an understatement. The majority of
your React Native application will consist of custom components. There will be a mix of
stateful and stateless components. As highlighted by step 2, the overall goal is to render our
component in the shortest time. Better yet would be to only have to render our component
once and leave it untouched; this concept is discussed in step 4.

Optimizing the Performance of Our App

[479]

See also
You can find some more information about React component performance optimizations at
the following URLs:

h t t p ://m o d u s c r e a t e . c o m /r e a c t _ c o m p o n e n t _ r e n d e r i n g _ p e r f o r m a n c e /

h t t p ://b e n c h l i n g . e n g i n e e r i n g /p e r f o r m a n c e - e n g i n e e r i n g - w i t h - r e a c t /

h t t p s ://f a c e b o o k . g i t h u b . i o /r e a c t /d o c s /a d v a n c e d - p e r f o r m a n c e . h t m l

Keeping our animations running at 60 FPS
An important aspect of our application is the fluidity of our user interface. Animations are
used to give a sense of this rich user experience. We can employ animations for all sorts of
interactions, from changing entire views, to reacting to a user's touch interaction on a
component. The most important factor after having a visually appealing animation is to
make sure it does not stop the JavaScript thread. In order to keep our animations fluid and
not interrupt the UI interactions, our render loop has to render each frame in 16.67 ms.

In this recipe, we will take a look at several techniques for improving the performance of
our animations. These techniques focus on preventing JavaScript execution interrupting the
main thread.

Getting ready
For this recipe, we assume you have a React Native application that has some animations
defined.

How to do it…
First and foremost, when debugging animation performance in React Native, we1.
should enable the performance monitor. To do so, show the Dev Menu (shake the
device or cmd + D from the simulator) and tap Show Perf Monitor.

http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://moduscreate.com/react_component_rendering_performance/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
http://benchling.engineering/performance-engineering-with-react/
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html
https://facebook.github.io/react/docs/advanced-performance.html

Optimizing the Performance of Our App

[480]

The output in iOS will look as the following screenshot:

The output in Android will be as follows:

Optimizing the Performance of Our App

[481]

Now we have a testbed for our animations, we can begin with optimizations. If2.
you are looking to animate a component's transition (opacity), or dimensions
(width, height) then please use LayoutAnimation. You can find an example of
using LayoutAnimation in Chapter 3, Animating the User Interface, in
the Expanding and collapsing containers recipe.

If you want to use LayoutAnimation on Android, you need to add the
following code when your application
starts: UIManager.setLayoutAnimationEnabledExperimental
&& UIManager.setLayoutAnimationEnabledExperimental(true)

If you need to have a finite control over the animations, it is recommended to use3.
the Animated library that comes with React Native. Fortunately, with recent
React Native releases, we can offload the entire animation work onto the native
UI thread. To do so, we have to add the useNativeDriver property to our
Animated call. Let's take a sample Animated example and offload it to the native
thread:

 componentWillMount() {
 this.setState({
 fadeAnim: new Animated.Value(0)
 });
 }

 componentDidMount() {
 Animated.timing(
 this.state.fadeAnim,
 {
 toValue: 1,
 useNativeDriver: true
 }
).start();
 }

Currently, only a subset of the functionality of the Animated library
supports native offloading. Please refer to the There's more… section for a
compatibility guide.

Optimizing the Performance of Our App

[482]

If you are unable to offload your animation work onto the native thread, there is4.
still a solution for having a smooth experience. We can use the
InteractionManager to execute a task after the animations have completed:

 componentWillMount() {
 this.setState({
 isAnimDone: false
 });
 }
 componentWillUpdate() {
 LayoutAnimation.easeInAndOut();
 }

 componentDidMount() {
 InteractionManager.runAfterInteractions(() => {
 this.setState({
 isAnimDone: true
 });
 })
 }

 render() {
 if(!this.state.isAnimDone) {
 return this.renderPlaceholder();
 }
 return this.renderMainScene();
 }

Finally, if you are still suffering from poor performance, you have no choice but5.
to either rethink your animation or implement your view as a custom UI view
component on your target platform(s). You will have to implement both your
view and animation natively using the iOS and/or Android SDK. In Chapter 6,
Adding Native Functionality, we covered creating custom UI components in the
Rendering custom iOS view components and Rendering custom Android view
components recipes.

Optimizing the Performance of Our App

[483]

How it works…
The tips in this recipe focus on the simple goal of preventing the JavaScript thread from
locking. The moment our JavaScript thread begins to drop frames (lock), we lose the ability
to interact with our application for that fraction of a second. It may seem inconsequential,
but the effect is felt immediately by a user. The focus of the tips in this recipe is to offload
animations onto the GPU. When the animation is running on the main thread (native layer,
rendered by the GPU) you can interact with the application freely.

There's more…
For step 3, here's a quick reference of where useNativeDriver is applicable:

Function iOS Android

style, value, props X X

decay X

timing X X

spring X

add X X

multiply X X

modulo X

diffClamp X X

interpoloate X X

event X

division X X

transform X X

Optimizing the Performance of Our App

[484]

Getting the most out of ListView
React Native provides us a pretty performant list component out of the box. It is extremely
flexible, supports rendering almost any component you can imagine inside of it, and
renders them rather quickly. If you'd like to read some more examples of how to work with
ListView, there are a couple of recipes in Chapter 1, Getting Started and Chapter 3,
Animating the User Interface that use it. The React Native ListView is built on top
of ScrollView in order to achieve the flexibility of rendering variable-height rows with
any view component.

The major performance and resource drawback of the ListView component occurs when
you have an extremely large list that you scroll through. Currently, as you scroll the list, the
next page of rows is rendered at the bottom. The top invisible rows can be set to be removed
from the render tree; we will get to this in a bit. However, the references to the rows are still
in memory as long as the component is mounted. Naturally, as our component uses up the
available memory, there won't be any room for quickly accessible storage for the upcoming
components. This recipe will help us deal with some of these potential performance and
memory resource issues.

Getting ready
For this recipe, we assume you have a React Native application that has ListView
rendered, preferably with a large dataset.

How to do it…
Let's start with some optimizations we can make to our vanilla ListView1.
component. If we set the initialListSize prop to 1, we will speed up our
initial rendering.
Next up, we can bump up our pageSize if the component we render in each row2.
is simple.
Another optimization we can perform is to set the3.
scrollRenderAheadDistance to a comfortable value. If your users will rarely
scroll past the initial viewport or scroll slowly then you can lower the value. This
would prevent the ListView from rendering too many rows in advance.

Optimizing the Performance of Our App

[485]

Finally, the last optimization we have to be mindful of is the4.
removeClippedSubviewsprop. Currently, it is enabled by default on both iOS
and Android. However, for iOS, you have to make sure the style for your row
has overflow set to true.
Combining steps 1–4 would give us the following code:5.

 renderRow(row) {
 return (
 <View style={{height:44, overflow:'hidden'}}>
 <Text>Item {row.index}</Text>
 </View>
)
 }

 render() {
 return (
 <View style={{flex:1}}>
 <ListView
 dataSource={this.state.dataSource}
 renderRow={this.renderRow}
 pageSize={10}
 initialListSize={1}
 pageSize={10}
 scrollAheadDistance={200}
 />
 </View>
)
 }

Outside of ListView itself, it is important to consider the performance of the6.
View we are rendering for the row. Please refer to the Optimizing the performance
of custom UI components recipe and apply it to the work that is done in your
renderRow function.

Optimizing the Performance of Our App

[486]

How it works…
As with many features in computer science, the more flexible and complex something is, the
slower it performs. ListView is an excellent example of this concept. It is extremely flexible
in that it can render any View in the row, but it can quickly bring your application to a halt.
The result of the optimizations defined in steps 1–4 will vary across different situations
based on what you are rendering and the data structure. You should experiment with the
values until you find a perfect balance. If you are still unable to achieve the performance
you desire, take a look at some of the community modules that provide new ListView
implementations or alternatives.

See also
There are some third-party ListView implementations that promise increased performance
as follows:

react-native-sglistview: This takes removeClippedSubviews to the next level by
flushing the memory when the offscreen rows are removed from the render tree
(h t t p s ://g i t h u b . c o m /s g h i a s s y /r e a c t - n a t i v e - s g l i s t v i e w).
list-view-experiments (iOS only): This repository contains two separate list
implementations (h t t p s ://g i t h u b . c o m /w i x /l i s t - v i e w - e x p e r i m e n t s):

InfiniteScrollViewChildren: This recycles rows as you scroll. This
is different from the ListView component as the off-screen rows
are removed from the render tree. Meanwhile, in the
InfiniteScrollViewChildren component, the rows are never
destroyed but reused.
TableViewChildren: This is an implementation of the
UITableView iOS component. This is the base list component
implemented by the iOS SDK. It can only render Text nodes, but it
is extremely performant.

https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/sghiassy/react-native-sglistview
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments
https://github.com/wix/list-view-experiments

Optimizing the Performance of Our App

[487]

Boosting the performance of our app
The basic premise behind React Native is using JavaScript to build a truly native app. This
is different than, say, an Ionic or any other Cordova hybrid app that wraps a web
application written in JavaScript and tries to act like a truly native application. Those web
applications only have access to native APIs to perform processing, but cannot render
native views inside their application. Thus, React Native is inherently faster than hybrid
web applications. Since it's so performant out of the gate and we have discussed some
excellent ways to speed up specific parts of our application in this chapter, we generally do
not have to worry about overall performance as much as we would with a hybrid web app.
Still, though, it may not hurt to squeeze out just a little bit more. This recipe will provide
some quick wins that we can use to have a faster React Native application.

Getting ready
This recipe is applicable to any React Native application.

How to do it…
The simplest optimization we can employ that may provide a significant gain1.
depends on how much you like outputting statements to the console. Performing
a console.log statement is not a trivial task as you'd imagine for the
framework. Therefore, it is recommended to remove all console statements when
you are ready to bundle your application.
If you would like to have babel remove the console statements automatically2.
when creating the bundle then you need to install a plugin. Open your terminal
to your project directory and execute the following command:

 $ npm install babel-plugin-transform-remove-console --save

Open your .babelrc file and add the following:3.

 {
 "presets": ["react-native"],
 "env": {
 "production": {
 "plugins": ["transform-remove-console"]
 }
 }
 }

Optimizing the Performance of Our App

[488]

Next, make sure when you're analyzing your performance you're running the4.
application in production mode, preferably on a device. If you are curious about
how to do so, please refer to the Deploying testing builds to HockeyApp recipe in
Chapter 9, Deploying Our App.
Sometimes when you are animating a View's position or layout, you may notice5.
performance dips in the UI thread. You can mitigate this by setting the
shouldRasterizeIOS and renderToHardwareTextureAndroid props to true
for iOS and Android platforms. Be mindful that this may increase memory usage
significantly.
You may be in a position where you are changing your current view using a6.
navigation state change and you need to perform synchronous potentially long-
running processes. This can be building a DataSource for ListView or
transforming data to power your view. You should experiment with processing
only an initial subset of the data, enough to render the UI quickly enough. Once
the animation completes between page transitions, you can use
InteractionManager to complete loading the rest of the data. You can refer to
the Keeping our animations running at 60 FPS recipe for instructions on how to use
InteractionManager.
Finally, if you have identified a particular component or task that is slowing7.
down your application without solution then you should move it to the native
thread. Create a native module or native UI component to implement this bit of
functionality.

How it works…
This recipe covers some higher-level and broader-scoped tips that exist for all React Native
applications. The most significant performance gains you likely will see out of these tips are
from step 7. Ironically, it is also the most difficult and involved task of the bunch.

Optimizing the performance of native iOS
module
In building our React Native application, we may have written some native modules.
Hopefully, you followed some of the recipes in Chapter 6, Adding Native Functionality. You
may have built these native modules to expose some bit of functionality provided by a
native API or maybe you wanted to perform an intensive background task.

Optimizing the Performance of Our App

[489]

As we touched on earlier, working in the native layer really lets us use the device's full
capacity. However, it doesn't mean that the code we write will automatically be the fastest it
could be. There's always room to optimize and generate performance gains that may be
significant.

In this recipe, we will provide some tips on how to make your Objective-C code run a bit
faster using the iOS SDKs. We will also provide some considerations for how React Native
and the bridge fits in the application flow.

Getting ready
For this recipe, you should have a React Native application that uses native modules that
you have created for iOS. If you need help in writing native modules, please take a look at
Exposing custom iOS modules in Chapter 6, Adding Native Functionality.

How to do it…
First and foremost, when working with native modules, we have to be mindful of1.
the data going through the React Native Bridge. Keep the data that you place in
your events and callbacks to a minimum as the data serialization between
Objective-C and JavaScript types is extremely slow.
If you need to keep data cached in memory to be used by the native module, keep2.
it stored in a local property or field variable. Native modules are singletons. Do
this instead of returning a large object to store on the React component.
Let's switch over to Objective-C and iOS specific recommendations. First and3.
foremost, please ensure you are using ARC. It's practically a given now with
modern SDKs, but if you have the choice and can leverage it, please do.
Sometimes we have to leverage classes that are quite large because they are4.
robust in their feature set. Instead of instantiating something like an
NSDateFormatter each time in your method that you expose via
RCT_EXPORT_METHOD, store the reference of this class as a property or some
instance variable.

Optimizing the Performance of Our App

[490]

Staying on NSDateFormatter, since it is extremely heavy, we should see if we5.
can avoid it. If your application can deal with just UNIX timestamps, then you
can easily get an NSDate object from a timestamp with the following function:

 - (NSDate*)dateFromUnixTimestamp:(NSTimeInterval)timestamp {
 return [NSDate dateWithTimeIntervalSince1970:timestamp];
 }

Last and probably the most significant performance optimization you can make if6.
the situation presents itself is spawning asynchronous background threads to do
intensive processes. React Native fits this model well as it uses an asynchronous
messaging/event system to communicate between the JavaScript and native
threads. When your background process is complete, you can either invoke a
callback/promise or fire an event for the JavaScript thread to pick up. To learn
how to create background processes in React Native iOS native modules, please
read the Background processing on iOS recipe in Chapter 6, Adding Native
Functionality.

How it works…
Objective-C executes plenty fast, almost as fast as vanilla C. Therefore, the optimizations we
perform do not have much to do with executing tasks but rather instantiations and not
blocking the native threads. Most likely, you will be using ARC as described in step 3, if
you aren't, you probably have a very good reason not to be. The biggest performance boost
you'll see is by properly using the Grand Central Dispatch (GCD) to spawn background
processes as described in step 6.

Optimizing the performance of native
Android modules
While developing your React Native application, you may find yourself writing Android,
native modules. You may be cross-developing your React Native app on both iOS and
Android requiring you to replicate some bit of native functionality on both platforms. There
are still some native APIs that have not been wrapped as first-party modules for Android
that exist on iOS so you may have to do it yourself. Finally, you could be using some
Android-specific native functionality; the reasons are endless. Hopefully, you found
Chapter 6, Adding Native Functionality to be a great resource in this process.

Optimizing the Performance of Our App

[491]

In this recipe, we will cover several techniques for speeding up our React Native Android
native modules. Many of these techniques are limited to general development Android,
scope and there will be some tips for communicating with the React Native JavaScript layer.

Getting ready
For this recipe, you should have a React Native application that uses native modules that
you have created for Android. If you need help in writing native modules, please take a
look at the Exposing custom Android modules recipes, in Chapter 6, Adding Native
Functionality.

How to do it…
First and foremost, when working with native modules, we have to be mindful of1.
the data going through the React Native Bridge. Keep the data that you place in
your events and callbacks to a minimum as the data serialization between Java
and JavaScript types is extremely slow.
If you need to keep data cached in memory to be used by the native module, keep2.
it stored in a private field. Native modules are singletons. Do this instead of
returning a large object to store on the React component.
Let's focus on some Android-specific Java tips. When writing Java code for3.
Android, you should do your best to avoid to create short-term objects. If you
can, use primitives, especially for structures such as arrays.
It is better to reuse objects instead of relying on the garbage collector to pick up4.
an unused reference and instantiate a new object.
The Android SDK provides a memory-efficient data structure for replacing the5.
use of a Map which maps Integers to Objects, SparseArray. Here's an
example:

 SparseArray<SomeType> map = new SparseArray<SomeType>();
 map.put(1, myObjectInstance);

There is also SparseIntArray that maps integers to integers and
SparseBooleanArray that maps integers to Boolean values.

This may sound counterintuitive to those brought up on the OOP wave of Java6.
development: avoid using getters and setters, access the instance field directly.

Optimizing the Performance of Our App

[492]

If working with String concatenation, use StringBuilder.7.
Last and probably the most significant performance optimization you can make if8.
the situation presents itself is spawning asynchronous background threads to do
intensive processes. React Native fits this model well as it uses an asynchronous
messaging/event system to communicate between the JavaScript and Native
threads. When your background process is complete, you can either invoke a
callback/promise or fire an event for the JavaScript thread to pick up. To learn
how to create background processes in React Native Android native modules,
please read the Background processing on Android recipe in Chapter 6, Adding
Native Functionality.

How it works…
The majority of the tips in this recipe revolve around efficient memory management. The
Android OS uses a traditional-style garbage collector similar to desktop Java VM. When the
garbage collector kicks in, it can take anywhere from 100-200 ms to free memory. Steps 3–7
all provide suggestions that reduce the application's memory usage.

Optimizing the performance of native iOS UI
components
React Native provides us an excellent foundation to build almost any user interface using
the built-in components and styling. Sometimes we may need to render iOS third-party UI
components in React Native or we may want to build something from scratch and leverage
the GPU even more and its multithreading capabilities. Components built in Objective-C
using the iOS SDK, OpenGL, or some other drawing library will generally perform better
than composing the prebuilt components using JSX. In creating these native view
components, there are some situations that may have a negative impact on the application
performance.

This recipe will focus on getting the most out of the iOS UIKit SDK to render our custom
views. Our goal is to be rendering as quickly as we could in order for our application to run
at the holy grail of 60 FPS.

Optimizing the Performance of Our App

[493]

Getting ready
For this recipe, you should have a React Native application that renders some custom native
UI components you have written for iOS. If you need help in wrapping UI components in
React Native, please take a look at the Exposing custom iOS view components recipe in
Chapter 6, Adding Native Functionality.

How to do it…
First and foremost, when working with native modules, we have to be mindful of1.
the data going through the React Native Bridge. Keep the data that you place in
your events and callbacks to a minimum as the data serialization between
Objective-C and JavaScript types is extremely slow.
If there is data that you need to store for referencing sometime in the near future,2.
it's better to store it in the native class that you initialized. Depending on your
application, you can either store it as a property on the ViewManager, a singleton
that serves instances of the View, or a property on the View itself.
If your view component involves rendering multiple UIView instances as3.
children of a parent UIView container, make sure all the instances have the
opaque property set to true.
If you are rendering an image inside your view component (not using the React4.
Native Image component) then have your image be the same dimension as the
UIImageView component. Scaling and other image transformations are heavy
operations that can impact frame-rate.
One of the most important benefits you can achieve with iOS view components is5.
avoiding offscreen rendering. Avoid using the following SDK functionality if you
can:

Classes that start with CG, the Core Graphics library
Overriding the drawRect implementation of UIView
Setting shouldRasterize=YES, using setMasksToBounds or
setShadow on your UIView instance's layer property
Custom drawings using CGContext

Optimizing the Performance of Our App

[494]

If you need to add a shadow to your view, make sure you are setting the6.
shadowPath to prevent offscreen rendering. Here's an example of how the
initialization and shadow definition should look:

 RCT_EXPORT_MODULE()

 - (UIView *)view {
 UIView *view = [[UIView alloc] init];
 view.layer.masksToBounds = NO;
 view.layer.shadowColor = [UIColor blackColor].CGColor;
 view.layer.shadowOffset = CGSizeMake(0.0f, 5.0f);
 view.layer.shadowOpacity = 0.5f;
 view.layer.shadowPath = [[UIBezierPath
 bezierPathWithRect:view.bounds] CGPath];
 return view;
 }

How it works…
This recipe focuses on some helpful tips to let the GPU do much of the work as it can. The
second part is for the GPU to do the least in the work it has to do. Enforcing the opaque
property in step 3 tells the GPU to not have to worry about scanning for visibility of other
components and calculating transparency. Steps 5 and 6 prevent offscreen rendering.
Offscreen rendering generates bitmap images using the CPU (slow) and more importantly it
pauses the GPU from rendering the view until it is done generating the images.

Optimizing the performance of native
Android UI components
Over the last few years, Android native UI performance has grown significantly. This is
primarily due to the ability to render the components and layout using GPU hardware
acceleration. In your React Native application, you may be using custom view components,
especially if you want to use a built-in material design component that has not been
wrapped as a React component. Even though the Android platform has made a conscious
effort to increase the performance of its UI, the way we render our components can quickly
negate all these benefits.

Optimizing the Performance of Our App

[495]

In this recipe, we're going to talk through a few ways to get the most speed out of our
custom Android view components.

Getting ready
For this recipe, you should have a React Native application that renders some custom native
UI components you have written for Android. If you need help in wrapping UI components
in React Native, please take a look at the Exposing custom Android view components recipe in
Chapter 6, Adding Native Functionality.

How to do it…
First and foremost, when working with native modules, we have to be mindful of1.
the data going through the React Native Bridge. Keep the data that you place in
your events and callbacks to a minimum as the data serialization between Java
and JavaScript types is extremely slow.
If there is data that you need to store for referencing sometime in the near future,2.
it's better to store it in the native class that you initialized. Depending on your
application, you can either store it as a property on the SimpleViewManager, a
singleton that serves instances of the View, or a property on the View itself.
Let's start looking at optimizing our View instances. You may be rendering a3.
somewhat complicated view component that consists of other child components.
These components are held in a hierarchy of layouts. Over-nesting layouts can
become a very expensive operation. If you are using multi-level nested
LinearLayout instances, try to replace them with a single RelativeLayout.

Optimizing the Performance of Our App

[496]

You can analyze the efficiency of your layout using the HierarchyViewer tool4.
bundled inside the Android Device Monitor. In the Monitor, click Window
| Open Perspective… | Hierarchy View and select OK. Here's a sample view of
the layout for the app we built in the Communicating from an Android application to
React Native recipe of Chapter 8, Integration with Applications:

If you are performing repeated animations on your custom view natively in Java5.
(not using the React Native Animated API) then you can leverage hardware
layers to improve performance. Just simply add a withLayer method call to your
animate call:

 myView.animate()
 .alpha(0.0f)
 .withLayer()
 .start();

Optimizing the Performance of Our App

[497]

How it works…
For better or worse, there aren't that many optimizations you can perform when it comes to
rendering Android UI components. They generally revolve around not over-nesting layouts
as that increases complexity by orders of magnitude. When you have layout performance
issues, you most likely are suffering from the GPU overdrawing. Overdraw occurs when
the GPU renders a new view over an existing view that is already rendered. You can enable
GPU Overdraw Debugging in the Android Developer Settings menu. The order of
severity of overdraw is No Color -> Blue -> Green -> Light Red -> Dark Red.

In Step 5, we provided a quick tip for improving the performance of animations. Please be
mindful that you will see the biggest yield for repeated animations as it creates a cache of
the animation output on the GPU and replays it.

Index

A
actions
 defining 249
Android application container
 React Native, communicating from 412, 417
Android application
 communicating, to React Native 407, 408, 411
 invoking 417, 420, 423
 React Native application, embedding 400, 401,

405, 406
Android device
 development builds, deploying to 426, 428
Android Installation
 reference link 322
Android
 audio files, playing 349, 352, 354
 back button, handling 303, 304, 305, 306
 background processing 340, 342, 344
 custom fonts, including 84, 87
animations
 about 131
 basics 132, 133, 134, 135, 136, 137
 executing 138, 139
 loading 160, 164, 165, 167
 performance, improving 479, 481, 483
App ID
 URL, for registration 435
Appium
 about 452
 inspector, executing for elements access 458,

460

 integrating, with Mocha 460, 463
 URL, for downloading 453
Apple app store
 production build, deploying to 438, 439, 442
Apple Developer

 reference link 456
Apple tvOS
 React Native, building 363
application
 content, hiding 331, 333, 334, 335
 creating, for message display upon network

connection loss 222, 226, 227
 events, tracking with Facebook Analytics 241,

243, 244
 state changes, reacting to 309, 310, 311
audio files
 playing, on Android 349, 352, 354
 playing, on iOS 344, 345, 349

B
Beta App Review 434
button
 pressing, for testing alert message 468, 470,

472

C
Chakra 360
code, between platforms
 sharing, best practices 375, 376
complex layout
 building, for tablets flexbox used 66, 67, 68, 70,

71, 73, 76
containers
 collapsing 154, 157, 160
 expanding 154, 157, 160
 styles, adding to 9, 13
content
 copying 313, 317
 pasting 313, 317
 sharing, on Facebook 238
custom Android modules
 exposing 291, 295, 296, 297

[499]

custom Android view
 components, rendering 297, 299, 301, 303
custom fonts
 including, on Android 84, 87
 including, on iOS 76, 77, 78, 83, 84
custom iOS modules
 exposing 279, 280, 281, 283, 284, 285
custom iOS view
 components, rendering 285, 288
custom UI components
 performance, optimizing 477

D
data
 retrieving, from Remote API 202
 retrieving, locally 197, 198, 200
 sending, to Remote API 205
 storing, locally 197, 198, 200
 synchronizing, with Remote API 227, 228, 230,

231

database functionality
 integrating, with Realm 217, 219
development builds
 deploying, to Android device 426, 428
 deploying, to iOS device 425

E
EmbedApp 400
EmbedRN 379
environment
 installing 453, 455, 457
ES5 performance
 reference link 476
ES6 output size, via Babel
 reference link 450
external iOS application
 invoking 397, 399, 400, 420, 423
external testing 434
external websites
 opening, WebView used 112, 117, 119

F
Facebook Analytics
 about 241
 application, events tracking with 241, 243, 244

 reference link 243
Facebook
 content, sharing 238
 logging in 232, 233, 235
 reaction widget, creating 177, 182, 184, 185
 URL, for login 232, 237
fingerprint sensor
 used, for authenticating 324
flexbox
 used, for creating profile page 38, 39, 43, 44,

45, 46
 used, to building complex layout for tablets 66,

67, 68, 70, 71, 73, 76
font icons
 using 87, 91
form
 component, creating 124, 126, 128, 130

G
Google Cloud Messaging (GCM)
 reference link 322
Google Play Developer Console
 URL 443
Google Play Store
 production build, deploying 442, 444
Grand Central Dispatch 336

H
HockeyApp
 testing builds, deploying to 428, 431, 433
HTML elements
 rendering, native components used 119, 120,

121, 123

I
images
 displaying, in full screen 186, 188, 194, 195
 used, for creating video player 15, 16, 17, 18,

19

InfiniteScrollViewChildren 486
input texts
 selecting into 463, 464, 468
 typing into 463, 464, 468
internal testing 434
iOS application container

[500]

 React Native, communicating to 392, 397
iOS application
 communicating, to React Native 387, 390
 React Native application, embedding in 378,

379, 380, 381, 385, 386
iOS device
 development builds, deploying 425
iOS
 audio files, playing 344, 345, 349
 background processing 335, 337, 339
 custom fonts, including 76, 77, 78, 83, 84
items
 removing, from list component 167, 170
iTunes Connect 434
 reference link 440

J
JavaScript
 code, optimizing 474, 475, 476
JavaScriptCore (JSC) 360

L
list component
 items, removing 167, 170
list view experiments
 about 486
 reference link 486
lists
 about 27
 items, displaying 27, 31
ListView
 component, implementing 484, 485

M
Mac OS X Desktop
 React Native, building for 360, 363
Mocha
 Appium, integrating with 460, 463
multitasking
 application content, hiding 331, 333, 334, 335

N
native Android modules
 performance, optimizing 490, 492

native Android UI components
 performance, optimizing 494, 496
native components
 used, for rendering HTML elements 119, 120,

121, 123
native iOS module
 performance, optimizing 488, 489
native iOS UI components
 performance, optimizing 492, 494
Native Modules
 about 375
 reference link 360
Native UI Components
 about 376
 reference link 360
navigator
 about 46
 setting up 46, 47, 49, 52, 53, 56, 57
network connection loss
 application, creating for message display 222,

226, 227
network connectivity status
 displaying 272, 275, 276, 277
notifications
 animating 143, 144, 147, 149, 150, 153

O
offline content
 storing, Redux used 270, 272
Over-The-Air (OTA)
 about 444
 deploying 444, 446, 449

P
platform specific UI components
 creating 365
platform-specific experiences
 UI components, extending 370, 373, 374
PNG, and JPEG
 reference link 450
production build
 deploying, to Apple app store 438, 439, 442
 deploying, to Google Play Store 442, 443, 444
profile page
 creating, flexbox used 38, 39, 43, 44, 45, 46

[501]

push notifications
 about 319
 receiving 319, 321, 322, 323
 reference link 320

R
React component performance
 references 479
React documentation
 URL 134
React Native application
 embedding, in Android application 400, 401,

405, 406
 embedding, in iOS application 378, 379, 380,

381, 385, 386
 performance, improving 487
 size, optimizing 449, 451
React Native CLI 15
react native sglistview
 about 486
 reference link 486
React Native
 about 8, 279, 377
 Android application, communicating from 407,

408, 411
 building, for Apple tvOS 363
 building, for Mac OS X Desktop 360, 363
 building, for UWP 356, 357, 358
 communicating, to Android application container

412, 417
 communicating, to iOS application container 392,

397

 iOS application, communicating from 387, 390
 reference link 363, 433, 443, 448
React UI Components 376
real-time communications
 establishing, with Web Sockets 211, 215
Realm Object Store 222
Realm
 database functionality, integrating 217, 219
 URL 218, 222
reducers
 defining 251, 254, 255
Redux
 installing 246, 248

 used, for storing offline content 270, 272
Remote API
 communicating with 258, 260, 261, 262
 data, retrieving from 202
 data, sending to 205
 data, synchronizing 227, 228, 230, 231
reusability 59
reusable button
 creating, with theme support 59, 60, 61, 62, 63,

64

S
screen orientation
 changes, detecting 103, 107, 110, 111
sinopia
 reference link 364
Spotify 47
staging key 445
store
 about 255
 connecting, with views 264, 270
 setting up 255, 257
styles
 adding, to containers 9, 13
 adding, to text 9, 13

T
tablets
 complex layout, building flexbox used 66, 67, 68,

70, 71, 73, 76
TableViewChildren 486
tabs 38
 adding, to viewport 34, 36, 37
TestFlight
 testing iOS builds, deploying to 434, 438
testing builds
 deploying, to HockeyApp 428, 431, 433
testing iOS builds
 deploying, to TestFlight 434, 438
text
 styles, adding to 9, 13
toggle button
 creating 20, 23, 25
TouchID sensor
 used, for authenticating 324

U
UI Components, platform-specific experiences
 extending 370, 373, 374
universal apps
 about 92, 95, 97, 99, 102, 103
Universal Windows Platform (UWP)
 about 356
 React Native, building for 356, 357, 358

V
video player
 creating, images used 15, 16, 17, 18, 19

viewport
 tabs, adding to 34, 36, 37, 38
views
 store, connecting 264, 270

W
WebSockets
 real-time communications, establishing with 211,

215

WebView
 used, for opening external websites 112, 117,

119

WinApp 357

	Cover

	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Introduction
	Adding styles to text and containers
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using images to mimic a video player
	Getting ready
	How to do it…
	How it works…
	There's more…

	Creating a toggle button
	Getting ready
	How to do it…
	How it works…
	There's more…

	Displaying a list of items
	Getting ready
	How to do it…
	How it works…
	There's more…

	Adding tabs to the viewport
	Getting ready
	How to do it…

	Using flexbox to create a profile page
	Getting ready
	How to do it…
	How it works…
	There's more…

	Setting up a navigator
	Getting ready
	How to do it…
	There's more…

	Chapter 2: Implementing Complex User Interfaces
	Introduction
	Creating a reusable button with theme support
	Getting ready
	How to do it…
	How it works…

	Building a complex layout for tablets using flexbox
	Getting ready
	How to do it…
	There's more…

	Including custom fonts on iOS
	Getting ready
	How to do it…
	How it works…
	There's more…

	Including custom fonts on Android
	Getting ready
	How to do it…

	Using font icons
	Getting ready
	How to do it…
	There's more…

	Dealing with universal apps
	Getting ready
	How to do it…
	How it works…

	Detecting orientation changes
	Getting ready
	How to do it…
	How it works…
	There's more…

	Using a WebView to open external websites
	How to do it…
	How it works…

	Rendering simple HTML elements using native components
	Getting ready
	How to do it…
	How it works…

	How to create a form component
	Getting ready
	How to do it…
	How it works…

	Chapter 3: Animating the User Interface
	Introduction
	Simple animations
	Getting ready
	How to do it…
	How it works…
	There's more…

	Running several animations at the same time
	Getting ready
	How to do it…
	How it works…

	Animating notifications
	Getting ready
	How to do it…
	How it works…
	There's more…

	Expanding and collapsing containers
	Getting ready
	How to do it…
	How it works…

	Loading animation
	Getting ready
	How to do it…
	How it works…

	Removing items from a list component
	Getting ready
	How to do it…
	How it works…

	Creating a Facebook reactions widget
	Getting ready
	How to do it…
	How it works…

	Display images in full screen
	Getting ready
	How to do it…
	How it works…

	Chapter 4: Working with Application Logic and Data
	Introduction
	Storing and retrieving data locally
	Getting ready
	How to do it…
	How it works…

	Retrieving data from a Remote API
	Getting ready
	How to do it…
	How it works…

	Sending data to a Remote API
	Getting ready
	How to do it…
	How it works…

	Establishing real-time communications with WebSockets
	Getting ready
	How to do it…
	How it works…
	There's more…

	Integrate persistent database functionality with Realm
	Getting ready
	How to do it…
	How it works…

	Mask the application upon network connection loss
	Getting ready
	How to do it…
	How it works…
	There's more…

	Synchronizing locally persisted data with a Remote API
	Getting ready
	How to do it…
	How it works…

	Logging in with Facebook
	Getting ready
	How to do it…
	How it works…

	Sharing content on Facebook
	Getting ready
	How to do it…
	How it works…

	Tracking application events with Facebook Analytics
	Getting ready
	How to do it…
	How it works…

	Chapter 5: Implementing Redux
	Introduction
	Installing Redux and preparing our project
	How to do it…
	How it works…

	Defining actions
	Getting ready
	How to do it…
	How it works…
	There's more…

	Defining reducers
	Getting ready
	How to do it…
	How it works…

	Setting up the store
	How to do it…
	How it works…

	Communicating with a Remote API
	How to do it…
	How it works…

	Connecting the store with the views
	Getting ready
	How to do it…
	How it works…

	Storing offline content using Redux
	Getting ready
	How to do it…

	Showing network connectivity status
	Getting ready
	How to do it…
	How it works…

	Chapter 6: Adding Native Functionality
	Introduction
	Exposing custom iOS modules
	Getting ready
	How to do it…
	How it works…
	There's more…

	Rendering custom iOS view components
	How to do it…
	How it works…

	Exposing custom Android modules
	Getting ready
	How to do it…
	How it works…

	Rendering custom Android view components
	How to do it…
	How it works…

	Handling the Android back button
	Getting ready
	How to do it…
	How it works…

	Reacting to changes in application state
	How to do it…
	How it works…
	There's more…

	Copy and pasting content
	Getting ready
	How to do it…
	How it works…

	Receiving push notifications
	Getting ready
	How to do it…
	How it works…

	Authenticating via TouchID or fingerprint sensor
	Getting ready
	How to do it…
	How it works…

	Hiding application content when multitasking
	Getting ready
	How to do it…
	How it works…

	Background processing on iOS
	Getting ready
	How to do it…
	How it works

	Background processing on Android
	Getting ready
	How to do it…
	How it works…

	Playing audio files on iOS
	Getting ready
	How to do it…
	How it works…

	Playing audio files on Android
	Getting ready
	How to do it…
	How it works…

	Chapter 7: Architecting for Multiple Platforms
	Introduction
	Building for the Universal Windows Platform
	Getting ready
	How to do it…
	How it works…
	There's more…
	See also

	Building for Mac OS X Desktop
	Getting ready
	How to do it…
	How it works…
	There's more…

	Building for Apple tvOS
	Getting ready
	How to do it…
	How it works…

	Creating platform specific UI Components
	Getting ready
	How to do it…
	How it works…
	There's more…

	Extending UI Components for platform-specific experiences
	Getting ready
	How to do it…
	How it works…

	Best practices for sharing code between platforms
	How to do it…

	Chapter 8: Integration with Applications
	Introduction
	Embedding a React Native application inside an iOS application
	Getting ready
	How to do it…
	How it works…

	Communicating from an iOS application to React Native
	Getting ready
	How to do it…
	How it works…

	Communicating from React Native to an iOS application container
	Getting ready
	How to do it…
	How it works…

	Handling being invoked by external iOS application
	How to do it…
	How it works…

	Embedding a React Native application inside an Android application
	Getting ready
	How to do it…
	How it works…

	Communicating from an Android application to React Native
	Getting ready
	How to do it…
	How it works…

	Communicating from React Native to an Android application container
	Getting ready
	How to do it…
	How it works…

	Handling being invoked by external Android application
	How to do it…
	How it works…

	Invoking an external iOS and Android application
	How to do it…
	How it works…

	Chapter 9: Deploying Our App
	Introduction
	Deploying development builds to an iOS device
	Getting ready
	How to do it…
	How it works…

	Deploying development builds to an Android device
	Getting ready
	How to do it…
	There's more…
	How it works…

	Deploying testing builds to HockeyApp
	Getting ready
	How to do it…
	How it works…

	Deploying testing iOS builds to TestFlight
	Getting ready
	How to do it…
	How it works…

	Deploying production builds to the Apple app store
	Getting ready
	How to do it…
	How it works…

	Deploying production builds to Google Play Store
	Getting ready
	How to do it…
	How it works…

	Deploying Over-The-Air updates
	Getting ready
	How to do it…
	How it works…

	Optimizing React Native application size
	Getting ready
	How to do it…
	How it works…

	Chapter 10: Automated Testing
	Installing the environment
	Getting ready
	How to do it…

	Running the Inspector to access the elements
	Getting ready
	How to do it…

	Integrating Appium with Mocha
	Getting ready
	How to do it…
	How it works…

	Selecting and typing into input texts
	Getting ready
	How to do it…
	How it works…
	There's more…

	Pressing a button and testing the result
	Getting ready
	How to do it…
	How it works…

	Chapter 11: Optimizing the Performance of Our App
	Introduction
	Optimizing our JavaScript code
	Getting ready
	How to do it…
	How it works…

	Optimizing the performance of our custom UI components
	Getting ready
	How to do it…
	How it works…
	See also

	Keeping our animations running at 60 FPS
	Getting ready
	How to do it…
	How it works…
	There's more…

	Getting the most out of ListView
	Getting ready
	How to do it…
	How it works…
	See also

	Boosting the performance of our app
	Getting ready
	How to do it…
	How it works…

	Optimizing the performance of native iOS module
	Getting ready
	How to do it…
	How it works…

	Optimizing the performance of native Android modules
	Getting ready
	How to do it…
	How it works…

	Optimizing the performance of native iOS UI components
	Getting ready
	How to do it…
	How it works…

	Optimizing the performance of native Android UI components
	Getting ready
	How to do it…
	How it works…

	Index

