How to develop web apps with React, JSX, Redux, and GraphQL

AZAT MARDAN

Foreword by John Sonmez

m MANNING

23epdn-suoppe-3oesx
dnoxb-uoT]TSURI]-SUOPPE-1DEST
axedwod -MOT TRYS - SUOPPEe-30eal
UTXTW-I9pusal-aand-suoppe-3oeal
UTXTW-9383S-PayUTT-SUoOppe-30eal
dnoi6-uoT3TSURI]-SSO-SUOPPE-30ead
Juswberj-93esI0-suUoppe-30eal
sdoxd-y3Tm-SUOTD-SuUOppe-30eal
UTXTW-938]S-PayUTT-SuUoOppe-30esal
UTXTW-I9pusi-aand-suoppe-3oes1
STTIN-1S93-SUOppe-30esl
Jaod-suoppe-3oeax
dnoxb-uoTaTSURI]-SSO-SUOPpPE-10eaT

:s9npow wdu sy
SNOdAy 1ov3y

Japualal INOQ d1elpawwl ue sia831]— () @3epdnsoao3
Japuaial e s19831] pue ‘©@3e3s sTU3l saoe|dey— (23e3ismau) ejejseoerdex
Japualal e s1a33u) pue ‘e3eas sTy3 0} (A||ended) ayels saguey)— (sebueyo) e3eisies

SPoYIsIN

*apou |NOQ Sulpuodsaliod B Sey JUBWS|d dY} JaY1aYM sge|4—DPoIUnonsT " STU3
*°=23e38°STUI YUM A||lenuew alels

Bumas ploAy “(s|geinw) @3easTeTaTuId=b pue @3e3153es AQ 19S SOIRIS SISIT—o3e3s "STUI

*(a|genwiwi) Jusawad ue 0} passed santadoud Aue sysi—sdoad - sTya

‘Aliadoud 391 e yum sjuauodwod s1SIT—sI=x sTyUl

saladoid

SAOHL3IIN ANV S31L43d0dd LNINOdINOD

()uoTaoung JunowunTtTTMIusSUOdWOD

(@3e3sasad ‘sdoagasad)uorioung 231epdnaprgiusuoduod
(@3e3saxau ‘sdoadaxsu)uoTiouny 23epdnTTIMIUSUOAWOD
(@3e383xau ‘sdoxdaxau)uoriouny o3epdniusuodwodpInoys
(sdoxgaxsu)uoTiouny sdoadaaTadayTTTMIuUsuodwod
()uoT3ouny JunopnpTIalusuoduod

()uoT3ouny 3JUNOWT T IMIUSUOdWOD

T00q <-

SIN3A3 370A03d1N

“ut w=3x%93-dr3T003-e3ep (9|dwexa J04 ‘8INgLIIe WOoISN)—HWYN-©3Iep
‘[0]usapTtys - sdoad-sTu3
:9|dwexs Jo4 "usapTTyd " sdoxd - sTU3I BIA JUSWSIS 8Y] JO JUBIUOD BY} S}IOS—USIPTTUD
‘Tway
A8y 8yl yum 108(qo ue 3uipinoad Ag JNLH med 01 JNLH Jouul S}1oS—THIHISuUI 39sATsnoasbuep
‘wTTRWS, =104 TW3Y :9|dWexa 04 "dInqune Joj JNIH—Iod TWwIY
*aU3q, =SWeNsseTo :9|dwexs Jo4 danquye Ssejo JNIH—sweNsseT2
‘{{pex :x0100}}=51413s ajdwexa Jo4
*(T°OA 90UlS B|geINWWI) BulLiIS B Jo pealsul SajA1S SSO pase)|awed 1oy 193[qo ue s}deooy—aT43s
*(TTews " s3ax° STY3I) SPONWOAPUTF " WOAIO®SY J0 9pOU NOQ TTRWS "sIa1 STy3
© 91840 ||IM w TTeWS, =331 :9|dwexd 104 "HNYN SISI°STUI BIA JUBWS|D U 0} 90usI9joy—Io
*{pT} =43 :9/dwexe
104 "@ouewlopad 191190 IO} SaYsey olul Sisl|/SAelle uin} 0} JUSWISIS Ue 1o} Jalauapl anblun—A~Asy

{
{

{
{(,iP9TTeF UOTIEPITEA,)IOIIF MOU UINIDI
} (([sweNndoad] sdoad)3se3’ /uielzedxgbax/i) 3T
w (sweNjusuoduwon ‘sweNdoxad ‘sdoxd)uotiouny :doxgwolsnd

v :sodArdoxd
uoljepijeA woysnd
([edArdoad ‘sdArdoad])sdArzosuoc
([1so30yd, ‘,sMmeN.]) 3FOsuo
(I03DNI3SUOD) FJOSOULISUT

spoyjow aI0\

‘peaxtnbayst - puadde ‘(Ajluo Suiuiem) palinbai Ayiadoid e ayew of
Butals 30slgo xsqunu spou

ounj juswaTs Tooq Aeixe Aue

:sedA1doxd - 30es¥ Japun a|qe|ieae sadAl

sadApdoid

Aﬁ_>uﬂmum>ﬂﬂD‘®Uoz\\"mauus_
139y} ‘NUTT)dnYIEWOTILISOLISPUST " IDATISSHOAIDLA
({ A3tsaeatun-opoN//:sd33y, :3oaY} ‘JUTT)BUTIISOLISPUSI ' ISAISSWOJIDEY
(1 I9AI9S /WOP-230€aT,) 2ITNDaI = ISAISSWOJIOESY ISUOD
Suuepuai apis-19A198
(
(\nusw,) pIAgluswe TE196 * JusSwNoop
‘</,A3tsasaTun 9poON//:sd33y, =21y YUTT>
) I9pUSI " WOQIDeDY
XSr+ss3
(
(\nusw,) pIAglusws 11956 * JusWNOop
‘A
(
{ &31saeatun-epoN//:sda3y, :3oIy}
'3UTI
) JUSWS TESLDID " 30y
) I2PUSI " WOOIDeDY

Ss3

ONIRIIAN3Y

SAeS-- WOpP-30eSI TIRISUT I9moq $
wop-3oesx Tre3lsur wdu §
<3dtaos/><,s[wop-30ea1/3sTP/STEWop-10eal/wod “63dun//: sda3y,=oxs 1dTIOS>

INOQ 10e3Yy

oaAeS-- 31DES8X [Te3ISUT I8MOg § §
oaes-- 3peax TTe3sur wdu ¢
<3dtaos/><,s(-30eex/3sTP/ST@I0eaI/WOD " bByydun//:sd3ajy,=oxs 3draos>

jJoeay

S$31143d0¥d 1VIO3dS

NOILVTIVLSNI

1IFHSLIVIHO LOVIYH

Praise for React Quickly

‘React Quickly is a one-stop shop for anyone who wants a guided introduction to
React and the ecosystem of tools, concepts, and libraries around it. Follow Azat’s
walkthroughs, work on the projects given, and you’ll soon understand React, Redux,
GraphQL, Webpack, and Jest, as well as how to put them to work.”

—Peter Cooper, editor of JavaScript Weekly

‘React Quickly teaches the reader the most valuable and buzz-worthy concepts in
building modern web applications with React including GraphQL, Webpack, and
server-side rendering. Afier reading React Quickly, you should feel confident in
your ability to create a production-grade web application with React.”

—Stan Bershadskiy, author of React Native Cookbook

“Azat is one of the most authoritative voices in the programming space. This book
goes far beyond the basics by deep diving into React’s foundation and architecture.
It’s a must read for any developer!”

—Erik Hanchett, author of Ember.js Cookbook

“This book is simple to follow. It uses very basic language that makes you
understand each concept step by step.”

—Israel Morales, front-end developer and

web designer at SavvyCard

“Simple language with simple logical examples to get you up and running quickly is
why this book truly justifies its title, React Quickly. This book covers all the major
topics that any developer new to React needs in order to start writing apps using
React. And the author’s sense of humor will keep you engaged until the end. I am
thankful Azat took time to share his React journey with us.”

—Suhas Deshpande, software engineer at Capital One

‘React Quickly is a great resource for coming up to speed with React. Very thorough
and relevant. I'll be using it as a reference for my next app.”
—Nathan Bailey, full stack developer at SpringboardAuto.com

https://www.springboardauto.com/

“Azat is great at what he does—teaching people how to code. React Quickly
contains fundamental knowledge as well as practical examples to get you started
using React quickly.”

—Shu Liu, IT consultant

“Since being open sourced by Facebook in 2013, React.js has rapidly become a widely
adopted JS library and one of the most starred projects on GitHub. In his new book,
React Quickly, Azat Mardan has, in his typical lucid style, laid out everything you
need to learn about the React ecosystem in order to build performant SPA
applications quickly. Just the chapters on React state and Universal JavaScript are
worth the price of the book.”

—Prakash Sarma, New Star Online

‘React Quickly will ease your adoption of React by giving you a clear foundation,
and it will have you building applications that thoroughly embrace the benefits of
using React.

—Allan Von Schenkel, VP of Technology & Strategy at FoundHuman

‘React Quickly covers all the important aspects of React in an easy-to-consume
fashion. This book is like all of Azat’s work: clear and concise, and it covers what’s
needed to become productive quickly. If you are interested in adding React to your
skill set, I say start here.”

—DBruno Watt, consulting architect at hypermedia.tech

‘React Quickly us an incredibly comprehensive book on full-stack web development
with React.js, covering not just React ilself but the ecosystem surrounding it. I've
always been mystified by server-side React and found that Azat’s book really helped
me finally understand it. If you’re new to React and would like to truly master i, 1
would look no further than this book.”

—Richard Kho, software engineer at Capital One

https://newstar-online.com
https://fieldingconstraint.wordpress.com/

React Quuckly

PAINLESS WEB APPS WITH REACT, JSX, REDUX, AND GRAPHQL

AZAT MARDAN
FOREWORD BY JOHN SONMEZ

MANNING
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.

20 Baldwin Road

PO Box 761

Shelter Island, NY 11964
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

/I/I Manning Publications Co. Development editor: Dan Maharry
20 Baldwin Road Technical development editor: Anto Aravinth
PO Box 761 Revieweditor: Ivan Martinovi¢
Shelter Island, NY 11964 Project editor: Tiffany Taylor

Copyeditor: Tiffany Taylor

Proofreader: Katie Tennant
Technical proofreader: German Frigerio
Typesetter: Gordan Salinovic

Cover designer: Leslie Haimes

ISBN 9781617293344
Printed in the United States of America

12345678910 - EBM- 222120191817

http://www.manning.com

To my grandfather, Khalit Khamitov. Thank you for being such a kind and just
person. You will always stay in my memory, along with the crafts you taught me,
the trips we took to the dacha, and the chess games we played.

brief contents

PART 1 REACT FOUNDATION .ueeeeteescesccescescesccsscescescossosscsscessossons 1

© 00 I O Ot W 0 N =

Meeting React 3

Baby steps with React 27

Introduction to JSX 41

Making React interactive with states 69
React component lifecycle events 90
Handling events in React 111
Working with forms in React 140
Scaling React components 164

Project: Menu component 186

10 = Project: Tooltip component 201
11 = Project: Timer component 210
PART 2 REACT ARCHITECTURE ..cceeeeecececcecececercacececcscscecnscscnce 225

12 = The Webpack build tool 227

13

React routing 246

14 = Working with data using Redux 274

15
16
17
18
19
20

BRIEF CONTENTS

Working with data using GraphQL 305

Unit testing React with Jest 325

React on Node and Universal JavaScript 345
Project: Building a bookstore with React Router 384
Project: Checking passwords with Jest 406

Project: Implementing autocomplete with Jest, Express,
and MongoDB 425

contents

Sforeword xvii

preface xix
acknowledgments xxi
about this book xxiii
about the author — xxvii
about the cover xxx

Part 1 React foundationc.cceeeeeeeseeecesccesccesoesscesccnsessoesl

Meeting React 3

1.1 Whatis React? 5
1.2 The problem that React solves 5
1.3 Benefits of using React 6
Simplicity 7 = Speed and testability 13 = Ecosystem and community 14
1.4 Disadvantages of React 15

1.5 How React can fit into your web applications 15

React libraries and rendering targets 16 = Single-page applications
and React 18 = The React stack 19

1.6 Your first React code: Hello World 21
1.7 Quiz 25

CONTENTS

1.8 Summary 25
1.9 Quiz answers 26

Baby steps with React 27
2.1 Nesting elements 27

2.2 Creating component classes 31
2.3 Working with properties 34
24 Quiz 39

2.5 Summary 40

2.6 Quiz answers 40

Introduction to JSX 41

3.1 Whatis JSX, and what are its benefits? 42

3.2 Understanding JSX 45
Creating elements with [SX 45 = Working with [SX in

components 46 = Oulpulting variables in [SX 48 = Working

with properties in [SX 49 = Creating React component

methods 53 = iffelse in J[SX 55 = Comments in [SX 58

3.3 Setting up a JSX transpiler with Babel 59
3.4 React and JSX gotchas 63

Special characters 64 = data- altributes 65 = style attribute

class and for 66 = Boolean attribute values 66
3.5 Quiz 67
3.6 Summary 68
3.7 Quiz answers 68

Making React interactive with states 69

4.1 What are React component states? 71
4.2 Working with states 72

Accessing states 72 = Selting the initial state 74 = Updating

states 76
4.3 States and properties 80
4.4 Stateless components 81
4.5 Stateful vs. stateless components 83
4.6 Quiz 88
4.7 Summary 89
4.8 Quiz answers 89

CONTENTS xi

React component lifecycle events 90

5.1
5.2
5.3
5.4
5.5

5.6

5.7

5.8
5.9
5.10
5.11

A bird’s-eye view of React component lifecycle events 91
Categories of events 91

Implementing an event 95

Executing all events together 97

Mounting events 99
componentWillMount() 99 = componentDidMount() 100

Updating events 103

componentWillReceirveProps(newProps) 104
shouldComponentUpdate() 104 = componentWillUpdate() 105
componentDidUpdate() 105

Unmounting event 105
componentWillUnmount() 105

A simple example 106
Quiz 110
Summary 110

Quiz answers 110

Handling events in React 111

6.1

6.2
6.3

6.4
6.5
6.6

Working with DOM events in React 112

Capture and bubbling phases 114 = React events under the hood 117
Working with the React SyntheticEvent event object 120 = Using events
and state 124 = Passing event handlers as properties 126
Exchanging data between components 129

Responding to DOM events not supported by React 131

Integrating React with other libraries: jQuery Ul events 134
Integrating bultons 135 = Integrating labels 136

Quiz 138
Summary 138

Quiz answers 139

Working with forms in React 140

7.1

The recommended way to work with forms in React 141

Defining a form and its events in React 143 = Defining form
elements 145 = Capturing form changes 151 = Account field
example 153

7.2

7.3
7.4
7.5

CONTENTS

Alternative ways to work with forms 155

Uncontrolled elements with change capturing 156 = Uncontrolled
elements without capturing changes 158 = Using references to
access values 159 = Default values 161

Quiz 162
Summary 163

Quiz answers 163

Scaling React components 164

8.1
8.2
8.3
8.4

8.5
8.6
8.7
8.8

Default properties in components 165
React property types and validation 167
Rendering children 174

Creating React higher-order components for code reuse 177
Using displayName: distinguishing child components from their
parent 179 = Using the spread operator: passing all of your
attributes 181 = Using higher-order components 181

Best practices: presentational vs. container components 184
Quiz 185
Summary 185

Quiz answers 185

Project: Menu component 186

9.1
9.2

9.3

9.4
9.5

Project structure and scaffolding 187

Building the menu without JSX 188

The Menu component 189 = The Link component 192
Getting it running 194

Building the menu in JSX 195

Refactoring the Menu component 197 = Refactoring the Link
component 198 = Running the J[SX project 199

Homework 200
Summary 200

Project: Tooltip component 201

10.1

Project structure and scaffolding 202

10.2 The Tooltip component 204

10.3

The toggle() function 205 = The render() function 206
Getting it running 208

CONTENTS

10.4 Homework 209
10.5 Summary 209

Project: Timer component 210

11.1 Project structure and scaffolding 211
11.2 App architecture 213

11.3 The TimerWrapper component 215
11.4 The Timer component 219

11.5 The Button component 220

11.6 Getting it running 222

11.7 Homework 223

11.8 Summary 223

The Webpack build tool 227

12.1 What does Webpack do? 228

12.2 Adding Webpack to a project 229

Installing Webpack and its dependencies 231 = Configuring
Webpack 233

12.3 Modularizing your code 234
12.4 Running Webpack and testing the build 236
12.5 Hot module replacement 239
Configuring HMR 240 = Hot module replacement in action 243
12.6 Quiz 245
12.7 Summary 245
12.8 Quiz answers 245

React routing 246

13.1 Implementing a router from scratch 247
Setting up the project 248 = Creating the route mapping in
app.jsx 250 = Creating the Router component in router.jsx 250
13.2 React Router 252

React Router’s J[SX style 256 = Hash history 257 = Browser
history 258 = React Router development setup with Webpack 259
Creating a layout component 262

Part 2 React arChiteCtUre ...ceceeerereececerescececesescscecesescscs 22D

CONTENTS

13.3 React Router features 265

Accessing router with the withRouter higher-order component 265
Navigating programmatically 266 = URL parameters and other

route data 267 = Passing properties in React Router 268
13.4 Routing with Backbone 269
13.5 Quiz 272
13.6 Summary 273
13.7 Quiz answers 273

Working with data using Redux 274

14.1 React support for unidirectional data flow 275
14.2 Understanding the Flux data architecture 278

14.3 Using the Redux data library 279

Redux Neiflix clone 281 = Dependencies and configs 283
Enabling Redux 286 = Routes 287 = Combining reducers

Reducer for movies 290 = Actions 292 = Action creators 293

Connecting components to the store 294 = Dispatching an
action 297 = Passing action creators into component properties
Running the Netflix clone 303 = Redux wrap-up 303

14.4 Quiz 304
14.5 Summary 304
14.6 Quiz answers 304

Working with data using GraphQL 305
15.1 GraphQL 306

15.2 Adding a server to the Netflix clone 308

Installing GraphQL on a server 310 = Data structure 313
GraphQL schema 314 = Querying the API and saving the
response into the store 316 = Showing the list of movies 321
GraphQL wrap-up 323

15.3 Quiz 323
15.4 Summary 324
15.5 Quiz answers 324

Unit testing React with Jest 325

16.1 Types of testing 326
16.2 Why Jest (vs. Mocha or others)? 327

CONTENTS

16.3 Unit testing with Jest 329
Writing unit tests in Jest 330 = Jest assertions 332

16.4 Ul testing React with Jest and TestUtils 333

Finding elements with TestUtils 336 = Ul-testing the password
widget 337 « Shallow rendering 342

16.5 TestUtils wrap-up 343
16.6 Quiz 344

16.7 Summary 344

16.8 Quiz answers 344

React on Node and Universal JavaScript 345

17.1 Why React on the server? And what is Universal
JavaScript? 346

Proper page indexing 346 = Beller performance with faster loading
times 348 = Better code maintainability 348 = Universal
JavaScript with React and Node 348

17.2 React on Node 351
17.3 React and Express: rendering on the server side from
components 354

Rendering simple text on the server side 354 = Rendering an
HTML page 355

17.4 Universal JavaScript with Express and React 363

Project structure and configuration 365 = Setting up the

server 366 = Server-side layout templates with Handlebars 371
Composing React components on the server 373 = Client-side React
code 375 = Setting up Webpack 376 = Running the app 378

17.5 Quiz 382
17.6 Summary 383
17.7 Quiz answers 383

Project: Building a bookstore with React Router 384

18.1 Project structure and Webpack configuration 387
18.2 The host HTML file 390

18.3 Creating components 391
Main file: app.jsx 391 = The Cart component 398
The Checkout component 400 = The Modal component 401
The Product component 403

xvi

CONTENTS

18.4 Launching the project 404

18.5
18.6

Homework 404
Summary 405

Project: Checking passwords with Jest 406

19.1
19.2
19.3

19.4

19.5
19.6
19.7

Project structure and Webpack configuration 408
The host HTML file 411

Implementing a strong password module 412
The tests 412 = The code 413

Implementing the Password component 415
The tests 415 = The code 416

Putting it into action 422
Homework 424
Summary 424

Project: Implementing autocomplete with Jest, Express,
and MongoDB 425

20.1
20.2

20.3
20.4
20.5

20.6
20.7
20.8

appendix A
appendix B
appendix C
appendix D
appendix

Project structure and Webpack configuration 428

Implementing the web server 432

Defining the RESTful APIs 433 = Rendering React on the
server 434

Adding the browser script 435
Creating the server template 435

Implementing the Autocomplete component 436
The tests for Autocomplete 436 = The code for the Autocomplete
component 438

Putting it all together 441
Homework 444

Summary 445

Installing applications used in this book 447
React cheatsheet 455

Express.js cheatsheet 463

MongoDB and Mongoose cheatsheet 468
ES6 for success 472

index 485

Joreword

I keep hoping that JavaScript will die. Seriously. Die brutally and painfully.

It’s not that I completely dislike JavaScript—it has improved quite a bit over the
years. It’s that I have a severe distaste for complexity—so much so that I named my
blog and my business Simple Programmer. My tagline has always been, “Making the com-
plex simple.”

Making the complex simple isn’t easy. It takes a special set of skills. You have to be
able to understand the complex, and understand it so well that you can distill it down
to the core—because everything is simple at the core. This is exactly what Azat has
done with this book, React Quickly.

Now, I'll admit Azat had a little help. You see, one of the reasons I personally like
React]S so much is that it’s simple. It was designed to be simple. It was designed to
deal with the increasing complexity of JavaScript frameworks and reduce that com-
plexity by going back to the basics: plain old JavaScript. (At least, for the most part.
React]S does have a JSX language that’s compiled into JavaScript, but I'll let Azat tell
you about that.)

The point is, although I like Angular, Backbone, and some other JavaScript frame-
works because they’ve helped make it much easier for web developers to create asyn-
chronous web applications and single-page applications, they’ve also added a great deal
of complexity. Using templates and understanding the syntax and subtleties of these
frameworks increased productivity, but they moved the complexity from the backend to
the frontend. React]S starts over, gets rid of templates, and gives you a way to apply com-
ponent-based architecture to your UI using JavaScript. I like this. It’s simple. But even

xvii

xviii

FOREWORD

the simplest thing can be difficult to explain—or worse yet, made complex by a teacher
who lacks this skill.

This is where Azat comes in. He knows how to teach. He knows how to simplify. He
begins this book by explaining React through contrasting it with something you prob-
ably already know: Angular. Even if you don’t know Angular, his explanation of
React]S will quickly help you understand the basics and its purpose. Then Azat quickly
demonstrates how to create a basic React]S application, so you can see and do it for
yourself. After that, he takes you through the 20% you need to know in order to
accomplish 80% of what you’ll do in React, using real-world examples that anyone can
grasp easily. Finally—and this is my favorite part—he includes examples and projects
galore. The absolute best way to learn is by doing, and Azat walks you through creat-
ing six—yes, six—nontrivial projects using React]s.

In keeping with my theme of simplicity, I'll leave off here by saying that React
Quickly is simply the best way I know of to learn React]s.

JOHN SONMEZ
AUTHOR OF Soft Skills (http://amzn.to/2hFHXAu)
AND FOUNDER OF Simple Programmer (https://simpleprogrammer.com)

http://amzn.to/2hFHXAu
https://simpleprogrammer.com

preface

It was 2008, and banks were closing left and right. I was working at the Federal Deposit
Insurance Corporation (FDIC), whose primary task is to pay back depositors of closed,
failed, and insolvent banks. I admit that, in terms of job security, my job was on par
with working at Lehman Brothers or being a ticket salesman for the Titanic. But when
my department’s eventual budget cuts were still far in the future, I had the chance to
work on an app called Electronic Deposit Insurance Estimator (EDIE). The app
became hugely popular for a simple reason: people were anxious to find out how
much of their savings was insured by the United States federal government, and EDIE
estimated that amount.

But there was a catch: people don’t like to tell the government about their private
accounts. To protect their privacy, the app was made entirely in front-end JavaScript,
HTML, and CSS, without any back-end technologies. This way, the FDIC wasn’t collect-
ing any financial information.

The app was a hot mess of spaghetti code left by dozens of iterations of consul-
tants. Developers came and went, leaving no documentation and nothing resembling
any logical, simple algorithms. It was like trying to use the New York City subway with-
out a map. There were myriads of functions to call other functions, strange data struc-
tures, and more functions. In modern terminology, the app was pure user interface
(UI), because it had no backend.

I wish I’d had React,js back then. React brings joy. It’s a new way of thinking—a
new way of developing. The simplicity of having your core functionality in one place,

PREFACE

as opposed to splitting it into HTML and JS, is liberating. It reignited my passion for
front-end development.

React is a fresh way of looking at developing UI components. It’s a new generation
of presentation layer libraries. Together with a model and routing library, React can
replace Angular, Backbone, or Ember in the web and mobile tech stack. This is the
reason I wrote this book. I never liked Angular: it’s too complex and opinionated. The
template engine is very domain specific, to the point that it’s not JavaScript anymore;
it’s another language. I have used Backbone.js and like it for its simplicity and DIY
approach. Backbone.js is mature and more like a foundation for your own framework
than a full-blown, opinionated framework in itself. The problem with Backbone is the
increased complexity of interactions between models and views: multiple views update
various models, which update other views, which trigger events on models.

My personal experience from doing a Kickstarter campaign for my React.js online
course (http://mng.bz/XgkO) and from going to various conferences and events
has shown me that developers are hungry for a better way to develop Uls. Most busi-
ness value now lies in Uls. The backend is a commodity. In the Bay Area, where I live
and work, most job openings in software engineering are for front-end or (a trendy
new title) generalist/fullstack developers. Only a few big companies like Google,
Amazon, and Capital One still have relatively strong demand for data scientists and
back-end engineers.

The best way to ensure job security or get a great job in the first place is to become
a generalist. The fastest way to do so is to use an isomorphic, scalable, developer-
friendly library like React on the front end, paired with Node.js on the backend in
case you ever need to mess with server-side code.

For mobile developers, HTML5 was a dirty word two or three years ago. Facebook
dropped its HTML5 app in favor of a more performant native implementation. But
this unfavorable view is quickly changing. With React Native, you can render for
mobile apps: you can keep your UI components but tailor them to different environ-
ments, another point in favor of learning React.

Programming can be creative. Don’t get bogged down by mundane tasks, complex-
ity, and fake separation of concerns. Cut out all the unnecessary junk, and unleash your
creative power with the simplistic beauly of modulay, component-based Uls powered by React.
Throw in some Node for isomorphic/universal JavaScript, and you’ll achieve Zen.

Happy reading, and let me know how you like the book by leaving a review on
Amazon.com (http://amzn.to/2gPxv9Q)).

http://mng.bz/XgkO
http://amzn.to/2gPxv9Q

acknowledgments

I’d like to acknowledge the internet, the universe, and the human ingenuity that
brought us to the point that telepathy is possible. Without opening my mouth, I can
share my thoughts with millions of people around the globe via social media such as
Twitter, Facebook, and Instagram. Hurray!

I feel humongous gratitude to my teachers, both intentional at schools and univer-
sities, and accidental and occasional, whose wisdom I grasped from books and from
learning by osmosis.

As Stephen King once wrote, “To write is human, to edit is divine.” Thus, my endless
gratitude to the editors of this book and even more so to the readers who will have to
deal with the inevitable typos and bugs they’ll encounter in this volume. This is my 14th
book, and I know there will be typos, no mater what [sic].

I thank the people at Manning who made this book possible: publisher Marjan
Bace and everyone on the editorial and production teams, including Janet Vail, Kevin
Sullivan, Tiffany Taylor, Katie Tennant, Gordan Salinovic, Dan Maharry, and many
others who worked behind the scenes.

I can’t thank enough the amazing group of technical peer reviewers led by Ivan
Martinovic: James Anaipakos, Dane Balia, Art Bergquist, Joel Goldfinger, Peter Hamp-
ton, Luis Matthew Heck, Ruben J. Leon, Gerald Mack, Kamal Raj, and Lucas Tetta-
manti. Their contributions included catching technical mistakes, errors in
terminology, and typos, and making topic suggestions. Each pass through the review
process and each piece of feedback implemented through the forum topics shaped
and molded the manuscript.

xxii

ACKNOWLEDGMENTS

On the technical side, special thanks go to Anto Aravinth, who served as the book’s
technical editor; and German Frigerio, who served as the book’s technical proof-
reader. They are the best technical editors I could have hoped for.

Many thanks go to John Sonmez of Pluralsight, Manning, and SimpleProgrammer.com
fame, for writing the foreword to this book. Thank you, Peter Cooper, Erik Hanchett, and
Stan Bershadskiy for your reviews and for giving the book extra credibility. Readers who
haven’t heard of John, Peter, Erik, or Stan should subscribe and follow their work around
software engineering.

Finally, a thank you to all the MEAP readers for your feedback. Revising the book
based on your reviews delayed publication by a year, but the result is the best book cur-
rently available about React.

https://SimpleProgrammer.com

about this book

This book is intended to cure the troubles of front-end developers, make their lives
more meaningful and happier, and help them earn more money by introducing them
to React.js—and doing so in a fast manner (hence the word Quickly in the title). It’s the
work of one and a half years and about a dozen people. At the very least, the book is meant
to open your mind to some unusual concepts like JSX, unidirectional data flow, and
declarative programming.

Roadmap

The book is split into two parts: “Core React” (chapters 1-11) and “React and friends”
(chapters 12-20). Each chapter includes descriptive text supplemented with code
examples and diagrams where they’re applicable. Each chapter also has an optional
introductory video that will help you decide whether you need to read the chapter or
can skip it. Chapters are written in a standalone manner, meaning you should have no
trouble if you don’t read the book in order—although I do recommend reading it
sequentially. At the end of each chapter is a quiz, to reinforce your retention of the
material, and a summary.

Each part ends with a series of larger projects that will give you more experience with
React and solidify your new understanding by building on the concepts and knowledge
introduced in the previous chapters. The projects are supplemented by optional
screencast videos to reinforce your learning and show you dynamic things like creating
files and installing dependencies (there are a lot of moving parts in web development!).
These projects are an integral part of the book’s flow—avoid skipping them.

xxiii

XXiv

ABOUT THIS BOOK

I encourage you to type each line of code yourself and abstain from copying and
pasting. Studies have shown that typing and writing increase learning effectiveness.

The book ends with five appendixes that provide supplemental material. Check
them out, along with the table of contents, before you begin reading.

The websites for this book are www.manning.com/books/react-quickly and http://
reactquickly.co. If you need up-to-date information, most likely you’ll find it there.

The source code is available on the Manning website (www.manning.com/books/
react-quickly) and on GitHub (https://github.com/azat-co/react-quickly). See the
“Source code” section for more details. I show full listings of the code in the book—
this is more convenient than jumping to GitHub or a code editor to look at the files.

Who this book is for (read this!)

This book is for web and mobile developers and software engineers with two to three
years of experience, who want to start learning and using React.js for web or mobile
development. Basically, it’s for people who know the shortcut for the Developer Tools
by heart (Cmd-Opt] or Cmd-Opt-I on Macs). The book targets readers who know and
are on a first-name basis with these concepts:

Single-page applications (SPAs)

RESTful services and API architecture

JavaScript, especially closures, scopes, and string and array methods
HTML, HTML5, and their elements and attributes

CSS and its styles and JavaScript selectors

Having experience with jQuery, Angular, Ember,js, Backbone.js, or other MVC-like
frameworks is a plus, because you’ll be able to contrast them with the React way. But
it’s not necessary and to some degree may be detrimental, because you’ll need to
unlearn certain patterns. React is not exactly MVC.

You’ll be using command-line tools, so if you’re afraid of them, this is the best time
to fight your phobia of the command line/Terminal/command prompt. Typically, CLIs
are more powerful and versatile than their visual (GUI) versions (for example, the Git
command line versus the GitHub desktop—the latter confuses the heck out of me).

Having some familiarity with Node.js will allow you to learn React much more quickly
than someone who’s never heard of Node.js, npm, Browserify, Common]S, Gulp, or
Express.js. I've authored several books on Node.js for those who want to brush up on it,
the most popular being Practical Node.js (http://practicalnodebook.com). Or, you can
go online for a free NodeSchool adventure (http://nodeschool.io) (free does not
always mean worse).

What this book is not (read this too!)

This book is not a comprehensive guide to web or mobile development. I assume that
you already know about those. If you want help with basic programming concepts or
JavaScript fundamentals, there are plenty of good books on those topics. You Don’t

http://www.manning.com/books/react-quickly
http://reactquickly.co
http://reactquickly.co
https://www.manning.com/books/react-quickly
https://www.manning.com/books/react-quickly
https://github.com/azat-co/react-quickly
http://practicalnodebook.com
http://nodeschool.io

ABOUT THIS BOOK XXV

Know JS by Kyle Simpson (free to read at https://github.com/getity/You-Dont-Know-
JS). Secrets of the JavaScript Ninja, Second Edition (www.manning.com/books/secrets-of-
thejavascript-ninja-second-edition), and Eloguent JavaScript by Marijn Haverbeke (free
to read at http://eloquentjavascript.net) come to mind. So, there’s no need for me to
duplicate existing content with this book.

How to use this book

First of all, you should read this book. That is not a joke. Most people buy books but never
read them. It’s even easier to do so with digital copies, because they hide on drives and
in the cloud. Read the book, and work through the projects, chapter by chapter.

Each chapter covers either a topic or a series of topics that build on each other. For
this reason, I recommend that you read this book from beginning to end and then go back to
individual chapters for reference. But as I said earlier, you can also read individual
chapters out of order, because the projects in the chapters stand alone.

There are many links to external resources. Most of them are optional and provide
additional details about topics. Therefore, I suggest that you read the book at your
computer, so you can open links as I refer to them.

Some text appears in a monospace font, like this: getAccounts (). That means it’s
code, inline or in blocks. Sometimes you’ll see code with weird indentation:

document .getElementById('end-of-time') .play ()

}

This means I'm annotating a large chunk of code and broke it into pieces. This piece
belongs to a bigger listing that started from position 0; this small chunk won’t run by
itself.

Other times, code blocks aren’t indented. In such cases, it’s generally safe to
assume that the snippet is the whole thing:

ReactDOM.render (
<Content />,

document .getElementById (‘content’)
)

If you see a dollar sign ($), it’s a Terminal/command prompt command. For example:
$ npm install -g babel@5.8.34

The most important thing to know and remember while using this book is that you
must have fun. If it’s not fun, it’s not JavaScript!

Source code

All of the book’s code is available at www.manning.com/books/react-quickly and
https://github.com/azat-co/react-quickly. Follow the foldernaming convention
ch NN, where NNis the chapter number with a leading 0 if needed (for example, ch02

http://eloquentjavascript.net
https://github.com/getify/You-Dont-Know-JS
https://github.com/getify/You-Dont-Know-JS
https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://github.com/azat-co/react-quickly
https://www.manning.com/books/react-quickly

ABOUT THIS BOOK

for chapter 2’s code).The source code in the GitHub repository will evolve by includ-
ing patches, bug fixes, and maybe even new versions and styles (ES2020?).

Errata

I'm sure there are typos in this book. Yes, I had editors—a bunch of them, all profes-
sionals provided by Manning. But thanks for finding that typo. No need to leave nasty
Amazon reviews or send me hate mail about it, or about grammar.

Please don’t email me bugs and typos. Instead, you can report them on the book’s
forum at https://forums.manning.com/forums/react-quickly or create a GitHub
issue at https://github.com/azat-co/react-quickly/issues. This way, other people can
benefit from your findings.

Also, please don’t email me technical questions or errata. Post them on the book’s
forum, the book’s GitHub page (https://github.com/azat-co/react-quickly), or Stack
Overflow. Other people may help you more quickly (and better) than I can.

Book forum

Purchase of React Quickly includes free access to a private web forum run by Manning
Publications where you can make comments about the book, ask technical questions,
and receive help from the author and from other users. To access the forum, go to
https://forums.manning.com/forums/react-quickly. You can also learn more about
Manning’s forums and the rules of conduct at https://forums.manning.com/
forums/about.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers, and between readers and the author, can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://github.com/azat-co/react-quickly/issues
https://forums.manning.com/forums/react-quickly
https://github.com/azat-co/react-quickly
https://forums.manning.com/forums/react-quickly
https://forums.manning.com/forums/about
https://forums.manning.com/forums/about

about the author

I've published more than 14 books and 17 online courses

55 (https://node.university), most of them on the cloud, React,

e JavaScript, and Node.js. (One book is about how to write books,

"zi and another is about what to do after you’ve written a few books.)

i m Before focusing on Node, I programmed in other languages

(Java, G, Perl, PHP, Ruby), pretty much ever since high school
(more than a dozen years ago) and definitely more than the 10,000 hours prescribed.'

Right now, I'm a Technology Fellow at one of the top 10 U.S. banks, which is also a
Fortune 500 company: Capital One Financial Corporation, in beautiful San Francisco.
Before that, I worked for small startups, giant corporations, and even the U.S. federal
government, writing desktop, web, and mobile apps; teaching; and doing developer
evangelism and project management.

I don’t want to take too much of your time telling you about myself; you can read
more on my blog (http://webapplog.com/about) and social media (www.linkedin
.com/in/azatm). Instead, I want to write about my experience that’s relevant to this
book.

When I moved to the sunny state of California in 2011 to join a startup and go
through a business accelerator (if you’re curious, it was 500 Startups), I started to use
modern JavaScript. I learned Backbone.js to build a few apps for the startup, and I was

1 See https://en.wikipedia.org/wiki/Outliers_(book).

XXVii

http://webapplog.com/about
http://www.linkedin.com/in/azatm
http://www.linkedin.com/in/azatm
https://node.university
https://en.wikipedia.org/wiki/Outliers_(book)

ABOUT THE AUTHOR

impressed. The framework was a huge improvement in code organization over other
SPAs I'd built in prior years. It had routes and models. Yay!

I had another chance to see the astounding power of Backbone and isomorphic
JavaScript during my work as software engineering team lead at DocuSign, the Google
of e-signatures (it has a 70% market share). We reengineered a seven-year-old mono-
lithic ASPNET web app that took four weeks for each minor release into a snappy
Backbone-Node-CoffeeScript-Express app that had great user experience and took
only one or two weeks for its release. The design team did great work with usability.
Needless to say, there were boatloads of UI views with various degrees of interactivity.

The end app was isomorphic before such a term even existed. We used Backbone
models on the server to prefetch the data from APIs and cache it. We used the same
Jade templates on the browser and the server.

It was a fun project that made me even more convinced of the power of having one
language across the entire stack. Developers versed in C# and front-end JavaScript
(mostly jQuery) from the old app would spend a sprint (one release cycle, typically a
week or two) and fall in love with the clear structure of CoffeeScript, the organization
of Backbone, and the speed of Node (both the development and the running speed).

My decade in web development exposed me to the good, the bad, and the ugly
(mostly ugly) of front-end development. This turned out to be a blessing in disguise,
because I came to appreciate React even more, once I switched to it.

If you'd like to receive updates, news, and tips, then connect with me online by fol-
lowing, subscribing, friending, stalking, whatever:

Twitter—https:/ /twitter.com/azat_co
Website—http://azat.co
LinkedIn—http://linkedin.com/in/azatm
Professional blog—http://webapplog.com
Publications—http://webapplog.com/books

For in-person workshops and courses, visit http://NodeProgram.com or https://
Node.University, or send me a message via https://webapplog.com/azat.

https://twitter.com/azat_co
http://azat.co
http://linkedin.com/in/azatm
http://webapplog.com
http://webapplog.com/books
http://NodeProgram.com
https://Node.University
https://Node.University
https://webapplog.com/azat

about the cover

An email from an early reader asked about the dervish on the cover. Yes, the character
could easily be a Persian or any one of many Turko-nomadic people inhabiting the
Middle East and central Asia. This is due to the fact that trade and travel were highly
developed and frequent among those regions for many centuries. But, according to
the illustrator who drew this picture, he was depicting a Siberian Bashkir. Most of the
modern-day Bashkirs live in the Republic of Bashkortostan (a.k.a. Bashkiria). Bashkirs
are close ethnic and geographical neighbors of the Volga Bulgars (improperly named
Tatars); Bashkirs and Tatars are the second-most-populous ethnic group in the Rus-
sian Federation. (The first is Russians, if you’'re curious.)

The figure comes from an eighteenth-century illustration, “Gravure Homme
Baschkir,” by Jacques Grasset de Saint-Sauveur. Fascination with faraway lands and
travel for pleasure were relatively new phenomena at the time, and collections of draw-
ings such as this one were popular, introducing both the tourist as well as the armchair
traveler to the inhabitants of other countries. The rich variety of drawings reminds us
vividly of how culturally apart the world’s regions, towns, villages, and neighborhoods
were just 200 years ago. Isolated from each other, people spoke different dialects and
languages. In the streets or in the countryside, it was easy to identify where they lived
and what their trade or station in life was, just by their dress.

Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now hard to tell apart the inhabitants of different conti-
nents, let alone different towns or regions. Perhaps we have traded cultural diversity

ABOUT THE COVER

for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
pictures such as this one.

Part 1

React foundation

Hello! My name is Azat Mardan, and I’'m going to take you on a journey
into the wonderful world of React. It will make your front-end development
more enjoyable and your code easier to write and maintain, and your users will
be delighted at the speed of your web apps. React is a game changer in web
development: the React community has pioneered many approaches, terms, and
design patterns, and other libraries have followed the path forged by React.

I've taught this material more than 20 times in my live-online and in-person
workshops to hundreds of software engineers from very different backgrounds
and varied levels of seniority. Thus, this material has been battle tested on my
students: you’re getting the distilled, most effective version of my React founda-
tion course in a written format. These chapters are critical to get you on familiar
terms with React.

Chapters 1-11 are the result of almost two years of work by several people, but
they read as a fast sequence of topics that build on each other. The best way to con-
sume these chapters is to start with chapter 1 and proceed in order. Each chapter
includes a video message from me; chapters 1-8 have a quiz at the end; and chap-
ters 9—11, which are projects, contain homework for self-guided development.

All in all, this part of the book builds a solid foundation of React concepts,
patterns, and features. Can you go to a foreign country and understand the lan-
guage without studying? No—and that’s why you must learn the React “lan-
guage” before you attempt to build complex apps. Thus, it’s paramount that you
study these basic React concepts—that you learn the React language—which is
exactly what you’ll do in the next 11 chapters.

Let’s get started with React—and learn to speak fluent React-ese.

Watch this chapter’s introductory
video by scanning this QR code
with your phone or going to
http://reactquickly.co/videos/chO1.

Meeting React

This chapter covers

= Understanding what React is
= Solving problems with React
= Fitting React into your web applications
= Writing your first React app: Hello World

When I began working on web development in early 2000, all I needed was some
HTML and a server-side language like Perl or PHP. Ah, the good old days of putting
inalert () boxes just to debug your front-end code. It’s a fact that as the internet has
evolved, the complexity of building websites has increased dramatically. Websites
have become web applications with complex user interfaces, business logic, and data
layers that require changes and updates over time—and often in real time.

Many JavaScript template libraries have been written to try to solve the prob-
lems of dealing with complex user interfaces (UIs). But they still require developers
to adhere to the old separation of concerns—which splits style (CSS), data and
structure (HTML), and dynamic interactions (JavaScript)—and they don’t meet
modern-day needs. (Remember the term DHTML?)

http://reactquickly.co/videos/ch01

CHAPTER 1 Meeting React

In contrast, React offers a new approach that streamlines front-end development.
React is a powerful UI library that offers an alternative that many big firms such as
Facebook, Netflix, and Airbnb have adopted and see as the way forward. Instead of
defining a one-off template for your Uls, React allows you to create reusable UI com-
ponents in JavaScript that you can use again and again in your sites.

Do you need a captcha control or date picker? Then use React to define a
<Captcha /> or <DatePicker /> component that you can add to your form: a simple
drop-in component with all the functionality and logic to communicate with the back
end. Do you need an autocomplete box that asynchronously queries a database once
the user has typed four or more letters? Define an <Autocomplete charNum="4"/>
component to make that asynchronous query. You can choose whether it has a text
box UI or has no UI and instead uses another custom form element—perhaps
<Autocomplete textbox="..." />.

This approach isn’t new. Creating composable Uls has been around for a long time,
but React is the first to use pure JavaScript without templates to make this possible.
And this approach has proven easier to maintain, reuse, and extend.

React is a great library for Uls, and it should be part of your front-end web toolkit;
but it isn’t a complete solution for all front-end web development. In this chapter,
we’ll look at the pros and cons of using React in your applications and how you might
fit it into your existing web-development stack.

Part 1 of the book focuses on React’s primary concepts and features, and part 2
looks at working with libraries related to React to build more-complex front-end apps
(a.k.a. React stack or React and friends). Each part demonstrates both greenfield and
brownfield development' with React and the most popular libraries, so you can get an
idea of how to approach working with it in real-world scenarios.

Chapter videos and source code

We all learn differently. Some people prefer text and others video, and others learn
best via in-person instruction. Each chapter of this book includes a short video that
explains the chapter’s gist in less than 5 minutes. Watching them is totally optional.
They’ll give you a summary if you prefer a video format or need a refresher. After
watching each video, you can decide whether you need to read the chapter or can
skip to the next one.

The source code forthe examples in this chapter is at www.manning.com/books/react-
quickly and at https://github.com/azat-co/react-quickly/tree/master/chO1 (in the
ch01 folder of the GitHub repository https://github.com/azat-co/react-quickly). You
can also find some demos at http://reactquickly.co/demos.

1

Brownfieldis a project with legacy code and existing systems, while greenfield is a project without any legacy code
or systems; see https://en.wikipedia.org/wiki/Brownfield_ (software_development).

https://en.wikipedia.org/wiki/Brownfield_(software_development)
https://github.com/azat-co/react-quickly/tree/master/ch01
https://github.com/azat-co/react-quickly
http://reactquickly.co/demos
http://www.manning.com/books/react-quickly
http://www.manning.com/books/react-quickly

The problem that React solves 5

1.1 Whatis React?

To introduce React.js properly, I first need to define it. So, what is React? It’s a UI com-
ponent library. The UI components are created with React using JavaScript, not a spe-
cial template language. This approach is called creating composable Uls, and it’s
fundamental to React’s philosophy.

React UI components are highly self-contained, concern-specific blocks of function-
ality. For example, there could be components for date-picker, captcha, address, and
ZIP code elements. Such components have both a visual representation and dynamic
logic. Some components can even talk to the server on their own: for example, an auto-
complete component might fetch the autocompletion list from the server.

User interfaces

In a broad sense, a user interface? is everything that facilitates communication
between computers and humans. Think of a punch card or a mouse: they’re both Uls.
When it comes to software, engineers talk about graphical user interfaces (GUIs),
which were pioneered for early personal computers such as Macs and PCs. A GUI con-
sists of menus, text, icons, pictures, borders, and other elements. Web elements are
a narrow subset of the GUI: they reside in browsers, but there are also elements for
desktop applications in Windows, OS X, and other operating systems.

Every time | mention a Ul in this book, | mean a web GUI.

Component-based architecture (CBA)—not to be confused with web components,
which are just one of the most recent implementations of CBA—existed before React.
Such architectures generally tend to be easier to reuse, maintain, and extend than
monolithic Uls. What React brings to the table is the use of pure JavaScript (without
templates) and a new way to look at composing components.

1.2 The problem that React solves

What problem does React solve? Looking at the last few years of web development,
note the problems in building and managing complex web Uls for front-end applica-
tions: React was born primarily to address those. Think of large web apps like Face-
book: one of the most painful tasks when developing such applications is managing
how the views change in response to data changes.

Let’s refer to the official React website for more hints about the problem React
addresses: “We built React to solve one problem: building large applications with data
that changes over time.” Interesting! We can also look at the history of React for
more information. A discussion on the React Podcast’ mentions that the creator of

2 https://en.wikipedia.org/wiki/User_interface.
* React official website, “Why React?” March 24, 2016, http://bit.ly/2mdCJKM.

* React Podcast, “8. React, GraphQL, Immutable & Bow-Ties with Special Guest Lee Byron,” December 31, 2015,
http://mng.bz/W1X6.

http://bit.ly/2mdCJKM
http://mng.bz/W1X6
https://en.wikipedia.org/wiki/User_interface

6 CHAPTER 1 Meeting React

React—Jordan Walke—was solving a problem at Facebook: having multiple data
sources update an autocomplete field. The data came asynchronously from a back
end. It was becoming more and more complicated to determine where to insert new
rows in order to reuse DOM elements. Walke decided to generate the field representa-
tion (DOM elements) anew each time. This solution was elegant in its simplicity: UlIs as
functions. Call them with data, and you get rendered views predictably.

Later, it turned out that generating elements in memory is extremely fast and that
the actual bottleneck is rendering in the DOM. But the React team came up with an algo-
rithm that avoids unnecessary DOM pain. This made Reactvery fast (and cheap in terms
of performance). React’s splendid performance and developer-friendly, component-
based architecture are a winning combination. These and other benefits of React are
described in the next section.

React solved Facebook’s original problem, and many large firms agreed with this
approach. React adoption is solid, and its popularity is growing every month. React
emerged from Facebook® and is now used not only by Facebook but also by Instagram,
PayPal, Uber, Sberbank, Asana,® Khan Academy,” HipChat,® Flipboard,” and Atom,*
to name just a few.!! Most of these applications originally used something else (typi-
cally, template engines with Angular or Backbone) but switched to React and are
extremely happy about it.

1.3 Benefits of using React

Every new library or framework claims to be better than its predecessors in some
respect. In the beginning, we had jQuery, and it was leaps and bounds better for writ-
ing cross-browser code in native JavaScript. If you remember, a single AJAX call taking
many lines of code had to account for Internet Explorer and WebKit-like browsers.
With jQuery, this takes only a single call: $.ajax(), for example. Back in the day,
jQuery was called a framework—but not anymore! Now a framework is something big-
ger and more powerful.

Similarly with Backbone and then Angular, each new generation of JavaScript
frameworks has brought something new to the table. React isn’t unique in this. What
is new is that React challenges some of the core concepts used by most popular front-
end frameworks: for example, the idea that you need to have templates.

The following list highlights some of the benefits of React versus other libraries
and frameworks:

5 “Introduction to Reactjs,” July 8, 2013, http://mng.bz/86XF.

Malcolm Handley and Phips Peter, “Why Asana Is Switching to TypeScript,” Asana Blog, November 14, 2014,

http://mng.bz/zXKo.

7 Joel Burget, “Backbone to React,” http://mng.bz/WGEQ.

8 Rich Manalang, “Rebuilding HipChat with Reactjs,” Atlassian Developers, February 10, 2015,
http://mng.bz/rOw6.

9 Michael Johnston, “60 FPS on the Mobile Web,” Flipboard, February 10, 2015, http://mng.bz/N5F0.

10 Nathan Sobo, “Moving Atom to React,” Atom, July 2, 2014, http://mng.bz/K94N.

11 See also the JavaScript usage stats at http://libscore.com/#React.

http://mng.bz/86XF
http://mng.bz/zXKo
http://mng.bz/WGEQ
http://mng.bz/r0w6
http://mng.bz/N5F0
http://mng.bz/K94N
http://libscore.com/#React

131

Benefits of using React 7

Simpler apps—React has a CBA with pure JavaScript; a declarative style; and pow-
erful, developer-friendly DOM abstractions (and not just DOM, but also iOS,
Android, and so on).

Fast Uls—React provides outstanding performance thanks to its virtual DOM
and smart-reconciliation algorithm, which, as a side benefit, lets you perform
testing without spinning up (starting) a headless browser.

Less code to write—React’s great community and vast ecosystem of components
provide developers with a variety of libraries and components. This is important
when you’re considering what framework to use for development.

Many features make React simpler to work with than most other frontend frame-
works. Let’s unpack these items one by one, starting with its simplicity.

Simplicity

The concept of simplicity in computer science is highly valued by developers and
users. It doesn’t equate to ease of use. Something simple can be hard to implement,
but in the end it will be more elegant and efficient. And often, an easy thing will end
up being complex. Simplicity is closely related to the KISS principle (keep it simple,
stupid).'? The gist is that simpler systems work better.

React’s approach allows for simpler solutions via a dramatically better web-
development experience for software engineers. When I began working with React,
it was a considerable shift in a positive direction that reminded me of switching from
using plain, no-framework JavaScript to jQuery.

In React, this simplicity is achieved with the following features:

Declarative over imperative style—React embraces declarative style over imperative
by updating views automatically.

Component-based architecture using pure JavaScript—React doesn’t use domain-
specific languages (DSLs) for its components, just pure JavaScript. And there’s
no separation when working on the same functionality.

Powerful abstractions—React has a simplified way of interacting with the DOM,
allowing you to normalize event handling and other interfaces that work simi-
larly across browsers.

Let’s cover these one by one.

DECLARATIVE OVER IMPERATIVE STYLE
First, React embraces declarative style over imperative. Declarative style means devel-
opers write how it should be, not what to do, step-by-step (imperative). But why is
declarative style a better choice? The benefit is that declarative style reduces complex-
ity and makes your code easier to read and understand.

Consider this short JavaScript example, which illustrates the difference between
declarative and imperative programming. Let’s say you need to create an array (arr2)

12 https://en.wikipedia.org/wiki/KISS_principle.

https://en.wikipedia.org/wiki/KISS_principle

CHAPTER 1 Meeting React

whose elements are the result of doubling the elements of another array (arr). You
can use a for loop to iterate over an array and tell the system to multiply by 2 and cre-
ate a new element (arr2[i]=):

var arr = [1, 2, 3, 4, 5],
arr2 = []

for (var i=0; i<arr.length; i++) {
arr2[i] = arr[i]*2

}

console.log('a', arr2)

The result of this snippet, where each element is multiplied by 2, is printed on the
console as follows:

a [2, 4, 6, 8, 10]

This illustrates imperative programming, and it works—until it doesn’t work, due to
the complexity of the code. It becomes too difficult to understand what the end result
is supposed to be when you have too many imperative statements. Fortunately, you can
rewrite the same logic in declarative style with map () :

var arr = [1, 2, 3, 4, 5],
arr2 = arr.map (function(v, 1i){ return v*2 })
console.log('b', arr2)

The output is b [2, 4, 6, 8, 10]; the variable arr2 is the same as in the previous
example. Which code snippet is easier to read and understand? In my humble opin-
ion, the declarative example.

Look at the following imperative code for getting a nested value of an object. The
expression needs to return a value based on a string such as account or account . number
in such a manner that these statements print true:

var profile = {account: '47574416'}
var profileDeep = {account: { number: 47574416 }}

console.log(getNestedValueImperatively (profile, 'account') === '47574416"')
console.log (getNestedValueImperatively (profileDeep, 'account.number')
=== 47574416)

This imperative style literally tells the system what to do to get the results you need:

var getNestedValuelImperatively = function getNestedValuelmperatively
(object, propertyName) {
var currentObject = object
var propertyNamesList = propertyName.split('.")
var maxNestedLevel = propertyNamesList.length
var currentNestedLevel

for (currentNestedLevel = 0; currentNestedLevel < maxNestedLevel;
currentNestedLevel++) {

Benefits of using React 9

if (!currentObject || typeof currentObject === 'undefined')
return undefined
currentObject = currentObject [propertyNamesList [currentNestedLevell]

}

return currentObject

}

Contrast this with declarative style (focused on the result), which reduces the number
of local variables and thus simplifies the logic:

var getValue = function getValue (object, propertyName) {
return typeof object === 'undefined' ? undefined : object [propertyName]
}

var getNestedValueDeclaratively = function getNestedValueDeclaratively (object,
propertyName) {
return propertyName.split ('.') .reduce (getValue, object)

}
console.log(getNestedValueDeclaratively ({bar: 'baz'}, 'bar') === 'baz')

console.log(getNestedValueDeclaratively ({bar: { baz: 1 }}, 'bar.baz')=== 1)

Most programmers have been trained to code imperatively, but usually the declarative
code is simpler. In this example, having fewer variables and statements makes the
declarative code easier to grasp at first glance.

That was just some JavaScript code. What about React? It takes the same declara-
tive approach when you compose Uls. First, React developers describe UI elements in
a declarative style. Then, when there are changes to views generated by those UI ele-
ments, React takes care of the updates. Yay!

The convenience of React’s declarative style fully shines when you need to make
changes to the view. Those are called changes of the internal state. When the state
changes, React updates the view accordingly.

NOTE I cover how states work in chapter 4.

Under the hood, React uses a virtual DOM to find differences (the delta) between
what’s already in the browser and the new view. This process is called DOM diffing or
reconciliation of state and view (bringing them back to similarity). This means developers
don’t need to worry about explicitly changing the view; all they need to do is update
the state, and the view will be updated automatically as needed.

Conversely, with jQuery, you’d need to implement updates imperatively. By manip-
ulating the DOM, developers can programmatically modify the web page or parts of
the web page (a more likely scenario) without rerendering the entire page. DOM
manipulation is what you do when you invoke jQuery methods.

Some frameworks, such as Angular, can perform automatic view updates. In Angu-
lar, it’s called two-way data binding, which basically means views and models have two-
way communication/syncing of data between them.

10

CHAPTER 1 Meeting React

The jQuery and Angular approaches aren’t great, for two reasons. Think about
them as two extremes. At one extreme, the library (jQuery) isn’t doing anything, and
a developer (you!) needs to implement all the updates manually. At the other
extreme, the framework (Angular) is doing everything.

The jQuery approach is prone to mistakes and takes more work to implement. Also,
this approach of directly manipulating the regular DOM works fine with simple Uls, but
it’s limiting when you’re dealing with a lot of elements in the DOM tree. This is the case
because it’s harder to see the results of imperative functions than declarative statements.

The Angular approach is difficult to reason about because with its two-way bind-
ing, things can spiral out of control quickly. You insert more and more logic, and all of
a sudden, different views are updating models, and those models update other views.

Yes, the Angular approach is somewhat more readable than imperative jQuery
(and requires less manual coding!), but there’s another issue. Angular relies on tem-
plates and a DSL that uses ng directives (for example, ng-1if). I discuss its drawbacks in
the next section.

COMPONENT-BASED ARCHITECTURE USING PURE JAVASCRIPT

Component-based architecture'® existed before React came on the scene. Separation
of concerns, loose coupling, and code reuse are at the heart of this approach because
it provides many benefits; software engineers, including web developers, love CBA. A
building block of CBA in React is the component class. As with other CBAs, it has many
benefits, with code reuse being the main one (you can write less code!).

What was lacking before React was a pure JavaScript implementation of this archi-
tecture. When you’re working with Angular, Backbone, Ember, or most of the other
MVC-like front-end frameworks, you have one file for JavaScript and another for the
template. (Angular uses the term directives for components.) There are a few issues
with having two languages (and two or more files) for a single component.

The HTML and JavaScript separation worked well when you had to render HTML
on the server, and JavaScript was only used to make your text blink. Now, single page
applications (SPAs) handle complex user input and perform rendering on the
browser. This means HTML and JavaScript are closely coupled functionally. For devel-
opers, it makes more sense if they don’t need to separate between HTML and
JavaScript when working on a piece of a project (component).

Consider this Angular code, which displays different links based on the value of
userSession:

<a ng-if="user.session" href="/logout"s>Logout
<a ng-if="!user.session" href="/login"s>Login

You can read it, but you may have doubts about what ng-if takes: a Boolean or a
string. And will it hide the element or not render it at all? In the Angular case, you
can’t be sure whether the element will be hidden on true or false, unless you're famil-
iar with how this particular ng-1if directive works.

13 http://mng.bz/a65r.

http://mng.bz/a65r

Benefits of using React 11

Compare the previous snippet with the following React code, which uses JavaScript
if/else to implement conditional rendering. It’s absolutely clear what the value of
user.session must be and what element (logout or login) is rendered if the value is
true. Why? Because it’s just JavaScript:

if (user.session) return React.createElement ('a', {href: '/logout'}, 'Logout')
else return React.createElement('a’', {href: "/login'}, 'Login')

Templates are useful when you need to iterate over an array of data and print a prop-
erty. We work with lists of data all the time! Let’s look at a for loop in Angular. As
mentioned earlier, in Angular, you need to use a DSL with directives. The directive for
a for loop is ng-repeat:

<div ng-repeat="account in accounts's
{{account .name}}
</div>

One of the problems with templates is that developers often have to learn yet another
language. In React, you use pure JavaScript, which means you don’t need to learn a
new language! Here’s an example of composing a UI for a list of account names with

pure JavaScript:
Regular JavaScript method that takes

an iterator expression as a parameter'"
accounts.map (function (account) {

return React.createElement ('div', null, account.name) <F—W Menuorexm@sﬁonthat

returns a <div> with
the account name

)

Imagine a situation where you’re making some changes to the list of accounts. You
need to display the account number and other fields. How do you know what fields
the account has in addition to name?

You need to open the corresponding JavaScript file that calls and uses this tem-
plate, and then you have to find accounts to see its properties. So the second problem
with templates is that the logic about the data and the description of how that data
should be rendered are separated.

It’s much better to have the JavaScript and the markup in one place so you don’t
have to switch between file and languages. This is exactly how React works; and you’ll
see how React renders elements shortly in a Hello World example.

NOTE Separation of concerns generally is a good pattern. In a nutshell, it
means separation of different functions such as the data service, the view
layer, and so on. When you’re working with template markup and corre-
sponding JavaScript code, you're working on one functionality. That’s why hav-
ing two files (.js and .html) isn’t a separation of concerns.

14 http://mng.bz/555].

http://mng.bz/555J

12

CHAPTER 1 Meeting React

Now, if you want to explicitly set the method by which to keep track of items (for
example, to ensure there are no duplicates) in the rendered list, you can use Angu-
lar’s track by feature:

<div ng-repeat="account in accounts track by account._ id">
{{account .name}}
</divs>

If you want to track by an index of the array, there’s $index:

<div ng-repeat="account in accounts track by S$index">
{{account .name}}
</div>

But what concerns me and many other developers is, what is this magic $index? In
React, you use an argument from map () for the value of the key attribute:

Uses an array element value
(account) and its index
provided by Array.map()

accounts.map (function (account, index) {
return React.createElement ('div', {key: index}, account .name)

3]

Returns a React element <div/> with
an attribute key with the value index
and inner text set to account.name

It’s worth noting that map () isn’t exclusive to React. You can use it with other frame-
works because it’s part of the language. But the declarative nature of map () makes it
and React a perfect pair.

I’'m not picking on Angular—it’s a great framework. But the bottom line is that if a
framework uses a DSL, you need to learn its magic variables and methods. In React,
you can use pure JavaScript.

If you use React, you can carry your knowledge to the next project even if it’s not
in React. On the other hand, if you use an X template engine (or a'Y framework with
a built-in DSL template engine), you're locked into that system and have to describe
yourself as an X/Y developer. Your knowledge isn’t transferable to projects that don’t
use X/Y. To summarize, the pure JavaScript component-based architecture is about
using discrete, well-encapsulated, reusable components that ensure better separation
of concerns based on functionality without the need for DSLs, templates, or directives.

Working with many developer teams, I've observed another factor related to sim-
plicity. React has a better, shallower, more gradual learning curve compared to MVC
frameworks (well, React isn’t an MVC, so I’ll stop comparing them) and template
engines that have special syntax—for example, Angular directives or Jade/Pug. The
reason is that instead of using the power of JavaScript, most template engines build
abstractions with their own DSL, in a way reinventing things like an if condition or a
for loop.

132

Benefits of using React 13

POWERFUL ABSTRACTIONS

React has a powerful abstraction of the document model. In other words, it hides the
underlying interfaces and provides normalized/synthesized methods and properties.
For example, when you create an onClick event in React, the event handler will receive
not a native browser-specific event object, but a synthetic event object that’s a wrapper
around native event objects. You can expect the same behavior from synthetic events
regardless of the browser in which you run the code. React also has a set of synthetic
events for touch events, which are great for building web apps for mobile devices.

Another example of React’s DOM abstraction is that you can render React ele-
ments on the server. This can be handy for better search engine optimization (SEO)
and/or improving performance.

There are more options when it comes to rendering React components than just
DOM or HTML strings for the server back end. We’ll cover them in section 1.5.1. And,
speaking of the DOM, one of the most sought-after benefits of React is its splendid per-
formance.

Speed and testability

In addition to the necessary DOM updates, your framework may perform unnecessary
updates, which makes the performance of complex Uls even worse. This becomes
especially noticeable and painful for users when you have a lot of dynamic UI ele-
ments on your web page.

On the other hand, React’s virtual DOM exists only in the JavaScript memory. Every
time there’s a data change, React first compares the differences using its virtual DOM;
only when the library knows there has been a change in the rendering will it update
the actual DOM. Figure 1.1 shows a high-level overview of how React’s virtual DOM
works when there are data changes.

React virtual DOM Real DOM

ReactElement

1. Render

2. State changes

[E—
(setState) é ReactNode § E DOMNode
é ReactComponent § i
/; A J
3. Smart diffing
algorithm
(reconciliation)
4. Rerender Real DOM
i b only affected
Virtual DOM: i elements
“Dirty” components T DOMNode

affected by state changes

/

I

Figure 1.1 Once a component has been rendered, if its state changes, it’s compared to the
in-memory virtual DOM and rerendered if necessary.

14

1.3.3

CHAPTER 1 Meeting React

Ultimately, React updates only those parts that are absolutely necessary so that the
internal state (virtual DOM) and the view (real DOM) are the same. For example, if
there’s a <p> element and you augment the text via the state of the component, only
the text will be updated (that is, innerHTML), not the element itself. This results in
increased performance compared to rerendering entire sets of elements or, even
more so, entire pages (serverside rendering).

NOTE Ifyou like to geek out on algorithms and Big Os, these two articles do a
great job of explaining how the React team managed to turn an O(n3) prob-
lem into an O(n) one: “Reconciliation,” on the React website
(http://mng.bz/PQI9X) and “React’s Diff Algorithm” by Christopher
Chedeau (http://mng.bz/681L4).

The added benefit of the virtual DOM is that you can do unit testing without headless
browsers like Phantom]S (http://phantomjs.org). There’s a Jasmine (http://
jasmine.github.io) layer called Jest (https://facebook.github.io/jest) that lets you test
React components right on the command line!

Ecosystem and community

Last, but not least, React is supported by the developers of a juggernaut web applica-
tion called Facebook, as well as by their peers at Instagram. As with Angular and some
other libraries, having a big company behind the technology provides a sound testing
ground (it’s deployed to millions of browsers), reassurance about the future, and an
increase in contribution velocity.

The React community is incredible. Most of the time, developers don’t even have
to implement much of the code. Look at these community resources:

List of React components: https://github.com/brillout/awesome-react-
components and http://devarchy.com/react-components
Set of React components that implement the Google Material Design specifica-
tion (https://design.google.com): http://react-toolbox.com
Material Design React components: www.material-ui.com
Collection of React components for Office and Office 360 experiences (http://
dev.office.com/fabric#/components) using the Office Design Language:
https://github.com/OfficeDev/ office-ui-fabric-react
Opinionated catalog of open source JS (mostly React) packages:
https://js.coach
Catalog of React components: https:/ /react.rocks
Khan Academy React components: https://khan.github.io/react-components
Registry of React components: www.reactjsx.com

My personal anecdotal experience with open source taught me that the marketing of

open source projects is as important to its wide adoption and success as the code itself.
By that, I mean that if a project has a poor website, lacks documentation and examples,

http://mng.bz/PQ9X
http://mng.bz/68L4
http://phantomjs.org
https://facebook.github.io/jest
http://jasmine.github.io
http://jasmine.github.io
https://github.com/brillout/awesome-react-components
https://github.com/brillout/awesome-react-components
http://devarchy.com/react-components
https://design.google.com
http://react-toolbox.com
http://www.material-ui.com
http://dev.office.com/fabric#/components
http://dev.office.com/fabric#/components
https://github.com/OfficeDev/office-ui-fabric-react
https://js.coach
https://react.rocks
https://khan.github.io/react-components
http://www.reactjsx.com

1.4

1.5

How React can fit into your web applications 15

and has an ugly logo, most developers won’t take it seriously—especially now, when
there are so many JavaScript libraries. Developers are picky, and they won’t use an ugly
duckling library.

My teacher used to say, “Don’t judge a book by its cover.” This might sound contro-
versial; but, sadly, most people, including software engineers, are prone to biases such
as good branding. Luckily, React has a great engineering reputation backing it. And,
speaking of book covers, I hope you didn’t buy this book just for its cover!

Disadvantages of React

Of course, almost everything has its drawbacks. This is true with React, but the full list
of cons depends on whom you ask. Some of the differences, like declarative versus
imperative, are highly subjective. So, they can be both pros and cons. Here’s my list of
React disadvantages (as with any such list, it may be biased because it’s based on opin-
ions I've heard from other developers):

React isn’t a full-blown, Swiss Army knife—type of framework. Developers need
to pair it with a library like Redux or React Router to achieve functionality com-
parable to Angular or Ember. This can also be an advantage if you need a mini-
malistic UT library to integrate with your existing stack.

React isn’t as mature as other frameworks. React’s core API is still changing,
albeit very little after the 0.14 release; the best practices for React (as well as the
ecosystem of components, plug-ins, and add-ons) are still developing.

React uses a somewhat new approach to web development, and JSX and Flux
(often used with React as the data library) can be intimidating to beginners.
There’s a lack of best practices, good books, courses, and resources available for
mastering React.

React only has a one-way binding. Although one-way binding is better for com-
plex apps and removes a lot of complexity, some developers (especially Angular
developers) who got used to a two-way binding will find themselves writing a bit
more code. I'll explain how React’s one-way binding works compared to Angu-
lar’s two-way binding in chapter 14, which covers working with data.
Reactisn’treactive (asin reactive programming and architecture, which are more
event-driven, resilient, and responsive) out of the box. Developers need to use
other tools such as Reactive Extensions (RxJS, https://github.com/Reactive-
Extensions/Rx]S) to compose asynchronous data streams with Observables.

To continue with this introduction to React, let’s look at how it fits into a web application.

How React can fit into your web applications

In a way, the React library by itself, without React Router or a data library, is less com-
parable to frameworks (like Backbone, Ember, and Angular) and more comparable to
libraries for working with Uls, like template engines (Handlebars, Blaze) and DOM-
manipulation libraries (jQuery, Zepto). In fact, many teams have swapped traditional

https://github.com/Reactive-Extensions/RxJS
https://github.com/Reactive-Extensions/RxJS

16

1.5.1

CHAPTER 1 Meeting React

template engines like Underscore in Backbone or Blaze in Meteor for React, with
great success. For example, PayPal switched from Dust to Angular, as did many other
companies listed earlier in this chapter.

You can use React for just part of your UL For example, let’s say you have a load-
application form on a web page built with jQuery. You can gradually begin to convert
this front-end app to React by first converting the city and state fields to populate
automatically based on the ZIP code. The rest of the form can keep using jQuery.
Then, if you want to proceed, you can convert the rest of the form elements from
jQuery to React, until your entire page is built on React. Taking a similar approach,
many teams successfully integrated React with Backbone, Angular, or other existing
front-end frameworks.

React is back-end agnostic for the purposes of front-end development. In other words,
you don’t have to rely on a Node.js back end or MERN (MongoDB, Express.js, React.js,
and Node.js) to use React. It’s fine to use React with any other back-end technology like
Java, Ruby, Go, or Python. React is a Ul library, after all. You can integrate it with any back
end and any front-end data library (Backbone, Angular, Meteor, and so on).

To summarize how React fits into a web app, it’s most often used in these scenarios:

As a UI library in Reactrelated stack SPAs, such as React+React and
Router+Redux

As a Ul library (V in MVC) in non-fully Reactrelated stack SPAs, such as
React+Backbone

As a drop-in UI component in any front-end stack, such as a React autocomplete
input component in a jQuery+server-side rendering stack

As a server-side template library in a purely thick-server (traditional) web app or
in a hybrid or isomorphic/universal web app, such as an Express server that
uses express-react-views

As a Ul library in mobile apps, such as a React Native iOS app

As a Ul description library for different rendering targets (discussed in the next
section)

React works nicely with other front-end technologies, but it’s mostly used as part of
single-page architecture because SPA seems to be the most advantageous and popular
approach to building web apps. I cover how React fits into an SPA in section 1.5.2.

In some extreme scenarios, you can even use React only on the server as a template
engine of sorts. For example, there’s an express-react-views library
(https://github.com/reactjs/express-react-views). It renders the view serverside from
React components. This serverside rendering is possible because React lets you use
different rendering targets.

React libraries and rendering targets

In versions 0.14 and higher, the React team split the library into two packages: React
Core (react package on npm) and ReactDOM (react-dom package on npm). By

https://github.com/reactjs/express-react-views

How React can fit into your web applications 17

doing so, the maintainers of React made it clear that React is on a path to become not
just a library for the web, but a universal (sometimes called isomorphic because it can
be used in different environments) library for describing Uls.

For example, in version 0.13, React had a React.render () method to mount an
element to a web page’s DOM node. In versions 0.14 and higher, you need to include
react-dom and call ReactDOM. render () instead of React .render ().

Having multiple packages created by the community to support various rendering
targets made this approach of separating writing components and rendering logical.
Some of these modules are as follows:

Renderer for the blessed (https://github.com/chjj/blessed) terminal inter-
face: http://github.com/Yomguithereal /react-blessed

Renderer for the ART library (https://github.com/sebmarkbage/art):
https://github.com/reactjs/react-art

Renderer for <canvass: https://github.com/Flipboard/react-canvas

Renderer for the 3D library using three.js (http://threejs.org): https://
github.com/Izzimach/react-three

Renderer for virtual reality and interactive 360 experiences: https://facebook
.github.io/react-vr

In addition to the support of these libraries, the separation of React Core from React-
DOM makes it easier to share code between React and React Native libraries (used for
native mobile i0OS and Android development). In essence, when using React for web
development, you’ll need to include at least React Core and ReactDOM.

Moreover, there are additional React utility libraries in React and npm. (Before
React v15.5, some of them were part of React as React add-ons.'® These utility libraries
allow you to enhance functionality, work with immutable data (https://
github.com/kolodny/immutability-helper), and perform testing.

Finally, React is almost always used with JSX—a tiny language that lets developers
write React Uls more eloquently. You can transpile JSX into regular JavaScript by using
Babel or a similar tool.

As you can see, there’s a lot of modularity—the functionality of Reactrelated
things is split into different packages. This gives you power and choice, which is a
good thing. No monolith or opinionated library dictates to you the only possible way
to implement things. More on this in section 1.5.3.

If you’re a web developer reading this book, you probably use SPA architecture.
Either you already have a web app built using this and want to reengineer it with React
(brownfield), or you're starting a new project from scratch (greenfield). Next, we’ll
zoom in on React’s place in SPAs as the most popular approach to building web apps.

> See the version 15.5 change log with the list of add-ons and npm libraries: https://
facebook.github.io/react/blog/2017/04/07 /reactv15.5.0.html. See also the page on add-ons:
https://facebook.github.io/react/docs/addons.html.

https://github.com/sebmarkbage/art
https://github.com/chjj/blessed
http://github.com/Yomguithereal/react-blessed
https://github.com/reactjs/react-art
https://github.com/Flipboard/react-canvas
http://threejs.org
https://github.com/Izzimach/react-three
https://github.com/Izzimach/react-three
https://facebook.github.io/react-vr
https://facebook.github.io/react-vr
https://github.com/kolodny/immutability-helper
https://github.com/kolodny/immutability-helper
https://facebook.github.io/react/blog/2017/04/07/react-v15.5.0.html
https://facebook.github.io/react/blog/2017/04/07/react-v15.5.0.html
https://facebook.github.io/react/docs/addons.html

18 CHAPTER 1 Meeting React

1.5.2 Single-page applications and React

Another name for SPA architecture is thick client, because the browser, being a client,
holds more logic and performs functions such as rendering of the HTML, validation, UI
changes, and so on. Figure 1.2 is basic: it shows a bird’s-eye view of a typical SPA archi-
tecture with a user, a browser, and a server. The figure depicts a user making a request,
and input actions like clicking a button, drag-and-drop, mouse hovering, and so on:

The user types a URL in the browser to open a new page.

The browser sends a URL request to the server.

The server responds with static assets such as HTML, CSS, and JavaScript. In
most cases, the HTML is bare-bones—that is, it has only a skeleton of the web
page. Usually there’s a “Loading ...” message and/or rotating spinner GIF.

The static assets include the JavaScript code for the SPA. When loaded, this
code makes additional requests for data (AJAX/XHR requests).

The data comes back in JSON, XML, or any other format.

Once the SPA receives the data, it can render missing HTML (the User Interface
block in the figure). In other words, UI rendering happens on the browser by
means of the SPA hydrating templates with data.'®

»

Once the browser rendering is finished, the SPA replaces the “Loading ...” mes-
sage, and the user can work with the page.

The user sees a beautiful web page. The user may interact with the page (Inputs
in the figure), triggering new requests from the SPA to the server, and the cycle
of steps 2—-6 continues. At this stage, browser routing may happen if the SPA
implements it, meaning navigation to a new URL will trigger not a new page

reload from the server, but rather an SPA rerender in the browser.

Browser Server
L
User 1. Inputs URL 2. URL request
_
3. Response
8. Inputs/Ul (assets)
updates Static t Static t

_]

-

4. Loads JS

App logic
SPA code

5. Data requests/

l 6. Renders responses
oo
. Data Data service
-
7. Completed interfacs
[—

website Ul

Figure 1.2 A typical SPA architecture

16 “What does it mean to hydrate an object?” Stack Overflow, http://mng.bz/uP25.

http://mng.bz/uP25

153

How React can fit into your web applications 19

To summarize, in the SPA approach, most rendering for Uls happens on the browser.
Only data travels to and from the browser. Contrast that with a thick-server approach,
where all the rendering happens on the server. (Here I mean rendering as in generat-
ing HTML from templates or UI code, not as in rendering that HTML in the browser,
which is sometimes called painting or drawing the DOM.)

Note that the MVC-like architecture is the most popular approach, butitisn’t the only
one. React doesn’t require you to use an MVC-like architecture; but, for the sake of
simplicity, let’s assume that your SPA is using an MVC-like architecture. You can see its
possible distinct parts in figure 1.3. A navigator or routing library acts as a controller of
sorts in the MVC paradigm; it dictates what data to fetch and what template to use. The
navigator/controller makes a request to get data and then hydrates/populates the
templates (views) with this data to render the Ulin the form of the HTML. The UI sends
actions back to the SPA code: clicks, mouse hovers, keystrokes, and so on.

SPA code
Data requests
U | Navigator (controller) | and server
ser User inputs Actions responses
User interface —_—
(HTML) | Data (model) |
Ul updates \) Renders
| Templates (view) |

Figure 1.3 Inside a single-page application

In an SPA architecture, data is interpreted and processed in the browser (browser ren-
dering) and is used by the SPA to render additional HTML or to change existing HTML.
This makes for nice interactive web applications that rival desktop apps. Angulars,
Backbone.js, and Ember.js are examples of front-end frameworks for building SPAs.

NOTE Different frameworks implement navigators, data, and templates dif-
ferently, so figure 1.3 isn’t applicable to all frameworks. Rather, it illustrates
the most widespread separation of concerns in a typical SPA.

React’s place in the SPA diagram in figure 1.3 is in the Templates block. React is a view
layer, so you can use it to render HTML by providing it with data. Of course, React does
much more than a typical template engine. The difference between React and other
template engines like Underscore, Handlebars, and Mustache is in the way you develop
Uls, update them, and manage their states. We’ll talk about states in chapter 4 in more
detail. For now, think of states as data that can change and that’s related to the UL

The React stack

React isn’t a full-blown, front-end JavaScript framework. React is minimalistic. It
doesn’t enforce a particular way of doing things like data modeling, styling, or routing

20

CHAPTER 1 Meeting React

(it’s non-opinionated). Because of that, developers need to pair React with a routing
and/or modeling library.

For example, a project that already uses Backbone.js and the Underscore.js tem-
plate engine can switch to Underscore for React and keep existing data models and
routing from Backbone. (Underscore also has utilities, not just template methods. You
can use these Underscore utilities with React as a solution for a clear declarative style.)
Other times, developers opt to use the React stack, which consists of data and routing
libraries created to be used specifically with React:

Data-model libraries and back ends—Reflux]S (https://github.com/reflux/refluxjs),
Redux (http://redux.js.org), Meteor (https://www.meteor.com), and Flux
(https://github.com/facebook/flux)

Routing library—React Router (https://github.com/reactjs/react-router)
Collection of React components to consume the Twitter Bootstrap library—React-
Bootstrap (https://react-bootstrap.github.io)

The ecosystem of libraries for React is growing every day. Also, React’s ability to describe
composable components (self-contained chunks of the UI) is helpful in reusing code.
There are many components packaged as npm modules. Just to illustrate the point that
having small composable components is good for code reuse, here are some popular
React components:

Datepicker component: https://github.com/Hacker0x01/react-datepicker

Set of tools to handle form rendering and validation: https://github.com/
prometheusresearch/react-forms

WAI-ARIA-compliant autocomplete (combo box) component: https://
github.com/reactjs/react-autocomplete

Then there’s JSX, which is probably the most frequent argument for not using React.
If you’re familiar with Angular, then you’ve already had to write a lot of JavaScript in
your template code. This is because in modern web development, plain HTML is too
static and is hardly any use by itself. My advice: give React the benefit of the doubt,
and give JSX a fair run.

JSX is a little syntax for writing React objects in JavaScript using <> as in
XML/HTML. React pairs nicely with JSX because developers can better implement and
read the code. Think of JSX as a mini-language that’s compiled into native JavaScript.
So, JSX isn’t run on the browser but is used as the source code for compilation. Here’s
a compact snippet written in JSX:

if (user.session)

return <a href="/logout"sLogout
else

return Login

Even if you load a JSX file in your browser with the runtime transformer library that
compiles JSX into native JavaScript on the run, you still don’t run the JSX; you run

http://redux.js.org
https://github.com/reflux/refluxjs
https://www.meteor.com
https://github.com/facebook/flux
https://github.com/reactjs/react-router
https://react-bootstrap.github.io
https://github.com/Hacker0x01/react-datepicker
https://github.com/prometheusresearch/react-forms
https://github.com/prometheusresearch/react-forms
https://github.com/reactjs/react-autocomplete
https://github.com/reactjs/react-autocomplete

1.6

Your first React code: Hello World 21

JavaScript instead. In this sense, JSX is akin to CoffeeScript. You compile these lan-
guages into native JavaScript to get better syntax and features than that provided by
regular JavaScript.

I know that to some of you, it looks bizarre to have XML interspersed with
JavaScript code. It took me a while to adjust, because I was expecting an avalanche of
syntax error messages. And yes, using JSX is optional. For these two reasons, I'm not
covering JSX until chapter 3; but trust me, it’s powerful once you get a handle on it.

By now, you have an understanding of what React is, its stack, and its place in the
higher-level SPA. It’s time to get your hands dirty and write your first React code.

Your first React code: Hello World

Let’s explore your first React code—the quintessential example used for learning pro-
gramming languages—the Hello World application. (If we don’t do this, the gods of
programming might punish us!) You won’t be using JSX yet, just plain JavaScript. The
project will print a “Hello world!!!” heading (<h1>) on a web page. Figure 1.4 shows
how it will look when you’re finished (unless you’re not quite that enthusiastic and
prefer a single exclamation point).

ec @ [tocalhost:8080/ch1/hello- % Ninja

- C' [1 localhost:8080/ch1/hello-world/ 7 D =

Hello world!!!

Figure 1.4 Hello World

Learning React first without JSX

Although most React developers write in JSX, browsers will only run standard
JavaScript. That’s why it’s beneficial to be able to understand React code in pure
JavaScript. Another reason we’re starting with plain JS is to show that JSX is optional,
albeit the de facto standard language for React. Finally, preprocessing JSX requires
some tooling.

| want to get you started with React as soon as possible without spending too much
time on setupin this chapter. You'll perform all the necessary setup for JSXin chapter 3.

The folder structure of the project is simple. It consists of two JavaScript files in the js
folder and one HTML file, index.html:

/hello-world
/3s
react.js
react-dom.js
index.html

22 CHAPTER 1 Meeting React

The two files in the js folder are for the React library version 15.5.4:'” react-dom.js (web
browser DOM renderer) and react.js (React Core package). First, you need to download
the aforementioned React Core and ReactDOM libraries. There are many ways to do it.
I recommend using the files provided in the source code for this book, which you can
find at www.manning.com/books/react-quickly and https://github.com/azat-co/
react-quickly/tree/master/ch01 /hello-world. This is the most reliable and easiest
approach, because it doesn’t require a dependency on any other service or tool. You
can find more ways to download React in appendix A.

WARNING Prior to version 0.14, these two libraries were bundled together.
For example, for version 0.13.3, all you needed was react.js. This book uses
React and React DOM version 15.5.4 (the latest as of this writing) unless
noted otherwise. For most of the projects in part 1, you’ll need two files:
reactjs and react-com.js. In chapter 8, you’ll need prop-types
(www.npmjs.com/package/prop-types), which was part of React until ver-
sion 15.5.4 but is now a separate module.

After you place the React files in the js folder, create the index.html file in the hello-
world project folder. This HTML file will be the entry point of the Hello World applica-
tion (meaning you’ll need to open it in the browser).

The code for index.html is simple and starts with the inclusion of the libraries in
<head>. In the <body> element, you create a <div> container with the ID content and
a <script> element (that’s where the app’s code will go later), as shown in the follow-
ing listing.

Listing 1.1 Loading React libraries and code (index.html)

<!DOCTYPE htmls> Imports the
<html> React library
<head>
<script src="js/react.js"></scripts) QJ Imports the_
<script src="js/react-dom.js"></scripts> ReactDOM library
</head>
<body>

1 1d=" n 1
<dlv, 1f_tcon'ff1;t ;;/,dlv> N Defines an empty <div>
<Script type=ttext/javascript’> element to mount the

o React Ul
</script>
</body> Starts the React code.for
</html> the Hello World view

Why not render the React element directly in the <body> element? Because doing so
can lead to conflict with other libraries and browser extensions that manipulate the

17 v15.5.4 is the latest as of this writing. Typically, major releases like 14, 15, and 16 incorporate significant dif-
ferences, whereas minor releases like 15.5.3 and 15.5.4 have fewer breaking changes and conflicts. The code
for this book was tested for v15.5.4. The code may work with future versions, but I can’t guarantee that it will
work because no one knows what will be in the future versions—not even the core contributors.

https://github.com/azat-co/react-quickly/tree/master/ch01/hello-world
https://github.com/azat-co/react-quickly/tree/master/ch01/hello-world
https://www.manning.com/books/react-quickly
http://www.npmjs.com/package/prop-types

Your first React code: Hello World 23

document body. In fact, if you try attaching an element directly to the body, you’ll get
this warning:

Rendering components directly into document.body is discouraged...
This is another good thing about React: it has great warning and error messages!

NOTE React warning and error messages aren’t part of the production build,
in order to reduce noise, increase security, and minimize the distribution size.
The production build is the minified file from the React Core library: for
example, react.min.js. The development version with the warnings and error
messages is the unminified version: for example, react.js.

By including the libraries in the HTML file, you get access to the React and ReactbOM
global objects: window.React and window.ReactDOM. You’ll need two methods from
those objects: one to create an element (React) and another to render it in the <div>
container (ReactbOM), as shown in listing 1.2.

To create a React element, all you need to do is call React . createElement (element -
Name, data, child) with three arguments that have the following meanings:

= elementName—HTML as a string (for example, 'h1') or a custom component
class as an object (for example, HelloWorld; see section 2.2)

= data—Data in the form of attributes and properties (we’ll cover properties
later); for example, null or {name: 'Azat'}

= child—Child element or inner HTML/text content; for example, Hello world!

Listing 1.2 Creating and rendering an h1l element (index.html)

var hl = React.createElement ('hl', null, 'Hello world!")
ReactDOM.render (

hi,

document .getElementById('content')

Creates and saves in a
variable a React element
of hl type

)
Renders the h1 element in the real
DOM element with ID "content"

This listing gets a React element of the hl type and stores the reference to this
object into the hl variable. The hl variable isn’t an actual DOM node; rather, it’s an
instantiation of the React hl component (element). You can name it any way you
want: helloWorldHeading, for example. In other words, React provides an abstrac-
tion over the DOM.

NOTE The hl variable name is arbitrary. You can name this variable anything
you want (such as bananza), as long as you use the same variable in React-
DOM. render ().

24 CHAPTER 1 Meeting React

Once the element is created and stored in h1, you render it to the DOM node/element
with ID content using the ReactDOM. render () method shown in listing 1.2. If you pre-
fer, you can move the hl variable to the render call. The result is the same, except you
don’t use an extra variable:

ReactDOM. render (
React.createElement ('hl', null, 'Hello world!'),
document .getElementById('content')

Now, open the index.html file served by a static HTTP web server in your favorite
browser. I recommend using an up-to-date version of Chrome, Safari, or Firefox. You
should see the “Hello world!” message on the web page, as shown in figure 1.5.

This figure shows the Elements tab in Chrome DevTools with the <hl> element
selected. You can observe the data-reactroot attribute; it indicates that this element
was rendered by ReactDOM.

One quick note: you can abstract the React code (listing 1.2) into a separate file
instead of creating elements and rendering them with ReactDOM.render () all in the
index.html file (listing 1.1). For example, you can create script.js and copy and paste
the hl element and ReactDOM.render () call into that file. Then, in index.html, you
need to include script.js after the <div> with ID content, like this:

<div id="content"s</div>
<script src="script.js"></scripts>

® © ® | [ocanostsososchot/melio x || | Ninja |
&« C | [localhost:8080/ch01/hello-world/ ci; @ =
Hello world!
[® (1] FElements Console Sources Network Timeline Profiles Resources Security Audits F 4
henl Styles Computed Event Listeners DOM Breakpoints Properties
<html>
» <head>..</head> ter :hov 4 .cls +
¥ <body= e o 1 4
v<div id="content"> ; ement.style
<h1l data-reactroot=Hello world!</hl= == $@
=fdiv= hl { user agent stylesheet
»<script type="text/javascript's_</script> display: block;
</body= font-size: 2em;
</html> -webkit-margin-before: 8.67em;

-webkit-margin-after: @.67em;
-webkit-margin-start: @px;
-webkit-margin-end: @px;

html body divicontent m font-weight: bold;

Figure 1.5 Inspecting the Hello World app as rendered by React

1.7

Summary

Local dev web server

It’s better to use a local web server instead of opening an index.html file in the browser
directly, because with a web server, your JavaScript apps will be able to make AJAX/XHR
requests. You can tell whether it’s a server or a file by looking at the URL in the address
bar. If the address starts with file, then it’s a file; and if the address starts with http,
then it's a server. You'll need this feature for future projects. Typically, a local HTTP
web server listens to incoming requests on 127.0.0.1 or localhost.

You can get any open source web server, such as Apache, MAMP, or (my favorites
because they're written in Node.js) node-static (https://github.com/cloud-
head/node-static) or http-server (www.npmjs.com/package/http-server). To install
node-static or http-server, you must have Node.js and npm installed. If you don’t have
them, you can find installation instructions for Node and npm in appendix A or by
going to http://nodejs.org.

Assuming you have Node.js and npm on your machine, run npm i -g node-static or
npm 1 -g http-server in your terminal or command prompt. Then, navigate to the
folder with the source code, andrun staticorhttp-server. Inmycase, I’'mlaunching
static from the react-quickly folder, so | need to put the path to Hello World in my
browser URL bar: http://localhost:8080/ch01/hello-world/ (see figure 1.5).

25

Congratulations! You’ve just implemented your first React code!

Quiz

The declarative style of programming doesn’t allow for mutation of stored val-
ues. It’s “this is what I want” versus the imperative style’s “this is how to do it.”
True or false?

React components are rendered into the DOM with which of the following meth-
ods? (Beware, it’s a tricky question!) ReactDOM. renderComponent, React . render,
ReactDOM. append, or ReactDOM. render

You have to use Node.js on the server to be able to use React in your SPA. True
or false?

You must include react-com.js in order to render React elements on a web page.
True or false?

The problem React solves is that of updating views based on data changes. True
or false?

1.8 Summary

React is declarative; it’s only a view or UI layer.

React uses components that you bring into existence with ReactDOM. render ().
React component classes are created with class and its mandatory render ()
method.

React components are reusable and take immutable properties that are accessi-
ble via this.props.NAME.

https://github.com/cloudhead/node-static
https://github.com/cloudhead/node-static
http://www.npmjs.com/package/http-server
http://nodejs.org

26 CHAPTER 1 Meeting React

You use pure JavaScript to develop and compose Uls in React.

You don’t need to use JSX (an XMIL-like syntax for React objects); JSX is optional
when developing with React!

To summarize the definition of React: React for the web consists of the React
Core and ReactDOM libraries. React Core is a library geared toward building
and sharing composable Ul components using JavaScript and (optionally) JSX
in an isomorphic/universal manner. On the other hand, to work with React in
the browser, you can use the ReactDOM library, which has methods for DOM
rendering as well as for server-side rendering.

1.9 Quiz answers

'$9AJ0S 103y 1e) wa[qoad Arewnid oy ST SIy I, *ondy,

ATeIqI] WO@O'Y 93 PIau NOX "ondy,

"A3o[ouyd9) puo-ydeq AUk asn Ued NOg "as[e]

“I9PUSI ' WOUIOeSY

9[f1s 1 Op 01 MOY ST ST, ® ST 2AneIodWI pue ‘O[A1S JUEBM [JBUM,, B ST JATIRIR[I9(] "ONI],

E Watch this chapter’s introduction video by
) scanning this QR code with your phone or going
p—=%' to http://reactquickly.co/videos/ch02.

Baby steps with React

This chapter covers

= Nesting elements
= Creating a component class
= Working with properties

This chapter will teach you how to take baby steps with React and lays the foundation
for the following chapters. It’s crucial for understanding React concepts such as ele-
ments and components. In a nutshell, elements are instances of components (also called
component classes). What are their use cases, and why do you use them? Read on!

NOTE The source code for the examples in this chapter is at www.manning
.com/books/react-quickly and https://github.com/azat-co/react-quickly/
tree/master/ch02 (in the ch02 folder of the GitHub repository
https://github.com/azat-co/react-quickly). You can also find some demos
at http://reactquickly.co/demos.

2.1 Nesting elements

In the last chapter, you learned how to create a React element. As a reminder, the
method you use is React . createElement (). For example, you can create a link ele-
ment like this:

27

http://www.manning.com/books/react-quickly
http://www.manning.com/books/react-quickly
https://github.com/azat-co/react-quickly/tree/master/ch02
https://github.com/azat-co/react-quickly/tree/master/ch02
https://github.com/azat-co/react-quickly
http://reactquickly.co/demos
http://reactquickly.co/videos/ch02

28 CHAPTER 2 Baby steps with React

let linkReactElement = React.createElement('a',
{href: 'http://webapplog.com'},
'Webapplog.com'

The problem is that most Uls have more than one element (such as a link inside a
menu). For example, in figure 2.1, there are buttons in the section, video thumbnails,
and a YouTube player.

The solution to creating more-complex structures in a hierarchical manner is nest-
ing elements. In the previous chapter, you implemented your first React code by creat-
ing an hl React element and rendering it in the DOM with ReactDOM. render ():

let hl = React.createElement ('hl', null, 'Hello world!')
ReactDOM. render (

hi,

document .getElementById('content')

It’s important to note that ReactDOM.render () takes only one element as an argu-
ment, which is hl in the example (the view is shown in figure 2.2).

® @ W React Quickly by Azat Mardan x Ninja

< C @ reactquickly.co &

Watch the Videos to
Learn more About
React,js

-~ React quickly comes with screencasts, quizzes, summaries and online code demos

React Quickly is mere thon o book. It's on online course which immerses readers in the

world of |SX, stotes, properties, components, testing, isomorphic ript, ESG, Reoct

MNative mobile develepment and many other topics. Azat Mardan published 13 books
and tought over 20 live in-person courses so he knows what works and what know

when it comes to technical educotioin

Each chopter hos many small exomples and one large preject. You can watch the

screencasts for the projects for free on YouTube and download the code from GitHub.

REVIEWS = BUY THE BOOK

Chapter 1 - Menu with Chapter 2 - Tooltip with Chapter 3 - Timer with Chapter 4 - Rock Poper Chapter 5 - Chat with Chapter 6 - Message
React React JSX and React Scissors with Meteor Meteor and React Board with Reflux,
and React Express and React

Figure 2.1 The React Quickly website has many nested Ul elements.

Nesting elements 29

eo0ce /[tocalnost:8080/ch01/helic X |\ | | Ninja |

I(— = C | [} localhost:8080/ch01/hello-world/ 5,{-\3 @

Hello world!
[e21-37)

|R fi] | Elements Console Sources Network Timeline Profies Resources Security Audits . 4
henl Styles Computed Event Listeners DOM Breakpoints Properties
<htm>
» <head>..</head> Filter thov 4 .cls +
¥ <body> =
¥ediv id="content"> element.style {
| <h1 data-reactroot=Hello world!</hl> == $@ b
</div= h { user agent stylesheet
B <script type="text/javascript’>.</script> display: block;
</body> font-size: 2em;
</html> —webkit-margin-before: 8.67em;

-webkit-margin-after: @.67em;
-webkit-margin-start: @px;

| —webkit-margin-end: 8px;

html body divécontent m font-weight: bold;

Figure 2.2 Rendering a single heading element

As I'mentioned at the beginning of this section, the problem
arises when you need to render two same-level elements (for
example, two hl elements). In this case, you can wrap the ele- l

ments in a visually neutral element, as shown in figure 2.3. [div]

[ReactDOM.render ()]

The <div> container is usually a good choice, as is .
You can pass an unlimited number of parameters to
createElement (). All the parameters after the second one [Lt J [i]
become child elements. Those child elements (h1, in this
case) are siblings—that is, they’re on the same level relative

Figure 2.3 Structuring a
) . React render by using a
to each other, as you can see in figure 2.4, which shows Dev- wrapper <div> container

Tools open in Chrome. to render sibling headings

® O @ [iocahost:aosorchoemelic x| Ninja

€ = C [} localhost:8080/ch02/hello-world-nested/ e @D

Hello world!
Hello world!

% (1] | Eements Console Sources Network Timeline Profies React » | § X
LJliaceRisact Updates <div> (Sr in the consale)
¥ <dive

<hi=Hello world!</hi> Props read-only

<ni>Hello world!</hl> b children: Array(2]

</div=

Figure 2.4 React DevTools

| shows a <div> wrapper for
L Search by Component Name J nested sibling hl elements.

div

30

CHAPTER 2 Baby steps with React

React Developer Tools

In addition to the Elements tab, which is included by default in Chrome DevTools, you
can install an extension (or plug-in) called React Developer Tools. It’s the last tab in
figure 2.4. React Developer Tools is available for Firefox as well. It lets you inspect
the results of React rendering closely, including the component’s hierarchy, name,
properties, states, and more.

Here’s the GitHub repository: https://github.com/facebook/react-devtools. You can
also find React Developer Tools for Chrome at http://mng.bz/V276 and for Firefox at
http://mng.bz/59V9.

Knowing this, let’s use createElement () to create the <div> element with two <hl>
child elements (ch02/hello-world-nested/index.html).

Listing 2.1 Creating a <div> element with two <h1> children

let hl = React.createElement ('hl', null, 'Hello world!')
ReactDOM. render (
React.createElement ('div', null, hl, hil),
document .getElementById('content')
)

If the third parameter
of createElement() is a
string, it specifies the
text value of the
element being created.

If the third and subsequent parameters
aren’t text, they specify the child
elements of the element being created.

The HTML code can stay the same as in the Hello World example from chapter 1, as
long as you include the necessary React and ReactDOM libraries and have the content
node (ch02/hello-world-nested/index.html).

Listing 2.2 HTML for the nested elements example without the React code

<!DOCTYPE htmlx>
<html>
<head>
<script src="js/react.js"></scripts>
<script src="js/react-dom.js"></scripts>
</head>
<body>
<div id="content"s</divs>
<script type="text/javascript"s

</scripts>
</body>
</html>

So far, you’ve only provided string values as the first parameter of createElement ().
But the first parameter can have two types of input:

https://github.com/facebook/react-devtools
http://mng.bz/V276
http://mng.bz/59V9

2.2

Creating component classes 31

Standard HTML tag as a string; for example, 'h1', 'div', or 'p' (without the
angle brackets). The name is lowercase.

React component classes as an object; for example, HelloWorld. The name is
capitalized.

The first approach renders standard HTML elements. React goes through its list of stan-
dard HTML elements and, when and if it finds a match, uses it as a type for the React ele-
ment. For example, when you pass 'p', React will find a match because p is a paragraph
tag name. This will produce <p> in the DOM when/if you render this React element.

Now let’s look at the second type of input: creating and providing custom compo-
nent classes.

Creating component classes

After nesting elements with React, you’ll stumble across the next problem: soon, there
are a lot of elements. You need to use the component-based architecture described in
chapter 1, which lets you reuse code by separating the functionality into loosely cou-
pled parts. Meet component classes, or just components, as they’re often called for brevity
(not to be confused with web components).

Think of standard HTML tags as building blocks. You can use them to compose
your own React component classes, which you can use to create custom elements
(instances of classes). By using custom elements, you can encapsulate and abstract
logic in portable classes (composable reusable components). This abstraction allows
teams to reuse Uls in large, complex applications as well as in different projects.
Examples include autocomplete components, toolboxes,
menus, and so on.

Creating the 'Hello world!' element with an HTML [ReactDOM. render ()]
tag in the createElement () method was straightforward:
(createElement ('hl', null, 'Hello World!'). Butwhat
if you need to separate Hello World into its own class, as
shown in figure 2.5? Let’s say you need to reuse Hello [HelloWorld]
World in 10 different projects! (You probably wouldn’t
use it that many times, but a good autocomplete compo-
nent will definitely be reused.)

Interestingly, you create a React component class by [div]
extending the React.Component class with class CHILD
extends PARENT ES6 syntax. Let’s create a custom Hello-
World component class using class HelloWorld extends

React.Component. [-] [-]
The one mandatory thing you must implement for

this new class is the render () method. This method must . .
Figure 2.5 Rendering a

<div> element created from
created from another custom component class or an a custom component class

HTML tag. Both can have nested elements. instead of rendering it directly

return a single React element, createElement (), which is

32 CHAPTER 2 Baby steps with React

Listing 2.3 (ch02/hello-world-class/js/script.js) shows how you can refactor the
nested Hello World example (listing 2.1) into an app with a custom React component
class, HelloWorld. The benefit is that with a custom class, you can reuse this UI better.
The mandatory render () method of the HelloWorld component returns the same
<div> elementfrom the previous example. Once you’ve created the custom HelloWorld
class, you can pass it as an object (not as a string) to ReactDOM. render ().

Listing 2.3 Creating and rendering a React component class

Creates a
render() Defines a React component
method as an class with the capitalized name
expression
(funftion let hl = React.createElement ('hl', null, 'Hello world!"')
returning a class HelloWorld extends React.Component { <G
singleelement) | . ., .pger() {
return React.createElement ('div', null, hl, hl) <G
Attaches }) Implements a return
theReact | - ipooMm.render (statement with a single
th:lfer?lrrl;tot?: React.createElement (HelloWorld, null), React element .so the
. document .getElementById('content') React class can invoke
element with) render() and receive
ID “content” the <div> element

Uses the HelloWorld class to create an
element by passing the object, instead
of a string, as the first argument

with two h1 elements

By convention, the names of variables containing React components are capitalized.
This isn’t required in regular JS (you can use the lowercase variable name
helloWorld); but because it’s necessary in JSX, you apply this convention here. (In
JSX, React uses uppercase and lowercase to differentiate a custom component like
<HelloWorld/> from a regular HTML element such as <hl/>. But in regular JS, it’s
differentiated by passing either a variable such as HelloWorld or a string such as 'hl'.
It’s a good idea to start using capitalization convention for custom components now.)
More about JSX in chapter 3.

ES6+/ES2015+ and React

The component class example defines render () using ES6 style, in which you omit
the colon and the word function. It's exactly the same as defining an attribute (a.k.a.
key or object property) with a value that’s a function: that is, typing render: function ().
My personal preference, and my recommendation to you, is to use the ES6 method style
because it’s shorter (the less you type, the fewer mistakes you make).

Historically, React had its own method to create a component class: React
.createClass (). There are slight differences between using the ES6 class to extend
React.Component and using React.createClass (). Typically, you'd use either
class (recommended) or createClass (), but not both. Moreover, in React 15.5.4,
createClass () is deprecated (that is, no longer supported).

(continued)

Creating component classes 33

Although you may still see the React.createClass () method used by some teams,
the general tendency in the React world is to move toward a common standard: using
the ES6 class approach. This book is forward thinking and uses the most popular
tools and approaches, so it focuses on ES6. You can find ES5 examples for some of
this book’s projects in the GitHub repository, prefixed with -es5; they were for an early

version of the book.

As of August 2016, most modern browsers support these ES6 (and almost all other)
features natively (without extra tools),* so | assume you’re familiar with it. If you're not,
or if you need a refresher or more information on ES6+/ES2015+ and its primary fea-
tures as they relate to React, see appendix E or a comprehensive book such as Exploring
ES6 by Dr. Axel Rauschmayer (free online version: http://exploringjs.com/es6).

Analogous to ReactDOM.render (), the render () method in createClass() can only

return a single element. If you need to return multiple same-level elements, wrap them in

a <div> container or another unobtrusive element such as . You can run the
code in your browser; the result is shown in figure 2.6.

ece /[localhost:8080/ch01/mellc- x

& - C' |[3 localhost:8080/ch01/hello-world-class/ D

Hello world!
Hello world!

Ninja
% (] Elements » Pox
<html=>
b <head>..</head>
¥ <body=
vediv id="content"=
¥ <div data-reactroot> = 3@

<hl=Hello world!</hl>
<hl=Hello world!</hl>
</div=

<fdiv=

=script sre=

"seript, js"=</script>

</body=
</html>

Figure 2.6 Rendering an

html body dividcontent hi
[€7] element created from a custom

»
Styles |\Event Ueteners HelloWorld component class

You may think you didn’t gain much with the refactoring; but what if you need to

print more Hello World statements? You can do so by reusing the HelloWorld compo-

nent multiple times and wrapping them in a <div> container:

ReactDOM.render (

React.createElement (

rdiv',
null,

React.createElement (HelloWorld),
React.createElement (HelloWorld) ,

! ECMAScript 6 Compatibility Table, https://kangax.github.io/compat-table/es6.

https://kangax.github.io/compat-table/es6
http://exploringjs.com/es6

34

2.3

CHAPTER 2 Baby steps with React

React.createElement (HelloWorld)
)
document .getElementById('content')
)

This is the power of component reusability! It leads to faster development and fewer
bugs. Components also have lifecycle events, states, DOM events, and other features
that let you make them interactive and self-contained; these are covered in the follow-
ing chapters.

Right now, the HelloWorld elements will all be the same. Is there a way to custom-
ize them? What if you could set element attributes and modify their content and/or
behavior? Meet properties.

Working with properties

Properties are a cornerstone of the declarative style that React uses. Think of properties
as unchangeable values within an element. They allow elements to have different vari-
ations if used in a view, such as changing a link URL by passing a new value for a property:

React.createElement ('a', {href: 'http://node.university'})

One thing to remember is that properties are immutable within their components. A par-
ent assigns properties to its children upon their creation. The child element isn’t sup-
posed to modify its properties. (A child is an element nested inside another element;
for example, <h1/> is a child of <HelloWorld/>.) For instance, you can pass a property
PROPERTY NAME with the value VALUE, like this:

<TAG_NAME PROPERTY NAME=VALUE/>

Properties closely resemble HTML attributes. This is one of their purposes, but they
also have another: you can use the properties of an element in your code as you wish.
Properties can be used as follows:

To render standard HTML attributes of an element: href, title, style, class,
and so on

In the JavaScript code of a React component class via this.props values; for
example, this.props.PROPERTY_NAME (replacing PROPERTY NAME with your
arbitrary name)

Under the hood, React will match the property name (PROPERTY_NAME) with the list of
standard attributes. If there’s a match, the property will be rendered as an attribute of
an element (the first scenario). The value of this attribute is also accessible in
this.props.PROPERTY NAME in the component class code.

If there’s no match with any of the standard HTML attribute names (the second
scenario), then the property name isn’t a standard attribute. It won’t be rendered as
an attribute of an element. But the value will still be accessible in the this.props
object; for example, this.props.PROPERTY NAME. It can be used in your code or
rendered explicitly in the render () method. This way, you can pass different data to

Working with properties 35

Object.freeze() and Object.isFrozen()

Internally, React uses Object.freeze()? from the ES5 standard to make the
this.props object immutable. To check whether an object is frozen, you can use the
Object.isFrozen() method.® For example, you can determine whether this state-
ment will return true:

class HelloWorld extends React.Component {
render () {
console.log(Object.isFrozen (this.props))
return React.createElement ('div', null, hl, hil)

}
}

If you're interested in more details, | encourage you to read the React changelog* and
search on React’s GitHub repository.®

different instances of the same class. This allows you to reuse components, because
you can programmatically change how elements are rendered by providing differ-
ent properties.

You can even take this feature of properties a step further and completely modify
the rendered elements based on the value of a property. For example, if
this.props.heading is true, you render “Hello” as a heading. If it’s false, you render
“Hello” as a normal paragraph:

render () {
if (this.props.heading) return <hlsHello</hls>
else return <p>Hello</p>

}

In other words, you can use the same component—but provided with different prop-
erties, the elements rendered by the component can be different. Properties can be
rendered by render (), used in components’ code, or used as HTML attributes.

To demonstrate the properties of components, let’s slightly modify HelloWorld
with props. The goal is to reuse the HelloWorld component such that each instance of
this class renders different text and different HTML attributes. You’ll enhance the
HelloWorld headings (<hl> tag) with three properties (see figure 2.7):

id—Matches the standard attribute id and is automatically rendered by React
frameworkName—Doesn’t match any standard attributes for <hl>, but is explic-
itly printed in the text of headings

title—Matches the standard attribute title and is automatically rendered by
React

Morzilla Developer Network, Object.freeze(), http://mng.bz/p6Nr.
Mozilla Developer Network, Object.isFrozen(), http://mng.bz/0P75.
GitHub, 2016-04-07-react-v15, http://mng.bz/j6¢3.

GitHub, “freeze” search results, http://mng.bz/210Z.

http://mng.bz/p6Nr
http://mng.bz/0P75
http://mng.bz/j6c3
http://mng.bz/2l0Z

36 CHAPTER 2 Baby steps with React

div
e Y
hi
AN J
HelloWorld HelloWorld HelloWorld - ~
Render hi
[0 | [eiee | | [[ia | [eere] || [2@] [eiee]
| frameworkName | | frameworkName | | frameworkName | L)
e Y
hi
Figure 2.7 The component class HelloWorld renders properties L)
that are standard HTML attributes, but not frameworkName.

If a property’s name matches a standard HTML attribute, it will be rendered as an attri-
bute of the <hl> element, as shown in figure 2.7. So the two properties id and title
will be rendered as <h1> attributes, but not frameworkName. You may even get a warn-
ing about the unknown frameworkName property (because it’s not in the HTML speci-
fication). How nice!

Let’s zoom in on the <div> element implementation (figure 2.8). Obviously, it
needs to render three child elements of the HelloWorld class, but the text and attri-
butes of the resulting headings (<h1/>) must be different. For example, you pass id,
frameworkName, and title. They’ll be part of the HelloWorld class.

Before you implement <h1/>, you need to pass the properties to HelloWorld. How
do you do this? By passing these properties in an object literal in the second argument
to createElement () when you create HelloWorld elements in the <div> container:

ReactDOM. render (
React.createElement (
rdiv',
null,
React.createElement (HelloWorld, ({
id: 'ember',
frameworkName: 'Ember.js',
title: 'A framework for creating ambitious web applications.'}),
React.createElement (HelloWorld, {
id: 'backbone',
frameworkName: 'Backbone.js',
title: 'Backbone.js gives structure to web applications...'}),
React.createElement (HelloWorld,
id: 'angular',
frameworkName: 'Angular.js',
title: 'Superheroic JavaScript MVW Framework'})
)
document .getElementById('content')

Working with properties 37

div (DOM element)

-

hi
div (React element)
N J
HelloWorld W HelloWorld (HelloWorld - ~
: [Render hl
| id | |title | id | |title| id title
s JEM
frameworkNg ameworkName L
P
\ — hi
div (React element) \ J
\
e Y &
HelloWorld (React element)
| id | |tit1e || frameworkName
h1l (React element)
| id | |tit1e || frameworkName
| 'Hello' + this.props.frameworkName+ 'world!!!"' | 'He
S AN

Figure 2.8 The HelloWorld class is used three times to generate three h1l elements that have different
attributes and innerHTML.

Now let’s look at the HelloWorld component implementation. The way React works is
that the second parameter to createElement () (for example, {id: 'ember'...}) is
an object whose properties are accessible via the this.props object inside the compo-
nent’s render () method. Therefore, you can access the value of frameworkName as
shown in the following listing.

Listing 2.4 Using the £rameworkName property in the render () method

class HelloWorld extends React.Component {

render () { Concatenates (combines) three strings:
return React.createElement (“Hello”, “this.props.frameworkName”,
ht and “world!!!”

null,
'Hello ' + this.props.frameworkName + ' world!!!"

}
}

The keys of the this.props object are exactly the same as the keys of the object
passed to createElement () as the second parameter. That is, this.props has id,

38 CHAPTER 2 Baby steps with React

frameworkName, and title keys. The number of key/value pairs you can pass in the
second argument to React.createElement () is unlimited.

In addition, you may have already guessed that it’s possible to pass all the proper-
ties of HelloWorld to its child <hl/>. This can be extremely useful when you don’t
know what properties are passed to a component; for example, in HelloWorld, you
want to leave the style attribute value up to a developer instantiating HelloWorld.
Therefore, you don’t limit what attributes to render in <h1/>.

Listing 2.5 Passing all the properties from HelloWorld to <hl>

class HelloWorld extends React.Component

render () {
return React.createElement (Passes 2!" the .
"hi', properties to the child
this.props heading element

'Hello ' + this.props.frameworkName + ' world!!!'
)

}
}

Then, you render three HelloWorld elements into the <div> with the ID content, as
shown in the following listing (ch02/hellojs-world/js/script.js) and figure 2.9.

Listing 2.6 Using properties passed during element creation

class HelloWorld extends React.Component { Any properties passed into
Outputs the render () { HelloWorld when createElement
frameworkName return React.createElement (is called are passed into this
‘hi', <h1> element.
proper'ty ashtext this.props,
in <hl> 'Hello ' + this.props.frameworkName + ' world!!!"
)
}
}
ReactDOM. render (
React.createElement (id and title correspond to
'div?', standard HTML attributes
null, for <h1> and are rendered
React.createElement (HelloWorld, { as those attributes.
frameworkName id: 'ember!, 3((Co5-3))
isn’t a standard frameworkName: 'Ember.js',
HTML attribute for title: 'A framework for creating ambitious web applications.'}),
<h1>, so it won’t be React.createElement (HelloWorld, {
rendered unless you id: 'backbone’,

do somethlng with it. frameworkName: 'Backbone.js',

title: 'Backbone.js gives structure to web applications...'}),
React.createElement (HelloWorld, {
id: 'angular',
frameworkName: 'Angular.js',
title: 'Superheroic JavaScript MVW Framework'})
)
document .getElementById('content')

Quiz 39

® O ® [locahost:8080/ch02/elio-js- X Ninja

(]

L C | @ localhost:8080/ch02/hello-js-world/ 1

Hello Ember.js world!!!
Hello Backbone.js world!!!
Hello Angular.js world!!!

[® (] @ Elements Console Sources Network Timeline Profles Application Security Audits React X
Trace React Updates Highlight Search Use Regular Expressions <hl> ($r in the console)

¥ adive

»<HelloWorld id="ember” frameworkMame="Ember.js" title="A framework for creating ambitious web application. Props read-only

children: “Hello Backbone.js world!!!™

v<HelloWorld id="backbone" frameworkName=" 5" title="| j5 gives structure to web applicatic
<hl id="backbone” frameworkName="Backbone.js" title="Backbone.js gives structure to web applications...” rameworkName: "Backbone. js"
</HelloWorld> id: “backbene"™
kHelloWorld ide"angular” frameworkMames"Angular.js" titles"Superheroic JavaScript MW Framework"s.</Hellok title: "Backbone.js gives structure to web
<fdiv> applications..."”
div HelloWorld m

sarch by Component Name

Figure 2.9 Result of reusing HelloWorld with different properties to render three different headings

As usual, you can run this code via a local HTTP web server. The result of reusing the
HelloWorld component class is three different headings (see figure 2.9).

You used this.props to render different text for the headings. You used proper-
ties to render different titles and IDs. Thus, you effectively reused most of the code,
which makes you the master of React HelloWorld component classes!

We’ve covered several permutations of Hello World. Yes, I know, it’s still the bor-
ing, good-old Hello World. But by starting small, we’re building a solid foundation for
future, more-advanced topics. Believe me, you can achieve a lot of great things with
component classes.

It’s very important to know how React works in regular JavaScript events if you
(like many React engineers) plan to use JSX. This is because in the end, browsers
will still run regular JS, and you’ll need to understand the results of the JSX-to-JS
transpilation from time to time. Going forward, we’ll be using JSX, which is covered
in the next chapter.

2.4 Quiz
A React component class can be created with which of the following?
createComponent (), createElement (), class NAME extends React.Component,
class NAME extends React.Class
The only mandatory attribute or method of a React component is which of the
following? function, return, name, render, class
To access the url property of a component, you use which of the following?
this.properties.url, this.data.url, this.props.url, url

40 CHAPTER 2 Baby steps with React

React properties are immutable in a context of a current component. True or
false?
React component classes allows developers to create reusable Uls. True or false?

2.5 Summary

You can nest React elements using third, fourth, and so on arguments in create-
Element ().

Create elements from custom component classes.

Modify the resulting elements using properties.

You can pass properties to child element(s).

To use a component-based architecture (one of the features of React), you cre-
ate components.

2.6 Quiz answers

*S[1 2[qeSNaT 918310 0} sjuduodwod mau asn s19do[aAd(] "onu],
‘f1xodoad e o8ueyo 03 srqrssoduur s 31 “onay,
109[qo sonradoud ot soa1S sdoxd- sTy3 A[uo asnesaq Tan- sdoxd: sTyl

‘reuondo st sweu pue ‘priea JoU dIe SSETD PUL ISPUST

‘UINISI ‘UOTIDUNT ISNELIAQ ‘Os[e ‘poylaw paxmbax Guo ayy s)1 asnedaq () 1epusa
*(PauLop 10U) IOIIFIDIUIIIJIY O) NP [IeJ [[IM

SI9UIO PUR SSB[)*1IBIY OU §,219) IsneII(‘qusuodwo) - 10esy spusIXs HNYN SSerd

E Watch this chapter’s introduction video by
scanmng this QR code with your phone or going

Introduction to JSX

This chapter covers

= Understanding JSX and its benefits
= Setting up JSX transpilers with Babel
= Being aware of React and JSX gotchas

Welcome to JSX! It’s one of the greatest things about React, in my opinion—and
one of the most controversial subjects related to React in the minds of a few devel-
opers I spoke with (who, not surprisingly, haven’t yet built anything large in React).

Thus far, we’ve covered how to create elements and components so that you can
use custom elements and better organize your Uls. You used JavaScript to create
React elements, instead of working with HTML. But there’s a problem. Look at this
code, and see if you can tell what’s happening:

render () {
return React.createElement (
rdiv',
{ style: this.styles },
React.createElement (
'p'y
null,
React.createElement (
reactRouter.Link,
{ to: this.props.returnTo },

41

http://reactquickly.co/videos/ch03

42

3.1

CHAPTER 3 Introduction to JSX

'Back'
)
)
this.props.children

)i
}
Were you able to tell that there are three elements, that they’re nested, and that the
code uses a component from React Router? How readable is this code, compared to
standard HTML? Do you think this code is eloquent? The React team agrees that read-
ing (and typing, for that matter) a bunch of React.createElement () statements isn’t
fun. JSX is the solution to this problem.

NOTE The source code for the examples in this chapter is at www.manning
.com/books/react-quickly and https://github.com/azat-co/react-quickly/
tree/master/ch03 (in the ch03 folder of the GitHub repository
https://github.com/azat-co/react-quickly). You can also find some demos at
http://reactquickly.co/demos.

What is JSX, and what are its benefits?

JSX is a JavaScript extension that provides syntactic sugar (sugar-coating) for function
calls and object construction, particularly React.createElement (). It may look like a
template engine or HTML, but it isn’t. JSX produces React elements while allowing
you to harness the full power of JavaScript.

JSXis a great way to write React components. Its benefits include the following:

Improved developer experience (DX)—Code is easier to read because it’s more elo-
quent, thanks to an XML-like syntax that’s better at representing nested declara-
tive structures.

More-productive team members—Casual developers (such as designers) can modify
code more easily, because JSX looks like HTML, which is already familiar to them.
Fewer wrist injuries and syntax errors—Developers have less code to type (that is,
less sugar-coating), which means they make fewer mistakes and are less likely to
develop repetitive-stress injuries.

Although JSX isn’t required for React, it fits in nicely and is highly recommended by
me and React’s creators. The official “Introducing JSX” page' states, “We recommend
using [JSX] with React.”

To demonstrate the eloquence of JSX, this is the code to create HelloWorld and an
a link element:

<div>

<HelloWorld/>

Great JS Resources
</div>

! https://facebook.github.io/react/docs/introducing-jsx.html.

http://www.manning.com/books/react-quickly
http://www.manning.com/books/react-quickly
https://github.com/azat-co/react-quickly/tree/master/ch03
https://github.com/azat-co/react-quickly/tree/master/ch03
https://facebook.github.io/react/docs/introducing-jsx.html
https://github.com/azat-co/react-quickly
http://reactquickly.co/demos

What is JSX, and what are its benefits? 43

That’s analogous to the following JavaScript:

React.createElement (
ndivn,
null,
React.createElement (HelloWorld, null),
React.createElement ("br", null),
React.createElement (
||a|l ,
{ href: "http://webapplog.com" },
"Great JS Resources"

And if you use Babel v6 (one of the tools for J[SX; more on Babel in a few pages), the JS
code becomes this:

"use strict";

React.createElement (
n divH ,
null,
n n ,

React.createElement (HelloWorld, null),

non

React.createElement ("br", null),
n n
,

React.createElement (
||a|| ,
{ href: "http://webapplog.com" },
"Great JS Resources"

).

)i

In essence, JSX is a small language with an XML-like syntax; but it has changed the way
people write Ul components. Previously, developers wrote HTML—and JS code for con-
trollers and views—in an MVC-like manner, jumping between various files. That stemmed
from the separation of concerns in the early days. This approach served the web well
when it consisted of static HTML, a little CSS, and a tiny bit of JS to make text blink.

This is no longer the case; today, we build highly interactive Uls, and JS and HTML
are tightly coupled to implement various pieces of functionality. React fixes the bro-
ken separation of concerns (SoC) principle by bringing together the description of
the UI and the JS logic; and with JSX, the code looks like HTML and is easier to read
and write. If for no other reason, I'd use React and JSX just for this new approach to
writing Uls.

JSX is compiled by various transformers (tools) into standard ECMAScript (see fig-
ure 3.1). You probably know that JavaScript is ECMAScript, too; but JSX isn’t part of
the specification, and it doesn’t have any defined semantics.

44

CHAPTER 3 Introduction to JSX

1.JSX 2. Transpiler 3.JS 4. Browser

@: -

Figure 3.1 JSX is transpiled into regular JavaScript.

NOTE According to https://en.wikipedia.org/wiki/Source-to-source_compiler,
“A source-to-source compiler, transcompiler, or transpiler is a type of compiler that
takes the source code of a program written in one programming language as its
input and produces the equivalent source code in another programming
language.”

You may wonder, “Why should I bother with JSX?” That’s a great question. Consider-
ing how counterintuitive JSX code looks to begin with, it’s no surprise that many devel-
opers are turned off by this amazing technology. For example, this JSX shows that
there are angle brackets in the JavaScript code, which looks bizarre at first:

ReactDOM.render (<hl>Hello</hl>, document.getElementById('content'))

What makes JSX amazing are the shortcuts to React.createElement (NAME, ...).
Instead of writing that function call over and over, you can instead use <NAME/>. And
as I said earlier, the less you type, the fewer mistakes you make. With JSX, DX is as
important as user experience (UX).

The main reason to use JSX is that many people find code with angle brackets (< >)
easier to read than code with a lot of React.createElement () statements (even when
they’re aliased). And once you get into the habit of thinking about <NAME/> not as
XML, but as an alias to JavaScript code, you’ll get over the perceived weirdness of JSX
syntax. Knowing and using JSX can make a big difference when you’re developing
React components and, subsequently, React-powered applications.

Alternative shortcuts

To be fair, there are a few alternatives to JSX when it comes to avoiding typing ver-
bose React.createElement () calls. One of them is to use the alias React .DOM. *.
For example, instead of creating an <h1/> element with

React.createElement ('hl', null, 'Hey')
the following will also suffice and requires less space and time to implement:
React .DOM.hl (null, 'Hey'")

You have access to all the standard HTML elements in the React .DOM object, which
you can inspect like any other object:

console.log (React .DOM)

https://en.wikipedia.org/wiki/Source-to-source_compiler

3.2

3.2.1

Understanding JSX 45

(continued)

You can also type React .DOM and press Enter in the Chrome DevTools console. (Note
that React .DOM and ReactDOM are two completely different objects and shouldn’t be
confused or used interchangeably.)

Another alternative, recommended by the official React documentation for situations
where JSX is impractical (for example, when there’s no build process), is to use a
short variable. For example, you can create a variable E as follows:

const E = React.createElement
E('hl', null, 'Hey')

As I mentioned earlier, JSX needs to be transpiled (or compiled, as it’s often called)
into regular JavaScript before browsers can execute its code. We’ll explore various
available methods for doing so, as well as the recommended method, in section 3.3.

Understanding JSX

Let’s explore how to work with JSX. You can read this section and keep it bookmarked
for your reference, or (if you prefer to have some of the code examples running on
your computer) you have the following options:

Set up a JSX transpiler with Babel on your computer, as shown in section 3.3.
Use the online Babel REPL service (https://babeljs.io/repl), which transpiles
JSX into JavaScript in the browser.

The choice is up to you. I recommend reading about the main JSX concepts first, and
then doing the proper Babel setup on your computer.

Creating elements with JSX

Creating ReactElement objects with JSX is straightforward. For example, instead of
writing the following JavaScript (where name is a string—hl—or component class
object—HelloWorld)

React.createElement (

name,
{key1l: valuel, key2: value2, ...},
childl, child2, child3, ..., childN

you can write this JSX:

<name keyl=valuel key2=value2 ...>
<childl/>
<child2/>
<child3/>

<childN/>
</name>

https://babeljs.io/repl

46

3.2.2

CHAPTER 3 Introduction to JSX

In the JSX code, the attributes and their values (for example, keyl=valuel) come
from the second argument of createElement (). We’ll focus on working with proper-
ties later in this chapter. For now, let’s look at an example of a JSX element without
properties. Here’s our old friend Hello World in JavaScript (ch03/hello-
world/index.html).

Listing 3.1 Hello World in JavaScript

ReactDOM. render (
React.createElement ('hl', null, 'Hello world!'),
document .getElementById('content')

The JSX version is much more compact (ch03/hello-world-jsx/js/script.jsx).

Listing 3.2 Hello World in JSX

ReactDOM. render (

<hl>Hello world!</hls>,

document .getElementById('content')
)

You can also store objects created with JSX syntax in variables, because JSX is just a syn-
tactic improvement of React .createElement (). This example stores the reference to
the Element object in a variable:

let helloWorldReactElement = <hlsHello world!</hl>
ReactDOM. render (

helloWorldReactElement,

document .getElementById('content')

Working with JSX in components

The previous example used the <hl> JSX tag, which is also a standard HTML tag name.
When working with components, you apply the same syntax. The only difference is
that the component class name must start with a capital letter, as in <HelloWorld/>.

Here’s a more advanced iteration of Hello World, rewritten in JSX. In this case, you
create a new component class and use JSX to create an element from it.

Listing 3.3 Creating a HelloWorld class in JSX

class HelloWorld extends React.Component {
render ()
return (
<divs>
<hl>1. Hello world!</hls>
<hl1>2. Hello world!</hls>
</div>

Understanding JSX 47

)

}
}

ReactDOM. render (
<HelloWorld/>,
document .getElementById ('content')

Can you read listing 3.3 more easily than the following JavaScript code?

class HelloWorld extends React.Component {
render () {
return React.createElement ('div',
null,
React.createElement ('hl', null, 'l. Hello world!'),
React.createElement ('hl', null, '2. Hello world!'))

}
}

ReactDOM. render (
React.createElement (HelloWorld, null),
document .getElementById ('content')

)

NOTE As I said earlier, seeing angle brackets in JavaScript code may be
strange for experienced JavaScript developers. My brain went bananas when I
first saw this, because for years I trained myself to spot JS syntax errors! The
brackets are the primary controversy regarding JSX and one of the most fre-
quent objections I hear; this is why we dive into JSX early in the book, so you
can get as much experience with it as possible.

Notice the parentheses after return in the JSX code in listing 3.3; you must include
them if you don’t type anything on the same line after return. For example, if you
start your top element, <div>, on a new line, you must put parentheses (()) around it.
Otherwise, JavaScript will finish the return with nothing. This style is as follows:

render () {
return (
<div>
</div>

Alternatively, you can start your top element on the same line as return and avoid the
necessary (). For example, this is valid as well:

render () {
return <divs
</divs>

}

48 CHAPTER 3 Introduction to JSX

A downside of the second approach is the reduced visibility of the opening <div> tag:
it may be easy to miss in the code.? The choice is up to you. I use both styles in this
book to give you a deeper perspective.

3.2.3 Outputting variables in JSX

When you compose components, you want them to be smart enough to change the
view based on some code. For example, it would be useful if a current date-time com-
ponent used a current date and time, not a hardcoded value.

When working with JavaScript-only React, you have to resort to concatenation (+) or,
if you're using ES6+/ES2015+, string templates marked by a backtick and ¢ {varName},
where varName is the name of a variable. The official name for this feature is template
literal, according to the specification.” For example, to use a property in text in a
DateTimeNow component in regular JavaScript React, you’d write this code:

class DateTimeNow extends React.Component {
render () {
let dateTimeNow = new Date () .toLocaleString()
return React.createElement (
'span',
null,
“Current date and time is ${dateTimeNow}
)
}

}

Conversely, in JSX, you can use curly braces {} notation to output variables dynami-
cally, which reduces code bloat substantially:

class DateTimeNow extends React.Component {
render () {
let dateTimeNow = new Date () .toLocaleString()
return Current date and time is {dateTimeNow}.
)
}
}

The variables can be properties, not just locally defined variables:

Hello {this.props.userName}, your current date and time is
{dateTimeNow} .

Moreover, you can execute JavaScript expressions or any JS code inside of {}. For
example, you can format a date:

<p>Current time in your locale is
{new Date (Date.now()) .toLocaleTimeString() }</p>

For more about this behavior in JavaScript, see James Nelson, “Why Use Parenthesis [sic] on JavaScript Return
Statements?” August 11, 2016, http://jamesknelson.com/javascript-return-parenthesis; and “Automated
Semicolon Insertion,” Annotated ECMAScript 5.1, http:/ /es5.github.io/#x7.9.

3 “Template Literals,” ECMAScript 2015 Language Specification, June 2015, http://mng.bz/i8Bw.

http://jamesknelson.com/javascript-return-parenthesis
http://es5.github.io/#x7.9
http://mng.bz/i8Bw

3.24

Understanding JSX 49

Now, you can rewrite the HelloWorld class in JSX using the dynamic data that JSX
stores in a variable (ch03/hello-world-class-jsx).

Listing 3.4 Outputting variables in JSX

let helloWorldReactElement = <hlsHello world!</hl>
class HelloWorld extends React.Component {
render () {
return <divs
{helloWorldReactElement}
{helloWorldReactElement }
</div>
}
}
ReactDOM. render (
<HelloWorld/>,
document .getElementById ('content')
)

Let’s discuss how you work with properties in JSX.

Working with properties in JSX

I touched on this topic earlier, when I introduced JSX: element properties are defined
using attribute syntax. That is, you use keyl=valuel key2=value2.. notation inside of
the JSX tag to define both HTML attributes and React component properties. This is
similar to attribute syntax in HTML/XML.

In other words, if you need to pass properties, write them in JSX as you would in
normal HTML. Also, you render standard HTML attributes by setting element proper-
ties (discussed in section 2.3). For example, this code sets a standard HTML attribute
href for the anchor element <a>:
feactbon. render QJ ?tzr:;grsdamm

Time for React? attribute href

<DateTimeNow userName='Azat'/>
</div> Sets a value for the

) userName property
document .getElementById ('content')
)

Using hardcoded values for attributes isn’t flexible. If you want to reuse the link com-
ponent, then the href must change to reflect a different address each time. This is
called dynamically setting values versus hardcoding them. So, next we’ll go a step fur-
ther and consider a component that can use dynamically generated values for attri-
butes. Those values can come from component properties (this.props). After that,
everything’s easy. All you need to do is use curly braces ({}) inside angle braces (<>)
to pass dynamic values of properties to elements.

For example, suppose you're building a component that will be used to link to user
accounts. href and title mustbe differentand not hardcoded. A dynamic component

50

CHAPTER 3 Introduction to JSX

ProfileLink renders alink <a> using the properties url and label for href and title,
respectively. In ProfileLink, you pass the properties to <a> using { }:

class ProfilelLink extends React.Component {
render () {
return <a href={this.props.url}
title={this.props.label}
target="_blank">Profile

}
}

Where do the property values come from? They’re defined when the ProfileLink is
created—that is, in the component that creates ProfileLink, a.k.a. its parent. For
example, this is how the values for url and label are passed when a ProfileLink
instance is created, which results in the render of the <a> tag with those values:

<ProfileLink url='/users/azat' label='Profile for Azat'/>

From the previous chapter, you should remember that when rendering standard ele-
ments (<h>, <p>, <div>, <a>, and so on), React renders all attributes from the HTML
specification and omits all other attributes that aren’t part of the specification. This
isn’t a JSX gotcha; it’s React’s behavior.

But sometimes you want to add custom data as an attribute. Let’s say you have a list
item; there’s some information that’s essential to your app but not needed by users. A
common pattern is to put this information in the DOM element as an attribute. This
example uses the attributes react-is-awesome and id:

<li react-is-awesome="true" id="320">React is awesome!

Storing data in custom HTML attributes in the DOM is generally considered an anti-
pattern, because you don’t want the DOM to be your database or a front-end data store.
Getting data from the DOM is slower than getting it from a virtual /in-memory store.

In cases when you must store data as elements’ attributes, and you use JSX, you
need to use the data-NAME prefix. For example, to render the <1i> element with a
value of this.reactIsAwesome in an attribute, you can write this:

<li data-react-is-awesome={this.reactIsAwesome}>React is awesome!
Let’s say this.reactIsAwesome is true. Then, the resulting HTML is
<1li data-react-is-awesome="true">React is awesome!

But if you attempt to pass a nonstandard HTML attribute to a standard HTML element,
the attribute won’t render (as covered in section 2.3). For example, this code

<li react-is-awesome={this.reactIsAwesome}>React is orange</lis
and this code

<li reactIsAwesome={this.reactIsAwesome}>React is orange</lis

Understanding JSX 51

both produce only the following:

React is orange

Obviously, because custom elements (component classes) don’t have built-in render-
ers and rely on standard HTML elements or other custom elements, this issue of using
data- isn’t important for them. They get all attributes as properties in this.props.

Speaking of component classes, this is the code from Hello World (section 2.3)
written in regular JavaScript:

class HelloWorld extends React.Component {
render () {
return React.createElement (
'hi',
this.props,
'Hello ' + this.props.frameworkName + ' world!!!"

In the HelloWorld components, you pass the properties through to <hl> no matter
what properties are there. How can you do this in JSX? You don’t want to pass each
property individually, because that’s more code; and when you need to change a prop-
erty, you'll have tightly coupled code that you’ll need to update as well. Imagine hav-
ing to pass each property manuallj—and what if you have two or three levels of
components to pass through? That’s an antipattern. Don’t do this:

class HelloWorld extends React.Component {
render () {
return <hl title={this.props.title} id={this.props.id}>
Hello {this.props.frameworkName} world!!!
</hl>
}
}

Don’t pass the properties individually when your intention is to pass all of them; JSX
offers a spread solution that looks like ellipses, ..., as you can see in the following list-
ing (ch03/jsx/hello-js-world-jsx).

Listing 3.5 Working with properties

class HelloWorld extends React.Component ({
render () {
return <hl {...this.properties}>
Hello {this.props.frameworkName} world!!!
</hl>
}
}

ReactDOM.render (
<div>

52 CHAPTER 3 Introduction to JSX

<HelloWorld
id="'ember'
frameworkName="'Ember.js'
title='A framework for creating ambitious web applications.'/>,
<HelloWorld
id="'backbone’
frameworkName= 'Backbone.js'
title= 'Backbone.js gives structure to web applications...'/>
<HelloWorld
id= 'angular'
frameworkName= 'Angular.js'
title= 'Superheroic JavaScript MVW Framework'/>
</divs,
document .getElementById('content')
)

With {...this.props}, you can pass every property to the child. The rest of the code
is just converted to the JSX example from section 2.3.

Ellipses in ES6+/ES2015+: rest, spread, and destructuring

Speaking of ellipses, there are similar-looking operators in ES6+, called destructur-
ing, spread, and rest. This is one of the reasons React’'s JSX uses ellipses!

If you've ever used or written a JavaScript function with a variable or unlimited
number of arguments, you know the arguments object. This object contains all
parameters passed to the function. The problem is that this arguments object isn’t
a real array. You have to convert it to an array if you want to use functions like
sort () and map () explicitly. For example, this request function converts argu-
ments using call():

function request (url, options, callback) {
var args = Array.prototype.slice.call (arguments, request.length)

var url = args[0]
var callback = args[2]
//

}

Is there a better way in ES6 to access an indefinite number of arguments as an array?
Yes! It's the rest parameter syntax, defined with ellipses (...). For example, following
is the ES6 function signature with the rest parameter callbacks, which become an
array (a real array, not the arguments pseudoarray) with the rest of the parameters:*

function(url, options, ...callbacks) {
var callbackl = callbacks[0]
var callback2 = callbacks[1]
//

}

* In the rest array, the first parameter is the one that doesn’t have a name: for example, the callback is at index
0, not 2, as in ES5’s arguments. Also, putting other named arguments after the rest parameter will cause a
syntax error.

3.2.5

Understanding JSX

(continued)
Rest parameters can be destructured, meaning they can be extracted into separate
variables:

function (url, options, ...[error, success]) {
if (lurl) return error (new Error ('ooops'))
//

success (data)

}

What about spread? In brief, spread allows you to expand arguments or variables in
the following places:

Function calls—For example, push () method: arrl.push (..arr2)
Array literals—For example, array2 = [...arrayl, X, y, z]
new function calls (constructors)—For example, var d = new Date (.. .dates)

In ES5, if you wanted to use an array as an argument to a function, you’d have to use
the apply () function:

function request (url, options, callback) {
//
1

var requestArgs = ['http://azat.co', {...}, function(){...}]
request.apply (null, requestArgs)

In ES6, you can use the spread parameter, which looks similar to the rest parameter
in syntax and uses ellipses (...):

function request (url, options, callback) ({

//
1
var requestArgs = ['http://azat.co', {...}, function(){...}]
request (. ..requestArgs)

The spread operator’s syntax is similar to that of the rest parameter’s, but rest is
used in a function definition/declaration, and spread is used in calls and literals.
They save you from typing extra lines of imperative code, so knowing and using them
is a valuable skill.

Creating React component methods

class Content extends React.Component {

getUrl () ({
return 'http://webapplog.com'

}

53

As a developer, you're free to write any component methods for your applications,
because a React component is a class. For example, you can create a helper method,
getUrl():

54

CHAPTER 3 Introduction to JSX

render () {

}
}

The getUrl () method isn’t sophisticated, but you get the idea: you can create your
own arbitrary methods, not just render (). You can use the getUrl() method to
abstract a URL to your API server. Helper methods can have reusable logic, and you
can call them anywhere within other methods of the component, including render ().

If you want to output the return from the custom method in JSX, use {}, just as you
would with variables (see the following listing, ch03/method/jsx/scrch03/meipt.jsx).
In this case, the helper method is invoked in render, and the method’s return values
will be used in the view. Remember to invoke the method with ().

Listing 3.6 Invoking a component method to get a URL

class Content extends React.Component {
getUrl() ({
return 'http://webapplog.com'

}

render ()
return (
<di;:Y0ur REST APT URL is: QJ !nvokes the class method
 in the curly braces
{this.getUrl() }

</p>
</divs>

)
}
}

Once again, it’s possible to invoke component methods directly from {} and JSX. For
example, using {this.getUrl()} in the helper method getUrl: when you use the
method in listing 3.6, you’ll see http://webapplog.com as its returned value in the
link in the paragraph <p> (see figure 3.2).

You should now understand component methods. My apologies if you found this
section too banal; these methods are important as a foundation for React event

handlers.
® © ® [iocaihost:8080/chos/metr ity Ninja
| € = € [} localhost:8080/ch03/method/ &l o =

Figure 3.2 Results of
Your REST API URL is: http://webapplog.com rendering a link with the

value from a method

http://webapplog.com

3.2.6

Understanding JSX 55

if/else in JSX

AKkin to rendering dynamic variables, developers need to compose their components
so that components can change views based on the results of if/else conditions.
Let’s start with a simple example that renders the elements in a component class; the
elements depend on a condition. For example, some link text and a URL are deter-
mined by the user.session value. This is how you can code this in plain JS:

render () {

if (user.session)

return React.createElement('a', {href: '/logout'}, 'Logout ')
else

return React.createElement('a', {href: '/login'}, 'Login')

You can use a similar approach and rewrite this with JSX like so:

render () {
if (this.props.user.session)
return <a href="/logout"sLogout
else
return <a href="/login"sLogin

Let’s say there are other elements, such as a <div> wrapper. In this case, in plain JS,
you’d have to create a variable or use an expression or a ternary operator (also known
as the Elvis operator by the younger generation of JavaScript developers; see
http://mng.bz/92Zg), because you can’t use an if condition inside the <divs’s
createElement (). The idea is that you must get the value at runtime.

Ternary operators

The following ternary condition works such that if userAuth is true, then msg will be
set to welcome. Otherwise, the value will be restricted:

let msg = (userAuth) ? 'welcome' : 'restricted'
This statement is equivalent to the following:

let session = '!'
if (userAuth) ({

session = 'welcome'
} else {

session = 'restricted'

}

http://mng.bz/92Zg

56

CHAPTER 3 Introduction to JSX

(continued)

In some cases, the ternary (?) operator is a shorter version of if/else. But there’s
a big difference between them if you try to use the ternary operator as an expression
(where it returns a value). This code is valid JS:

let msg = (userAuth) ? 'welcome' : 'restricted'
But if/else won’t work because this isn’t an expression, but a statement:
let msg = if (userAuth) {'welcome'} else {'restricted'} // Not valid

You can use this quality of a ternary operator to get a value from it at runtime in JSX.

To demonstrate the three different styles (variable, expression, and ternary operator),
look at the following regular JavaScript code before it’s converted to JSX:

// Approach 1: Variable
render () {
let link
if (this.props.user.session)
link = React.createElement ('a', {(href: '/logout'}, 'Logout')
else
link = React.createElement ('a', {href: '/login'}, 'Login')
return React.createElement ('div', null, link)

Uses a variable link

}
// RApproach 2: Expression
render () {
let link = (sessionFlag) => { <+— (Creates an expression
if (sessionFlag)
return React.createElement ('a', {href: '/logout'}, 'Logout')
else
return React.createElement('a', {href: ‘/login‘}, 'Login')

}

return React.createElement ('div', null, link(this.props.user.session))
}
// Approach 3: Ternary operator
render ()
return React.createElement ('div', null,
(this.props.user.session) ? React.createElement ('a', {href: '/logout'},
'Logout') : React.createElement ('a’, {href: '/login'}, 'Login')

Uses a ternary operator

}

Not bad, but kind of clunky. Would you agree? With JSX, the {} notation can print
variables and execute JS code. Let’s use it to achieve better syntax:

// Approach 1: Variable
render () {
let link
if (this.props.user.session)
link = Logout
else
link = Login
return <div>{link}</div>

Understanding JSX 57

}

// Approach 2: Expression
render () {
let link = (sessionFlag) => {
if (sessionFlag)
return Logout
else
return Login
1

return <divs>{link(this.props.user.session) }</div>
}
// BApproach 3: Ternary operator
render () {

return <divs

{ (this.props.user.session) ? <a href='/logout'sLogout
Login}
</div>

}

If you look more closely at the expression/function style example (Approach 2: a
function outside the JSX before return), you can come up with an alternative. You can
define the same function using an immediately invoked function expression (IIFE,
http://mng.bz/387u) inside the JSX. This lets you avoid having an extra variable
(such as 1ink) and execute the if/else at runtime:

render () { . QAAJ Defines
return <divs{
(sessionFlag) => { an lIFE
if (sessionFlag)
return Logout
else
return Login
} (this.props.user.session)
}</divs

Invokes an IIFE
with a parameter

}

Furthermore, you can use the same principles for rendering not just entire elements
(<a>, in these examples), but also text and the values of properties. All you need to do
is use one of the approaches shown here, inside curly braces. For example, you can
augment the URL and text and not duplicate the code for element creation. Person-
ally, this is my favorite approach, because I can use a single <a>:

Creates a local variable to store the
session Boolean value, resulting in

d
render () { less code and better performance

let sessionFlag = this.props.user.session <—
return <divs

<a href:{(sessionFlag)?'/lOgOUF'1'/1091n'}> Uses the ternary
{ (sessionFlag) ? 'Logout': 'Login'} R openﬁortorender
 different URLs based on
</div> Uses the ternary operator the sessionFlag value

} to render different text

http://mng.bz/387u

58

3.2.7

CHAPTER 3 Introduction to JSX

As you can see, unlike in template engines, there’s no special syntax for these condi-
tions in JSX—you just use JavaScript. Most often, you’ll use a ternary operator, because
it’'s one of the most compact styles. To summarize, when it comes to implementing
if/else logic in JSX, you can use these options:

Variable defined outside of JSX (before return) and printed with {} in JSX

Expression (function that returns a value) defined outside of JSX (before
return) and invoked in {} in JSX

Conditional ternary operator
IIFE in JSX

This is my rule of thumb when it comes to conditions and JSX: use if/else outside of
JSX (before return) to generate a variable that you’ll print in JSX with {}. Or, skip the
variable, and print the results of the Elvis operator (?) or expressions using {} in JSX:

class MyReactComponent extends React.Component {
render () {
// Not JSX: Use a variable and if/else or ternary
return (
// JSX: Print result of ternary or expression with {}
)
1
}

We’ve covered the important conditions for building interactive Uls with React and JSX.
Occasionally, you may want to narrate the functionality of your beautiful, intelligent
code so that other people can quickly understand it. To do so, you use comments.

Comments in JSX

Comments in JSX work similar to comments in regular JavaScript. To add JSX com-
ments, you can wrap standard JavaScript comments in {}, like this:

let content = (
<div>
{/* Just like a JS comment */}
</div>

)

Or, you can use comments like this:

let content = (
<div>

<Post
/* I
am
multi
line */
name:{window.isLoggedIn ? window.name : “} // We are inside of JSX

/>

</div>

Setting up a JSX transpiler with Babel 59

You’ve now had a taste of JSX and its benefits. The rest of this chapter is dedicated to
JSX tools and potential traps to avoid. That’s right: tools and gotchas.

Because before we can continue, you must understand that for any JSX project to
function properly, the JSX needs to be compiled. Browsers can’t run JSX—they can run
only JavaScript, so you need to take the JSX and transpile it to normal JS (see figure 3.1).

3.3 Setting up a JSX transpiler with Babel

As I mentioned, in order to execute JSX, you need to convert it to regular JavaScript
code. This process is called transpilation (from compilation and transformation), and var-
ious tools are available to do the job. Here are some recommended ways to do this:

Babel command-line interface (CLI) tool—The babel-cli package provides a com-
mand for transpilation. This approach requires less setup and is the easiest to
start.

Node.js or browser JavaScript script (API approach)—A script can import the babel -
core package and transpile JSX programmatically (babel.transform). This
allows for low-level control and removes abstractions and dependencies on the
build tools and their plug-ins.

Build tool—A tool such as Grunt, Gulp, or Webpack can use the Babel plug-in.
This is the most popular approach.

All of these use Babel in one way or another. Babel is mostly an ES6+/ES2015+ com-
piler, but it also can convert JSX to JavaScript. In fact, the React team stopped develop-
ment on its own JSX transformer and recommends using Babel.

Can | use something other than Babel 6?

Although there are various tools to transpile JSX, the most frequently used tool—
and the one recommended by the React team on the official React website, as of
August 2016—is Babel (formerly, 5to6). Historically, the React team maintained
react-tools and JSXTransformer (transpilation in the browser); but, since ver-
sion 0.13, the team has recommended Babel and stopped evolving react-tools
and JSXTransformer.®

For in-browser runtime transpilation, Babel version 5.x has browser.js, which is a
ready-to-use distribution. You can drop it in the browser, like JSXTransformer, and it
will convert any <script> code into JS (use type="text/babel"). The latest Babel
version that has browser.js is 5.8.34, and you can include it from the CDN directly
(https://cdnjs.com/libraries/babel-core/5.8.34).

Babel 6.x switched to not having default presets/configs (such as JSX) and removed
browser.js. The Babel team encourages developers to create their own distributions
or use the Babel APl. There's also a babel-standalone library
(https://github.com/Daniell5/babel-standalone), but you still have to tell it which
presets/configs to use.

> Paul O’Shannessy, “Deprecating JSTransform and react-tools,” React, June 12, 2015, http://mng.bz/8yGc.

https://cdnjs.com/libraries/babel-core/5.8.34
https://github.com/Daniel15/babel-standalone
http://mng.bz/8yGc

60

CHAPTER 3 Introduction to JSX

(continued)
Traceur (https://github.com/google/traceur-compiler) is another tool that you can
use as a replacement for Babel.

Finally, TypeScript (www.typescriptlang.org) seems to support JSX compilation via
jsx-typescript (https://github.com/fdecampredon/jsx-typescript),® but that's a
whole new toolchain and language (a superset of regular JavaScript).

You probably can use the JSXTransformer, Babel v5, babel-standalone, TypeScript,
and Traceur tools with the examples in this book (I use React v15). TypeScript and
Traceur should be relatively safe bets, because they’re supported as of the time of
this writing. But if you end up using anything other than Babel 6 for the book’s exam-
ples, you do so at your own risk. Manning’s tech reviewers and | didn’t test the code
in this book to see if it works with these tools!

By using Babel for React, you can get extra ES6/ES2015 features to streamline your
development just by adding an extra configuration and a module for ES6. The sixth
iteration of the ECMAScript standard has a myriad of improvements, and is mostly
available as of this writing in all modern browsers. But, older browsers will have a hard
time interpreting the new ES6 code. Also, if you want to use ES7, ES8, or ES27, then
some browsers might not have all the features implemented yet.

To solve the lag in ES6 or ES.Next (collective name for the most cutting-edge fea-
tures) implementation by browsers, Babel comes to the rescue. It offers support for
the next generation of JavaScript languages (many languages ... get the hint from the
name?). This section covers the recommended approach used in the next few chap-
ters—the Babel CLI—because it involves minimal setup and doesn’t require knowl-
edge of Babel’s API (unlike the API approach).

To use the Babel CLI (http://babeljs.io), you need Node v6.2.0, npm v3.8.9,
babel-cli v6.9.0 (www.npmjs.com/package/babel-cli), and babel-preset-react
v6.5.0 (www.npmjs.com/package/babel-preset-react). Other versions aren’t guaran-
teed to work with this book’s code, due to the fast-changing nature of Node and React
development.

If you need to install Node and npm, the easiest way to do so is to download the
installer (just one for both Node and npm) from the official website:
http://nodejs.org. For more options and detailed installation instructions regarding
Babel installation, please see appendix A.

If you think you have these tools installed, or you’re not sure, check the versions of
Node and npm with these shell/terminal/command prompt commands:

node -v
npm -v

6

www.typescriptlang.org/docs/handbook/jsx.html.

http://babeljs.io
http://www.npmjs.com/package/babel-cli
http://www.npmjs.com/package/babel-preset-react
http://nodejs.org
www.typescriptlang.org/docs/handbook/jsx.html
https://github.com/google/traceur-compiler
http://www.typescriptlang.org
https://github.com/fdecampredon/jsx-typescript

Setting up a JSX transpiler with Babel 61

You need to have the Babel CLI and React preset locally. Using the Babel CLI globally
(-9, when installing with npm) is discouraged, because you might run into conflict
when your projects rely on different versions of the tool. Here’s a short version of the
instructions found in appendix A:

Create a new folder, such as ch03/babel-jsx-test.

Create a package.json file in the new folder and enter an empty object {} in it,
or use npm init to generate the file.

Define your Babel presets in package.json (used in this book and explained in
the next section) or .babelrc (not used in this book).

Optionally, fill package.json with information such as the project name, license,
GitHub repository, and so on.

Install the Babel CLI and React preset locally, using npm i babel-cli@6.9.0
babel-preset-react@6.5.0 --save-dev to save these dependencies in dev-
Dependencies in package.json.

Optionally, create an npm script with one of the Babel commands described
shortly.

Babel ES6 preset

In the unfortunate event that you have to support an older browser such as IE9, but
you still want to write in ES6+/ES2015+ because that’s the future standard, you can
add the babel-preset-es2015 (www.npmjs.com/package/babel-preset-es2015)
transpiler. It will convert your ES6 into ES5 code. To do so, install the library:

npm i babel-preset-es2015 --save-dev
Then, add it to the presets configuration next to react:

{

"presets": ["react", "es2015"]

}

| don’t recommend using this ES2015 transpiler if you don’t have to support older
browsers, for several reasons. First, you’ll be running old ES5 code, which is less
optimized than ES6 code. Second, you're adding an additional dependency and more
complexity. And third, if most people continue to run ES5 code in their browser, why
did we—meaning browser teams and regular JavaScript developers—bother with
ES6? You could use TypeScript (www.typescriptlang.org), ClojureScript (http://
clojurescript.org), or CoffeeScript (http://coffeescript.org), which give you more bang
for your buck!

To repeat what’s written in appendix A, you need a package.json file with at least this
preset:

http://www.npmjs.com/package/babel-preset-es2015
http://www.typescriptlang.org
http://clojurescript.org
http://clojurescript.org
http://coffeescript.org

62

CHAPTER 3 Introduction to JSX

"babel": {
"presets": ["react"]
I
}

Then, running this command (from your newly created project folder) to check the
version should work:

$./node modules/.bin/babel --version

After installation, issue a command to process your js/script.jsx JSX into js/script.js
JavaScript:

$./node _modules/.bin/babel js/script.jsx -o js/script.js

This command is long because you're using a path to Babel. You can store this com-
mand in a package.json file to use a shorter version: npm run build. Open the file with
your editor, and add this line to scripts:

"build": "./node modules/.bin/babel js/script.jsx -o js/script.js"
You can automate this command with the watch option (-w or --watch):
$./node _modules/.bin/babel js/script.jsx -o js/script.js -w

The Babel command watches for any changes in script.jsx and compiles it to script.js
when you save the updated JSX. When this happens, the terminal/command prompt
will display the following:

change js/script.jsx

As you accumulate more JSX files, use the command with -d (--out-dir) and folder
names to compile JSX source files (source) into many regular JS files (build):

$./node modules/.bin/babel source --d build

Often, having a single file to load is better for the performance of a front-end app
than loading many files. This is because each request adds a delay. You can compile all
the files in the source directory into a single regular JS file with -o (--out-file):

$./node modules/.bin/babel src -o script-compiled.js

Depending on the path configuration on your computer, you may be able to run
babel instead of . /node_modules/.bin/babel. In both cases, you’re executing locally.
If you have an older babel-cli installed globally, delete it with npm rm -g babel-cli.
If you’re unable to run babel when you install babel-cli locally in your project,
then consider adding either one of these path statements into your shell profile:

3.4

React and JSX gotchas 63

~/.bash profile, ~/.bashrc, or ~/.zsh, depending on your shell (bash, zsh, and so
on) if you're on POSIX (Unix, Linux, macOS, and the like).

This shell statement will add a path—so you can launch locally installed npm CLI
packages without typing the path—if there’s ./node_modules/.bin in the current
folder:

if [-d "s$PWD/node modules/.bin"]1; then
PATH="$PWD/node_modules/.bin"
fi

The shell script checks whether there’s a ./node_modules/.bin folder in your termi-
nal bash environment current folder, and then adds that folder to the path to enable
npm CLI tools like Babel, Webpack, and so on by name: babel, webpack, and so on.

You can opt to have the path set all the time, not just when there’s a subfolder. This
shell statement will always add the path ./node_modules/.bin to your PATH environ-
ment variable (also in profile):

export PATH="./node modules/.bin:$PATH"

Bonus: This setting will also allow you to run any npm CLI toollocally with just its name,
not the path and the name.

TIP For working examples of Babel package.json configurations, open the
projects in the ch03 folder in the source code accompanying this book. They
follow the same approach used in the chapters that follow. The package.json
file in ch03 has npm build scripts for each project (subfolder) that needs
compilation, unless the project has its own package.json.

When you run a build script—for example, npm run build-hello-world—it’ll compile
the JSX from ch03/PROJECT_NAME/jsx into regular JavaScript and put that compiled
file into ch03 /PROJECT_NAME/js. Therefore, all you need to do is install the necessary
dependencies with npm i (it will create a ch03/node_modules folder), check whether
a build script exists in package.json, and then run npm run build-PROJECT NAME.

Thus far, you've learned the easiest way to transpile JSX into regular JS, in my hum-
ble opinion. But I want you to be aware of some tricky parts when it comes to React
and JSX.

React and JSX gotchas

This section covers some edge cases. There are a few gotchas to be aware of when you
use JSX.

For instance, JSX requires you to have a closing slash (/) either in the closing tag
or, if you don’t have any children and use a single tag, in the end of that single tag. For
example, this is correct:

Azat, the master of callbacks
<button label="Save" className="btn" onClick={this.handleSave}/>

64

34.1

CHAPTER 3 Introduction to JSX

This is not correct, because the slashes are missing:

Azat<a>
<button label="Save" className="btn" onClick={this.handleSave}>

Conversely, HTML is more fault tolerant. Most browsers will ignore the missing slash
and render the element just fine without it. Go ahead: try <button>Press me for
yourself!

There are other differences between HTML and JSX, as well.

Special characters

HTML entities are codes that display special characters such as copyright symbols, em
dashes, quotation marks, and so on. Here are some examples:

©
—
“

You can render those codes as any string in or in the string attribute <inputs>.
For example, this is static [SX (text defined in code without variables or properties):

© — “
<input value="©&mndash;“"/>

But if you want to dynamically output HTML entities (from a variable or a property)
with , all you’ll get is the direct output (©—“), not the spe-
cial characters. Thus, the following code won’t work:

// Anti-pattern. Will NOT work!
var specialChars = '©—“'’

{specialChars}
<input value={specialChars}/>

React/JSX will auto-escape the dangerous HTML, which is convenient in terms of secu-
rity (security by default rocks!). To output special characters, you need to use one of
these approaches:

Break them into multiple strings by outputting an array; for example,
{ [© — “] }. You can also set
key, as in key="specialChars", to suppress a warning about the missing key.
Copy the special character directly into your source code (make sure you use a
UTF-8 character set).

Escape the special character with \u, and use a unicode number (search
www.fileformat.info/info/unicode/char/search.htm, if you don’t remember it;
who does?).

http://www.fileformat.info/info/unicode/char/search.htm

3.4.2

3.4.3

React and JSX gotchas 65

Convert from a character code to a character number with String
.fromCharCode (charCodeNumber) .
Use the internal method _ html to dangerously set inner HTML (http://
mng.bz/TplO; not recommended).

To illustrate the last approach (as a last resort—when all else fails on the Titanic, run
for the boats!), look at this code:

var specialChars = { html: '©—“ '}

Obviously, the React team has a sense of humor, to name a property
dangerouslySetInnerHTML. Sometimes React naming makes me laugh to myself!

data- attributes

Section 2.3 covered properties in a non-JSX way, but let’s look at how to create custom
attributes in HTML one more time (this time with JSX). Chiefly, React will blissfully
ignore any nonstandard HTML attributes that you add to components. It doesn’t mat-
ter whether you use JSX or native JavaScript—that’s React’s behavior.

But sometimes, you want to pass additional data using DOM nodes. This is an anti-
pattern because your DOM shouldn’t be used as a database or local storage. If you still
want to create custom attributes and get them rendered, use the data- prefix.

For example, this is a valid custom data-object-id attribute that React will render
in the view (HTML will be the same as this JSX):

<li data-object-1id="097F4E4F">...</1li>

If the input is the following React/JSX element, React won’t render object-id,
because it’s not a standard HTML attribute (HTML will miss object-id, unlike this
JSX):

<li object-id="097F4E4F">...</1li>

style attribute
The style attribute in JSX works differently than in plain HTML. With JSX, instead of

a string, you need to pass a JavaScript object, and CSS properties need to be in camel-
Case. For example:

background-image becomes backgroundImage.
font-size becomes fontSize.

font-family becomes fontFamily.

You can save the JavaScript object in a variable or render it inline with double curly
braces ({{...}}). The double braces are needed because one set is for JSX and the
other is for the JavaScript object literal.

http://mng.bz/TplO
http://mng.bz/TplO

66

3.4.4

3.4.5

CHAPTER 3 Introduction to JSX

Suppose you have an object with this font size:

let smallFontSize = {fontSize: '10pt'}

In your JSX, you can use the smallFontSize object:

<input style={smallFontSize} />

Or you can settle for a larger font (30 point) by passing the values directly without an
extra variable:

<input style={{fontSize: '30pt'}} />

Let’s look at another example of passing styles directly. This time, you’re setting a red
border on :

<span style={{borderColor: 'red',
borderWidth: 1,
borderStyle: 'solid'}}>Hey</spans>

Alternatively, the following border value will also work:

Hey

The main reason classes are not opaque strings but JavaScript objects is so React can
work with them more quickly when it applies changes to views.

class and for

React and JSX accept any attribute that’s a standard HTML attribute, except class and
for. Those names are reserved words in JavaScript/ECMAScript, and JSX is converted
into regular JavaScript. Use className and htmlFor instead. For example, if you have
a class hidden, you can define it in a <div> this way:

<div className="hidden">...</div>
If you need to create a label for a form element, use htmlFor:

<div>
<input type="radio" name={this.props.name} id={this.props.id}>
</input>
<label htmlFor={this.props.id}>
{this.props.label}
</label>
</div>

Boolean attribute values

Last but not least, some attributes (such as disabled, required, checked, autofocus,
and readOnly) are specific only to form elements. The most important thing to

3.5

Quiz 67

remember here is that the attribute value must be set in the JavaScript expression (that
is, inside {}) and not set in strings.
For example, use {false} to enable the input:

<input disabled={false} />

But don’t use a "false" value, because it'll pass the truthy check (a non-empty string
is truthy in JavaScript—see the sidebar) and render the input as disabled (disabled
will be true):

<input disabled="false" />

Truthiness

In JavaScript/Node, a truthy value translates to true when evaluated as a Boolean;
for example, in an if statement. The value is truthy if it’s not falsy. (That’s the official
definition. Brilliant, right?) And there are only six falsy values:

false

0

" (empty string)
null

Undefined

NaN (not a number)

| hope you can see that the string "false" is a non-empty string, which is truthy and
translates to true. Hence, you'll get disabled=true in HTML.

If you omit the value, React will assume the value is true:

<input disabled />

The subsequent chapters use JSX exclusively. But knowing the underlying regular
JavaScript that will be run by browsers is a great skill to have in your toolbox.

Quiz
To output a JavaScript variable in JSX, which of the following do you use? =, <%=
%>, {}, or <?=?>
The class attribute isn’t allowed in JSX. True or false?
The default value for an attribute without a value is false. True or false?
The inline style attribute in JSX is a JavaScript object and not a string like other
attributes. True or false?
If you need to have if/else logic in JSX, you can use it inside {}. For example,

class={if (!this.props.admin) return 'hide'} is valid JSX code. True or
false?

68

3.6

3.7

CHAPTER 3 Introduction to JSX

Summary

JSX is just syntactic sugar for React methods like createElement.

You should use className and htmlFor instead of the standard HTML class
and for attributes.

The style attribute takes a JavaScript object, not a string like normal HTML.
Ternary operators and IIFE are the best ways to implement if/else statements.
Outputting variables, comments, and HTML entities, and compiling JSX code
into native JavaScript are easy.

There are a few choices to turn JSX into regular JavaScript; compiling with the
Babel CLI requires minimal setup compared to configuring build processing

with a tool like Gulp or Webpack or writing Node/JavaScript scripts to use the
Babel API.

Quiz answers

107e19do Areura) e asn prnoys nok

‘(pIreA j0U) wINIaI IT JO pealsul ‘uay], ‘oInqume rodoxd e 1 ust sseTd ISII] "9s[e]
‘suoseas 2ouewrojrad 10y 109(qo ue st 9TA3s onay

‘Apordxa sanpea uesjoog

9} 198 01 {enI3/esTeJ}=sweu 9INQTIIFE ISN NOA JeY) PIPUIWWOIII SI] "IS[B]
Xs[ur sueNsseTd

asn NoA ‘uoseal sIyy 10 Juawalels yduogeae[[erads 10 paAIasaT € ST SSBTD 9ndj,

‘suotssardxo pue so[qerrea 10y {} asn nox

Making React
interactive with states

This chapter covers

= Understanding React component states
= Working with states

= States versus properties

= Stateful versus stateless components

If you read only one chapter in this book, this should be it! Without states, your React com-
ponents are just glorified static templates. I hope you’re as excited as I am, because
understanding the concepts in this chapter will allow you to build much more
interesting applications.

Imagine that you're building an autocomplete input field (see figure 4.1).
When you type in it, you want to make a request to the server to fetch information
about matches to show on the web page. So far, you've worked with properties, and
you’ve learned that by changing properties, you can get different views. But proper-
ties can’t change in the context of the current component, because they’'re passed
on this component’s creation.

69

http://reactquickly.co/videos/ch04

70

CHAPTER 4 Making React interactive with states

® © ® Bleact component x |

Ninja

€ - C & nttps//reactcommunity.org/react-au... 57 &3

Async Data

Autocomplete works great with async data by allowing you to pass in
itemns. The onchange event provides you the value to make a server request
with, then change state and pass in new items, it will attempt to
autocomplete the first one.

llinois
North Carolina
Morth Dakota

Figure 4.1
The react-autocomplete
component in action

To put it another way, properties are immutable in the current component, meaning
you don’t change properties in this component unless you re-create the component
by passing new values from a parent (figure 4.2). But you must store the information
you receive from the server somewhere and then display the new list of matches in the
view. How do you update the view if the properties are unchangeable?

One solution is to render an element with new properties each time you get the new
server response. But then you’ll have to have logic outside the component—the com-
ponent stops being self-contained. Clearly, if you can’t change the values of properties,
and the autocomplete needs to be self-contained, you can’t use properties. Thus the

componentA (parent) componentB

I
this.props |®= & [}

View: render ()

[]

J

et

Events

A mutable data type is
needed to update the
view for new events.

Figure 4.2 We need another data type that’s mutable in the component to make the view change.

4.1

What are React component states? 71

question is, how do you update views in response to events without re-creating a com-
ponent (createElement () or JSX <NAME/>)? This is the problem that states solve.

Once the response from the server is ready, your callback code will augment the
component state accordingly. You’ll have to write this code yourself. Once the state is
updated, though, React will intelligently update the view for you (only in the places
where it needs to be updated; that’s where you use the state data).

With React component states, you can build meaningful, interactive React applica-
tions. State is the core concept that lets you build React components that can store
data and automagically augment views based on data changes.

NOTE The source code for the examples in this chapter is at www.manning
.com/books/react-quickly and at https://github.com/azat-co/react-quickly/
tree/master/ch04 (in the ch04 folder of the GitHub repository https://
github.com/azat-co/react-quickly). You can also find some demos at http://
reactquickly.co/demos.

What are React component states?

A React stale is a mutable data store of components—self-contained, functionality-
centric blocks of UI and logic. Mutable means state values can change. By using state in
aview (render ()) and changing values later, you can affect the view’s representation.

Here’s a metaphor: if you think of a component as a function that has properties
and state as its input, then the result of this function is the UI description (view). Or,
as React teams phrase it, “Components are state machines.” Properties and state both
augment views, but they’re used for different purposes (see section 4.3).

To work with states, you access them by name. This name is an attribute (a.k.a. an
object key or an object property—nota component property) of the this.state object:
for example, this.state.autocompleMatches or this.state.inputFieldValue.

NOTE Generally speaking, the word states refers to the attributes of the
this.state object in a component. Depending on the context, state (singu-
lar) can refer to the this.state object or an individual attribute (such as
this.state.inputFieldvalue). Conversely, states (plural) almost always
refers to the multiple attributes of the state object in a single component.

State data is often used to display dynamic information in a view to augment the ren-
dering of views. Going back to the earlier example of an autocomplete field, the state
changes in response to the XHR request to the server, which is, in turn, triggered by a
user typing in the field. React takes care of keeping views up to date when the state used
in the views changes. In essence, when state changes, only the corresponding parts of views
change (down to single elements or even an attribute value of a single element).

Everything else in the DOM remains intact. This is possible due to the virtual DOM
(see section 1.1.1), which React uses to determine the delta using the reconciliation
process. This is how you can write declaratively. React does all the magic for you. The
steps in the view change and how it happens are discussed in chapter 5.

http://www.manning.com/books/react-quickly
http://www.manning.com/books/react-quickly
https://github.com/azat-co/react-quickly/tree/master/ch04
https://github.com/azat-co/react-quickly/tree/master/ch04
https://github.com/azat-co/react-quickly
https://github.com/azat-co/react-quickly
http://reactquickly.co/demos
http://reactquickly.co/demos

72

4.2

4.2.1

CHAPTER 4 Making React interactive with states

React developers use states to generate new Uls. Component properties
(this.props), regular variables (inputValue), and class attributes (this.inputValue)
won’tdo it, because they don’t trigger a view change when you alter their values (in the
current component context). For instance, the following is an antipattern, showing
that if you change a value in anything except the state, you won’t get view updates:

// Anti-pattern: Stay away from it!
let inputValue = 'Texas'

class Autocomplete extends React.Component { :rlgsgeir:gt?:na(res‘l'lrl]t())f
updateValues () { u ion (typing

this.props.inputValue = 'California'
inputvalue = 'California’
this.inputValue = 'California’

}

render () {
return (
<div>
{this.props.inputvalue}
{inputvalue}
{this.inputvalue}
</div>

Next, you’ll see how to work with React component states.

NOTE As mentioned earlier (repetition is the mother of skills), properties will
change the view if you pass a new value from a parent, which in turn will create
anew instance of the component you're currently working with. In the context
of a given component, changing properties as in this.props.inputValue =
'California' won’t cut it.

Working with states

To be able to work with states, you need to know how to access values, update them,
and set the initial values. Let’s start with accessing states in React components.

Accessing states

The state object is an attribute of a component and can be accessed with a this ref-
erence; for example, this.state.name. You'll recall that you can access and print vari-
ables in JSX with curly braces ({}). Similarly, you can render this.state (like any
other variable or custom component class attribute) in render(); for example,
{this.state.inputFieldvalue}. This syntax is similar to the way you access proper-
ties with this.props.name.

Let’s use what you’ve learned so far to implement a clock, as shown in figure 4.3.
The goal is to have a self-contained component class that anyone can import and use
in their application without having to jump through hoops. The clock must render
the current time.

Working with states 73

o0 e f'll{ D localhost:8080/clock/ X \ \
& - C [localhost:8080/clock/ 77| @

Figure 4.3 The clock
6/6/2016, 10:48:29 PM component shows the

current time in digital format
and is updated every second.

The structure of the clock project is as follows:

/clock
index.html
/3sx

script.jsx

clock.jsx
/3s

script.js

clock.js

react.js

react-dom.js

I'm using the Babel CLI with a watch (-w) and a directory flag (-d) to compile all
source JSX files from clock/jsx to a destination folder, clock/js, and recompile on
changes. Moreover, I have the command saved as an npm script in my package.json in
a parent folder, ch04, in order to run npm run build-clock from ch04:

"scripts": {
"build-clock": "./node modules/.bin/babel clock/jsx -d clock/js -w"

b

Obviously, time is always changing (for good or for bad). Because of that, you’ll need
to update the view—and you can do so by using state. Give it the name currentTime,
and try to render this state as shown in the following listing.

Listing 4.1 Rendering state in JSX

class Clock extends React.Component {
render () {
return <div>{this.state.currentTime}</div>

}
}

ReactDOM.render (

<Clock />,

document .getElementById ('content')
)

You’ll get an error: Uncaught TypeError: Cannot read property 'currentTime' of
null. Normally, JavaScript error messages are as helpful as a glass of cold water to a

74

4.2.2

CHAPTER 4 Making React interactive with states

drowning man. It’s good that, at least in this case, JavaScript gives you a helpful message.
This one means you don’t have a value for currentTime. Unlike properties, states aren’t
set on a parent. You can’t setState in render () either, because it’ll create a circular
(setState — render — setState...) loop—and, in this case, React will throw an error.

Setting the initial state

Thus far, you've seen that before you use state data in render (), you must initialize
the state. To set the initial state, use this.state in the constructor with your ES6 class
React .Component syntax. Don’t forget to invoke super () with properties; otherwise,
the logic in the parent (React .Component) won’t work:

class MyFancyComponent extends React.Component {
constructor (props) {
super (props)
this.state = {...}

}

render ()

}

You can also add other logic while you’re setting the initial state. For example, you can
set the value of currentTime using new Date (). You can even use toLocaleString()
to get the proper date and time format for the user’s location, as shown next
(ch04/clock).

Listing 4.2 Clock component constructor

class Clock extends React.Component {
constructor (props) {
super (props)
this.state = {currentTime: (new Date()) .toLocaleString() }

The value of this.state must be an object. We won’t get into a lot of detail here
about the ES6 constructor(); see appendix E and the ES6 cheatsheet at
https://github.com/azat-co/cheatsheets/tree/master/es6. The gist is that as with
other OOP languages, constructor () is invoked when an instance of this class is cre-
ated. The constructor method name must be exactly constructor. Think of it as an
ES6 convention. Furthermore, if you create a constructor () method, you’ll almost
always need to invoke super () inside it; otherwise, the parent’s constructor won’t be
executed. On the other hand, if you don’t define a constructor () method, then the
call to super () will be assumed under the hood.

https://github.com/azat-co/cheatsheets/tree/master/es6

Working with states 75

Class attributes

Hopefully, Technical Committee 39 (TC39: the people behind the ECMAScript stan-
dard) will add attributes to the class syntax in future versions of ECMAScript! This
way, we'll be able to set state not just in the constructor, but also in the body of a
class:

class Clock extends React.Component {
state = {

.
}

The proposal for class fields/attributes/properties is at https://github.com/
jeffmo/es-class-fields-and-static-properties. It’s been there for many years, but as of
this writing (March 2017), it's only a stage 2 proposal (stage 4 means final and in
the standard), meaning it's not widely available in browsers. That is, this feature
won’t work natively. (As of this writing, exactly zero browsers support class fields.)

Most likely, you'll have to use a transpiler (such as Babel, Traceur, or TypeScript) to
ensure that the code will work in all browsers. Check out the current compatibility of
class properties in the ECMAScript compatibility table (http://kangax.github.io/
compat-table/esnext), and, if needed, use the ES.Next Babel preset.

Here, currentTime is an arbitrary name; you’ll need to use the same name later when
accessing and updating this state. You can name the state anything you want, as long
as you refer to it later using this name.

The state object can have nested objects or arrays. This example adds an array of
my books to the state:

class Content extends React.Component {
constructor (props) {
super (props)
this.state = {
githubName: 'azat-co',
books: [
'pro express.js',
'practical node.js',
'rapid prototyping with js'

}

The constructor () method is called just once, when a React element is created from
this class. This way, you can set state directly by using this.state just once, in the

https://github.com/jeffmo/es-class-fields-and-static-properties
https://github.com/jeffmo/es-class-fields-and-static-properties
http://kangax.github.io/compat-table/esnext
http://kangax.github.io/compat-table/esnext

76

4.2.3

CHAPTER 4 Making React interactive with states

constructor () method. Avoid setting and updating state directly with this.state = ...
anywhere else, because doing so may lead to unintended consequences.

NOTE With React’s own createClass() method to define a component,
you’ll need to use getInitialState(). For more information on create-
Class () and an example in ES5, see the sidebar in section 2.2, “ES6+/ES2015+
and React.”

This will only get you the first value, which will be outdated very soon—Ilike, in 1 sec-
ond. What'’s the point of a clock that doesn’t show the current time? Luckily, there’s a
way to update the state.

Updating states

You change state with the this.setState (data, callback) class method. When this
method is invoked, React merges the data with current states and calls render () . After
that, React calls callback.

Having the callback in setState() is important because the method works asyn-
chronously. If you're relying on the new state, you can use the callback to make sure this
new state is available.

If you rely on a new state without waiting for setState () to finish its work—that is,
working synchronously with an asynchronous operation—then you may have a bug
when you rely on new state values to be updated, but the state is still an old state with
old values.

So far, you've rendered the time from a state. You also set the initial state, but you
need to update the time every second, right? To do so, you can use a browser timer
function, setInterval () (http://mng.bz/P2d6), which will execute the state update
every n milliseconds. The setInterval () method is implemented in virtually all mod-
ern browsers as a global, which means you can use it without any libraries or prefixes.
Here’s an example:

setInterval (()=>{
console.log('Updating time...")
this.setState ({
currentTime: (new Date()) .toLocaleString/()
3]

}, 1000)

To Kkick-start the clock, you need to invoke setInterval() once. Let’s create a
launchClock () method to do just that; you’ll call launchClock () in the constructor.
The final clock is shown in the following listing (ch04/clock/jsx/clock.jsx).

Listing 4.3 Implementing a clock with state

class Clock extends React.Component {
constructor (props) {
super (props)
this.launchClock ()

Triggers
launchClock()

http://mng.bz/P2d6

Working with states 77

this.state = {

currentTime: (new Date()).toLocaleString() Sets the initial state
} 1 4_1 to the current time
launchClock () {
Updates the setInterval (()=>{
Sﬁnewnhfhe console.log ('Updating time..."')
current time this.setState ({
every second currentTime: (new Date()) .toLocaleString/()
}
}, 1000)
1
render () {
console.log('Rendering Clock...") 5:::2:;

return <divs{this.state.currentTime}</div>

}
}

You can use setState () anywhere, not just in launchClock () (which is invoked by
constructor), as shown in the example. Typically, setState() is called from the
event handler or as a callback for incoming data or data updates.

TIP Changing a state value in your code using this.state.name= 'new name'
won’t do any good. This won’t trigger a rerender and a possible real DOM
update, which you want. For the most part, changing state directly without
setState () is an antipattern and should be avoided.

It’s important to note that setState () updates only the states you pass to it (partially
or merged, but not a complete replace). It doesn’t replace the entire state object
each time. So, if you have three states and change one, the other two will remain
unchanged. In the following example, userEmail and userId will remain intact:

constructor (props) {
super (props)
this.state = {
userName: 'Azat Mardan',
userEmail: 'hi@azat.co',
userId: 3967
}
}

updatevValues () {
this.setState ({userName: 'Azat'})

}

If your intention is to update all three states, you need to do so explicitly by passing
the new values for these states to setState (). (Another method you may still see in
old React code but that’s no longer working and has been deprecated is the
this.replaceState() method.! As you can guess from the name, it replaced the
entire state object with all its attributes.)

! https://github.com/facebook/react/issues/3236.

https://github.com/facebook/react/issues/3236

78

CHAPTER 4 Making React interactive with states

Keep in mind that setState () triggers render (). It works in most cases. In some
edge-case scenarios where the code depends on external data, you can trigger a reren-
der with this. forceUpdate (). But this approach should be avoided as a bad practice,
because relying on external data and not state makes components more fragile and
depends on external factors (tight coupling).

As mentioned earlier, you can access the state object with this.state. As you’ll
recall, you output values with curly braces ({}) in JSX; therefore, to declare a state
property in the view (that is, render’s return statement), apply {this.state.NAME}.

React magic happens when you use state data in a view (for example, to print, in
an if/else statement, as a value of an attribute, or as a child’s property value) and
then give setState () new values. Boom! React updates the necessary HTML for you.
You can see this in your DevTools console. It should show cycles of “Updating ...” and
then “Rendering” And the best part is that only the absolute minimum required
DOM elements will be affected.

Binding this in JavaScript

In JavaScript, this mutates (changes) its value depending on the place from which
a function is called. To ensure that this refers to your component class, you need
to bind the function to the proper context (this value: your component class).

If you're using ES6+/ES2015+, as | do in this book, you can use fat-arrow function
syntax to create a function with autobinding:

setInterval (()=>{
this.setState ({
currentTime: (new Date()) .toLocaleString()

1)

}, 1000)

Autobinding means the function created with a fat arrow gets the current value of
this, which in this case is Clock.

The manual approach uses the bind (this) method on the closure:

function() {...}.bind(this)
It looks like this for your clock:

setInterval (function () {
this.setState ({
currentTime: (new Date()) .toLocaleString()

3]

}.bind (this), 1000)

This behavior isn’t exclusive to React. The this keyword mutates in a function’s clo-
sure, so you need do some sort of binding; you can also save the context (this) value
SO you can use it later.

Working with states

(continued)

79

Typically, you'll see variables like self, that, and this used to save the value of

the original this. You’ve probably seen statements like the following:

var that = this
var _this = this
var self = this

The idea is straightforward: you create a variable and use it in the closure instead of
referring to this. The new variable isn’t a copy but rather a reference to the original

this value. Here’s setInterval ():

var _this = this
setInterval (function () {
_this.setState ({
currentTime: (new Date()) .toLocaleString()

3]

}, 1000)

You have a clock, and it’s working, as shown in figure 4.4. Tadaaa!

One more quick thing before we move on. You can see how React is reusing the
same DOM <div> element and only changes the text inside it. Go ahead and use Dev-
Tools to modify the CSS of this element. I added a style to make the text blue: color:
blue, as shown in figure 4.5 (you can see the color in electronic versions of the book).
I created an inline style, not a class. The element and its new inline style stayed the

same (blue) while the time kept ticking.

Reactwill only update the inner HTML (the content of the second <div> container).

The <div> itself, as well as all other elements on this page, remain intact. Neat.

® O ® [iocanost:8080/chossclocks x Ninja [} localhost:8080/ch04/clock/ Ninja
€ C' [} localhost:8080/... 77 €A = € C' [3 localhost:8080/... 77 @ =
7/2/2016, 1:01:11 PM 7/2/2016, 1:01:14 PM
x///
[® (1] Elements Console Sources » 'Y [® (1] Elements Console Sources » X
® ¥ top v Preserve log ® Y top v Preserve log
Rendering Clock... clock.is:16 Updating time... lorsnid
N Rendering Clock... clock.js:16
Updating time... clock,i5:9
Rendering Clock... clock.js:16
[T Updating time... clock.js:9
Rendering Clock... clock.i5:16
>

Figure 4.4 The Clock is ticking.

80

CHAPTER 4 Making React interactive with states

® © ® /M iocaost:8o80rciock x|

& - C [localhost:8080/clock/ <ol D

=
=
i |=

6/6/2016, 10:34:30 PM .l_—‘K ﬂ Elements Console Sources MNetwork Timeline React »

X

» <head>..</head>
¥ <body=
¥<div id="content">
<1 data-reactroot style="
color: blue;
R 016 1@
<fdiv=
<script sre="js/clock.js"=</script>
<script src="js/script.is"s</script>
</body>
</html>

| html body divécontent [aw |

Styies Event Listeners DOM Breakpoints Properties
Filter thov 4 .cls +

4

| element. st yle {

1 margin '

r: . h \

color: Mblue; (s :

} F [t — 2|
e 1

ldiv £ user anent stvleshest & 9 L

Figure 4.5 React is updating the time’s text, not the <div> element (I manually added color: blue, and the
<div> remained blue).

4.3

States and properties

States and properties are both attributes of a class, meaning they’re this.state and
this.props. That’s the only similarity! One of the primary differences between states
and properties is that the former are mutable, whereas the latter are immutable.

Another difference between properties and states is that you pass properties from
parent components, whereas you define states in the component itself, not its par-
ent. The philosophy is that you can only change the value of a property from the
parent, not the component. So properties determine the view upon creation, and
then they remain static (they don’t change). The state, on the other hand, is set and
updated by the object.

Properties and states serve different purposes, but both are accessible as attributes
of the component class, and both help you to compose components with a different
representation (view). There are differences between properties and states when it
comes to the component lifecycle (more in chapter 5). Think of properties and states
as inputs for a function that produces different outputs. Those outputs are views. So
you can have different UIs (views) for each set of different properties and states (see
figure 4.6).

Not all components need to have state. In the next section, you’ll see how to use
properties with stateless components.

Stateless components 81

component? (parent) componentB View: render ()

B
[::]]me e this.props |[®= @ X
@E: [innall |
5= [l

state e this.state

(data)

componentB.setState \
J

States are mutable,
defined in each
component.

Figure 4.6 New values for properties and states can change the Ul. New property values come from a parent, and
new state values come from the component.

4.4

Stateless components

A stateless component has no states or components or any other React lifecycle
events/methods (see chapter 5). The purpose of a stateless component is just to ren-
der the view. The only thing it can do is take properties and do something with
them—it’s a simple function with the input (properties) and the output (UI element).

The benefit of using stateless components is that they’'re predictable, because you
have one input that determines the output. Predictability means they’re easier to
understand, maintain, and debug. In fact, not having a state is the most desired React
practice—the more stateless components you use and the fewer stateful ones you use,
the better.

You wrote a lot of stateless components in the first three chapters of this book. For
example, Hello World is a stateless component (ch03/hello-js-world-jsx/jsx/script.jsx).

Listing 4.4 Stateless Hello World

class HelloWorld extends React.Component {
render () {
return <hl {...this.props}>Hello {this.props.frameworkName} world!!!
</hl>
}

}

To provide a smaller syntax for stateless components, React uses this function style:
you create a function that takes properties as an argument and returns the view. A
stateless component renders like any other component. For example, the HelloWorld
component can be rewritten as a function that returns <hl>:

const HelloWorld = function (props) {
return <hl {...props}>Hello {props.frameworkName} world!!!</hl>
}

82

CHAPTER 4 Making React interactive with states

You can use ES6+/ES2015+ arrow functions for stateless components. The following
snippet is analogous to the previous one (return can be omitted too, but I like to
include it):

const HelloWorld = (props)=>{
return <hl {...props}>Hello {props.frameworkName} world!!!</hl>
}

As you can see, you can also define functions as React components when there’s no
need for state. In other words, to create a stateless component, define it as a function.
Here’s an example in which Link is a stateless component:

function Link (props) {
return
{props.text}
}
ReactDOM. render (
<Link text='Buy React Quickly'
href="https://www.manning.com/books/react-quickly'/>,
document .getElementById('content')

Although there’s no need for autobinding, you can use the fat-arrow function syntax
for brevity (when there’s a single statement, the notation can be a one-liner):

const Link = props => <a href={props.href}
target="_blank"
className="btn btn-primary">
{props.text}

Or you can use the same arrow function but with curly braces ({}), explicit return,
and parentheses (()) to make it subjectively more readable:

const Link = (props)=> {
return (
<a href={props.href}
target="_blank"
className="btn btn-primary"s>
{props.text}

In a stateless component, you can’t have a state, but you can have two properties:
propTypes and defaultProps (see sections 8.1 and 8.2, respectively). You set them on
the object. And, by the way, it’s okay to not have an opening parenthesis after return
as long as you start an element on the same line:

4.5

Stateful vs. stateless components 83

function Link (props) {
return <a href={props.href}
target="_blank"
className="btn btn-primary"s>
{props.text}

}
Link.propTypes = {...}
Link.defaultProps = {...}

You also cannot use references (refs) with stateless components (functions).? If you
need to use refs, you can wrap a stateless component in a normal React component.
More about references in section 7.2.3.

Stateful vs. stateless components

Why use stateless components? They’re more declarative and work better when all you
need to do is render some HTML without creating a backing instance or lifecycle com-
ponents. Basically, stateless components reduce duplication and provide better syntax
and more simplicity when all you need to do is mesh together some properties and
elements into HTML.

My suggested approach, and the best practice according to the React team, is to use
stateless components instead of normal components as often as possible. But as you saw
in the clock example, it’s not always possible; sometimes you have to resort to using states.
So, you have a handful of stateful components on top of the hierarchy to handle the UI
states, interactions, and other application logic (such as loading data from a server).

Don’t think that stateless components must be static. By providing different properties
for them, you can change their representation. Let’s look at an example that refactors and
enhances Clock into three components: a stateful clock that has the state and the logic to
update it; and two stateless components, DigitalDisplay and AnalogDisplay, which only
output time (butdoitin different ways). The goal is something like figure 4.7. Pretty, right?

The structure of the project is as follows:

/clock-analog-digital
/3sx
analog-display.jsx
clock.jsx
digital-display.jsx
script.jsx

/3s
analog-display.js
clock.js

digital-display.js

script.js

react.js

react-dom.js
index.html

2 “React stateless component this.refs..value?” http://mng.bz/Eb91.

http://mng.bz/Eb91

84

CHAPTER 4 Making React interactive with states

® O @® /[localhost:8080/ch04/clock-an x\a Ninja

& (c) l(D localhost:8080/ch04/clock-analog-digital/ ¥r| @ :

10/23/2016, 4:36:59 PM

Figure 4.7 Clock with two ways to show time: analog and digital

The code for Clock renders the two child elements and passes the time property with
the value of the currentTime state. The state of a parent becomes a property of a
child.

Listing 4.5 Passing state to children

render () {
console.log('Rendering...")
return <divs
<AnalogDisplay time={this.state.currentTime}/>
<DigitalDisplay time={this.state.currentTime}/>
</divs>

}

Now, you need to create DigitalDisplay, which is simple. It’s a function that takes the
properties and displays time from that property argument (props.time), as shown
next (ch04/clock-analog-digital /jsx/digital-display.jsx).

Listing 4.6 Stateless digital display component

const DigitalDisplay = function (props)
return <divs>{props.time}</divs>

}

AnalogDisplay is also a function that implements a stateless component; but in its
body is some fancy animation to rotate the hands. The animation works based on the
time property, not based on any state. The idea is to take the time as a string; convert

Stateful vs. stateless components 85

it to a Date object; get minutes, hours, and seconds; and convert those to degrees. For
example, here’s how to get seconds as angle degrees:

let date = new Date('1/9/2007, 9:46:15 AM')
console.log((date.getSeconds () /60)*360) // 90

Once you have the degrees, you can use them in CSS, written as an object literal. The
difference is that in the React CSS, the style properties are camelCased, whereas in
regular CSS, the dashes (-) make style properties invalid JavaScript. As mentioned
earlier, having objects for styles allows React to more quickly determine the differ-
ence between the old element and the new element. See section 3.4.3. for more
about style and CSS in React.

The following listing shows the stateless analog display component with CSS that
uses values from the time property (ch04/clock-analog-digital/jsx/analog-display.jsx).

Listing 4.7 Stateless analog display component

const AnalogDisplay = function AnalogDisplay (props) {
let date = new Date (props.time)
let dialstyle = {
position: 'relative',
top: O,
left: 0,
width: 200,
height: 200,

borderRadius: . 20000 ' Uses borderRadius (border-radius in
borderStyle: 'sol 1d' , regular CSS) on a <div> with a high
borderColor: 'black number relative to the width, to make

} it a circle
let secondHandStyle = {

position: 'relative',

top: 100,

left: 100,

border: 'lpx solid red',

width: '40%',

height: 1,

transform: 'rotate(' + ((date.getSeconds()/60)*360 - 90)
= .toString() + 'deg)',

Converts the string date
into an object so you can
parse it later

transformOrigin: '0% 0%', Calculates the angle and rotates the
backgroundColor: 'red! second hand with minus 90 to offset for
} the hand’s starting horizontal position

let minuteHandStyle = {
position: 'relative',
top: 100, Uses transformOrigin to offset
left: 100, the center of the rotation
border: 'lpx solid grey',
width: '40%',
height: 3,
transform: 'rotate(' + ((date.getMinutes()/60)*360 - 90)
= .toString() + 'deg)',

86

CHAPTER 4 Making React interactive with states

transformOrigin: '0% 0%',
backgroundColor: 'grey'

}

let hourHandStyle = {
position: 'relative',
top: 92,
left: 106,
border: 'lpx solid grey',
width: '20%',
height: 7,

transform: 'rotate(' + ((date.getHours()/12)*360 - 90).toString()

transformOrigin: '0% 0%',
backgroundColor: 'grey'
}
return <divs>
<div style={dialStyle}>
<div style={secondHandStyle}/>
<div style={minuteHandStyle}/>
<div style={hourHandStyle}/>
</div>
</divs>

Renders the containers with
applicable styles relative to
the clock dial (large circle)

+

'deg) ',

If you have React Developer Tools for Chrome or Firefox (available at http://
mng.bz/mt5P and http://mng.bz/DANq), you can open the React pane in your
DevTools (or an analog in Firefox). Mine shows that the <Clock> element has two
children (see figure 4.8). Notice that React DevTools tells you the names of the
components along with the state, currentTime. What a great tool for debugging!

Search by Component Name

Figure 4.8 React DevTools v0.15.4 shows two components.

® 0 ® /[localhost:B080/chi4/clock-an % M
& @ | @ localhost:8080/ lelock log-digital/ | @
10/23/2016,4:35:02 PM
[® @) | Eements Console Sources Metwork Timeline Profiles Application Secwrity Audits React 4
[Trace React Updates || Highlight Search [_| Use Regular Expressions <Clock> (% in the console)
» <L locke..</Clock=
¥l locks Props .
adive Empty object
b <Analoghisplay times"18/23/2016, 4:35:02 PH">—</AnalogDisplay>
> <Digitalbisplay tine="10/23/2016, 4:35:02 PM'>_</DigitalDisplay> | State — .
</dive currentTime: “18/23/2016, 4:35:02 P
</Clock=

http://mng.bz/mt5P
http://mng.bz/mt5P
http://mng.bz/DANq

Stateful vs. stateless components 87

Note that in this example, I used anonymous expressions stored as const variables.
Another approach is to use a syntax with named function declarations:

function AnalogDisplay (props) {...}

Or you can use the named function declaration referenced from a variable:

const AnalogDisplay = function AnalogDisplay (props) {...}

About function declarations in JavaScript

In JavaScript, there are several way to define a function. You can write an anonymous
function expression that’s used right away (typically as a callback):

function() { return 'howdy'}
Or you can create an IIFE:

(function() {
return ('howdy"')

N o

An anonymous function expression can be referenced in a variable:

let sayHelloInMandarin = function() { return 'ni hdo'}

This is a named or hoisted function expression:

function sayHelloInTatar() { return 'salam'}

And this is a named or hoisted function expression referenced in a variable:

let sayHelloInSpanish = function digaHolaEnEspanol () { return 'hola'}

Finally, you can use an immediately invoked, named function expression:

(function sayHelloInTexan() {
return ('howdy"')

N o

There’s no fat-arrow syntax for named/hoisted functions.

As you can see, the AnalogDisplay and DigitalDisplay components are stateless:
they have no states. They also don’t have any methods, except for the body of the
function, which is not like render () in a normal React class definition. All the logic
and states of the app are in Clock.

In contrast, the only logic you put into the stateless components is the animation,
but that’s closely related to the analog display. Clearly, it would have been a bad design
to include analog animation in Clock. Now, you have two components, and you can

88

4.6

CHAPTER 4 Making React interactive with states

render either or both of them from Clock. Using stateless components properly with a
handful of stateful components allows for more flexible, simpler, better design.

Usually, when React developers say stateless, they mean a component created with a
function or fat-arrow syntax. It’s possible to have a stateless component created with a
class, but this approach isn’t recommended because then it’s too easy for someone
else (or you in six months) to add a state. No temptation, no way to complicate code!

You may be wondering whether a stateless component can have methods. Obvi-
ously, if you use classes, then yes, they can have methods; but as I mentioned, most
developers use functions. Although you can attach methods to functions (they’re also
objects in JavaScript), the code isn’t elegant, because you can’t use this in a function
(the value isn’t the component; it’s window):

// Anti-pattern: Don't do this.
const DigitalDisplay = function (props) {
return <divs>{DigitalDisplay.locale (props.time) }</div>

}
DigitalDisplay.locale = (time)=>{
return (new Date(time)) .toLocaleString('EU')

}

If you need to perform some logic related to the view, create a new function right in
the stateless component:

// Good pattern

const DigitalDisplay = function (props) {
const locale = time => (new Date(time)) .toLocaleString('EU')
return <divs{locale (props.time) }</div>

}

Keep your stateless components simple: no states and no methods. In particular, don’t
have any calls to external methods or functions, because their results may break pre-
dictability (and violate the concept of purity).

Quiz
You can set state in a component method (not a constructor) with which syn-
tax? this.setState(a), this.state =a, orthis.a=a
If you want to update the render process, it’s normal practice to change proper-
ties in components like this: this.props.a=100. True or false?
States are mutable, and properties are immutable. True or false?
Stateless components can be implemented as functions. True or false?
How do you define the first state variables when an element is created?
setState(), initialState(), this.state =... in the constructor, or
setInitialState ()

4.7

4.8

Quiz answers

Summary

States are mutable; properties are immutable.
getInitialState allows components to have an initial state object.

this.setState updates only the properties you pass to it, not all state object

properties.

{} is a way to render variables and execute JavaScript in JSX code.
this.state.NAME is the way to access state variables.

Stateless components are the preferred way of working with React.

Quiz answers

" () sseTpe3esId

Susn o1 nof 1 ()93e3STRTITUIISE JO TOPPNOSUOD) Ul " ° = 93838 STYI
*(IUQWISY3 9[3UIS) JUIWII[d Uk WLINIAI JSNW Yoq g

‘uontuyop {} ()uoT3ouny [EUONIPEL) dY) IO UONIUNJ MOLIE O} ISN ULD NOK O],
Juouodwod ayy £q A[uo paSueyd are sa3eIs A[9SIdAUON) “JUd

-red 31 woay Afuo—yusuoduwod e woj A11odoad e oSueyd 03 Aem ou s 919y, *ONI],
I9PUAIAI B 198511 1, uom yusuodwod ap ut L1aaodoad e Suiduey)) aspe,]

‘f1rodoad /oinqLiye /proyy soueisUI ue

91820 A[UO [[I] "9IBIS [PIM Suryidue op Jou [[IM B STY3 - () 1030na3suod ur 3dooxo
Apoaarp 23e3s°STY] USISSE I9AOU “I9ASU “I9ADU OM 9SNBIA(Q ‘(©) 93835388 STYI

g) E Watch this chapter’s introduction video by
¥ & Scanning this QR code with your phone or going
to http://reactquickly.co/videos/ch05.

e

React component
lifecycle events

This chapter covers

= Getting a bird’s-eye view of React component lifecycle
events

= Understanding event categories
= Defining an event
= Mounting, updating, and unmounting events

Chapter 2 provided information about how to create components, but there are
certain situations in which you need more granular control over a component. For
instance, you may be building a custom radio button component that can change
in size depending on the screen width. Or perhaps you’re building a menu that
needs to get information from the server by sending an XHR request.

One approach would be to implement the necessary logic before instantiating a
component and then re-create it by providing different properties. Unfortunately,
this won’t create a self-contained component, and thus you’ll lose React’s benefit of
providing a component-based architecture.

90

http://reactquickly.co/videos/ch05

5.1

5.2

Categories of events 91

The best approach is to use component lifecycle events. By mounting events, you
can inject the necessary logic into components. Moreover, you can use other events to
make components smarter by providing specific logic about whether or not to reren-
der their views (overwriting React’s default algorithm).

Going back to the examples of a custom radio button and menu, the button can
attach event listeners to window (onResize) when the button component is created,
and detach them when the component is removed. And the menu can fetch data from
the server when the React element is mounted (inserted) into the real DOM.

Onward to learning about component lifecycle events!

NOTE The source code for the examples in this chapter is at www.manning
.com/books/react-quickly and https://github.com/azat-co/react-quickly/
tree/master/ch05 (in the ch05 folder of the GitHub repository https://
github.com/azat-co/react-quickly). You can also find some demos at http://
reactquickly.co/demos.

A bird’s-eye view of React component lifecycle events

React provides a way for you to control and customize a component’s behavior based
on its lifecycle events (think of Zooking [https://en.wikipedia.org/wiki/Hooking] in
computer programming). These events belong to the following categories:

Mounting evenis—Happen when a React element (an instance of a component
class) is attached to a DOM node

Updating events—Happen when a React element is updated as a result of new
values of its properties or state

Unmounting events—Happen when a React element is detached from the DOM

Each and every React component has lfecycle events that are triggered at certain
moments depending on what a component has done or will do. Some of them exe-
cute just once, whereas others can be executed continuously.

Lifecycle events allow you to implement custom logic that will enhance what com-
ponents can do. You can also use them to modify the behavior of components: for
example, to decide when to rerender. This enhances performance, because unneces-
sary operations are eliminated. Another usage is to fetch data from the back end or
integrate with DOM events or other front-end libraries. Let’s look more closely at how
categories of events operate, what events they possess, and in what sequence those
events are executed.

Categories of events
React defines several component events in three categories (see figure 5.1 and also
table 5.1, later in the chapter). Each category can fire events various number of times:
Mounting—React invokes events only once.
Updating—React can invoke events many times.

Unmounting—React invokes events only once.

www.manning.com/books/react-quickly
www.manning.com/books/react-quickly
https://github.com/azat-co/react-quickly/tree/master/ch05
https://github.com/azat-co/react-quickly/tree/master/ch05
https://github.com/azat-co/react-quickly
https://github.com/azat-co/react-quickly
http://reactquickly.co/demos
http://reactquickly.co/demos
https://en.wikipedia.org/wiki/Hooking

CHAPTER 5 React component lifecycle events

Component lifecycle

Mounting Updating Unmounting

.] =
- 05

—/ D
—

/ / /

Events executed Events executed Events executed
once multiple times once

Figure 5.1 Categories of lifecycle events as a component proceeds through its lifecycle,
and how many times events in a category can be called

In addition to lifecycle events, I'll include constructor (), to illustrate the order of
execution from start to finish during the component’s lifecycle (updating can happen
multiple times):

constructor () —Happens when an element is created and lets you set the
default properties (chapter 2) and the initial state (chapter 4)

Mounting

— componentWillMount () —Happens before mounting to the DOM

— componentDidMount () —Happens after mounting and rendering

Updating

— componentWillReceiveProps (nextProps) —Happens when the component
is about to receive properties

— shouldComponentUpdate (nextProps, nextState)-> bool—Lets you opti-
mize the component’s rerendering by determining when to update and
when to not update

— componentWillUpdate (nextProps, nextState)—Happens right before the
component is updated

— componentDidUpdate (prevProps, prevState)—Happens right after the
component updated

Unmounting

— componentWillUnmount function ()—Lets you unbind and detach any event
listeners or do other cleanup work before the component is unmounted

Usually, an event’s name makes clear to developers when the event is triggered. For
example, componentDidUpdate () is fired when the component is updated. In other
cases, there are subtle differences. Table 5.1 shows the sequence of lifecycle events (from
top to bottom) and how some of them depend on changes of properties or state (the
Component Properties and Component State columns).

93

ies of events

ries o

Catego

() aunowun T T TMIUSUOdWoD

Sununowun

() ®3epdnpraiusuoduod
() xopusz

() ®23epdn1TTMIUSUOAWOD

Suisn Sunepdn

() @23epdnpTgiusuoduod
() xopuUax
()®3epdnTTTMIUSUOAWOD

() @3epdniusuodwoppTnoys

aje)s jJusauodwod Sunepdn

() @3epdnpTgiusuoduod

() xopusx
()®3epdnTTTMIUSUOdWOD
() @23epdniusuoduoDpTnoys

() sdoaxgeaTeo0oy T TMIUSUOAWOD

sajpadoid Jusuodwods Sunepdn

() 3unowp Tazusuodwod

() zopusx

() JUNOWT T TMIUSUOAWOD

() T03PNIJISUOD

Sununop

(sen4adoad pue ajejs yum uorjejal 119y} pue) sjuand ajokody7 T°S dlqel

94

CHAPTER 5 React component lifecycle events

There’s one more case in which a component might be rerendered: when
this.forceUpdate () is called. As you can guess from the name, it forces updates. You
may need to resort to using it when, for one reason or another, updating state or prop-
erties won’t trigger a desired rerender. For example, this might happen when you use
data in render () that isn’t part of the state or properties, and that data changes—
hence, the need to manually trigger an update. Generally (and according to the React
core team), the this.forceUpdate() method (http://mng.bz/vbsU) should be
avoided, because it makes components impure (see the following sidebar).
Next, let’s define an event to see it in action.

Pure functions
In computer science in general—not just in React—a pure function is a function that

Given the same input, will always return the same output
Has no side effects (doesn’t alter external states)
Doesn’t rely on any external state

For example, here’s a pure function that doubles the value of the input: £ (x) = 2x or,
in JavaScript/Node, let f= (n)=2*n. Here it is in action:

let £ = (n)=>2*n
consoleg.log (f (7))

An impure function to double numbers looks like this in action (adding curly braces
removes the implicit return of the one-liner fat-arrow function):

let sharedStateNumber = 7

let double

let £ = ()=> {double =2*sharedStateNumber}
£()

console.log (double)

Pure functions are the cornerstone of functional programming (FP), which minimizes
state as much as possible. Developers (especially functional programmers) prefer
pure functions primarily because their usage mitigates shared state, which in turn
simplifies development and decouples different pieces of logic. In addition, using
them makes testing easier. When it comes to React, you already know that having
more stateless components and fewer dependencies is better; that’s why the best
practice is to create pure functions.

In some ways, FP contradicts OOP (or is it OOP that contradicts FP?), with FP fans
saying that Fortran and Java were programming dead ends and that Lisp (and nowa-
days, Clojure and Elm) is the way to go. It's a fascinating debate to follow. Personally,
I’'m slightly biased toward the functional approach.

Many good books have been written about FP, because the concept has been around
for decades. For this reason, | won’t get into much detail here; but | highly recom-
mend learning more about FP, because it will make you a better programmer even if
you never plan to use it at your job.

http://mng.bz/v5sU

5.3

Implementing an event 95

Implementing an event

To implement lifecycle events, you define them on a class as methods (see sec-
tion 3.2.5)—this is a convention that React expects you to follow. React checks to see
whether there’s a method with an event name; if React finds a method, it will call that
method. Otherwise, React will continue its normal flow. Obviously, event names are
case sensitive like any name in JavaScript.

To put it differently, under the hood, React calls certain methods during a compo-
nent’s lifecycle if they’re defined. For example, if you define componentDidMount (),
then React will call this method when an element of this component class is mounted.
componentDidMount () belongs to the mounting category listed in table 5.1, and it will
be called once per instance of the component class:

class Clock extends React.Component {
componentDidMount () {

}

If no componentDidMount () method is defined, React won’t execute any code for this
event. Thus, the name of the method must match the name of the event. Going for-
ward, I'll use the terms event, event handler, and method interchangeably in this chapter.

As you might have guessed from its name, the componentDidMount () method is
invoked when a component is inserted into the DOM. This method is a recom-
mended place to put code to integrate with other front-end frameworks and libraries
as well as to send XHR requests to a server, because at this point in the lifecycle, the
component’s element is in the real DOM and you get access to all of its elements,
including children.

Let’s go back to the issues I mentioned at the beginning of the chapter: resizing,
and fetching data from a server. For the first, you can create an event listener in
componentDidMount () that will listen for window.resize events. For the second, you
can make an XHR call in componentDidMount () and update the state when you have a
response from the server.

Equally important, componentDidMount () comes in handy in isomorphic/univer-
sal code (where the same components are used on the server and in the browser). You
can put browser-only logic in this method and rest assured that it’ll only be called for
browser rendering, and not on the server side. There’s more on isomorphic JavaScript
with React in chapter 16.

Most developers learn best by looking at examples. For this reason, let’s consider a
trivial case that uses componentDidMount () to print the DOM information to the con-
sole. This is feasible because this event is fired after all the rendering has happened;
thus, you have access to the DOM elements.

96

CHAPTER 5 React component lifecycle events

Creating event listeners for component lifecycle events is straightforward: you define
a method on the component/class. For the fun of it, let’s add componentWillMount ()
to contrast the absence of the real DOM for this element at this stage.
The DOM node information is obtained via the React DOM’s utility function
ReactDOM. findDOMNode (), to which you pass the class. Note that DOM isn’t camelCase,
but rather is in all-caps:

class Content extends React.Component {
componentWillMount () { rEl)(;zeec:: :)heenTl)lM
console.log (ReactDOM. findDOMNode (this))
}
componentDidMount () {
console.dir (ReactDOM. findDOMNode (this)) Expects the DOM
} node to be <div>
render () {
return (
)
}

The result is this output in the developer console, which reassures you that
componentDidMount () is executed when you have real DOM elements (see figure 5.2):

html
null
div
® © @ /' [iocanost:8080/ch0s/di-n > | Ninja
& - C [} localhost:8080/ch05/did-mount/ w0 @ =
(% (1] | Elements Console Sources » HEY
® ¥ top v [_|Preservelog
null content.js:5
content.js:8
¥ div
F __reactInternallnstancessgcyuSvilfwOp3xb496nwow29: Read
accessKey: "
align: "

b attributes: NamedNodeMap
baseURI: "http://localhost:8080/ch@5/did-mount/"
childElementCount: @

b childNodes: NodeList([@]

b children: HTMLCollection (8]

» classList: DOMTokenlList[8]
classhame: ""
clientHeight: @
clientleft: @
clientTop: @
clientWidth: 476
contentEditable: "inherit"

b dataset: DOMStringMap

a

Figure 5.2 The second log shows the DOM node because componentDidMount () was
fired when the element was rendered and mounted to the real DOM. Thus, you have the node.

5.4

Executing all events together 97

Executing all events together

Listing 5.1 (ch05/logger/jsx/content.jsx) and listing 5.2 (ch05/logger/jsx/log-
ger,jsx) show all the events in action at once. For now, all you need to know is that
they’re like classes in the sense that they allow you to reuse code. This logger mixin
can be useful for debugging; it displays all the events, properties, and state when the
component is about to be rerendered and after it’s been rerendered.

Listing 5.1 Rendering and updating a Logger component three times

class Content extends React.Component {
constructor (props) {
super (props)
this.launchClock ()
this.state = {
counter: 0,
currentTime: (new Date()).toLocaleString()
}
}
launchClock () {
setInterval (()=>{
this.setState ({
counter: ++this.state.counter,
currentTime: (new Date()) .toLocaleString/()
)
}, 1000)
}
render () {
if (this.state.counter > 2) return
return <Logger time="{this.state.currentTime}"></Logger>

}
}

Listing 5.2 Observing component lifecycle events

class Logger extends React.Component {

constructor (props) {
super (props)
console.log('constructor')

}

componentWillMount () {
console.log('componentWillMount is triggered')

}

componentDidMount (e) {
console.log ('componentDidMount is triggered')
console.log('DOM node: ', ReactDOM.findDOMNode (this))
}
componentWillReceiveProps (newProps) {
console.log ('componentWillReceiveProps is triggered')
console.log('new props: ', newProps)

}

shouldComponentUpdate (newProps, newState) {

98 CHAPTER 5 React component lifecycle events

console.log ('shouldComponentUpdate is triggered')
console.log('new props: ', newProps)
console.log('new state: ', newState)
return true

}

componentWillUpdate (newProps, newState) {
console.log ('componentWillUpdate is triggered')
console.log('new props: ', newProps)
console.log('new state: ', newState)

}

componentDidUpdate (oldProps, oldState) ({
console.log ('componentDidUpdate is triggered')

console.log('new props: ', oldProps)
console.log('old props: ', oldState)
}
componentWillUnmount () {

console.log ('componentWillUnmount')

}
render () {
// console.log('rendering... Display')
return (
{this.props.time}

The functions and lifecycle events from the Display component give you console logs
when you run this web page. Don’t forget to open your browser console, because all
the logging happens there, as shown in figure 5.3!

Asnoted in the text and shown in the figure, the mounting event fires only once. You
can clearly see this in the logs. After the counter in Context reaches 3, the render func-
tion won’t use Display anymore, and the component is unmounted (see figure 5.4).

Now that you’ve learned about component lifecycle events, you can use them when
you need to implement logic for components, such as fetching data.

©® O @ /[ocalnost:8080/chos/iogge x |\ | Ninja
€ - C [localhost:8080/ch05/logger/ | D =

7/3/2016,1:07:31 PM

[(1] @ Elements Console Sources Network Timeline Profles Resources Security Audits React toX
® ¥ top ¥ [)Preservelog
constructor logoer.js:4
componentWillMount is triggered logger.js:7
componentDidMount is triggered logger.js:18
DOM node: <div=7/3/2016, 1:07:31 PM</div> logger.js:11

Figure 5.3 The logger has been mounted.

Mounting events 99

® O ® /[iocalnost:8080/chossiogae % Ninja
_ e
€& - C | [localhost:8080/ch05/logger/ w| @ =
L3
[ﬂ Elements Console Sources Network Timeline Profiles Resources Security Audits React PoX
® ¥ top ¥ [)Preservelog
componentWillReceiveProps is triggered logger.js:14
new props: b ghject {time: “7/3/2016, 1:07:33 PM"} logger.js:15
shouldComponentUpdate is triggered logger.js:18
new props: p gpject {time: “7/3/2016, 1:67:33 PM"} logger.js:19
new state: null logger.js:28@
componentWillUpdate is triggered logger.js:24
new Props: w gpject {time: "7/3/2016, 1:87:33 PM"} logger.js:25
new state: null logger.js:26
componentDidUpdate is triggered logger.js:29
new props: » ghject {time: "7/3/2016, 1:87:32 PM"} logager.js:30
old props: null logger.js:31
componentWillUnmount logger.js:34
>

Figure 5.4 Content was removed from the logger after 2 seconds; hence, the componentWillUnmount () log
entry right before the removal.

5.5

5.5.1

Mounting events

The mounting category of events is all about a component being attached to the real
DOM. Think of mounting as a way for a React element to see itself in the DOM. This
typically happens when you use a component in ReactDOM.render() or in the
render () of another, higher-order component that will be rendered to the DOM.
The mounting events are as follows:

= componentWillMount ()—React knows that this element will be in the real
DOM.

= componentDidMount () —React has “inserted” the React element into the real
DOM; and element is the DOM node.

constructor () execution happens prior to componentWillMount (). Also, React first
renders and then mounts elements. (Rendering in this context means calling a class’s
render (), not painting the DOM.) Refer to table 5.1 for events in between
componentWillMount () and componentDidMount ().

componentWillMount()

It’s worth mentioning that componentWillMount () is invoked only once in the compo-
nent’s lifecycle. The timing of the execution is just before the initial rendering.

The lifecycle event componentWillMount () is executed when you render a React
element on the browser by calling ReactDOM.render (). Think of it as attaching (or

100

5.5.2

CHAPTER 5 React component lifecycle events

mounting) a React element to a real DOM node. This happens in the browser: the
front end.

If you render a React component on a server (the back end, using isomorphic/
universal JavaScript; see chapter 16), which basically gets an HTML string, then—even
though there’s no DOM on the server or mounting in that case—this event will also be
invoked!

You saw in chapter 4 how to update the currentTime state using Date and
setInterval (). You triggered the series of updates in constructor() by calling
launchClock (). You can do so in componentWillMount () as well.

Typically, a state change triggers a rerender, right? At the same time, if you
update the state with setState() in the componentWillMount () method or trigger
updates as you did with Clock, then render () will get the updated state. The best
thing is that even if the new state is different, there will be no rerendering because
render () will get the new state. To put it another way, you can invoke setState () in
componentWillMount (). render () will get the new values, if any, and there will be no
extra rerendering.

componentDidMount()

In contrast, componentDidMount () is invoked after the initial rendering. It’s executed
only once and only in the browser, not on the server. This comes in handy when you
need to implement code that runs only for browsers, such as XHR requests.

In this lifecycle event, you can access any references to children (for example, to
access the corresponding DOM representation). Note that the componentDidMount ()
method of child components is invoked before that of parent components.

As mentioned earlier, the componentDidMount () event is the best place to inte-
grate with other JavaScript libraries. You can fetch a JSON payload that has a list of
users with their info. Then, you can print that information, using a Twitter Bootstrap
table to get the page shown in figure 5.5.

The structure of the project is as follows:

/users
/css
bootstrap.css
/3s
react.js
react-dom.js
script.js
- users.js
/isx
script.jsx
users.jsx
index.html
real-user-data.json

Mounting events 101

©® O @ /[iocalnost:8080/chos/users/ x |\ | | Ninja |
& - C | [} localhost:8080/ch05/users/ | @ =
List of Users
Patrick Kim pkimO@twitter.com 96.145.80.132
Julia Gordon jgordonl@google.com.au 164.174.125.92
Kathleen Armstrong karmstrong2@reference.com 148.128.238.84
Betty Garcia bgarciad@purevolume.com 117.71.246.128
Wanda Ross wross4@amazon.co.uk 101.153.132.101
Mark Lopez mlopez5@newsvine.com 130.186.223.106
Katherine Carroll kcarrollé@exblog.jp 48.159.239.241
Jonathan Harris jharris7@hp.com 121.101.33.233
Christina Gardner cgardner8@goo.gl 142.233.177.121
Sandra Sanchez ssanchez9@github.io 78.27.23.245

Figure 5.5 Showing a list of users (fetched from a data store) styled with Twitter Bootstrap

You have the DOM element in the event, and you can send XHR/AJAX requests to
fetch the data with the new fetch () API:

fetch(this.props['data-url'l])
.then((response)=>response.json())
.then((users)=>this.setState ({users: users}))

Fetch API

The Fetch API (http://mng.bz/mbMe) lets you make XHR request using promises in a
unifying manner. It's available in most modern browsers, but refer to the specs
(https://fetch.spec.whatwg.org) and the standard (https://github.com/whatwg/fetch)
to find out if the browsers you need to support for your apps implement it. The usage
is straightforward—you pass the URL and define as many promise then statements
as needed:

fetch('http://node.university/api/credit cards/')
.then (function (response) {
return response.blob ()
3]
.then (function (blob) {
// Process blob
3]
.catch (function (error) ({
console.log('A problem with your fetch operation: ' +
error.message)

3]

http://mng.bz/mbMe
https://fetch.spec.whatwg.org
https://github.com/whatwg/fetch

102

CHAPTER 5 React component lifecycle events

(continued)
If the browser you develop for doesn’t support fetch () yet, you can shim it, or use any
other HTTP agent library such as superagent (https://github.com/visionmedia/super-
agent); request (https://github.com/request/request); axios (https://github.com/
mzabriskie/axios); or even jQuery’'s $.ajax() (http://api.jquery.com/jquery.ajax)
or $.get ().

You can put your XHR fetch request in componentDidMount (). You may think that by
putting the code in componentWillMount (), you can optimize loading, but there are
two issues: if you get data from the server faster than your rendering finishes, you may
trigger rerender on an unmounted element, which could lead to unintended conse-
quences. Also, if you’re planning to use a component on the server, then component -
WillMount () will fire there as well.

Now, let’s look at the entire component, with fetch happening in component-
DidMount () (ch05/users/jsx/users.jsx).

Listing 5.3 Fetching data to display in a table

class Users extends React.Component {
constructor (props) {
super (props)
this.state = {

Initializes users’
state with an

empty array
users: []
J Performs a GET XHR request
} , using the URL from the
componentDidMount () {

i property to fetch user data
fetch(this.props['data-url'])

.then ((response) =>response.json())

.then ((users)=>this.setState ({users: users})) Retrieves user info

} from the response and

render () { ,) assigns it to the state
return <div className="container">

<hl>List of Users</hl>
<table className="table-striped table-condensed table table-bordered
table-hover"s>
<tbody>{this.state.users.map ((user) =>
<tr key={user.id}>
<td>{user.first name} {user.last name}</td>
<td> {user.email}</td>
<td> {user.ip address}</td>
</tr>)}
</tbody>
</table>
</div>

}
}
Notice that users is set to an empty array ([1) in the constructor. This gets around the

need to check for existence later in render (). Repetitive checks and bugs due to
undefined values—what a great way to waste time and get a repetitive-stress injury

Iterates over users’
state to create table
rows

https://github.com/visionmedia/superagent
https://github.com/visionmedia/superagent
https://github.com/request/request
https://github.com/mzabriskie/axios
https://github.com/mzabriskie/axios
http://api.jquery.com/jquery.ajax

Updating events 103

from excessive typing. Setting your initial values will help you avoid lots of pain later!
In other words, this is an antipattern:

// Anti-pattern: Don't try this at home!
class Users extends React.Component {

constructor (props) { Doesn’t set the empty
} super (props) value initially

render () {
return <div className="container"s>
<hl>List of Users</hl>
<table className="table-striped table-condensed table table-bordered
table-hover">
<tbody>{ (this.state.users && this.state.users.length>0) °?
this.state.users.map ((user)=>

<tr key={user.id}> Checks for existence
<td>{user.first name} {user.last name}</td> (no need with initial
<td> {user.email}</td> values)
<td> {user.ip address}</td>
</tr>) "}
</tbody>
</table>
</div>
}
}
Updating events

As noted earlier, mounting events are often used to integrate React with the outside
world: other frameworks, libraries, or data stores. Updating events are associated with
updating components. These events are as follows, in order from the component life-
cycle’s beginning to its end (see table 5.2 for just the updating lifecycle events and
table 5.1 for all events).

componentWillReceiveProps (newProps)

shouldComponentUpdate ()
componentWillUpdate ()

A WO N PR

componentDidUpdate ()
Table 5.2 Lifecycle events invoked/called on component update

Updating component properties Updating component state Updating using

forceUpdate ()

componentWillReceiveProps ()

shouldComponentUpdate () shouldComponentUpdate ()
componentWillUpdate () componentWillUpdate () componentWillUpdate ()
render () render () render ()

componentDidUpdate () componentDidUpdate () componentDidUpdate ()

104

5.6.1

5.6.2

CHAPTER 5 React component lifecycle events

componentWillReceiveProps(newProps)

componentWillReceiveProps (newProps) is triggered when a component receives
new properties. This stage is called an incoming property transition. This event allows you
to intercept the component at the stage between getting new properties and before
render (), in order to add some logic.

The componentWillReceiveProps (newProps) method takes the new prop(s) as an
argument. It isn’t invoked on the initial render of the component. This method is use-
ful if you want to capture the new property and set the state accordingly before the
rerender. The old property value is in the this.props object. For example, the follow-
ing snippet sets the opacity state, which in CSS is 0 or 1, depending on the Boolean
property isVisible (1 = true, 0 = false):

componentWillReceiveProps (newProps) {
this.setState ({
opacity: (newProps.isVisible) ? 1 : 0
3]
}

Generally speaking, the setState() method in componentWillReceiveProps-
(newProps) won’t trigger extra rerendering.

In spite of receiving new properties, these properties may not necessarily have new
values (meaning values different from current properties), because React has no way
of knowing whether the property values have changed. Therefore, componentWwill-
ReceiveProps (NewProps) is invoked each time there’s a rerendering (of a parent
structure or a call), regardless of property-value changes. Thus, you can’t assume that
newProps always has values that are different from the current properties.

At the same time, rerendering (invoking render()) doesn’t necessarily mean
changes in the real DOM. The decision whether to update and what to update in the
real DOM is delegated to shouldComponentUpdate () and the reconciliation process.!

shouldComponentUpdate()

Next is the shouldComponentUpdate () event, which is invoked right before render-
ing. Rendering is preceded by the receipt of new properties or state. The should-
ComponentUpdate () event isn’t triggered for the initial render or for forceUpdate ()
(see table 5.1).

You can implement the shouldComponentUpdate() event with return false
to prohibit React from rerendering. This is useful when you’re checking that there
are no changes and you want to avoid an unnecessary performance hit (when
dealing with hundreds of components). For example, this snippet uses the + binary

! For more reasons why React can’t perform smarter checks before calling componentWillReceiveProps-
(newProps), read the extensive article “(A = B) != (B = A),” by Jim Sproch, React, January 8, 2016,
http://mng.bz/3WpG.

http://mng.bz/v5sU

5.6.3

5.6.4

5.7

5.7.1

Unmounting event 105

operator to convert the Boolean isVisible into a number and compare that to the
opacity value:

shouldComponentUpdate (newProps, newState) {
return this.state.opacity !== + newProps.isVisible
}

When isvVisible is false and this.state.opacity is 0, the entire render() is
skipped; also, componentWillUpdate () and componentDidUpdate () aren’t called. In
essence, you can control whether a component is rerendered.

componentWillUpdate()

Speaking of componentWillUpdate (), this event is called just before rendering, pre-
ceded by the receipt of new properties or state. This method isn’t called for the initial
render. Use the componentWillUpdate () method as an opportunity to perform prepa-
rations before an update occurs, and avoid using this.setState() in this method!
Why? Well, can you imagine trying to trigger a new update while the component is
being updated? It sounds like a bad idea to me!

If shouldComponentUpdate () returns false, then componentWillUpdate () isn’t
invoked.

componentDidUpdate()

The componentDidUpdate () event is triggered immediately after the component’s
updates are reflected in the DOM. Again, this method isn’t called for the initial ren-
der. componentDidUpdate () is useful for writing code that works with the DOM and its
other elements after the component has been updated, because at this stage you’ll get
all the updates rendered in the DOM.

Every time something is mounted or updated, there should be a way to unmount
it. The next event provides a place for you to put logic for unmounting.

Unmounting event

In React, unmounting means detaching or removing an element from the DOM.
There’s only one event in this category, and this is the last category in the component
lifecycle.

componentWillUnmount()

The componentWillUnmount () event is called just before a component is unmounted
from the DOM. You can add any necessary cleanup to this method; for example, inval-
idating timers, cleaning up any DOM elements, or detaching events that were created
in componentDidMount.

106

5.8

CHAPTER 5 React component lifecycle events

A simple example

Suppose you're tasked with creating a Note web app (to save text online). You've
implemented the component, but initial feedback from users is that they lose their
progress if they close the window (or a tab) unintentionally. Let’s implement the con-
firmation dialog shown in figure 5.6.

To implement a dialog like that, we need to listen to a special window event.
The tricky part is to clean up after the element is no longer needed, because if the
element is removed but its event is not, memory leaks could be the result! The best
way to approach this problem is to attach the event on mounting and remove the
event on dismounting.

® e / #
Y localhost:8080/ch05/note/ % m

& > C [localhost:8080/ch05/note/ | @ =

Here will be our input field for notes (parent will remove in 5 seconds)

Do you want to leave this site?
. Changes you made may not be saved.

C]lPrevent this page from creating additional dialogs.

Ren!er q ;;

Attaching confirmLeave event listener for beforeunload note.js:8

v

Figure 5.6 A dialog confirmation when the user tries to leave the page

The structure of the project is as follows:

/note
/isx
note.jsx
script.jsx
/3s
note.jsx
react.js

react-dom.js
script.js
index.html

A simple example 107

The window.onbeforeunload native browser event (with additional code for cross-
browser support) is straightforward:

window.addEventListener ('beforeunload', function () {
let confirmationMessage = 'Do you really want to close?'
e.returnvValue = confirmationMessage // Gecko, Trident, Chrome 34+
return confirmationMessage // Gecko, WebKit, Chrome < 34

I3
The following approach will work, too:

window.onbeforeunload = function ()

return confirmationMessage

}

Let’s put this code in an event listener in componentDidMount () and remove the event
listener in componentWillUnmount () (ch05/note/jsx/note.jsx).

Listing 5.4 Adding and removing an event listener

class Note extends React.Component {
confirmLeave (e) {

let confirmationMessage = 'Do you really want to close?'
e.returnValue = confirmationMessage // Gecko, Trident, Chrome 34+
return confirmationMessage // Gecko, WebKit, Chrome <34

}

componentDidMount () {
console.log('Attaching confirmLeave event listener for beforeunload')
window.addEventListener ('beforeunload', this.confirmLeave)

}

componentWillUnmount () {
console.log('Removing confirmLeave event listener for beforeunload')
window.removeEventListener ('beforeunload', this.confirmLeave)

}

render () {
console.log('Render')
return Here will be our input field for notes (parent will remove in

{this.props.secondsLeft} seconds)

You want to check how your code works when the Note element is removed, right? For
this reason, you need to remove the Note element so that it’s dismounted. Therefore,
the next step is to implement the parent in which you not only create Note but
remove it. Let’s use a timer for that (setInterval () all the way!), as shown in the fol-
lowing listing (ch05/note/jsx/script.jsx) and figure 5.7.

108

CHAPTER 5 React component lifecycle events

ece D localhost:BOBO/ch0S/noted ® '

Ninja

3

ece D localhost:B0BO0/chO5S/note/ %

3

€& - C' [3 localhost:8080/ch05/nate/

% @

€& - C' [} localhost:8080/ch05/note/

%] @

Here will be our input field for notes (parent will remove i

:&S}mnds]

.

Here will be our input field for notes (parent will remove i@mnds)

N

\/

A timer counts down the seconds.

>

= Al Elements Console Sources Network Timeline > PoX
Q ¥ top v [|Preserve log
Render note.is:16
Attaching confirmLeave event listener for beforeunload note.js:8

A\

% O] Elements
® ¥ top

Render

Attaching confirmLeave event listener for beforeunload

Render

/

Console

Sources Network Timeline
¥ [|Preserve log

note.js:16
note.js:8
note.js:16

—

Each event is shown in the Console tab.

Figure 5.7 Note will be replaced by another element in 5, 4, ... seconds.

Listing 5.5 Rendering Note before removing it

let secondsLeft = 5

setInterval (()=>{
0) {

let interval =
if (secondsLeft ==
ReactDOM. render (
<divs>
Note was removed after {secondsLeft} seconds.
</divs,
document .getElementById('content')
)
clearInterval (interval)
} else {
ReactDOM. render (
<div>
<Note secondsLeft={secondsLeft}/>
</divs>,
document .getElementById('content')

}

secondsLeft--
}, 1000)

Figure 5.8 shows the result (with console logs): render, attach event listener, render
four more times, remove event listener.

If you don’t remove the event listener in componentWillUnmount () (you can com-
ment out this method to see), the page will still have a pesky dialog even though the

A simple example 109

® © @ [iocalhost:8080/ch0S/note/ %y
_

k‘ ."-\]

& > C [localhost:8080/ch05/note/ | @ =

Note was removed after 0 seconds.

[(x (] | Elements Console Sources Network Timeline > : X
O ¥ top v [|Preservelog
Render note.js:16
Attaching confirmLeave event listener for beforeunload note.js:8
@) render note.js:16

Removing confirmLeave event listener for beforeunload note.js:12

Figure 5.8 Note is replaced by a div, and there will be no dialog confirmation
when the user tries to leave the page.

Note element is long gone, as shown in figure 5.9. This isn’t a good UX and may lead
to bugs. You can use this lifecycle event to clean up after components.

The React team is listening to feedback from React developers. Most of these lifecycle
events allow developers to tweak the behavior of their components. Think of lifecycle
events as black-belt-Ninja-Matrix-Jedi skills. You can code without them, but boy your
code will be more powerful with them. What’s interesting is that there’s still conversa-
tion about the best practices and usage. React is still evolving, and there may be changes

® e / :
'/ [localnost:8080/ch05/note/ % \ m

& - C [} localhost:8080/ch05/note/ &l A =

Note was removed after 0 seconds.

Do you want to leave this site?
. Changes you made may not be saved.

ZC]:IPrevent this page from creating additional dialogs.

so | EETS

lvvl

Re 116

Attaching confirmLeave event listener for beforeunload note.js:8
@) Render note.js:16

>

Figure 5.9 Dialog confirmation when the user tries to leave the page

110

5.9

CHAPTER 5 React component lifecycle events

or additions to the lifecycle events in the future. If you need to refer to the official doc-
umentation, see https://facebook.github.io/react/docs/react-component.html.

Quiz

componentWillMount () will be rendered on the server. True or false?

Which event will fire first, componentWillMount () or componentDidMount ()?
Which of the following is a good place to put an AJAX call to the server to get some
data for a component? componentWillUnmount (), componentHasMounted(),
componentDidMount (), componentWillReceiveData (), or componentWillMount ()
componentWillReceiveProps () means there was a rerendering of this element
(from a parent structure), and you know for sure that you have new values for
the properties. True or false?

Mounting events happen multiple times on each rerendering. True or false?

5.10 Summary

5.11

componentWillMount () is invoked on both the server and the client, whereas
componentDidMount () is invoked only on the client.

Mounting events are typically used to integrate React with other libraries and
get data from stores or servers.

You use shouldComponentUpdate () to optimize rendering.

You use componentWillReceiveProps () to perform a state change with new
properties.

Unmounting events are typically used for cleanup.

Updating events provide a place to put logic that relies on new properties or
state, and they give you more granular control over when to update a view.

Quiz answers

‘uonerado aarsuadxa A[9ANE[AI € ST SUNUNOW JAISSIIXD

asnedaq ‘ooururtofrdd ozmundo 01 I9PUIAI U0 PaIa33Lny 3, USI SUNUNON "IS[e,]

‘padueyd

U29(Q 9ABY SON[BA 9} JT MOUY 3, USD0P 10BIY "SON[EA MOU 99)UeILNS I, UeD NOX "IS[e]

“IOAIIS 9} UO PAIdSSLI) 9 3,UOM I IsNBII(* () JUNORPTAIUSUOdWOD
* () JUNOWP T@IUusUOdWoDd AQ PIMO[[O] “ISIIJ SI JUNOKT T TMIUSUOJWOD
), uoM () JunoppTaausuodwod ng ‘3ut

~I9PUAL IDAIIS) UO PIAIIZSLY) 9 [[IM JUAD SIY) ‘INO(OU §,919) YSNOYI[Y "9Nd],

https://facebook.github.io/react/docs/react-component.html

Watch this chapter’s introduction video by
scanning this QR code with your phone or going
to http://reactquickly.co/videos/ch06.

Handling events in React

This chapter covers

= Working with DOM events in React
= Responding to DOM events that aren’t supported by React
= |ntegrating React with other libraries: jQuery Ul events

So far, you've learned how to render Uls that have zero user interaction. In other
words, you’re just displaying data. For example, you've built a clock that doesn’t
accept user inputs, such as setting the time zone.

Most of the time, you don’t have static Uls; you need to build elements that are
smart enough to respond to user actions. How do you respond to user actions such
as clicking and dragging a mouse?

This chapter provides the solution to how to handle events in React. Then, in
chapter 7, you’ll apply this knowledge of events to working with web forms and
their elements. I've mentioned that React supports only certain events; in this chap-
ter, I’ll show you how to work with events that aren’t supported by React.

NOTE The source code for the examples in this chapter is at
https://www.manning.com/books/react-quickly and https://github.com/
azat-co/react-quickly/tree/master/ch06 (in the ch06 folder of the GitHub
repository https://github.com/azat-co/react-quickly). You can also find
some demos at http://reactquickly.co/demos.

111

http://reactquickly.co/videos/ch06
https://www.manning.com/books/react-quickly
https://github.com/azat-co/react-quickly/tree/master/ch06
https://github.com/azat-co/react-quickly/tree/master/ch06
https://github.com/azat-co/react-quickly
http://reactquickly.co/demos

112

6.1

CHAPTER 6 Handling events in React

Working with DOM events in React

Let’s look how you can make React elements respond to user actions by defining event
handlers for those actions. You do this by defining the event handler (function defini-
tion) as the value of an element attribute in JSX and as an element property in plain
JavaScript (when createElement () is called directly without JSX). For attributes that
are event names, you use standard W3C DOM event names in camelCase, such as
onClick or onMouseOver, as in

onClick={function() {...}}
or
onClick={() => {...}}

For example, in React, you can define an event listener that’s triggered when a user
clicks a button. In the event listener, you're logging the this context. The event
object is an enhanced version of a native DOM event object (called SyntheticEvent):

<button onClick={ (function (event) {
console.log(this, event)
}) .bind (this) }>
Save
</button>

bind () is needed so that in the event-handler function, you get a reference to the
instance of the class (React element). If you don’t bind, this will be null (use strict
mode). You don’t bind the context to the class using bind (this) in the following
cases:

= When you don’t need to refer to this class by using this

= When you’re using the older style, React .createClass (), instead of the newer
ES6+ class style, because createClass () autobinds it for you

= When you're using fat arrows (()={})

You can also make things neater by using a class method as event handler (let’s name
it handleSave ()) for the onClick event. Consider a SaveButton component that,
when clicked, prints the value of this and event, but uses a class method as shown in
figure 6.1 and the following listing (ch06/button/jsx/button. jsx).

Listing 6.1 Declaring an event handler as a class method

class SaveButton extends React.Component (
handleSave (event) {

console.log(this, event) Passes the function

J}:ender O { J definition returned

by bind() to onClick

return <button onClick={this.handleSave.bind(this)}> Y 0

Working with DOM events in React 113

Save
</button>

}
}

This is how the save button will log the output of this and event.

@ © ® /[localhost:8080/ch06/button/ X \ \ Ninja

& C | ® localhost:8080/ch06/button/ % @ :

Save

S ﬂ Elements Console Sources Network Timeline » PX

Q ¥ top v [Preserve log

button.js:3
» SaveButton {props: Object, context: Object, refs: Object, updater:
Object, _reactInternallnstance: ReactCompositeComponentWrapper..}
Proxy {dispatchConfig: Object, _targetInst: ReactDOMComponent,
nativeEvent: MouseEvent, type: “"click", target: button..}

Figure 6.1 Clicking the button prints the value of this: SaveButton.

Moreover, you can bind an event handler to the class in the class’s constructor. Func-
tionally, there’s no difference; but if you’re using the same method more than once in
render (), then you can reduce duplication by using the constructor binding. Here’s
the same button, but with constructor binding for the event handler:

class SaveButton extends React.Component {) X
constructor (props) | Binds the “this” context to the

super (props) class to use “this” in t.he event
this.handleSave = this.handleSave.bind (this) handler to refer to this class

}
handleSave (event) {
console.log(this, event)

) Passes the function
render () { QJ definition to onClick
return <button onClick={this.handleSave}>
Save
</button>

}
}

Binding event handlers is my favorite and recommended approach, because it elimi-
nates duplication and puts all the binding neatly in one place.

Table 6.1 lists the current event types supported by React v15. Notice the use of
camelCase in the event names, to be consistent with other attribute names in React.

114

6.1.1

CHAPTER 6 Handling events in React

Table 6.1 DOM events supported by React v15

Event group Events supported by React

Mouse events

Keyboard events
Clipboard events
Form events
Focus events
Touch events

Ul events

Wheel events
Selection events
Image events
Animation events

Transition events

onClick, onContextMenu, onDoubleClick, onDrag, onDragEnd
onDragEnter, onDragExit, onDragLeave, o