REAL-TIME 3D
TERRAIN ENGINES
uing C++ and DIRECTX'9

& Ligfm Pewm s "ll-];.”-'q'-ql‘ L
B i Dt slaa | s [Dawedy

* Loy gwsrm el bopm, s o bl
i e g fgrvs Jysign® el el
(gt b AT AR LR
sl & v Bogtaigl aret o Phiu s

o o AT Pees [SR il Y
s ien el punec] aialer b
LA T O et
e perw [eerr U PO Larsard
i g | s (VL% 3

& sl 53 P Pefaw wass Paiw ol tan
sl e awend ey | e
s ay phoeny = il
rummpir ateodh AU ewalsis sl
b ehhmemaal Y Dy 01N 0 e

Lot i iy

REAL-TIME 3D
TERRAIN ENGINES
USING C++ AND

DIRECTX 9

GREG SNOOK

Publ

This book is dedicated to my wife, Denise,
and my children Madeline, Ben, and Jon
for their incredible patience and support.

CONTENTS

INTRODUCTION xiii
ACKNOWLEDGMENTS xxi
A FOUNDATION IN 3D 1
GETTING STARTED WITH DIRECTX 9.0 AND D3DX 3
Setting Up Visual Studio.NET 4
The Direct3D Sample Application Framework 5
Using the D3DX Math Library 8
The Direct3D Coordinate System 9
D3DX Vectors and Points 1
Normalizing Vectors 12
The Dot Product 13
The Cross Product 16
D3DX Matrices 17
Quaternion Rotation 20
References 2
FUNDAMENTAL 3D OBJECTS 23
Basic Direct3D Objects 24
Loading and Displaying a Model Using D3DX 26
Using Direct3D Effect Files 27
The D3DX Frame and Mesh Container 33
Skeletal Animation and Skinned Meshes 36
References 40
THE HIGH-LEVEL SHADER LANGUAGE 41
The HLSL Shader Format a3
Variable and Data Types 44

vii

viii Contents

Expressions and Intrinsic Functions 47
Working with Textures and Samplers 48
Procedural Texture Shaders 50
Considerations for Legacy Hardware 51
HLSL Functions within Effect Files 52
CHAPTER 4 GAIA ENGINE OVERVIEW 57
Meet Gaia, the 3D Terrain Engine 58
The Application Host 59
(reating Pools of Data 63
Managing Shared Data Resources 68
The Resource Base Class 72
Texture Resources and Surface Materials 74
Render Method Resources 75
Index and Vertex Buffers 76
Model Resources 78
Scene Nodes and Objects 81
The Render Queue 82
The Model Editor 95
References 95
PART Il INTRODUCTION TO TERRAIN SYSTEMS 97
CHAPTER 5 WORLD MANAGEMENT 99
The Motivation Behind Scene Organization 100
The Basic Quadtree 103
Enhancing the Quadtree 105
Adding Another Dimension to the Quadtree 108
Fast Quadtree Searches 109
Slow Quadtree Searches m
References 117
CHAPTER 6 BASIC TERRAIN GEOMETRY 119
Height Maps as Terrain Input Data 120
Procedural Height Maps 121
Midpoint Displacement 122
Perlin Noise 125

Contents ix

Processing Height Map Data 133
Terrain Geometry Base Classes 137
Terrain Geometry Index Buffers 138
Terrain Geometry Vertex Buffers 140
Rendering the Terrain Sections 146
The Basic Terrain Demonstration 150
References 152
CHAPTER 7 THE ROAM TERRAIN SYSTEM 153
Real-Time Optimal Adapting Meshes 154
Split Decisions 157
Implementing ROAM 159
Building ROAM Display Geometry 165
References 168
CHAPTER 8 TILED GEOMETRY TECHNIQUES 169
Chunked Terrain 170
Managing Chunks of Geometry 172
Tessellating Terrain Chunks 180
Interlocking Terrain Tiles 189
A Note on LOD Popping 191
References 195
CHAPTER 9 TEXTURING TECHNIQUES 197
A Great Big Blurry World 198
Blending Surface Textures 201
Nature Is Noisy 215
Frame Buffer Compositing 215
PART I EXTENDING THE ENGINE 221
CHAPTER 10 Bi1G SKY COUNTRY 223
Sky Box Methods 224
The Sky Dome 231
Animated Clouds 233

Lens Flare 235

X Contents

CHAPTER 11

CHAPTER 12

CHAPTER 13

APPENDIX A

APPENDIX B

RENDERING OUTDOOR SCENES

A Multistage Approach
Ambient Light

Bump Mapping
Approximating Qutdoor Light
Bringing It Alt Together
References

THE 3D GARDENER

Vegetation Impostors
Grass Is Mother Nature’s Fur
Amber Waves of Grain

OCEAN WATER

An Island at Sea
The Water Tile
Animating Water
Rendering Water
The End of the Road
References

GAIA UTILITY CLASSES

Monitoring Bit Flags

The Singleton Class

Strings

System Data

Assert, Warnings and Comments
Compile-Time Asserts

Debug Text Messages

(ode Timing

References

FLOATING-POINT TRICKS
Examining Floating-Point Data

The Sign Bit

Conversion from Floating-Point to integer Values
Limiting Floating-Point Precision

241

242
243
247
254
261
262

263

265
267
269

273

274
276
277
287
292
292

293

293
296
300
303
313
321
322
327
333

335

336
339
340
342

APPENDIX C

APPENDIX D

APPENDIX E

INDEX

Clamping Floating-Point Numbers
Floating-Point Powers of Two

PROGRAMMING REFERENCE SHEETS

Intel CPU Identification Codes
Direct3D HLSL Data Types
Direct3D HLSL Expressions
Direct3D HLSL Intrinsic Functions
Direct3D HLSL Sampler Settings

RECOMMENDED READING

Mathematics

3D Programming
Academic Research
Other Useful Web Sites
Tools and Utilities

ABOUT THE CD-ROM

(D Folders

System Requirements
Software Requirements
Installation

Updates and Errata

Contents

xi

344
347

349

349
351
352
353
358

359

359
359
360
360
360

361

361
362
362
362
362

363

ACKNOWLEDGMENTS

pecial thanks to the folks at Bungie for their support, advice, and
patience with the writing of this book, and to Brian Harvey from
NVIDIA for additional advice and support.

A FOUNDATION IN 3D

foundation. In this part, we introduce the latest advancements in

DirectX 9.0 and take a thorough look at the DirectX sample frame-
work provided with the SDK. For simplicity’s sake, we will be building
our engine on top of these classes provided by Microsoft. In addition, we
will look at the Direct3D Extension Library (D3DX), which is also pro-
vided as part of the DirectX 9.0 SDK. This utility library satisfies our basic
needs for a 3D math library, and provides useful methods for loading and
maintaining our game resources.

In examining DirectX 9.0, we will also take an in-depth look at the
High Level Shader Language (HLSL). HLSL is a C-like development lan-
guage that allows shader authors to write vertex and pixel shaders with-
out needing to resort to low-level shader assembly code. This is a great
way to introduce 3D shader programming for today’s graphics hardware.
This book will focus on the use of HLSL rather than the assembly-
language methods because of the ease of use and readability it provides.

For readers who want to learn the low-level assembly languages,
HLSL can also serve as a useful learning aid. The command-line HLSL
compiler provided with the DirectX SDK (fxc.exe) can convert HLSL pro-
grams into assembly language files using the /Fc command-line option.
By coding in HLSL and viewing the corresponding assembly code, readers
should be able to gain insight into these languages with the help of the
DirectX SDK documentation. Periodic conversion to assembly is also a
great way to monitor the efficiency of the HLSL code we will be writing.

Working with the DirectX sample framework and D3DX allows us to
get our engine up and running quickly. However, while these libraries
are suitable for use within a retail product, they are designed for general

T o0 build an engine from the ground up, we need to start with a good

1

2

Real-Time 3D Terrain Engines Using C++ and DirectX 9

ONTHE (D

use and might sacrifice speed in favor of flexibility under some circum-
stances. When building a retail application using our terrain engine, we
might discover that knowledge about our application’s content or target
platform might allow us to cut corners, or achieve additional speed using
hand-written replacements for D3DX components. To account for this
eventuality, we will build our own library atop D3DX and the sample
framework to provide our own customized interface. If we later discover
that our needs differ from the support provided by the Microsoft libraries,
this degree of separation will allow us to write our own custom internals
without having to change the high-level interfaces.

In addition to the source code built on top of the D3D sample frame-
work and D3DX libraries, we also provide our own low-level library of
utility functions and helpful classes. These core libraries provide essential
interfaces for manipulating numeric values, working with floating-point
numbers, and allocating memory. In addition, we also provide a set of
debug and profile classes that make the coding process much easier. To-
gether with good coding practices, these debug and profile classes will
help uncover any bugs within the code before they become a problem.

These support functions and classes, called the Core Library Compo-
nents, can be found on the CD-ROM that accompanies this book. Their
construction is straightforward, and well documented within the source
code. Therefore, we will not be going over their use within the book in
any detail. This allows us to devote more of our time to the task at hand:
building a robust 3D terrain engine. As you encounter these classes
within the source code, refer to the corresponding source code files for a
better understanding of their functionality. Appendix A, “Gaia Utility
Classes,” also provides an overview of some of the more common utility
classes, while Appendix B, “Floating-Point Tricks,” explains some of the
floating-point exploitation used within portions of the game engine.

Before completing this part of the book, we will have constructed all
the required components for our first demo application. This application
is a model viewing utility that can load models in the common Direct3D
X file format (*.X), attach textures, and view animations. It also provides
the ability to load and view D3DX effect files (*.fx) that contain the HLSL
shaders we will be writing.

GETTING STARTED WITH
DIRECTX 9.0 AND D3DX

@2 Pi
; 0 i ‘ T |
> 1 2 3 4
x-axis
-1 _

4

Real-Time 3D Terrain Engines Using C++ and DirectX 9

or readers who are new to programming 3D graphics on the Mi-

crosoft Windows platform, DirectX is a high-performance, low-

level library that provides an application programming interface
(API) to the underlying multimedia hardware. DirectX is built from com-
ponents designed to speak directly to key pieces of hardware within the
PC. For this engine, we are mainly concerned with only one of these
components, DirectX Graphics. Moreover, we will be dealing specifically
with the 3D functionality of DirectX Graphics, known commonly as Di-
rect3D. Additional DirectX interfaces exist for reading user input, gener-
ating audio, and providing network connections, but these are not used
within this book.

Readers are assumed to have a general familiarity with DirectX be-
fore progressing through this book. While we provide a brief synopsis of
DirectX and the components we will be using, readers might need to in-
vestigate the documentation provided with the DirectX 9.0 SDK for a
more detailed background on DirectX and 3D programming in general.
Once the SDK is installed, this documentation is readily available from
the Windows Start menu.

SETTING UP VISUAL STUDIO.NET

When the DirectX 9.0 SDK is installed onto a development machine, it
will automatically update any installations of Microsoft Visual Studio
products to use the header and library files provided with the SDK. In ad-
dition, Visual Studio.NET users are given additional DirectX debugging
tools that are added to the .NET project browser. For alternate compilers,
or copies of Microsoft Visual Studio installed after an installation of the
DirectX SDK, the DirectX include file folders and library folders must be
hand set in order for DirectX programs to compile and link properly.
There is one caveat when using compilers other than Microsoft Vi-
sual Studio.Net. The Direct3D Extension Library (D3DX) contains sup-
port for Intel Streaming SIMD Extensions (SSE) instructions, but only
when compiled with Microsoft Visual Studio.Net (Microsoft Visual C++®
7.0 or greater, to be specific). This is because support for 16-byte aligned
memory allocations was not supported under earlier versions of Visual
C++ without the installation of an additional patch, known as the proces-
sor pack. Because the 16-byte alignment is a critical requirement of many
SSE memory-access instructions, these instructions are not enabled
within D3DX unless compiler support for aligned memory allocations can
be guaranteed. Since the presence of the processor pack cannot be de-
tected, the Intel SSE-aware code within the D3DX library is not enabled

Chapter 1 Getting Started with DirectX 9.0 and D3DX 5

unless the preprocessor definition identifying Microsoft Visual C++ com-
pilers is set to denote version 7.0 or higher.

If you are working with a non-Microsoft compiler, or if you are using
an earlier version of Microsoft Visual C++, you can set this preprocessor
definition yourself to enable the SSE support within the D3DX library.
However, this should only be done when you are certain that 16-byte
aligned memory allocations are supported by your compiler via the non-
standard _ declspec(align(16)) statement used by D3DX. See your com-
piler documentation if you are uncertain of support for this alignment
feature. Once verified, you can add the following preprocessor definition
to your makefile or project settings to mimic the presence of the Visual
C++ 7.0 compiler and enable Intel SSE support within the D3DX library.

#define _MSC_VER 1300 // mimic the presence of VC 7.0

The SDK dependencies reside in two key folders, named Include and
Lib. These folders contain the header files required for compilation of a
DirectX product and the libraries files required for linking, respectively.
Both of these folders can be found within the folder where the DirectX
SDK was installed. For example, if the SDK was installed in its default
path, c:\DxsDK, the folders required would be c:\DXSDK\Include and
¢:\DXSDK\Lib. Setting up your compiler and linker to use these folders is a
matter of adding their paths to the compiler’s list of directories to search
for content. See your compiler’s documentation for details on adding
these folders to the proper search paths. It is recomnended that these
folders appear first in their respective search chains. For Microsoft Visual
Studio users, these instructions are provided within the DirectX SDK help
file under the heading “Compiling DirectX Samples and Other DirectX
Applications.” The HTML file dxreadme.htm, located in the root folder of
the SDK, also contains information on setting up DirectX for use with
your operating system and compiler.

THE DIRECT3D SAMPLE APPLICATION FRAMEWORK

To provide a common foundation for all of the sample programs included
with the DirectX SDK, Microsoft provides a set of simple utility classes
upon which all of the DirectX samples are built. While these framework
classes were not necessarily intended for use within retail products such
as a game engine, they contain a core set of application-hosting classes
that can handle the needs of most programs. These classes handle the
mundane setup routines for DirectX, including enumerating hardware

6

Real-Time 3D Terrain Engines Using C++ and DirectX 9

video devices, and determining the display modes and feature sets they
support. They also provide an interface to the Windows operating system
that relieves us of the burden associated with handling incoming window
messages and smoothly transitioning from windowed to full-screen dis-
play modes. While we do not assume that the entire sample framework is
an optimal and efficient means to produce a retail product, we can cer-
tainly endorse the use of the elements we plan to employ.

Our engine also makes use of the sample framework for setting up a
basic DirectX-enabled application, manipulating files, and providing addi-
tional rendering support. The individual source code files of the D3D ap-
plication framework have been copied into the source code folders
provided with the sample engine. This was done to ensure that the sam-
ple engine would compile and link even if future versions of the DirectX
SDK are installed. However, as updates to the DirectX SDK are released,
the sample framework files copied into the engine source code folders
might need to be updated to take full advantage of any new additions to
the DirectX SDK.

The sample framework contains the file pairs listed in Table 1.1,
which also shows the functionality provided within each file set. These
files are included with the SDK installation folder in the Samples\C++\
common subfolder.

As shown in Table 1.1, we do not intend to make use of all the files in
the D3D sample framework. For example, the mesh-loading functions
provided by D3DFile.h and D3DFile.cpp are of no use to us. We will be
loading our own data resources using a customized extension of the .x
file format through D3DX, which we will cover later. This loading scheme
will feed into our own classes for storing and displaying mesh informa-
tion, so the objects provided by D3DFile are not needed. In addition, we
use the text display capabilities provided by the ¢b3bFont class only to
output debug information to screen. Should our application require a
true text display, we would most likely want to devise our own method
for peak efficiency. This is especially true of the 3D text display capabili-
ties provided by ¢D3DFont, which are of no use to our application.

For simplicity’s sake, we will use the same display mode dialog box
used by all D3D sample applications for our engine. A retail product would
most likely create its own interface for setting display mode options, but
we have no need of custom interface screens for our exploration of terrain
rendering. Therefore, we will make use of the D3DSettings files for this it-
eration of the engine. Using the CD3DSettingsDialog class does imply that
we must also include the file b3DRes.h, which contains the resource defi-
nitions for the dialog box used, and copy the template for the dialog box

ONTHE (D

Chapter 1 Getting Started with DirectX 9.0 and D3DX 7

TABLE1.1 Files Provided as Part of the Microsoft DirectX Samples Framework

FILE PAIR (. AND .CPP) FUNCTIONALITY PROVIDED

D3DApp Contains the CD3DApplication class, providing the overall
framework for an application using Direct3D.

D3DEnumeration Contains the class CD3DEnumerat ion, an object designed to
query resident video hardware and report a set of display
modes and features supported.

D3DFile A set of classes for loading and displaying CD3DMesh objects.
Our application does not make use of these files.

D3DFont Houses the CD3DFont class, written to enable easy output of
2D text over the 3D scene. Our engine uses this for debug
purposes.

D3DSettings Provides the CD3DSettings and CD3DSettingsDialog

classes. These provide a method to identify the current display
settings of the application and display the dialog box used by
DirectX samples to change display modes.

D3DUtit A set of utility functions for Direct3D samples to use, including
a simple camera class, CD3DCamera, and a user input device
called CD3DArcBall.

DXUtil A host of useful DirectX utilities, including string manipulation
functions, Registry access functions, and a simple, resizable
array class CArraylList.

into the resource file of our application. This is already done within the
sample code provided on the accompanying CD-ROM.

The most important class we will be using is CD3DApplication. This
class provides the backbone of the D3D sample framework. If you have
investigated the sample programs included with the DirectX SDK, then
you are already somewhat familiar with this class. All application-hosting
facilities are provided here, from creating the main window and manag-
ing its message pump, to interrogating the host video card for display
mode and feature support through the cbD3DEnumeration class. This class
also contains the central loop of the application, which is responsible for
reading incoming messages from Windows and calling out to your appli-
cation-specific code to update and render the scene as needed.

CD3DApplication is also user-extendable, which is why it is so useful
to us. Certain member functions of the class are declared as virtual func-
tions, allowing a programmer to derive an application-specific class from
cD3DApplication and overload these members for product-specific func-

Real-Time 3D Terrain Engines Using C++ and DirectX 9

tionality. Most, if not all, of the D3D samples are built in this manner;
overloading the virtual members of cD3DApplication to focus on the key
features the samples want to showcase. Our application is no different, as
we will see a few chapters down the road as we build our own instance of
CD3DApplication to host our engine.

While we might only need to work with the cD3DApplication inter-
face directly, there are a few more framework classes used behind the
scenes. Understanding the functionality of these classes provides great in-
sight into DirectX, and can stand alone as a tutorial for the use of the Di-
rectX SDK in general. The most notable of these classes is the
CD3DEnumeration class mentioned earlier. For readers who are new to Di-
rectX, this class provides a set of functions to interrogate the resident
video hardware and build a list of the display modes supported. Enumer-
ation of display modes is a key step in setting up a DirectX graphics envi-
ronment. Reading through the functionality provided by this class is an
excellent tutorial for enumerating these display modes.

USING THE D3DX MATH LIBRARY

As stated earlier, we will be using D3DX to provide the necessary math
tunctions for our engine. Making use of the D3DX math library requires a
working knowledge of essential 3D math topics. These include vector
mathematics, the use of matrices, and quaternion rotation. A basic un-
derstanding of trigonometry is also useful when working with angles and
vectors. In truth, while complex mathematics can certainly be used to
augment a game, only a few key concepts need to be understood to build
a basic engine.

We will provide a brief review of basic trigonometry, vectors, matri-
ces, and quaternion rotation. The DirectX SDK documentation provides
introductory information on these topics for readers who require more
background reading. The recommended reading list in Appendix D, “Rec-
ommended Reading,” also provides a listing of books, periodicals, and
Web references for 3D math background information.

To anyone getting started in 3D engine development, this might seem
like an inexhaustible amount of complex mathematics to learn. It doesn’t
help that people well versed in mathematics seem to have a hard time
breaking the concepts down into an easy-to-understand form. Many
times, academically minded authors will use formulas to express an idea,
rather than the idea itself. This can be intimidating for a reader who is not
accustomed to such notation. Every time a formula appears, the reader
must stop and dissect each one in order to follow along.

Chaptert Getting Started with DirectX 9.0 and D3DX 9

For example, calculating the average for a set of numbers can be ex-
pressed as:

n
m= 1 2 V; For n source values V
n iy

Is that really more useful than simply stating the process itself?

“Add all the source values together and divide the result by the num-
ber of source values.”

Throughout this book, we provide you with equations that perform
key calculations for our geometry and shading operations. Wherever pos-
sible, we break down these equations into a more readable explanation.

THE DIRECT3D COORDINATE SYSTEM

Before we can explore 3D math and geometry, we need to put everything
in a uniform context. That is, we need to define the 3D space we will be
using so we can be sure that the various math and geometry topics we
cover will share a consistent basis. We do this using a Cartesian coordi-
nate system. Cartesian coordinate systems are nothing more than a con-
vention to represent space in terms of a set of axes. The axes converge at
a single point, known as the origin, allowing the axes to define a number-
ing system that can be used to state locations in the defined space. This
sounds more complicated than it really is.

We use coordinate systems for many common programming opera-
tions, perhaps without realizing it. Anytime we state a position as a set of
x and y values to specify a horizontal and vertical position, we are using a
coordinate system. Drawing pixels to the screen, or placing text on a
Windows device context using the TextOut function, makes use of a 2D
Cartesian coordinate system. In both cases, positions are stated as x-axis
and y-axis distances from the origin. These often relate to the horizontal
and vertical positions within the destination. Figure 1.1 shows a sample
2D coordinate system, and a point located by its x and y axis values.

When moving into three dimensions, there are two options. Given a
2D coordinate system of x and y axes, there are two possible ways to place
a third axis, z. Using the system shown in Figure 1.1, where arrows are
used to show the positive direction of the axes, the z-axis could either be
an arrow pointing up at you, or away from you. These are called right-
handed and left-handed versions of the 3D coordinate system.

The handedness idea is a very confusing way to state the two possible
orientations of the z-axis. It was intended as a helpful way to remember
the configurations using your fingers. By holding the fingers of your left
hand a certain way, you can represent the left-handed coordinate system.

10 Real-Time 3D Terrain Engines Usiny C++ and Directx 9

A

4 4
3 -
m 27,24
0
g 2
>
m 04,16
1 -
= 1.3,09
o) L 1 L] 4»
0 1 2 3 4
x-axis

FIGURE 1.1 A Simple 2D Cartesian coordinate system.

The right-handed coordinate system can be shown using the fingers of
your right hand. However, different texts present different hand positions
and ways to position the fingers of each hand. Figure 1.2 shows the two
common hand positions used to remember the coordinate systems. In
this example, the y-axis is grasped with the thumb on the positive side.
The direction that the fingers curve around the y-axis matches the rota-
tion from the z-axis to the x-axis.

An even sillier way to remember the coordinate handedness is to pic-
ture the 2D system shown in Figure 1.1, where the positive x-axis points
to the right and positive y-axis points up. Now imagine the right-handed
version of the z-axis pointing up from the surface of the page. The right-
handed z-axis vector is pointing directly toward you, and anything travel-
ing in the positive z direction is headed right at you. The left-handed
z-axis would be pointing deeper into the page, or away from you. In a
sense, anything traveling along the positive direction of this z-axis has left
you behind. Yes, it might be even stranger than using hand gestures to
remember the right- versus left-handed coordinate systems, but it works.

Chapter 1 Getting Started with DirectX 9.0 and D3DX 1

Zz-axis

FIGURE1.2 Using positions of the left and right hand to remember left- versus right-
handed 3D coordinate systems.

To add even more confusion, most academic books use the right-
handed coordinate system, while graphics APIs such as DirectX use the
left-handed coordinate system. This is because showing a 3D coordinate
system in print is more intuitive when drawn with the z-axis pointing to-
ward the user. In practice, it is more intuitive to have positive z values
traveling away from the 3D camera within a 3D engine. This way, as an
object’s z position increases, it travels farther away from the viewer. For
this reason, graphics APIs will often invert the z-axis to point into the
screen and use the left-handed system. This book works in the left-
handed coordinate system, making it identical to the format used within
DirectX.

D3DX VECTORS AND POINTS

With the coordinate system defined, we can examine two of the basic
building blocks for 3D objects provided by D3DX: points and vectors. In
D3DX, points and vectors are synonymous and both are represented
using the D3DXVECTOR classes. To better understand the functionality of
these classes, we will examine points and vectors and some of the key
concepts used to manipulate them within 3D space.

Using the 3D coordinate system, a point in 3D space is defined by its
distance from the origin along the x-, y-, and z-axes. This means that the

12 Real-Time 3D Terrain Engines Using C++ and DirectX 9

position for any point can be represented as three values, which we call
the x, y, and z positions of the point. In formulas, points are often repre-
sented as italic, uppercase letters such as P or Q. The individual axis val-
ues of a point are referenced by a subscript, as in P,, P,, or P,.

A vector is similar to a point in many ways, but represents a different
idea. Vectors represent a direction from the origin, and are said to have a
magnitude equal to their distance from the origin. Although they are
stored in the same manner as points (using three values to denote dis-
tances along the x-, y-, and z-axes), a vector and a point represent differ-
ent things. Figure 1.3 shows a point and a vector, each with identical
values for its three axes. The point defines a specific location in space, and
the vector defines a direction of travel from the origin to that point.

Point Vector
A

1 @®(1,1) 1 1,1

> ‘ >

0 1 0 1

FIGURE1.3 An example of a point and a vector, each having the same val-
ues for xand y.

However, although points and vectors are different, they adhere to
the same principles and are stored in the same manner. In fact, it can be
argued that a point is the destination of a vector, and that the two are es-
sentially equal. This is why some text and graphics APIs (DirectX in-
cluded) will use the terms points and vectors interchangeably.

NORMALIZING VECTORS

Recall that a vector can be considered as a direction from the origin. This
direction also has a distance, which is equal to the length of the vector.
The vector length is also referred to as the magnitude of the vector, and is
often written using the absolute value brackets around the name of the
vector. The length or magnitude of a vector is computed with the formula
shown in Equation 1.1.

THE DOT PRODUCT

Chapter 1 Getting Started with DirectX 9.0 and D3DX 13

|MF(W+W+W) (11)

Simply put, this equates to adding together the squares of all the
components, and taking the square root of that sum. A vector is said to be
normalized when it has a magnitude of one unit. For this to happen, the
sum of all the squared components must also be 1, since the square root
of 1is 1.

Normalized vectors are often called unit vectors, because they are one
unit long. To normalize a vector, it must be scaled to unit length. To per-
form the scaling, simply compute the magnitude of the vector using
Equation 1.1, and divide each component by this value. This scales the
vector to unit length. D3DX also provides a handy method to perform
this operation on 2D or 3D vectors using the functions D3DXVec2Normalize
and D3DXVec3Normalize, respectively.

The dot product is provided by D3DX for 2D and 3D vectors as the func-
tions D3DXVec2Dot and D3DXVec3Dot. However, the dot product is a power-
ful operation that we will use constantly in our engine, vertex and pixel
shaders. Therefore, we will take a moment to explore what the dot prod-
uct actually is and why it is so useful.

Dot products are based on the directional relationship between two vec-
tors with respect to their lengths. As a formula, the dot product is stated as
the cosine of the angle between two vectors, multiplied by both of their
magnitudes. In the following equations, the vertical lines placed around a
vector mean that the desired value is the magnitude of the vector (the value
found using Equation 1.1). The angle between two vectors, expressed in ra-
dians, is depicted by the Greek letter alpha (o)) as shown in Equation 1.2.

P.Q=|P|le|coscx (1.2)

However, the actual dot product value can be found without the co-
sine function. The dot product of two vectors can also be found by multi-
plying together the matching components of each vector, and adding the
results. Equation 1.3 shows this alternate formula for the dot product.

PQ= (P *Q)+(P, ¥Q,)+(B *Q;) (1.3)

By combining the two equations, we can derive an equation to com-
pute the angle between two vectors. First, we combine the two equa-
tions. Then, we can isolate the angle value on the left side of the
equation. Equations 1.4 through 1.6 show this progression.

14 Real-Time 3D Terrain Engines Using C++ and DirectX 9

[Pllefcose = (b = @) + (7, * @) + (P * @) (1.4)

Cosa:(P"*Q")+(PY*QY)+(P1*QZ) (1.5)
[Pl

O = arccos (PX*QX)+(PY*Qy)+(PZ*Qz) (1.6)

[Pl

For any two vectors, Equation 1.6 will compute the angle between
them in radians. However, we don’t always need to do so much work to
find this angle. When both vectors are normalized, their magnitudes are
1. When this is true, the division on the right-hand side of Equation 1.6 is
unnecessary, leaving us with a few multiplies, additions, and one nasty
arccosine.

The cosine has an interesting property that allows us to skip the arc-
cosine computation in many cases. The cosine arc from 0 to Pi travels be-
tween 1 and -1, as shown in Figure 1.4. Using this information, we can
deduce some basic information about the angle without performing any
trigonometry.

y-axis

-1

FIGURE 1.4 A graph of cosine values between 0 and Pi.

Chapter 1 Getting Started with DirectX 9.0 and D3DX 15

When two vectors are parallel and facing the same direction, their
dot product will be 1. We know this because the angle between them
would be zero, and the cosine of zero is 1. Therefore, as the dot product
of two vectors approaches 1, the angle between them is approaching
zero, when the two vectors will overlap.

According to Figure 1.4, we also know that when the angle between
two vectors is one-half Pi (90 degrees), the dot product of the two vectors
will be equal to zero. Again, this is known because the dot product is
equal to the cosine of the angle, and the cosine of one-half Pi is zero. Also
notice that angles greater than one-half Pi will yield negative cosine val-
ues and therefore negative dot products. When two vectors are com-
pletely opposite, their dot product will be -1, the cosine of Pi. We
combine all these properties in Table 1.2.

TABLE 1.2 Properties of the Vector Dot Product

DOT PRODUCT ANGLE IMPLIED BETWEEN VECTORS

1 The angle between the vectors is zero.
0 The vectors are perpendicular to each other.
-1 The angle between the vectors is Pi (180 degrees).

One final property of the dot product is its ability to project one vec-
tor onto another. When one of the vectors in the dot product is a unit
vector, the dot product will produce a value that is equal to the projected
length of the second vector along the unit vector. Figure 1.5 makes this
more apparent.

v

~
AB
FIGURE 1.5 The dot product of an arbitrary

vector A with a unit vector B produces a
result that is the length of A projected onto B.

The projection is again provided by the cosine. A cosine is nothing
more than the length of the adjacent side of a right triangle. Referring

16 Real-Time 3D Terrain Engines Using C++ and DirectX 9

THE CROSS PRODUCT

again to Figure 1.5, we can see that the two vectors do indeed form a
right triangle when the third side is considered as the path of the projec-
tion (perpendicular to the unit vector). The side adjacent to the angle
formed by the two vectors is the side containing the unit vector, allowing
us to reinterpret the cosine of the angle as the length of this side.

So, how is this useful? Projecting arbitrary vectors onto unit vectors is
exactly how points are rotated in 3D space. Given a point in the world,
and a set of unit vectors axes representing the desired coordinate system
to rotate the point into, simply projecting the point onto each axis will
perform the rotation. Projecting a point onto a unit vector also provides a
method to compute distances between points and planes. Given a unit
vector that is normal to a plane (i.e., perpendicular to the plane), calcu-
lating the distance between a point and the plane is the same as project-
ing the point onto the plane normal.

As with the dot product, D3DX provides functions for computing cross
products (D3DXVec2Cross and D3DXvec3Cross) that we could simply use,
but a deeper understanding of the cross product is essential for some of
the shading operations we will be performing later in the book. There-
fore, we take a moment to dissect the cross product and understand its
use.

Unlike the dot product, the cross product does not yield a single,
scalar result. Instead, the cross product of two vectors produces a third
vector. This third vector is perpendicular to the plane formed by the first
two vectors, and has a magnitude equal to the area formed by their par-
allelogram. The cross product can be computed as shown in Equation 1.7.

PXQ=<Psz_PzQy’ P,Q, - PQ,. PXQ,V_P}’QX> (1.7)

However, the plane defined by vectors P and Q has two sides. So,
which side is the perpendicular vector pointing in? The result of the cross
product is dependent on the order of the source vectors. Cross products
follow the right-hand rule, so computing the cross product of P and Q
will result in the right-hand perpendicular vector. Recall the right- and
left-handed systems shown in Figure 1.2. Given two axis vectors, X and

Y, the third vector, Z, could be determined using left-hand or right-hand

construction rules. Computing the cross product of the x-axis with the y-
axis will yield the right-handed z-axis. Reversing the order of the x-axis
and y-axis will result in the left-handed z-axis.

D3DX MATRICES

Chapter 1 Getting Started with DirectX 9.0 and D3DX 17

Matrices are an essential part of any 3D engine. They allow multiple vec-
tor operations to be combined into a single entity. These entities provide
a convenient shorthand for a group of equations, and can be concate-
nated with other matrices to easily combine an even greater number of
equations. Explaining the underlying functionality of matrices is beyond
the scope of this book. Instead, we will cover how matrices are used for
3D transformations within the engine. For more detailed information on
matrices, refer to the recommended reading section provided in Appen-
dix D, or consult the DirectX SDK documentation.

Matrices are defined as a two-dimensional grid of numbers. This grid
can be of any size, but for computer graphics, we use only a few common
dimensions. The values held within the matrix are numbered by their
row and column positions. In most textbooks, the values in the matrix
are numbered in row-column pairs. Figure 1.6 shows the general format
of a matrix.

myy My, L my,

my my Lioom,

M M O M

My mp Lo m,

w

w

FIGURE1.6 The general
format of a WxH matrix.

Matrices provide a convenient way to manipulate points in 3D space.
By arraigning values in a matrix, a model built of points can be moved,
rotated, or scaled in any way desired. Because matrices are shorthand for
coordinate systems, we can use them to move objects around in the
world. Moving an object simply means to relocate the origin of its local
coordinate system. By passing the points of a model through a matrix, a
set of affine transformations (rotation, scaling, and position) can be
applied to the points of the model, moving it to the coordinate system
defined in the matrix.

Before we continue, we need to understand how matrices are stated
within this book. There are two different ways to represent matrices in
print, and some authors prefer one to the other. In this book, the matri-
ces are listed within their grids, in left-to-right reading order, in exactly
the same order in which they are stored in RAM. This is different from

18

Real-Time 3D Terrain Engines Using C++ and DirectX 9

some popular graphics programming books that choose to print the ma-
trices in one manner within the book, and store them in memory using
the transpose of the printed order (i.e., rows and columns switched).

For example, the 4x4 grid pattern for a transformation matrix is often
displayed in academic books as having the three coordinate system axes
(right, up, and forward) listed as columns, followed by a final column
containing the translation component for each axis. When this format is
used, vectors are also treated as columns.

Right, Up, Forward, T, x

_ Right, Up, Forward, T, V= y
Right, Up, Forward, T, z

0 0 0 1 w

This is called the column-major format, and is probably the most com-
mon way to see matrices listed in print. However, it is not the most effi-
cient order to store matrices within system memory. To take full
advantage of the Intel SSE instruction set, for example, it is far more con-
venient to store them in the transposed order. Therefore, most 3D math
libraries will store a matrix in system memory using an order that is the
transpose of the printed matrix. In this format, single vectors are treated
as rows. This is sometimes called the row-major format.

Right, Right, Right, 0
U, U U, 0

= Px Py & V=[x y z w]
Forward, Forward, Forward, O
T, T, T, 1

In this book, we maintain a 1:1 relationship between the matrix for-
mat used in the book, and the layout of the matrix in system memory.
The row major format is used in the remainder of the book. This is far
more intuitive, even if it does mean that matrix information printed in
other books might need to be mentally transposed by the reader in order
to line up with the matrix format used here. Many popular books on
computer graphics, such as 3D Computer Graphics by Alan Watt [Watt], use
the row-major format, as does the DirectX SDK documentation, so we
are not alone in using this method.

The main operation we perform with matrices is matrix multiplica-
tion. Before we begin discussing how matrices are useful, we state the
process for multiplying them together. For two 4 x4 matrices, M and N,
the result of their multiplication is given as Equation 1.8.

Chapter 1 Getting Started with DirectX 9.0 and D3DX 19

A B CD abcd
M=EFGH Nzefgh

I J KL i j k1

M N O P mmn op
M*N =

(4a+Be+Ci+Dm) (Ab+Bf +Gj+Dn) (Ac+Bg+Ck+Do) (4d +Bh+cl+Dp)
(Ea+ Fe+Gi+ Hm) (Eb+Ff +Gj+ Hn) (Ec+Fg+Gk+Ho) (Ed+Fh+Gl+Hp)
(1a+Je+Ki+Lm) (Ib+Jf +Kj+Ln) (Ic+Jg+Kk+Lo) (1d+Jh+Kl+Lp)
(Ma+ Ne+0i+ Pm) (Mb+Nf +0j +Pn) (Mc + Ng + Ok + Po) (Md+Nn+0l+Pp)| (1.8)

It looks like a mess, but it is much simpler than it appears. For each lo-
cation in the destination matrix, the result is the dot product of the row
position within M and the column position within N. For example, the
lower-left corner of the result matrix {(column 1, row 4) is the dot product
of row number 4 from matrix M and column number 1 from matrix N.

To transform a point (or vector) through a matrix, we simply treat
the axes information within the point as a one-dimensional matrix. Stan-
dard matrix multiplication rules can then be applied to compute the new
point. The point is treated like a single-row matrix, using Equation 1.9 to
compute the result of each vector component.

ab cd
P=[xyzw M= ¢ fan
i j k'l
mmn op
P =(Xa+Ye+ Zi+ Wm)
P, =(Xb+Yf+Zj+Wn)
P',=(Xc +Yg + Zk + Wo)
P, =(Xd +Yh+ZIl + Wp) (1.9)

Points and vectors are typically considered to have three components:
x, y, and z. To transform the vector or point with a 4x4 matrix, a fourth
component, w, must be added. This adds an interesting property. As
shown in BEquation 1.9, the value for w controls how much the final row
of matrix M affects the computed point. Each of the row values (m, n, o
and p) are multiplied by w in order to contribute to the result. This row of
the matrix contains the translation portion of the affine transformation.

The w component controls whether the translation information of a
matrix can affect the point during transformation. For points, the addi-

20

Real-Time 3D Terrain Engines Using C++ and DirectX 9

tional w component is set to 1, allowing the point to be translated by the
matrix. For vectors, the w component is often set to 0. This only allows
the vector to be rotated and scaled by the matrix, not translated away
from the origin. Because vectors are considered directions from the ori-
gin, allowing them to be translated by a matrix would distort their value.
This is a handy trick that we will use when writing functions to transform
points and vectors with matrices.

Multiplying matrices that represent affine transformations combines
their transformations in the same order in which they were multiplied. For
example, if matrix M represented a three-unit translation along the x-axis,
and matrix N represented a 90-degree rotation around the y-axis, then the
result of M*N would represent a shift of three units along the x-axis, fol-
lowing by the y-axis rotation. This process is often called matrix concatena-
tion, and it is one of the most appealing reasons for using matrices in 3D.

D3DX provides a set of classes for housing matrices, as well as func-
tions to build and manipulate them. Explanations of each function can be
found in the DirectX SDK documentation. One new addition to the D3DX
library in DirectX 9.0 is the 16-byte aligned matrix, D3DXMATRIXA16. This
matrix provides the 16-byte alighment required by Intel SSE instructions
to produce the greatest efficiency. As mentioned at the beginning of the
chapter, this functionality is only provided when the application is com-
piled using Visual C++ 7.0. Under all other circumstances, D3DXMATRIXA16
becomes an alias for the standard D3DXMATRIX class, and no SSE-enabling
alignment is provided.

QUATERNION ROTATION

As stated in the DirectX SDK documentation, a quaternion is essentially a
four-unit vector whose component values represent a counter-clockwise
rotation around a given axis. The values for each component of the
quaternion are shown as a group in Equation 1.10. In this set of equa-
tions, the quaternion ¢ has its values defined by the axis of rotation and a
counter-clockwise rotation around that axis, represented by the Greek

letter theta (0).
q.x = sin(@/2) * axi
q.y = sin(@/2) * axis.y
q.z = sin(@/2) * axis.z
qQ.w = cos(8/2) (1.10)
The quaternion structure is useful because it can be used to overcome
the shortcomings of rotation matrices: storage space, interpolation, and

REFERENCES

Chapter 1 Getting Started with DirectX 9.0 and D3DX 21

the potential for a phenomenon known as gimbal lock. Gimbal lock occurs
when two axes of a coordinate system become collinear. This can happen
when transformation matrices are built from discreet Euler angles (i.e.,
separate rotations around each of the three cardinal axes). When this is
done incorrectly, one coordinate vector becomes rotated to lie atop an-
other of the coordinate system vectors. Applying further rotations around
the free axis will yield no result, giving the appearance of the axis being
“locked” or unable to rotate.

The quaternion uses a non-Euler method for storing a rotation about
an axis in 3D space. This avoids the potential for gimbal lock to occur.
However, it also sacrifices readability, as quaternion data cannot be visu-
alized by most human beings. A quaternion is a complex number con-
taining both real and imaginary niuinbers, a full explanation of which is
beyond the scope of this book. Appendix D lists ample reading material
containing complete discussions of quaternion rotations and the algebra
that can be used to manipulate them.

The gain in storage space when using quaternion rotations is imme-
diately evident. The quaternion represents a complete 3D rotation in four
values, whereas a 3D rotation matrix would require nine. Although the
quaternion must be converted to a suitable matrix format for use within
the DirectX render pipeline, models that contain a large amount of rota-
tion data for animation purposes can reduce their size dramatically by
using quaternion representation for storage.

Like matrices, rotations can be concatenated by simply multiplying
two quaternion structures. However, the quaternion representation also
provides a method for interpolating between two rotations. This interpo-
lation, called Spherical Linear Interpolation (SLERP), is far easier and
more efficient to compute than interpolating between two rotation ma-
trices. For keyframe animation of a skeletal hierarchy, quaternion data is
essential for optimum performance due to the large amount of interpola-
tion required between the various poses of the skeleton.

D3DX provides a quaternion object, b3DXQuaternion, and a set of
functions to multiply, manipulate, and interpolate between them. Func-
tions are also provided to convert rotations between matrix and quater-
nion formats. Documentation for the use of each function can be found
within the SDK.

[Watt] Watt, A. 3D Computer Graphics, Second Edition. Addison-Wesley
Publishers Ltd., 1993.

FUNDAMENTAL 3D OBJECTS

23

24

Real-Time 3D Terrain Engines Using C++ and DirectX 9

ith a solid understanding of the Direct3D sample framework

and the Direct3D extension library, we are ready to dig in a lit-

tle deeper and discuss some of the D3DX features we will be
taking advantage of in our engine. In this chapter, we discuss some of the
D3DX class objects we will be using throughout our engine to load, ren-
der, and save our world models. We also discuss the two major file for-
mats associated with Direct3D, and the objects used to receive their data.
These are the Direct3D effect object and file format (.fx files), and the Di-
rect3D X files (.x file extension). Finally, we look into creating hierarchies
of these objects using the D3DXFRAME and D3DXMESHCONTAINER structures for
composite objects and skeletal animation.

The ability to load model and shader information from disk is a pri-
mary need for all 3D engines. While we could devise our own proprietary
format, this additional effort is not necessary given the flexibility of the
file formats provided by DirectX. We also gain the use of tools already
available for manipulating these DirectX files. These include exporters for
most popular 3D modeling and animation packages, and tools provided
with the DirectX SDK for editing and viewing .x model files and .fx effect
files. Direct3D also affords us the ability to extend the X file format with
our own data. This feature provides the flexibility we need, and keeps the
X file format viable into the future.

BAsIC DIRECT3D OBJECTS

Three basic elements are required to display an object in 3D: the model it-
self, the material that describes the model surface, and an optional tex-
ture map to cover the model with. Lighting and shading methods aside,
these are the basic building blocks of 3D model rendering. D3DX provides
helpful objects to represent each of these elements, along with a host of
functions to load, manipulate, and use each one.

The tutorials that come with the DirectX SDK provide a useful intro-
duction to the D3DX class objects used to represent these basic elements.
A brief overview of each is provided here, but readers needing additional
information should refer to the SDK documentation.

D3DXMaterial is by far the most succinct of the three objects. It is no
more than a structure containing the D3DMATERIAL9 properties of a surface
(information regarding the various hues of light reflected from the ob-
jects surface), along with an optional filename for a texture to cover the
surface of the model with. Having only one texture reference makes this
object a little too antiquated for our needs, but we still employ it as a stor-
age structure for the basic lighting properties of a model.

Chapter2 Fundamental 3D Objects 25

The IDirect3DTexture9 object provides an interface to manipulate tex-
ture resources and use them during rendering. The D3DX library contains a
set of functions to make working with IDirect3DTexture9 objects much eas-
ier for the programmer. One such function is D3DXCreateTextureFromFile,
which can import texture information from a variety of bitmap file for-
mats, including .bmp, .dds, .dib, .jpg, .png, and .tga. In addition to the ro-
bust file support, the various D3DX texture loading functions can also
resize the image and change the color depth using a variety of filters dur-
ing the import process. The D3DX library also contains a set of texture-re-
lated functions for working with 3D volume textures as well as cube
environment maps. We will explore these as we dive into advanced ren-
dering methods later in the book.

The 1D3DXMesh class is the workhorse of the three. This class contains
the geometry information of a model, and the fields that describe the for-
mat of the model vertices. D3DX provides several means to load mesh in-
formation from the DirectX proprietary file format known as X files.
While the basic format of an X file is also rather antiquated, being based
on the same one-texture-per-material policy as the D3DXMATERIAL struc-
ture, it is a user-extendable file format. We will use this extendibility to
save and load our own proprietary data within the X files used by our en-
gine later in the book.

The basic ID3DXMesh class is little mnore than a container for model
vertices, an index buffer used to reference those vertices by polygon, and
an optional attribute table that groups sets of polygons by the materials
used to draw them. In most cases, the ID3DXMesh class represents the same
data storage method you would likely use when creating your own
geometry container, and is therefore suitable for most of our 3D engine’s
needs. In some cases, however, we will find that our terrain geometry
does not quite fit into the ID3DXMesh storage method, and we will need to
devise our own geometry format. Even when this occurs, we can still
make use of the ID3DXMesh as an intermediate format for loading and sav-
ing data to disk.

D3DX meshes come in a variety of flavors, each geared toward a spe-
cific purpose. The class we have discussed so far is the basic mesh con-
tainer for static geometry. In addition to this class, D3DX also provides
customized classes for simplification meshes, ID3DXSPMESH, and progres-
sive meshes, ID3DXPMESH. Simplification meshes allow the user to reduce
the number of faces or vertices a model contains using weight values to
control which components of the model are more important than others.
As the user requests further reduction of the model, the least important
elements are removed. This is a one-time operation that cannot be un-

26

Real-Time 3D Terrain Engines Using C++ and DirectX 9

done, and is therefore most usable in a stand-alone tool to prepare mod-
els for the engine.

Progressive meshes are an alternative to the strict reduction method
of simplification meshes. Progressive meshes are based on the View Inde-
pendent Progressive Mesh method described by Hughes Hoppe [Hoppe].
Hoppe’s method records a series of triangle divisions, known as splits,
which can be used to increase or reduce the complexity of a model in real
time. By joining adjacent polygons together and recording their unions,
visual complexity of a model can be reduced. By undoing these unions
and splitting triangles back into their original form, surface complexity
can be restored. These triangle divisions and rejoining operations can be
performed iteratively, allowing the model to smoothly transform from
high to low definition and back. This allows the same progressive mesh to
be used in high detail when near the camera, reducing its complexity as it
moves further away from the viewer.

LOADING AND DISPLAYING A MODEL USING D3DX

As shown in the DirectX SDK tutorials, loading and displaying a simple
mesh using D3DX is straightforward. For readers unfamiliar with
ID3DXMeshes, working through the DirectX SDK tutorials is an excellent
way to become familiar with these objects. We will outline the basic use
of the D3DX object classes here as an overview, but we will not be reiter-
ating the in-depth coverage already provided by the SDK.

Once the application and Direct3D environment have been initial-
ized, using the DirectX sample framework in our case, displaying a mesh
is a simple matter of loading the mesh from disk, building the objects
needed to render it, and using those objects to display the contents of the
mesh.

The first step is to load the mesh from an X file using the D3DX func-
tion D3DXLoadMeshFromFile. This will load the mesh geometry, and allo-
cate and fill a list of D3DXMATERIAL structures used by the mesh. Each
material can contain an optional string containing the name of a texture
file to load. D3DXLoadTextureFromFile can then be used for each valid tex-
ture name to load the bitmap data. Assuming that no texture or model
geometry conversion is necessary, the data is now ready for rendering.

The simplest method of rendering the mesh is the brute-force ap-
proach. In this method, we render any meshes within the scene one at a

time, making no effort to batch similar render states or otherwise in-
crease performance through efficient ordering of our render calls. Each

Chapter2 Fundamental 3D Objects 27

mesh is divided internally into subsets. A subset is a set of polygons that
use the same material properties. Therefore, if an ID3DxMesh contains #

subsets, it must be rendered using the corresponding # materials and #
texture maps created during the loading process. To render a given mesh,
we simply loop through the subsets of the mesh, activating the proper
textures and setting the active materials. Once these objects are properly
activated, we can instruct the mesh to render the given subset geometry
using the member function DrawSubset.

USING DIRECT3D EFFECT FILES

When building a 3D engine, consideration must be given to the wide va-
riety of hardware available in today’s home computers. Rendering proce-
dures that work well on one type of video card might be woefully
inefficient, or altogether unsupported on another. The only viable solu-
tion is to provide multiple rendering procedures to ensure that your
product remains viable across multiple types of hardware. Direct3D effect
files provide a way to encapsulate these render niethods, allowing multi-
ple techniques to be grouped together into a single file. Each technique
contained in the effect file is a high-level abstraction of a given render
method, containing the render states required as well as any vertex or
pixel shader instructions needed. In this manner, effect files help facilitate
backward compatibility while providing a modular approach to defining
render methods.

Effect files are nothing more than text files that contain a list of avail-
able techniques. Each technique can contain a number of passes, each
representing the instructions and resources needed to perform a single
rendering procedure. With this hierarchy, the files can be written to con-
tain multiple techniques, one for each class of hardware supported, with
each technique being able to contain specific instructions for multiple
passes when needed.

The text nature of effect files makes them easy to edit and rapidly
prototype. They are compiled at runtime to produce render state and
shader instructions specific to the hardware on which they are being ex-
ecuted. Techniques within the effect file can be validated at compilation
time to find the best possible technique for a given hardware configura-
tion. This provides a highly modular system, allowing programmers to
support multiple hardware configurations and even support products
into the future by releasing additional effect files as new hardware be-
comes available.

28 Real-Time 3D Terrain Engines Using C++ and DirectX 9

Listing 2.1 shows the contents of a simple effect file to illustrate the
technique and pass hierarchy. In this example, only texture stages are
specified by the effect file for brevity. A more robust effect file might also
contain vertex and pixel shader instructions to further control the ren-
dering process of each technique. This sample file is intended to illustrate
the use of multiple techniques for hardware support. Many video cards
differ in the number of textures they can use in a single pass. Both tech-
niques shown in Listing 2.1 use six textures to generate the same visual
effect. The first technique uses all six textures in a single pass, while the
second technique uses the same six textures in multiple passes, one of
four textures and another of two. As this effect file is compiled for a given
hardware platform, the single-pass technique will be deemed valid only if
the platform allows six textures per pass. When fewer textures are sup-
ported, the first technique will not validate, and the program can be in-
structed to switch to the second technique instead.

LISTING2.1 Asample effect file containing single and multipass techniques.

/] Both of the techniques below use the same

// four textures, which we define using the

// following variable declarations. The program
// will set these variable to point to specific
// D3DTexture9 objects loaded.

texture tex0;

texture texi;

texture tex2;

texture tex3;

// The first technique renders using all four
// textures at once. Four complete texture
/] stages are defined to add the colors
// of all four textures.
technique tO
{
pass p0
{
// all four textures are loaded
// into the texture input parameters

Texture[O0] = (tex0);
Texture[1] = (tex1);
Texture[2] = (tex2);
Texture[3] = (tex3);

11
1
11
11
11
11

Chapter2 Fundamental 3D Objects

// for the first texture, the
// color values are used as-is
ColorOp[0] SelectArgt;
ColorArgt[0] Texture;

// for the remaining textures,

// their color values are Added

// to the contents of the previous
// texture channel

ColorOp[1] = Add;

ColorArg1[1] = Texture;
ColorArg2[1] Current;

ColorOp[2] = Add;
ColorArg1[2] = Texture;
ColorArg2[2] = Current;

ColorOp[3] = Add;
ColorArg1[3] = Texture;
ColorArg2[3] = Current;

ColorOp[4] = Disable;

The second technique renders using the textures
in two passes. One pass renders the first

two textures, and a second pass renders

the remaining two. The passes are added
together in the frame buffer to produce the
same result as the first technique.

technique t1

{
/

/ first pass. Draw two of the four textures

pass p0

{

// no blending is performed in this pass
AlphaBlendEnable = False;

// four textures are loaded
// into the texture input parameters

Texture[0] = (tex0);
Texture[1] = (text);
Texture([2] = (tex2);
Texture[3] = (tex3);

29

30 Real-Time 3D Terrain Engines Using C++ and DirectX 9

// for the first texture, the
// color values are used as-is
ColorOp[0] = SelectArgi;
ColorArg1[0] = Texture;

// the second texture is added to the first
ColoroOp[1] Add;

ColorArgi[1] Texture;

ColorArg2[1] = Current;

ColoroOp[2] = Disable;

// second pass. Draw the reaming two textures,
// blending the result with the first pass
pass p1
{

// blend the results of this pass with

// the first one

AlphaBlendEnable = True;

SrcBlend = One;

DestBlend = One;

/1 two textures are loaded

// into the texture input parameters
Texture[0] = (tex4);

Texture[1] = (texb5);

/1 for the first texture, the
// color values are used as-is
ColorOp[0] SelectArgl;
ColorArgi1[0] Texture;

// the second texture is added to the first

ColorOp[1] = Add,;

ColorArgi1[1] = Texture;
ColorArg2[1] = Current;
ColorOp[2] = Disable;

To make use of an effect file within your program, D3DX provides a
simple interface to load and verify the techniques within an effect. The

Chapter2 Fundamental 3D Objects 31

easiest, and most common, way to use effect files is to use one effect file

for each render method desired. Each effect file can contain multiple ver-
sions of the same render method as individual techniques. More de-
manding techniques are placed at the top of each file, and versions
intended for older, less powerful hardware follow in descending order.
This is the manner in which the sample shown in Listing 2.1 is con-
structed. Setting up your effect files this way allows the D3DX library to
load the files and determine the best possible effect that will run on the
target hardware.

The two D3DX functions that perform the work are D3DXCreate
EffectFromFile and FindNextValidTechnique. D3DXCreateEffectFromFile
loads an effect file from disk and compiles it for the application to use.
Any errors in the file found during compilation are output via a standard
D3DXBuffer object. If the compilation succeeds, an ID3DXEffect object is
constructed, providing an interface to the compiled effect.

To choose the best possible technique within the effect, the member
function FindNextvalidTechnique can be used to step through each of the
techniques that validate on the resident hardware. FindNextvalidTechnique
takes a handle to a technique within the file, and searches for the next
valid technique that appears after the provided technique. When NULL is
used as the input parameter, FindNextValidTechnique will search from the
top of the file, returning the first valid technique found. If our file con-
tains techniques listed in order from most demanding to least, using
FindNextValidTechnique in this manner will return the most sophisticated
version of our render method that will work on the resident hardware.
Listing 2.2 shows a small snippet of code used to load and search an effect
file for the best possible technique.

LISTING 2.2 Loading and searching an effect file for the best possible technique.

// global variables for the effect
// and the technique in use
LPD3DXEFFECT m_pEffect=0;
D3DXHANDLE m_hTechnique=0;

HRESULT loadEffectAndSetTechnique (
const char* filename)

/! load the effect from the file path
// provided. In this example, no
// additional macro definitions or links

32 Real-Time 3D Terrain Engines Using C++ and DirectX 9

// to include files are necessary
LPD3DXBUFFER pBufferkrrors = NULL;
HRESULT result = D3DXCreateEffectFromFile(

g_d3dDevice,

filename,

NULL,

NULL,

0!

NULL,

&m_pEffect,

&pBufferErrors);

if(FAILED(result))

{
// here we can examine the pBufferErrors buffer
// to determine the reason for failure.
// for now, we just return the error code
SAFE_RELEASE (pBufferErrors);
return result;

// we are now finished with the error buffer
SAFE_RELEASE (pBuffertrrors);

// find the best possible technique to use
/1 by searching from the top of the effect file
/! for the first valid technique.
result = m_pEffect->FindNextValidTechnique(
NULL,
&m_hTechnique);

if(FAILED(result))

{
// no valid techniques were found.
// release the effect interface
// and report the error
SAFE_RELEASE (m_pEffect);
return result;

// activate the technique chosen
result = m_pEffect->SetTechnique(m_hTechnique);
if(FAILED(result))

{
// activation failed.

Chapter2 Fundamental 3D Objects 33

// release the effect interface
// and report the error
SAFE_RELEASE (m_pEffect);
_return result;

// the new technique is ready for use
return D3D_OK;

Effect files also gain a great deal of flexibility from the various types of
vertex and pixel shaders that can be embedded in them. The sample in
Listing 2.1 does not contain vertex or pixel shader information, implying
that the fixed-function pipeline, the predecessor to programmable
shaders, will be used. If desired, pixel and vertex shader source code can
be placed directly into the effect file. This allows the programmer to full
encapsulate the complete specification for a given render method within
an effect file. Pixel and vertex shaders can be written within the effect file
using either their respective assembly languages, or the new High-Level
Shader Language (HLSL) available in DirectX 9.0. We will explore em-
bedding HLSL shaders in the next chapter.

THE D3DX FRAME AND MESH CONTAINER

Each model in the game world is associated with a transform node. These
nodes are essentially matrices that define the coordinate system of the
model’s vertices. These transform nodes, also called frames, allow us to
position the model anywhere we want. By chaining these nodes and
model together into a hierarchy, larger objects can be assembled and ani-
mated by adjusting their transform nodes over time. D3DX provides a
handy pair of structures to contain this hierarchy and provide a frame-
work that can later be animated: D3DXFRAME and D3DXMESHCONTAINER.

D3DXFRAME is a simple structure designed to represent a single trans-
form node of a model hierarchy. It contains the transform matrix defin-
ing the coordinate system of the node, pointers to the child and sibling
D3DXFRAME objects in hierarchy tree, and a pointer to a D3DXMESHCONTAINER.
D3DXFRAME also contains a pointer to an optional test name for the frame
itself. Frames can be named so that they can later be identified when an-
imations are applied to the hierarchy. The layout of the D3DXFRAME struc-
ture is shown at the top of Listing 2.3.

34

Real-Time 3D Terrain Engines Using C++ and DirectX 9

LISTING 2.3 D3DX structures for building a hierarchy of model data.

typedef struct _D3DXFRAME

{
LPTSTR Name;

D3DXMATRIX TransformationMatrix;

LPD3DXMESHCONTAINER pMeshContainer;

struct _D3DXFRAME *pFrameSibling;

struct _D3DXFRAME *pFrameFirstChild;
} D3DXFRAME, *LPD3DXFRAME;

typedef struct _D3DXMESHCONTAINER

{
LPTSTR Name;

D3DXMESHDATA MeshData;

LPD3DXMATERIAL pMaterials;

LPD3DXEFFECTINSTANCE pEffects;

DWORD NumMaterials;

DWORD *pAdjacency;

LPD3DXSKININFO pSkinInfo;

struct _D3DXMESHCONTAINER
*pNextMeshContainer;

} D3DXMESHCONTAINER, *LPD3DXMESHCONTAINER;

The second structure, D3DXMESHCONTAINER, does exactly as its name
suggests. The format of this structure is shown at the bottom of Listing
2.3. All ID3DXMESH objects that appear in the hierarchy are stored within
D3DXMESHCONTAINER structures, and linked into the tree through the
D3DXMESHCONTAINER pointers of the D3DXFRAME structure. The D3DXMESHDATA
object held within D3DXMESHCONTAINER contains a pointer to the mesh it-
self, and an ID code identifying the type of mesh stored. Meshes can be
stored as regular ID3DXMesh objects, ID3DXPMesh objects, or ID3DXPatchMesh
objects.

The mesh container structure also contains pointers to the data cre-
ated during the model import process. These include the materials used
by the mesh, adjacency information for the model faces, and link to a
structure containing data about the optional D3DXEffect object used to
render the model itself. A pointer to an ID3DXSkinInfo interface is also
provided, allowing the mesh within the container to behave as a skinned
mesh. Skinned meshes contain weight and index values per vertex that
allow the model to be deformed by multiple D3DXFRAME transform matri-
ces within the hierarchy.

The optional skinning information transforms the linked tree of
D3DXFRAME objects into a cohesive skeletal model for animation. With this

Chapter 2 Fundamental 3D Objects 35

flexibility, the complete hierarchy can be used as either a traditional par-
ent-child scene graph of connected models, a complete skeletal structure
for mesh deformation, or both. Additional flexibility is gained by the final
member of the D3DXMESHCONTAINER structure, which is simply a link to an-
other D3DXMESHCONTAINER. This allows multiple mesh containers to be
chained to the same D3DXFRAME node, each of which may or may not con-
tain skinning information (see Figure 2.1).

D3DXMESHCONTAINER 0
I

D3DXMESHCONTAINER 1
|

D3DXMESHCONTAINER ...
|

D3DXMESHCONTAINER n

D3DXMESHCONTAINER 0
I

D3DXMESHCONTAINER 1
I

D3DXMESHCONTAINER ...
I

D3DXMESHCONTAINER n

“"uaIpiIyD

47

FIGURE2.1 A sample mesh hierarchy showing skinned and
rigid models coexisting on the same skeleton framework.

Building these hierarchies consists of allocating the required data
structures, along with the objects they contain, and then linking them to-
gether to form the desired tree. The same ID3DxMesh loading procedures
we used at the end of Chapter 1, “Getting Started with DirectX 9.0 and
D3DX,” can be used to read in mesh objects, their materials, and textures.
These mesh objects can then be placed in D3DXMESHCONTAINERS within the

36

Real-Time 3D Terrain Engines Using C++ and DirectX 9

tree at the desired locations. Using this method, large hierarchies of indi-
vidual mesh objects can be grouped to create larger entities or complete
scenes.

D3DX also provides a much simpler means to create these large data
trees. Most 3D modeling packages such as discreet® 3ds max™ and
AliaslWavefront® Maya® allow users to build scenes containing multiple
nodes and models. These model hierarchies can define an entire scene
and allow artists to animate nodes within the scene to move rigid meshes
or deform skinned objects. For most popular 3D modeling packages, in-
cluding those mentioned previously, X file plug-ins are available to export
the entire scene to a database of frame and mesh containers within a sin-
gle X file. The D3DX library contains hierarchy loading functions such as
D3DXLoadMeshHierarchyFromX that can construct an entire tree of D3DXFRAME
and D3DXMESHCONTAINERS from the contents of these X files. We will cover
this functionality in greater depth in Chapter 4, “Gaia Engine Overview,”
when we begin importing our own animated mesh hierarchies.

SKELETAL ANIMATION AND SKINNED MESHES

Information regarding skinned meshes is provided during the loading
process of a D3DXFRAME hierarchy. Although the object containing the skin
information, I1D3DXSkinInfo, can be created by hand, it is far more intu-
itive to create skinned meshes in a professional modeling package and ex-
port them to the X file format. Using D3DXLoadMeshHierarchyFromX, the
entire frame hierarchy is loaded into memory, along with any skinning
information and animation data.

So, what is this data anyway? The 1D3DXSkinInfo object contains a set
of data for each vertex of a model. The model itself is stored externally,
and can reside in an ID3DXMesh object, a vertex buffer, or generic system
memory. ID3DXSkinInfo contains only the data needed to deform the
mesh vertices using a set of matrices, which are also stored externally to
this data set. What is stored within this object are the indices of the ma-
trices used by each vertex, and scalar weight values used to control the
influence each matrix has on a given vertex. This is the standard set of
data used to perform indexed palette skinning.

This brings three pieces of the puzzle together. In the D3DXFRAME hier-
archy, we have a set of nested transform matrices defining a local skele-
ton system. With D3DXMESHCONTAINER, objects can be hooked to any
D3DXFRAME within the hierarchy to locate a model at the position and ori-
entation provided by the parent. Finally, links to ID3DXSkinInfo objects
within each D3DXMESHCONTAINER provide the data necessary to deform the

Chapter2 Fundamental 3D Objects 37

model contained in the mesh container across a series of D3DXFRAME
nodes, creating a skinned mesh. D3DXLoadMeshHierarchyFromx provides
the means to load and construct the entire system, as we will see in
Chapter 4. The last remaining piece is animation data, and a means to
control the playback of the data over the D3DXFRAME hierarchy.

Class interfaces for animation data and playback are also provided by
the D3DX library. ID3DXAnimationSet is the container class for the anima-
tion data itself, and ID3DXAnimationController provides an interface to
link the animation data to a set of matrices (such as a tree of D3DXFRAME
structures) that will be controlled by the animation. ID3DXAnimationCon-
troller also provides playback controls for the animation and the ability
to blend the effects of multiple animations.

Using these classes is very simple. D3DXFRAME nodes contain matrices
that are registered with the ID3DXAnimationController using the name
strings also provided with the D3DXFRAME structure. Only named matrices
can be animated, because the names are used to link the matrices them-
selves with the animation data being played back.

The ID3DXAnimationController maintains links to one or more
ID3DXAnimationSet objects, which contain key-framed animations that
can be played using the controller. These key-framed animations contain
information to produce rotation, translation, and scale changes to a ma-
trix over time. These keyframes also contain the name of the matrices
they are intended to affect. As named matrices are registered with the
ID3DXAnimationController, their names are matched against the set of
named keyframes and links are established. In this way, the matrix regis-
tered as “left knee” will be updated with the animation data with the cor-
responding name.

All of this matrix registration is performed automatically when using
D3DXLoadMeshHierarchyFromX to load and assemble the frame hierarchy
from an X file that also contains animation. The result is that the registered
matrices are automatically updated by the ID3DXAnimationController as
playback is performed. Figure 2.2 shows the relationship between the an-
imation data and named matrices within the model hierarchy.

ID3DXAnimationController provides interfaces to blend the effects of
multiple animation sets together, and adjust their playback parameters
such as speed and blending priority. To enable playback, ID3DXAnimationSet
objects must be assigned to the individual animation tracks ID3DXAnima-
tionController. This allows each ID3DXAnimationSet to be animated inde-
pendently by controlling the speed and blending weights of the tracks
with which they are associated. To blend animations, the active tracks
must be classified as being either low or high priority. The priority of an
animation track controls how it is blended with the other tracks.

38

Real-Time 3D Terrain Engines Using C++ and DirectX 9

LDSDXMESHCONTAINEH 0 ‘
1

1 D3DXMESHCONTAINER 1]
I

l D3DXMESHCONTAINER ...]
I

l D3DXMESHCONTAINER n l

, D3DXMESHCONTAINER 0 ‘
I

| D3DXMESHCONTAINER 1 l
I

l D3DXMESHCONTAINER ...]
|

’ D3DXMESHCONTAINER n ,

TTURIpINY

FIGURE2.2 The relationship between named matrices and the keyframe data being animated
with the ID3DXAnimationController class.

Setting the priority of a track is achieved using the SetTrackDesc
member function of the ID3DXAnimationController to load a D3DXTRACK_
DESC structure containing data about the track. The first parameter of this
structure is a field named flags. Unfortunately, the documentation pro-
vided with the DirectX 9.0 SDK states that this field is unused, which is
not the case. Setting this flag parameter to one of the D3DXTRACKFLAG
enum values (D3DXTF_LOWPRIORITY or D3DXTF_HIGHPRIORITY) will associate
the track with the proper group. This documentation error will hopefully
be fixed in future revisions of the SDK.

The animation data of active tracks is then blended together in a
three-step process. First, all tracks belonging to the low-priority group are
blended together using their individual weight values. Next, all tracks be-
longing to the high-priority group are blended together using the weight
values set for each track. Finally, the results of the high- and low-priority
track blends are blended together using a scalar value set on the anima-
tion controller itself. This value can be set via the member function

40 Real-Time 3D Terrain Engines Using C+-+ and DirectX 9

REFERENCES

faces are merely a matter of taste, but the modular design of the D3DX
components allows us to add any application-specific features we desire.

For example, we would prefer to have an animation controller notify
us when an animation is finished playing. The ID3DXAnimationController
class will only report the length of the animation being played, and how
much of it has currently elapsed. This puts the burden on the program to
constantly monitor the animation controller or forecast when the anima-
tion will complete. To ease our development process, our wrapper will
monitor the elapsed animation time itself and notify the application via a
callback when the animation has completed. This creates a message sys-
tem for animation feedback that makes state machine coding a little eas-
ier for our game objects.

Again, these interface additions are a matter of personal taste. Wrap-
ping our own class around ID3DXAnimationController affords us the abil-
ity to add such interfaces as we see fit. In this manner, we take the ease of
use provided by the D3DX classes and extend them for our own needs. In
Chapter 4, we derive our own animation controller, and our own varia-
tion on the D3DXFRAME and D3DXMESHCONTAINER to augment them with our
own product-specific needs. The design of the D3DX library enables us to
add these customizations while still maintaining the key functionality
provided by the original authors.

However, there are a few omissions from the ID3DXAnimation
Controller that we can not remedy as easily. The ID3DXAnimation
Controller provides a useful set of interfaces for controlling the play-
back of animation data over time. These member functions, such as
KeyTrackSpeed and KeyTrackWeight, allow us to set dynamic keyframes on
active animation tracks to increase and decrease playback speed over a
time, as well as control the weighting of tracks being blended together
over time. These interfaces allow us to set parameters that will automati-
cally interpolate using either linear interpolation or a smoother, spline-
based interpolation method, making them very useful for transitioning
between animations. The surprising omission is that the interface to re-
move these keys is not provided. Once these interpolations are set in mo-
tion, they cannot be removed. This renders the KeyTrack functions useless
unless we can be certain that we will not need to change these parame-
ters once we have set them in motion.

[Hoppe] Hoppe, H. “Progressive Meshes.” ACM SIGGRAPH 1996, pp. 99—
108 (available online at http://research.microsoft.com/users/hhoppe).

THE HIGH-LEVEL SHADER
LANGUAGE

A 7 Staple Shater EISL ewssple
o This Vonlegom e o wlagle A 8
resder w J0 wodel
,ﬂ Mete nn sifect wes svitien to weh
erovided

o wein ll.c‘ldtm-
s lhhnl: T 5K

o datn
feisicg Tile « tipr . 7 odal
int | BCIR = OnftPTE7LTt] ¢~ Beckgrousd

47 tmmture
tmwtuvm Tomll ¢ wtring sams = “Ligar bmp”

tranat,
At VIEW,
Hioatnt huucuwlnnu FROJECTION

{+ & detinitios of the dats crsated by

floatd Pos POSITION,
floatl Tex TENCOOWDG.

u\hm!umﬂﬂm

OUTPIT VSi
1joard Pn- mllﬂ
fioaid Tea

+# dmcalre o wtruciwre for cmtput
VE_OUTPUT Out = (WELOUTPOTIO

. a commmienpi o wf S
& and iav mat
Thoarint Baridtiey = Wit
Wor Lt
Viwehatrin!

ransiors (ke weriew broa chyect wpace
and stone it in P

1
itiost I!lwld'u-]

t the position 1o the screes
projectioh mairis The
placed direstly in the

ure
nl(Elost4(F, 1), ProjectionMatris).

27 aleo copy the texturs UV coordisstes to
4 tha uttan strciurs]

a1

42

Real-Time 3D Terrain Engines Using C++ and DirectX 9

ith the introduction of programmable vertex and pixel shaders

in DirectX 8.0, graphics programmers were introduced to a

whole new world of 3D rendering possibilities. No longer con-
strained by the rendering methods adopted by different hardware ven-
dors, programmers and artists could now explore unconventional
rendering techniques to make the appearance of their 3D environments
unique.

In DirectX 9.0, further advancements have been made in program-
mable shader authoring. Not only have the specifications for vertex and
pixel shaders increased in power, allowing more instructions and data to
be used within each shader, but a new C-like language has been intro-
duced to make shader programs more intuitive and readable. The High-
Level Shading Language (HLSL), introduced with DirectX 9.0, is a giant
leap forward for shader authors. Shaders can now be written in a more
familiar language format and compiled for specific hardware platforms.

This compilation step ensures that well-written shaders can be used
on future hardware, without requiring backward compatibility and out-
dated methods to run. Old shaders can be recompiled to use the latest ad-
ditions to the vertex and pixel language specifications, increasing their
lifecycle on future platforms. Alternative shader languages, such as the Cg
language developed by NVIDIA, show the promise of cross platform-
shader authoring. In short, graphics programming has evolved from a skill
involving the use of operating system display routines to a bona-fide de-
velopment language designed to run on its own set of unique hardware.

In this chapter, we take a close look at the HLSL language provided
with the DirectX SDK. We will cover the structure, expressions, and data
types unique to the HLSL, and introduce a few examples of common
shaders that can be implemented using this language. We will also look at
the runtime use of HLSL, and describe methods to allow your C++ appli-
cation to communicate with the HLSL programs to guide their execution.

In addition to learning HLSL, readers are also urged to investigate the
Cg programming language from NVIDIA. Both of the languages bear
striking similarities, and are simply two methods to achieve the same
goal: highly readable and reusable vertex and pixel shaders. For simplic-
ity’s sake, we will be focusing on HLSL for the shaders written in this
book. However, all the shader methods explored are easily transferable to
Cg. Appendix D, “Recommended Reading,” contains links to sources of

information on the Cg programming language for further reading.

Chapter3 The High-Level Shader Language 43

THE HLSL SHADER FORMAT

Two types of shaders can be written using HLSL: vertex and pixel
shaders. As their name suggests, vertex shaders modify vertex data, and
pixel shaders produce the screen colors that are used to draw the object.
Because they have different purposes, the structure of these shaders dif-
fers slightly. To understand both types of shaders, we will examine them
one at a time, and then show how they can be used together inside a D3D
effect file.

In their simplest form, a vertex shader is nothing more than a single
function written in the HLSL language. This function is written to take
certain types of input data from the application, namely the model ver-
tices, and output the data needed to render the model on screen. This
output data can later be sent to a pixel shader, which will interpret the
data to produce the final appearance of the model.

Everything within the vertex shader is related to model geometry.
Although the vertex shader can certainly compute color or light influ-
ences on a per-vertex basis, no textures are used at this point in the
pipeline. The only data available to the vertex shader is a single vertex of
the source model, and a set of read-only constant values that may be set
by the application. The sample HLSL vertex shader in Listing 3.1 shows
the basic structure of the vertex shader function.

LISTING3.1 A sample HLSL vertex shader program.

// the object-to-screen
// transformation matrix
float4x4 WVPMatrix : WORLDVIEWPROJECTION;

// a definition of the data created by
/1 our vertex shader
struct VS_OUTPUT
{
float4 Pos : POSITION;
float2 Tex : TEXCOORDO;

b

// a vertex shader in HLSL code.
// this function takes a model vertex
// and transforms it to screen space
VS_OUTPUT VS(

float3 Pos : POSITION,

float2 Tex : TEXCOORDO)

44 Real-Time 3D Terrain Engines Using C++ and DirectX 9

// declare a structure for output
VS_OUTPUT Out = (VS_OUTPUT)O;

// transform the vertex from object space
/] to screen space and store it in

// the output structure Out.Pos = mul(
float4(Pos, 1),
WVPMatrix);

// also copy the texture UV coordinates to
// the output structure
Out.Tex = Tex;

return Qut;

Like the C programming language, HLSL shaders can contain three
basic components: variable declarations, type definitions, and functions.
Listing 3.1 contains a simple vertex shader designed to transform the ver-
tices of a model from object space to screen space. It also allows the tex-
ture coordinates attached to each vertex to pass through to the pixel
shader, where they will later be used to map a texture across the surface
of each polygon. This shader contains a variable declaration, a structure
definition, and a vertex shader function. Although the language appears
very similar to C, there are some key differences. We will examine each
component and explain them in turn.

VARIABLE AND DATA TYPES

HLSL provides a familiar set of data types for scalar values. Further data
types are also provided to represent vectors, matrices, and shader-specific
objects. As a convenience, HLSL also contains several typedefs to make
the additional data types easier to use. Table 3.1 lists the entire set of
scalar, vector and matrix types.

Unfortunately, the data types are not guaranteed to exist as stated on
all hardware platforms. Due to the fact that different hardware vendors
support different types of data on their products, one or more of these
data types might actually be emulated rather than explicitly supported.
For example, not all hardware vendors supply native support for the int,
half or double data types. When native support is unavailable, these
types are emulated using float. This can mean unexpected results if the

Chapter3 The High-Level Shader Language

TABLE3.1 Variable Types Available in HLSL Shaders

45

SCALAR DATA TYPES DESCRIPTION

bool Boolean values that can be set to true or false
int 32-bit signed integer

half A half-precision, 16-bit floating-point value
float A full-precision, 32-bit floating-point value
doubie A double-precision, 64-bit floating-point value
VECTOR DATA TYPES DESCRIPTION

vector A vector of four float values

vector<t, num>

MATRIX DATA TYPES

A vector containing num members of scalar t values

DESCRIPTION

matrix

matrix <t, row, col>

A matrix of 16 float values in a 4x4 grid

A matrix of type t values in a grid of size row by col

OBJECT DATA TYPES DESCRIPTION

string An ASCl string

pixelshader A Direct3D pixel shader object

vertexshader A Direct3D vertex shader object

sampler An object describing the use and filtering of a texture
texture A Direct3D texture object

VECTOR TYPEDEFS DESCRIPTION (# REPRESENTS VALUES BETWEEN 0 AND 4)

bool#x# Defined as vector <bool, #>. Example: bool4

intix# Defined as vector <int, #>. Example: int4

float#x# Defined as vector <float, #>. Example: loat4

half#x# Defined as vector <half, #>. Example: half4

double#x# Defined as vector <double, #>. Example: double4
MATRIX TYPEDEFS DESCRIPTION (# REPRESENTS VALUES BETWEEN 0 AND 4)

bool#x# Defined as matrix <bool, #, #>. Example: bool4x4
int#x# Defined as matrix <int, #, #>. Example: int4x4

float#x# Defined as matrix <float, #, #>. Example: float4x4
half#x# Defined as matrix <half, #, #>. Example: half4x4
double#x# Defined as matrix <double, #, #>. Example: double4x4
double#x# Defined as matrix <doubile, #, #>. Example: double4x4

46

Real-Time 3D Terrain Engines Using C++ and DirectX 9

value stored as an int or double exceeds the value range that can be
stored within a float. For this reason, it is recommended that the float
value be used as the principal data type within shaders. The int, double,
and half types should only be used if the range of values generated in
known or a specific piece of target hardware is intended.

As in the C language, variables can also be labeled for scope with the
extern keyword, or labeled as being static, const and volatile. HLSL
contains some new keywords to further define the use of variables within
shaders. Global variables or input parameters can be declared as uniform,
which specifies that they do not change during the execution of the
shaders (e.g., during a call to DrawPrimitive). For those familiar with
shader assembly, this essentially identifies the values as being held within
the table of shader constants. A second keyword, shared, is used as a hint
that the variable exists in multiple HLSL shaders. Updating a shared vari-
able within one HLSL object will set the corresponding variables in all
shaders within the group. ‘

Specific keywords are also used as hints for input parameters. All
input variables are passed by value. HLSL does not allow for passing pa-
rameters by pointer or reference the way that C/C++ can. Instead, certain
keywords can be used on input parameters to identify them as input or
output data. The keyword in identifies a parameter as being input passed
in by value. When no keyword is provided, the compiler will assume the
in keyword was intended.

The out keyword makes a parameter behave somewhat like a refer-
ence being passed to a C++ function. When the function completes, the
contents of the out parameter are copied back to the caller, just as if a
non-const reference to a variable had been supplied. The final keyword,
inout, is simply shorthand for a parameter that is input data and should
have its final contents sent back to the caller.

Looking back at Listing 3.1, semantics are also used to further identify
some of the data types listed. A semantic is an annotation that describes
the intended use of the data. In vertex shaders, these semantics are iden-
tical to those used to describe the format of vertex buffers in DirectX 9.0.
Semantics appear with a colon (:) and are placed immediately after the
variable declaration with which they are associated. When semantics are
used to identify the return value of a function, the semantic is placed
after the function declaration, as in the following:

float4 VS(float3 Pos : POSITION,
float2 Tex : TEXCOORDO) : POSITION

This function declaration contains three semantics. Each of the func-
tion’s input parameters is identified with a semantic. The first parameter,

Chapter 3 The High-Level Shader Language 47

Pos, is identified to contain positional data. The second parameter, Tex, is
labeled to contain texture coordinates. The texture coordinate semantic
contains a numbering scheme that can be incremented to identify addi-
tional sets of texture coordinates as necessary. The function itself returns
a four-unit floating-point vector. The trailing semantic appearing after
the function identifies this return value to be positional data, a required
output field for vertex shaders.

In Listing 3.1, you will notice that our vertex shader does not return
a single position, but instead provides the caller with a small structure.
This structure contains positional data along with an additional set of tex-
ture coordinates. In the definition of this structure, VS_OUTPUT, seman-
tics are used to label each member of the structure. Labeling these
members is required, and facilitates converting this output structure to
pixel shader input parameters later in the pipeline.

User-defined semantics can also be used by the program to identify
certain variables. For example, Listing 3.1 contains a variable declaration
for a 4x4 matrix named WvPMatrix. This matrix is annotated with the se-
mantic WORLDVIEWPROJECTION. This semantic is meaningless within the
HLSL language, and appears only for the benefit of our program. Thc ap-
plication has the ability to search for variables within the compiled HLSL
shader by their data type, declared name, or semantic annotation. Locat-
ing the variable provides a handle through which the application can
change the value held by the variable prior to executing the shader. By
searching for the semantic WORLDVIEWPROJECTION, our program could lo-
cate the wvPMatrix and load in the desired matrix to transform a model
into screen space.

EXPRESSIONS AND INTRINSIC FUNCTIONS

Working with HLSL is much the same as working with data in C or C++.
Using a set of variables, arithmetic expressions can be performed to cal-
culate new values. The expressions supported in HLSL mirror those of C
and C++, including all math operators (+, —, *, \, etc.), logic operators,
and comparison operators. A full list of these expressions is provided in
Appendix C, “Programming Reference Sheets.”

Because HLSL does not have the luxury of using standard C math li-
braries for more complex operations, a set of intrinsic functions are pro-
vided to perform these tasks. One such operation is the mul function,
shown in Listing 3.1. Some of these functions, like mul, can map directly
to vertex or pixel shader assembly instructions. For example, the use of
mul in the sample listing can be mapped by the compiler directly to a low-

48

Real-Time 3D Terrain Engines Using C++ and DirectX 9

level shader instruction that will transform our vertex by the provided
matrix. Others, like refract function, expand to more complex routines.
In this case, refract expands to the code required to calculate the refrac-
tion of a vector through a translucent media. When writing shaders using
HLSL, a programmer must keep the underlying functionality in mind
when using intrinsic functions, especially when working with older hard-
ware that severely limits the instruction count that shaders can employ.
The full list of intrinsic functions is also provided in Appendix C.

WORKING WITH TEXTURES AND SAMPLERS

Textures are accessed via HLSL pixel shaders through the use of texture
samplers. A sampler is the encapsulation of a Direct3D texture stage, con-
taining a reference to the texture used and all filtering information ap-
plied to the texture. An easy way to define a texture sampler is through
the use of the sampler state definition supported in effect files. This in-
cludes the texture coordinate wrap modes and all mipmap filtering in-
structions. The sampler definition contains all the information usually set
using SetSamplerState when using the fixed-function pipeline. Table 3.2
shows the sampler information that can be specified, and the values ac-
cepted (Table 3.2 is also provided in Appendix C).

TABLE3.2 Texture Sampler Settings and Their Associated Values

SAMPLER STATE TYPE ACCEPTABLE VALUES

AddressU dword WRAP = 1,
MIRROR = 2,
CLAMP = 3,
BORDER = 4,
MIRRORONCE = 5

AddressV dword Same as AddressU

AddressW dword Same as AddressU

BorderColor float4 A color value; the vector contains RGBA values from
0-1.

MagpFilter dword NONE = 0,
POINT = 1,
LINEAR = 2,

ANISOTROPIC = 3,
PYRAMIDALQUAD = 6,
GAUSSIANQUAD = 7

TABLE3.2 (Continued)

Chapter3 The High-Level Shader Language 49

SAMPLER STATE TYPE ACCEPTABLE VALUES

MinFilter dword Same as MagFilter.

MipFilter dword Same as MagFilter.

MaxAnisotropy dword Maximum anisotropy value; default value is 1.

MaxMipLevel int Maximum mipmap level to use from 0-n, where n is
the number of mipmaps available. The largest
texture is index 0. The smallest texture is index (n-1).

MipMapLodBias float A bias value applied to the mipmap level chosen.
The default is 0.0.

SRGBTexture bool Set to true (nonzero value) when the texture being
sampled is in SRGB format (gamma correction 2.2).
See the DirectX SDK for more information on
Gamma.

Elementindex dword When a multi-element texture is assigned to the

sampler, this indicates which element index to use.
The default value is 0.

Listing 3.2 shows an example of a rudimentary HLSL pixel shader. In
the global scope, a texture is declared, and a sampler object that will be
used to access it. The application is responsible to assigning a D3DTex-
ture9 object to the texture variable Tex0 prior to using the shader. The
sampler specifies that the texture Tex0 will be accessed by our pixel
shader, using linear interpolation for all mipmap f{iltering.

LISTING3.2 Asample HLSL pixel shader program.

// declare a texture variable

/| for the application to assign a
// D3DTexture9 object to
texture Tex0

// define a sampler.

// this tells DirectX how we intend
// to use our texture in the

// pixel shader.

sampler MySampler = sampler_state

{

Texture (Tex0);
MipFilter = LINEAR;
MinFilter = LINEAR;
MagFilter = LINEAR;

It

50 Real-Time 3D Terrain Engines Using C++ and DirectX 9

// all unstated values
// are left to their defaults

};

// the HLSL pixel shader.
// using the input texture coordinates,
// sample a texel using the sampler
/! defined above and output the color
float4 PS(
float2 TexCoords : TEXCOORDO) : COLOR

return tex2D(MySampler, TexCoords);

HLSL supports four types of samplers: sampleriD, sampler2D,
sampler3D, and samplerCUBE. Each is designed to work with specific tex-
ture types. The HLSL compiler also accepts the generic term sampler, as
used in Listing 3.2, which it will automatically map to one of the four
true sampler types based on the texture and lookup method used.

The sampler object is then used in the pixel shader to perform the
lookup of a texel from the mipmap chain provided. The actual lookup is
performed using one of the intrinsic texture sampling functions provided
by HLSL. In our example, a texel is sampled using the 2D lookup function
tex2D. Additional texture sampling functions are provided for 1D, 3D,
and projection sampling methods. The HLSL Intrinsic Function list shown
in Appendix C contains the full list of these texture samplers.

The result of our example pixel shader is that the contents of the tex-
ture pointed to by Tex0 are sampled using the texture coordinates sup-
plied to the Ps function. For each sample requested, a four-unit vector is
returned containing the RGBA color of the texel sampled. The COLOR
semantic applied to the pixel shader function allows this RGBA value to
be returned within a float4 object, signifying the final output of the pixel
shader.

PROCEDURAL TEXTURE SHADERS

Pixel shaders are not restricted for supplying output intended for the ren-
der target. The same pixel shader functions can be used to create proce-
dural textures that can then be loaded into future texture stages for use.
This is done by compiling the pixel shader and supplying the compiled ob-
ject to one of the D3DX texture rendering functions (D3DXFillTextureTX,
D3DXFillVolumeTextureTX, and D3DXFillCubeTextureTX). These functions

Chapter3 The High-Leve! Shader Language 51

evoke the pixel shader once for each texel of the image, allowing the
pixel shader to build the final texture.

The input parameters for these pixel shaders differ from those used to
render model geometry. Procedural texture shaders must adhere to spe-
cific function definition templates that are compatible with the texture fill
function being used. For example, D3DXFillTextureTX can only be evoked
with a procedural texture shader built to take 2D texture coordinates as
positional input data. The pixel shader must then use this data to produce
a final color in the forms of a four-unit float vector that will be written to
the texture.

CONSIDERATIONS FOR LEGACY HARDWARE

Writing HLSL shaders provides the programmer with a certain amount of
freedom. Within reason, the shaders written in HLSL can be compiled to
work on any hardware platform that supports programmable shaders
through DirectX. However, the older video cards were designed to work
with the original specifications for vertex and pixel shaders. These initial
shader specifications are very limiting in terms of the operations that can
be performed, the amount of temporary and constant register space pro-
vided, and the total number of operations that can be performed per
shader.

Writing HLSL shaders for use on these components requires a bit
more care, and some understanding of the low-level operations per-
formed by the HLSL intrinsic functions. The HLSL compiler does a com-
mendable job of creating shaders compatible with the older hardware
specs, but the additional instructions needed to emulate the latest pixel
and vertex shader methods often overflow the limits of the older specifi-
cations, or produce code that is much too slow to be useful in a real-time
application.

While writing HLSL shaders for legacy hardware, the error codes gen-
erated by the compiler will alert you to instruction count limitations and
attempts to use unsupported features. All of the D3DX functions that per-
form the compilation of shaders (D3DXCreateEffect, D3DXCompileShader,
etc.) can fill a D3DXBUFFER with error strings if one is provided. When
building HLSL shaders for legacy hardware, monitoring the output of
these error messages can be a great aid in building shaders for older plat-
forms.

Another useful tool is the command-line compiler included with the
DirectX SDK. Located in the \Bin\DXUtils folder of the SDK, the fxc.exe
program can compile HLSL shader files to produce effect object files. One

52

Real-Time 3D Terrain Engines Using C++ and DirectX 9

of the most useful utilities of this stand-alone compiler is the ability to
generate regular shader assembly instructions from the HLSL code. This is
done using the using the /Fc compiler option. By compiling your HLSL
shaders with this option and viewing the output, you can gain consider-
able insight into which HLSL intrinsic functions do not map well to the
older shader specifications.

HLSL FUNCTIONS WITHIN EFFECT FILES

HLSL functions can be embedded directly into D3D effect files. This fully
encapsulates the render method, making them easier to prototype and
maintain. As shown in Chapter 1, the ability to include multiple tech-
niques within an effect file means that we can now include multiple ver-
sions of our HLSL routines and use the validation method to find the best
technique that will run on the target platform.

To associate pixel shaders and vertex shaders with a technique, they
need only be assigned to a vertexshader or pixelshader object within the
technique, along with the declaration of the language specification to be
used when compiling the routines. The HLSL functions can be written di-
rectly into the technique itself, or by using references to external func-
tions. Listing 3.3 shows our previous two shader examples embedded
within a single effect file. The technique listed at the bottom of the file as-
sociates the pixel shaders with the technique for validation.

LISTING3.3 A sample Direct3D effect file containing HLSL vertex and pixel shaders.

1/

// Simple HLSL Shader example.

1/

// This technique uses a single texture to
// render a 3D model.

1

// Note: This effect was written to work
// with the EffectEdit program provided

// in the DirectX SDK.

I/
// user data
string XFile = “tiger.x”; // model

int BCLR = 0xff202080; // background

/] texture

Chapter3 The High-Level Shader Language

texture Tex0 < string name = “tiger.bmp”; >;

// transformations

float4ax4 WorldMatrix : WORLD;
floatd4x4 ViewMatrix 1 VIEW,;
float4x4 ProjectionMatrix : PROJECTION;

// a definition of the data created by
// our vertex shaders
struct VS_OUTPUT
{
float4 Pos : POSITION;
float2 Tex : TEXCOORDO;

}s

// the vertex shader HLSL code
VS_OUTPUT VS(
float3 Pos : POSITION,
float2 Tex : TEXCOORDO)

// declare a structure for output
VS_OUTPUT Out = (VS_OUTPUT)O;

// create a concatenation of the
// world and view matrices
float4x4 WorldView = mul(
WorldMatrix,
ViewMatrix);

// transform the vertex from object space
// to view space and store it in P
float3 P = mul(

float4(Pos, 1),

(float4x3)WorldView);

/] project the position to the screen

// using the projection matrix. The

// result is placed directly in the

// output structure

Out.Pos = mul(float4(P, 1), ProjectionMatrix);

// also copy the texture UV coordinates to
// the output structure
Out.Tex = Tex;

53

54 Real-Time 3D Terrain Engines Using C++ and DirectX 9

return Out;

/] define a sampler.

// this tells DirectX how we intend
// to use our texture in the

// pixel shader.

sampler Sampler = sampler_state

{
Texture = (Tex0);
MipFilter = LINEAR;
MinFilter = LINEAR;
MagFilter = LINEAR;
b

// the HLSL pixel shader.
// using the input texture coordinates,
// sample a texel using the sampler
// defined above and output the color
float4 PS(

float2 Tex : TEXCOORDO) : COLOR

return tex2D(Sampler, Tex);

// the final technique contains only our

/! vertex and pixel shaders. If we required
// additional render states,

/] we could add them here

technique SimpleShader

{
pass PO
{
/! shaders
VertexShader = compile vs_1_1 VS();
PixelShader = compile ps_1_1 PS();
}
}

The example shader also makes use of a few more user-defined
annotations. These are added to make the shader compatible with the
EffectEdit sample program included with the DirectX SDK. The
EffectEdit program will parse these annotation strings to perform tasks
such as loading our desired textures and setting the background color of
the preview window. The EffectEdit program can then preview our

Chapter3 The High-Level Shader Language 55

shader for us, reporting any errors to its own output window. Figure 3.1
shows the EffectEdit program previewing the sample effect file con-
tained in Listing 3.3.

er.fx Ifectfdif

o 572,40 fps (726x609), XBREGEEE (016}
 Sinple Shades HISL exasple L1 HAL pure hw vp): NVIDIA GeForced Ti 4600
~ This technique uses a single texture to

/ reuder a 3D model.

/s

#/ Note: This effect vas vritten to work

#/ with the EffectEdit program provided

/¢ in the Directd 3DK.

7,

a
1le = "tiger.x"; -’ model
BCIR » Dx££7£7£7f. // background

ditexture Tex0 < string name = “tiger bmp*: >

“1/7 transforaations

ifloatdxd Uorldiatrix VORLD:
ifloatdxd ViewNatrix © VIEW.
}floatdxd ProjectionMatriz - PROJECTION:

i1/ a definition of the data created by
474 our vertex shaders
cAstruct VS_COUTPUT

floatd Pos POSITION:
float? Tex : TEXCOORDO:

" tloat] Pos : POSITION.
float? Tex . TEXCOORDO)

“< decalre a structure for qutput
VS_OUTEUT Out = (VS_OUTPUT}O:
/¢ creste a concatenation of the
#7 yorid and viav watrices
float4x4 VorldView = mul(
Vorldiatrix,
ViewNatrixz};

s# transfora the vertex from object spacs
/¢ to view space and mtare it in P
floatd P = mul(

£floatd(Pos, 1),
(fleatix3)Voridviev):
/¢ project the position to the screen
/7 usibg ths projectinn matrix The
7# result is placed directly in the

27 cutput structure
Out .Pos = mul{ficatd(P. 1). ProjectionHatrix }.

77/ also copy the texture UV coordinates to
/7 the sutput structure

FIGURE3.1 The sample effect file from Listing 3.3 running within the EffectEdit utility provided in the DirectX 9.0 SDK.

GAIA ENGINE OVERVIEW

member 0

member 1

member 3

member 2

I

member 3

member 4

member 4

member 5

I

member 5

member 6

member 6

member 7

member 7

57

58

Real-Time 3D Terrain Engines Using C++ and DirectX 9

n the first three chapters, we introduced some of the DirectX compo-

nents we will be relying on to facilitate the development of our en-

gine: the Direct3D sample framework, the Direct3D extension library,
and the new High-Level Shader Language (HLSL). In the final chapter of
this part, we complete our introduction to the engine by explaining some
of the key resource types used within it. As you read through the source
code files, you will encounter these classes often, so we take a moment
here to provide an overview of them and their functionality.

Don’t worry if these earlier development tasks seem a little dull—
they are. However, a little time spent in the trenches now will benefit us
later as we get into the fun stuff. These simple classes and interfaces will
save us a lot of time down the road, and help ensure that the portions of
the game engine we write later in the book share a consistent framework.
We will begin by introducing the engine and the coding practices used to
build it, and then move on to some of the specific resource types we will
be creating.

These resource types are best explained in detail by simply looking
through the source code files provided. In this chapter, we present a brief
introduction to each resource type and cover the highlights of their class
design. For specific implementation details, refer to the source code files
themselves.

MEET GAIA, THE 3D TERRAIN ENGINE

We will be referring to our 3D outdoor game engine as “Gaia,” a name
taken from the Greek goddess of the earth (it’s a terrain engine after all).
Naming the engine is useful for maintaining a logical separation between
our source code and that of the D3DX support libraries, and can also pro-
vide a physical separation between our own type definitions and those of
external libraries.

Many game engines make use of specialized third-party libraries to
handle specific tasks such as managing 3D audio playback or physical
simulations. To accommodate this, it is necessary to take steps to ensure
that the engine code base does not clash with external source code or
support libraries. The simplest approach is to wrap the entire engine code
base in a namespace that will shield any class, type, or function declara-
tions from the outside world. This might be a source of frustration for
some programmers who are not used to namespaces, but using a name-
space is far superior to appending some prefix to each function and type
definition in the code to identify it.

Chapter4 GAIA Engine Overview 59

While it might seem tempting to skip the use of namespaces, and in-
stead name our engine functions with the prefix gaia, as in gaiaDrawBox()
and gaiaPrintText(), this type of redundant naming gets cumbersome
very quickly. To avoid any name collisions between the engine’s type de-
clarations and those of another author, the gaia prefix would be required
on every class, data type, or function declared.

Instead of using prefixes, a single namespace can be used to insulate
the entire engine code base. Each global function or class definition will
be declared inside this space. This effectively emulates the gaia prefix
while providing a few shortcuts that limit the amount it actually needs to
be explicitly stated. This is because all classes and functions declared
within the namespace gaia will naturally use that namespace by default,
relieving the programmer from having to explicitly type the namespace
on functions and types used within the class. In addition, the keyword
phrase using namespace gaia can be declared at the top of all engine
source code files to inform the compiler that the namespace gaia should
be assumed as the default namespace, again eliminating the need to ex-
plicitly type the prefix.

For the seasoned C++ programmer, this use of a namespace to insu-
late library code is nothing new. The Standard Template Library (STL)
does the same thing by wrapping all of its library templates in the name-
space std. And if it's good enough for the STL, a set of thoroughly defined
utility classes used by millions of programmers, it’s good enough for us.
For the remainder of this book, we’ll assume the namespace gaia is in
use. To make the code samples a little easier to read, the namespace
might be left out of the listings that appear in the text.

THE APPLICATION HOST

To add our own layer of program control, we will be building our own
class on top of the foundation provided by the Direct3D sample frame-
work. The sample framework class CD3DApplication will serve as our
base, allowing us to use it for initialization and enumeration of the video
devices, display mode setup, and handling common window messages.
Above this class, we will add our own resource and device managers,
control the execution of our program, and render our world. We do this
through the creation of our application hosting class, cGameHost.

The cGameHost class serves many purposes. First and foremost, it is the
central object of our entire engine. We will employ a managerial ap-
proach to our class design, creating specific single-instance classes to
manage key aspects of our engine. Examples of these manager classes

60

Real-Time 3D Terrain Engines Using C++ and DirectX 9

would handle such things as the render pipeline, user input, and so forth.
These self-contained managers will require a common thread, a means
for the program to access and communicate with them. The cGameHost
class will serve as a container for all manager objects and provide access
methods to retrieve their interfaces.

To build this class, we will use the singleton declaration method to
ensure that a single cGameHost class is created, and that the application
has global access to its interface. The singleton base class is detailed in Ap-
pendix A, “Gaia Utility Classes.” In the interest of flexibility, the singleton
method also allows for class inheritance. If custom game-hosting func-
tionality is needed, a specific game host object can be derived from
cGameHost to perform the additional actions. The most beneficial aspect of
the singleton declaration method is that from anywhere in the program,
including within the managers themselves, the cGameHost object will pro-
vide access to the management objects used by the engine.

In addition to providing a communication switchboard for the device
managers, the cGameHost class also serves as the core of the application.
This class represents the main program shell, where all interaction with
the host operating system is contained. In our case, this means that the
desktop window containing the game is held within the cGameHost object,
and all messages sent to the window are processed within this class. We
gain these facilities easily by deriving our class from the cD3DApplication
class provided by the Direct3D sample framework. However, deriving our
own class on top of this base allows us to take control of certain aspects of
the program.

To begin with, we will be handling the updating of our game world a
little differently than the DirectX samples do. The DirectX samples main-
tain a one-to-one relationship between the update of their world state
and the rendering of each frame. On each pass, the entire application
state is updated and a new frame is rendered. These update passes hap-
pen without any type of governance, so real-time values must be used
during each update to determine how much an object should move or
animate.

We take the more game-centric approach and divide time into dis-
creet steps which we call ticks. Each tick represents a fixed interval of
time. Therefore, each time we execute a tick, we know exactly how
much time has passed. This fixed time step approach frees us from need-
ing to monitor a real-time clock and perform more complicated variable-
time updates on our world state.

The immediate criticism of the fixed-time approach is that it does not
allow animation to run as smoothly as the unbridled variable-time ap-
proach. This is a valid concern. If we only update our game world at a

Chapter4 GAIAEngine Overview 61

certain time interval, then our animations will never appear smoother
than the time interval will allow. However, the fixed-time method does
not dictate that only one time step must be used. We leave ourselves
open to the prospect of having more than one type of update tick.

For example, we could update game state at one frequency and up-
date animation at a higher frequency. This allows us to simplify any state
machines or logic operations we must perform to update our game world,
while still providing smooth, detailed animation. For our sample engine,
we limit our ticks to 1/30%™ of a second each, or about 33 milliseconds
each. We also update animation at the same rate, but leave the door open
to move to higher animation rates if we so choose.

Our time-step approach is handled in our overload of the cD3D
Application member function FrameMove, shown in Listing 4.1. We also
add a few thread management functions to co-exist peacefully with other
Windows applications. Our application will be idle until a full tick’s worth
of real time has passed. When this amount of time has elapsed, we update
our game state and then go back to being idle. If we assume our update
does not consume more than a tick of real time processing the world, our
application will spend a fair amount of time idle. By decreasing our
thread priority and relinquishing the remainder of our time slice after ex-
ecuting each tick, we allow other threads the chance to update.

Without these thread checks in place, our application would con-
sume 100 percent of the available CPU all the time. This can cause other
threads that are waiting to execute to pile up, and puts an unnecessary
burden on the operating system to keep all threads running smoothly.
Adding these measures helps facilitate efficiency thread management by
the operating system and ensures that we will get the execution priority
we desire at the time we need it most.

LISTING4.1 Time and thread priority management within the cGameHos t class.

HRESULT cGameHost: :FrameMove()

{
static HANDLE hThread = GetCurrentThread();

// add the real time elapsed to our
// internal delay counter
m_updateTimeCount += m_fElapsedTime;

// is there an update ready to happen?
if (m_updateTimeCount > k_millisecondsPerTick)

{

// bump up our priority for thread activation

62 Real-Time 3D Terrain Engines Using C++ and DirectX 9

// while we are executing a game tick
SetThreadPriority(
hThread,
THREAD_PRIORITY_TIME_CRITICAL);

// perform the proper number of updates
while(m_updateTimeCount > k_millisecondsPerTick)

{

HRESULT result;

// update the scene

if(FAILED(result = updateScene()))

return result;

// subtract the time interval

/! emulated with each tick

m_updateTimeCount -= k_millisecondsPerTick;
}

// return to normal priority
// while we wait for the next tick
SetThreadPriority(

hThread,

THREAD_PRIORITY_NORMAL) ;

// we know our next logic execution will not occur
// until a full tick worth of time has elapsed,

// so we forfeit the rest of the time slice

// allotted to us by Windows and let any waiting

// threads execute. This prevents us from consuming
// 100% of the CPU waiting for time to pass.
Sleep(0);

return S_O0K;

One of the key management objects contained by cGameHost is the re-
source manager. Our application host will also use its own resource man-
agement system for the device objects we will be creating. The root of this
resource system, the cResourcePoolManager class, is built from a set of data
pool support classes provided as part of our engine. Before we discuss the
resource objects themselves, we take a moment to understand the data
pools that are being used and the resource management scheme being
put in place.

Chapter4 GAIAEngine Overview 63

CREATING POOLS OF DATA

One of the keys to efficient memory management is to limit the total
number of allocations made. The simplest way to do so is to group similar
objects together into larger allocations. We’ll call these data pools, and use
them as containers for multiple objects. The contained objects are consid-
ered members of the pool, and are provided to callers on demand
through the use of handles. Members can be requested and released by
clients, growing the pool in fixed increments to accommodate more
members as needed.

This is where the code can get a little convoluted. We want these
pools to be somewhat type safe, so they are constructed as template
classes—using a specific data type to represent the members of the pool.

- However, it is also necessary to communicate with all pools using a com-
mon interface. When we later build the resource manager to maintain
pools of textures, vertices, and animation, communication with the vari-
ous data pools through a common interface will be vital to constructing
and destructing these resources. Therefore, while the data pools them-
selves are individual instantiations of a template class, they must also in-
herit from a common interface that external managers can use to
construct and release members.

While it would be perfectly reasonable to simply allocate a large array
of objects and reference them by their array index, this approach is woe-
fully inflexible. The size of the array must be known prior to requesting
the first member, and it cannot grow beyond that original allocation size,
thereby limiting the total number of objects that can be used within the
game. The rigid array provides optimal memory use, at the cost of limit-
ing the number of objects it can hold. This is an ideal approach to add to
an application when all object counts are known and can indeed be pre-
allocated, but for our development cycle, we want a bit more flexibility.

The solution used within the engine to house the data pools, the
cDataPool template class, does not actually contain an array of member
objects. Instead, it contains a linked list of member object arrays, called
cPoalGroups, These groups contain a fixed number of member objects
each, and can be added or removed from the data pool as needed. This
creates a compromise between efficient memory use and flexible object
amounts. While the pool can grow as needed, it can only do so in prede-
fined chunks, each allocating a block of new member objects.

The greatest asset of this design is that it can be converted to a regu-
lar array without affecting the rest of the game. The nested tree of objects
created within the pool still creates a unique index for each member. If
the objects held inside the data pool tree were collapsed into a regular

64

Real-Time 3D Terrain Engines Using C++ and DirectX 9

array, these index values would remain unchanged. Figure 4.1 shows the
two data structures side-by-side, and compares the indexing methods to
show their similarity. This property of the data pool allows us to work
with it in its flexible, albeit less efficient form, knowing that we can later
replace it with an efficient, regular array allocation once our total mem-
ory needs are known. To the game, the index values used as handles to
the objects within the pool will remain unchanged.

member O
] — member 0
member 1
] — member 1
member 2
I — member 2
member 3
I member 3
member 4
1 member 4
1
memlber 5 - member 5
member 6 — member 6
r
member 7 — member 7

FIGURE4.1 Comparing the layout of the cDataPoo1l tree with a regular array.

Using either the tree storage method of cDataPool or a regular array
implies that individual memory locations will be reused. As members of
the pool are released, they become available for future callers to use.
Therefore, we need to track which members are available for use, so that
open slots within the pool can be located quickly as callers request them.
Within each cPoolGroup, a linked list of open members is maintained.
This is a simple array of word values equal to the number of members in
the group. Each value in this array denotes whether its corresponding
pool member is in use or available.

Bach member that is in use has a constant value (INVALID_INDEX)
stored in this array to signal it as being unavailable. Those members that
are available form a linked list of indexes. Each member contains the

G
ONTHECD

Chapter4 GAIAEngine Overview 65

index of the next open member in the list. Our cDataPool class stores the
index to the first open entry, and the last open entry contains its own
index to mark the end of the chain. We can return an open member to a
caller by simply returning the first open index and moving our internal
handle to the next open index (if any). As callers release members back
into the pool, we simply set our internal handle to point directly to the
returned member, which in turn is set to point to the former head of the
open list.

This process is far easier to understand when looking at the source
code. The complete source code for the data pool objects can be found in
the file source_code\core\data_pool.h on the accompanying CD-ROM.
The complete functionality of these objects is too involved to provide a
full listing within the book, but the functions responsible for adding and
removing members to the pool can be found in Listing 4.2. These exam-
ples show the basic operations necessary to locate an available cPoolGroup
within the pool, retrieve an open index from it, and build a cPoolHandle
for the caller containing the index value. To release the member, the
member is located within the pool and placed at the head of the open list
of nodes.

LISTING4.2 Functions responsible for adding and removing members from the data pool.

#define INVALID_INDEX Oxffff
#define CLEAR_HANDLE (h) (h=INVALID_INDEX)

/1
// retrieve a new handle from the pool,
// increasing the pool size if needed
/1
template <class T>
inline cPoolHandle cDataPool<T>::nextHandle()
{
debug_assert(isInitialized(),
“the cDataPool is not initialized”);

// find or create a group with an available slot
unsigned groupNumber=0;
cPoolGroup<T>* openGroup =

findOpenGroup (&groupNumber) ;

// find the first open slot within the group
int index = openGroup->nextMember();
--m_totalOpen;

66 Real-Time 3D Terrain Engines Using C++ and DirectX 9

// build a handle to return
return buildHandle (groupNumber, index);

}

/!
// return a member to the pool
/!
template <class T>
inline void cDataPool<T>::release(cPoolHandle* pHandle)
{
debug_assert(isInitialized(),
“the cDataPool is not initialized”);
debug_assert (pHandle,
“A valid handle must be provided”);

if (isHandleValid(*pHandle))
{
debug_assert(m_groupList.size(),
“The cDataPool has not been properly created”);

// dissect the handle into it’s

// group and index values

int groupIndex = getGroupNumber(*pHandle);
int itemIndex = getItemIndex({*pHandle);

cPoolGroup<T>* group = getGroup{groupIndex);

// tell the group to release the member
group->release(itemIndex);

// clear the caller’s handle
CLEAR_HANDLE (*pHandle);

/! try and see if we can remove the last group
cPoolGroup<T>* pGroup=m_groupList.back();
if (pGroup->totalOpen() == m_groupCount)
{
pGroup->destroy();
delete pGroup;
m_grouplList.pop_back();
}

++m_totalOpen;

Chapter4 GAIAEngine Overview

template <class T>
inline cPoolGroup<T>*
cDataPool<T>: :findOpenGroup (unsigned* groupNumber)

{

// find and return the first group with an open slot
*groupNumber = 0;
for (MemberGroupList::iterator iter =
m_groupList.begin();
iter != m_groupList.end();
++iter)

cPoolGroup<T>* pGroup = *iter;
if (pGroup->totalOpen())
{
// an open slot has been found
return(pGroup);

}

++(*groupNumber) ;

// there are no open slots,

// so we need to add a new cPoolGroup

// before we make a new group, make sure

// we have not reached our max

// of MAX_UINT16 members

debug_assert(m_groupList.size()*(m_groupCount+1)
< (uint16)MAX_UINT16,
“the cDataPool is full!!!!l”);

// create the new group
return(addGroup());

template <class T>
inline cPoolGroup<T>* cDataPool<T>::addGroup()

{

// append a new group to the list to start things off
cPoolGroup<T>* pNewGroup =

new cPoolGroup<T>(m_groupCount);
m_groupList.insert(m_groupList.end(), pNewGroup);

// gain access to the new group and innitialize it
cPoolGroup<T>* pGroup = m_groupList.back();
pGroup->create();

67

68 Real-Time 3D Terrain Engines Using C++ and DirectX 9

/! increment our internal counters
m_totalMembers += m_groupCount;
m_totalOpen += m_groupCount;

// return the new group pointer
return(pGroup);

template <class T>
inline uint16 cPoolGroup<T>::nextMember ()
{
debug_assert(m_memberList && m_nextOpenList,
“Group has not been created”);
debug_assert(m_totalOpen, “no open slots”);

// return the first member of our
// open list, and move our internal
// handle to the next member

uint16 slot = m_firstOpen;
m_firstOpen m_nextOpenList[slot];
--m_totalOpen;

debug_assert(m_firstOpen != INVALID_ INDEX,
“Invalid Open Index”);

debug_assert(isOpen(slot), “invalid index”);

// signal this member as being is use
m_nextOpenList[slot] = INVALID_INDEX;

return(slot);

MANAGING SHARED DATA RESOURCES

The engine contains several varieties of shared resources. These resources
represent data that multiple game objects will access and share. Examples
include textures, vertex buffers, index buffers, and render methods. In
fact, many of the shared resources are dependent on video hardware, as
they might use hardware-resident memory for a portion of their storage.
Managers of these devices will need access to all dependent resources.
For example, the display manager will need access to all textures, vertex
and index buffers so it can handle cases where the interface to the video
device is lost and regained.

Chapter4 GAIAEngine Overview 69

This requires a few key classes. First, we define a base class for all
shared resources, cResourcePoolltem, which provides a common interface
that external callers can use. This includes basic interface functions to
create and destroy the resource, enable and disable it, and stream it to
and from files on disk. These member functions are provided as pure vir-
tual functions within the base class, forcing all classes derived from cRe-
sourcePoolItem to provide the actual implementation for these members
based on the actual data held. This virtual interface allows an external
caller such as a device manager to influence a set of cResourcePoolItem-
based objects without knowing the specific data type they represent.

With the same idea in mind, we also add a class called cResourcePool.
This class is an extension of the cDataPool class, designed to hold
cResourcePoolItem-based objects and provide additional methods to oper-
ate on these resources. Like the cResourcePoolItem class, cResourcePool
employs a common base interface that callers can use. Given that all
cResourcePoolItem objects also contain a standard set of interface meth-
ods, the cResourcePool adds member functions to iterate through all the
members of the pool and pass data to these functions. For external
callers, this provides bulk processing of shared resource types. The man-
ager of the display card, for example, can use this type of interface to
quickly enable or disable all texture objects within a cResourcePool.

Shared resources are often identified by a text string. With textures,
for example, this string might be the actual path name of the source
image on disk. In addition to providing the bulk processing operations,
cResourcePool also stores a lookup table of these resource name strings.
This provides callers with a method to search for shared resource objects
by name. The map container class of the Standard Template Library (STL)
is used to build this phonebook of resource names and provide acceler-
ated searching methods to locate individual members of the pool.

Finally, the cResourcePoolManager singleton class provides the central
repository for all shared resource pools. Individual cResourcePool objects
can be created and registered with the cResourcePoolManager class, along
with index values identifying the resource type held within the pool and
the family to which it belongs. These index values are held in global enu-
merations found within the cResourcePoolManager header file. One enu-
meration identifies all possible resource families (audio, video, etc.).
Additional enumerations identify the individual resource types held
within each family.

// resource families
enum RESOURCE_FAMILY

{

70 Real-Time 3D Terrain Engines Using C++ and DirectX 9

ONTHECD

k_nVideoResource=0,
k_nAudioResource,
k_nGameResource,

/l...etc

k_nTotalResourceFamilies
};

// members of the video family..
enum VIDEO_RESOURCES

{
k_nTextureResource=0,
k_nVBufferResource,
k_nIBufferResource,
k_nRenderResource,

/1...etc

k_nTotalVideoResources
};

The combined family and type indexes are held as 16 bits each inside
a single 32-bit value. This value, called a cResourceCode, is used to
uniquely identify all classes of resource objects held within the manager.
As new resource pools are created, they register themselves with the
manager, providing a cResourceCode to identify themselves. External
callers can then gain access to the cResourcePool interfaces by requesting
them from the manager using the proper cResourceCode.

The functionality of the resource classes will become more apparent
as we build the actual engine resources and the managers that use them.
For now, refer to the resource-related source code files on the accompa-
nying CD-ROM to further explore their functionality. The resource
source files are listed at the top of this chapter. Listing 4.3 shows an ex-
ample of how these resource objects can be created and used.

LISTING4.3 Example code showing the use of resource-related dasses.

// imagine a texture resource class
class cTexture : public cResourcePoollItem

{

b

Chapter4 GAIA Engine Overview

// and a resource pool used to hold them
typedef cResourcePool<cTexture> cTexturePool;

11

// the following code shows an
// example of how they might be used

1

void resource_setup()

{

// create a pool for textures
cTexturePool* myTexturePool = new cTexturePool;

// and register it with the resource

// manager singleton along with a

// family and resource type value

ResourceManager.registerResourcePool(
cResourceCode (k_nvVideoResource,
k_nTextureResource),
cResourcePoolInterface*) myTexturePool);

// now we can create a few sample textures
myTexturePool.createResource(“texture 0”);
myTexturePool.createResource(“texture 17);
myTexturePool.createResource(“texture 2”);

void resource_cleanup()

{

// tell the resource manager to destroy

// all video display resources

ResourceManager.destroyResourceFamily (
k_nvideoResource);

// unregister the texture resource pool

cResourcePoolInterface* pTexturePool =
ResourceManager.unregisterResourcePool{

cResourceCode {k_nVideoResource,
k_nTextureResource));

// and destroy it
delete pTexturePool;

void resource_sample

71

72 Real-Time 3D Terrain Engines Using C++ and DirectX 9

{
resource_setup ();
// find a resource given its code and name
cTexture* myTexture = ResourceManager.findResource (
cResourceCode (k_nVideoResource,
k_nTextureResource}),
“texture 0”
// do something with the resource
if (myTexture)
{
myTexture->restoreResource(};
/! .. etc
}
resource_cleanup ();
}
THE RESOURCE BASE CLASS

All engine resource objects are derived from the base class cResource
PoolItem. This class provides a common set of functions used by the cRe-
sourcePoolManager classes to create and destroy the resources, and save
and load them from the hard drive. cResourcePoolItem objects also main-
tain a core set of data for each resource object, including the resource
code that identifies the resource type, an interface to the resource’s man-
ager, and a cPoolHandle index for the resource. A bit field of flags is also
maintained, recording the current state of the resource object.

The cResourcePoolltem provides a set of common member functions
for retrieving the resource’s name, querying the state of the resource, and
retrieving the resource’s pool handle. The most important member func-
tions, however, are a set of pure virtual functions used to maintain the
resource itself. Engine resources derived from the cResourcePoolItem base
class are responsible for providing instantiations of these pure virtual in-
terface functions defined by cResourcePoolItem. These functions create
the interface used by the manager objects to manipulate the resource.
Listing 4.4 shows the member functions.

Chapter4 GAIAEngine Overview 73

LISTING4.4 The cResourcePoolItem base class virtual interface functions.

// innitialize the resource (called once)
virtual bool createResource()=0;

// destroy the resource
virtual bool destroyResource()=0;

// purge the resource from volatile memory
virtual bool disableResource()=0;

/] restore the resource to volatile memory
virtual bool restoreResource()=0;

// load the resource from a file
// (or NULL to use the resource name)
virtual bool loadResource(const tchar* filename=0)=0;

/1 save the resource to a file
/1 (or NULL to use the resource name)
virtual bool saveResource(const tchar* filename=0)=0;

With this simple set of interface methods, a manager can fully main-
tain a set of resource objects. Most notably, the interface functions
disableResource and restoreResource allow the manager to purge or re-
store the resource to volatile memory. An example of this would be tex-
tures residing in video card memory. If the video device interface is lost,
the resource manager can be notified to disable all of the dependent re-
sources. When the video device is restored, these child resources can eas-
ily be restored by calling the appropriate member function on each.

With D3DX, we have the luxury of using the built-in resource man-
ager provided by Microsoft. For most of our video-dependent resources,
we will take advantage of this automated management for restoring
video-resident resources after a temporary loss of the device. Setting up
resources in this manner requires the simple addition of the D3DPOOL_
MANAGED flag during creation of Direct3D resources that support auto-
mated management. We also benefit from the automated memory man-
agement this flag provides, ensuring that textures are uploaded and
removed from video memory as necessary when memory space is
limited.

This does not apply to dynamic resources, such as textures or geome-
try we might need to recalculate often. These resources are better off
being hand-managed by us rather than Direct3D, since we understand
when and how they will be replaced with new data. Our resource inter-

74 Real-Time 3D Terrain Engines Using C++ and DirectX 9

face affords us the opportunity to use both methods, depending on how
we choose to overload the virtual functions for each resource type we de-
fine.

TEXTURE RESOURCES AND SURFACE MATERIALS

Our simplest resource is the cTexture object. This class is essentially a
wrapper object to contain an IDirect3DTexture9 object in a format com-
patible with our resource management scheme. We mention the class
here simply because we will be using it quite often while rendering mod-
els. Apart from our management wrapper, the cTexture class also con-
tains functions to load texture files from disk using the methods provided
by the D3DX library.

Surface materials, however, are our own creation and need a bit of
explaining. D3DX suffers from a backward-compatibility fetish that still
standardizes on a single texture per surface material. This is evidenced by
the primary structure used to store these objects, D3DXMATERIAL, which al-
lows for only a single texture to be specified. Years ago, this would have
been adequate, but for current top-end video hardware it is horribly out-
dated.

For our rendering needs, we provide an updated surface material
class, csurfaceMaterial, which contains up to 16 textures in addition to
the standard diffuse, secular, and emissive lighting hues. Although 16
textures might seem like overkill for today’s video cards that can still only
use four to eight textures per pass, providing this extra space affords us
the space to supply textures for multiple render passes within the same
surface material.

For example, we might create a surface material that is designed to
render in two passes, with each pass using four unique textures. The
eight textures fit well within our limits, and provide unique texture in-
dices for our HLSL shaders to use. We could also use the storage space to
store multiple versions of the surface material, like summer and winter
versions of each texture. Shaders could be written with initialization code
that chooses the proper set to use. With all these possibilities, perhaps
even a 16-texture limit is too limiting!

cSurfaceMaterials also contain a set of bit flags, one for each texture
slot. These 16 flags signify whether a texture has been loaded into the
corresponding slot. As we will see in a moment, this bit field allows us to
validate surface materials with the render methods that will use them.

Chapter4 GAIA Engine Overview 75

RENDER METHOD RESOURCES

The cEffectFile class is our container for the ID3DXEffect object. In
addition to providing our usual set of resource management and file I/0
functions, cEffectFile parses the compiled effect for variables and
constants the engine knows how to set. As we discussed in Chapter 2,
“Fundamental 3D Objects,” Direct3D effect files can contain variables in
the global scope with annotations or semantics that can be sought out by
the application. The application can then set these variables using the in-
terface functions provided by ID3DXEffect by way of its base class
ID3DXEffectBase.

These functions, described within the documentation of the DirectX
SDK, accept either a string literal or a handle to identify the variable
being set. Accessing effect variables by handle is far more efficient be-
cause it does not involve the costly string comparisons associated with
searching by variable name. The cEffectFile class takes advantage of this
by pre-parsing the effect file at the time it is loaded to build a list of han-
dles to known variable types. Table 4.1 lists some of the variables recog-
nized by the cEffectFile class.

TABLE4.1 Some of the User-Defined Variables Recognized by the cEffectFile Class

SEMANTIC DATATYPE DESCRIPTION

World Matrix The object-to-world transform matrix
View Matrix The world-to-view transform matrix
Projection Matrix The view-to-screen transform matrix
WorldView Matrix World * View

ViewProjection Matrix View * Projection
WorldViewProjection Matrix World * View * Projection
WorldMatrixArray Matrix An array of world matrices
MaterialAmbient Color The ambient material color
MaterialDiffuse Color The diffuse material color
MaterialEmissive Color The emissive material color
MaterialSpecular Color The specular material color
MaterialPower Float The specular material power
CurNumBones Int The number of bone influences used per vertex

for skeletal animation

<name>X Texture A Texture object having some name followed by
a number between 0 and 16; e.g., Tex0,
Texture7, etc.

76

Real-Time 3D Terrain Engines Using C++ and DirectX 9

Pre-parsing these semantics for handles also allows us to set some bit
fields internally to identify which variables are present within an effect.
For example, we set a bit for each numbered texture slot found within
the effect file. By comparing these texture flag bits against those of a
cSurfaceMaterial resource using a logical AND operation, we can quickly
validate surface materials to determine if they contain the proper number
of textures required by a given render method.

The parent resource of the cEffectFile object is the cRenderMethod.
Our final engine will render the scene in multiple, distinct stages. Two
examples of these stages would include lighting and the application of
bump maps. To render the scene, we allow objects to contain multiple ef-
fect files—one for each stage of the render process. The cRenderMethod ob-
ject is used to store these cEffectFiles. cRenderMethod is nothing more
than a collection of links to cEffectFile object files, one for each stage of
the render process. cRenderMethod also has the ability to store a unique
cSurfaceMaterial for each stage, allowing it to represent an entire ren-
dering process.

For now, we’ll simplify things by using a single cEffectFile object
per model. This will allow us to get our engine up and running quickly
without getting bogged down in bump maps and other render effects. We
will revisit this subject in the third part of the book, when we begin using
multiple shaders per object for greater effect. For now, even though our
models will contain a cRenderMethod, the set will contain only one cEf-
fectFile object in the “default” slot.

INDEX AND VERTEX BUFFERS

Index and vertex buffer resources are used frequently in the example en-
gine, and are useful as stand-alone resources. For a majority of our en-
gine data, the complete model resource we cover in a moment suits our
basic needs, reserving index and vertex buffers for those cases where a
traditional model does not apply. Index and vertex buffers are especially
useful for dynamic data, which must be handled with care when using
device-resident resources such as these. Using dynamic vertex and index
buffers allows us to build geometry on-the-fly, or animate existing geom-
etry on the CPU. We will use both methods as we construct the terrain
engine.

To clarify, we use the term dynamic to mean completely replaced. Lock-
ing a vertex or index buffer to change a few random values yields stag-
geringly poor performance on most video cards. We will therefore not
support this action within our interface for these resources. Within our

Chapter4 GAIA Engine Overview 77

engine, we completely replace the contents of dynamic buffers each time
they are updated. This allows the driver to maintain a one-way path for
dynamic data. Once data has been delivered to the video card; no attempt
is ever made to read it back into system memory to update a few specific
values.

The class objects cvertexBuffer and cIndexBuffer provide the basic
operations we require for our buffers. These objects house both our regu-
lar and dynamic buffers. To support dynamic (read “replaced”) buffer data,
we employ a method endorsed by NVIDIA and Microsoft as the best
means to update dynamic data.

The method uses an oversized buffer to hold the dynamic data. For
example, if your dynamic data consisted of 10 vertices, you would create
a dynamic buffer large enough to hold 100. Of this larger space, you con-
tinue to use only 10 vertices at a time. In the first frame, you use vertices
0 through 9. Indexes 10 through 19 are used in the second frame, and so
on. When you run out of room in the buffer, the entire contents of the
buffer are discarded and the process starts over at vertex 0. This sliding
window scheme is considered the friendliest method to use because it re-
sults in the least number of Direct Memory Access (DMA) operations
being interrupted. Listing 4.5 shows the algorithm pseudo code, based on
the method outlined in the Microsoft DirectX 9 Developer FAQ [D9Faq].

LISTING4.5 The recommended method for updating dynamic index or vertex buffers.

Create a DirectX buffer object (vertex or index)
using the D3DUSAGE_DYNAMIC and D3DUSAGE_WRITEONLY
usage flags and the D3DPOOL_DEFAULT pool flag.
This buffer should be larger than the size

of the data you intend to use by at least 2x.

// init an index value
I =0;

for each frame
{
// Given a buffer size of M
/] and a desired amount of new data N...
if (I+N < M)
{
I +=N;
Lock the buffer using the D3DLOCK_NOOVERWRITE flag.
Write N units of data starting at index I
Unlock the buffer

78 Real-Time 3D Terrain Engines Using C++ and DirectX 9

MODEL RESOURCES

// This tells Direct3D and the driver that

// you will be adding new data and won’t be

// modifying any data that you previously wrote.
/| Therefore, if a DMA operation was in progress,
// it isn’t interrupted.

Lock the buffer using the D3DLOCK_DISCARD flag
Write N units of data starting at index I
Unlock the buffer

// This tells Direct3D and the driver that

// you are resetting the buffer contents.

// All previous data is flagged as disposable.

// If a DMA operation in progress for the old data,
// the driver is free to supply the caller with

// a completely new buffer and discard

// the old one at its leisure

render the frame using N units of data,
beginning at index I

The cModelResource class is perhaps the most important resource object
we will use; it is certainly the resource class we will interface with the
most often. This resource class is a container for a complete
D3DXFRAME-based hierarchy tree. Because multiple nodes can be con-
tained within these objects, cModelResource can actually represent more
than one physical object within the game. For example, a human gladia-
tor character might contain a complete skeleton of animated nodes,
skinned meshes for flesh and clothing, and individual static models for
each weapon or piece of armor. Each mesh in turn maintains links to
cRenderMethods and cSurfaceMaterial objects, making the cModelResource
into a representation for an entire entity within our engine, not just a spe-
cific piece of geometry.

As mentioned previously, we perform this storage feat using a
D3DXFRAME hierarchy. These objects were described in Chapter 2,
“Fundamental 3D Obijects,” as the ideal storage method for skeletal ani-

Chapter4 GAIAEngine Overview 79

mation and skinned meshes. A great feature of the D3DX implementa-
tion of these structures is that they are user-extendable. By deriving our
own structures from D3DXFRAME and D3DXMESHCONTAINER, we
can add our own platform-specific data on top of the data provided in the
base classes.

This is important, because it allows us to hook in links to our custom
resources, cEffectFile and cSurfaceMaterial. This transforms the simple
tree of single-texture-mapped meshes provided by D3DX into an HLSL
shaded, multitextured database. Using these extended classes requires
the creation of a D3DX interface for managing nodes within the frame hi-
erarchy. However, the first step is declaring our new data types. Listing
4.6 shows our extensions to D3DXFRAME and D3DXMESHCONTAINER.

LISTING4.6 The model hierarchy dasses derived from D3DXFRAME and D3DXMESHCONTAINER.

// Name: struct D3DXFRAME_DERIVED
// Desc: Structure derived from D3DXFRAME

/1 so we can add some app-specific

/1 info that will be stored with

/1 each frame

R R

struct D3DXFRAME_DERIVED:
public D3DXFRAME

{

uint16 framelndex;

uint16 parentIndex;
};
R R E R R R

// Name: struct D3DXMESHCONTAINER_DERIVED
// Desc: Structure derived from D3DXMESHCONTAINER

/1 so we can add some app-specific
/1 info that will be stored with each mesh
e

struct D3DXMESHCONTAINER_DERIVED:
public D3DXMESHCONTAINER

{
// SkinMesh info
D3DXMESHDATA RenderMeshData;
uint32 NumAttributeGroups;
LPD3DXATTRIBUTERANGE pAttributeTable;
DWORD NumBoneInfluences;

uints8* pBoneIndexList;

80

Real-Time 3D Terrain Engines Using C++ and DirectX 9

LPD3DXBUFFER pBoneCombinationBuf;
uint32 NumBoneMatrices;
cSIMDMatrix* pBoneOffsetMatrices;
cRenderMethod** ppRenderMethods;

b

Our additions to the D3DXFRAME base class are minimal. The
D3DXFRAME_DERIVED objects used to build the tree are allocated into a
fixed array. Therefore, even though we use a tree structure to use the
data, we can still identify each node of the tree using its unique index in
the linear array. We can do this because we are able to assume our
D3DXFRAME_DERIVED trees to not dynamically change size or order.
One a hierarchy is loaded, it remains in the same configuration for the re-
mainder of its life.

To maintain more family information than the base D3DXFRAME
structure provides, we can use index values into the array they are stored
within to identify any potential parent and root objects. The frameIndex is
the root node of the entire tree. The parentIndex refers to the immediate
parent of the node. A value of -1 (0xffff for word values) is used to signify
unused index values.

Why not use pointers? This data is intended as a reference object.
Multiple instances of this model can be placed in the world, each with its
own set of D3DXFRAME_DERIVED structures. These unique structures
would contain the transform matrices for each particular instance of the
frame nodes. By storing our family information as index values rather
than pointers, it becomes easier to create new instances of this model by
simply allocating a new array of frame objects and copying the data.
There are no fix-ups to apply, since the indices are all relative from the
root of the array used to hold the data.

The D3DXMESHCONTAINER_DERIVED structure is a little more in-
volved. On top of the D3DXMESHCONTAINER base class, we add all the
data that is unique to our engine. This includes a list of cRenderMethods
and cSurfaceMaterials used by the mesh, skinning information for the
mesh, and the mesh itself. We store our own D3DMESHDATA structure
apart from the one contained in the base class to maintain a separation
between the system memory version of the model and the one optimized
and loaded into video memory for our render method to use.

In addition to allowing us to extend the base classes, the D3DX func-
tions used to provide file I/O for the frame tree can also be extended to
include our custom data. This creates an interface with which we can ex-
tend the original Direct3D X file format to suit our needs. This requires us
to build three key interface classes: one to manage the allocation and de-

Chapter4 GAIAEngine Overview 81

struction of our data structures, one to manage the saving of these struc-
tures within the X file, and one to load the data from the x file.

These three interfaces are provided by the D3DX classes ID3DXAllo-
cateHierarchy, ID3DXLoadUserData, and ID3DXSaveUserData. To add
our user data, we simply derive our own classes from the interfaces and
provide the functionality behind each pure virtual member function de-
fined in the base class. The d3dx_frame manager source code files located
on the accompanying CD-ROM show these functions at work. These files

ONTHED

show the allocation, cleanup, and file I/O routines in better detail than
we could hope to provide within the book text.
SCENE NODES AND OBJECTS

Two virtual base classes within the engine serve as the basis for almost
every item in our world: cSceneNode and cSceneObject. A cSceneNode de-
fines a specific coordinate system in the 3D environment. These nodes can
be linked together in a parent-child hierarchy to create an entire scene
graph for the environment. All objects within our scene are ultimately de-
rived from the cSceneNode base class, including the cSceneObject.

While the cSceneNode class maintains a transformation matrix and
parent-child link information to define the overall scene graph, the
cSceneNode class does not contain any volumetric data. This is where the
cSceneObject becomes useful. Based on the cSceneNode, cSceneObject
adds a local and world-space bounding box to define a volume of space
around each node. Whether the cSceneObject represents a game model
or a portion of our terrain, this bounding box will provide a rough esti-
mate of the space occupied by the underlying geometry.

Having a base class that contains the matrix transformation and axis-
aligned bounding box for an object provides us with a consistent interface
upon which any game-specific item can be built. Whether it is a patch of
grass, a tree, or the sun, all objects will maintain a common set of proper-
ties provided by the cSceneObject class. In Chapter 5, “World Manage-
ment,” we will exploit this foundation class further as we construct a
quadtree to manage the spatial relationship between cSceneObject-
derived classes. cSceneObject is also used as the basis for our render
pipeline, providing a common interface that we can use to process objects
during each stage of rendering.

82 Real-Time 3D Terrain Engines Using C++ and DirectX 9

THE RENDER QUEUE

One of the most important aspects of maintaining a render pipeline such
as ours is to control the number of costly state changes requested by the
program. A state change is anything that instructs the video card to alter
its processing of our models and textures. These time-consuming state
changes include activating vertex and pixel shaders, as well as changing
D3D render states and texture samplers. Using effect files through D3DX
makes this problem a little more difficult, since effect files can contain a
myriad of render state changes. These render states might be set redun-
dantly in multiple effect files, causing the same render state values to be
set over and over again.

We place a little faith in the video card driver to manage these re-
dundant state changes, since their direct management is out of our con-
trol. However, we can take direct control over the activation of the
techniques within the effect files to ensure that the entire set of render
states, including the vertex and pixel shader, are not used more than
once in a given scene. Moreover, we can extend our management to in-
clude models, vertex buffer, index buffer, and texture activation as well.
If we prioritize these state changes by cost, we can control the order in
which they are given to the video hardware for rendering.

This is done with a render queue, found within our code base as
cRenderQueue. This queue is little more than an execution list of objects
we want to render. Rather than render objects directly to the screen, we
submit them to the render queue. Once all of the objects are placed in the
queue, we can sort the queue entries in terms of cost and then render the
entire scene. The trick is devising a way to represent an entry within the
queue as a compact piece of data that is easily sorted.

The basic ingredients of rendering are geometry, material, and ren-
dering method. These three things, along with a few basic parameters
such as transformation matrices, are all that are required to display an ob-
ject. As luck would have it, we already have a concise representation for
each of these objects in the form of our resource objects cModelResource,
cSurfaceMaterial, and cEffectFile. In fact, our resource manager al-
ready assigns each of these objects a 16-bit index that represents their lo-
cation within an allocated pool of objects. Using these indices, we can
represent the basic members of a render queue entry as three-word
values.

Suppose we enforce an order to the word values. Knowing that acti-
vating an effect file (which consists of a vertex and pixel shader) is a very
costly operation, we place the index for the cEffectFile as the highest
word in our three-word set. Geometry changes are the next largest ex-

Chapter4 GAIAEngine Overview 83

pense, since they consist of index buffers and potentially multiple vertex
streams. With that in mind, we place the cModelResource index as the sec-
ond word value and round out the set with the cSurfaceMaterial index

as the lowest word.

This construction of the three-word values in terms of priority creates
a 48-bit sorting index for the render queue. If we sort these entries in
terms of their 48-bit values, we will ensure that all objects being rendered
with the same cEffectFile are grouped together in the list. Within each
of these groups, all objects using the same cModelResource geometry re-
sources are grouped together. Finally, all objects within a geometry group
using the same surface materials are grouped together. The ordered list
now represents a more efficient number of resource state changes re-
quired to render the entire scene.

The cRenderEntry code expands on this idea to represent each sub-
mission to the render queue as a 20-byte value. This is much larger than
our 48-bit example, but provides far more information with which we
can sort our rendering operations. cRenderEntry provides 12 bytes of data
used to sort the entry,. plus an additional 8 bytes containing a callback
pointer and user-defined parameter. This allows a caller to submit an
entry to the render queue and provide a callback function that will
be triggered when the actual rendering needs to take place. The
cRenderQueue collects all the entries, sorts them by priority, and then ren-
ders them one by one by triggering the callback functions provided.

The 12 bytes of data used to sort the cRenderEntry objects within the
queue contain the same basic information as our example: geometry,
material, and render method. The cRenderEntry expands on each of these
to include additional parameters that are needed to identify specific usage
of cach resourcc. Tor example, the rendering method is represented in
the queue entry as not only the word index of the cEffectFile resource,
but an additional parameter describing which pass of the effect is being
used. Armed with this data, we can sort our list by effect file, and by indi-
vidual passes within the effect file.

Looking over the cRenderQueue and cRenderEntry class definitions is
the best way to gain familiarity with the prioritized queue we will use for
our render pipeline. One highlight to note is the flags set to each callback
to perform the final rendering of each queue entry. As the render queue
processes the list, it keeps track of which resources are currently in use.
When it encounters a new resource in the list, the callback is sent with a
flag informing the user to activate the new resource. Listing 4.7 shows
highlights of the cRenderEntry and cRenderQueue classes. Following this,
Listing 4.8 shows how one of our objects, the cSceneModel, uses the ren-

84

Real-Time 3D Terrain Engines Using C++ and DirectX 9

der queue to submit itself for rendering, and then handles the callback to
perform the actual rasterization of the model at the proper time.

LISTING4.7 Class definitions and highlights of cRenderEntry and cRenderQueue.

/* cRenderEntry

A Render Entry is a 20 byte piece

of data used to represent

a desired render operation in the queue.
The top 12 bytes represent a numerical
value which allows us to sort these
objects into an optimal render order.

Render Entries are sorted in the
queue by the following data...

cPoolHandle hEffectFile;
uint8 renderPass;

uint8 renderParam :6;

uint8 modelType 12,
cPoolHandle hModel;

uint16 modelParamA;

uint16 modelParamB;
cPoolHandle hSurfaceMaterial;

modelType describes whether

the hModel, modelParamA and
modelParamB values contain
actual model data or raw

vertex and index buffer indices.
The modelType value itself

is taken from the eTypeFlags
enum in cRenderEntry.

// these flags are passed to the

// render callbacks to let the

// object know which of it’s render
// components need to be activated
enum eActivationFlagBits

{

Chapter4 GAIAEngine Overview

k_activateRenderMethod = 0,
k_activateRenderMethodPass,
k_activateRenderMethodParam,
k_activateModel,
k_activateModelParamA,
k_activateModelParamB,
k_activateSurfaceMaterial,

k_totalActivationFlags
b

class cRenderEntry

{
public:

// we turn on byte packing
to ensure a tight fit
#pragma pack(1)

/! FIELDS USED TO SORT ENTRY (12 bytes)
union
{
// this union allows us to sort our
// render parameters as 3 dword values
struct
{
uint32 sortValueA;
uint32 sortvalueB;
uint32 sortValueC;

};

struct

{
/! The following members map to
/1 sortvValueA (first 32 bits)
// (listed in reverse priority)

/! user-defined render parameter
// packed together with the

// model type (1 byte total)
uint8 modelType :2;

uint8 renderParam : 6;

// which render pass to use
uint8 renderPass;

// which effect file to use

85

86 Real-Time 3D Terrain Engines Using C++ and DirectX 9

cPoolHandle hEffectFile;

// The following members map to
// sortValueB (second 32 bits)
// (listed in reverse priority)

/1 secondary vertex buffer or model frame
uint16 modelParamA;

// primary vertex buffer or model index
cPoolHandle hModel;

// The following members map to
// sortValueC (third 32 bits)
// (listed in reverse priority)

/] the surface material used
cPoolHandle hSurfaceMaterial;
// index buffer or model subset
uint16 modelParamB;
b
};

// ADDITIONAL UNSORTED FIELDS (8 bytes)

cSceneNode* object;
uint32 userData;

// we can go back to default packing now
#pragma pack()

// these enum values are used to set
// the modelType value above. This
/] tells the queue if the model
// data represents a model resource
// or a set of vertex and index buffers
enum eTypeFlags
{
k_bufferEntry = 0,
k_modelEntry,

};

cRenderentry(){};
~cRenderentry () {};

/! clear the entry to default values

Chapter4 GAIA Engine Overview 87

void clear()

{
sortvValueA = 0;
sortvalueB = 0;
sortValueC = 0;
}

};

// cRenderkEntry sorting functor
// used within a QuickSort
// algorithm to sort the queue
typedef cRenderEntry* LPRenderEntry;
struct sort_less
{
bool operator()(
const LPRenderEntry& a,
const LPRenderEntry& b)const

if (a->sortvValueA
> b->sortvValueA)

return false;

}

else if (a->sortValueA
< b->sortValueA)

return true;

if (a->sortvValueB
> b->sortValueB)
return false;

}

else if (a->sortValueB
< b->sortValueB)

return true;
if (a->sortvValueC
> b->sortValueC)

return false;

88 Real-Time 3D Terrain Engines Using C++ and DirectX 9

else if (a->sortvValueC
< b->sortValueC)

return true;

return false;
¥
¥

void cRenderQueue::sortEntryList()

{
/1
// Perform a standard quick-sort using the
/! sort_less functor above
/1
profile_scope(cRenderQueue_sortEntryList);

/1] see “core\quick_sort.h” for
// implementation details
QuickSort(
m_entrylist,
m_activeEntries,
sort_less());

}
void cRenderQueue::reset()
{
m_activeEntries = 0;
}
/1

// This function is responsible for
// executing the render queue

/1

void cRenderQueue::execute()

{

profile_scope(cRenderQueue_execute);

if (m_activeEntries)
{
cDisplayManager& displayManager =
TheGameHost.displayManager();
LPDIRECT3DDEVICE9 d3dDevice =
TheGameHost.d3dDevice();

Chapter4 GAIA Engine Overview

// sort the entry list
sortEntryList();

// issue the callback to render
// the first item in the queue with all
// activation flags set
u32Flags activationFlags{Oxffffffff);
m_entryList[0]->object->renderCallback(
m_entryList[O0],
activationFlags);

// render any additional items,

// sending only the flags for resources

// which must be activated

for (int i=1; i<m_activeEntries; ++i)

{
cRenderEntry* currentEntry = m_entryList[i];
cRenderEntry* previouskEntry = m_entrylList[i-1];

activationFlags.value=0;

/1
/] check for effect changes
/1
if (previousEntry->hEffectFile
{= currentEntry->hEffectFile)

// end the last render method

cEffectFile* pLastMethod =
displayManager.effectFilePool().
getResource (previousentry->hEffectFile);

if (pLastMethod)

{
pLastMethod->end();
safe_release(pLastMethod);

SET_BIT(activationFlags,
k_activateRenderMethod);

SET_BIT(activationFlags,
k_activateRenderMethodPass);

SET_BIT(activationFlags,
k_activateRenderMethodParam) ;

}

else if (previousEntry->renderPass

89

90 Real-Time 3D Terrain Engines Using C++ and DirectX 9

!= currentEntry->renderPass)

SET_BIT(activationFlags,
k_activateRenderMethodPass);
SET_BIT(activationFlags,
k_activateRenderMethodParam);
}
else
{
if (previousEntry->renderParam
!= currentEntry->renderParam)
{
SET_BIT(activationFlags,
k_activateRenderMethodParam);

/1
// check for model changes
/1
if (previousEntry->hModel
!= currentEntry->hModel
[
previousEntry->modelType
!= currentEntry->modelType)

SET_BIT(activationFlags, k_activateModel);
SET_BIT(activationFlags, k_activateModelParamA);
SET_BIT(activationFlags, k_activateModelParamB);
}
else

{

if (previouskEntry->modelParamA
I= currentEntry->modelParamA)

SET_BIT(activationFlags, k_activateModelParamA);
}

if (previousEntry->modelParamB
!= currentEntry->modelParamB)

SET_BIT(activationFlags, k_activateModelParamB);

1

Chapter4 GAIA Engine Overview

/1 Check for surface material changes
/1
if (previousEntry->hSurfaceMaterial

!= currentEntry->hSurfaceMaterial)

{
SET_BIT(activationFlags, k_activateSurfaceMaterial);

/1
// issue the callback to render
/1
currentEntry->object->renderCallback (
currentEntry,
activationFlags);

// end the last render method
cRenderEntry* lastEntry =

m_entryList[m_activeEntries-1];

cEffectFile* pLastMethod =

DisplayManager.effectFilePool().
getResource((cPoolHandle)lastEntry->hEffectFile);

if (pLastMethod)

pLastMethod->end();
safe_release(pLastMethod);

// reset for the next frame
reset();

91

LISTING4.8 A sample pair of functions showing the use of cRenderEntry and cRenderQueue.

// a simplified version of the cSceneModel
// render function used to add the contained
// model to the render queue

void cSceneModel::render()

{

const D3DXMESHCONTAINER_DERIVED*
pMeshContainer = meshContainer();

if (pMeshContainer != NULL

92 Real-Time 3D Terrain Engines Using C++ and DirectX 9

&& pMeshContainer->ppRenderMethodList)

for (UINT iMaterial = 0;
iMaterial < pMeshContainer->NumMaterials;
iMaterial++)

cRenderMethod* pMethod =
pMeshContainer->ppRenderMethodList[iMaterial];

if (pMethod)
{
cEffectFile* pEffect =
pMethod->getEffect(
TheGameHost.currentRenderStage());
cSurfaceMaterial* pMaterial =
pMethod->getMaterial (
TheGameHost.currentRenderStage());

if (pEffect && pMaterial)
{

uint16 numPasses = pEffect->totalPasses();

for(uint16 iPass = 0;
iPass < numPasses;
iPass++)

cRenderEntry* pRenderEntry =
DisplayManager.openRenderQueue();

pRenderEntry->heEffectFile =
(uint8)pEffect->resourceHandle();
pRenderEntry->hSurfaceMaterial =
pMaterial->resourceHandle();
pRenderentry->detailLevel =
m_lod;
pRenderEntry->modelType =
cRenderEntry::k_modelEntry;
pRenderEntry->hModel =
m_pModelResource->resourceHandle();
pRenderEntry->modelParamA =
m_modelFramelIndex;
pRenderEntry->modelParamB =
iMaterial;
pRenderEntry->renderPass =
(uint8)iPass;

Chapter4 GAIAEngine Overview 93

pRenderEntry->object =
(cSceneNode*)this;

pRenderEntry->userData =
iMaterial;

DisplayManager.closeRenderQueue(
pRenderEntry);

// this function is called by the render queue
// to perform the actual rendering of the model.
void cSceneModel: :renderCallback(

cRenderentry* entry,

u32Flags activationfFlags)

LPDIRECT3DDEVICE9 d3dDevice =
TheGameHost.d3dDevice();

const D3DXMESHCONTAINER_DERIVED* pMeshContainer =
meshContainer();

bool skinModel=
pMeshContainer->pSkinInfo != NULL;

UINT iMaterial = entry->userData;
cRenderMethod* pMethod =
pMeshContainer->ppRenderMethodList[iMateriall;
cEffectFile* pEffect =
pMethod->getEffect(
TheGameHost.currentRenderStage());
cSurfaceMaterial* pMaterial =
pMethod->getMaterial(
TheGameHost.currentRenderStage());

if (peEffect && pMaterial)
{
// do we need to activate the render method?
if (TEST_BIT(
activationFlags,
k_activateRenderMethod))

{
pEffect->begin();

94 Real-Time 3D Terrain Engines Using C++ and DirectX 9

// do we need to activate the render pass?
if (TEST_BIT(
activationFlags,
k_activateRenderMethodPass)
|| TEST_BIT(
activationFlags,
k_activateRenderMethodParam)
|| TEST_BIT(
activationFlags,
k_activateRenderMethodLOD))

m_pModelResource->setLOD(m_lod);
if (skinModel)
{
int numBoneInfluences =
pMeshContainer->NumBoneInfluences-1;
pEffect->setParameter (
cEffectFile: :k_boneInfluenceCount,
&numBoneInfluences);
}

pEffect->activatePass(entry->renderPass);

}

// do we need to activate the surface material
if (TEST_BIT(
activationFlags,
k_activateSurfaceMaterial))

pEffect->applySurfaceMaterial (pMaterial);

const cCamera* pCamera =
TheGameHost.activeCamera();

D3DXMATRIX matWorldViewProj =
(D3DXMATRIX)worldMatrix() *
(D3DXMATRIX)pCamera->viewProjMatrix();

// set the view matrix
pEffect->setMatrix(
cEffectFile: :k_worldViewProjMatrix,
&matWorldViewProj);

Chapter4 GAIAEngine Overview 95

pEffect->setMatrix(
cEffectFile::k_worldMatrix,
&worldMatrix());

// draw the mesh subset

m_pModelResource->renderModelSubset (
entry->modelParamA,
entry->modelParamB);

THE MODEL EDITOR

et Also located on the accompanying CD-ROM is shader_edit_debug_exe.
ovtiee® This simple test of the resource system and file I/0 functions allows users
to load models from Direct3D X files, add textures and define render
methods, and then view the output in a sample window. Animation
playback is also provided, along with the ability to load and append new
animations to the file. Once edited, models can be saved back out as new
Gaia-extended X files, retaining file references to all the texture and
shader information supplied. This application also shows the application
of our engine to the Microsoft Foundation Class library (MFC), which is
useful for making these types of tools.

REFERENCES

[FAQ] Microsoft DirectX 9.0 Developer FAQ (available online at http://msdn.
microsoft.com/library/en-us/dndxgen/htmli/directx9devfaq.asp).

INTRODUCTION TO TERRAIN
SYSTEMS

move forward using our basic display engine and D3DX founda-

tion to explore terrain rendering methods. In this section, we will
cover the two main components of any good landscape engine: the
ground geometry and textures. These two elements create the backdrop
for our world, and the surface we will later populate with water, grass,
flowers, and trees.

Being the two most important aspects of the engine also means that
we have many potential methods to discuss. We will present each of the
most popular methods in detail, and discuss the implementation of each.
However, our demo engine will focus on a few key methods to use for
our next demo program.

We begin this part of the book by laying down a little more founda-
tion for our engine. We will discuss world management and the quadtree
approach to dividing space into more manageable subareas. This type of
spatial management structure is crucial to have in place before we can
begin devising our terrain geometry storage methods. It will also be a
valuable aid in reducing the number of objects we attempt to render, al-
lowing us to quickly find only those objects most likely to be visible on
screen.

The next three chapters deal with the ground itself. We begin in
Chapter 6, “Basic Terrain Geometry,” by discussing the input mechanism
for terrain information: the venerable height map. Methods are described
to create this data in paint packages or by using procedural, random

N ow that the introductory part of the book is behind us, we can

97

98

Real-Time 3D Terrain Engines Using C++ and DirectX 9

methods. With the data source defined, we can convert the height map to
actual vertex information and perform a brute-force rendering method to
see our data on screen.

The next two chapters, Chapter 7, “The ROAM Terrain System,” and
Chapter 8, “Tiled Geometry Techniques,” introduce terrain geometry
management. Now that our data is in vertex form, we find that such a
large set of vertices is unlikely to render with any great speed. To allevi-
ate this problem, we look at some popular management schemes that
provide level-of-detail (LOD) modes. By rendering more geometry close
to the camera, and less geometry in the distance, we can reduce the over-
all amount of data processed for rendering and create a more efficient
engine.

In Chapter 9, “Texturing Techniques,” we add texture maps to the
terrain geometry to create a reasonable landscape. As our first foray into
HLSL shader coding, this chapter will introduce the setup and application
of texture blending techniques along with simple lighting methods.
While far from eye-catching, this first pass at rendering will show our ter-
rain textured to represent real-world surfaces such as grass, rock, and
sand. The result is a barren, textured landscape with efficient LOD man-
agement; the perfect stage on which to begin the third and final section of
this book.

WORLD MANAGEMENT

100 Real-Time 3D Terrain Engines Using C++ and DirectX 9

efore we can start building our 3D terrain, we have one final chap-

ter of foundation-related issues with which to contend. Keep in

mind that our intent is to build a complete terrain engine as we ex-
plore these topics. To do so, we have some fundamental tasks to discuss
before our world can take shape.

First, we need to deal with the scale of the task before us. Planets are
big, and the most interesting sections are comprised of rolling hills or
mountainous regions. As you might expect, these areas are the most chal-
lenging and data intensive to represent in 3D. One of the key considera-
tions when working with such a large data set is how to ensure that the
engine can focus on the areas that need the most attention and neglect the
others. This is traditionally done with some type of space partitioning.

Partitioning space is a matter of dividing the world into sections, al-
lowing the engine to determine which sections need rendering and
which do not. The engine is also given the opportunity to decide how
much detail is required when rendering each section of the world, elevat-
ing the processing required for less important areas. The most efficient
methods store these sections in a nested tree structure of some kind, al-
lowing multiple sections to be discarded or classified with a single test.
Four our engine, we will discuss the quadtree technique and methods to
enhance it for even greater efficiency.

For the purposes of this book, we are focusing on a small section of
terrain to show our methods. Later, we will convert this small patch of
land into an island and surround it with water. The quadtree allows us to
determine which sections of the island are visible, but its potential scales
far above our limited environment. Using a quadtree (albeit of a larger
size) a terrain engine could manage many “islands” of terrain, using the
quadtree to determine which are within the vicinity of the camera. This
would allow a program to load this data dynamically from the hard drive
as the camera ventures into new areas. The result would be a seemingly
endless landscape, with only the necessary portions consuming precious
memory resources. Areas of the environment outside the camera view
could be purged from memory, awaiting the time when they are needed

again.

THE MOTIVATION BEHIND SCENE ORGANIZATION

The first step in any render pipeline is determining which objects need to
be rendered. This is our primary motivation behind partitioning the
space. Determining visibility is a simple matter of determining which ob-
jects are within the camera’s view, or frustum. The frustum is a six-sided

Chapter5 World Management 101

shape that describes the volume of space that can be seen by the camera.
Figure 5.1 shows a simple representation of a few world objects and a

sample camera frustum.

FIGURES.1 The planes of a 2D camera frustum. Objects 8 and C contain
points in the positive half-space of all planes, and are therefore inside
the frustum.

To determine if an object is visible, we need to determine if any part
of it lies inside the frustum. This can be done in a variety of ways. As-
suming the object can be summarized with some type of bounding shape,
such as a sphere or box, frustum testing becomes a series of six tests, one
for each side of the frustum.

Each side of the frustum is considered a plane in 3D space. Each
plane contains a normal vector pointing into the frustum. This normal
defines the positive half-space of the plane. Given these six planes, six
tests are performed with each object to see if any portion of the object ex-
ists in the positive half-space of each plane. If a portion of the shape is in
the positive half-space of all six planes, it lies inside the frustum and is
visible. Figure 5.1 shows a representation of this in 2D using a four-sided
frustum.

As you might expect, these tests are rather costly in terms of perfor-
mance. Even if we represented each object with a bounding box shape,
we would still have eight vertices to test per object (the box corners).
Multiply the vertex count by the frustum sides and you find a potential
for 48 plane half-space tests per object. This is far too many to be consid-
ered efficient for a fully populated landscape, which might contain thou-
sands of objects that must be tested for visibility each frame.

102

Real-Time 3D Terrain Engines Using C++ and DirectX 9

The task is greatly reduced by using a scene organization method.
Suppose we could break up the space into smaller areas, each represented
by a rectangular volume called a sector. As objects move about the world,
they move from sector to sector, and we keep track of which objects be-
long to each sector. When it comes time to determine which objects need
to be rendered, we simply determine which of these rectangular sectors
are visible. All objects contained within those sectors are thereby also
deemed visible and sent through the render pipeline.

What we gain in efficiency, we lose in precision. Not all of the objects
within a sector might actually be visible, since a portion of the sector itself
might lie outside the camera frustum. However, if we know that a given
sector rectangle straddles the edge of the frustum, we can go one step fur-
ther and test each object within the sector individually. By doing this, we
regain our precision while still reducing the overall number of tests per-
formed, since nodes that were either fully inside or fully outside the frus-
tum did not need any further testing. Figure 5.2 summarizes the
efficiency gained by using the sector approach.

O A O ® ®

FIGURE5.2 The efficiency gained using sector divisions. Without the sectors, the brute-force
approach would require individual tests for all 24 circle objects. In this example, the sector ap-
proach would require testing of the five populated sectors shown in white, reducing the test
count to 10 objects.

Chapter5 World Management 103

There is a flaw in this simple use of sectors. Even when using a sec-
tor-based approach, there is still the problem of having to test the bounds
of all the populated sectors for visibility. If our game objects are dispersed
evenly enough, we might not actually gain any efficiency with this ap-
proach. However, we have shown that grouping objects into sectors has
the potential to become more efficient. Therefore, if we grouped the sec-
tors into even larger volumes, we could gain further efficiency by limiting
the number of populated sectors we need to test.

Nesting these sectors creates a hierarchy tree. Each sector contains a
set of smaller child sectors, which together fill the space defined by their
parent. If the parent is not visible, neither are the children. If the parent
is completely visible, the children are, too. Should the parent straddle the
visibility test volume, we step down into each child, testing it as a new
parent. This recursive testing continues until all visible sectors are found,
or we run out of tree levels to test.

THE BASIC QUADTREE

The quadtree and the oct-tree best represent the concept of nesting these
sectors into a tree hierarchy. Each is a regimented tree hierarchy in which
each node contains an equal number of subnodes. Quadtrees are essen-
tially 2D spatial organization. Each 2D rectangle of a quadtree is divided
equally into four child nodes arranged in a 2x2 grid. Each child node can
be divided into four smaller children, and so on. The oct-tree is a
quadtree extended into three dimensions, with each sector having eight
child nodes in a 2x2x2 grid.

For our landscape engine, a full 3D representation is not needed. Pro-
portionally, our environment is very flat. The landscape can extend along
the x- and y-axes for great distances, with very little vertical space to
worry about by comparison. Therefore, we can use the quadtree and use
the simple four-child 2D layout rather than the more robust oct-tree
method. As we will see later, we can still add some height, or z-axis re-
lated information to extend our quadtree into a pseudo-3D hierarchy,
but for now we will focus on the 2D approach.

Traditionally, quadtrees are created to contain a minimal amount of
nodes within the tree. When a branch of the tree can be identified as
empty (there are no objects appearing in the tree below the branch), then
all nodes within the branch can be discarded. This allows for a minimal
amount of storage space for the tree, since empty nodes consume no
memory, but can cause a lot of dynamic allocation and destruction of
memory when mobile objects are introduced.

104

Real-Time 3D Terrain Engines Using C++ and DirectX 9

To make our development process easier, and keep the quadtree
more manageable, we will use what is known as a fully expanded tree
representation. That is, all nodes within the tree exist even if they are
empty. This way, as objects move around our world, we have no dynamic
node creation or destruction to worry about, and our memory consumyp-
tion for the tree remains large, but constant.

Therefore, the problem becomes this: how do we assign objects to
nodes within the tree? Look at Figure 5.3. We will use these images as a
guide to show the process of placing an object in the tree. In the first
drawing, we begin with the topmost node of the tree. This node encom-
passes the entire world, as well as the test object shown. Placing the ob-
ject in the proper subnode is a recursive problem. Given that the object
currently belongs to the root node, we perform the following recursive
process until the final node is found.

1. Check the object against all child nodes of the current node. If no
child nodes exist, jump directly to step 3.

2. If the object is fully contained in a child node, set the child node as
the current node and repeat step 1.

3. The object is a member of this node. Add it to the list of members for
the current node and exit.

In Figure 5.3, these steps are run three times. Each time, a child node
is found that contains the node and the process is repeated. In the final
drawing, we see that the object spans more than one child node (the dot-
ted lines), and cannot become a member of any of them. Instead, it be-
comes a member of the parent node—the smallest node that contains it.
Figure 5.4 shows the tree hierarchy created from this process and the ob-
ject listed below the node chosen to contain it.

O

1 2 3

FIGURE 5.3 A series of quadtree recursions needed to assign an object to a particular node
within the quadtree.

Chapter5 World Management 105

Quadrant 0 \

Quadrant 0
] Quadrant 1

Quadrant 1
= Quadrant 2

Quadrant 2
— Quadrant 3

Quadrant 3

Level 1 Level 2 Level 3

FIGURE5.4 The quadtree hierarchy built from the process shown in Figure 5.3.

ENHANCING THE QUADTREE

ONTHE (D

Now that we understand the purpose and structure of a quadtree, and
how to insert objects into it, we can look at some implementation details
that extend the usefulness and efficiency of the tree. As stated earlier, we
will use a fully expanded tree because of the simplicity and fixed-memory
use it provides. It also allows for an interesting management scheme that
provides direct sorting of objects into the tree without the recursive steps
shown previously.

We borrow this concept from Matt Pritchard, who defined a direct-
access method for quadtrees in his Game Programming Gems 2 article
[Pritchard]. We will provide a brief synopsis of the method here. Further
exploration into the details can be found within Pritchard’s article, or by
exploring the source code on the accompanying CD-ROM for our imple-
mentation of the method.

In short, the method uses the nature of the Logical XOR operation
and the fact that each quadtree node is divided along the center point of
each axis. If the quad tree sectors are stored in power-of-two integer val-
ues, computing the XOR of any object bounds creates a bit pattern that
can be interrogated to find the proper tree level to place the object
within. As with most computer graphics algorithms, this sounds compli-
cated, but is really quite simple to use.

In Figure 5.5, we see a quadtree with an overall size of 256x256—
power-of-two dimensions that require 8 bits of data per axis (one un-
signed byte per axis). We know that quadtree nodes divide evenly, so the
first-level splits will occur at position 128 on each axis, defining the four

106 Real-Time 3D Terrain Engines Using C++ and DirectX 9

children of this node, as shown by the dotted lines. In binary terms, we
can see that each level of our tree can be identified by the highest bit used
by the splitting plane. See Table 5.1 for examples.

0 128 192 256

(130, 10)

(190, 110)

(195, 125)

FIGURE5.5 A quadtree built using power-of-two integer dimensions.

To determine which level of the tree our objects need to be inserted
into, we examine their span along each axis. Taking the logical XOR of
the axis extents will produce a bit pattern. The highest bit set in that pat-
tern tells us which splitting plane the object crosses, and therefore which
level of the tree it should become a member of. For example, two objects
appear in Figure 5.5. Looking at Object A, we see that it spans the x-axis
from 126 to 130. Taking the XOR of these values reveals the following:

126 (binary 01111110)
XOR 130 (binary 10000010)

252 (binary 11111100)

Chapter5 World Management 107

In the result bit pattern, we see that the highest bit set is bit 7. Sub-
tracting this value from our maximum value, also 7, yields 0. This tells us
that Object A resides in level 0 of the tree (the root level). Looking at
Table 5.1, we see that bit 7 in the XOR result does indeed match with the
bit pattern for splitting on an interval of 128, a split that is performed at

level 0 of our tree.

TABLES.1 The Bit Patterns Used to Identify Levels of the Power-of-Two Quadtree

LEVEL SPLITTING PLANE INTERVAL BINARY VALUE OF INTERVAL HIGHEST BIT
0 128 10000000 7
1 64 01000000 6
2 32 00100000 5
3 16 00010000 4
4 8 00001000 3
5 4 00000100 2
6 2 00000010 1
7 1 00000001 0

The second Object, B, spans the x-axis from 190 to 195. Computing
the XOR of these values yields 125 (binary 1111101). The highest bit set
in this result is position 6. According to Table 5.1, position 6 signals tree
level number 1. We could also deduce this as our maximum bit position,
7, minus the highest bit set, 6. Again, mentally walking the tree confirms
that Object B would be placed one level down from the root, since it
straddles the next splitting line at 192.

Of course, what we have not mentioned is that the level should also
be determined using the span along the y-axis. The final tree level chosen
would be the lesser of the two. For example, if the x-axis span of an ob-
ject resolved to tree level 5, and the y-axis span resolved to tree level 3,
we would place the object in tree level 3. Placing the object in a deeper
part of the tree would violate our construction rules for the quadtree, be-
cause the object in question crossed a splitting plane in level 3 and should
be placed no deeper.

To find the highest bit position set in our XOR results, we use the as-
sembler instruction BSR, or Bit Scan Reverse. This simple x86 instruction
will return the index of the highest bit set in a number much faster than
we could do ourselves in C/C++. In the numeric tools provided with our
sample engine (outlined in Appendix A, “Gaia Utility Classes”), we pro-
vide a function called highestBitSet to perform this task.

108 Real-Time 3D Terrain Engines Using C++ and DirectX 9

Once the proper tree level is known, the final step is to determine
which node within that level is the parent to the object being tested.
Again, the power-of-two dimensionality of our tree makes this a simple
task. If all sectors of a given tree level are stored in a two-dimensional
array, the proper sector can be found by taking the coordinates of the ob-
ject being tested and converting them to the scale of the node grid at the
tree level. For example, we calculated that Object B in Figure 5.5 would
be placed at tree level 1. Tree level one contains a 2x2 grid of nodes.
Therefore, the coordinates of Object B need to be scaled into the range [0,
1] on each axis to figure out the column and row index in which to place
the object.

A simple shift operation does the trick. Coordinates of our world are
in the range [0,255], 8 bit values. To get them to the range [0,1], we need
to convert them to 1-bit values. Shifting the coordinate values to the right
by 7 places will perform the conversion (8-bit value to 1-bit value is a
right-shift of 7). For Object B, we take the coordinates (190, 20) and shift
them right seven places to get the index values (1,0). These index values
tell us exactly which node in the level 1 grid is the parent of Object B.

You should note that the entire functionality behind this method
hinges on a quadtree with a dimension of 256x256 units. Our world is
not stated in integer values, nor will it likely conform to this scale. To use
this fast, direct-access method for the quadtree we will have to take our
real-world coordinates and convert them to table-space. This implies scal-
ing the values from their natural range to the range [0,255] and convert-
ing them from floating-point to integer values.

ADDING ANOTHER DIMENSION TO THE QUADTREE

As stated at the beginning of our quadtree discussion, quadtrees are a 2D
spatial sorting technique. Extending the technique to three dimensions
creates an oct-tree, where each node has eight children arranged in a
2x2x2 grid. This implies that we will also extend all of our math and fast-
lookup routines to include the z-axis span of each object. While this is
perfectly reasonable, it does increase the complexity and storage de-
mands of our simple direct-access quadtree.

Instead of using a full-blown oct-tree, we can take a half step into the
third dimension by adding a 32-bit field to each object. In this field, we
set one bit for each region of z-axis space containing an object. To explain
this idea, imagine that we divided the world into 32 equal layers along
the z-axis. For every object in the world, we could build a 32-bit number
by setting a bit for each layer in which the object exists. See Figure 5.6 for
an example using eight layers.

Chapter5 World Management 109

z-axis height zones

resulting z-axis bit pattern
00111000

FIGURE 5.6 In a world divided into eight layers, we can build an 8-bit value
to describe the layers an object occupies. In this figure, the object resides in
layers 2, 3, and 4—which equates to the binary pattern 00011100, or 28
decimal.

As objects are added to nodes within our quad tree, we OR their z-axis
bit fields together. This creates a z-axis bit field describing the contents of
the node. When we search the quadtree for objects, we can provide a 2D
shape to search with as well as a z-axis bit field of the height layers we
want to search. A simple AND operation for the corresponding bit field of
each node will tell us quickly if any members of that node reside in the
layers being tested. If the result of this logical AND produces a nonzero re-
sult, then we know that members exist in the desired levels, and we
should test each member individually to find them.

Using this method, we get all the benefits of a fast, small quadtree
representation while still enabling a testing mechanism for the third di-
mension. While the partitioning of the z-axis is crude, having only 32
possible layers, the testing mechanism provided by performing logical op-
erations on 32-bit values is incredibly fast. Therefore, we gain some addi-
tional precision for our spatial partitioning without much overhead.

FAST QUADTREE SEARCHES

Searching the quadtree begins with the same operations as with sorting
an object into the quadtree. Given a 3D search volume, we create a 2D
search volume and a 32-bit value representing the span of the original 3D
shape in z. To begin our search, we must determine the tree node that

110

Real-Time 3D Terrain Engines Using C++ and DirectX 9

fully contains the 2D search volume. This is exactly the same procedure
as if we were sorting the search volume into our tree.

The node found as the search volume’s parent is the topmost level of
the tree we need to search. We first test the z-axis bits for the node
against the bits representing our search layers. If a match is found, we
know there are members of this node that might be in our search space.
We test all members of this node against the search volume to. find inter-
secting objects, and then step down into its children to repeat the process.
As we find objects in these nodes that intersect our search volume, we
add them to a linked list that will serve as our search result. When the en-
tire process is complete, this linked list will contain all quadtree members
that intersect the search volume.

Maintaining the z-masks of our quadtree require some maintenance
whenever objects are added, removed, or relocated within the tree. As
objects are added or removed from nodes, the parent nodes must be noti-
fied up the chain. This allows them the opportunity to readjust their own
combined z-masks so they are up to date. The quadtree node class,
cQuadTreeNode, contains a pair of member functions to handle these noti-
fications. Listing 5.1 shows these two functions, descendantMemberAdded
and descendantMemberRemoved.

LISTING5.1 Notification functions that keep the quadtree node z masks up to date.

void cQuadTreeNode::rebuildzMask()

{
// reset our overall z mask to the mask
/1 defined by our local members only
m_zMask = m_zlocalMask;
/! sum up the masks of our children
for (int i=0;i<4;++i)
{
if (m_pChildNode[i])
{
m_zMask.setFlags(m_pChildNode[i]->zMask());
}
}
}

void cQuadTreeNode: :descendantMemberAdded (u32Flags zMask)
{

// update our zMask

m_zMask.setFlags (zMask);

Chapter5 World Management 111

// notify our parent of the addition
if (m_pParentNode)
{

m_pParentNode->descendantMemberAdded (zMask) ;

}

void cQuadTreeNode: :descendantMemberRemoved()

{

// update our zMask
rebuildZMask() ;

// notify our parent of the removal
if (m_pParentNode)
{

m_pParentNode->descendantMemberRemoved () ;

SLOW QUADTREE SEARCHES

While a slow quadtree search is never desirable, there are times when we
want to perform more testing operations than simple bounding-box in-
tersection tests. The most notable example of this is when the quadtree is
used to find a set of objects present in the camera frustum. As discussed
earlier in this chapter, the frustum is a set of six planes that denote cam-
era space.

Camera frustums do not map well to axis-aligned boxes. Their pyra-
midal nature creates a box that has much more volume than the original
frustum. When this box is used alone to search the quadtree, many more
objects will be added to the search results than are truly necessary. This is
fine when fast searching is desired, but when false-positive results will
impede our performance, we must do true frustum testing to minimize
the set of results. In these cases, the only alternative is to incorporate the
actual shape of the camera frustum into the quadtree search, preventing
objects that lie outside the frustum bounds from being added to the
search result.

We leave this as an option because frustum testing is not always re-
quired. For example, when using simple rendering methods, it is often
more efficient to use a faster quadtree search and allow some off-screen
objects to flow through the render pipeline. Even though we will be ren-
dering these objects needlessly, their render speed is far superior to the

112

Real-Time 3D Terrain Engines Using C++ and DirectX 9

Gkl
ONTHE CD

frustum search time. For more advanced rendering, the opposite will be
true. When rendering using complex shaders, we will be better served to
spend more time doing a thorough search and reducing the number of
items rendered.

To facilitate this, we must first create a data object to represent the
camera frustum. The cFrustum class satisfies this need by maintaining a
set of six planes. These planes represent the sides of the camera frustum.
A cPlane3d class is used to hold each the six planes as a member of the
cFrustum. cPlane3d maintains the data for each plane as a standard four-
unit plane equation. This object can then be used as an optional parame-
ter for our quadtree searches. See the geometry source code folder on the
accompanying CD-ROM for implementation details on the cPlane3d
class.

cFrustum contains a handy member function that can extract the
frustum planes from the current camera projection matrix. This straight-
forward operation makes building a cFrustum object simple and easy.
Credit for the plane extraction method goes to Gil Gribb and Klaus Hart-
mann, who documented the process for both DirectX and OpenGL
[Gribb]. In their document, Gribb and Hartmann show that the frustum
planes can be extracted from any camera matrix using the simple process
shown in Listing 5.2.

Note that the coordinate space for the extracted planes is identical to
the coordinate space defined by the camera matrix. For example, if the
camera matrix maps from world space to camera space, the extracted
frustum planes will be in world space. If a series of matrices are concate-
nated to produce a model-space to camera-space transform matrix, the
frustum planes extracted will be in model space. This property makes the
Gribb\Hartmann method a very powerful tool.

LISTING5.2 Extracting 3D planes from an arbitrary camera matrix.

inline void cFrustum::extractFromMatrix(
const cMatrix4x4& matrix,
bool normalizePlanes)

/] Left clipping plane

leftPlane.normal.x = matrix._14 + matrix._11;
leftPlane.normal.y = matrix._24 + matrix._21;
leftPlane.normal.z = matrix._34 + matrix._31;
leftPlane.distance = matrix._44 + matrix._41;

// Right clipping plane
rightPlane.normal.x = matrix._14 - matrix._11;

Chapter5 World Management 113

rightPlane.normal.y = matrix._24 - matrix._21;
rightPlane.normal.z = matrix._34 - matrix._31;
rightPlane.distance = matrix._44 - matrix._41;

// Top clipping plane

topPlane.normal.x = matrix._14 - matrix._12;
topPlane.normal.y = matrix._24 - matrix._22;
topPlane.normal.z = matrix._34 - matrix._32;
topPlane.distance = matrix._44 - matrix._42;

i

f

// Bottom clipping plane

bottomPlane.normal.x = matrix._14 + matrix._12;
bottomPlane.normal.y = matrix._24 + matrix._22;
bottomPlane.normal.z = matrix._34 + matrix._32;
bottomPlane.distance = matrix._44 + matrix._42;

// Near clipping plane

nearPlane.normal.x = matrix._13;
nearPlane.normal.y = matrix._23;
nearPlane.normal.z = matrix._33;
nearPlane.distance = matrix._43;

// Far clipping plane

farPlane.normal.x = matrix._14 - matrix._13;
farPlane.normal.y = matrix._24 - matrix._23;
farPlane.normal.z = matrix._34 - matrix._33;
farPlane.distance = matrix._44 - matrix._43;

// it is not always nessesary to normalize

// the planes of the frustum. Non-normalized

// planes can still be used for basic

// intersection tests.

if (normalizePlanes)

{
leftPlane.normalize();
rightPlane.normalize();
topPlane.normalize();
bottomPlane.normalize();
nearPlane.normalize();
farPlane.normalize();

To determine if objects are visible in the camera frustum, we use a set
of six plane-rectangle tests. These tests classify an axis-aligned rectangle

114 Real-Time 3D Terrain Engines Using C++ and DirectX 9

as either being in one of the half-spaces separated by the plane, or inter-
secting the plane itself. All of the planes extracted using the source code
shown in Listing 5.2 will contain surface normals that point into the frus-
tum interior. This means that the camera frustum is defined as the vol-
ume created by the union of the positive half-spaces defined by each
plane. Therefore, if a rectangle lies in the negative half-space of any frus-
tum plane, we know that the object is outside the frustum.

To perform the frustum-rectangle test, we first define a test to find in
which half-space the rectangle lies in relation to a plane. This test can
then be used with the frustum sides to determine a result. Listing 5.3
shows the plane-rectangle test and the combined frustum-rectangle test
code.

LISTING5.3 The plane-rectangle test and the frustum-rectangle test.

enum ePlaneClassifications
{
k_plane_front = 0,
k_plane_back,
k_plane_intersect

b

/* signedDistance

Returns the signed distance between
the plane and the provided 3D point.
Negative distances are “behind” the
plane, i.e. in the opposite direction
of the plane normal.

*/
inline float cPlane3d::signedDistance(
const cVector3& Point) const

{
// the plane is stored as a normal
// vector and a distance from the
// origin along the vector.
return(normal.dotProduct(Point) + distance);
}

inline int planeClassify(
const cRect3d& rect,

Chapter5 World Management 115

const cPlane3d& plane)
cVector3d minPoint, maxPoint;

// build two points based on the direction
// of the plane vector. minPoint

// and maxPoint are the two points

// on the rectangle furthest away from

// each other along the plane normal

if (plane.normal.x > 0.0f)

{

minPoint.x = (float)rect.x0;

maxPoint.x = (float)rect.xl;
}
else
{
minPoint.x = (float)rect.x1;
maxPoint.x = (float)rect.xO;
}
if (plane.normal.y > 0.0f)
{
minPoint.y = (float)rect.y0;
maxPoint.y = (float)rect.yl;
}
else
{
minPoint.y = (float)rect.y1;
maxPoint.y = (float)rect.y0;
}
if (plane.normal.z > 0.0f)
{
minPoint.z = (float)rect.zO;
maxPoint.z = (float)rect.z1;
}
else
{
minPoint.z = (float)rect.zl;
maxPoint.z = (float)rect.z0O;
}

// compute the signed distance from
// the plane to both points

116 Real-Time 3D Terrain Engines Using C++ and DirectX 9

float dmin = plane.signedDistance(minPoint);
float dmax = plane.signedDistance(minPoint);

// the rectangle intersects the plane if
// one value is positive and
// the other is negative
if (dmin * dmax < 0.0f)
{
return k_plane_intersect;
}
else if (dmin)
{

return k_plane_front;

return k_plane_back;

inline bool cFrustum::testRect(
const cRect3d& rect) const

if ((planeClassify(rect, leftPlane)

== k_plane_back)

i1 (planeClassify(rect, rightPlane)
== k_plane_back)

|1 (planeClassify(rect, topPlane)
== k_plane_back)

|1 (planeClassify(rect, bottomPlane)
== k_plane_back)

|| (planeClassify(rect, nearPlane)
== k_plane_back)

|| (planeClassify(rect, farPlane)
== k_plane_back))

return false;

return true;

With these test cases in place, we can now perform a more rigorous
quadtree search using not only an axis aligned box, but an additional
camera frustum. This is a far slower search when used, but provides a
more accurate result. In later chapters, when our rendering workload in-

REFERENCES

o Qa‘

ONTHE(D

Chapter5 World Management 117

creases, we will use the optional frustum-culling method provided by the
quadtree to reduce the number of objects we need to process.

The quadtree search process is best explained by looking through
the example source code provided on the accompanying CD-ROM.
Two classes are provided in the source/gaia folder, cQuadTree and
cQuadTreeNode, which contain the search methods described in this chap-
ter. The source code itself is too lengthy to include here as a listing, so
readers are encouraged to look over the commented source code on the
CD-ROM for implementation details of the quad tree.

[Gribb] Gribb, G., and K. Hartmann. “Fast Extraction of Viewing Frustum
Planes from the World-View-Projection Matrix,” (available online at
www2.ravensoft.com/users/ggribb/plane % 20extraction.pdyf).

[Pritchard] Pritchard, M. “Direct Access Quadtree Lookup.” Game Pro-
gramming Gems 2. Charles River Media, Inc., 2001, pp. 394—401.

119

PN 2 INL N AN
VN NN AR TANAA
) NIV
VSANINAA
A AR SN NAVA
NN A ATREN SN
%53_&..4«». NN/
DA AN N R
KNI
AAVINNARNAT A
PN X
“Wﬁfdmﬂmﬂ~ iy JATE
i AN AT
D¥gy, " «#Jﬂr,‘ﬂ.b» %
TN

BASIC TERRAIN GEOMETRY

120

Real-Time 3D Terrain Engines Using C++ and DirectX 9

ith the basic concepts of world-space partitioning behind us,

we are ready to begin defining the landscape geometry from

our world. In this chapter, we look at the data set used to de-
fine our 3D landscape, and various methods to generate it.

From this data, we will build the polygonal landscape and view it
using a very rudimentary approach. In the next chapter, we will examine
alternatives to this brute-force approach that provide greater scalability
and overall efficiency. Obviously, before these systems can be explored,
we need to define and create the data.

HEIGHT MAPS AS TERRAIN INPUT DATA

The height map is the simplest and most common data input scheme for
terrain geometry. A height map is a 2D array of height values arranged in
a regular grid. For each (x, y) location on the grid, a value for z is stored.
This value for zis the height of the terrain at the (x, y) position. To enable
a smaller data size for the overall table, the z information is usually stored
as an unsigned byte, where 0 is the lowest terrain height and 255 is the
highest. This creates a grid of terrain data in the range [0,255].

Another useful aspect of this approach is that a 2D array of byte val-
ues is identical to a grayscale bitmap. For each pixel of the bitmap, a value
between 0 and 255 is stored for the black-to-white color range. This is
identical to the [0,255] height value range we want to store for terrain
height information. Using grayscale bitmaps as the storage method for
our terrain data means that we can easily visualize the terrain as a
bitmap. Figure 6.1 shows a sample height map in grayscale form. Dark
areas of the image are low sections of the terrain, and light areas are
higher sections.

Using bitmaps as input data allows us to use paint programs as terrain
construction tools. We can simply paint the elevations of our terrain as
shades of gray, and then save the bitmap out for our engine to load. We
can also take advantage of real-world sources for terrain data such as the
United States Geological Survey (USGS) terrain through the use of a free
conversion program.

Chapter& Basic Terrain Geometry 121

FIGURE 6.1 A sample terrain height map. The bitmap provides a view of the terrain
from above. Low areas are shown as dark pixels, and higher elevations as bright pixels.

The USGS provides terrain information for the United States in a for-
mat known as a Digital Elevation Model (DEM) file. DEM files come in a
variety of formats, and can range in detail from 10 meters per sample to
90 meters. For low-elevation terrain visualization, like ours, the higher
resolution of 10 meters per sample is preferred. Either way, the DEM file
format itself is beyond the scope of this book. Instead, we provide a util-
ity program on the CD-ROM that can convert the DEM file, as well as

<’ other real-world terrain sources, into height map images.

ONTHEDD The program, 3DEM by Visualization Software LLC, is a free utility
that can load data files from the USGS, NASA mars orbiter and earth
satellites, and the global terrain data provided by the National Oceanic
and Atmospheric Administration (NOAA). The elevation data within
these files can easily be extracted and converted to a grayscale image for
use within our engine. A link to the Visualization Software LLC home
page is also provided in the recommended reading list of Appendix D,
“Recommended Reading.” More information on real-world source data
and DEM files can be found there. Links are also provided in Appendix D
for free access to USGS terrain data files.

PROCEDURAL HEIGHT MAPS

If a height field is little more then a grayscale bitmap, it would stand to
reason that we could create one using source code rather than a paint

122

Real-Time 3D Terrain Engines Using C++ and DirectX 9

program or real-world data source. The first strategy that comes to mind
is to simply generate a random set of height field values. This would
work, but the resulting terrain is an unrealistic, chaotic mixture of dis-
connected height values. Instead, what we require is a method to build
random height values using a few simple rules to guide the overall ap-
pearance of the terrain.

Many methods for generating random height maps have been docu-
mented over the years, and most boil down to one simple premise: gen-
erate a random set of values, and then filter those values until the terrain
becoines reasonably smooth. “Reasonably smooth” is a relative term that
generally equates to making sure adjacent values in the height map con-
tain values within some delta range. When a height map value is too dif-
ferent from its neighbors, the resulting terrain will contain a sharp pit or
spike, which looks unrealistic for most applications.

The idea of generating random height values, and then filtering the
results to lessen the delta between neighboring values is akin to giving a
monkey a paintbrush along with some black and white paint, and then
blurring his painting until it looks like a mountain range. The idea might
work, but it is not likely to produce a decent mountain landscape each
time. There are easier methods to use that generate random values while
maintaining a realistic appearance for terrain. The results of these
“guided” methods are much more likely to produce an appealing result
than the monkey-painter approach will.

MIDPOINT DISPLACEMENT

The first procedural method we will look at is a recursive process called
midpoint displacement. In this method, we begin with a flat height map and
begin raising and lowering values to create a random terrain. Rather than
assigning a random value to each pixel of the height map without rhyme
or reason, we start by dividing the image into four quadrants and adjust-
ing each corner. We then treat each quadrant as a new image and repeat
the process, dividing each quadrant into four smaller areas and adjusting
the height at each corner. As we step lower and lower in detail, we de-
crease the range in which we raise or lower corners.

This is better explained with images. Figure 6.2 shows the process in
stages. We will be using floating-point values for the construction process
between 0 and 255. We use floating-point numbers for greater precision
during construction, and the range [0, 255] so we can convert the final
result back to 8-bit grayscale values. In each stage of our process, we will
generate random values in a fixed range and use them to offset points on

Chapter6 Basic Terrain Geometry 123

the height map. In the first stage, the range covers the complete set of
values from -128 to 128. We will call the current range extents delta,
making the total range [-delta, deita).

In the left panel of Figure 6.2, the four corners of the height map are
set to random values. The image is then divided into four quadrants as
shown by the dotted lines. This creates five new locations, shown as
numbered points on the image. For each point, we compute a base value
by averaging the values of the corners to which it is linked. For example,
the base value for point number 1 is set to the average of the values
stored at corner points A and B.

A 1 B A 1 B
® ®
1 }
) }
: i
5
E 20--—-¢|—---$3
1]
1]
I5 }
2 @---------- ---ooooee- 93 ¢
| c 4 D
:
t
i
1
|
)
]
¢
C 4 D

FIGURE6.2 The two stages of the midpoint displacement method.

Continuing with point number 1, we displace the point using a ran-
dom value generated in the range [-delta, delta], writing the new value
back to the position of point number 1. We continue by generating ran-
dom offset values in the same range for points 2, 3, and 4. Position 5 is
slightly different because its base value is calculated as the average of all
four corners. The rest of the process is the same; calculating a random
value in the range [~delta, delta]l and using it to offset the base value at
this position. Once all five points are offset, we move on to the next stage.

In the next stage, we step into one of the quadrants built by the pre-
vious stage and repeat the entire process. A set of new quadrants is built,
as shown in the right panel in Figure 6.2. We generate base values for
these points using the quadrant corners, and offset using random values.
However, to guide the creation of the terrain, we multiply the range
value delta by a scale value. This scale value, let’s call it roughness, is a

124

Real-Time 3D Terrain Engines Using C++ and DirectX 9

value between 0 and 1 that will reduce our random range each time delta
is multiplied against it. This is shown as Formula 6.1.

delta = delta * roughness (6.1)

The ideal roughness value is 0.5, which will reduce the random range
by half with each stage. Tuning the roughness value controls how the ter-
rain heights fluctuate as we get further and further into the recursion
process. A higher roughness values creates a more chaotic terrain, with
the terrain growing smoother as the roughness value approaches zero.

The process is complete when all values in the height map have been
set; at this point, we can transfer the values to our terrain geometry, or
convert them to integer values for storage as a grayscale bitmap. Figure
6.3 shows three sample height maps created with this technique and a
variety of roughness values.

FIGURE6.3 Four sample height maps created with the midpoint displacement method. Clock-
wise from the top left, these images were created with falloff values of 0.65, 0.75, 0.85, and 0.95.

PERLIN NOISE

Chapter6 Basic Terrain Geometry 125

No discussion of procedural terrain generation would be complete with-
out discussing noise functions. The king of all noise functions was created
in 1983 by Ken Perlin [Perlin1]. Perlin created a function for the creation
of random values that at is the root of almost all marble, wood, and noise
creation filters found in 3D rendering packages and paint programs. In
fact, Perlin won an Oscar for his work in 1997 based on the impact his
procedural texture work has had on the motion picture industry since
his papers were first published in the mid 1980s.

Perlin noise can be calculated in # dimensions, but for our discussion,
we will focus on the 2D implementation of the technique. In addition, we
provide a slightly simplified version of the original Perlin noise function.
At its heart, 2D Perlin noise is really an interpolation between normal
vectors arraigned on a grid, so we will focus on this portion of the tech-
nique. In Figure 6.4, we see a height map cut into grid squares.

The entire image, regardless of its pixel dimensions, is overlaid with a
grid representing a floating-point range of numbers. For example, we are
generating noise in Figure 6.4 on a grid representing the values from 0 to
4 across the entire image. Each whole number creates a grid line, so each
grid square is a single unit long on all sides. The scale used controls the
complexity of the noise. More grid squares per image create a tighter-
packed noise, like the white noise of a badly tuned TV set. Fewer grid
squares create more billowy, cloud-like noise patterns.

On each grid point, a random normal vector is placed. These are sim-
ply 2D vectors of unit length pointing in some random direction at each
grid square. A common way to compute them is to build a lookup table of
256 vectors sweeping a full circle, and then randomly pick one from the
set for each grid point. This ensures a random distribution of vectors that
have an equal chance of pointing in any direction.

126

Real-Time 3D Terrain Engines Using C++ and DirectX 9

/

FIGURE 6.4 Setting up the Perlin noise function with normal vectors at each grid point on the
image.

For each pixel location of the image, we find the grid cell that con-
tains it. We will be generating a value based on the data of this cell alone.
The next step is to build four directional vectors connecting the corners of
the cell with the location being calculated, as shown in Figure 6.5.

Each corner of the grid cell is now the base for two vectors, one ran-
dom unit vector and one directional vector pointing to the pixel we are
trying to generate. For each of these vector pairs, we compute the dot
product. This produces a scalar height value for each corner of the grid.
We can then combine these four values to determine the height at the
pixel we want to solve. This can be done in a variety of ways to produce
different results, the most common being a weighted interpolation of the
four values based on the proximity of the sample position to each corner
of the grid cell.

Chapter6 Basic Terrain Geometry 127

FIGURE6.5 Calculating the height value for a pixel using the grid nor-
mal vectors and vectors connecting the grid points to the position being
calculated.

Given four values, one associated with each corner, we combine
them by performing three total blending operations. To begin, we must
compute the blending weights based on our position within the unit
square. To compute these weight values, we use Equation 6.1, substitut-
ing our x and y grid-relative coordinates for ¢.

w=6r~15t*+ 108 (6.1)

This equation might differ from other explanations of Perlin noise.
Perlin originally documented his method using the equation shown in
Equation 6.2. While faster to compute, this original method was prone
to producing artifacts in the final result. In a follow-up to his original
publication [Perlin2], Perlin describes the reasons behind the artifacts
and presents Equation 6.1 to help reduce their appearance. Because of
the discrepancy, many sources can be found in print and on the Web
that use either equation. In our source code, both are provided for
experimentation.

w=32-27 (6.2)

128 Real-Time 3D Terrain Engines Using C++ and DirectX 9

With the x-axis weight value, we blend the top pair or corner values
using Equation 6.3. In this equation, the result (v) is computed using the
weight value from Equation 6.1 and two corner values ¢, and ¢, The
same procedure is then repeated for the bottom two corner values. Fi-
nally, a third blend is performed using the same equation between the re-
sults of the first two blends and the y-axis blend weight. The final result is
a height value between 0 and 1 for the pixel in question. We then scale
this to our desired grayscale range and write it to the bitmap. Figure 6.6
shows sample Perlin noise results.

V=C(w) + (1l -w) (6.3)

FIGURE6.6 Sample Perlin noise images generated with various grid sizes, octave counts, and fall-off values.

Chapter6 Basic Terrain Geometry 129

To code our Perlin noise function, we compartmentalize it into a sin-
gle routine we can call for each pixel of the height map. Rather than cre-
ating a set of vertex normals on the grid as a first step, we define a
function that will pick a pseudo-random vector from our vector table
based on an (x, y) grid corner. This way, we do not need to generate and
store the grid point normals. Each time we need to reference a normal,
we can regenerate it from the grid location and be guaranteed to get the
same one each time.

A common method used to do this is to define a set of 256 normals,
as mentioned earlier, as our set of potential vectors. We then create a sec-
ond lookup table containing 256 random entries in the range [0,255].
This is our secondary index table. Given the pre-generated set of 256 vec-
tors (V), our secondary lookup table (T) and an (x, y) grid location, we
use the following function to choose a normal vector:

cVector2 RandomGridNormal(
unsigned char x,
unsigned char y)

return V[(T[x] + T[y]) % 255];
};

This function uses the x and y grid coordinates as indexes into the
secondary lookup table T. From this table, two random values are read
and added together. The result is modulated with 255 to bring it back to
the {0, 255] range. This new value is used as an index into the vector pool
V to read the normal vector. The result is a normal vector that appears
random, but will be calculated identically whenever the same values for x
and y are provided. This removes the need to store a big set of grid nor-
mals for our image, since we can quickly recompute the vectors as we
need them.

Now we can write the noise function. Given an (x, y) image location,
and a scale for the overall noise pattern, the noise function computes the
four surrounding grid point normals and then computes the resulting
value of their interpolation. We define the entire process within the
cPerlinNoise class, shown in Listing 6.1.

130 Real-Time 3D Terrain Engines Using C++ and DirectX 9

LISTING 6.1 The Perlin noise dass.

class cPerlinNoise

{
public:
enum
{
k_tableSize = 256,
k_tableMask = k_tableSize-1,
};
cPerlinNoise();
~cPerlinNoise();
float noise(int x, int y, float scale);
private:

cvVector2 m_vecTable[k_tableSize];
unsigned char m_lut{k_tableSize];

// Private Functions...
void setup();
const cvector2& getVec(int x, int y)const;

};

void cPerlinNoise::setup()

{
float step = 6.24f / k_tableSize;
float val=0.0f;

srand(timeGetTime());

for (int i=0; i<k_tableSize; ++i)

{
m_vecTable{i].x = sin(val);
m_vecTable{i].y = cos(val);
val += step;
m_lut{i] = rand() & k_tableMask;
}

const cVector2& cPerlinNoise::getVec(
int x,

Chapter6 Basic Terrain Geometry 131

int y)const

unsigned char a = m_lut[x&k_tableMask];
unsigned char b = m_lut[y&k_tableMask];
unsigned char val = m_lut[(a+b)&k_tableMask];
return m_vecTable[val];

float cPerlinNoise::noise(
int x,
int vy,
float scale)

{

cVector2 poe(x*scale, y*scale);

float X0 = floor{pos.x);
float X1 X0 + 1.0f;
float YO = floor(pos.y);
float Y1 = YO + 1.0f;

const cVector2& vO =
getVec((int)X0, (int)Y0);
const cVector2& vi =
getVec((int)X0, (int)Y1);
const cVector2& v2 =
getVec({(int)X1, (int)Y0);
const cVector2& v3 =
getVec((int)X1, (int)Yl);

cVector2 dO(pos.x-X0, pos.y-Y0);
cVector2 di(pos.x-X0, pos.y-Y1);
cVector2 d2(pos.x-X1, pos.y-Y0);
cVector2 d3(pos.x-X1, pos.y-Y1);

float h0 = dotProduct(do, v0);
float h1 = dotProduct(di, vi1);
float h2 = dotProduct(d2, v2);
float h3 = dotProduct(d3, v3);

float Sx,Sy;

/*
Perlin’s original equation was faster,
but produced artifacts in some situations
Sx = (3*powf(d0.x,2.0f))

132

Real-Time 3D Terrain Engines Using C++ and DirectX 9

- (2*powf (d0.x,3.0f));

Sy = (3*powf(d0.y,2.0f))
- (2*powf (d0.y,3.0f));
*/

// the revised blend equation is
// considered more ideal, but is
// slower to compute
Sx = (6*powf(d0.x,5.0f))
- (15*powf (d0.x,4.0f))
+(10*powf (d0.x,3.0f));

Sy = (6*powf(d0.y,5.0f))
- (15*powf (d0.y,4.0f))
+(10*powf (d0.y,3.0f));

float avgXo = h0 + (Sx*(h2 - h0));
float avgX! = h1 + (Sx*(h3 - h1));
float result = avgX0 + (Sy*(avgXl - avgXx0));

return result;

The benefits of Perlin noise become more apparent when multiple re-
sults are combined to create a final image. The process of combining mul-
tiple noise functions is called fractional Brownian Motion (fBM), but the
application is far simpler than the name suggests. Imagine two Perlin
noise functions run at different scales. For example, we could create two
Perlin noise maps, one at twice the scale of the other. By simply adding
the results together, we allow one noise result to displace the other, cre-
ating a wholly new noise result.

Figure 6.7 shows the results of adding two noise maps together. The
individual noise maps are referred to as octaves, since one is twice the
scale of the other. By combining octaves using addition, multiplication, or
other factors, new noise patterns emerge. In Figure 6.7, the finer noise
pattern within octave number 2 adds detail to the first octave when
added to the result. To create a robust terrain, we would normally add
many octaves to the result to enhance the large hills formed by the large-
scale octaves with fine-detail elements.

Chapter6 Basic Terrain Geometry 133

FIGURE6.7 A sample Perlin noise image generated by adding two octaves together.

PROCESSING HEIGHT MAP DATA

Before the terrain can be used, it must be converted from the grayscale
height map information to a polygonal mesh. To visualize this, picture
the height map image as a grid of height values. This grid will translate di-
rectly to the vertex mesh we will be creating. The x and y position of each
pixel on the height map translates to an x and y vertex position. The color
value stored at each pixel location translates to the z position of each ver-
tex. We will need to scale these values to the size and height of the ter-
rain we desire, but apart from that, the process is straightforward. As we
read the grayscale values from the range [0,255], we simply scale these to
the maximum height extents of the terrain we desire. The same is true for
(x, y) vertex positions, where we scale the integer pixel position values to
real-world coordinates for our terrain.

Each 2x2 set of pixels creates a matching 2x2 set of vertices, forming
two triangles. We record the data for each vertex as a simple list of (x, y,
z) positional information. Triangle data is recorded as a set of three in-
dices into the vertex list, describing which vertices are used to form each
triangle. These two lists of data will later become our vertex and index
buffers. In addition to the vertex positions, we also compute a surface
normal for the triangle by taking the cross product of two normalized
edge vectors, as shown in Figure 6.8.

134

Real-Time 3D Terrain Engines Using C++ and DirectX 9

FIGURE6.8 Computing surface normals for each
face of the mesh.

Once all of the face normals are computed, we can combine them
into vertex normals. If we attempted to render using the face normals,
our terrain would be lit very coarsely. To create a smoother lighting
model, we need to compute normals for each vertex that are the average
of the adjoining face normals. For each vertex, the normals of the faces to
which the vertex belongs are averaged, and then renormalized. This cre-
ates a normal for each vertex that is ready for use in lighting calculations.
We now have position and surface normal information for each vertex,
which together comprise the bare essentials for rendering our terrain.
The remaining step is to load the data into a Direct3D vertex buffer and
use it for rendering. Listing 6.2 shows this process.

You will notice in the buildHeightAndNormalTables function within
Listing 6.2 that we take a substantial shortcut in calculating the vertex
normals of our terrain. Rather than performing the cross-product calcula-
tions ourselves and averaging the results, we allow the D3DX support li-
brary to do the work for us. D3DX provides a function named
D3DXComputeNormalMap that can covert a texture containing grayscale
height information to a corresponding normal map. The axis values for
each surface normal are encoded into the red, green, and blue color
channels of the resulting texture. To save some work, we use this func-
tion to convert a texture containing our height data to a texture contain-
ing the calculated normals, and then simply extract the results.

Our wrapper class for DirectX textures, cTexture, provides this func-
tionality behind the member function generateNormalMap. In Listing 6.2,
this function is used to generate a texture containing surface normals
from the original height map data. The normal vectors are extracted by

Chapter6 Basic Terrain Geometry 135

reading each pixel of the resulting texture and remapping the color chan-
nel values from their native [0,255] range to unit vector space [-1,1].

LISTING 6.2 Building tables of elevation and surface normals from the height map.

// Here we convert the height map data into

// floating point height and surface normals.

// each is stored within a table of values

// within the terrain system class

//

void cTerrain ::buildHeightAndNormalTables(cTexture* pTexture)

{
safe_delete_array(m_heightTable);
safe_delete_array(m_normalTable);

int maxY = m_tableHeight;
int maxX = m_tableWidth;
int x,y;

m_heightTable new float[maxX*maxY];
m_normalTable = new cVector3[maxX*maxY];

// first, build a table of heights
D3DLOCKED_RECT lockedRect;
if (SUCCEEDED(
pTexture->getTexture()->
LockRect (0, &lockedRect,
0, D3DLOCK READONLY)))

uint8* pHeightMap = (uint8*)lockedRect.pBits;

for(y=0; y<maxY; ++y)
{
for(x=0; x<maxX; ++x)
{
int iHeight =
pHeightMap[(y*lockedRect.Pitch)+(x*4)];
float fHeight =
(iHeight * m_mapScale.z)
+ m_worldExtents.z0;

m_heightTable[(y*maxX)+x] =
fHeight;

136 Real-Time 3D Terrain Engines Using C++ and DirectX 9

pTexture->getTexture()->UnlockRect(0);
}

// create a normal map texture
cTexture temp;
temp.createTexture(
m_tableWidth,
m_tableHeight,
1, 0,
D3DFMT_ABR8GS8BS,
D3DPOOL_SCRATCH) ;

// how much to scale the normals?

float scale =
(m_tablewidth * m_worldExtents.sizeZ())
/m_worldExtents.sizeX();

// Use D3DX to convert our height map into a
// texture of surface normals
temp.generateNormalMap (
pTexture->getTexture(),
D3DX_CHANNEL_RED, 0, scale);

// now read out the normals and
// store them in our intenal structure
if (SUCCEEDED (temp.getTexture()->LockRect(
0, &lockedRect, 0, D3DLOCK_READONLY)))
{
uint8* pNormalMap =
(uint8*)lockedRect.pBits;

for(y=0; y<maxyY; ++y)
{
for(x=0; x<maxX; ++x)
{
int index =
(y*lockedRect.Pitch)+(x*4);
cVector3 normal;

normal.z = pNormalMap[index+0] - 127.5f;
normal.y = pNormalMap{index+1] - 127.5f;
normal.x = pNormalMap[index+2] - 127.5f;

normal.normalize();
m_normalTable[(y*maxX)+x] = normal;

Chapteré Basic Terrain Geometry 137

temp.getTexture()->UnlockRect (0);
}

temp.releaseTexture();

}

TERRAIN GEOMETRY BASE CLASSES

To maintain and display the basic terrain, we use two classes. One class,
cTerrain, represents the entire terrain. To aid in culling portions of the ter-
rain for display, the entire terrain is subdivided into grid-aligned sections.
These sections are represented by the second class, cTerrainSection. These
two classes represent the foundation we will use for all future terrain
methods.

As shown in Listing 6.2, cTerrain stores the height and surface nor-
mal information for the entire terrain in a set of tables. This turns the
cTerrain object into the central repository for terrain-related data. Func-
tions are provided to access these tables directly, or interpolate between
table entries when data is needed at a higher resolution than the table
can store. These functions will prove useful in Chapter 9, “Texturing
Techniques,” when we begin to texture the terrain.

Rendering the entire terrain as one gigantic set of triangles would be
inefficient, considering that the terrain might extend far out of the cam-
era range in all directions. To work within our display system, we divide
the terrain into manageable sections, which are represented by the
cTerrainSection class. For example, to represent a terrain of 256x256
vertices, we would create a cTerrain to store the entire data set. The
cTerrain object would further subdivide the terrain into 32x32 vertex
sections, creating a total of 64 cTerrainSection objects to represent each.

The cTerrainSection class is derived from the cSceneObject class we
described in Chapter 4, “Gaia Engine Overview.” This allows each
cTerrainSection object to be added to the quadtree and flow through our
render pipeline as if it were an individual model. However, unlike cSce-
neObjects, we do not want to store a complete set of geometry for each
cTerrainSection. In fact, using vertex and index buffers, we find that a
great deal of information can be stored once in the ¢Terrain and used in
rendering each cTerrainSection.

138 Real-Time 3D Terrain Engines Using C++ and DirectX 9

TERRAIN GEOMETRY INDEX BUFFERS

The most obvious of these sharing opportunities is the index buffer.
Given that all cTerrainSections are of equal size and contain the same
number of vertices, we can create a single index buffer object and use it
to render any section of the terrain. cTerrain contains a single
cIndexBuffer object for just this purpose. To make things even easier, we
provide a member function in the cIndexBuffer class to create an index
buffer optimized for vertex grids such as our terrain section. Listing 6.3
shows this function. Given a set of parameters describing a regular grid of
vertex data, the cIndexBuffer member function createSingleStripGrid
will create an index buffer containing a single triangle strip that covers
the entire grid. See the DirectX SDK for more information on triangle
strips and the rendering efficiency they can provide.

The process is simple. First, the number of horizontal strips required
to cover the grid is calculated. Then, each strip is created in order. The
ends of each strip are connected to the beginning of the next strip using a
degenerate triangle, which indexes the same vertex more than once, pro-
ducing a triangle with zero surface area. Because these triangles have no
surface area, they do not equate to pixels on screen when rendered. This
allows us to use these triangles to connect our individual horizontal strips
into a single unified strip—knowing that the connecting triangles will
never be visible on screen.

LISTING6.3 Creating a triangle strip index buffer for vertices arranged in a grid pattern.

bool cIindexBuffer::createSingleStripGrid(
uint16 xVerts, // width of grid
uint16 yVerts, // height of grid
uint16 xStep, // horz vertex count per cell
uint16 yStep, // vert vertex count per cell
uint16 stride, // horz vertex count in vbuffer
uint16 flags)

int total_strips =
yverts-1;

int total_indexes_per_strip =
xVerts<<i;

// the total number of indices is equal
// to the number of strips times the

/! indices used per strip plus one

/! degenerate triangle between each strip

Chapter6 Basic Terrain Geometry 139

int total_indexes =
(total_indexes_per_strip * total_strips)
+ (total_strips<<t) - 2;

unsigned short* pIndexValues =
new unsigned short{total_indexes];

unsigned short* index = pIndexValues;
unsigned short start_vert = 0;
unsigned short lineStep = yStep*stride;

for (int j=0;j<total_strips;++j)
{

int k=0;

unsigned short vert=start_vert;

// create a strip for this row
for (k=0;k<xVerts;++k)
{
*(index++) = vert;
*(index++) = vert + lineStep;
vert += xStep;

}

start_vert += lineStep;

if (j+1<total_strips)
{
// add a degenerate to attach to
// the next row
*(index++) = (vert-xStep)+lineStep;
*(index++) = start_vert;

// finally, use the indices we created above
// to fill the Direct3D index buffer
bool result=
create (D3DPT_TRIANGLESTRIP, total_indexes, flags,
pIndexValues);

// destroy our local data and return
delete [] pIndexValues;
return result;

140 Real-Time 3D Terrain Engines Using C++ and DirectX 9

One oddity in Listing 6.3 is the use of a step value for vertices in the x
and y direction. Two parameters are provided to the function, (xStep and
yStep), which are used to step over vertices when creating triangles for
the vertex grid. While this added functionality is not much use to us now,
we will find this flexibility useful later when we create levels of detail for
our terrain. While the xStep and yStep values would normally be 1, we
can increase the values later to create an index buffer that uses fewer tri-
angles to cover a cTerrainSection by referencing every other or every
third vertex in the grid. More of this will be covered in Chapter 7, “The
ROAM Terrain System.”

TERRAIN GEOMETRY VERTEX BUFFERS

Terrain vertex data can be an overwhelming amount of information to
store. At first glance, it appears that each terrain section will contain
unique vertex data. The probability of finding two sections of our terrain
with identical topography is extremely low, providing us with no means
to compact the amount of data we need to maintain. However, if we con-
sider each terrain section as an individual model, we find the opportunity
to share much of the vertex information. This will allow us to store the
vertex data much more efficiently while still creating a nonrepeating ter-
rain.

Consider an example terrain where each cTerrainObject represents a
32x32 vertex subset of the overall terrain. In this example, each vertex
contains position, surface normal, and texture coordinates. If this data is
copied directly from the terrain, it will all be unique world-relative data.
However, if we consider each section as a 32x32 vertex model that will be
translated to its world position, we find that much of the model-space
data is identical throughout all the terrain sections.

Put more simply, instead of giving each cTerrainSection real-world
vertex position and texture coordinates, we give them x- and y-axis val-
ues in the range 0 to 1 for both position and texture addressing. When
rendering the terrain section, we scale the [0,1] coordinate range to the
size we want, and then offset it to the proper world-relative location in
the vertex shader. Because each terrain tile will use an identical set of xy
position and uv texture data, we can store it once in the cTerrain object
and reference it to render any cTerrainSection.

This still leaves some unique data for each cTerrainSection to main-
tain, such as vertex height (z-axis position) and the surface normal, but

removing the 2D plane location and texture coordinates from each sec-
tion greatly reduces the overall storage required for the terrain. The im-

Chapter6 Basic Terrain Geometry 141

plication is that two vertex streams must be used to render each terrain
section: the shared vertex data stored in the cTerrain, and the unique
vertex data stored in each cTerrainSection.

Looking back at the cRenderEntry class described in Chapter 4, we see
that we have already equipped our render queue to handle rendering
with multiple vertex streams. While it might have seemed unnecessary at
the time, it’s certainly going to prove useful now. When submitting the
cTerrainSection objects into the render queue, we add both of the vertex
streams to the cRenderEntry object. When the time comes to perform the
actual rendering, these two streams will be activated for the vertex
shader to access as if they were one interleaved vertex buffer. This facet
of Direct3D helps make the use of multiple vertex streams transparent to
the vertex shaders.

Listing 6.4 shows the entire process of setting up our cTerrain and
cTerrainSection classes for a given terrain. At the top of the listing, the
vertex description is shown specifying the two streams of vertex data that
will be used to render the terrain. The listing then shows the cTer-
rain::create function, which is the starting point for the entire process.
This function will convert the height map provided into vertex data using
the code shown in Listing 6.2, and then create the individual sectors and
shared data.

LISTING6.4 The setup process for cTerrain and cTerrainSection objects.

/1 vertex definitions for the basic terrain.
// we use two vertex streams. The first is a
// single vertex buffer shared by all the

// sectors of the terrain. The second is a

/1] vertex buffer created by each sector of the
// terrain to store local height and normal

// data

static D3DVERTEXELEMENTS vertex_description[]=
{

// local data (stream 0)

{ 0, 0, D3DDECLTYPE_FLOAT2,
D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_POSITION, O },

{ 0, 8, D3DDECLTYPE_FLOAT2,
D3DDECLMETHOD_DEFAULT,
D3DDECLUSAGE_TEXCOORD, 0 1},

// sector data (stream 1)
{ 1, 0, D3DDECLTYPE_FLOATH1,

142 Real-Time 3D Terrain Engines Using C++ and DirectX 9

D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_POSITION, 1 },
{ 1, 4, D3DDECLTYPE_FLOAT3,

D3DDECLMETHOD_DEFAULT,

D3DDECLUSAGE_NORMAL, O },
D3DDECL_END ()

b

/1
// This function is the starting point
// for converting a height map into
/1 vertex data
/1
bool cTerrain ::create(
cSceneNode* pRootNode,
cTexture* heightMap,
const cRect3d& worldExtents,
uint8 shift)

bool result = false;

shift;
1<<shift;
m_sectorUnits+1;

m_sectorShift
m_sectorUnits
m_sectorVerts

m_pRootNode = pRootNode;
m_worldExtents = worldExtents;
m_worldSize = worldExtents.size();

m_tableWidth = heightMap->width();
m_tableHeight = heightMap->height();

I

m_mapScale.x = m _worldSize.x/m_tableWidth;
m_mapScale.y = m_worldSize.y/m_tableHeight;
m_mapScale.z = m_worldSize.z/255.0f;

// convert the height map to
// data stored in local tables
buildHeightAndNormalTables (heightMap);

m_sectorCountX =
m_tableWidth>m_sectorShift;

m_sectorCountyY =
m_tableHeight>m_sectorShift;

Chapter6 Basic Terrain Geometry

m_sectorSize.set(
m_worldSize.x/m_sectorCountX,
m_worldSize.y/m_sectorCountY);

// create the vertex and index buffer
// objects which are shared by the sectors
if (buildVertexBuffer())

{
if (setVertexDescription())
{
if (buildIndexBuffer())
{
// now go build each sector of the terrain
result = allocateSectors();
}
}
}
if (!result)
{
destroy();
}
return result;
}
/1

// This function creates the individual
// sectors of the terrain
/1
bool cTerrain ::allocateSectors()
{
m_pSectorArray =
new cTerrainSection{
m_sectorCountX*m_sectorCountY];

// create the sector objects themselves
for (int y=0; y<m_sectorCountY; ++y)
{

for (int x=0; x<m_sectorCountX; ++x)
{
cVector2 sectorPos(
m_worldExtents.x0+(x*m_sectorSize.x),
m_worldExtents.yO0+(y*m_sectorSize.y));

143

144

Real-Time 3D Terrain Engines Using C++ and DirectX 9

cRect2d sectorRect(
sectorPos.x, sectorPos.x+m_sectorSize.x,
sectorPos.y, sectorPos.y+m_sectorSize.y);

uint16 xPixel = x<<m_sectorShift;
uint16 yPixel = y<<m_sectorShift;

uinti16 index = (y*m_sectorCountX)+x;

if (im_pSectorArray[index].create(

m_pRootNode,

this,

Xy ¥,

xPixel, yPixel,

m_sectorVerts,

m_sectorVerts,

sectorRect))

return false;

return true;

bool cTerrain ::buildVertexBuffer()

{

cString tempName;
tempName.format (“terrain_system_%i”, this);

/! create the vertex buffer

// shared by the sectors

m_pVertexGrid =
DisplayManager.vertexBufferPool().
createResource (tempName);

cVector2 cellSize(
m_sectorSize.x/m_sectorUnits,
m_sectorSize.y/m_sectorUnits);

cVector2 vert(0.0f,0.07);
stocalvVertex* pVerts =
new stocalVertex[m_sectorVerts*m_sectorVerts];

Chapter6 Basic Terrain Geometry 145

// fill the vertex stream with x,y positions and
// uv coordinates. All other data (height and

// surface normals) are stored in the vertex

// buffers of each terrain section

for (int y=0; y<m_sectorVerts; ++y)

{
vert.set(0.0f, y*cellSize.y);

for (int x=0; x<m_sectorVerts; ++x)
{
pverts[(y*m_sectorVerts)+x].xyPosition = vert;
pverts[(y*m_sectorVerts)+x].localUV.set(
(float)x/(float) (m_sectorverts-1),
(float)y/(float) (m_sectorverts-1));

vert.x += cellSize.x;

// now that we have built the data,
// create one of our vertex buffer
// resource objects with it
bool result = SUCCEEDED(
m_pVertexGrid->create(
m_sectorVerts*m_sectorvVerts,
sizeof (slocalVertex),
0, pVerts));

safe_delete_array(pvVerts);

// if the vertex buffer creation was

// a success, create the vertex declaration

// and add it to the class data

// setup the vertex declaration

if (result)

{

m_pVertexGrid->setVertexDescription(

sizeof (vertex_description)/sizeof (D3DVERTEXELEMENTY),
vertex_description);

return result;

bool cTerrain::setVertexDescription()

146 Real-Time 3D Terrain Engines Using C++ and DirectX 9

/] create the vertex declaration
// and add it to the vertex
// buffer containing our basic grid
bool success =
m_pVertexGrid->setVertexDescription(
sizeof(vertex_description)/
sizeof (D3DVERTEXELEMENT9),
vertex_description);

return success;

bool cTerrain ::buildIndexBuffer ()

{
cString tempName;
tempName.format(“terrain_system_%i”, this);

m_pTriangles =
DisplayManager.indexBufferPool().
createResource (tempName);

// create the index buffer which

// all terrain sections can share

return SUCCEEDED(
m_pTriangles->createSingleStripGrid(
m_sectorVerts, // width of grid
m_sectorVerts, // height of grid
1, // horz vertex count per cell
1, // vert vertex count per cell
m_sectorVerts, // horz vertex count in vbuffer
0));

RENDERING THE TERRAIN SECTIONS

As alluded to earlier, the render pipeline we built in Chapter 4 is already
prepared for multiple vertex streams. All that remains is for us to submit
the individual cTerrainSection objects for rendering, and then handle the
sorted drawing requests as they arrive. As you'll recall, we built a system
in which individual cSceneObjects are submitted to the cRenderQueue,
sorted for optimal rendering, and then processed via callback functions.

Our cTerrainSection objects, being derived from the cSceneObject base

Chapter6 Basic Terrain Geometry 147

class, fit into this system perfectly. As cTerrainSection objects are found
in the quadtree, they use overloads of the standard cSceneObject render-
ing functions to add themselves to the queue and perform the final draw
when requested.

Listing 6.5 shows the member functions responsible for rendering
cTerrainSection objects. Note that while all render calls are routed to the
cTerrainSection objects, they forward the drawing request back to the
parent cTerrain. This allows the cTerrain to apply the data resources
shared by all cTerrainSections. Within the cTerrain render function, all
necessary drawing resources are activated, including the two vertex
streams that make up the terrain geometry, prior to performing the ac-
tual draw primitive call.

LISTING6.5 The setup process for cTerrain and cTerrainSection objects.

void cTerrainSection::render()

{
// ask our parent to complete the submission
m_pTerrainSystem->submitSection(this);

}

void cTerrainSection::renderCallback(
cRenderEntry* entry,
u32Flags activationFlags)
{
// ask our parent to complete the render
m_pTerrainSystem->renderSection(
this, activationFlags, entry);

void cTerrain ::submitSection(
cTerrainSection* pSection)const
{
cEffectFile* pEffectFile =
m_pRenderMethod->getActiveEffect();
cSurfaceMaterial* pSurfaceMaterial =
m_pRenderMethod->getActiveMaterial();

if (pEffectFile)

{
profile_scope(cTerrain _submitSection);

int total passes = pEffectFile->totalPasses();

// check the neighbor sectors for connection needs

148 Real-Time 3D Terrain Engines Using C++ and DirectX 9

pSection->sectorX();
pSection->sectorY();

uint16 sX
uint16 sy

int index = (sY*m_sectorCountX)+sX;

for (int iPass=0; iPass<total_passes; ++iPass)
{
cRenderEntry* pRenderEntry =
DisplayManager.openRenderQueue();

pRenderEntry->hRenderMethod =
(uint8)pEffectFile->resourceHandle();
pRenderentry->hSurfaceMaterial =
pSurfaceMaterial->resourceHandle();
pRenderEntry->modelType =
cRenderEntry: :k_bufferEntry;
pRenderEntry->hModel =
m_pVertexGrid->resourceHandle();
pRenderEntry->modelParamA =
pSection->sectorVertices()->resourceHandle();
pRenderEntry->modelParamB =
m_pTriangles->resourceHandle();
pRenderEntry->renderPass =
iPass;
pRenderEntry->object =
(cSceneNode*)pSection;
pRenderEntry->userData =
0;

DisplayManager.closeRenderQueue (pRenderEntry);

void cTerrain ::renderSection(
cTerrainSection* pSection,
u32Flags activationFlags,
const cRenderEntry* pEntry)const

cEffectFile* pEffectFile =
m_pRenderMethod->getActiveEffect();

cSurfaceMaterial* pSurfaceMaterial =
m_pRenderMethod->getActiveMaterial();

if (pEffectFile)

150 Real-Time 3D Terrain Engines Using C++ and DirectX 9

pEffectFile->applySurfaceMaterial (
pSurfaceMaterial);

// apply our render settings to the method
int sectorX = pSection->sectorX();
int sectorY = pSection->sectorY();

cVector4 sectorOffset(
1.0f,
1.0f,
m_worldExtents.x0+(m_sectorSize.x*sectorX),
m_worldExtents.y0+(m_sectorSize.y*sectorY));

cVector4 uvScaleOffset(
(float)1.0f/(m_sectorCountX+1),
(float)1.0f/(m_sectorCountY+1),
(float)sectorX,
(float)sectorY);

pEffectFile->setParameter(
cEffectFile: :k_posScaleOffset,
(D3DXVECTOR4*)§or0ffset);

pEffectFile->setParameter(
cEffectFile::k_uvScaleOffset,
(D3DXVECTOR4*)&uvScaleOffset);

// render!!!
HRESULT hr = d3dDevice->DrawlIndexedPrimitive (
m_pTriangles->primitiveType(),
0,
0:
m_sectorVerts*m_sectorVerts,
01
m_pTriangles->primitiveCount());

THE BASIC TERRAIN DEMONSTRATION

In this chapter, we showed how to create a simple height map image
using a variety of techniques, and then convert the image to vertex infor-
mation suitable for rendering. In the next chapter, we will examine more

Chapter6 Basic Terrain Geometry 151

efficient ways to store and manage the vertex and triangle index data, but
for now, we take a moment to visualize our results. The demonstration
program chapteré_demo0 showcases the techniques we have discussed so
far. This program (along with source code) can be found on the accompa-
nying CD-ROM. Figure 6.9 shows a sample wireframe mesh generated
using the techniques described.

ONTHECD

FIGURE6.9 A basic triangle mesh generated using height map information.

For simplicity, no realistic texture maps are created for the terrain at
this point. We will address texture mapping techniques in Chapter 9. For
the time being, the height map itself is mapped across the terrain by the
sample program to show the relationship between the image pixels and
the resulting geometry. This first demo can be considered a brute-force
approach to terrain rendering. No level-of-detail (LOD) management is
applied, only quadtree visibility culling. While this might seem impracti-
cal, many of the current high-end video cards can use this method with
remarkably high frame rates.

In the next chapter, we will examine methods to lessen the amount
of geometry drawn. This will help facilitate more efficient rendering on
more limited video cards, but might actually prove unnecessary in the
near future. As advances in 3D hardware acceleration continue to
progress, we find that the unremarkable brute-force approach can still
have considerable appeal. The lack of any setup or LOD management
work required on the CPU might actually make this the preferred method

152 Real-Time 3D Terrain Engines Using C++ and DirectX 9

REFERENCES

on video hardware that can handle a high level of geometry throughput.
As always, some experimentation is required to find the method best
suited to the target hardware platform.

[Perlin1] Perlin, K. “Making Noise: Tutorial and History of the Noise
Function,” (available online at www.noisemachine.com).

[Perlin2] Perlin, K. “Improving Noise.” Computer Graphics Vol. 35 No. 3,
(available online at http.//mrl.nyu.edu/~perlin/paperd4s.pdf).

THE ROAM TERRAIN
SYSTEM

153

154 Real-Time 3D Terrain Engines Using C++ and DirectX 9

n the previous chapter, we examined basic terrain construction using

height map data, and a few basic ways we can generate the height map

data. In this chapter, we look at more robust methods for terrain
geometry management. Until now, we have dealt with the terrain geom-
etry at a uniform resolution. In a sense, we have been drawing our high-
est level of detail (LOD) for the entire terrain. This approach will quickly
become impractical on limited video cards as the terrain grows larger and
our rendering methods become more complex. This chapter introduces
methods to store the terrain in modular units, and provide LOD control
to reduce the rendering burden as much as possible.

We will present several popular methods for geometry management.
Each method has strengths and weaknesses, leaving the programmer
with a difficult choice of which method to use in his application. Small
&2 » example programs are provided on the CD-ROM to demonstrate each
ONTHE® method, but the final terrain engine provided with this book will focus on

just one technique. However, we base all the techniques on the founda-
tion class objects cTerrain and cTerrainSection, created in the previous
chapter. By sharing a common set of interface functions, we allow the
different terrain methods to be largely interchangeable.

All of the techniques presented have the same basic goal in mind:
more terrain triangles where you need them, and less where you don't.
In essence, each approach maintains a higher triangle count in areas near
the camera, while reducing the triangle count in more distant areas. The
underlying assumption relies on the fact that these distant areas repre-
sent less actual screen pixels when rendered, and can therefore have
their triangle count reduced will little visual effect on the screen. Of
course, we would also take the complexity of the terrain into account,
making sure that areas with little variation (flat lands, etc.) use a minimal
triangle count, while more complex areas retain their triangles regardless
of camera distance.

REAL-TIME OPTIMAL ADAPTING MESHES

The first system we will examine is the Real-Time Optimal Adapting
Mesh algorithm, better known as ROAM. ROAM was first introduced in
a paper by Mark Duchaineau et al [Duchaineau] as an algorithm de-
signed to facilitate the rendering of large areas of terrain. While the
method described in the paper was revolutionary, many game authors
have found the need to further develop the idea for hardware compati-
bility. In our discussion of the technique, we will cover the basic princi-
ples behind ROAM, but our implementation will differ somewhat from
the one described in the original paper.

Chapter7 The ROAM Terrain System 155

ROAM relies on a property of the right isosceles triangle. As shown in
Figure 7.1, a right isosceles triangle can be subdivided into two equal
right isosceles triangles by splitting the original triangle along the line
connecting the apex vertex to the center of the baseline. This splitting
process can be repeated infinitely, doubling the number of triangles with
each split. This creates a binary tree hierarchy, since each triangle is the
potential parent of two smaller triangles. The ROAM method is basically
a method of managing which triangles are split and which are collapsed
into their parent. This allows us to raise or lower the detail of the terrain
geometry on a triangle-by-triangle basis.

Baseline

FIGURE 7.1 A right triangle can be split into two smaller
right triangles.

Each time a triangle is split, it creates a new vertex in the middle of its
baseline. The position of this vertex can be interpolated as the average of
the two baseline endpoints. However, this new vertex would inherit its
z-axis position from the height mesh, raising or lowering it to match with
the underlying terrain data. We will call the amount this new vertex
would be moved in z the displacement value, and store it as an absolute
value (see Figure 7.2).

FIGURE7.2 The displacement value for a triangle is the differ-
ence between the interpolated vertex position and the true
vertex position as dictated by the underlying height map.

156

Real-Time 3D Terrain Engines Using C++ and DirectX 9

On its own, this displacement value is not very useful; it only tells us
how much a single vertex will be moved when a triangle is split. To de-
termine if a triangle should be split, we need to know whether it accu-
rately describes the height data it covers. We need more than a single
vertex height delta to tell us that. Luckily, as we traverse down the binary
triangle tree, the triangles grow smaller and smaller, with each set of tri-
angle vertices covering a smaller and smaller area of the height map. This
means that the ratio of triangle area to height map area is approaching
1:1 as we go further down the tree. Therefore, if we examine all the dis-
placement values of a triangle’s children, we can get a more accurate de-
scription of whether the triangle being examined accurately described the
height map data it represents.

We do this by recursively walking down through the children and lo-
cating the largest error delta between triangle vertices and actual height
data. We already store this error per triangle as the displacement value,
so our task is to find the largest displacement value and store this in the
parent triangle. We’ll call this maximum of the underlying displacement
values the error metric for the triangle. This value will serve as a measure-
ment of how well a triangle represents the underlying height data. An
error metric of zero is a perfect triangle that exactly matches the underly-
ing height information. Higher error metric values denote triangles that
are a poor representation of the area they cover.

The error metric, which is precomputed for each triangle in the tree,
can then be compared with a runtime value based on camera distance to
decide whether a triangle should be split. Because the error metric is ac-
tually the maximum displacement value of all child nodes, we are as-
sured to split triangles recursively until the triangle that generated the
error value is found. Credit for this error metric calculation goes to Seu-
mas McNally, who used this technique with great success in the Longbow
Digital Arts® game TreadMarks™. McNally’s insights into binary triangle
trees and the ROAM technique were instrumental in TreadMarks win-
ning three awards, including top honors, in the second annual Indepen-
dent Games Festival. McNally’s enhancements were documented by
Brian Turner in his Gamasutra article, “Real-Time Dynamic Level of De-
tail Terrain Rendering with ROAM” [Turner].

The runtime value used to test each triangles error metric is an
application-specific value. The purpose is to define a value that is
the maximum error metric tolerated. Triangles that contain an error met-
ric smaller than this value are left intact; those with a greater error metric
are divided. Each time a triangle is split, the test is repeated among the
two children. To add view-dependence to the test, the maximum toler-
ance value should increase as we move further away from the camera.

SPLIT DECISIONS

Chapter 7 The ROAM Terrain System 157

This ensures that triangles closer to the camera are split with more
scrutiny than those further away.

In practice, we use three values to control the triangle split: distance, scale,
and Iimit. Distance is a simple measure of the space between the point in
question and the viewer. When coupled with the error metric, a ratio can
be created of error over distance. If this ratio value exceeds the limit value
provided, a split must be performed. The use of an additional scale value
allows us to exaggerate or diminish the error metric to further control the
LODs chosen. A higher scale value will increase the error ratio and make
splits more likely to occur. Fractional scale values approaching zero have
the opposite effect. The final calculation is shown as Equation 7.1.

s;mr.v:%m (7.1)

E = error metric

S = error scale

D= distance to viewer
L = ratio limit

As Equation 7.1 shows, when the ratio between the scaled error and
distance value exceeds our imposed limit, we must split the triangle. This
simple equation allows us to take view distance and terrain topography
into account when testing for splitting situations. Areas of the terrain
closer to the camera are more likely to be split, as are areas that have high
error values such as rocky or mountainous regions. Areas that require
very few triangles, such as flat lands, will have very low error values—
helping to ensure that we do not waste additional triangles in these areas.

The scale value helps us to control the priority between distance and
terrain roughness. Large scale values weight the equation toward terrain
topography, making rough terrain more likely to split than terrain that is
close to the camera. A small scale value has the opposite effect, making
distance far more important to the calculation than terrain roughness.
Some experimentation is necessary to arrive at the scale and limit values
best suited for a given terrain.

In performing the triangle splits, we take one more step to maintain
the validity of our triangle mesh. Notice in Figure 7.3 that if one triangle
is split, and has its new vertex displaced, a gap will appear in the terrain.
This is called a T-junction, and it is a problem that all terrain tessellation
methods must account for. To fix this, we must ensure that when one tri-
angle splits, the triangle that shares the hypotenuse edge is also split.

158 Real-Time 3D Terrain Engines Using C++ and DirectX 9

FIGURE7.3 Splitting one triangle without adjusting the triangle
that shares the split edge can result in a gap.

This creates a cascading problem within the mesh. As triangles are
split, they might force neighboring triangles to split. To use the binary tri-
angle tree effectively, we must ensure that each split or merge operation
we perform updates the neighboring triangles as well. Each triangle must
not only be aware of the child nodes below it, but also the three neigh-
boring triangles that share the triangle’s edges. The triangle links are
shown in Figure 7.4.

Child A Child B

FIGURE7.4 Each node in the binary triangle tree stores links
to the child nodes and the three neighboring triangles.

Chapter7 The ROAM Terrain System 159

When a triangle is split, one of two cases can result. If the base neigh-
bor (as shown in Figure 7.4) shares a hypotenuse with the triangle being
split, then it alone needs to be split in order to prevent gaps. If the base
neighbor does not share a hypotenuse with the triangle being split, it
must be recursively split until a triangle is created that does share a hy-
potenuse edge with the splitting triangle. This recursive process is shown
in Figure 7.5.

FIGURE7.5 The steps required to force a split in an adjacent triangle. On the left,
the desired split is shown as a dotted line. On the right, the total number of forced
split operations is shown.

IMPLEMENTING ROAM

In Chapter 6, “Basic Terrain Geometry,” we introduced the cTerrain and
cTerrainSection classes for managing a basic set of static terrain geome-
try. For our implementation of ROAM, we will derive new classes from
these base objects. This is a recurring theme that we will use for each of
the terrain geometry methods we will cover. While the implementations
change, the interfaces remain largely the same between all methods.
Just as we subdivided the original terrain into a grid of cTerrain
Section objects, we will divide our ROAM terrain into similar pieces.
While the ROAM method relies strongly on the binary triangle tree, we
find in practice that building a single tree for the entire terrain is imprac-
tical. Building such a tree from a single root triangle would cause us to
perform many needless split operations simply to reach a minimum LOD
for our terrain. Instead, we continue to divide the terrain into grid sec-
tions, each of which contains a pair of binary triangle trees. These grid

160

Real-Time 3D Terrain Engines Using C++ and DirectX 9

squares become the minimum resolution for the terrain, since our least-
detailed version of the terrain would simply be to draw the root triangles
of each grid section.

Two classes are derived to house the ROAM-enabled terrain:
cRoamTerrain and cRoamTerrainSection. These maintain the same rela-
tionship as the cTerrain and cTerrainSection pair of classes. cRoamTerrain
is the central repository for all terrain data, and cRoamTerrainSection ob-
jects represent discrete areas of the terrain arranged in a grid. While each
class inherits the bulk of their functionality from the original terrain base
classes, some additions must be made to contend with the dynamic na-
ture of a ROAM terrain.

For each frame, we will subdivide the terrain using our error metric
test found in Equation 7.1 to build a list of triangles that best represent
the terrain. To facilitate this dynamic list of triangles, we need to add
some memory management to our cRoamTerrain class. We will begin by
defining the data structure required per triangle, and then examine ways
to manage the allocation and release of these structures efficiently.

As shown in Figure 7.4, each triangle in the ROAM system maintains
linkage information to five neighboring and child triangles. We represent
this with the simple structure shown in Listing 7.1, cTriTreeNode. This
structure represents a single node in our binary triangle tree and the five
links maintained to neighboring and child nodes. cRoamTerrain contains a
fixed pool of these structures, allowing cRoamTerrainSection objects to re-
quest node structures rather than perform any type of runtime memory
allocation. This is a fixed size pool, meaning that not all requests for new
nodes will be honored. When the pool is empty, all further node requests
will fail and triangle splitting must cease. Listing 7.1 also contains the re-
questTriNode member function of the cRoamTerrain class used to manage
cTriTreeNode structure requests.

LISTING7.1 Managing cTriTreeNode requests within the cRoamTerrain dass.

/* ¢TriTreeNode

This is a single node within the ROAM
binrary triangle tree. A pool of these
structures are stored within the
cRoamTerrain class for allocation.

Chapter7 The ROAM Terrain System 161

struct ¢TriTreeNode

{

cTriTreeNode *baseNeighbor;
cTriTreeNode *leftNeighbor;
cTriTreeNode *rightNeighbor;
cTriTreeNode *leftChild;
cTriTreeNode *rightChild;

}s

// this function handles client requests for
// cTriTreeNode objects from our local pool.
// we use m_nextTriNode to store the next

// available index in the pool. When this

// index reaches the end of the pool, all

// nodes are in use.

cTriTreeNode* cRoamTerrain::requestTriNode()

{
cTriTreeNode* pNode = 0;

if (m_nextTriNode < k_maxTriTreeNodes)

{
// pull a node from the pool

// and erase any old data in it

pNode = &m_pTriangleNodePool[m_nextTriNode];
memset (pNode, 0 ,sizeof(cTriTreeNode));
++m_nextTriNode;

// this may be zero. Callers must
// handle this possibility
return pNode;

You might notice in Listing 7.1 that no mechanism is provided to re-
lease cTriTreeNode objects that are requested from the pool. This is by de-
sign. We will be building a new binary triangle tree from scratch each
frame, so no individual nodes are ever returned to the pool. Instead, the
entire pool is reset at the start of each frame by simply resetting the
m_nextTriNode counter back to zero. Within each cRoamTerrainSection,
we also clear the child links of the root triangles, thereby completely de-
stroying the tree built in the previous frame.

Using the fixed-size pool of cTriTreeNode structures and performing
the reset operation each frame completely removes the need for any type
of runtime memory allocation to maintain the ROAM system. This is far

162

Real-Time 3D Terrain Engines Using C++ and DirectX 9

more efficient than dynamic allocation, but imposes a substantial draw-
back. The pool has a limited quantity, which will force us to stop splitting
triangles once the well runs dry. When this occurs, we must draw what-
ever triangles we have split thus far and continue on to the next frame.
Each cRoamTerrainSection contains two base cTriTreeNode structures as
members of the class, so we are guaranteed a minimum of two triangles
per terrain section. While this will prevent any holes from appearing in
the terrain, running out of triangles to split might force sections of the
terrain to use lower LOD representation than we desire.

We contend with this case by prioritizing the tessellation of cRoam
TerrainSection objects. Knowing that we might run out of cTriTreeNode
structures at some point, we need to ensure that cRoamTerrainSection ob-
jects closest to the camera perform their triangle split operations first. If
we run out of cTriTreeNode structures, the cRoamTerrainSection objects
forced to use lower LODs will most likely be those at the end of the
queue, furthest away from the camera.

To maintain this priority list, cRoamTerrainSection objects that are
found to be within the camera frustum compute their distance to the
camera, and then submit themselves to a tessellation queue within the
cRoamTerrain parent class. Within this class, a fixed-size queue of pointers
to cRoamTerrainSection objects is used to maintain a list of sections that
require tessellation in the next frame. Once all terrain sections are sub-
mitted to the queue, a quick-sort algorithm is run to sort the list by prox-
imity to the viewer. This re-ordered list is then used to schedule each
cRoamTerrainSection for tessellation, ensuring that sections closest to the
camera get first pick from the cTriTreeNode pool.

Complex? Yes. However, it does the trick without the need for run-
time allocation. The last remaining caveat is that the tessellation queue it-
self is a fixed size, and must therefore be large enough to hold all
cRoamTerrainSection objects that require tessellation. Exceeding the lim-
its of the tessellation queue would return us to the original problem of
having to abort the tessellation process early, resulting in poor triangle
subdivision in some locations. The good news is that our tessellation
queue entries are merely pointers, so we can afford to pre-allocate a tes-
sellation queue that can hold as many cRoamTerrainSection pointers as
we feel we will ever encounter. Assertions placed in the code will alert us
to situations where we overrun the end of the tessellation queue. Should
this situation arise, we will need to increase the size of the tessellation
queue. Listing 7.2 shows some of the member functions found within
cRoamTerrain that are responsible for maintaining and processing the tes-
sellation priority queue.

Chapter7 The ROAM Terrain System 163

It should also be noted that the original ROAM implementation pre-
sented by Duchaineau et al [Duchaineau] also introduced a method of
storing split and merge operations in a pair of priority queues. These
queues were used to prioritize split and merge operations across the
mesh, using frame-to-frame coherency of the mesh to begin each
process. In our implementation of ROAM, we take a simpler approach
and recursively split the triangles in a top-down manner, creating a new
mesh for each frame. While less ideal, our brute-force is easier to code
and manage as a way of introducing the ROAM algorithm and binary tri-
angle tree. Successful implementations of the ROAM algorithm in popu-
lar games such as Longbow Digital Arts game TreadMarks have shown
that the priority queues are not necessary to sustain a playable frame
rate. Therefore, adding the priority queues described by the original
paper is left as an exercise for the reader.

LISTING7.2 Highlights of the cRoamTerrain dass member functions used to manage the
tessellation queue for cRoamTerrainSections.

/1

// reset is called at the start of each frame

// to return all counters to zero, preparing

// both the triangle node pool and the

// tessellation queue for new entries

/1

void cRoamTerrain::reset()

{
// reset internal counters
m_tessellationQueueCount = 0;
m_nextTriNode=0;

// reset each section

int total = m_sectorCountY*m_sectorCountX;
for (int i=0; i<total; ++i)

{

m_pRoamSectionArray[i].reset();

}

/1

// As sections are pulled from the quad tree,

// they add themselves to the tessellation queue
/1

bool cRoamTerrain::addToTessellationQueue(

164 Real-Time 3D Terrain Engines Using C++ and DirectX 9

cRoamTerrainSection* pSection)

if (m_tessellationQueueCount
< k_tessellationQueueSize)
{
m_tessellationQueue[m_tessellationQueueCount] =
pSection;
++m_tessellationQueueCount;
return true;

// while we handle this failure gracefully
// in release builds, we alert ourselves
// to the situation with an assert in debug
// builds so we can increase the queue size
debug_assert(

0,

“increase the size of the ROAM tessellation queue”);
return false;

// local sorting functor used
// by the quick sort algorithm
typedef cRoamTerrainSection* LPRoamSection;
struct sort_less
{
bool operator()(
const cRoamTerrainSection*& a,
const cRoamTerrainSection*& b)const
{
return a->queueSortValue()
< b->queueSortValue();
}
};

/1
// This function is called to sort the queue and
// allow each section to tessellate in order
/1
void cRoamTerrain::processTessellationQueue()
{
// sort the tessellation list
// see “core\quick_sort.h”
// for details
QuickSort(m_tessellationQueue,

Chapter7 The ROAM Terrain System 165

m_tessellationQueueCount,
sort_less());

// tessellate each section
uint32 i;
for (i=0; i<m_tessellationQueueCount; ++i)
{
// split triangles based on the
// scale and limit values
m_tessellationQueue[i]->tessellate(
m_vScale, m_vLimit);

// gather up all the triangles into
// a final index buffer per section
for (i=0; i<m_tessellationQueueCount; ++i)

{

m_tessellationQueue[i]->buildTrianglelList();

}

BUILDING ROAM DISPLAY GEOMETRY

As shown at the end of Listing 7.2, the final step after all sections have
been queued and all triangles split is to run back through the tree and
gather up the triangles for display. Just like our original terrain imple-
mentation from Chapter 6, we render each section of the terrain indi-
vidually through the sorted render queue. All that remains is for us to
visit each visible cRoamTerrainSection to build the vertex and index
buffers needed to submit to the queue. This is performed through the
buildTriangleList member function of cRoamTerrainSection.

Our implementation used the exact same vertex buffer streams
found in the cTerrain base class. All that our tessellation requires is the
construction of the index buffer that will define the triangles we actually
render. This has some performance gain over dynamic vertex buffer cre-
ation, which would require sending much more data over the AGP bus to
the video card each frame. With our implementation, vertices remain as
static allocation in video card memory, and only the triangle vertex in-
dices are updated each frame. Building this set of indices requires a sim-
ple recursion through the tree down to each leaf node. Once a leaf node
is found, the triangle represented by the leaf node is added to the index
buffer. When the index buffer is complete, the terrain section is ready

166 Real-Time 3D Terrain Engines Using C++ and DirectX 9

for submission to the render queue. Listing 7.3 shows the recursive func-
tions within cRoamTerrainSection that build the dynamic index buffer for

display.

LISTING7.3 Building the dynamic index buffer for ROAM section rendering.

void cRoamTerrainSection::buildTriangleList()
{
// lock the dynamic index buffer
m_pIndexList = m_pIndexBuffer->lock(
nWriteLock, 0, 0);
m_totalIndices=0;

// add all the triangles to the roamTerrain
// in root triangle A
recursiveBuildTriangleList(
&m_rootTriangleA,
0, 16, 16*17);

// add all the triangles to the roamTerrain
// in root triangle B
recursiveBuildTriangleList(
&m_rootTriangleB,
(17*17)-1, 16*17, 186);

// unlock the index buffer
m_pIndexBuffer->unlock();
m_pIndexList=0;

void cRoamTerrainSection::recursiveBuildTrianglelList (
cTriTreeNode *tri,
uint16 iCornerA, uinti6 iCornerB, uinti16 iCornerc)
{
// if there are children, we draw them instead
if (tri->leftChild)
{
debug_assert(
tri->rightChild,
“invalid triangle node”);

uint16 iMidpoint = (iCornerB+iCornerC)>1;
recursiveBuildTriangleList(
tri->leftChild,
iMidpoint, iCornerA, iCornerB);

Chapter 7 The ROAM Terrain System 167

recursiveBuildTriangleList(
tri->rightChild,
iMidpoint, iCornerC, iCornerA);

}

else if (m_totallndices + 3 < m_maxIndices)

{
// add the local triangle to the index list
m_pIndexList[m_totalIndices++]=iCornercC;
m_pIndexList[m_totalIndices++]=iCornerB;
m_pIndexList[m_totalIndices++]=iCornerA;

e To end our look at ROAM, we show one final listing. On the CD-
ovmieco ROM, a demonstration program can be found that uses the ROAM classes
described here. This program, chapter7_demo0.exe, handles the setup and
rendering of the ROAM terrain in the main.cpp file. Within this file, a
small amount of extra work is performed to locate all visible terrain sec-
tions, queue them for tessellation, and then process each item in the
queue. All work is performed within the member functions listed within
this section, but the main.cpp file is responsible for initiating these proce-
dures. Listing 7.4 shows the simple steps taken in the chapter7_demo0.exe
program to tessellate and render the ROAM terrain.

LISTING7.4 Managing the tessellation and rendering of a ROAM terrain. This is an excerpt from the
code found inthemain. cpp file of the chapter7_demo0. exe program.

// find all visible objects, including
// ROAM terrain sections
cSceneObject* pFirstMember =
quadTree() .buildSearchResults(
activeCamera()->searchRect());
cSceneObject* pRenderList = pFirstMember;

// reset the ROAM terrain
m_terrainSystem.reset();

// prepare all objects for rendering

// this also adds ROAM terrain sections
/] to the tessellation queue
while(pFirstMember)

{

pFirstMember->prepareForRender();

168 Real-Time 3D Terrain Engines Using C++ and DirectX 9

REFERENCES

pFirstMember = pFirstMember->nextSearchLink();

// tessellate all terrain sections queued
m_terrainSystem.processTessellationQueue();

// render all objects, including the newly
// tessellated ROAM sections.
// (puts them in the render queue)
pFirstMember = pRenderList;
while (pFirstMember)
{
pFirstMember->render();
pFirstMember = pFirstMember->nextSearchiink();

[Duchaineau] Duchaineau, M., M. Wolinski, D. Sigeti, M. Miller, C.
Aldrich, and M. Mineev-Weinstein. “ROAMing Terrain: Real-Time
Optimally Adapting Meshes,” (available online at www.linl.gov/graph-
ics/ROAM).

[Turner] Turner, B. “Real-Time Dynamic Level of Detail Terrain Render-
ing with ROAM,” (available online at www.gamasutra.com/features/
20000403 /turner_01.htm).

169

TILED GEOMETRY
TECHNIQUES

170 Real-Time 3D Terrain Engines Using C++ and DirectX 9

CHUNKED TERRAIN

ne of the perceived flaws with the ROAM method is the reliance

on dynamic index buffers for display. The precision gained by

making level-of-detail (LOD) decisions for each triangle yields a
near-ideal set of geometry, but can generate a unique set of geometry for
each camera location. Uploading the generated index buffer to the video
card delivers a substantial blow to real-time performance, a matter that is
only exaggerated by our rebuilding of the vertex set each frame. In addi-
tion, traditional recursion of the binary triangle tree generates individual
triangles that need to be rendered. This is far less efficient than groups of
triangles packaged into strips and fans for the hardware to use for cache-
coherency. While generating these triangle lists from the ROAM output is
not impossible, it is a daunting task for programmers new to the subject.

Instead, we turn to aggregate methods of managing terrain geometry.
By this we mean techniques that perform LOD decisions on groups of tri-
angles, rather than each individual triangle. These aggregate groups are
commonly defined as squares within a regular grid covering the terrain.
All LOD decisions are made at the resolution of the grid rather than on a
per-triangle basis, allowing pre-made sets of geometry to be built for each
grid square at various LOD levels. The benefit of these grid-based tech-
niques is that less actual LOD computations are required at runtime, and
the ready-made sets of geometry can be built to take advantage of hard-
ware strip and fan coherency.

In this chapter, we look at two methods of working with terrain in
grid increments. The first method, Chunked Terrain, was developed by
Thatcher Ulrich [Ulrich] of Oddworld Inhabitants®. Ulrich’s method uses
a tree structure of grid cells, not unlike a quadtree, to provide increasing
detail. The second method, developed by the author [Snook], uses a sin-
gle grid of cells, each of which can be displayed at a precomputed LOD.
Both methods rely on additional geometry placed between cells of differ-
ent detail levels to hide any gaps that might appear.

The idea of chunking terrain into squares along a regular grid is a won-
derful simplification to the ROAM binary triangle tree. Where ROAM
used an error metric to recursively travel down a binary tree to the de-
sired depth, Chunked Terrain uses a similar error metric to traverse down
a quadtree to the desired depth. The difference is that the result found
within the quadtree node of the Chunked Terrain contains a small mesh,
pre-assembled for peak rendering efficiency. While the quadtree nodes
do not allow for per-triangle adjustment of the terrain geometry, the

Chapter8 Tiled Geometry Techniques 171

gains made in hardware efficiency far outweigh this small penalty in pre-
cision.

Figure 8.1 shows a representation of the Chunked Terrain tree de-
scribed by Ulrich. At the top level of the tree, a single square is formed
using two triangles. The second level of the tree contains four members,
each at a higher detail level than its parent. This construction would re-
peat until the resolution of the underlying height map is fully repre-
sented by triangles. Just as we did with ROAM, each level of the tree is
given an error metric based on the difference between the interpolated
vertices and the true height data for the terrain.

FIGURE8.1 Two levels of LOD provided by the Chunked
Terrain quadtree.

The rendering process is also identical to our implementation of the
binary triangle tree within ROAM. For each node, we compare the error
metric of the node with our view-dependant tolerance limit using a ratio
of error over distance (see Equation 7.1). If the node is within our toler-
ance limit, we render the node contents and move on. If not, we step
deeper into the tree and test each of the four children. This process re-
peats until all desired nodes in the tree have been found.

As with ROAM, we also have the issue of cracks forming within the
terrain when two grid cells are rendered with different levels of tessella-
tion. Rather than forcing neighbors to subdivide to a matching set of ver-
tices, Ulrich provides a novel approach using a polygonal skirt around
each rendered grid cell. These skirts are no more than vertically oriented
triangles placed along the edge of the mesh to conceal the gap between
cells. Figure 8.2 shows an example of this skirt geometry.

172 Real-Time 3D Terrain Engines Using C++ and DirectX 9

FIGURE8.2 Skirt geometry placed around the edge of four grid cells. The vertical triangles
of each skirt are shown in gray.

As Figure 8.2 shows, the vertical skirt polygons can create a disconti-
nuity on the mesh, forming vertical peaks among the otherwise smooth
mesh. At very coarse tessellations, these vertical peaks would be apparent
to the user and might serve as a distraction. However, Ulrich was able to
show that with a sufficiently low view-dependent tolerance, these peaks
can be minimized, often to a pixel height or less, making them nearly in-
distinguishable from the surrounding polygons. This means that the scale
and limit parameters we use to control LOD decisions will need to be ad-
justed to prevent these vertical polygons from becoming apparent to the
user.

MANAGING CHUNKS OF GEOMETRY

The chunked terrain is stored in a set of classes derived from cTerrain and
cTerrainSection. As with our ROAM implementation in the previous
chapter, we derive from these classes to maintain a similar interface to
manage and render the terrain. Our two new classes are cChunkTerrain
and cChunkTerrainSection. As always, they represent the overall parent
object of the terrain and individual grid-aligned sectors of the terrain
mesh, respectively.

To facilitate the use of the chunk sections and their additional skirt
geometry, we find that some additional geometry is needed by the chun-
ked terrain system. The vertical skirt geometry requires custom index
buffers to define the triangles of the skirt, and the additional vertices that
define the bottom of the skirt edge. As with all of our sector-based terrain

Chapter8 Tiled Geometry Techniques 173

classes, we take advantage of the fact that much of this additional geom-
etry can be shared among all the terrain sectors.

To begin, we must first create the skirt vertices. The bottom of the
skirt contains vertex data that is identical to the top, except that the z-axis
height value is offset by some factor. All texture coordinates and surface
normals remain the same. To enable creation of the skirts, we simply du-
plicate our mesh vertices, copying all data and offsetting the height value
of each vertex. Rather than store this new data in a separate vertex
buffer, we simply double the size of the original buffer and append the
new data to the end. This converts our vertex buffer into two sections,
which we call pages. The first half of the vertex buffer (page 0) is the true
surface geometry of the terrain section, while the second half (page 1)
holds the same geometry offset by some vertical distance to form the bot-
tom of the skirt geometry.

Creating a duplicated set of vertices might seem wasteful at first, but
keep in mind that a skirt might be necessary both around the outside
edge of our cChunkTerrainSection and within the interior of the section.
We will be recursively subdividing the section into smaller squares as we
traverse our internal quadtree, so skirt geometry might be needed be-
tween the interior edges of different detail levels. Storing the additional
vertices as a second page of the original vertex buffer makes the new
geometry transparent to the shaders. We can use the same vertex and
pixel shader to draw the tiles and skirts, using index buffers to control the
actual triangles rendered.

Listing 8.1 shows the additional setup required to build the vertex
and index buffers. We are still using the same duel-stream approach we
took advantage of in our standard and ROAM terrain, so both the shared
vertices within the cChunkTerrain and the individual vertices of the
cChunkTerrainSection must be duplicated. In addition, a set of skirt-
defining index buffers are created by the cChunkTerrain parent class. Our
continued use of section-based terrain rendering allows us to create a
common set of skirt index buffers for the entire terrain, just as we did
with the standard cTerrain index buffers in Chapter 6, “Basic Terrain
Geometry.”

LISTING8.1 Vertex and Index buffer setup within the chunked terrain tile dasses.

// these constant values are used in
// the code that follows. The can be
// found in the cChunkTerrain and

// cChunkTerrainSection class

// definitions

174 Real-Time 3D Terrain Engines Using C++ and DirectX 9

enum e_index_type

{
k_chunk = 0,
k_skirt,
k_totalIndexTypes
b

enum e_constants

{
k_minTessellationShift = 2,
k_maxDetaillLevels = 4,
k_topLod = 3,
k_cellshift = 2,

};

#define SKIRT_HEIGHT 50.0f

bool cChunkTerrainSection::buildvVertexBuffer()
{
bool result = true;
I/
// Build a vertex buffer and determine
// the min\max size of the sector
Iy
cString tempName;
tempName . format (
“terrain_section_%i_%i”,
m_sectorX,
m_sectorY);

m_pSectorverts =
TheGameHost.displayManager().
vertexBufferPool().createResource(tempName);

m_worldRect.z0
m_worldRect.z1

MAX_REAL32;
MIN_REAL32;

I/

/! for chunked terrain, we build a vertex buffer
/] with twice as many entries as normal. These
// are called ‘pages’. The first page is the

// true vertex buffer, the second page is an

// offset version of each vertex used when

/] rendering the skirts

I/

uint32 pageSize = m_xVerts*m_yVerts;

Chapter8 Tiled Geometry Techniques

uint32 bufferSize = pageSize<<i;

if (m_pSectorVerts)
{
// read in the height and normal for each vertex
cTerrain: :sSectorVertex* pVerts =
new cTerrain::sSectorVertex[bufferSize];

for (uinti6 y = 0; y<m_yVerts; ++y)
{
for (uint16 x = 0; x<m_xVerts; ++Xx)
{
float height =
m_pTerrainSystem->readWorldHeight (
m_heightMapX+x,
m_heightMapY+y);
cVector3 normal =
m_pTerrainSystem->readWorldNormal (
m_heightMapX+x,
m_heightMapY+y) ;

int vertIndex = (y*m_xVerts)+x;

pVerts[vertIndex].height
height;

pvVerts[vertIndex].normal
normal;

It

height -= SKIRT_HEIGHT;

pverts[vertIndex+pageSize].height =
height;

pverts[vertIndex+pageSize].normal
normal;

m_worldRect.z0 =
minimum(m_worldRect.z0, height);

m_worldRect.zt =
maximum{m_worldRect.z1, height);

result = result &&
m_pSectorVerts->create(
bufferSize,
sizeof(cTerrain::sSectorVertex),

175

176 Real-Time 3D Terrain Engines Using C++ and DirectX 9

FLAG(cVertexBuffer::nRamBackupBit),
pverts);

safe_delete_array(pVerts);

}

else

{

result = false;

}

return result;

bool cChunkTerrain::buildVertexBuffer()

{

cString tempName;
tempName.format (“terrain_system_%i”, this);

// create the vertex buffer

// shared by the sectors

m_pVertexGrid =
DisplayManager.vertexBufferPool().
createResource(tempName);

cVector2 cellSize(
m_sectorSize.x/m_sectorUnits,
m_sectorSize.y/m_sectorUnits);

int pageSize = m_sectorVerts*m_sectorVerts;
int bufferSize = pageSize<<i;

cVector2 vert(0.0f,0.0f);
stocalVertex* pVerts =
new stocalVertex[bufferSize];

// fill the vertex stream with x,y positions and
// uv coordinates. All other data (height and
/1 surface normals) are stored in the vertex
/! buffers of each terrain section
for (int y=0; y<m_sectorVerts; ++y)
{
vert.set(0.0f, y*cellSize.y);

for (int x=0; x<m_sectorvVerts; ++x)

{

Chapter8 Tiled Geometry Technigues

int index = (y*m_sectorVerts)+x;
cVector2 UV(
(float)x/(float) (m_sectorVerts-1),
(float)y/(float) (m_sectorVerts-1));

pVerts[index].xyPosition = vert;
pverts[index].localUVv = UV;

// duplicate this data into the

// second page as well
pverts[index+pageSize].xyPosition = vert;
pVerts[index+pageSize].localUV = UV;

vert.x += cellSize.x;

// now that we have built the data,
// create one of our vertex buffer
// resource objects with it
bool result =
m_pVertexGrid->create(
bufferSize,
sizeof (sLocalVertex),
0, pVerts);

safe_delete_array(pVerts);

return result;

bool cChunkTerrain::buildIndexBuffer()

{

bool result = true;

// the default index buffer is not used
// in chunked terrain, Instead, we build
// an entire set of index buffers for

// each detail level and possible

// skirt edge

int stride = (1<<m_sectorShift)+1;
int stepSize = stride>k_minTessellationShift;

int vertCount = (1<<k_minTessellationShift)+1;

m_detaillevels = 0;

177

178 Real-Time 3D Terrain Engines Using C++ and DirectX 9

while (stepSize

{

}

&& result
&& m_detaillevels<k_maxDetaillevels)

cString tempName;

tempName.format (
“chunk_index_buffer_%i”,
m_detaillevels);

m_indexBufferList[k_chunk][m_detaillLevels] =
DisplayManager.indexBufferPool().
createResource (tempName);

result = result &&
m_indexBufferList
[k_chunk] [m_detaillLevels]->createSingleStripGrid(
vertCount, // width of grid
vertCount, // height of grid
stepSize, // horz vertex count per cell
stepSize, // vert vertex count per cell
stride, // horz vertex count in vbuffer
0);

stepSize>=1;
++m_detaillevels;

// build an index buffer for each skirt.
// Consider each square detail level of
// the tile as a square with corners
// A,B,C & D as in the figure below

“w O T —

*/

[SN c
I |
| I
| [
| |
l |
N B
pos x ->

// the following code generates a single strip
// for each skirt following the edges

Chapter8 Tiled Geometry Techniques

// AB, BC, CD and DA
int sidelLength = (1<<m_sectorShift)+1;
int pageSize = sideLength*sidelLength;

for (
int ilevel=0;
result && ilevel<m_detaillevels;
++ilevel)

cString tempName;

tempName.format (
“chunk_skirt_index_buffer_%i”,
iLevel);

m_indexBufferList[k_skirt][iLevel} =
DisplayManager. indexBufferPool().
createResource (tempName) ;

int skirtSide = (1<<k_minTessellationShift)+1;
int indexCount=skirtSide<<3;

uint16* indexList = new uint16[indexCount];
uint16* pIndex = indexList;

int vStep;
int vIndex;
int count;
int horzStep =
(sideLength>ilevel)>k_minTessellationShift;
int vertStep =
sidelLength*horzStep;

// side AB
vIndex=0;
vStep = vertStep;
for(count=0; count<skirtSide;++count)
{
* (pIndex++)=vIndex;
*(pIndex++)=vIndex+pageSize;
vIndex +=vStep;

// side BC

vindex -= vStep;

vStep = horzStep;

for(count=0; count<skirtSide;++count)

179

180 Real-Time 3D Terrain Engines Using C++ and DirectX 9

* (pIndex++)=vIndex;
* (pIndex++)=vIndex+pageSize;
vindex +=vStep;

// side CD
vindex -= vStep;
vStep = -vertStep;
for(count=0; count<skirtSide;++count)
{
*(pIndex++)=vIndex;
*(pIndex++)=vIndex+pageSize;
vindex +=vStep;

}

// side DA
vindex -= vStep;
vStep = -horzStep;
for(count=0; count<skirtSide;++count)
{
*(pIndex++)=vIndex;
*(pIndex++)=vIndex+pageSize;
vIindex +=vStep;

result = result &&
m_indexBufferList[k_skirt][iLevel]->create(
D3DPT_TRIANGLESTRIP ,
indexCount,
0,
indexList);

safe_delete_array(indexList);

return result;

TESSELLATING TERRAIN CHUNKS

With the terrain geometry in place for our chunk sections, we can now
turn our attention to generating the error metrics needed to control the
tessellation of the terrain and the actual rendering process. As with the

Chapter8 Tiled Geometry Techniques 181

ROAM implementation of Chapter 7, “The ROAM Terrain System,” we
compute an error metric for each node in the tree. This error metric rep-
resents the maximum displacement error of the node and all of its chil-
dren. This nested set of error metrics allows us to recursively step through
the tree nodes and choose an optimal set geometry to render.

In the ROAM binary triangle tree, we had a single vertex to examine
for each node. In chunked terrain, each node represents an entire grid of
vertices. For each node, we must find the maximum error of the entire
grid. This value becomes the displacement error value for the node,
which is used by parent nodes to find the maximum error metric for a
branch within the quadtree. To perform the search for the maximum grid
displacement error, we add a member function to the cTerrain base class.
This makes the search procedure available to methods other than the
chunked terrain method we are currently building.

The procedure is a recursive examination of each triangle in the grid,
and the real-world height values they approximate. The entire process is
shown in Listing 8.2. Note that we use the same parameter scheme we
used for building a grid-based index buffer. This allows us to determine
the error metric for any grid of vertices at any level of detail.

LISTING8.2 Finding the error metric for a grid of vertices at a specific LOD.

float cTerrain::computeErrorMetricOfGrid(
uint16 xVerts, // width of grid
uint16 yVerts, // height of grid
uint16 xStep, // horz vertex count per cell
uinti16 yStep, // vert vertex count per cell
uint16 xOffset, // starting index X
uint16 yOffset) // starting index Y

float result = 0.0f;
int total_rows = yVerts-1;
int total_cells = xVerts-1;

unsigned short start_vert =
(yOffset*m_tableWidth)+xOffset;

unsigned short lineStep =
yStep*m_tableWidth;

float invXStep = 1.0f/xStep;
float invYStep 1.0f/yStep;

for (int j=0;j<total_rows;++j)

182 Real-Time 3D Terrain Engines Using C++ and DirectX 9

uint16 indexA = start_vert;

uint16 indexB = start_vert+lineStep;
float cornerA = readWorldHeight (indexA);
float cornerB = readwWorldHeight (indexB);

for (int i=0; i<total_cells;++i)

{
// compute 2 new corner vertices
uint16 indexC = indexA+xStep;
uint16 indexD = indexB+xStep;

// grab 2 new corner height values
float cornerC = readWorldHeight (indexC);
float cornerD = readWorldHeight(indexD);

// setup the step values for

// both triangles of this cell

float stepX0 = (cornerD-cornerA)*invXStep;
float stepYO (cornerB-cornerA)*invYStep;
float stepXi (cornerB-cornerC)*invXStep;
float stepYi (cornerD-cornerC)*invYStep;

// find the max error for all points
// covered by the two triangles
int subIndex = indexA;
for (int y=0; y<yStep;++y)
{
for (int x=0; x<xStep;++x)
{
float trueHeight =
readWorldHeight (subIndex);
++subIndex;

float intepolatedHeight;

if (y < (xStep-x))
{
intepolatedHeight =
cornerA
+ (stepX0*x)
+ (stepY0*y);
}
else

{

Chapter8 Tiled Geometry Techniques 183

intepolatedHeight =
cornerC
+ (stepX1*x)
+ (stepYl*y);

float delta = absoluteValue(
trueHeight - intepolatedHeight);

result = maximum(
result,delta);

}
subIndex = indexA+(y*m_tableWidth);

// save the corners for the next cell
indexA = indexC;

indexB = indexD;

cornerA = cornercC;

cornerB = cornerD;

start_vert += lineStep;

return result;

In the cChunkTerrainSection objects, these error metric values com-
puted from the vertex grid are stored in a fully expanded quadtree. This
tree of error metrics is the sole representation used to form the quadtree
of chunk sections. Unlike the ROAM implementation, we do not use an
actual structure of pointers to represent our tree nodes. Instead, we tra-
verse our tree by interpolating position information from the four corners
of the parent node, and use the data stored in the error metric tree for
testing. Listing 8.3 shows how the error metric tree is constructed.

LISTING8.3 Building the error metric tree.

#define LEVEL_SIDE_LENGTH(i) (1<<i)

enum e_constants

{

184 Real-Time 3D Terrain Engines Using C++ and DirectX 9

k_minTessellationShift = 2,
Y

void cChunkTerrainSection: :buildErrorMetricTree()
{
// the sector shift tells us how large our
// root node is in terms of vertices
int shift = m_pTerrainSystem->sectorShift();
int stride = (1<<shift)+1;

// this information is used to setup our initial
// step size and vertex count information
int stepSize =
stride>k_minTessellationShift;
int vertCount =
(1<<k_minTessellationShift)+1;

// we can now step through the levels
/] of detail and determine an error
// metric for each node of the quad
// tree. This data is stored in the
// error metric tree for later use
int i;
for (i=m_totallLevels-1; i>=0;--1i)
{
int localStep = stepSize>i,;
int xSpan = (vertCount-1)*localStep;
int ySpan = (vertCount-1)*localStep;

int side_count = LEVEL_SIDE_LENGTH(i);

for (int y=0; y<side_count;++y)
{
for (int x=0; x<side_count;++x)
{
// compute the local errorMetric.
// m_heightMapX and m_heightMapY
// are the pixel location in the
// height map for this section
float errorMetric =
m_pTerrainSystem->computeErrorMetricOfGrid(
vertCount, // width of grid
vertCount, // height of grid
localStep, // horz vertex count per cell
localStep, // vert vertex count per cell

Chapter8 Tiled Geometry Techniques 185

m_heightMapX+

(x*xSpan), // starting index X
m_heightMapY+

(y*ySpan));// starting index Y

// max with the errorMetric of our children
if (i+1 < m_totalLevels)
{

int nextLevel = i+1;

int nX = x<<1;

int nY = y<<1;

int dim = side_count<<1;

errorMetric = maximum(
errorMetric,
m_errorMetricTree
[nextLevel][(nY*dim)+nX]);
errorMetric = maximum(
errorMetric,
m_errorMetricTree
[nextLevel] [(nY*dim)+nX+1]);
errorMetric = maximum(
errorMetric,
m_errorMetricTree
[nextLevel] [((nY+1)*dim)+nX]);
errorMetric = maximum(
errorMetric,
m_errorMetricTree
[nextLevel][((nY+1)*dim)+nX+1]);

m_errorMetricTree[i][(y*side_count)+x] =
errorMetric;

Tessellating the chunked terrain is now a simple matter of examining
each node in our quadtree of terrain chunks. In each node, we decide if
the node itself should be drawn, or if we should instead step through and
examine the four child nodes. As with the ROAM implementation, we
use the ratio of error and distance to determine whether to draw a node
or continue traversing the tree. The error metric values for each node in
the tree are precomputed and stored in the error metric table, ready for

186

Real-Time 3D Terrain Engines Using C++ and DirectX 9

access. To test each node, however, we still need a distance value from
the node to the viewer.

The process begins by examining the root node of a cChunkTerrain
Section and computing distance values to each of its four corners. Com-
puting the distance values is a slow operation (it involves a square root
calculation), but this is a one-time cost per section for each frame. As we
recursively step down through the children, we interpolate these four
distance values rather than perform any type of distance calculation
within the children. The grid-based nature of our terrain sections makes
this possible.

For each node, we determine the corner that is closest to the viewer,
and use this distance value to compute the error ratio. Based on the ratio
scale and limit values set by the user, we can easily determine if a given
node should be drawn. As we encounter nodes to draw, we add them to
a list of nodes to be drawn in the next render pass. Listing 8.4 shows
highlights of the process described.

LISTING8.4 Finding nodes to draw within a cChunkTerrainSection.

void cChunkTerrainSection: :prepareForRender()

{

cCamera* pCamera = TheGameHost.activeCamera();

// compute a 2d point for each corner of the section
cVector2 corner0(m_worldRect.x0, m_worldRect.y0);
cvector2 cornert(m _worldRect.x0, m_worldRect.yl);
cvector2 corner2(m_worldRect.x1, m_worldRect.y1);
cVector2 corner3(m_worldRect.x1, m_worldRect.y0);

cVector2 viewPoint= pCamera->worldPosition().vec2();

// compute view distance to our 4 corners

float distance0 = viewPoint.distance(corner0);
float distancel = viewPoint.distance(corneri);
float distance2 = viewPoint.distance(corner2);
float distance3 = viewPoint.distance(corner3);

//clear the render list
m_totalRenderEntries=0;

/] recursively tessellate and add
// to the internal render list
recursiveTessellate(

distance0, distancet, distance2, distance3,

Chapter8 Tiled Geometry Technigues 187

0, 0, O,
chunkTerrain()->1odErrorScale(),
chunkTerrain()->1lodRatioLimit());

void cChunkTerrainSection::recursiveTessellate(
float distA, float distB, float distC, float distD,
int level, int levelX, int levelyY,
float vScale, float vLimit)

bool split = false;

// can we attempt to split?

if (level+1 < m_totallLevels)

{
int index = (levelY*LEVEL_SIDE_LENGTH(level))+levelX;
float errorMetric = m_errorMetricTree[level][index];

// find the shortest distance
float dist = minimum(distA, distB);
dist = minimum(dist, distC);

dist = minimum(dist, distD);

// find the ratio of errorMetric over distance
float vRatio = (errorMetric*vScale)/(dist+0.0001f);

// if we exceed the ratio limit, split
if (vRatio > vLimit)
{

int nextlLevel = level+i;

int startX = levelX<<i;

int startY = levelY<<1;

// compute midpoint distances

float midAB = (distA + distB)*0.5f;
float midBC (distB + distC)*0.5f;
float midCD = (distC + distD)*0.5f;
float midDA = (distD + distA)*0.5f;
float midQuad = (distA + distC)*0.5f;

// recurse through the four children
recursiveTessellate(
distA, midAB, midQuad, midDA,
nextlLevel, startX, starty,
vScale, vlLimit);

188 Real-Time 3D Terrain Engines Using C++ and DirectX 9

recursiveTessellate(
midAB, distB, midBC, midQuad,
nextLevel, startX, startY+1,
vScale, vLimit);

recursiveTessellate(
midBC, distC, midCD, midQuad,
nextLevel, startX+1, startY+i,
vScale, vLimit);

recursiveTessellate(
midAB, midQuad, midCD, distD,
nextLevel, startX+1, starty,
vScale, vLimit);

/! remember that we split
split = true;

/] did we split?
if (lsplit)
{
// add ourselves to the render list
if (m_totalRenderEntries < k_maxRenderEntries)
{
sRenderEntry& entry =
m_renderList[m_totalRenderEntries++};

int lodShift = 5 - level;
entry.level = level;

entry.offsetX = (levelX<<lodShift);
entry.offsety (levelY<<lodShift);

H

: On the accompanying CD-ROM, a demo program is provided to
onTHEcd show the chunked terrain method in action. Like all of our demonstra-
tions provided up to this point, we do not focus on any texturing or ren-
der effects. The demo program, chapter8_demo0. exe, is a simple showcase
of a small chunked terrain generated from a random height map. The
height map itself is stretched over the terrain as a grayscale image to il-

Chapter8 Tiled Geometry Techniques 189

lustrate the relationship between height values stored per-pixel and the
final LOD-enabled terrain.

INTERLOCKING TERRAIN TILES

The final method presented also uses a grid-based approach, this time
without any tree recursion. The method, first described in Game Program-
ming Gems 2 [Snook], instills each grid cell with a set of prebuilt geometry
at a variety of LOD levels. At the highest LOD, each grid square uses one
vertex for each corresponding pixel on the height map. For each succes-
sive LOD, half the vertices are discarded, creating a lower resolution ver-
sion of the mesh. This simple LOD method requires no tree information
or recursion, just a simple list of possible LODs per terrain section and the
error metrics that control their appearance.

To simplify storage in hardware, a single vertex buffer is used for all
versions of the mesh, with individual index buffers serving to create each
LOD. The index buffers define each LOD by using different vertices from
the common vertex buffer. Figure 8.3 shows two detail levels built from
the same vertices, using index buffers to define the triangles to be
rendered.

e
T U
u\ooono

FIGURE 8.3 Using index buffers to create separate detail levels from the same set of ver-
tices.

As with the previous methods, an error metric is calculated based on
the differences between the levels of detail for each grid square. Since the
grid squares are not organized in a hierarchy, we simply store a fixed
number of error metrics with each cell. As we step through the cells, we

190

Real-Time 3D Terrain Engines Using C++ and DirectX 9

check each error metric against our view-dependent tolerance value and
determine the proper index buffer to use. Like Ulrich’s Chunk Terrain,
we perform our detail level decisions at the grid resolution rather than
per triangle. However, the terrain tiles enforce a fixed stepping to this de-
cision rather than allowing for tree recursion to further refine the mesh.

As always, we have the potential of gaps to deal with. While we
could use the skirt geometry of the Chunked Terrain method to fill any
gaps, the coarseness of our grid cells would make them more apparent to
the end user. Instead, we need to perform some additional work to make
the terrain appear to seamlessly transition between LODs. To do this, we
further refine our index buffers to create gap-sealing geometry pieces
that lock our tiles together.

The total set of index buffers created for a tile can be broken into two
groups: body geometry and link geometry. Body pieces represent a major
portion of a tile at a given detail level, with areas removed to provide
space for the linking pieces to attach. Linking pieces fill the gap between
adjacent body pieces to form a seamless transition. Figure 8.4 shows a
pair of cells at separate LODs and the linking pieces used to connect
them.

FIGURE8.4 Two terrain tiles shown side by side with a linking piece (shown in
white) used to connect them.

Using these linking pieces implies that we have a set of body pieces
with notches removed from them, as shown in the right-hand tile in Fig-
ure 8.4. Given that our tiles can connect on four sides to geometry of a
lower detail, we require a set of 16 index buffers to represent each tile.
Because the index buffers contain relative vertex indices only, we can

Chapter8 Tiled Geometry Techniques 191

create a single set of 16 to use on the entire terrain. Figure 8.5 shows the
full set of 16 body pieces required for our tiles.

FIGURE8.5 The 16 basic shapes needed to represent the body of each terrain tile. Open areas
represent the space where linking pieces will be placed to connect to adjacent cells.

The number of linking pieces required depends on the total number
of LODs available per tile. We enforce that linking pieces are placed
within tiles along sides that are adjacent to lower-detail tiles. Therefore,
we limit the set of linking pieces to those that can step down from one
detail level to those below it. For example, Figure 8.6 shows two versions
of the same linking piece, each designed to connect to an adjacent detail
level that is lower than the cell containing the link.

FIGURE8.6 An example of two linking
pieces designed to connect to adjacent
cells of lower detail.

In the source/gaia folder on the CD-ROM, the index buffers for each
ovtneco o the shapes described are supplied as static data. The classes that com-
prise this terrain method, cTileTerrain and cTileTerrainSection, load

192

Real-Time 3D Terrain Engines Using C++ and DirectX 9

this static data and convert it into a table of index buffers required for
rendering. The vertex buffers used are the same dual-stream buffers sup-
plied by the cTerrain and cTerrainSection base classes. No special geom-
etry is required to facilitate our new method.

Setting up the terrain tiles is a simple matter of using the grid-based
error calculation function we built earlier (see Listing 8.2) to determine a
set of error metric values for the terrain section. In our sample imple-
mentation, each section can be drawn using one of four possible LODs.
To pick the best LOD, we precompute a set of three error metric values
for the section. These are then used during rendering to pick the proper
index detail level to draw. Listing 8.5 shows the functions used to set up
this data.

LISTING8.5 Setting and using error metric valuesin the cTiledTerrainSection dass.

// this function builds the error metric table
void cTiledTerrainSection: :computeErrorMetricTable()
{

int vertCount =1;

int stepCount = 8;

for (int lod=0; lod<k_totalDetaillevels; ++lod)
{
// compute the local errorMetric.
// m_heightMapX and m_heightMapY
// are the pixel location in the
// height map for this section.
// m_xVerts and m_yVerts are the
// width and height of the section
/] in vertices
m_errorMetric[lod] =
m_pTerrainSystem->computeErrorMetricOfGrid(
vertCount+1, // width of grid
vertCount+1, // height of grid
stepCount-1, // horz vertex count per cell
stepCount-1, // vert vertex count per cell
m_heightMapX, // starting index X
m_heightMapY);// starting index Y

vertCount <<=1;
stepCount >=1;

// make sure each error metric

Chapter8 Tiled Geometry Techniques

/! represents all the higher lods
m_errorMetric[1] =

maximum(m_errorMetric[1], m_errorMetric[2]);
m_errorMetric[0] =

maximum(m_errorMetric[0], m_errorMetric[1]);

// this function chooses the best lod to draw
// using the data provided in the error metric table
void cTiledTerrainSection: :prepareForRender()

{

cCamera* pCamera = TheGameHost.activeCamera();

// compute a 2d point for each corner of the section
cVector2 corner0O(m_worldRect.x0, m_worldRect.y0);
cVector2 corneri(m_worldRect.x0, m_worldRect.y1);
cVector2 corner2(m_worldRect.x1, m_worldRect.y1);
cVector?2 corner3(m_worldRect.x1, m_worldRect.y0);

cVector2 viewPoint= pCamera->worldPosition().vec2();

// compute view distance to our 4 corners

float distance0 = viewPoint.distance(corner0);
float distancet = viewPoint.distance(cornert);
float distance2 = viewPoint.distance(corner2);
float distance3 = viewPoint.distance(corner3);

// compute min distance as the test value
float dist = minimum(distance0O, distance1l);
dist = minimum(dist, distance2);

dist = minimum(dist, distance3);

// make sure the minimum distance is non-zero
dist = maximum(dist, 0.0001f);

// find the lowest lod which will suffice
m_lod = 0;
bool finished = false;

float vScale = m_pTerrainSystem->lodErrorScale();
float vLimit = m_pTerrainSystem->lodRatioLimit();

while (!finished)

{

// find the ratio of variance over distance

193

194 Real-Time 3D Terrain Engines Using C++ and DirectX 9

float variance = m_errorMetric[m_lod];
float vRatio = (variance*vScale)/(dist);

/] if we exceed the ratio limit, move to the next lod
if (vRatio > viLimit

&& m_lod+1 < k_totalDetaillevels)
{

++m_lod;
}
else

{

finished=true;

The cTiledTerrain class contains the code that examines the neigh-
bors of each cTileTerrainSection and issues the render queue entries for
the body and linking pieces needed to draw each section. This source code
can be found on the accompanying CD-ROM as the member function
cTiledTerrain::submitSection. In addition to the sample source code, the
ONTHE®D CD-ROM also contains a sample application, chapter8_demo1.exe, which

shows the interlocking terrain tiles in use.

A NOTE ON LOD POPPING

Each of the methods described for handling terrain geometry suffers from
popping artifacts. These are caused when an area of the terrain changes
tessellation levels, causing a visible “pop” in the terrain mesh. Of the
methods presented, these artifacts are least noticeable in the ROAM
method, due to the rather smooth nature of the per-triangle LOD
changes. Of the two grid-based approaches, the Chunked Terrain method
is least likely to exhibit popping, again due to the increased resolution af-
forded by the tree hierarchy it uses. Popping artifacts will be most notice-
able using the Interlocking Terrain Tiles method due to its much coarser
grid resolution and the spontaneous appearance of linking geometry be-
tween various grid squares.

The best way to deal with the popping artifacts of all three methods is
to animate, or morph, the changes between separate LOD levels over
time. This reduces the jarring nature of the artifacts and gives the appear-
ance of much smoother transitions between high and low areas of detail
within the mesh. This can be used with great success in the Chunked Ter-

REFERENCES

Chapter8 Tiled Geometry Techniques 195

rain method, virtually removing most popping artifacts. For the Inter-
locking Tiles method, morphing operations are less likely to yield the de-
sirable result. The spontaneous appearance of linking pieces will cause
popping to occur, even if morphing is attempted. These linking pieces use
the terrain vertices in a separate manner than the regular grid, connect-
ing different vertices into triangles to form the link piece. These new tri-
angles change the way height values are interpolated between vertices,
making it impossible to build a set of morph targets that will work in all
cases. Therefore, the interlocking terrain tile method is not a realistic can-
didate for morphing.

When using morph targets to hide popping artifacts, the preparation
for each method is the same: For each detail level, begin with vertex po-
sitions that match the surface of the previous detail level. As the viewer
continues to move, slowly interpolate between these starting positions
and the true position. Over time, the vertices move from their previous
height values to the proper values reported by the height mesh, removing
the popping effect of abrupt detail changes. To simplify the code, and
make the LOD changes more apparent, the sample programs provided
with this book do not attempt to morph between detail levels.

[Snook] Snook, G. “Simplified Terrain Using Interlocking Tiles.” Game
Programming Gems 2, pp. 377-383, Charles River Media, Inc., 2001.

[Ulrich] Ulrich, Thatcher. “Chunked LOD,” (available online at
http://tulrich.com/geekstuff/chunklod.html).

Blend Texture R Blend Texiure G Blend Texture B

Final Composite Image
197

198 Real-Time 3D Terrain Engines Using C++ and DirectX 9

n the previous chapter, we created a simple set of terrain geometry.

When rendered in wireframe, we can see the terrain level-of-detail

(LOD) methods at work and begin to imagine the final landscape. The
next task to overcome is texturing the terrain with realistic images to rep-
resent different ground surfaces. For this book, we will be sticking to a
few basic ground surfaces: grass, dirt, rock, and snow. On older hard-
ware, we can restrict this set even further when the number of textures
available per pixel shader is severely limited—more on this later in the
chapter.

The main focus of this chapter is to explore a few methods for textur-
ing the ground, along with the pros and cons of each. In keeping with the
procedural nature of noise maps used to create terrain geometry, we will
also explore procedural ways to create ground textures. This allows us to
continue to pursue a randomly generated terrain. Like the terrain geom-
etry itself, we can use hand-made data or procedural solutions for greater
flexibility.

A GREAT BiG BLURRY WORLD

ONTHECD

We’'ll begin by quickly dismissing the simplest approach: stretch a single
texture across the entire terrain. While practical from a rendering stand-
point, the tradeoff in visual quality helps us quickly rule this option out.
An easy way to measure visual quality is to determine the ratio of texture
pixels (texels) to screen pixels for a given method. For example, imagine
a section of terrain that fills the camera view. If a small texture is applied
to this geometry, the bilinear filtering of this texture will result in big,
blurry colors on screen. The higher the resolution of the texture, the less
blurry the result; in other words, as the ratio of texture pixels to screen
pixels grows, quality increases.

Our intent is to create a terrain that will span several miles. When a
terrain is generated to span such a large area, the texture required to
cover it and still maintain a decent texture-to-screen ratio is prohibitively
large. Even a terrain that is only intended to represent a square mile
would require a texture of 5280 x 5280 pixels just to maintain one pixel
per square foot! Therefore, we might need to look at solutions that cover
the terrain in multiple texture maps, rather than one large map.

This is not to say that using one large texture map to cover the terrain
is unreasonable—it would be a straight-forward approach to use. Even if
more robust texturing methods are used near the camera, a large texture
map can still be used on distant areas of the terrain. A utility program
called T2 is provided on the accompanying CD-ROM to help construct

Chapter9 Texturing Techniques 199

textures for use on terrain. This program allows the user to submit a
height map along with various properties of the terrain desired. The pro-
gram can then generate a texture of any size to use on the terrain. T2 also
provides the facility to divide this large texture up into smaller pieces.
When using grid-based terrain geometry such as the Chunked LOD
method, having a utility program to create textures to use on individual
areas of the terrain can be very useful. More information on T2 and its
author, Keith Ditchburn, can be found on the Web site listed in Appendix
D, “Recommended Reading.”

For readers who want to use pre-made terrain textures, the T2 pro-
gram is highly recommended. For this book, however, we will continue
to focus on procedural methods to generate random terrain. The engine
itself is oblivious to the source of the height maps used, so the output
from Mr. Ditchburn’s T2 program could easily be incorporated. With the
pre-made route of texture generation solved, we still need to find a pro-
cedural approach.

The first idea that should have popped into your head is tiling the
textures. If we created a single texture map and repeated it across the ter-
rain several times, we could maintain a much higher texture-to-screen
pixel ratio. This is true, but it would only work for homogenous surface
types. If we wanted to create a terrain of 100-percent grass, we could in-
deed tile a high-resolution grass texture across the entire terrain. How-
ever, any repetition in the grass pattern, however subtle, would quickly
become apparent when viewed repeating off into the distance. With a lit-
tle artistic effort, this effect can be greatly reduced—provided that you
want acre after acre of the same ground surface.

Another potential solution is a sector-based approach. Here we use
multiple, unique textures arranged in a 2D grid over the terrain. Each
texture represents only a small subset of the terrain, and we can maintain
a high pixel ratio by increasing the resolution of these textures. In a
sense, this method takes the large 5280 x 5280 pixel image we discussed
earlier, and divides it into smaller images. The result is the same, using
many textures to emulate a huge image. As we mentioned earlier, the T2
program is capable of generating these sector textures as well.

In practice, this approach can work quite well. However, there are a
few caveats with which to contend. First, we will need to control the
number of textures used in a given area. If many textures are needed to
render the view from the camera, we might put quite a burden on the Di-
rectX resource manager to continually page those textures into video
memory. If all the textures required will fit into video memory, this cost
is removed. However, if we use more data than video memory can hold,

the DirectX resource manager will begin paging the textures into video

200

Real-Time 3D Terrain Engines Using C++ and DirectX 9

memory as we use them, tossing older textures out to make room. This
can create a situation called thrashing, where resources are being contin-
ually uploaded to the video card to keep up with rendering demands.

If video memory space is not a concern, there is still the potential for
seams to develop between the texture images. Even if two textures are
designed in a paint program to stand together side by side perfectly, there
is still a potential for a seam to develop when filtering is applied. Bilinear
and anisotropic filtering methods, used to magnify or minify textures as
they are sampled by the pixel shader, compute a final color by sampling
more than one pixel of an image and blending to produce a final result.
These filters allow a texture to blur rather than become blocky as it ap-
proaches the camera. However, the filtering is applied per-texture, mean-
ing that none of the pixels in adjacent textures will be included in the
blending operation. As the edges of adjacent textures are filtered, they
will create color values that do not necessarily match the filtered results
of their neighbors. This can create a visual seam between two textures
that would normally be seamless when placed side by side. This effect is
exaggerated when texture wrapping modes (setting the texture stage
state to D3DTA_WRAP for one or more texture coordinates) are mistakenly
applied, causing the texture filter to sample pixels from the opposite edge
of the texture when blending a result.

Using texture address clamping (D3DTA_CLAMP) rather than wrapping
can reduce the appearance of seams, but the complete solution is a little
trickier, and requires some tedious texture preparation. To help ensure
that a texture will filter well with its neighbors, the adjacent pixels of the
neighboring textures must be placed around the outside edge of each tex-
ture. By slightly insetting the UV coordinates used to map each texture
onto its geometry, we can ensure that these edge pixels are never visible,
but are available to the texture sampler when filtering is applied. This re-
quires knowledge of the exact texture dimensions so that the UV coordi-
nates can be inset one pixel in from the actual edge of the image.

Depending on the degree of filter that will be applied, a one-pixel
border might not be adequate. When the textures used will be heavily fil-
tered, a thicker border might be required. This will be the case when tex-
tures recede into the distance and the sampling pattern applied by the
filter begins to reach beyond the one-pixel border. Given this potential
problem, the time-consuming setup for this technique, and the fact that it
still requires the same total memory footprint as the proposed 5280 x
5280 image, we will forgo this solution as well and seek something better
for our landscape. However, discussing these undesirable techniques was
not in vain.

Chapter9 Texturing Techniques 201

BLENDING SURFACE TEXTURES

Tiling a single image across the terrain would create a monotonous, bor-
ing result, but it is a step in the right direction. Of the methods we have
discussed so far, this is the clear winner in terms of potential texture-to-
screen pixel quality, memory requirements, and ease of use. It stands to
reason that if we can somehow incorporate multiple surface types into
this technique, we can arrive at a more desirable method.

In fact, the solution we will explore involves layering this simple
technique several times. Imagine if we tiled the terrain with not only a
single grass texture, but other textures as well such as dirt and rock. This
would create individual layers of terrain, one covered in dirt, one in rock,
and one in grass. Each layer is simply a single texture repeated ad infini-
tum, but mixing them together would provide a very organic result.

The idea is to allow different amounts of these layers to show
through in different areas of the terrain—creating a more organic result.
Some parts of our terrain could allow more of the grass layer to show
through, while others would appear rockier or expose the underlying dirt
layer. All that is needed is a means of controlling the amount that each
layer contributes to the final result.

To control the appearance of each layer, we can use a weighted aver-
age per-pixel. For each layer, we provide a weight value between 0.0 and
1.0 defining how much the layer is visible at a given location. If all the
weight values are created so that the weights of all layers add up to 1.0,
we can compute the final color of each pixel easily.

What we do is multiply each input texture by a visibility factor, and
then sum the results. The result is a terrain that contains the high
texture-to-screen pixel ratio we desire, with the ability to control the ap-
pearance of various surface types on a per-pixel basis. Figure 9.1 shows a
pictorial representation of the process. In this figure, four input textures
are shown. These are the three surface type textures and the blending
control image. Within the blending control image, the visibility factor for
each terrain surface is encoded in the red, green, and blue channels, re-
spectively. By modulating each texture with the corresponding blend
texture channel and summing the results, the final destination image can
be created.

202

Real-Time 3D Terrain Engines Using C++ and DirectX 9

Blend Texture R Blend Texture G Blend Texture B

Final Composite Image

FIGURE9.1 Three input textures representing grass, rock, and dirt blended with individual color
channels of the blend texture to create the final result.

In pixel shader terms, this is a straightforward multitexture shader—
which is an ideal starting point for our terrain. The pixel shader version
supported by the target hardware will determine the number of textures
we can blend in a single pass, so we will work with the lowest common

denominator of four textures for the time being. For our initial texturing
method, we will use all four to render our simple terrain in one pass.

Chapter9 Texturing Techniques 203

Assume for the moment that we have three surface textures—grass,
rock, and dirt—along with a fourth texture containing the blend amounts
for each in the red, green, and blue color channels. Using the pixel shader
shown in Listing 9.1, these textures can be blended to create the final ter-
rain of Figure 9.2. All that remains is to create the blend texture itself,
which can be done in any suitable paint program or by using a procedural
technique.

LISTING9.1 Asimple pixel shader to blend three surface layers using a fourth blend texture.

float4 ThreeSurfaceBlend(VS_OUTPUT In)
COLOR

// sample all four textures
float4 BlendControler =
tex2D(LinearSamp0, In.vTex0);
float4 texColorQ =
tex2D(LinearSamp1, In.vTex1);
float4 texColor1 =
tex2D(LinearSamp2, In.vTex2);
float4 texColor2 =
tex2D(LinearSamp3, In.vTex3);

// determine the amount of each surface to blend
float4 ColorQ =
(texColor0 * BlendControler.r);
float4 Colori =
(texColori * BlendControler.g);
float4 Color2 =
(texColor2 * BlendControler.b);

// sum the resulting colors
// and multiply by the diffuse
// vertex color (lighting)
return (ColorQ +
Color1 +
Color2)
*BlendControler.a
*In.vDiffuse;

Creating the blend texture by hand is simple enough; simply paint
the desired amount of each surface into the proper texture channel as a
grayscale value. Care must be taken to ensure that the blend factors add

204

Real-Time 3D Terrain Engines Using C++ and DirectX 9

up to 255 (white) to prevent over-saturation of the terrain when all the
surface textures are blended together. To facilitate random terrain, how-
ever, we will need a runtime method to create this blend texture.

cTerrain stores a great deal of information about the terrain. For each
pixel of the original height map, a height value and a surface normal are
stored. We can use this data to generate the blend texture by defining al-
titudes and slope angles where we would expect to find certain types of
terrain. By examining the data held in cTerrain and comparing it to the
desired slope and altitude data, we can procedurally paint a surface
blending texture. This is very similar to the functionality that the T2 util-
ity program performs offline. The main difference is that while the T2
program produces a final texture map, we want to only create the blend
texture needed to composite the final texture map in real time.

Creating the surface blend texture at the same resolution as the orig-
inal height map gives us a 1:1 ratio between the data stored in the
¢Terrain class and the final blend texture. However, there is no real need
to enforce such a size restriction on the blend texture. By providing a few
simple functions to interpolate between the vertex data held within
¢Terrain, we can create a texture of any size equal to or larger than the
original height map.

We will not be creating blend textures smaller than the height map
resolution for two reasons. First, a texture of lower resolution adversely
limits the way the terrain surfaces will be combined. This creates a poten-
tial for large, blocky areas of each surface type to appear. Second, inter-
polating across our multiple surface normals in our terrain data will yield
incorrect slopes—allowing us to place terrain surfaces where they would
not normally be expected.

In cTerrain, we add a set of functions for interpolating between the
data held per-vertex for the terrain. These functions, shown in Listing
9.2, sample a set of four vertices surrounding the location in question,
and interpolate them to produce a result. In the case of the surface nor-
mal interpolation, a renormalization of the result is required, since inter-
polating between surface normals can produce vectors that are no longer
of unit length; in other words, they become denormalized as part of the
calculation.

LISTING9.2 Height and surface normal interpolation functions found within cTerrain,

float cTerrain ::calcMapHeight(
float mapX,
float mapY)const

Chapter9 Texturing Techniques 205

mapX * (m_tableWidth-1);
mapY * (m_tableHeight-1);

float fMapX
float fMapY

int iMapX0 = realToInt32_chop(fMapX);
int iMapY0 = realToInt32_chop(fMapY);

fMapX -= iMapXo0;
fMapY -= iMapYO;

"

clamp(iMapX0, 0, m_tableWidth-1);
clamp(iMapYO, 0, m_tableHeight-1);

iMapXo
iMapY0

int iMapX1 = clamp(iMapX0+1, 0, m_tableWidth-1);
int iMapY1 = clamp(iMapY0+1, 0, m_tableHeight-1);

/] read 4 map values

float hO = readWorldHeight(iMapX0, iMapY0);
float hi readWorldHeight (iMapX1, iMapYQ);
float h2 = readWorldHeight(iMapX0, iMapY1);
float h3 = readWorldHeight(iMapX1, iMapY1);

!

float avgLo = (hi1*fMapX) + (hO*(1.0f-fMapX));
float avgHi = (h3*fMapX) + (h2*(1.0f-fMapX));

return (avgHi*fMapY) + (avgLo*(1.0f-fMapY));;

void cTerrain ::calcMapNormal(
cVector3& normal,
float mapX,
float mapY)const

float fMapX
float fMapYy

mapX * (m_tableWidth-1);
mapY * (m_tableHeight-1);

I

int iMapX0 = realToInt32_chop(fMapX);
int iMapY0 = realToInt32_chop(fMapY);

fMapX -= iMapX0;
fMapY -= iMapYO;

iMapXxo
iMapYo

clamp(iMapX0, 0, m_tableWidth-1);
clamp(iMapY0, 0, m_tableHeight-1);

int iMapX1 = clamp(iMapX0+1, 0, m_tableWidth-1);

206 Real-Time 3D Terrain Engines Using C++ and DirectX 9

int iMapY1 = clamp(iMapY0+1, O, m_tableHeight-1);

// read 4 map values from our table of

/] of data held per-vertex

cVector3d h0 = readWorldNormal(iMapX0, iMapY0);
cVector3 h1 = readWorldNormal(iMapX1, iMapYO0);
cVector3 h2 = readWorldNormal(iMapX0, iMapY1);
cVector3 h3 = readWorldNormal(iMapXt, iMapYt);

// average the results
cVector3d avglLo (h1*fMapX) + (h0*(1.0f-fMapX));
cVectord avgHi = (h3*fMapX) + (h2*(1.0f-fMapX));

i

normal= (avgHi*fMapY) + (avgLo*(1.0f-fMapY));

// re-normalize the result
normal.normalize();

Interpolating height and surface normals across our terrain is only a
small part of the task set before us. We must now define a way to control
the appearance of our three potential surface types based on elevation
and slope. This is actually far simpler than it sounds. First, we define our
control parameters as a small structure that will be provided for each tex-
ture we want to blend. This structure can be found within the cTerrain
class definition.

struct elevationData

{
float minElevation; // lowest elevation
float maxElevation; // highest elevation
float minNormalZ; // minimum z of the surface normal

float maxNormalZ; // maximum z of the surface normal
float strength; // overall strength (priority)
};

As the elevationData structure shows, we allow each terrain surface
to specify the minimum and maximum ranges for both elevation and
slope. Slope is measured in terms of the z component of the surface nor-
mal. Z values close to 1.0 are vertical, depicting flat areas of the terrain,
while lower surface normal z values represent steeper inclines. Setting
these values to ranges between 0.0 and 1.0 allows us to map a terrain sur-
face to cliff edges (low z values) or flat lands (high z values).

Chapter9 Texturing Techniques 207

The cTerrain class contains a member function that can generate a
blend texture using up to four elevationData structures as input. For each
pixel of the blend texture, this function samples a height value and sur-
face normal on the terrain and determines the blend amount of each sur-
face type. To compute these blend factors, the routine determines
individual weight values in terms of the elevation and slope ranges, and
then combines the results with the overall strength of each surface type.

Weight values are calculated based on the min and max ranges sup-
plied for elevation and slope. Terrain locations that fall within the center
of the min max range are given a weight of 1.0. Locations that fall toward
the min and max extents have weight values that approach zero. Weight
values outside the min max range are zero. Once the weight values are
calculated for both elevation and slope, the results are combined and
scaled by the overall surface strength. This creates a blend factor for the
surface type being tested. This procedure is repeated for all input eleva-
tionData structures to determine a final pixel value for the blend texture.

However, we have to enforce the limitation that all blend factors for
a given pixel add up to one. This ensures that our shader will be able to
combine these textures without worrying about over- or under-satura-
tion of the final image. To enforce this rule, we maintain a sum of all the
weight values calculated for each pixel of the blend texture. Before writ-
ing the actual blend factors to the pixel, we divide them by this sum.
Once all the blend factors have been divided, we can be certain that they
will add up to 1.0.

Again, it’s a far easier process than it might seem. Listing 9.3 shows
the function that performs the steps we have discussed. A quick look at
the code shows this to be a straight-forward process. Note that while the
blend values are computed between 0.0 and 1.0, they are converted to
color values in the range (0-255) when writing them to the blending tex-
ture.

LISTING9.3 Generating the blend image texture.

static float computeWeight (
float value,
float minExtent,
float maxExtent)

{
float weight = 0.0f;

if (value >= minExtent
88& value <= maxExtent)

208 Real-Time 3D Terrain Engines Using C++ and DirectX 9

float span =

maxExtent - minExtent;
weight =

value - minExtent;

// convert to a 0-1 range value

// based on its distance to the midpoint
// of the range extents

weight *= 1.0f/span;

weight -= 0.5f;

weight *= 2,0f;

// square the result for non-linear falloff
weight *= weight;

// invert and bound-check the result
weight = 1.0f-absolutevalue(weight);
weight = clamp(weight, 0.001f, 1.0f);

return weight;

void cTerrain ::generateBlendImage (
cImage* pBlendImage,
elevationData* pElevationData,
int elevationDataCount)

bool success = false;
int x,y,i;

// make sure there are no more than 4 structures
elevationDataCount = minimum(elevationDataCount, 4);

// get the blend image dimensions
int image_width = pBlendImage->width();
int image_height = pBlendImage->height{();

// compute the step values for uv

// coordinates across the image
float uStep = 1.0f/(image_width-1);
float vStep = 1.0f/(image_height-1);

Chapter9 Texturing Techniques

/! these 4 mask values control

// which color component of the
// blend image we write to
cVector4 mask[4];
mask[0].set(1.0f,0.0f,0.0f,0.0f);
mask[1].set(0.0f,1.0f,0.0f,0.0f);
mask[2].set(0.0f,0.0f,1.0f,0.0f);
mask[3].set(0.0f,0.0f,0.0f,1.0f);

// lock all the blend image
pBlendImage->lock();

// step through and generate each pixel
for (y=0; y<image_height; ++y)

{

for (x=0; x<image_width; ++x)

{

float totalBlend = 0.0f;
cVector4 blendFactors(
0.0f,
0.0f,
0.0f,
0.0f);

// get the elevation and surface normal
float u = x*uStep;

float v = y*vStep;

float map_height = calcMapHeight(u,v);
cVector3 normal;

calcMapNormal(normal, u, Vv);

// examine each elevationData structure
// a compute a weight for each one
for (i=0; i<elevationDataCount; ++1i)
{
/] compute a weight based on elevation
float elevationScale =
computeWeight (
map_height,
pElevationData{i].minElevation,
pElevationData[i].maxElevation);

/] compute a weight based on slope
float slopeScale =
computeWeight (

209

210 Real-Time 3D Terrain Engines Using C++ and DirectX 9

normal.z,
pElevationData[i].minNormalZ,
pElevationDatafi].maxNormalZ);

// combine the two with the relative
// strength of this surface type
float scale =
pElevationDatal[i].strength *
elevationScale *
slopeScale;

// write the result to the proper
/! channel of the blend factor vector
blendFactors += mask[i]*scale;

// and remember the total weight
totalBlend += scale;

// balance the data (so they add up to 255)
float blendScale = 255.0f /totalBlend;

// now compute the actual color by
// multiplying each channel

// by the blend scale

blendFactors *= blendScale;

// clamp and convert to color values
uint8 r =
(uint8) clamp(
blendFactors.x,
0.0f,
255.0F);
uint8 g =
(uint8) clamp(
blendFactors.y,
0.0f,
255.0f);
uint8 b =
(uint8) clamp(
blendFactors.z,
0.0f,
255.0f);
uint8 a =
(uint8) clamp(

Jlé" T
ONTHE(D

Chapter9 Texturing Techniques 211

blendFactors.w,
0.0f,
255.0f);

// pack and write a 32bit pixel value
uint32 color = {a<<24)+{r<<16)+(g<<8)+b;
pBlendImage->setColor(x,y,color);

// unlock the image
pBlendImage->unlock();

You might have noticed in Listing 9.3 that the blend texture is actu-
ally a cImage object, not a cTexture. cTexture is the class we would nor-
mally use to load and create image data for rendering, but because we
need to write key information into specific color channels of the blend
texture, we use the cImage class. cImage is a simple class for manipulating
nonvideo memory DirectX surfaces of a known format, which we call
“images.” While cTexture objects can be of any format allowed by the
video card (including compressed and YUV color space formats), cImage
objects are limited to 8-, 24-, and 32-bit RGB images with a known color
channel order. This makes them easier to read and manipulate than a
texture that might be of some unknown color format. cImage textures are
also restricted to system memory, preventing any potential stalls caused
by locking and updating their data.

Once a cImage object is built, it can be used as a texture by passing it
to the uploadImage member function of cTexture. This loads the image
data onto the texture, performing any color space conversion or scaling
necessary, thanks to the D3DX function D3DXLoadSurfaceFromSurface.
This function provides the color conversion and scaling needed to upload
our image onto the texture for use during rendering.

Using the shader from Listing 9.1 and the blend image generated by
Listing 9.3, we can now render a basic terrain in a single pass on just
about any video card. The entire process is shown in Listing 9.4, which
contains the InitDeviceObjects function found within main.cpp from the
chapter9_demo0 program. This demo program is located on the accompa-
nying CD-ROM.

212 Real-Time 3D Terrain Engines Using C++ and DirectX 9

LISTING9.4 The entire setup process for a basic, random terrain.

HRESULT cMyHost::InitDeviceObjects()

{
cGameHost:: InitDeviceObjects();

// create the root node

// for our scene and a camera
m_rootNode.create();
m_camera.create();
m_camera.attachToParent (&m_rootNode);

// setup a basic camera
m_CameraPos.set (0.0f, 0.0f, 10.0f);
m_camera.orientation().setRotation(
cVector3(1.0f,0.0f,0.0f),
cVector3(0.0f,0.0f,1.0f));
m_camera.setProjParams (
D3DX_PI/5.0f,
800.0f/600.0f,
1.0f, 1000.0f);

/! generate a random height map
m_pHeightMap =

displayManager()

.texturePool()

.createResource(cString(“height map”));
m_pHeightMap->createTexture(

128, 128,

1, 0,

D3DFMT_ABR8G8BS,

D3DPOOL_MANAGED) ;
m_pHeightMap->generatePerlinNoise(

0.01f, 5, 0.6f);

/] create a terrain from this map
m_terrainSystem.create(
&m_rootNode,
m_pHeightMap,
cRect3d(-500.0f,
500.0f,
-500.0f,
500.0f,
-250.0f,
250.0f),
3);

Chapter9 Texturing Techniques

// load our render method
m_pRenderMethod =
TheGameHost
.displayManager ()
.renderMethodPool ()
.createResource(“terrain method”);
m_pRenderMethod->loadResource(
“media\\shaders\\simple_terrain.fx”);

// generate three elevation structures
cTerrain ::elevationData elevation[3];

// grass (all elevations and slopes)
elevation[0].minElevation = -250;
elevation[0].maxElevation = 250;
elevation[0].minNormalZ = -1.0f;
elevation{0].maxNormalZ = 1.0f;
elevation{0].strength = 1.0f;

// rock (all elevations, steep slopes)

elevation[1].minElevation = -250;
elevation[1].maxElevation = 250;
elevation[1].minNormalZ = 0.0f;

elevation[1].maxNormalZ = 0.85f;

elevation{1].strength = 10.0f;

// dirt (high elevation, flat slope)
elevation[2].minElevation = 50;
elevation[2].maxElevation = 250;
elevation[2].minNormalZ = 0.75f;
elevation[2].maxNormalZ 1.0f;
elevation[2].strength = 20.0f;

1t

// generate the blend image
cImage* pBlendImage;
pBlendImage =
displayManager()
.imagePool()
.createResource (cString(“image map 3”));
pBlendImage->create(
256,
256,
cImage::k_32bit);

m_terrainSystem.generateBlendImage (

213

214 Real-Time 3D Terrain Engines Using C++ and DirectX 9

pBlendImage,
elevation, 3);

pBlendImage->randomChannelNoise (
3, 200, 255);

// upload the blend image to a texture
m_pBlendMap =
displayManager()
.texturePool()
.createResource(cString(“image map”));

m_pBlendMap->createTexture(
256, 256,
1, 0,
D3DFMT_ABR8G8B8,
D3DPOOL_MANAGED) ;

m_pBlendMap->uploadImage (pBlendImage);
safe_release(pBlendImage);

/! load the ground surface textures
m_pGrass =

displayManager()

.texturePool()

.createResource (cString (“grass”));
m_pRock =

displayManager()

.texturePool()

.createResource(cString(“rock”));
m_pDirt =

displayManager()

.texturePool()

.createResource(cString(“dirt”));

m_pGrass->loadResource(
“media\\textures\\grass.dds”);

m_pRock->1oadResource (
“media\\textures\\rock.dds”);

m_pDirt->loadResource(
“media\\textures\\dirt.dds”);

/! create a surface material
// and load our textures into it
m_pSurfaceMaterial =

NATURE IS Noisy

Chapter9 Texturing Techniques 215

displayManager()

.surfaceMaterialPool()

.createResource(cString(“ground material”));
m_pSurfaceMaterial->setTexture(0, m_pBlendMap);
m_pSurfaceMaterial->setTexture(1, m_pGrass);
m_pSurfaceMaterial->setTexture(2, m_pRock);
m_pSurfaceMaterial->setTexture(3, m_pDirt);

/! give the render method and material to the terrain
m_terrainSystem.setRenderMethod(m_pRenderMethod);
m_terrainSystem.setSurfaceMaterial(m_pSurfaceMaterial);
return S_OK;

One limitation of our single-pass terrain system is that it can only handle
a maximum of three surface types. We impose a limit of four textures per
pass for this simple method in order to remain compatible with lower-
end video cards. However, astute readers will notice that we use all four
channels of the blend texture. Why do we use four channels to blend
three textures? Because we can.

Repetitive textures will destroy the visual appeal of any terrain en-
gine. Nature itself is a very organic, nonrepeating thing—and our terrain
engine is not. The easiest way to battle the repetitive nature of our sur-
face textures is to introduce some random noise. Whenever we have the
opportunity to add a little randomness to our terrain, we seize it whole-
heartedly. This is the case with the fourth channel of our blend texture.
Our simple terrain shader only needs three channels to blend the surface
images, so we fill the remaining fourth channel with some random noise.
Looking back at Listing 9.4, you will notice a call to the cImage function
randomChannelNoise. This function adds some random values to channel 3
of the blend image (alpha). Looking back at Figure 9.1, we can see that
this alpha value is used to modulate the final color generated by the
shader. By setting some random values into this channel of the blend
image, we can bring some nonrepeating randomness to the terrain. To
exaggerate the effect, try extending the range of random values.

FRAME BUFFER COMPOSITING

Given more texture channels per pass, we could obviously make a more
interesting terrain. For cards that support more than four textures per

216

Real-Time 3D Terrain Engines Using C++ and DirectX 9

ONTHE (D

pass, we can blend more surface types and introduce more randomness
to the overall presentation. As always, more is better, so we will end this
chapter by introducing the concept of frame-buffer blending—something
we will use extensively later in the book.

Even with the limitation of four textures per pass, we can still blend a
full set of four surface types if we render in more than one pass. The ad-
ditional passes will reduce overall rendering speed, but the effect is well
worth the cost. For our second demo program in this chapter, we will
generate a full set of four blending values and add a bit of snow to the
terrain.

We will use all four channels of the blend image to control the sur-
face texture mixing, so we will have to find another way to introduce
randomness to the terrain. Luckily, if we divide into two passes, we also
free an additional texture slot per pass. The first pass will blend textures
one and two (grass and rock, in our case), and the second pass will add on
the final two surfaces (dirt and snow). This takes three textures per pass
(blend texture plus two surfaces), so we have a complete slot open for
our use.

This new texture can be used for a variety of things. We could con-
sider creating an overlay for the entire terrain. Imagine a yellow brick
road winding around the hills. To do this, we would need a fairly high
resolution texture that contains an alpha mask to control where it is visi-
ble on the terrain. We could also use it to render cloud shadows over the
terrain. If the texture were filled with large areas of softened noise, mod-
ulating the terrain colors with this image would give the impression of
cloud shadows. Animating the UV coordinates would give this effect a
sense of motion.

For the time being, a yellow brick road is not of interest to us, and we
will be addressing clouds later in the book. In this second demo, we will
fill this texture with four individual noise patterns—one geared specifi-
cally to each surface type. This allows us to add noise to the grass, rock,
dirt, and snow that fits better with each terrain type. In a paint program,
we can add individual detail elements to the channels of our noise tex-
ture. For grass, we use a stippled pattern that fits with the blades of grass.
For the rock surface, we use larger, pitted-looking noise patterns. Dirt
and snow are given noise channels to suit them as well.

In the revised shader, we perform two passes for pixel shader 1.1
hardware. The first pass renders the grass and dirt, and the second pass
handles the rock and snow. In each pass, the proper channel of blend tex-
ture and noise texture are also used to augment the final color produced.
Listing 9.5 shows the revised pixel shader code. This code can also be
found in the chapter9_demo1 program on the accompanying CD-ROM,

Chapter9 Texturing Techniques 217

which also shows the revised InitDeviceObjects function used to incor-
porate snow into our terrain.

The shaders appear a little cryptic, which is an unfortunate side effect
when using HLSL code for pixel shader 1.1 targets. Pixel shader version
1.1 only allows for eight total arithmetic instructions in each shader.
Even the most straightforward HLSL code will often exceed this limit and
fail to compile. However, packing instructions together into what appears
to be more cryptic commands allows the HLSL compiler a little more free-
dom to generate better code. As odd as it sounds, it is a handy little trick
that works.

For example, our intent is to multiply the blend and noise textures
together, and then apply individual channels of this result to each of our
surface textures. The straightforward code would read something like
this:

//after reading 4 textures..

//combine blend and noise textures

Float4 r0O = t0*t3;

// use a dot with vRedMask to isolate the
// red channel of rO and multiply with t2
t2= t2* dot(r0, vRedMask);

// do the same with the blue channel

// and the texture held in ti

t1= t1* dot(r0, vBlueMask);

/! combine the two results with the

// diffuse color of the vertex

return (ti1+ t2)* In.vDiffuse;

Unfortunately, the HLSL compiler will generate more than eight in-
structions from this code (as of DirectX 9.0), making the shader fail on
older hardware. Expanding ro where it appears in the code seems to alle-
viate the problem for the compiler, and allows it to generate the proper
number of instructions. Hence, the more cryptic lines actually compile to
less code. Expanding ro into what it represents (t0*t3) does the trick.

t2= t2* dot((tO0*t3), vRedMask); // dot with red mask
t1= t1* dot((t0*t3), vBlueMask); // dot with blue mask

return (t1+ t2)* In.vDiffuse;

218 Real-Time 3D Terrain Engines Using C++ and DirectX 9

LISTING9.5 Adding an additional terrain surface by expanding to multiple render passes.

float4 TwoSurfacePassO(VS_OUTPUT11 In) : COLOR
{
const float4 vCO //red mask
=float4(1.0f,0.0f,0.0f,0.0f);
const float4 vC1 //blue mask
=float4(0.0f,0.0f,1.0f,0.0f);

float4 t0 = tex2D(LinearSamp0, In.vTex0);
float4 t1 = tex2D(LinearSamp1, In.vTex1);
float4 t2 = tex2D(LinearSamp3, In.vTex2);
float4 t3 = tex2D(LinearSamp5, In.vTex3);

t2= t2* dot((t0* t3), VvC1);
t1= t1* dot((t0* t3), vCO);

return (t1+ t2)* In.vDiffuse;

float4 TwoSurfacePass1(VS_OUTPUT11 In) : COLOR
{
const float4 vCO //green mask
=float4(0.0f,1.0f,0.0f,0.0f);
const float4 vC1 //alpha mask
=float4(0.0f,0.0f,0.0f,1.0f);

float4 t0 = tex2D(LinearSampO, In.vTex0);
float4 t1 = tex2D(LinearSamp2, In.vTex1);
float4 t2 = tex2D(LinearSamp4, In.vTex2);
float4 t3 = tex2D(LinearSamp5, In.vTex3);

t1= t1* dot((t0* t3), VCO);
t2= t2* dot((t0* t3), vC1);

return (t1+ t2)* In.vDiffuse;

}
technique MultiPassTerrain
{

pass PO

{

CULLMODE = CW;
ZENABLE = TRUE;
ZWRITEENABLE = TRUE;
ZFUNC = LESSEQUAL;

Chapter9 Texturing Techniques

AlphaBlendEnable = false;

// shaders
VertexShader

= compile vs_1_1 VS11();
PixelShader

= compile ps_1_1 TwoSurfacePass0();

pass P1

{

CULLMODE = CW;
ZENABLE = TRUE;
ZWRITEENABLE = TRUE;
ZFUNC = LESSEQUAL;

// add this pass with the
// previous one
AlphaBlendEnable = true;
SrcBlend = one;

DestBlend = one;

BlendOp = add;

// shaders
VertexShader

= compile vs_1_1 VS11();
PixelShader

= compile ps_1_1 TwoSurfacePassi();

219

EXTENDING THE ENGINE

rendering topics. We have a basic terrain up and running with
geometry control and a procedural texturing method. Behind the
scenes, we have created a robust render queue that can handle multipass
rendering efficiently. The stage is set for more complex ideas to emerge.

In this final section, we integrate some new features into the engine
to handle robust lighting, vegetation, and the sky. To facilitate some of
these effects, we will need to revisit and extend our core render pipeline.
In addition, we adhere to backward compatibility with vertex and pixel
shader 1.1. In some cases, this will limit our options, but this is a neces-
sary cost for widespread compatibility.

In Chapter 4, “Gaia Engine Overview” we eluded to the fact that our
models housed a collection of cEffectFile objects, called cRenderMethod.
Until this point, we have only used a single render method to display each
object: the shader loaded into the default stage of each cRenderMethod. In
this section, we will begin rendering the scene in multiple stages. In each
stage, the proper shader within the cRenderMethod will be used to draw
the objects’ contribution to the render stage.

The cGameHost is the governor of the render stages. As the objects
are instructed to add themselves to the render queue, they query the
cGameHost to find out which stage of rendering is taking place. The objects
then submit the proper ceffectFile to the render queue, or skip render-
ing if the cRenderMethod does not contain an entry for the current stage.
As we will see later, this allows us to render a frame in multiple stages,
giving each object the opportunity to employ a unique shader for each

stage.

A t this point, we can begin an exploration of more advanced terrain

221

222

Real-Time 3D Terrain Engines Using C++ and DirectX 9

We begin in Chapter 10, “Big Sky Country,” by turning our attention
skyward. Although not as interesting as the terrain geometry methods.
the sky and far background play a pivotal role in the appearance of our
final scene. To make things more interesting, we will also explore some
procedural cloud methods and the gratuitous lens flare effect that so
many outdoor games choose to use.

We revisit the sky in Chapter 11, “Rendering Outdoor Scenes,” as we
look into a robust lighting system for our engine. We use an atmospheric
lighting system to provide a more realistic lighting model for our scene.
Where applicable, we add simple bump mapping and shadow buffer use
to aid in lighting the scene. This is where we will begin using the multi-
stage pipeline and customized shaders for each individual stage.

With the sun shining bright, it makes sense to begin populating the
scene with foliage. In Chapter 12, “The 3D Gardener,” we will look at
some easy ways to add grass, plants, and trees to the environment. We
will explore simple billboards and volumetric impostors to handle most of
the work. In keeping with the procedural nature of this book, we will
show how models of groundcover can be procedurally warped to nestle
into the landscape.

We conclude the book by adding a simple water shader to surround
our island. This involves converting our height map into an island, and
then forming the mesh pieces that will form the water. This final step in
our exploration of terrain rendering concludes the book, but not the use-
fulness of the subjects we have covered.

CHAPTER

BIG SKY COUNTRY

224 Real-Time 3D Terrain Engines Using C++ and DirectX 9

SKY BoX METHODS

y far, the most important thing about a terrain engine is the

ground. As we saw in the previous two chapters, various methods

for representing the ground geometry and visual appearance are
paramount to creating a realistic display. In this chapter, we turn our at-
tention skyward to bring a little atmosphere to our terrain engine (pun
intended).

We will begin by looking at basic environment mapping techniques
that allow us to surround our landscape with imagery. From there, we
will look into procedurally generating some of the textures used to repre-
sent the sky and cloud volumes, and show how they can be used together
to represent a convincing scene.

The sky box is the venerable workhorse of atmospheric rendering. Used in
just about every landscape engine and outdoor game, the sky box can
represent a complete 360-degree view around the camera with great suc-
cess. To begin our exploration into sky rendering, we will begin by imple-
menting a simple sky box.

The sky box is simply a box placed around the camera so that the
camera is at the exact center of the box. Figure 10.1 shows this relation-
ship. By mapping textures to the inside of each face of the box, a
complete scene around the camera’s viewpoint can be generated. Con-
structing such a sky box would require a simple set of eight vertices (one
for each box corner) and six textures. These six textures would represent
the view from the camera to each face of the sky box. The image place on
the top face of the box represents the view above the camera; the image
on the bottom of the box shows the view below the camera, and so on.

To render the simple sky box, we could simply render each face of
the box using the appropriate texture. When all faces have been ren-
dered, the screen will be filled with a panoramic view of the distant
scenery surrounding the camera. Of course, great care needs to be taken
to ensure that the six individual texture maps are seamless in nature, and
were carefully created to represent the proper view.

Cube environment mapping makes the entire process a simple, one-
step rendering pass. Cube environment maps can be thought of as a pre-
generated sky box in texture form. The cube map actually contains six
textures, one for each side of the cube. DirectX provides support for cube
maps in the form of an IDirect3DCubeTexture9 object. This class is a vari-
ety of textures that effectively allows us to group six textures into a single

Chapter 10 Big Sky Country 225

object. Figure 10.1 shows how these six textures are arranged to form the
sides of the cube.

FACE 1 FACE 4 FACE 0 FACE 5
=X +2) (+9 3 -2

! !
|——z — L_x_; l——z -—» ‘——X—>

FACE 3
-9
T

N

Loxs

e e __

FIGURE 10.1 The six faces of a cube map. The index value and coordinate system are
shown for each face.

To render with a cube environment map, we use 3D texture coordi-
nates. Unlike regular texture mapping, the cube map coordinates repre-
sent a view vector from the center of the cube. This view vector is used by
the hardware to determine which side of the cube to sample from to pro-
duce a final color value. In Figure 10.2, a sample cube is shown with a
viewpoint in the center. The vector shown, being a normalized view di-
rection, would map directly to a set of 3D texture coordinates to sample
the cube map.

226

Real-Time 3D Terrain Engines Using C++ and DirectX 9

¢ty
ONTHE(D

FIGURE 10.2 Viewing angles within the unit cube map directly to 3D
cube map texture coordinates. Here, a vector maps to the (x, y} loca-
tion shown on Face #4. This is the positive z face of the cube map.

Most commercial 3D rendering packages contain methods to gener-
ate the textures needed to construct a cube environment map. These in-
dividual textures can then be assembled into a single dds cube map
texture file using the DirectX Texture Tool program provided with the Di-
rectX SDK. On the CD-ROM several cube map files are provided in
source\bin\media\textures to help you get started.

In the engine, our cTexture class is prepared to represent both regu-
lar and cube texture maps, making their use transparent to the remainder
of the engine. A quick look at the cTexture interface shows a few addi-
tional methods for dealing with cube maps. The two main functions are
createCubeTexture and uploadCubeFace. The first function allows us to
create a cube map from scratch, and the second function provides a
means to upload individual cImage objects to the six cube map faces.
When loading a dds {ile, the cTexture class will determine if the dds file
contains a regular or cube texture map, and perform the proper construc-
tion routine for each.

In addition to supporting cube textures, we require a class to handle
the sky box itself. Gaia contains such a class, aptly named cSkyModel. This
class handles the simple task of loading the sky box geometry (a simple
unit cube) and rendering it on demand. Note that the geometry for the

sky box need not be to scale. In fact, our sky box geometry is only two
world units across each side. Since our rendering of the sky box is a spe-
cial-case scenario, we create a separate camera matrix for “unit space.”
This is essentially a view matrix from the camera that is centered at the
origin and comprises the view distance range of 0.01 to 2.0 world units.
The cCamera object is already equipped to generate this view matrix
for unit space. This matrix is the combination of a view from the world
matrix facing in the direction of the camera and a refined projection ma-
trix. The projection matrix inherits the cameras viewing angle and aspect
ratio, but restricts the near and far plane to that of our unit space. These
two matrices are combined into what is called the sky box matrix within
the class. This is the matrix we will use to render our sky box. Listing 10.1
shows the creation of the sky box view matrix within the cCamera class.

LISTING 10.1 Building a sky box viewing matrix within the cCamera dass.

void cCamera::setProjParams(
float fFOV,
float fAspect,
float fNearPlane,
float fFarPlane)

/! remember attributes for
// the projection matrix

m_fFov = fFOV;
m_fAspect = fAspect;
m_fNearPlane = fNearPlane;
m_fFarPlane = fFarPlane;

// create the regular projection matrix
D3DXMatrixPerspectiveFovLH(

&m_matProj,

fFOV,

fAspect,

fNearPlane,

fFarPlane);

/] create a unit-space matrix

// for sky box geometry.

// this ensures that the

// near and far plane enclose

// the unit space around the camera

D3DXMatrixPerspectiveFovLH(
&m_matUnitProj,

228 Real-Time 3D Terrain Engines Using C++ and DirectX 9

fFOV,
fAspect,
0.01f,
2.0f);

void cCamera::recalcMatrices()

{
// sky boxes use the inverse
/] world matrix of the camera (the
// camera view matrix) without
// any translation information.
m_matSkyBox = inverseWorldMatrix();
m_matSkyBox._41 0.0f;
m_matSkyBox._ 42 = 0.0f;
m_matSkyBox._ 43 = 0.0f;

// this is combined with the unit
// space projection matrix to form
// the sky box viewing matrix
D3DXMatrixMultiply (

&m_matSkyBox,

&m_matSkyBox,

&m_matUnitProj);

// remaining camera setup code...

The sky box itself is embodied by the simple cSkyModel class. This
class contains the sky box geometry (a simple cube loaded from disk) and
pointers to the cEffectFile and cSurfaceMaterial objects used to draw
the sky box. Unlike regular scene geometry, we do not place our sky box
in the render queue. Sky boxes are usually rendered at key moments in
the scene drawing process, so we equip the cSkyModel class with on-de-
mand rendering. In most cases, the sky box is rendered prior to any other
geometry. Since the sky box always fills the display, it is often used to
overwrite any depth or color information currently in the render target.
By rendering the sky box first, the program can effectively skip any
screen-clearing operations.

However, as the sky box grows more complex, it might actually be
beneficial to render it last. Such is the case when a complex pixel shader
is used to render the sky box. In these cases, doing a standard screen-
clearing operation and rendering the scene geometry prior to the sky box
will ensure that portions of the sky box obscured by the landscape are not

ONTHE(D

Chapter 1V Big >Ky Lountry £Ly

rendered. The decision of when to render the sky box requires some test-
ing to determine the best timing.

Once the sky box is built, rendering is a very simple matter—espe-
cially since we have already built the classes that perform most of the
work (cEffectFile and cSurfaceMaterial). Refer to the main.cpp file of
the chapter10_demo0 project on the CD-ROM to see the full setup and
rendering process for the sky box. Listing 10.2 shows the simple effect file
used to render the sky box. In this shader, the sky box coordinates are
simply converted to 3D texture coordinates that are used to reference the
cube map texture. Since our cube geometry is a simple two-unit wide box
centered at the origin, we know that its vertices will map directly to 3D
texture coordinates in the ~1.0 to 1.0 range.

LISTING10.2 The simple_skybhox. fx effect file.

/1
// Simple Sky Box Shader
/1

// transformations
float4x4 mWorldViewProj: WORLDVIEWPROJECTION;

// the cube map
texture tex0 : TEXTURE;

struct VS_INPUT

{
float4 Pos : POSITION;

b

struct VS_OUTPUT

{
float4 Pos : POSITION;

float4 vTex0: TEXCOORDO;
b

VS_OUTPUT VS(const VS_INPUT v)

{
VS_OUTPUT Out = (VS_OUTPUT)O;

/] transform the vert
float4 pos = mul(v.Pos, mWorldViewProj);

// output with z equal to w

230 Real-Time 3D Terrain Engines Using C++ and DirectX 9

// to force to farthest possible
// z value into the depth buffer
Out.Pos = pos.xyww;

/! a slight swizzle is nessesary
// to convert the verts to

/! 3D texture coords

Out.vTex0 = v.Pos.yzxw;

return Out;
// cube map coordinates should not wrap

sampler LinearSampO =
sampler_state

{
texture = <tex0>;
AddressU = clamp;
AddressV = clamp;
AddressW = clamp;
MIPFILTER = LINEAR;
MINFILTER = LINEAR;
MAGFILTER = LINEAR;
b
float4 CubeMap(VS_OUTPUT In) : COLOR
{
// return the cube map texture
return tex3D(LinearSampO, In.vTex0 };
}
technique BasicCubeMap
{
pass PO
{

/1 no culling
CULLMODE = NONE;

// do not test z,

// just overwrite it
ZENABLE = TRUE;
ZWRITEENABLE = TRUE;
ZFUNC = always;

// also clear any stencil

THE SKY DOME

Chapter 10 Big Sky Country 231

StencilEnable = true;
StencilFunc = always;
StencilPass = replace;
StencilRef = 0;

AlphaBlendEnable = false;
// shaders

VertexShader = compile vs_1_1 VS();
PixelShader = compile ps_1_1 CubeMap();

The main drawback to the sky box technique is that it is difficult to ani-
mate textures on. Being a box with images mapped on each face, it be-
comes problematic to try to animate something like cloud movement
across the sky. This is due to the nature of the cube map we are using,
and the fact that our geometry only offers eight basic vertices to texture
map between. In truth, we could use any type of geometry we desire for
the sky and still make use of cube map textures. What we give up is the
ability to map directly between vertex and texture coordinates for cube
map sampling.

As an alternative to the sky box, we will move next to the sky dome.
As the name suggests, this is a dome that is placed over the camera. Our
dome is not a true hemisphere, however. To better enable 2D texture an-
imation across the sky for scrolling clouds, we will use a flattened hemi-
sphere. Figure 10.3 shows this type of geometry. Flattening the dome
mieans less distortion whienr 2D textute wdps dic dpplicd. As shown in
Figure 10.3, this also prevents the edges of the dome from becoming ver-
tical. If we used a true hemisphere for our dome, scrolling clouds would
appear to sink straight down at the edges of the dome rather than recede
into the distance.

232

Real-Time 3D Terrain Engines Using C++ and DirectX 9

TN
V7 sy AN AN N\
AN
4@;‘2}4’%;&‘5;“&%\
U AN
(KRR)
(O OOROH0N
0 P AVAVAVAVAVAVANY
KPR (
X PEAAAANMNN
tisem
O TATAVATATI s
N AN
A\ v/
Naeeogd
NSeg

| /

FIGURE10.3 A top and side view of the sky dome
geometry.

The only changes the dome adds to our rendering process is that we
need to return to clearing the display each trame, and we must now per-
form an extra normalization step in the vertex shader. Clearing is needed
again because there is no bottom side to our dome, and since the dome is
no longer one unit away from the camera at each vertex, we must nor-
malize the vector from the camera to each vertex to create cube map co-
ordinates.

In the code, cSkyModel is equipped to load a dome model when re-
quested. Apart from this change in geometry, there is no difference be-
tween using a box or a dome to represent the sky. As mentioned before,
the vertex shader that uses the sky dome must be augmented to perform
vector normalization when creating the cube map coordinates, as shown
in Listing 10.3.

LISTING10.3 Thesimple_skydome . fx vertex shader. The rest of the effect file is identical to
Listing 10.2.

VS_OUTPUT VS(const VS_INPUT v)

{
VS_OUTPUT Out = (VS_OUTPUT)O;

// transform the vert

ANIMATED CLOUDS

Chapter 10 Big Sky Country 233

float4 pos = mul(v.Pos, mWorldViewProj);

// output with z equal to w

/] to force to farthest possible
// z value into the depth buffer
Out.Pos = pos.xyww;

// a slight swizzle is nessesary

// along with normaliztion

// to convert the verts to

// 3D texture coords

Out.vTex0.xyz = normalize(v.Pos.yzXx);
Out.vTex0.w=1.0f;

return Out;

Before introducing another demo to show the sky dome in action, we
will add a little more interest to the sky by creating an animated cloud
layer. To animate a sky full of clouds, we will combine multiple noise
maps scrolling at different rates across the sky dome. The mixture of
these noise maps will continually change the shape of the clouds as they
march across the sky.

In the pixel shader, we add an additional texture. This is a simple
noise texture that contains grayscale noise in each color channel. We will
sample this texture twice in the pixel shader, reading two separate noise
values. The noise channels within the texture are divided into two fre-
quencies. The red, green, and blue channels contain the cloud images
themselves—a simple noise pattern of wispy cloud shapes. In the alpha
channel, we place a different noise frequency that will be used to perturb
the cloud shapes as they move. Figure 10.4 shows an example of these
two texture channels.

The animation provided by the two noise layers is a simple modula-
tion of the two. Provided that the texture mapping coordinates animate
at lightly different rates, the overlapping noise textures will produce
clouds that change shape as they are modulated together. Essentially,
these textures can be seen as two masks being combined in the sky.
Clouds appear where the white areas of the two masks overlap. As the
two noise textures slide across the sky at different rates, the shapes cre-
ated by the overlapping mask areas will continually evolve.

234

Real-Time 3D Terrain Engines Using C++ and DirectX 9

ONTHE CD

FIGURE10.4 Two images used together to form animated clouds when modulated
together.

When rendering the cloud map, we take care to mask out the clouds
around our horizon map. As the clouds approach the edge of our dome,
they will appear to move downward toward the horizon. Because the
cloud textures are projected downward onto our dome, they would ap-
pear on the top and bottom halves of the dome if unmasked. To account
for this, we add an alpha channel to our cube map of the horizon. In the
sample cube map used in the demo, this alpha channel fades the clouds
away as they approach the mountain imagery depicted in the horizon
map. This fades the clouds out as they reach the horizon, and prevents
the clouds from being drawn over the distant scenery images.

The work is done in the pixel shader, as shown in Listing 10.4. The
background map (a simple mountain range cube map) and cloud layers
are sampled, and then combined to form the final sky dome. To create
the clouds, the two cloud layers are modulated together and masked with
the background alpha channel. This result is then added to the back-
ground image to produce the final result. Figure 10.5 shows a sample
image of our sky, as shown in the chapter10_demo1.exe program located
on the accompanying CD-ROM.

LISTING10.4 Thesimple_skydome. fx pixel shader used to combine the doud maps with the
background image.

float4 CloudShader(VS_OUTPUT In) : COLOR

{
// sample the cube map and clouds

float4 background= tex3D(LinearSamp0O, In.vTex0);
float4 cloudO= tex2D(LinearSampi, In.vTex1);

LENS FLARE

Chapter 10 Big Sky Country 235

float4 cloudi= tex2D(LinearSampi, In.vTex2);

// modulate the clouds together and
// mask with the background alpha
float4 cloud_layer =

cloud0 * cloudi.a * background.a;

// sum and return the results
return background + cloud_layer;

FIGURE10.5 A sample image of the cloud rendering method.

When a conventional camera is pointed toward a light source, secondary
reflections of light rays within the optics of a camera can create lens flare.
Lens flare appears as translucent shapes and bright spots in the camera
image. In real-world photography, this is often considered a nuisance. In
video games, it is a feature we often exploit to emulate the appearance of
outdoor photography. Even though the lens flare effect is often overused,

236

Real-Time 3D Terrain Engines Using C++ and DirectX 9

its usefulness in bringing realism to a rendered display cannot be dis-
counted.

In photography, lens flare is created when a bright light source shines
directly into a camera lens assembly. In these cascs, the light overpowers
any anti-reflective coatings on the lenses and begins to bounce around
the assembly. The secondary reflections caused by the light source be-
come evident in the form of bloom and geometric shapes. However,
something so chaotic can be easily modeled in 2D.

Not all lens flare behaves the same way, but we find that we can
make a sweeping generalization 1o create a believable effect. In most
cases, the position of the lenses within a camera creates lens flare as a col-
lection of shapes oriented in a straight line. This line connects the pro-
jected position of the light source to its inverted position across the center
of the lens. For our engine, this equates to drawing a line from the screen
position of the light source through the center of the screen. The length
of the line is equal on either side of screen center, as shown in Figure
10.6.

Light Source

Lens Fiare Vector

FIGURE10.6 The 2D vector of lens flare.

What remains is to determine the size and position of the shapes that
will form our lens flare effect. The first shape is the easiest. At the exact
center of the light source (in screen space), the over-saturation of light
rays traveling through the camera creates a bloom, or sunburst, of bright

ONTHE (D

Chapter 10 Big Sky Country 237

white. In photography terms, this is akin to the overexposure of film at
the projected position of the light. Regardless of the light color, this
bloom will often be over-saturated to the point of being white, but the
bloom will taper off to the true color of the light along each of the spokes
it creates.

The remaining shapes are dictated by the distances present between
camera lenses, the number of aperture blades present in the camera, and
any prism effects created by the edge of each lens. Film type can also play
arole, controlling the color shift of the lens flare. Video cameras also have
their own signature flare effects, often bleeding red and blue color bands
horizontally. In short, there is a myriad of potential flare causes in each
camera, and attempting to model them realistically would be a needless
burden on our engine.

As it turns out, the true causes of lends flare are irrelevant to us.
Rather than attempt to model the true inter-reflections of light rays
through a lens assembly, we find that we can build a believable lens flare
model from sheer observation. Therefore, we won’t focus on the true op-
tics of the effect, just the final outcome. We will use a preset collection of
shapes to produce our lens flare effect, allowing only the position and
color of the light source as parameters for the effect.

We begin by creating a series of textures containing the shapes of
common lens flare items. These are translucent images that will use their
alpha channels to control their opacity on screen. Because lends flare is a
screen-based effect, we can simply blend these images over our scene to
create the final display. The lens flare textures include sunburst stars, cir-
cles, and octagons. You can find these textures on the CD-ROM in
source\bin\media\textures\lens_flare.dds (see Figure 10.7).

To arrange these shapes in various sizes, we will use a hard-coded
table of relative size and position information. These table entries record
the size of each shape relative to the brightness of the light source, and
their position along the lens flare vector. As the vector is stretched, main-
taining the relative positions of each shape will spread them apart along
the vector creating realistic motion of the lens flare. Rendering is just a
simple matter of placing these textures on billboard cards using the posi-
tion and size information. When rendered as additive, alpha blended
overlays on the screen, they will create a dramatic effect.

238

Real-Time 3D Terrain Engines Using C++ and DirectX 9

FIGURE10.7 Sample images used to create the lens flare effect.

In the engine, we add a simple class to our lighting system to handle
lens flare events based on the position of the sun. This class, cLensFlare,
determines the screen position for the light source in screen coordinates
each frame. When the center of the light source is within the screen
boundaries, this class will construct and render the lens flare shapes. Like
our sky box, we need to control when this will occur. Our lens flare
sprites must be the last items rendered on screen, and they must be ren-
dered in the same order to blend consistently. Therefore, the cLensFlare
rendering calls should only be used after the scene itself has been ren-
dered.

One glaring omission from the cLensFlare implementation is occlu-
sion. When the sun goes behind a cloud or tree limb, no light rays reach
the camera lens and the flare effects subside. In our engine, we do not
provide a means of detecting all of the possible sun occluders. We can,
however, make some basic assumptions from the angle of the sun to turn

ONTHE (D

Chapter 10 Big Sky Country 239

off lens flares after sunset. True occlusion would involve casting rays
from the camera to the light source and testing for collisions that obscure
the light. Even if these tests are performed, the procedural method we
use for the cloud layer will make cloud obstruction difficult to test for.

One potential solution would be to render the scene into an off-
screen buffer using a narrow camera frustum focused on the sun. For this
session, the sun would be rendered as a bright white sphere, and all other
objects as black silhouettes. This will résult in a final image that contains
a center pixel of white when the sun is visible and black when it is not. If
we used this as a texture during our lens flare rendering, we could sam-
ple this center texel and modulate the visibility of the lens flare shapes by
its value. When the sun is visible, this white texel will allow the flare
cards to be drawn. As the texel fades to an obscured black, the lens flare
cards will fade as well.

Implementation details for lends flare rendering and the cLensFlare
class can be found on the accompanying CD-ROM. The demo application
chapter10_demo2 shows the basic lens flare technique in action.

RENDERING OUTDOOR
SCENES

242

Real-Time 3D Terrain Engines Using C++ and DirectX 9

t this point in the development of our engine, we begin to use

some features we have ignored until now. Back in Chapter 4,

“Gaia Engine Overview,” we eluded to the fact that our models
contained collections of ceffectFile objects (our stand-in for the D3D Ef-
fect File). Even though we had the capacity to store multiple sets of HLSL
shaders for each model, we have limited ourselves to just one. This has
allowed us to get a basic engine up and running without concerning our-
selves too much with bump mapping, lighting, and other extensions to
the engine.

In this chapter, we begin to use those additional HLSL shaders to
great effect. By the time we finish, we will have a better lighting model in
place along with bump maps to enhance our objects and complete the
scene. Each of these additions will take place in its own stage of the ren-
der process, isolated from the other stages. This allows us to focus on the
application of each stage one at a time, using customized shaders within
each object’s cRenderMethod as needed.

A MULTISTAGE APPROACH

The multi-stage approach to rendering is simply a way to reduce the
overall workload by dividing it into discreet steps. For example, in this
chapter we will add lighting, shadows, and bump mapping to the engine.
Each of these will exist as a unique render stage so we can render each
individually. In the first stage, we render all the object bump maps; in the
second stage, we add shadows; and in the third stage, we layer on the
final lighting model. The reasons why we render in this order will be-
come more apparent as we progress through the chapter.

Using multiple stages helps us add features we normally could not
provide on all video cards. Older video cards that have limited multitex-
turing capability are simply ill equipped to try to composite textures,
apply bump maps, and display the effects of atmospheric light in a single
session. To enable these features, a multi-stage approach is necessary.
The results of each stage are then combined to create the final image.

We have two basic options to perform this final composition of the
render stages. We could render the results of each stage to an individual
render target, and then use a final stage to source each image as a texture.
This stage would be responsible for combining the images to produce the
final on-screen image. The downside of this method is that each stage re-
quires a unique render target, which must also be in a format compatible
for use as a texture in the final stage. To maintain a decent pixel-to-
screen ratio, we would also have to enforce that these render targets be of

AMBIENT LIGHT

Chapter 11 Rendering Outdoor Scenes 243

similar size (or larger) than the final display. For high-resolution full-
screen display modes, this can consume a large amount of video memory.

The second option is to layer each stage directly into the frame buffer.
In this manner, we use alpha blending operations to continually compos-
ite the output of each stage into the final image. Alpha blending the lay-
ers as they are rendered restricts the type of effects that can be performed
using this technique, but it is a much simpler technique to employ and
requires no additional video memory for render targets. This is the ap-
proach we will use within this section of the book. While not as flexible
as compositing individually rendered images, it can still be used to pro-
vide a high-quality image using the effects we have planned.

As we discuss each of the stages we will be creating in this chapter,
we will show how they can be layered into the frame buffer using alpha
blending. For readers who want to try the multi-target approach, this in-
formation will still be useful in building your final compositing render
stage. For the book, we tend to lean toward the solution that will fit more
video cards. If you know that your particular video card is capable of
more, we certainly encourage you to experiment with the multi-target
approach.

As usual, we use the cGameHost object as our central information
provider. To govern the render stages, the cGameHost object maintains the
index of the current stage being rendered. To begin a new stage, we need
only to inform the cGameHost of the new stage and render the objects
within view of the camera. As these objects submit themselves to the ren-
der queue, they will query the current render stage from the cGameHost
and submit the proper shaders in their render queue entry. In fact, the
objects have been performing this task all along; the cGameHost has simply
been reporting that they should use their default shaders.

To understand the multi-stage approach, we will examine each stage
in the order in which they are applied. We will begin with a simple ambi-
ent color stage, and then add bump mapping. In the final stage, we will
discuss a robust outdoor lighting model that uses an approximation of
light passing through the earth’s atmosphere for greater realism. This
brings us to a total of the stages for our demonstration: ambient, bump
map, and lighting. The results of each stage are layered into the frame
buffer to produce the final result.

The first stage is by far the simplest. In this stage, we modulate the tex-
ture maps covering an object with a simple ambient color value. This

244

Real-Time 3D Terrain Engines Using C++ and DirectX 9

color value represents the amount of ambient light in our scene. It fills
the frame buffer with a set of base values for each pixel in the scene.
Later, when we render the illumination of each model, we will add the
lighting results to these base colors.

We also take advantage of the simplicity of this stage to set up the
depth buffer. The ambient pass will execute quickly, making it a perfect
candidate for writing depth values into the z buffer. Future stages, which
are more complex in nature, can be set up to use the z>$> buffer values
written in this initial stage. No further writing to the z buffer will be nec-
essary. This helps increase the efficiency of the later stages.

Listing 11.1 shows a sample effect file used to render the ambient
light contribution for our terrain. In this shader, the texture maps are
combined using the blend method we defined earlier. The final color is
multiplied against a constant ambient hue to produce the final base color.

LISTING11.1 A sample HLSL shader used to write values to the z buffer and set up the base color for
each pixel using simple ambient lighting.

11/

// Simple Terrain Shader
// Using Ambient Light
/1

// transformations
float4x4 mvViewProj: VIEWPROJECTION;

// terrain section offsets

float4 posOffset : posScaleOffset =
{1.0, 1.0, 0.0f, 0.0f};

float4 texOffset : uvScaleOffset =
{1.0, 1.0, 0,0f, 0.0f};

// texture maps used

texture tex0 : TEXTURE; // blend
texture tex1 : TEXTURE; // surface O
texture tex2 : TEXTURE; // surface 1
texture tex3 : TEXTURE; // surface 2

// the ambient light color
float4 ambient_light =
{0.3f,0.3f,0.6f,0.0f};

struct VS_INPUT
{

Chapter 11 Rendering Outdoor Scenes 245

float2 Pos : POSITIONO;
float2 UV : TEXCOORDO;
float ZPos : POSITION1;
};
struct VS_OUTPUT
{
float4 Pos : POSITION;
float2 vTex0 : TEXCOORDO;
float2 vTex1 : TEXCOORD1;
float2 vTex2 : TEXCOORDZ2;
float2 vTex3 : TEXCOORD3;
b

VS_OUTPUT VS(const VS_INPUT v)

{
VS_OUTPUT Out = (VS_OUTPUT)O;

float4 combinedPos = float4(
v.Pos.Xx,
v.Pos.y,
v.ZPos,
1);

combinedPos.xy += posOffset.zw;
Out.Pos = mul(combinedPos, mViewProj);
Out.vTex0 =

(v.UV+texOffset.zw)*texOffset.xy;
Out.vText = v.UV;

Out.vTex2 = v.UV;
Out.vTex3 = v.UV;
return Out;
}
sampler LinearSamp0 = sampler_state
{
texture = <tex0>;
AddressU = clamp;
AddressV = clamp;
AddressW = clamp;
MIPFILTER = LINEAR;
MINFILTER = LINEAR;

246 Real-Time 3D Terrain Engines Using C++ and DirectX 9

MAGFILTER = LINEAR;

s

sampler LinearSampi = sampler_state

{
texture = <texi>;
AddressU = wrap;
AddressV = wrap;
AddressW = wrap;
MIPFILTER = LINEAR;
MINFILTER = LINEAR;
MAGFILTER = LINEAR;

};

sampler LinearSamp2 = sampler_state

{
texture = <tex2>;
AddressU = wrap;
AddressV = wrap;
AddressW = wrap;
MIPFILTER = LINEAR;
MINFILTER = LINEAR;
MAGFILTER = LINEAR;

s

sampler LinearSamp3 = sampler_state

{
texture = <tex3>;
AddressU = wrap;
AddressV = wrap;
AddressW = wrap;
MIPFILTER = LINEAR;
MINFILTER = LINEAR;
MAGFILTER = LINEAR;

b

float4 PS(VS_OUTPUT In) : COLOR

{
// sample all four textures
float4 BlendControler = tex2D(LinearSamp0, In.vTex0);
float4 texColor0 = tex2D(LinearSampi, In.vTex1);
float4 texColori tex2D(LinearSamp2, In.vTex2);
float4 texColor2 tex2D(LinearSamp3, In.vTex3);

// determine the amount of each surface to blend

Chapter 11 Rendering Outdoor Scenes 247

float4 Coloro
float4 Colort
float4 Color2

(texColor0 * BlendControler.r);
(texColort * BlendControler.g);
(texColor2 * BlendControler.b);

// sum the resulting colors

// and multiply by the ambient

// light color

return (Color0 + Colort + Color2)
*BlendControler.a * ambient_light;

I/
// This technique outputs ambient color
// while filling the z buffer with
// depth values
I/
technique AmbientTerrainShader
{
pass PO
{
CULLMODE = CW;
ZENABLE = TRUE;
ZWRITEENABLE = TRUE;
ZFUNC = LESSEQUAL;

AlphaBlendEnable = false;
AlphaTestEnable = false;

// shaders
VertexShader = compile vs_1_1 VS();
PixelShader compile ps_1_1 PS();

BUMP MAPPING

Up until this point, we have not used bump maps. Provided that the
video card supports the additional texture slots, per-pixel bump mapping
could be applied to the scene in the standard fashion during our regular
rendering pass. When we find ourselves limited by an older video card,
we must find a way to incorporate bump maps as a separate render stage.
To do so, we will forgo true per-pixel bump mapping and use an alpha
blending technique to apply the bump maps to the scene as our second
render stage.

248

Real-Time 3D Terrain Engines Using C++ and DirectX 9

True bump mapping involves the use of a texture map that contains
surface normals. These normals are written into the texture so that their
x, ¥, and z component values are quantified as red, blue, and green color
values. Bump mapping is performed in the pixel shader by first convert-
ing the light vector to texture space in a vertex shader, and then per-
forming a dot product of this vector with the surface normal stored in the
bump map texture. The result is a per-pixel scalar value used to modulate
the amount of light arriving at each pixel.

Given that the output of a bump map pass is a scalar value used to
control the amount of light on a given pixel, we can simply render these
bumps out as grayscale lighting modifiers. In this sense, the dark side of a
bump created by the normal map texture creates a mini-shadow in our
destination alpha channel. When the final lighting stage is applied, the
scalar values in the alpha channel will control how much light is blended
into the final scene

To visualize this, imagine that we rendered our model using tradi-
tional per-pixel bump mapping and a chalky-white diffuse texture. This
would produce a rendered image of a gray scale model that is bright
white in the areas that receive light and darker gray in the areas that do
not. The bump maps would all be apparent in the image, creating high-
lights and recesses as shades of gray. This is the exact data that we add to
the destination alpha channel.

In the final stage, lighting values are calculated for the model without
regard to the surface normals. In a sense, we prepare the lighting as if the
model was illuminated on all sides. As the illuminated colors are written
to the frame buffer, they are modulated with the alpha values we have
already placed there from our rendering of the bump maps. This cancels
out the contribution of the light on darker areas of the model, producing
the final bump-mapped result. The result is not true per-pixel dot product
bump mapping, but it does provide a decent approximation.

Setting up the bump map stage requires some intervention in the
source code. The bump map stage only outputs values to the destination
alpha channel. This imposes two restrictions. First, the destination buffer
must contain an alpha channel. Second, we must ensure that the bump
mapping stage only outputs values into this alpha channel, leaving the
red, green, and blue color channels of the destination buffer intact.

The first restriction is easy to satisfy. As display modes are enumer-
ated at program startup, each is passed through a virtual function for ver-
ification by the application. In programs that rely on destination alpha,
we simply reject all display modes that do not contain at least 8 bits of
alpha channel. Performing the test is handled by overloading the virtual
function ConfirmbDevice provided by the DirectX Application Framework

Chapter 11 Rendering Outdoor Scenes 249

class CD3DApplication. Our own cGameHost class is derived from this
framework base class, so we can simply overload the Confirmbevice func-
tion of our cGameHost object. Listing 11.2 shows an example function that
will approve only those display modes that are compatible with the bump
map method.

LISTING11.2 Rejecting display modes that are not compatible with the alpha-channel bump map
method.

HRESULT cGameHost::ConfirmDevice (
D3DCAPS9* pCaps,
DWORD behavior,
D3DFORMAT display,
D3DFORMAT backbuffer)

// we require an alpha channel in the backbuffer
if (backbuffer != D3DFMT_A8R8GS8BS)
{

return E_FAIL;
}

// allow the base class to continue
// verification of the device
return cGameHost: :ConfirmDevice (

pCaps,

behavior,

display,

backbuffer);

The second restriction is also handled by the cGameHost class. Recall
that the c@ameHost is notified of the beginning and ending of each render
stage. This gives us an opportunity to set any render states or execute any
custom code on which the stages rely. In the case of bump mapping, we
need to notify DirectX not to render any output to the red, green, or blue
color channels of the destination. Our sole output will be the alpha chan-
nel value that we will later use to attenuate our lighting contribution to
the scene.

In the cGameHost class, a simple render state change is added to the
render stage notification functions to limit the pixel shader color output
to the alpha channel. Listing 11.3 shows the two functions within the
cGameHost class that perform these state changes.

Real-Time 3D Terrain Engines Using C++ and DirectX 9

LISTING11.3 Limiting output to the alpha channel during bump map rendering.

void cGameHost::beginRenderStage(uint8 stage)
{
debug_assert(
stage < cEffectFile::k_max_render_stages,
“invalid render stage”);

m_activeRenderStage = stage;

if (m_activeRenderStage ==
cEffectFile: :k_bumpMapStage)
{
// during the bump map stage,
// we write only to the alpha
// channel of the destination
d3dDevice () ->SetRenderState(
D3DRS_COLORWRITEENABLE,
D3DCOLORWRITEENABLE_ALPHA) ;

void cGameHost::endRenderStage()
{
if (m_activeRenderStage ==
cEffectFile: :k_bumpMapStage)
{
// re-enable rendering to all
// color channels
d3dDevice () ->SetRenderState(
D3DRS_COLORWRITEENABLE,
D3DCOLORWRITEENABLE_ALPHA|
D3DCOLORWRITEENABLE_BLUE |
D3DCOLORWRITEENABLE_GREEN|
D3DCOLORWRITEENABLE_RED) ;

m_activeRenderStage = 0;

One last subject to address is bump mapping our procedural terrain.
Recall from Chapter 9, “Texturing Techniques,” that we blend multiple
texture maps to create our final terrain. Each of these texture maps rep-
resents a different ground surface such as grass, rock, dirt, and so forth. It
would stand to reason that we would prefer to have a separate bump

Chapter 11 Rendering Outdoor Scenes 251

map for each of these surface types as well, using the same blending
scheme to combine the bump maps across the terrain.

This creates a bit of a problem on older video cards. Remember that
bump mapping requires the use of normal maps. Normal maps, by defin-
ition, contain surface normals encoded as color information. If we com-
bine these color channels using texture-blending operations, the result is
not guaranteed to remain a surface normal. This will produce visible arti-
facts in the resulting bump map. What is required is the renormalization
of these combined surface normals, something older video cards (those
using pixel shader version 1.x) are incapable of.

The only recourse for these older video cards is to convert the blend
texture to a mask image. Rather than smoothly blending between normal
maps, we will create a mask that only allows one of the blended maps to
contribute to each pixel. This allows us to mix the bump maps of various
surface types without the need to renormalize the result. To convert the
blend texture, we simply examine the blend factors stored in each color
channel. The largest value found is set to 1, and all other channels are
cleared to 0. This effectively converts the blending texture into a hard-
edged mask suitable for combining surface normals.

The conversion function convertToBumpMask is added to the cImage
class. This is the same class we used to construct the original blend tex-
ture for our terrain. Listing 11.4 outlines the process of examining each
color channel of the blend texture and finding the highest value. This be-
comes the mask channel that will allow only one surface normal to ap-
pear on screen for each pixel rendered.

LISTING 11.4 Converting terrain texture blending data to hard-edges mask information.

void cImage::convertToBumpMask ()
{

int pitch;

uint8* pBits = lock(0, &pitch);

if (pBits)
{
uint8* pOut = pBits;
for (uint16 y=0;y<m_height;++y)
{
for (uint16 x=0;x<m width;++x)
{
uint32 color;
getColor(x, y, color);

252 Real-Time 3D Terrain Engines Using C++ and DirectX 9

uint8 r = color&O0xff;

uint8 g = (color>8)&0xff;
uint8 b = (color>16)&0xff;
uint8 a = (color>24)&0xff;

/] there can be only onel
if (r>=g && r>=b && r>=a)

{
r=0xff; g=0; b=0; a=0;
}
else if (g>=r && g>=b && g>=a)
{
g=0xff; r=0; b=0; a=0;
}
else if (b>=r && b>=g && b>=a)
{
b=0xff; r=0; g=0; a=0;
}
else
{
a=0xff; r=0; g=0; b=0;
}

color = (a<<24)+(b<<16)+(g<<8)+r;
setColor(x, y, color);

pBits += pitch;

}

unlock();

Listing 11.5 shows the effect file used to combine the normal maps
using the newly made mask texture. Note that to convert the incoming
light vector into texture space for bump mapping, a binormal and tangent
vector must be computed. Our terrain vertex data does not contain this
information, so we perform a set of cross-product operations using the
surface normal to approximate the binormal and tangent vectors. These
vectors are used to transform the light vector to texture space for the per-
pixel dot product operation.

Chapter 11 Rendering Outdoor Scenes 253

LISTING11.5 Two sample HLSL pixel shader functions used to composite terrain bump maps. One
renormalizes blended surface normals, and the other relies on the blend mask to prevent surface
normals from being combined.

// Pixel Shader 1_x is incapable of

// normalizing a vector. We are

// relying on the fact that the mask

// texture has been setup to allow only

// one of the bump map textures to appear

// on screen - preventing the need to

// renormalize the surface normals

float4 PS_1x(VS_OUTPUT In) : COLOR

{
// sample all four textures
float4 mask = tex2D(LinearSamp0O, In.vTex0);
float4 texColor0 = tex2D(LinearSampi1, In.vTex1);
float4 texColori tex2D(LinearSamp2, In.vTex2);
float4 texColor2 = tex2D(LinearSamp3, In.vTex3);

// determine the amount of each surface to blend
float4 Color0 = (texColor0 * mask.r);
float4 Colori = (texColor1 * mask.g);
float4 Color2 (texColor2 * mask.b);

float4 normal = ColorO+Colori+Color2;

// compute the per-pixel dot product

// and output the result

return saturate(dot(
(In.vLightvVec-0.5f)*2.0f,
(normal-0.5f)*2.0f));

// Pixel Shader 2_x is icapable of

// normalizing a vector. We can use

// a regular blend texture here and

// normalize the result prior to

// performing the dot product

float4 PS_2x(VS_OUTPUT In) : COLOR

{
// sample all four textures
float4 mask = tex2D(LinearSamp0Q, In.vTex0);
float4 texColor0 = tex2D(LinearSamp1, In.vTex1);
float4 texColori1 = tex2D(LinearSamp2, In.vTex2);
float4 texColor2 = tex2D(LinearSamp3, In.vTex3);

Real-Time 3D Terrain Engines Using C++ and DirectX 9

// determine the amount of each surface to blend
float4 Color0 (texColor0 * mask.r);
float4 Color1 (texColor1 * mask.g);
float4 Color2 (texColor2 * mask.b);

"

float4 normal = normalize(Color0+Colori+Color2);

// compute the per-pixel dot product

// and output the result

return saturate(dot(
(In.vLightVec-0.5f)*2.0f,
(normal-0.5f)*2.0f));

APPROXIMATING OUTDOOR LIGHT

The effect of atmosphere on light, sometimes called aerial perspective, can
be summed up into two phenomena. First, light traveling through our at-
mosphere loses much of its color saturation as distances increase. It also
shifts color slightly, as the atmosphere absorbs or scatters a proportional
amount of the color spectrum as light passes through it. The absorption
and scattering mainly removes colors in the blue spectrum—nearly 10
times more than red or green. Another way to think of this is that as light
passes through our atmosphere, it sheds much of its blue color and scat-
ters it in all directions.

The second phenomenon is that this scattered light becomes a type of
light source of its own. Light rays scattered by the atmosphere provide
additional color in the angles in which they are scattered. This is known
as the in-scattering of light. Again, since mainly the blue component of the
light was scattered, the in-scattered light source tends to maintain a blue
tint. This is not always true, but it is a generality that we can use in craft-
ing our lighting system.

We can witness these occurrences with a quick trip outside. The sky,
which is a mixture of semitransparent gasses beneath a black void, ap-
pears blue to us as the sun shines through it. As light rays from the sun
pass through the atmosphere, they shed their blue color and scatter it.
Some of this scattered light reaches our eye, making the atmosphere
above our heads appear blue. The light rays that reach the ground have
shed their blue color in proportion to the distance traveled through the
atmosphere. This is more apparent as the sun approaches the horizon,
and must cast light tangentially through more of the atmosphere. This

Chapter 11 Rendering Outdoor Scenes 255

shedding of blue light makes the color of the light rays shift to red as it

nears the horizon—giving us a deep red glow at sunrise and sunset.

Ample academic research has been done on the correct modeling of
light through our atmosphere and through airborne particles in general.
Most notable among this work is the research provided by A. J. Preetham
and Nathaniel Hoffman [Preetham and Hoffman]. In their research,
Preetham and Hoffman provide an accurate model for depicting the ef-
fects of daylight on outdoor scenery. Their respective papers (see Refer-
ences or Appendix D, “Recommended Reading”) provide detailed
analysis of the effects of aerial perspective and how it can be applied to
outdoor scenery. Rather than rehash their work here, we suggest their
reading material for more information.

What we will cover is the application of the method they provide. In
doing so, we will use some constant values for our color shifting and light
scattering formulas that are derived from the work presented by
Preetham and Hoffman. We do not provide the details in how these con-
stants are derived, since this would require a more detailed explanation
of light passing through particulate matter and aerosols. Instead, we will
take the constants calculated by Preetham and Hoffman at face value and
look at how they can be used within our scene.

First, we will take a shortcut and emulate the effects of atmosphere
on the color of sunlight itself. While the color of sun at various times of
day can be calculated with great accuracy [Preetham] for any date or time
of day, we find that for most applications, this is not truly necessary. In
our engine, the sun will travel the same arc each day, and we do not take
seasonal changes into account. Therefore, the color change in sunlight
can be easily precomputed and interpolated over the course of the day.
We make an additional simplification by declaring that the sun will travel
directly overhead, reaching the highest position (zenith) at noon. At this
point, the sun will be as bright as possible with a slight yellow tint. This is
to emulate the vertical sunlight rays passing through the least amount of
atmosphere during the noon hour. At the horizon line, we will ramp the
color of sunlight toward red for both sunrise and sunset. This emulates
the rays of the sun passing through a greater amount of the atmosphere
as they reach a horizontal angle.

To manage our outdoor lighting data, we provide a new class called
cLightManager. This class is responsible for managing all scene lighting
conditions, and is globally available as a member of the cGameHost single-
ton. A preprocessor definition is also provided to allow objects to access
the light manager using a simple macro named LightManager that ac-
cesses the singleton. For the time being, out light manager will be re-
sponsible for our sole light, the sun. Should we ever need to add

256

Real-Time 3D Terrain Engines Using C++ and DirectX 9

additional lights to the environment, the cLightManager class would
prove to be a convenient host for that data as well.

Within the cLightManager, we track the passage of time in radian
units. For every 2pi unit of time, the sun will make a full pass around our
world. We standardize on the sun revolving around the world x-axis (the
positive z-axis is the vertical axis in our sample scene), so computing a di-
rectional vector for the sun is a matter of computing the sine and cosine
of the time value, and using those numbers as the x and z values of the di-
rectional vector to the sun. The cLightManager class handles this as part of
its update function.

Once a vector to the sun is calculated, the z component (vertical
height of the sun) can be used to shift between our noon and horizon
sunlight colors. These colors are held as constant values within the
cLightManager class. At the creation of the class, we compute the noon
and horizon sunlight colors using the formula provided by Preetham
[Preetham], and then store these two values for interpolation. For greater
accuracy, we could compute these values each frame as the sun
moves, but our interpolation provides a much faster approximation. The
cLightManager class contains the member function computeSunlightColor
that is used to generate the two interpolated sunlight hues during con-
struction of the class. This function could also be used on a per-frame
basis if a more precise sunlight color is desired.

With the color of sunlight determined by the CPU, the remaining task
is to build a structure of information that the vertex shader can use to
render with this light under a set of atmospheric conditions. As stated
earlier, light passing through the atmosphere undergoes two processes.
As light from a rendered vertex passes through the atmosphere, it under-
goes a change in hue. This represents the loss of color over distance,
known as extinction. In addition to extinction, a certain amount of the
sunlight being scattered within the atmosphere reaches our eye. This
adds color to the point being rendered and is known as in-scattering. Fig-
ure 11.1 shows a visual representation of each. Note that extinction is a
function of distance, and in-scattering is mainly controlled by the angle
between the view direction and the sun.

Chapter 11 Rendering Outdoor Scenes 257

Light Source

[)

/
7., 80:30'

@/-60,
<(9/)/

Vector of Extinction
(length =)

FIGURE11.1 Extinction and in-scattering of light.

Extinction is a way of representing the light that is lost by particulate
matter in the air absorbing or scattering light on its way to the viewer.
We represent the overall extinction using Equation 11.1. In this formula,
s is the distance between the viewer and the point in question. 8, and j,,
are two coefficient values that describe the amount of light scattering pre-
sent in the atmosphere. These coefficients represent two models of repre-
senting the scattering of light known as Rayleigh scattering and Mie
scattering. A thorough explanation of both can be found in [Preetham
and Hoffman]. For our use of these terms, we need only understand that
Rayleigh scattering represents the scattering effect of miniscule particles,
while Mie models the effects of larger, spherical particles. The combina-
tion of both systems culminates in our final scattering formula.
E (s)= e_(ﬁr+ﬁm)s

ex

(11.1)

Stated more succinctly, Formula 11.1 shows that extinction (F,,) is a
function of distance (s). Note that distance is a real-world value, typically
0-5000 meters or so, not a view-space or projected distance value. Ex-
tinction is calculated by adding the coefficients for Rayleigh and Mie scat-
tering (B,+8,,), multiplying by distance, and then computing the negative
exponential of that product. In the code, we use preset constant values
for Rayleigh and Mie coefficients, but allow them to be scaled to produce
different atmospheric effects. Some experimentation is necessary to see
the effects of Rayleigh and Mie scattering on sunlight, but these are eas-
ier to understand in the context of in-scattering.

258

Real-Time 3D Terrain Engines Using C++ and DirectX 9

In-scattering is the measurement of sunlight that is reflected by parti-
cles in the air toward the viewer. In a sense, this is a measurement of the
color provided by the particles themselves. The formula to determine the
amount of in-scattering present at a given location is a function of both
the distance to the viewer and the angle between the sunlight arriving at
the point and the view direction. This is a fairly involved computation, as
shown in Equation 11.2.

ﬂr(g):gmw) (112)

This nasty-looking formula shows in-scattered light (L;,) to be a func-
tion of both distance and angle to the sun. E represents the color of the
sun, which is multiplied against 1 minus the extinction value defined by
Equation 11.1. The Rayleigh and Mie coefficients are to create a ratio that
further attenuates the light of the sun—modeling the actual light color
reflected by particles at the given location. The denominator of this ratio
is a sum of the two coefficients, but the numerator requires some addi-
tional processing, as shown in Equations 11.3 and 11.4.

[3,(9):-3—[3,(1+cos2 0) (11.3)
lérw

Ly,(5,6) = E(1- F, (s))

1 - g
0 =15 11.4
A ®) 4ﬂﬁ ((l + 4 —25cos(9))3/2) ()

Lighting formulas don’t get much scarier than this. Equations 11.3
and 11.4 compute the angular coefficients for Rayleigh and Mie given an
angle between the viewing direction and the path of sunlight. These for-
mulas approximate the light that particles bounce in various directions,
and attempt to deduce the amount of this light collected at a specific
viewing angle. For the Mie coefficient, a scalar value (g) is used to control
the effect of theta over the final coefficient. Higher values for g (between
0 and 1) have the effect of reducing the angular range of light emitted
from the particles. In the case of the sun, this can have the visual effect of
reducing the amount of particulate glow around the sun. Again, the pa-
pers by Preetham and Hoffman are a good source for understanding how
these formulas are derived. For our purposes, we will continue to look
mainly at their implementation.

As suggested by [Hoffman], a pixel shader can do the job of calculat-
ing the effects of both extinction and in-scattering by modulating the
scene color with the extinction value and adding any in-scattered light.
The formula for this is shown in Equation 11.5. Simply stated, the final
output color is based on distance and angle to the sun. The original color

Chapter 11 Rendering Outdoor Scenes 259

(L,) is multiplied by the result of the extinction function. The in-scattered
light is then added to this product to produce the final color.

L(s,0) = L, F,(s) + Ly, (s,6) (11.5)

The difficulty comes in generating extinction and in-scattering values
to provide to the pixel shader. A fairly sizable vertex shader is required to
calculate the extinction and in-scattering values per vertex for the pixel
shader to use. A listing for this vertex shader, derived from the shader
originally presented by Hoffman and Preetham, is shown in Listing 11.6.
We place this function within a header file so it can be used by multiple
HLSL shaders.

LISTING11.6 Alight scattering vertex shader that calculates extinction and in-scattering as diffuse
and specular colors.

/1l

// This shader assumes a world-space vertex is
// provided, and distance values represent

// real-world distances. A set of pre-

// calculated atmospheric data is provided

// in the atm structure. See the source code
// on the CD-ROM to view the calculations

// used to setup these constants

/1

// calculate eye vector and world

// distance using a world vertex

// and camera position.

float3 eyeVector = vCameraPos - worldPos;
float s = dot(eyeVector, eyeVector);

s = 1.0f/sqrt(s);

eyevVector.rgb *= s;

s = 1.0f/s;

// compute cosine of theta angle
float cosTheta = dot(eyeVector.rgb, sun_vec.rgb);

// compute extinction term E

/] -(beta_1+beta_2) * s * log 2 e

float4 E = -atm.vSumBetaiBeta2 *
s * atm.vConstants.y;

E.x = exp(E.x);
E.y = exp(E.y);
E.z = exp(E.2z);

260

Real Time 3D Ter

E.

1
1
1
1
1
1
1

rain Engines Using C++ and DirectX 9

w = 0.0f;
Compute theta terms used by in-scattering.
compute phase2 theta as
(1-9”2)/(1+g-2g*cos(theta))~(3/2)
notes:
theta is 180 - actual theta
(this corrects for sign)
atm.vHG = [1-g"2, 1+g, 29]

float piTheta = (cosTheta*cosTheta)

+atm.vConstants.x;

float p2Theta = (atm.vHG.z*cosTheta)

+atm.vHG.y;

p2Theta = 1.0f/(sqrt(p2Theta));
p2Theta = (p2Theta*p2Theta*p2Theta)

1
1
1
1
1
/1

*atm.vHG.x;

compute in-scattering (I) as
(vBetaD1*p1Theta + vBetaD1*p2Theta) *
(1-E) * atm.vRcpSumBetaliBeta2

atm.vRcpSumBetaiBeta2 =
1.0f/ (Rayleigh+Mie)

float4 I = ((atm.vBetaD1*pi1Theta)+

1
1
I
E

/1
11
1
/1
1
fl
I

1
1
1
Ou

(atm.vBetaD2*p2Theta))
*(atm.vConstants.x-E)
*atm.vRcpSumBetaiBeta2;

scale in-scatter and extinction

for effect (optional)
I*atm.vTermMultipliers.x;

= E*atm.vTermMultipliers.y;

il

reduce in-scattering on unlit surfaces
by modulating with a monochrome
Lambertian scalar. This is slightly
offset to allow some in-scattering to
bleed into unlit areas

oat NdL = dot(v.Norm, sun_vec);

= I*saturate(NdL + 0.33f);

apply sunlight color

and strength to each term

and output
t.vI.xyz = I*sun_color*sun_color.w;

Chapter 11 Rendering Qutdoor Scenes 261

Out.vI.w = NdL*NdL;

Out.vE.xyz = E*sun_color*sun_color.w;
Out.vE.w = NdL;

As noted in the shader, a structure of precalculated values exists con-
taining all the atmospheric data. On the application side, we define a class
to construct this data using runtime values. This allows the ratio of
Rayleigh to Mie particle coefficients to be adjusted, as well as scaling the
final values for light extinction and in-scattering. The cLightScattering
Data object serves this need within the code, and is a member of our
cLightManager object. This class assembles all the atmospheric coeffi-
cients, and performs as much precalculation on this data as possible. The
entire set of atmospheric data is then uploaded en mass as a structure to
the effect file being used.

We allow for runtime tuning of the atmospheric conditions to allow
for experimentation. Increasing the coefficients is akin to adding more of
the particles they represent to the atmosphere, which can have consider-
able visual impact. For example, the Raleigh coelficient represents minis-
cule particles and transparent gasses. We can think of these as water
droplets. Adding more tends to scatter more blue light into the sky and
increase the overall glow of the sun. The Mie coefficient represents much
larger particles. One example of this is pollution. As the Mie coefficient is
increased, in-scattered light created from these large particles tends to
create a gray, murky haze in the air—much like smog or an overcast sky.
The demo program chapter11_demo0, located on the accompanying CD-
ROM, allows for experimentation with these values.

The downside of light scattering is that our implementation relies on
fine tessellation of the sky model to create a smoothly interpolated result.
If we knew the exact values we wanted to use for light scattering, we
could remove our vertex shader dependence and precalculate extinction
and in-scatter tables as textures. For extinction, we could define a one-di-
mensional texture that contains the extinction values for a given distance
range. In-scattering could be represented by a standard 2D texture, with
one axis representing the distance range and the other the angle to the
sun. :

ONTHE (D

BRINGING IT ALL TOGETHER

To see the effects provided by all three of the stages added in this chapter,
view the demonstration program chapter11_demo0 on the accompanying

262 Real-Time 3D Terrain Engines Using C++ and DirectX 9

CD-ROM. This demonstration incorporates all three of our new render
ONTHE® stages to produce a final result. In the source code, the scene is rendered
three times. Each time, a new render stage value is given to the cGameHost
object. This causes all objects rendered to submit the proper shaders into
the render queue. Each shader is equipped with the proper alpha blend-
ing information needed to combine its output into the frame buifer.

REFERENCES

[Preetham] Preetham, A. J., P. Shirley, and B. Smits. “A Practical Analytic
Model For Daylight.” Siggraph proceedings 1999, (available online at
www.cs.utah.edu/vissim/papers/sunsky).

[Hoffman] Hoffman, N., and A. J. Preetham. “Rendering Outdoor Light
Scattering in Real Time,” (available online at www.ati.com/developer/
dx9/ATI-LightScattering.pdf).

THE 3D GARDENER

263

264

Real-Time 3D Terrain Engines Using C4++ and DirectX 9

ringing our multi-stage render pipeline into the engine sets the

stage for us to begin populating the world with objects. In thr

chapter, we look at some casy ways to bring groundcover, plants
and trees into the environment. We do this to bring additional realism tw
our scene. We do not delve too deeply into managing the geometry of ob-
jects, such as dynamic level-of-detail (LOD) generation. Instead, we will
instill our geometry class, cModelResource, with the ability to hold discrete
versions of the model at dilferent levels of detail.

We do this because our models will be shared throughout the map.
Even though we might load one model of an oak tree, we will use it in
various places on the map. Qur cSceneModel objects contain the per-in-
stance data for each tree, and refer to a common cModelResource where
the actual geometry is stored. Because multiple cSceneNodes will be refer-
encing the same model, using a dynamic LOD representation for the
model geometry becomes difficult.

Although fast, dynamic LOD methods such as the one used by the
D3DX progressive mesh object (ID3DXPMesh) are not normally considered
applicable to this situation. Each tiine the detail level of these dynamic
meshes is changed, the internal geometry is recomputed. This is a one-
time cost per change in LOD that is fast enough for occasional use. In
our scenario, we will have many c¢SceneModel objccls trying to use a
common mesh object at different levels of detail. Using progressive
meshes such as ID3DXPMesh to store this geometry would cause us 10
update the detail level of the source mesb for each tree rendered. This
could amount to hundreds of progressive mesh updates per frame, be-
coming very ineificient.

Luckily, we have already alleviated this concern with our use of the
render queue. As models are added to the queue for rendering, they also
place their desired LOD as a 4-bit number. This allows us to specify 16
levels of detail for each object. As the render queue sorts the entries by
render method and model indices, it will also sort similar LOD values to-
gether for each model. Since these LOD values are simply a part of the
overall sorting value being used, this functionality comes for free as part
of the sort we are already performing. As the sorted queue entries are
rendered, we can rest assured that instances of each model that use the
same LOD version will be grouped together, allowing us to reduce the
number of times we must process the progressive mesh.

For our purposes, we will allow for the use of standard 1ID3DXMesh
objects and ID3DXPMesh objects inierchangeably, Our class object,
cModelResource, can contain cither type of object within the frame tree of
mesh containers it holds. cModelResource provides a simple member func-
tion, setLOD, which can be given a value between 0 and 16; 16 being the

Chapter 12 The 30 Gardener 265

highest LOD. Using ID3DXPMesh objects will reconfigure the geometry
held within the progressive mesh using the interface methods provided
by the D3DX library. When standard ID3DXMesh objects are used, as
they have been in every demo presented so far, the setLOD member func-
tion does nothing.

In each of the methods presented next, dynamic LOD using
ID3DXPMesh objects is assumed to be used wherever applicable. The fact
that progressive meshes are used does not impact the methods them-
selves, since they would work with cither type of mesh. What follows are
rendering tricks that you can use to enbhance the look of low polygon
models in general, especially those used to represent small plants and
groundcover, For large objects, such as trees, we rely solely on the
ID3DXPMesh to provide LOD management.

VEGETATION IMPOSTORS

Tn this book, we consider an impostor to be a low-detail object that is ren-
dered to give the appearance of one having much more detail. The sim-
plest and most common representation of an impostor is the billboard. A
billhoard is merely a flat plane, usually comprised of just a few triangles,
onto which a pre-rendered view of a highly detailed object is placed. If
the image contains an alpha channel, a simple alpha test can be used to
hide portions of the billboard that are not meant to be seen. For example,
the DirectX SDK contains a sample program that shows the images of
trees placed on billboards in a sample 3D environment. Even though
each tree is really just a flat card, the alpha-tested image placed on the
card gives the look of a more detailed trec.

When a single billboard is used, it must be continually rotated to face
the camera. When a billboard is visible on-edge, the effect is lost and the
paper-thin construction of the billboard is exposed. Our cCamera object
contains a matrix that can be used 1o rotate billboards to face the camera
for just this purpose. The next problem to contend with is that we have
just oue image to place on the billboard. Even though we can rotate the
geomelry 1o prevent the camera from seeing the edge of the billboard, we
will continually show the same image to the camera regardless of the bill-
board’s orientation. This will make our objects appear to spin as the cam-
era passes them by because the camera is always shown the same
viewing angle of the object.

One potential way to fix this problem is to use multiple billbpards to
represent each object. To do this, we arrange several billboards around an
axis, so that each card is facing in a unique direction. Figure 12.]1 shows

266

Real-Time 2D Terrain Engines Using C++ and DirectX 9

this billboard assembly from above, looking down on a set of billboard
cards arranged in a radial pattern. On each card, we place a pre-rendered
view of the object from the direction perpendicular to the billboard. Since
we cover multiple viewing angles with individual cards, there is no need
to rotate the cards to face the camera. Instead, while rendering the bill-
board set, we compute the dot product of each billboard with the viewing
angle. Only the card that is most perpendicular to the view vector (i.e..
the highest dot product result) is drawn (see Pigure 12.1}.

FIGURE12.1 Multiple billboard cards used to impersonate a more
detailed model. As seen from above, eight billboards are used to display
the object. The card most perpendicular to the camera {shown in black)
is the only one visible.

Using the multi-billboard technique also requires generating the tex-
tures needed to place on each card. In a 3D Software package, an object
must be rendered from multiple angles—one for each billboard card de-
sired. To better facilitate rendering of the billboard set, we will group all
the cards together into a single model. This will allow us to render the en-
tire set at once, using a vertex shader to decide which cards are visible to
the viewer. An additional setup step is required to map our textures to
this object.

Rather than using the pre-rendered object texiures individually, we
can combine them into a single texture map. Each ol the billboard cards
is then given a set of texture coordinates to read the proper area of this
texture map. If we can ensure that there is an ample gap between each
image containing alpha-tested transparency, we can render our new im-
postor as one model and one texture map.

Chapter 12 The 30 Gardener 267

One of the nice properties of this method is that it is completely
transparent to the game engine. All the setup is performed offline—creat-
ing the composite texture and billboard assembly. The effect file handles
the determination of which faces to draw, leaving no responsibilities for
the engine. To our game engine, these impostors are just models with
surface materials and render methods like any other. No special code is
needed to create or manage these objects.

One oversight with this method is lighting. The billboard cards them-
selves are flat planes, and will be lit as flat planes by the lighting model.
Using bump maps to give the appearance of a more volumetric object can
help hide these problems, but we will never be able to approximate what
true lighting of a highly detailed ebject could provide.

GRASS IS MOTHER NATURE’S FUR

Short blades of grass can be drawn using a technique not unlike fur ren-
dering. A common way to render fur-covered objects is to use concentric
shells of geometry, each a lirtle larger than the one before it. Into ¢ach
shell, a texture map is applied. This texture map contains a stippled color
pattern for the fur, and a per-pixel height value for each hair. These
height values are stored in the alpha channel of the texture. The texture
represents the cross section of the fur, and the height at which each hair
stands.

when rendered, each shell uses an alpha test to determine which
pixels to draw. The reference alpha values used to test cach shell layer is
the minimum height of a hair stand that could reach the shell layer,
Using this test, only those pixels that represent hair that intersects the
plane of the shell are drawn. When these shells are stacked, the effectisa
convincing appearance of hair on an object.

This technique is directly applicable to short blades of grass. If we
rendered an area of the landscape multiple times, raising the ground
slightly with each pass, we could apply the same techmque. Figure 12.2
shows a cross section of our terrain using four shell layers. These 1epre-
sent us drawing the terrain four times, raising the ground slightly with
each pass. Onto cach of these layers a texture map is placed. This texture
map contains a per-pixel height valne for blades of grass. Each of these
blades is depicted as a bar chart in Figure 12.2. On each layer, we only
want to draw the blades of grass thal are at least as tall as the Jayer itsell.
An alpha test value is assoclated with each layer representing its height.
Only those pixels that contain an alpha value greater than the layer's ref-

268

Real-Time 3D Terrain Engines Using C++ and DirectX &

erence value are drawn. In Figure 12.2, these are shown as the high-
lighted lines on each layer.

FIGURE 12.2 Using multiple alpha-tested planes to fake the volumetric appearance of
grass.

The 1esult is the appearance of blades of grass created by the parallax
provided by the individual layers. Each layer only rendered the cross sec-
tion of a blade of grass, but together they form the illusion of a complete
blade. Another way to picture this is as a stack of coins. Each pass over
our terrain draws a single coin, but layered on top of each other, they
give the appearance of an entire stack.

The technique breaks down when viewed in profile. As Figure 12.2
shows, there is a perceivable gap between each layer. When we try to use
this effect to crest a hill, the appearance of grass at the apex of the hill
might appear stippled and disjointed. This is because the viewing angle
allows us to see between the layers, where no grass is drawn. To hide this
artifact, we must add vertically oriented polygons to the system that con-
tain a profile view of the grass. Then, as the viewing vector approaches a
parallel angle to the stacked grass layers, these profile polygons will pre-
vent the camera from seeing the gaps. Figure 12.3 shows a representation

of these profile polygons.

Chapter 12 The 3D Gardener 269

Layer 3

Layer 2

Layer 1

Layer 0

FIGURE12.3 Profile cards used to prevent viewers from seeing between the layered
grass planes.

This technique is easy to demonstrate using flat planes, but our ter-
rain is far from flat. Assuming that we create a model that contains a set
of grass layers and vertical profile planes, how could we use this within
the rolling hills of our terrain? The answer lies in the next technique,
which we can use {or grass as well as other objects.

AMBER WAVES OF GRAIN

To draw low-lying objects on our terrain, such as grass or other types of
vegetation, we must accurately map them to the contours of the terrain
itself. I we rendered small, individual models, this would be a simple
matter of looking up the height and surface nermal for the terrain point
below each object and using this information te reorient the objects on
the ground. This would allow us to render small, individual models along
the surface of the terrain. while this method would work, it is far from
efficient.

To work more efficiently, we need a way to render larger models and
deformi them along the surface of the terrain. These larger mmodels could

270

Reai-Time 30D Terraln Engines Using C++ and DirectX 9

ONTHED

contain multiple representations of smaller ebjects. For example, our lay-
ered grass model is a good candidate for this method. Rather than try to
render each layer and profile card individually, we can group them to-
gether into larger models and deform them along the surface of the
ground.

We do this using patch deformation, which involves using a grid of
values to deform a model. Each of our groundcover models, examples of
which might be the grass layer system or a small group of plants, is cre-
ated to fit within a square patch of ground. The size can vary, but the
technique works best if the models remain small. Below the model, we
sample a 4x4 grid of height and surface normals from the terrain. If the
models are designed to be 4x4 terrain unils large, then sampling these
values is a simple lookup into the tables of height and surface normals
stored with the cTerrain object.

These 16 values are then given to the vertex shader for deformation.
As the model vertices are rendered, we determine which grid cell they lie
in within our 4x4 set of data. Once the grid ceil is determined, we inter-
polate the four corner values of the cell to find the final vertical height
and surtace normal of the vertex in question. When this technique is ap-
plied to all of the model vertices, the result is a model warped to fit the
contours of the terrain.

In the demonstration program chapteri2_demo0, we use this tech-
nique for small plants and grass patches. Listing 12.1 shows a sample
HLSL function that you can use to performn the deformation. In the
source code, additional patch-deforming routines can be found that also
interpolate the surface normals to ensure that deformed groundcover
geometry is preperly lit.

LISTING12.1 The patch-deforming vertex shader used to map objects to the contours of the terrain.

// declare a 4x4 grid of
// world heights and
/! surface normals
struct PatchPoints
{
float4 normh[16] ;
};
PatchPoints pc : patchCorners;

// a function to deform vertices
// using the patch height values
void PatchDeform(

in out float3 Pos,

Chapter 12 The 3D Gardener

uniform floatd4x4 mworld)

// note:

// we assume the source model is
// scaled to fit within a 3x3 unit
/! box,

/! Find the x,y integer position
// and cell-based scalars

int x;

int y;

float sx = modf(Pos.X, x};

float sy modf (Fos.¥, ¥);

/! compute the index into our 4x4
/! array of values and read the
// four corner values of the cell
/! we are in

int index = (y*4)+x;

float4 z0 = pc.normh{index};

float4 z1 = pc.normhiindex+1];
float4 z2 = pc.normhfindex+4];
float4 z3 = pc.normh[index+5];

/! interpolate between the
/! four corners using sx and sy
float4 z1 = lerp(z0,z1,5%);
float4 zh = lerp(z2,23,8X};
float4 zi lerp(zl,zh,sy);

!/ convert our point to world

/[space and offset by the

/{ interpolated height in zi

Pos = mul(float4{Pos, 1), mWorld},
Pos.z = Pos.z+zi.w;

21

CHAPTER

13 OCEAN WATER

274 Real-Time 3D Terrain Engines Using C++ and DirectX 9

AN ISLAND AT SEA

n this final chapter, we move away from the landmass and add a com-

pletely different surface type to our engine: water. More specifically,

we will be creating a body of ocean water that can be used throughout
our environment. Doing so will require some mathematically intense an-
imation on the CPU to create the dynamic motion of deep ocean waves.
This animation will be applied to a dynamic mesh of vertices that will
comprise our ocean surface.

We will be presenting the mathematics involved without diving too
deeply into the calculations that must be performed. While we will pro-
vide an overview of the work being performed, a detailed explanation of
the mathematic principles being employed is beyond the scope of this
book. Appendix D, “Recommended Reading,” contains references to fur-
ther reading on the topics we will discuss here.

The first step is to prepare our landmass for water. We will flood our
landscape with water at a certain elevation, allowing it to exist across the
entire environment. Water will therefore be visible wherever the land
mass dips below our sea level elevation. This allows us to border our is-
land with water and allow lakes to appear within the valleys of our ter-
rain. Once we have prepared the terrain for the appearance of water, we
will examine the water system itself and an overview of the math in-
volved with animating deep ocean waves.

Knowing the underlying math principles is one thing, but imple-
menting them in an efficient manner is another. In bringing the ocean
into our environment, we will discuss some key methods to animate the
ocean mesh over time without bringing the frame rate to a crawl. Once
the geometry is complete, we will continue on to craft the shader used to
render the water. This will complete the effect and define our final
demonstration program for this book. The chapter concludes by present-
ing this demo along with a few thoughts on further extensions the reader
might want to consider.

Our terrain has always had a ragged edge to it. The edge of the height
map data used to construct the terrain marked the edge of our world.
One last addition to the engine is to surround our map with water. This
involves first adjusting our terrain, and then adding the water element to
the scene.

To begin, our map must become an island. This means that we must
ensure that all vertices around the edge of our height map are sub-
merged. Otherwise, the ragged edge of our world would remain. Forming

Chapter 13 Ocean Water 275

the island is easiest to do before the terrain is actually constructed. At the
bitmap level, we can make adjustments to the height map itself used to
form the island. To create the island, we simply iterate over the height
map and modulate each entry with a value to control height. If done cor-
rectly, we can pull the edge values of the map below sea level to ensure
that our terrain slips beneath the water before abruptly ending.

To do this we apply a height-scaling value across the height map that
will force pixels closer to the edge of the bitmap toward zero. We use a
nonlinear falloff to compute this value, so pixels in the center of the
height map will be largely untouched. To do this, we construct a vector
from the pixel in question to the center of the map. We then compute the
length of this vector to derive our distance from the map center. We scale
this distance by half the bitmap resolution to create a value in the 0 to 1
range. We then square the value for nonlinear falloff. Our final height
map scale is then one minus this value.

Figure 13.1 shows a bitmap representation of these values. Com-
puted per pixel, the scalars generated would resemble the grayscale
image shown here. By multiplying each pixel of this bitmap against our
height map, we effectively pull the edge of our map below sea level.

FIGURE13.1 Using control values per pixel to form an island out of a height map.

As Figure 13.1 shows, our application of the procedural island adjust-
ment can result in very circular island shapes. A second look at the
process shows an easy remedy for this. Our use of a 2D vector from the
map center point to each height map location has essentially created a
second height map against which we multiply the original. This is the
exact process shown in Figure 13.1. Rather than generate this modula-
tion map on a per-pixel basis using 2D vectors, we could simply pregen-
erate some appealing island shapes and store them as height map files on
the hard drive. Once we generate the procedural height map for our ran-
dom terrain, we simply multiply it against one of these island templates
to adopt the contoured shape of the island.

276 Real-Time 3D Terrain Engines Using C++ and DirectX 9

ONTHECD

THE WATER TILE

We take this approach in chapteri3_demo0.exe provided on the ac-
companying CD-ROM. The result is a terrain that is still randomly gener-
ated in terms of its elevations and texture mapping, but adopts its overall
island shape from a pregenerated texture. The ease of use far outweighs
the loss of a truly random terrain. If more randomness is desired, the
reader is encouraged to experiment with adding noise or layering multi-
ple island templates.

Before we examine how the water will be animated, we need to decide
the best way to account for the large amount of surface area we want to
cover with water. In our implementation, we want to surround our is-
land terrain with water, and allow the water to appear wherever the
landmass descends below sea level. This effectively means that the water
could potentially be anywhere on the map—and can extend into the
horizon as far as the eye can see. This creates an interesting problem.

How can we ensure that the water surface exists throughout the en-
tire environment? Obviously, we would not want to create the geometry
required to cover our entire terrain with water that extends into infinity
in all directions. However, the ocean water must appear as if it does ex-
tend this far. To solve this problem, we use the same solution we used for
the other element of our terrain that exists across the entire environ-
ment: the sky.

Recall from Chapter 10, “Big Sky Country,” that our sky model is re-
ally a tiny facade placed around the camera position. When rendered,
this gives the appearance of distant scenery and clouds encircling the
viewer. Our ocean water is no different, and we can use a similar tech-
nique to display an endless sea of ocean water around the viewer. The

Aiffarance ig t i i -
differasee s hat while the sky model was rendered in camera space, ef

fectively disconnecting from the environment, the water must appear-ds
if it is an integral part of the landscape.

To create an endless body of water, we us a piece of geometry that
can be tiled across the environment. This geometry will represent an area
of water of some fixed dimension. To create the appearance of more
water, we simply draw the tile repeatedly, offsetting it to new world posi-
tions each time. By rendering the tile in every visible position, we can
give the appearance of an endless sea. This allows us to draw as many
water tiles as the camera can see without actually maintaining any per-
sistent data for each water-covered location. The world-aligned bounding
box containing the cameras view frustum is applied to a world grid of

ANIMATING WATER

Chapter 13 Ocean Water 277

water tile Jocations. For each world grid location thar infersects she cam-

era frustum, a water tile is drawn.

Many techniques have been published over the years regarding the ani-
mation of ocean waves and general fluid surfaces. Interestingly, these
techniques have been researched in both computer graphics academia
and oceanographic literature. In both cases, researchers provide methods
to model and approximate the fluid dynamics responsible for water sur-
face behavior. For our purposes, we will focus on just one of these tech-
niques. See Appendix D for further reading.

To be clear, our intent is to approximate the motion of deep ocean
waves, not actually simulate one based on physical parameters. Our
ocean tile geometry is repeated over the entire camera view space, so our
method of animation must also tile seamlessly. This means that our solu-
tion must be very artificial in nature. The method involves using a Fast
Fourier Transform (FFT) to combine many octaves of sinusoidal waves to
deform a patch of geometry into something with a very wave-like ap-
pearance. This type of effect has been used with great success in many
commercial 3D packages as well as in the motion picture industry.

We will provide an overview of the technique here, focusing on how
it can be applied for real-time performance. The mathematics principles
used to generate the actual waves are beyond the scope of this book, so
we provide only a brief overview of the concepts here. Further explana-
tion can be found in papers provided by Jerry Tessendorf [Tessendorf],
Lasse Staff Jensen and Robert Golias [JensenGolias]. In addition, some
background reading on Gaussian random numbers and Fourier Transfor-
mations is beneficial in understanding the mathematics principles
involved.

In short, the technique is not based on any attempt to model ocean
water through physical simulation. Instead, a series of sinusoidal waves
are combined to displace a set of vertices in a grid. The model specifies the
manner in which the amplitudes and phases of these sinus waves are
generated, which is based on observation and statistical analysis of the
real sea. An FFT is performed in two dimensions (vertically and horizon-
tally across the vertex grid) to sum the sinus waves into displacement val-
ues for the vertex grid. When animated over time, the result is a patch of
undulating waves that closely resembles real ocean waves.

The most beneficial property is that using an FFT provides a result
that tiles in all directions. This allows us to apply the FFT-based anima-

278

Real-Time 3D Terrain Engines Using C++ and DirectX 9

tion method to our wave tile and ensure that we can still draw the tile re-
peatedly across a large environment. It should be noted that methods re-
lated to the combination of sine waves have been applied directly to
vertex shaders [ShaderX], but we do not consider this ideal for our situa-
tion. We will render the same water tile geometry multiple times, so it
makes sense to perform the computations once on the CPU to set up a
dynamic vertex buffer, and then use a minimal vertex shader to translate
the tile to a set of desired world positions. Performing any wave-defor-
mation work in the vertex shader would cause the sine wave computa-
tions to be executed redundantly each time the water tile is drawn.

We should also note that our implementation of the FFT-animation
method is based on an example provided by Carsten Wenzel [Wenzel].
Wenzel's example wave application, which can be found both on his own
Web site and the NVIDIA developers relations Web page (both are listed
in Appendix D), demonstrates the use of the FFT-based animation
method to animate a patch of water on a frame-by-frame basis. Our im-
plementation is a variation of Wenzel’s work, adding distributed process-
ing of the FFT to achieve better runtime performance.

We also further simplify the technique by producing only height val-
ues to deform the mesh. Animation of a vertex grid in relation to ocean
waves is typically performed to produce two effects. First, the height of
each vertex on the grid is adjusted to produce the wave form. Second, the

. vertices are typically offset along the water surface to better approximate

the choppy nature of some ocean waves. In our implementation, we
speed up the process by producing height values only. This removes a
great deal of the computation required.

Before we can apply the FFT, we must create the initial set of data
and animate it. We follow the suggestion made by Tessendorf and use a
Phillips spectrum to create a set of amplitudes and phases for the sinus
waves based on wind and wave height parameters. The use of the Phillips
spectrum creates a set of initial data that has been shown to closely ap-
proximate the appearance of real ocean waves when combined with two
draws from a Gaussian random number generator. Using a Gaussian ran-
dom number generator (provided in the core library file random_
numbers.cpp), this method defines the state of our ocean waves at time 0.
The first step is to compute the Phillips spectrum based on input wave
and wind parameters. The equation used is shown in Equation 13.1

o i) oo
B, (K) = a—L 2R W] (13.1)

k4

Chapter 13 Ocean Water 279

where

K = vector of wave motion

k = magnitude of vector K

K= normalized vector K

W = wind direction

! = maximum wave height

a = constant value controlling wave height

As shown in Equation 13.1, the initial set of data for each wave is de-
fined by the direction of travel for the wave, its magnitude, and the global
wind vector. In addition, some limitations are imposed by the equation.
The constant scalar (a) controls the overall outcome of the equation, al-
lowing us to exaggerate the waves or diminish them with larger and
smaller values of (a). The final portion of the equation, where the ab-
solute value of the dot product of the normalized vectors for K and W is
computed, controls wave height in relation to the wind direction. It ef-
fectively removes any components of the wave that travel perpendicular
to the wind direction, but allows portions of the wave traveling with the
wind and against the wind to remain. The maximum wave height value
(1) is also a limiting factor. This value can be computed using Equation
13.2.

=L (13.2)

where
v = wind speed
g = gravitational constant (9.81)

To create the final set of data for our initial state, the Phillips spec-
trum is combined with two draws from a random number generator to
create some random wave variations. A Gaussian generator is used for
aesthetic purposes, since it has been shown that Gaussian-generated val-
ues tend to follow the observed data for ocean waves. Although other
forms of distributed random numbers would also work, we again follow
Tessendorf’s suggestion and use a Gaussian generator. Our example
Gaussian generator is shown in Listing 13.1.

LISTING 13.1 Gaussian random number generation for setting up ocean wave amplitude and phase.

//: GaussRandom

// Generatres a gaussian random number using

280

Real-Time 3D Terrain Engines Using C++ and DirectX 9

ONTHE (D

// the polar form of the Box-Muller transformation
/1

// The polar form of the Box-Muller transformation
// is capable of generating two random gauss values
// in one pass. We provide a method to captolize on that
// since we need our Gaussian values in pairs
// to build complex numbers
void gaia::GaussRandomPair (
float& result_a, float& result_b,
float dMean, float dStdDeviation)

float x1, x2, w, y1, y2;

do {
x1 = 2.0f * random_unit_float() - 1.0f;
X2 = 2.0f * random_unit_float() - 1.0f;
w=x1* x1 + x2 * x2;

} while (w >= 1.0f);

w = sqrtf((-2.0f * logf(w)) / w);
y1 = x1 * w;
y2 = X2 * w;
result_a = (dMean + y1 * dStdDeviation);

Il

result b (dMean + y2 * dStdDeviation);

Not shown in Listing 13.1 is the function random_unit_float(). This
simple function generates a random floating-point value in the range
(0,1). Any means of generating this value can be used. Our specific
implementation is shown in the sample source code within the file
random_numbers.h on the accompanying CD-ROM.

Using the Gaussian generator, we can assemble our initial set of data.
To perform this task, we employ yet another horrific-looking equation.
As shown in Equation 13.3, this equation combines two random num-
bers from our Gaussian generator with the previous results of the Phillips
spectrum to define our initial set of waves at time 0. To facilitate the ap-
plication of the FFT later, we create this set of amplitude data in the
Fourier domain.

ﬁO(K)=C(§r+§i)VPh(K) (13.3)

Chapter 13 QOcean Water 281

where

¢, & = Gauss random values generated with mean 0 and (13.3)
standard deviation 1

P,(K) = Phillips spectrum for vector K

2

The result when Equation 13.3 is performed over a set of K vectors is
a list of complex numbers representing phase and amplitude for the sinu-
soidal waves we will be combining. In the example source code, we use
the x and y locations of the vertex grid to compute 2D vectors for K. There-
fore, we have the same number of distributed K vectors as we do vertices.

To animate the data, we use angular frequencies of each vector K to
compute sine and cosine values over time. These values are then applied
to the complex numbers originally computed by Equation 13.3 to ani-
mate our waves in motion. Given a set of angular frequencies stored in
an array, and a set of Equation 13.3 results, we can perform the anima-
tion using the code in Listing 13.2. In this listing, a set of complex num-
bers m_colHo has already been generated using Equation 13.3 along with
a set of angular frequencies for each wave vector K. Because we derived
K from our vertex positions, we can also use the positions as a lookup
value into the table of frequencies and complex numbers. These lookups
are performed with simple inline functions that convert the vector com-
ponents 7 and j into array index values. The sComplex data type is a simple
structure containing the real and imaginary components of a complex
number.

¢ = constant value %

LISTING13.2 Animating the Fourier-domain table for water waves.

void cOceanManager::animateHeightTable()

{
for(int j = -k_half_grid_size;

j< k_half_grid_size;

++j)

{
for(int i = -k_half_grid_size;
i< k_half_grid_size;
++1)
{

float fAngularFreq=
m_colAngularFreq[getIndex(i,j)]

282 Real-Time 3D Terrain Engines Using C++ and DirectX 9

ONTHECD

*m_fTime;
float fCos=Cosine(fAngularFreq);
float fSin=Sine(fAngularFreq);

int indexFFT = getIndexFFT(i,j);
int indexHO = getIndexHO(i,j);
int indexHOn = getIndexHO(-i,-j);

// update the tale of complex numbers
/] affecting water surface height.
m_colH[indexFFT].real=
(m_colHO[indexHO].real
+ m_colHO[indexHOn].real) * fCos -
{ m_colHO[indexHO].imag
+ m_colHO[indexHOn].imag) * fSin;

m_colH[indexFFT].imag=
(m_colHO[indexHO].real
- m_colHO[indexHOn].real) * fSin +
(m_colHO[indexHO].imag
- m_colHO[indexHOn].imag) * fCos;

The last step is to convert the Fourier-space data back into the spatial
domain while combining the effects of each sinus waveform. The FFT
does all of this for us, but as fast as an FFT is, we find we need greater ef-
ficiency to animate our water in real time. First, let’s examine what the
FFT is comprised of, and then we will show how to perform the work
more efficiently using some linear interpolation. Fully explaining the the-
ory behind the FFT is beyond the scope of this book. Instead, we will deal
directly with the computation of the FFT as shown in Listing 13.3.

In Listing 13.3, the number of real and imaginary numbers provided
is known to be k_grid_size (the dimension of our vertex grid). A second
value, k_log grid_size, is also precomputed as an iteration controller for
the FFT. These constants make more sense when the source code is
looked at as a whole, rather than out of context within Listing 13.3. On
the accompanying CD-ROM the entire process of generating, animating,
and performing the FFT can be found in the coceanmanager class.

Chapter 13 Ocean Water

LISTING13.3 Performing the FFT on a set of real and imaginary numbers,

283

void cOceanManager::FFT(float* real, float* imag)

{

long nn,i,it,j,k,i2,1,11,12;
float c¢1,c2,treal,timag,t1,t2,ul,u2,z;

nn =

/1 b
i2 =
i=o0

k_grid_size;

it reversal
nn > 1;

5

for(i= 0;i< nn - 1; ++i)

{

i

// Compute the FFT

¢l =
c2 =
12 =
for(

{

real[i];
imag[1i];

if(i<j)
{
treal =
timag =
real[i]
imag[i]
reall[j]
imag[j]
}
k = i2;
while(k <=j)
{
i-=kK;
k >= 1;
}
+= K;

-1.0f;
0.0f;
1;

real[j];
imag[j];
treal;
timag;

1 =0; 1< k_log_grid_size; ++1)

11 = 12;

12 <<= 1;
ul = 1.0;
u2 = 0.0;

for(j= 0jj< 115 ++j)

{

284

Real-Time 3D Terrain Engines Using C++ and DirectX 9

for(i= j;i< nnjit= 12)

{
i1 =i+ 11;
t1 = ut * realf i1] - v2 * imag{ i1 };
t2 = ut * imag{ i1 1 + v2 * real] i1 };
real{ i1] = real{i] - t1;
imag[i1] = imag{i] - t2;
real{i] += t1;
imag{i] += t2;
}
z= ul *cl1 - u2 * c2;
uz2 = ul * c2 + u2 * ci;
utl = z;
}
c2 = sqrt((1.0f - ¢t) [/ 2.0f });
¢l = sqrt((1.0f + ¢c1) / 2.0f });

As shown in Listing 13.3, while the FFT lives up to its reputation as a
fast transform, it still requires an ample amount of computation. For our
water tile, we also need to perform the FFT in two dimensions: once
across the horizontal rows of source data, and once down each column of
source data. This yields a final set of data that is the conglomeration of all
wave information in a two-dimensional grid.

Rather than try to perform all the calculations and update our dy-
namic vertex buffer with the result each frame, we can cheat a little with
linear interpolation. In this method, we animate the table once every #
ticks. During the period before the next animation update, we compute
all the necessary FFT operations and update the vertex buffer. This dis-
tributes the entire calculation over a fixed number of game ticks. For a
smooth display, we interpolate between the updated set of vertices and
the previous set. Therefore, while we work behind the scenes to generate
the next set of vertices, the water continues to animate by interpolating
between two sets of vertices previously generated.

With the extra time gained, we can also add a second FFT to generate
surface normals for our water geometry—a problem we have ignored
unti] this point. Just as we used the FFT to generate a set of height offsets
for our vertices, the same method can be used to generate surface normals
for each point on the grid. Details can be found in the example source
code on the accompanying CD-ROM. Given these new additions to the

Chapter 13 Ocean Water 285

overall process, we define our update scheme using the code shown in
Listing 13.4. Again, this code is taken out of context. Each function called
by the switch statement can be found within the cOceanManager class in
the example code.

In Listing 13.4, a tick counter is used to iterate over the stages of
water animation. This value is updated once per game tick. Each time the
update function is called, the proper stage of the animation process is per-
formed and this counter is incremented. When the final stage is reached,
the results are written to a one of two vertex buffers. For each frame, an
interpolation value is updated with a scalar value that will be used to
blend between the two vertex buffers in the vertex shader. This produces
a constantly animating result on screen from our periodic animation of
the water mesh.

LISTING 13.4 Distributing the update process for ocean water over time.

enum eProcessingStages

{
k_animateHeight = O,
k_animateNormal,
k_heightFFTv,
k_heightFFTh,
k_normalFFTv,
k_normalFFTh,
k_uploadBuffer,
k_rotateBuffers,
k_total_process_stages,

b

void cOceanManager: :update()
{
debug_assert(
m_tickCounter >= k_animateHeight,
“invalid tick counter”);
debug_assert(
m_tickCounter < k_total_process_stages,
“invalid tick counter”);

switch(m_tickCounter)
{
case k_animateHeight:
m_fTime =
applicationTimer.elapsedTime()*0.15f;
animateHeightTable();

286 Real-Time 3D Terrain Engines Using C++ and DirectX 9

break;

case k_animateNormal:
animateNormalTable();
break;

case k_heightFFTv:
verticalFFT(m_colH);
break;

case K_heightFFTh:
Ul LeuiiCalFET(_Gull),

break;
case k_normalFFTv:
verticalFFT(m_colN);
break;
case k_normalFFTh:
horizontalFFT(m_colN);
break;
case k_uploadBuffer:
fillVertexBuffer(
m_pAnimBuffer[m_activeBuffer]);
break;
default:
++m_activeBuffer;
if (m_activeBuffer
>= k_total_water_meshes)
{
m_activeBuffer = 0;
}

break;
b

// compute the interpolation factor for
// the vertices currently in use
m_fInterpolation = //0.0f;

(float) (m_tickCounter+1)

/(float) (k_total_process_stages);

++m_tickCounter;
if (m_tickCounter == k_total_process_stages)
{
m_tickCounter = k_animateHeight;
m_fInterpolation = 0.0f;
}

RENDERING WATER

ONTHECD

Chapter 13 Ocean Water 287

Now that the ocean water mesh is being efficiently animated over a series
of frames, we can examine how we will texture and illuminate the water
surface. The first step is to determine the base water color. Here we per-
form another approximation based on observation. As a gross generaliza-
tion, ocean water can be said to interpolate between two colors based on
the viewing angle. When looking across water (over the crest of a wave),
the ocean water takes a greenish hue. When looking directly into the
body of water, the color is a deep blue. The first step in our vertex shader
is to compute the viewing angle and use this to interpolate between two
constant color values.

Next, we need to deal with the surface of the water. In addition to
our animated surface normals, we will be applying a normal map to the
water surface to simulate tiny surface waves. Both of these properties
need to be considered when computing the final addition of reflected
light on the water surface. Just as with out terrain bump-mapping pass,
we compute binormal and tangent vectors for each vertex and use these
to transform the light vector into texture space. In addition, we compute
a half-angle vector for specular lighting and convert this to texture space
as well.

In the pixel shader, dot products are computed with both vectors
against the surface normal read from the bump map. In the diffuse case,
the light vector result is used to modulate our interpolated water color. In
the specular case, the result is raised to a specular power and then modu-
lated with the current color of the sun. This creates a water surface with
diffuse, view-dependent coloration and a glistening highlight from re-
flected sunshine.

To further enhance the technique, we animate the normal map tex-
ture coordinates. The base texture address is calculated by applying a sim-
ple scale value to the world vertex position. This is offset by the
horizontal components of the surface normals to create an undulating
motion that expands and contracts with the crest of each wave. Two
reads of the normal map are performed at different scales to add further
motion to the miniscule waves. One read is used to create the diffuse re-
sult, and the second is used for the specular result.

The result is a reasonable approximation of an opaque water surface.
Listing 13.5 shows the complete effect file used to generate our ocean
water. On the accompanying CD-ROM, the demonstration program
chapter13_demo0 displays our new ocean system. Further implementation
details can be found within the source code for this application.

288 Real-Time 3D Terrain Engines Using C++ and DirectX 9

LISTING 13.5 The ocean water effect file.

1

// Ocean Water shader

1

#include “light_scattering_constants.h”

// transformations
float4x4 mWorldViewProj: WORLDVIEWPROJECTION;
float4 posOffset : posScaleOffset
= {1.0f, 0.0f, 0.0f, 0.0f};
float4 vCameraPos: worldcamerapos;
float4 sun_color: suncolor
= {0.578f,0.578f,0.578T,0.0f};

float4 sun_vec: sunvector =

{0.578f,0.578,0.578f,0.0f};
float4 xAxis =

{1.0f, 0.0f, 0.0f, 0.0f};
float4 vOne =

{1.0f, 1.0f, 1.0f, 0.0f};
float4 vHalf =

{0.5f, 0.5f, 0.5f, 0.0f};

float3 waterColor0 =
{0.15f, 0.4f, 0.5f};

float3 waterColort =
{0.1f, 0.15f, 0.3f};

texture tex0 : TEXTURE;

struct VS_INPUT

{
float2 Pos : POSITION;
float ZPosO : POSITIONT1;
float2 NormO : NORMALO;
float ZPos1 : POSITION2;
float2 Normi : NORMAL1;
b

struct VS_OUTPUT

{
float4 Pos : POSITION;
float3 Col : COLORO;
float3 TO : TEXCOORDO;

Chapter 13 Ocean Water 289

float3 T1 : TEXCOORD1;
float3d T2 : TEXCOORDZ2;
float3 T3 : TEXCOORD3;

b

VS_OUTPUT VS(VS_INPUT v)

{
VS_OUTPUT Out = (VS_OUTPUT)O0;

// offset xy and interpolate

// z to get world position

float3 worldPos =

float3(
v.Pos.x+posOffset.z,
v.Pos.y+posOffset.w,
lerp(v.ZPos0, v.ZPos1, posOffset.x));

// transform and output
Out.Pos =
mul(float4 (worldPos, 1), mWorldviewProj);

// interpolate normal
float2 nXY = lerp(v.NormO, v.Normil, posOffset.x);
float3 normal = normalize(float3(nXY, 24.0f));

// compute tex coords using world pos
// and normal for animation
float3 uvBase =
float3(
worldPos.x*0.017,
worldPos.y*0.01f,
0.0f);

float3 uvAnim = normal * 0.1f;
Out.TO = uvBase + uvAnim;
Out.T1 = (uvBase * 0.5f) - uvAnim;

// compute binormal and
// tangent using cross products
float3 tangent = xAxis.yzx * normal.zxy;
tangent =
(-normal.yzx * xAxis.zxy) + tangent;

float3 binormal = normal.yzx * tangent.zxy;
binormal =

290 Real-Time 3D Terrain Engines Using C++ and DirectX 9

(-tangent.yzx * normal.zxy) + binormal;

// transform the sun vector to texture space
float3 lightVec;

lightVec.x = dot(sun_vec, binormal);
lightVec.y = dot(sun_vec, tangent);
lightvVec.z = dot(sun_vec, normal);

// normalize the light vector
// and output
Out.T2 = normalize(lightvec);

//compute the view vector

float3 camera_vec = vCameraPos - worldPos;
float s = length(camera_vec);

camera_vec = normalize(camera_vec);

// transform the view vector to texture space
float3 viewVec;

viewVec.x = dot(camera_vec, binormal);
viewVec.y = dot(camera_vec, tangent);
viewVec.z = dot(camera_vec, normal);

t

// normalize the view vector
viewVec = normalize(viewvVec);

// compute the half-angle vector
float3 half_angle_vec =
(viewVec + lightVec)*0.5f;

// normalize the half vector
// and output
Out.73 = normalize(half_angle_vec);

// color interpolator is the dot product
// of the view vector with the normal
float cosTheta =

saturate(dot(-camera_vec, normal));
Out.Col =

lerp(waterColor0, waterColor1i, cosTheta);

return Out;

sampler LinearSamp0 = sampler state

Chapter 13 Ocean Water 291

{
texture = <tex0>;
AddressU = wrap;
AddressV = wrap;
AddressW = wrap;
MIPFILTER = LINEAR;
MINFILTER = LINEAR;
MAGFILTER = LINEAR;

};

float4 PS(VS_OUTPUT In) : COLOR
{
// composite bump maps
float3 bump0 =
(tex2D(LinearSamp0O, In.TO)-0.5f)*2.0f;
float3 bumpi =
(tex2D(LinearSamp0O, In.T1)-0.5f)*2.0f;
float3 bump =
(bumpO+bump1) *0.5f;

// compute base diffuse color
float3 baseColor =
dot(bump, In.T2) * In.Col;

// compute specular component

float specFactor =
dot (bump, In.T3);

float3 specColor =
specFactor * specFactor *
specFactor * specFactor * sun_color;

// combine and output
return float4((baseColor+specColor), 1.0f);

technique OceanWater‘_1_1
{
pass PO
{
CULLMODE = CW;
ZENABLE = TRUE;
ZWRITEENABLE = TRUE;
ZFUNC = LESSEQUAL;

AlphaBlendEnable = false;

292 Real-Time 3D Terrain Engines Using C++ and DirectX 9

THE END OF THE ROAD

REFERENCES

AlphaTestEnable = false;

/] shaders
VertexShader = compile vs_1_1 VS();
PixelShader = compile ps_1_1 PS();

t

With the ocean surrounding our little island, our sample environment is
complete. We examined many different techniques to generate, manage,
and render our 3D landscape using DirectX 9. We looked at various
geometry management schemes for the terrain, implemented procedural
landscape creations, and used atmospheric lighting to further enhance
the overall display.

There is still ample subject matter out there to incorporate into this
engine. With this final chapter complete, we invite the reader to continue
delving into these topics, using the engine provided with this book as a
springboard for new rendering and geometry management ideas. We
suggest perusing Appendix D “Recommended Reading” to uncover fur-
ther reading on terrain rendering topics.

[Tessendorf] Tessendorf, J. “Simulating Ocean Water.” Siggraph 2001
Course notes, (available online at http://homel gte.net/tssndrf/index.
html).

[JensenGolias] Jensen, L. S., and R. Golias. “Deep-Water Animation and
Rendering,” Gamasutra Article, (available online at www.gamasutra.
com/gdce/2001 /jensen/jensen_01.htm).

[ShaderX] Isidoro, J., A. Vlachos, and C. Brennan. “Rendering Ocean
Water.” ShaderX, Wordware Publishing, Inc. 2002, pp. 347-356.

[Wenzel] Wenzel, C. “Ocean Scene,” (available online at http:/
meshuggah.4fo.de/OceanScene.htm).

GAIA UTILITY CLASSES

lies a core set of support libraries that provide a foundation for the

application. Rather than load the front of the book with introduc-
tory chapters explaining each system, we provide an overview of each
component here. As you read through the source code on the CD-ROM,
you can turn to this section for an explanation of the classes you will en-
counter.

B elow the terrain rendering methods we explored in earlier chapters

AGS

Often, we will find ourselves in need of storing a bunch of Boolean values
within an object. Although we think of Booleans as being polar true\false
values, they still consume a full 32 bits of data for storage. Why? Since
the most efficient storage type on the PC is an integer, Booleans end up
being inflated to integer size.

This is not a big deal when you use an occasional Boolean in your
code, but once you store more than one Boolean value as a class member,
the wasted space begins to pile up. The last numeric tool is more of a con-
tainer class. However, since it is a container of bits, we treat it as a simple
numeric data type. A container class used to assemble Boolean values as
bit flags can make more efficient use of space and allow the setting, clear-
ing, and testing of multiple Boolean values simultaneously.

At its core, the bit field is nothing more than a simple numeric vari-
able whose bits are being used as separate flags. The positive side of this is
that we can do bulk operations on the flags by using bitwise operations
(AND, OR, NOT, etc.) on the host variable. The negative side is that we
are limited by the size of the host variable we choose.

For simplicity’s sake, we are going to stick to the common data types.
This means we are limited to a 32-bit value as our largest possible host

293

294

Real-Time 3D Terrain Engines Using C++ and DirectX 9

value. Our bit field class can therefore store a maximum of 32-bit flags
and still allow effortless testing and manipulation of the flags. Now, you
could adventure into 64-bit integer values as host types, or extend the
class to contain multiple host variables, but to keep the class simple, we
will stick with the 32-bit flag limitation.

To make the code more readable, we need to define the difference
between a bit and a flag. Some programmers use the two terms inter-
changeably, so we’ll spell out the terms used by the engine. If you think
of a 32-bit value as an array of single-bit values, then a “bit” is identified
by its index into the array, and a “flag” is the numeric value of the array.
For example, take an empty bit field and set bit number 3; the bit field
now has a flag value of 8 (1000 in binary is decimal 8). Bits can only rep-
resent a single Boolean value, while flags can represent an entire set at
once. Given the previous flag of 8, set bit number 2. The bit field now has
a combined flag value of 12 (binary 1100), which shows both bits 2 and 3
as being set to true.

This is incredibly useful because we can now test multiple bit flags
using bitwise operators on flag values. To test whether the first three bit
flags are set in a bit field, simply compute the value [bit_field&7]. If the
result is equal to 7, then all three bits are set. If the result is nonzero, then
at least one of the three flags is set. The cBitField class makes this easier
by providing a set of member functions for setting and testing individual
bits and combined flag values. The class itself is a template, so it can use
any host variable type specified by T. Typedefs for common flag container
sizes are listed after the class definition. Highlights of the class are shown
in Listing A.1.

LISTINGA.1 Highlights of the cBitF1lags template dass found in core\bit_flags.h,

template <class T>
class cBitFlags

{
public:

T value;

// Creators...

cBitFlags();

cBitFlags(T data);
cBitFlags(const cBitFlags& Src);

~cBitFlags();

Appendix A GAIA Utility Classes

/! Operators...

cBitFlags& operator=(const cBitFlags& Src);
cBitFlags& operator=(T Src);

operator T() {return(value);};

bool operator&(T test);

bool operator==(const cBitFlags& Src)const;
bool operator!=(const cBitFlags& Src)const;

/! Mutators...

void set(T settings);

void clear();

void setFlags(T settings);

void clearFlags(T settings);

void setBit(int bit, bool setting=true);
void clearBit(int bit);

/] Accessors...

bool isEmpty()const;

bool testBit(int bit)const;
bool testFlags(T test)const;
bool testAny(T test)const;

int totalBits()const;
int totalSet()const;

IH

// common flag typedefs

typedef cBitFlags<uint8> u8Flags; // 8 bits of flags
typedef cBitFlags<uint16> u16Flags; // 16 bits of flags
typedef cBitFlags<uint32> u32Flags; // 32 bits of flags

// to set a bit flag to be true, we OR in it’s flag value
template <class T>

inline void cBitFlags<T>::setBit(int bit)

{

value |= (1<<bit);

// to set a bit flag to be false, we AND with a mask to
// clear the bit

template <class T>

inline void cBitFlags<T>::setBit(int bit)

{

value &= ~(1<<bit);

295

296 Real-Time 3D Terrain Engines Using C++ and DirectX 9

// setting multiple bits is a simple OR with the provided
// flag value

template <class T>

inline void cBitFlags<T>::setFlags(T settings)

{

value |= settings;

// clearing multiple flags is a simple AND with the inverted
// flag value

template <class T>

inline void cBitFlags<T>::clearFlags(T settings)

{

value &= ~settings;

// to test a single bit, we shift it up to create a flag to
// compare

template <class T>

inline bool cBitFlags<T>::testBit(int bit)const

{

return(value & (1<<bit) ? true : false);

// return true if all the provided flags are set
template <class T>

inline bool cBitFlags<T>::testFlags(T test)const
{

return((value & test) == test);

// return true if any of the provided flags are set
template <class T>

inline bool cBitFlags<T>::testAny(T test)const

{

return(value & test ? true : false);

THE SINGLETON CLASS

A singleton, as far as class objects are concerned, is a type of class of
which only one instance can exist. This is commonly used for manage-
ment classes used to control systemwide resources. For example, class ob-
jects designed to manage system memory, texture space, or audio

ONTHE (D

Appendix A GAIA Utility Classes 297

playback would be good candidates for the singleton method. Having
more than one object managing such resources would add a level of com-
plexity to the application, and can easily be avoided using singletons.

If the desire is to have only one instance of a class, why not simply
add a class definition and create a single, global instance of that class? In
truth, this is a perfectly reasonable way to handle the situation. Creating
a class containing static member functions would also work, providing
global access to all methods and members and thereby enforcing a single
interface to some system resource. There are many ways to emulate what
singletons can do, but each adds its own set of caveats that we can avoid.

Using a single, globally defined instance of a class object would in-
deed create a single interface for managing a given resource, but the
order of construction is undefined. In many cases, there is an order of
construction for system managers that must be honored; for example,
memory and file managers might have to be constructed prior to a tex-
ture manager. Using class objects declared as global instances makes
controlling this construction order a little problematic. Additional initial-
ization methods would need to be created to handle construction order at
some point during the applications startup procedures.

Singletons provide all the benefits of the alternative methods, with a
higher degree of control over construction and destruction. In essence, all
the singleton method provides is a way to enforce that only one instance
of an object can exist at any time, and that the active instance is globally
available to anyone who needs to communicate with it. This is achieved
with a simple template interface that any class can derive from in order to
become a singleton. Listing A.2 shows the simple singleton template class
used within the core library as defined in core\singleton.h on the ac-
companying CD-ROM.

LISTINGA.2 The singleton template class.

template <class T>
class Singleton

{
public:

/] the singleton must be constructed
// with a reference to the controlled object
Singleton(T& rObject)
{
debug_assert(!s_pInstance,
“only one instance allowed”);

298

Real-Time 3D Terrain Engines Using C++ and DirectX 9

s_pInstance = &instance;

// the singleton accessor
~Singleton()
{
debug_assert(s_pInstance,
“no instance available”);

s_plInstance = 0;

// the singleton accessor
static T& instance()

{
debug_assert(s_pInstance,
“no instance available”);
return (*s_pInstance);
}
private:
// Data...

static T* s_plInstance;

// Nonexistant Functions...
Singleton(const Singleton& Src);
Singleton& operator=(const Singleton& Src);

};
template <class T> T* Singleton<T>::s_pInstance = 0;

As shown in Listing A.2, the singleton is really nothing more than a
method of managing a pointer to a class object. Because only one class
pointer is allowed to exist, the singleton enforces that a single, unigue in-
stance of the managed class is available to all callers. The managed class
object is provided as the template parameter T at the time of construction.
A pointer to the managed class is then stored within the static member
s_pInstance, and returned via the member function instance() to anyone
who needs it. Enforcement is handled using the debug_assert macro,
which mimics the standard assert() function. If a second instance of the
singleton object is ever created, or if someone tries to access the managed
class pointer before it is initialized, an assertion message box will halt the
application.

Appendix A GAIA Utility Classes 299

To create a class managed by the singleton method, simply derive the
class from the singleton template and provide the managed class as the
template parameter. During the construction of the managed class, pass a
reference of it into the constructor of the singleton template base class.
From this point on, a pointer to the managed class will be stored within
the singleton base class, globally accessible via the instance() member
function. The managed class is now guaranteed to have only one instance
active at a time, and its interface is globally available to the application.

Here is an example of the singleton template in use:

// an example class managed via the singleton template
class MyClass : public Singleton<MyClass>

{
public:

// when MyClass is constructed, it must construct
// the singleton base class as well
MyClass() : Singleton(*this) {};
~MyClass() {};
void SomeFunction();

};

// global access to the managed class is available
// from the static member function, instance().
MyClass::instance() .SomeFunction();

/] or we can use a pre-processor definition
// to make access to MyClass more convenient
#define MYCLASS MyClass::instance()

// the definition can then be used just as if
// it were a class itself.
MYCLASS.SomeFunction();

At some point within the application, a single instance of the man-
aged class must be created, and this must occur prior to any call to the
managed class interface. Whether the instance is created in the global
space, as a local variable, or via explicit calls to new and delete does not
matter. The important concern is the timing of its construction and de-
struction to ensure that the interface is available at the time it is called.

300

STRINGS

Real-Time 3D Terrain Engines Using C++ and DirectX 9

Text strings are an often-overlooked subject in computer games. While
they might seem unimportant for most 3D games, text can still play a
vital role in any adventure or role-playing game. A good string class is
also useful when adding a user-input console or text-based scripting sys-
tem. For the purpose of this book, the basic_string class provided by the
Standard Template Library (STL) is employed to do most of the work. To
reinforce our desire for portability, all text manipulation within the en-
gine is done with international markets in mind.

We use the tchar data type to provide transparent support for both 8-
bit character sets and Unicode-compatible 16-bit character sets. This is an
easy way to provide imternational text display support using the generic
text functions provided in the Win32 SDK. The Microsoft runtime library
provides a great deal of flexibility by using generic text functions that au-
tomatically reroute to the ANSI single-byte character set (SBCS), localiz-
ing multibyte character sets (MBCS), or Unicode character set methods as
needed.

By providing the desired character support as a preprocessor defini-
tion, the programmer can choose which character set the application will
use. By default, the engine will be configured to use the standard 8-bit
ANSI character set. To change this, simply add the preprocessor defini-
tions _UNICODE or _ MBCS to the project settings. This will define the tchar
data type to the proper bit size and remap all generic text functions to
their proper specialized counterparts. More information on the generic
text functions can be found in the Win32 SDK documentation, or by ex-
amining the tchar.h header file provided with the Win32 development
library.

For the generic text paradigm to work, some careful planning is re-
quired for static text. All static text that is intended for display or use with
string-manipulating functions must be created with the macro _text to
enforce the proper character set. For example, to declare a static string of
text:

tchar my_string[] = _text(”Some Text”);

When _UNICODE is defined, this macro will provide the static string in
wide-character format (16 bits per character instead of the usual 8), al-
lowing it to remain compatible with Unicode-based text functions. When
_UNICODE is not defined, the macro has no effect and the string is left in
the default state.

i A?;Q;[
ONTHE (D

Appendix A GAIA Utility Classes 301

Strings that appear in the resource file associated with the application
need no conversion. By default, resource strings are encoded in Unicode
format for portability. When the Win32 LoadString function is used to
load the resource string into a tchar buffer, the proper character set con-
version is applied automatically. Therefore, if all static game text resides
in the resource file, or is declared within the code using the _text macro,
compliance with international character sets becomes as easy as recom-
piling with the _UNICODE or _MBCS definitions.

The wrapper class created to hold string data in our core library is
cString. This class is built upon the STL string class basic_string and also
mimics some of the functionality found in the MFC class ¢String by pro-
viding additional operators for appending strings and equality operators
for comparisons. The wrapper class also adds member functions for load-
ing resource strings, formatting text, and performing case-independent
string compares. Just like the generic text functions, ¢String can be com-
piled for ANSI or Unicode support using the same preprocessor defini-
tions. The code can be found on the accompanying CD-ROM in the
core\string.h header file, and the basic cString interface is shown in
Listing A.3.

LISTINGA.3 The cString wrapper class derived from the STL basic_string implementation.

class cString: public TEXT_BASE_CLASS

{
public:

// Creators...

inline cString(){};

cString(const c¢String& rhs);

explicit cString(const TEXT_BASE_CLASS& rhs);
explicit cString{tchar c);

c¢String(const tchar *s, ...);

~eString(){};

/] cast the string directly to a tchar pointer
inline operator const tchar*()const;

// copy data from various source types
cString& operator=(const c¢cString& rhs);
¢String& operator=(const TEXT_BASE_CLASS& rhs);
¢String& operator=(const tchar *s);

¢String& operator=(tchar c);

302 Real-Time 3D Terrain Engines Using C++ and DirectX 9

/! append data from various sources

cString& operator+=(const c¢String& rhs);
cString& operator+=(const TEXT_BASE_CLASS& rhs);
cString& operator+=(const tchar *s);

cString& operator+=(tchar c);

// test equality and inequality (case sensitive)
bool operator==(const cString& rhsj);
bool operator!=(const cString& rhs);

// test without case sensitivity
bool compareNoCase(const c¢String& rhs);

// operator that allows c¢String to be used
// as an STL map key value
bool operator<(const cString& rhs);

// format the string from optional parameters
void ___cdecl format(const tchar* text, ...);
void __cdecl format(const tchar* text, va_list arglist);

b

As you can see in Listing A.3, the interface for cString is sparse. The
entire wrapper interface does little more than add a few extra functions
to make string use a little easier. Because the class is derived from the STL
basic_string class, it inherits the STL interface for most of the basic string
functions. Operations such as erasing the string, searching for substrings,
and determining the length of the string are provided in the base class
interface.

One important idea to keep in mind with the STL base class is that,
like the MFC ¢String class, basic_string will perform its own internal
memory allocations as needed. The use of string manipulation functions
can lead to a large amount of memory allocations and memory copy op-
erations behind the scenes—especially as strings grow in size. To alleviate
this problem, we will get into the habit of using the basic_string func-
tion reserve.

The reserve function allows us to pre-allocate memory space, provid-
ing a workspace in which all further appending operations can place new
additions to the string. Wherever we can estimate the final string size,
pre-reserving the memory space will allow us to perform multiple opera-
tions on the string without causing unnecessary memory operations.

SYSTEM DATA

Appendix A GAIA Utility Classes 303

Certain builds of the game engine contain processor-specific optimiza-
tions; such as the Intel Streaming SIMD Extensions (SSE). These types of
instructions are only valid on the processors that support them. Asking
the end user which type of processor he has is not a dependable way to
address this problem, so we are forced to query the host CPU ourselves to
determine what instruction sets are supported. While we are at it, we will
inquire about the host operating system and available system memory,
both of which can determine the application we run or the data sets we
want to load.

For example, we could build a specific version of the game executable
for use on Microsoft Windows XP using the SIMD instruction set, and an-
other version that is more OS and CPU agnostic. We would then use a
separate application to query the host operating system and processor,
and then launch the optimal version of the actual game executable. Al-
though the end user is provided with multiple game executables, the
launcher application ensures that the best program is used for the host
system.

Furthermore, the game executables themselves can determine the
amount of system memory available on the host system and load the
proper set of game data. On machines with limited memory, smaller tex-
tures and geometry models can be loaded. When more room is available,
larger, more detailed data sets are loaded. This helps to ensure the best
possible experience for the end user.

This method can also be extended, albeit with a bit of a gamble, to
enable the game to run in an enhanced mode on future processors. Per-
haps there is a software effect that we can’t afford to do on current hard-
ware very often. When more powerful processors are detected, we can
allow the game to perform these actions more frequently, thereby help-
ing the game scale to future hardware. For example, imagine that our
title uses animated textures read from some type of video file. On current
hardware, we limit playback to 10 or 12 frames per second. This gives us
ample time to decode the next frame on the CPU before it is needed, but
the final animation is a little choppy because of the low playback rate.
However, the game is released with a version of the animated texture
video at 30 fps and 60 fps in addition to the 10 fps version we are using by
default. When a super-fast processor is detected in the future, the game
can opt to use one of the more costly video files, thereby increasing the
quality of our game with the new processor.

To query information about the system hosting the application, we
define a class, cSystemData, designed to gather the information and store

304

Real-Time 3D Terrain Engines Using C++ and DirectX 9

it in a way we can reference easily. Information such as processor type,
resident operating system, and available system memory is contained
within this class, along with an estimate of the system’s processor speed.
This data allows us to determine the proper version of our game exe-
cutable to launch, and the proper data set to load. cSystemData contains a
function called querySystemInformation that will gather the information
we are looking for. The source code is shown in Listing A.4.

The first step is to determine the amount of system memory resident
on the host machine, and the amount of memory currently available to
our application. While one could argue that virtual memory systems pro-
vide a near infinite amount of system memory, performance will still suf-
fer dramatically if portions of your application’s data are swapped out to
a file on the hard drive. Therefore, it’s always best to know how much
system RAM is available for use.

The Win32 SDK provides a function to report everything we would
ever need to know about system memory: GlobalMemoryStatus. This func-
tion fills a structure with information about system and virtual memory
resident on the host machine. The structure, MEMORYSTATUS, contains the
data shown next. Within the querySystemInformation function, we poll
the system for this information and store the information we need within
the cSystemData class.

typedef struct _MEMORYSTATUS { // mst

DWORD dwLength; // sizeof (MEMORYSTATUS)

DWORD dwMemorylLoad; // percent of memory in use
DWORD dwTotalPhys; // bytes of physical memory
DWORD dwAvailPhys; // free physical memory bytes

DWORD dwTotalPageFile; // bytes of paging file
DWORD dwAvailPageFile; // free bytes of paging file
DWORD dwTotalvirtual; // user bytes of address space
DWORD dwAvailvirtual; // free user bytes

} MEMORYSTATUS, *LPMEMORYSTATUS;

The members we are most interested in are dwTotalPhys and
dwAvailPhys, which hold information about the total amount of system
memory resident on the host computer, and how much of that memory
is available for us to use. If the total physical memory on the host system
is less than what our game requires, we will need to inform the user and
exit the application. If the total amount of memory satisfies our con-
straints, but our required amount of memory is not currently available,
we need to warn the user that the performance of our game will suffer if
external applications are not closed to free up more memory.

Appendix A GAIA Utility Classes 305

The next step is to determine the host operating system. While it is
somewhat rare to create code that will run on some versions of Windows
but not others, there are a few cases where this will happen. Windows NT
introduced some functions that are not available within Windows 95.
These are mainly extended versions of existing functions such as Find-
FirstFileEx and GetDiskFreeSpaceEx, but there is also enhanced support
for multithreaded application under NT that does not exist under earlier
versions of Windows. If your application wants to use such functions,
you must ensure that the proper operating system is present.

Again, a simple function call tells us what we want to know. The
function, GetversionEx, fills a structure containing data about the host
operating system. Our responsibility is to convert the major and minor
build numbers reported in this structure to data we can use. For our pur-
poses, we create an enumeration of known Windows versions containing
the following members:

enum WINDOWS_VERSIONS

{
UNKNOWN =0,
WINDOWS_95,
WINDOWS_95_SR2,
WINDOWS_98,
WINDOWS_98 SR2,
WINDOWS_ME,
WINDOWS_NT,
WINDOWS 2K,
WINDOWS_XP,
// the final value is for
// versions of windows
// yet unreleased
WINDOWS_FUTURE

};

The enumeration is laid out in a numerical order that we can use to
our advantage. The assumption is that each version is backward compat-
ible to all lower versions listed in the enumeration. WINDOWS_98 is back-
ward compatible with WINDOWS_95; WINDOWS_NT is backward compatible
with WINDOWS 98, and so on. If we know which of these enumerated val-
ues represents our minimum requirement, we can quickly determine
whether the current OS is compatible with our needs. When these condi-
tions are not met, we will need to inform the user and exit the applica-
tion. Within the querySystemInformation function, shown in Listing A.4,
the major and minor build numbers reported by GetvVersionEx are con-
verted into our enumerated version numbers.

306

Real-Time 3D Terrain Engines Using C++ and DirectX 9

There is ample information available on identifying the system
processor contained in the host machine. Performing such a test requires
using assembly-language instructions to poll the CPU for information.
Most of this information is published by the processor manufacturers,
and in articles such as Rob Wyatt’s Gamasutra.com article on processor
detection from July 1999 [Wyatt]. These references provide more de-
tailed information on how to poll the host processor for identification.

Rather than identify the CPU itself, we only need to determine what
it supports. If we have processor-specific code in our executable, it would
be best to test directly for support of the code rather than the CPU’s brand
and model name. In the case of the Intel SSE instruction set, chips from
multiple vendors will support these instructions. Working to determine
whether the CPU is a genuine Intel Pentium III (or above) will no longer
suffice. Newer processors such as AMD Athlon XP also support the SSE
instruction set, and will support the code we want to run. Future proces-
sors might support these instructions as well, so vendor information be-
comes largely irrelevant.

The key to CPU feature identification is the assembly-language in-
struction CPUID. This instruction is the gateway to interrogating the CPU,
and can be used to retrieve the processors name, features, and, in some
cases, its serial number. For our purposes, the feature set is all we require,
but we must first determine if the CPUID instruction itself is supported.

To determine if the CPUID instruction is supported, we test bit number
21 of the EFLAGS register. If this flag can be modified by software, the
CPUID instruction is supported. This should also be true for any hardware
vendor that supports CPUID on their products.

As shown in the cpu_supports_cpuid function within Listing A.5, a
little assembly-language gets the job done by retrieving the contents of
the EFLAGS register using the PUSHFD instruction. The routine then toggles
the bit in position 21, and then uses the POPFD instruction to write the
modified value back into the EFLAGS register. It then retrieves the con-
tents of EFLAGS using a second PUSHFD instruction, and checks whether the
value of the ID bit is indeed the value we set. If so, then we have proven
that bit 21 of the EFLAGS register is writable, and the CPUID instruction is
available.

Once CPUID support is found, we can continue checking for the fea-
tures we need. The CPUID function can perform multiple tasks and re-
trieve different sets of information. For our purposes, we need CPUID to
tell us which features the CPU supports. This is done by loading the value
1 into the EAX register prior to calling CPUID. Setting this value in EAX re-
quests a set of feature bit flags from cPUID, which are placed into the reg-
ister EDX. By copying the contents of EDX into our own 32-bit flag variable,

Appendix A GAIA Utility Classes 307

we can determine the features supported. This operation is shown in the
get_cpu_feature_flags function in Listing A.5. The 32 flags reported by
CPUID are listed in Appendix C, “Programming Reference Sheets.”

The flags we need to test are those that signal the features we want
to use. These include bits number 25 and 26, signaling CPU support for
the Intel SSE and SSE2 instruction sets. However, for these two features
the CPU query is not enough. Even if these bits are set by the CPU, we
still need to determine if the operating system allows the operations.
We do this the lazy way by attempting to call the functions and trap-
ping any exceptions that signal their failure. If the calls create excep-
tions, the host operating system does not support these extensions. Listing
A.5 contains two functions used to determine SSE and SSE2 support:
os_supports_sse_instructions and os_supports_sse2_instructions.

The last piece of information we want to track is a speed estimate for
the host CPU. This is useful if we want to tune some of the CPU-depen-
dant functions in our game, such as artificial intelligence operations or
any non-hardware rendering effects. Unfortunately, gathering informa-
tion about the actual CPU speed is not an exact science. Using the CPU’s
own resident counter, we can determine the exact number of CPU clock
cycles that occur over a set period of time, but even that degree of infor-
mation is not truly correct.

To read the elapsed clock cycles back from the CPU, we use the rdtsc
instruction in assembly-language. This instruction stands for Read Time
Stamp Counter, and it fills two 32-bit registers with a grand total of 64
bits of counter information. The counter is incremented at the rate of the
processor’s speed. For example, a 1GHz processor would increment the
counter roughly 1,000,000 times per second. Given this information, we
can sample the counter twice, and look at how much the counter in-
creased over time. This gives us a rough estimate of the processor speed.

The reason why this is a rough estimate is that we are performing a
sample of the CPU counter over time, and any method we use to deter-
mine the passage of real time will be somewhat inexact. Another reason
is that the CPU speed itself might fluctuate. Such is the case with many
modern mobile processors that allow the CPU speed to decrease when
demand is low. This is one way in which mobile processors conserve
power. Therefore, our speed rating for the CPU is useful as a guideline
only, not an exact benchmark.

Listing A.6 shows the basic CPU speed test operation. This function
also uses the cTimer class to determine how much actual time has passed
while the function retrieves two values from the rdtsc instruction. Deter-
mining the speed of the host processor is then a simple matter of dividing
the number of CPU cydles elapsed by the time spent gathering the data.

308 Real-Time 3D Terrain Engines Using C++ and DirectX 9

This calculates an estimation of clock cycles per second, which should be
nearly identical to the speed rating of the CPU.

LISTINGA.4 Gathering system information.

void cSystemInfo::querySystemInformation()
{
MEMORYSTATUS MemStatus;
OSVERSIONINFO OSVersion;

// read the memory status
MemStatus.dwlLength = sizeof (MemStatus);
GlobalMemoryStatus (&MemStatus);

// read the 0S Version data

OSVersion.dwOSVersionInfoSize =
sizeof (0SVersion);

GetVersionEx(&0SVersion);

// fill in our data members
m_physicalMemory=
MemStatus.dwTotalPhys;
m_totalMemory=
MemStatus.dwAvailPhys
+ MemStatus.dwAvailPageFile;

/1

// Figure out which 0S this is

/1

if (0SVersion.dwPlatformId==
VER_PLATFORM_WIN32_WINDOWS)

m_osVersion.Build=
LOWORD (0SVersion.dwBuildNumber) ;

m_platform=WINDOWS_95;

if (m_osVersion.MinorVersion==0
&& m_osVersion.Build>950)

m_platform=WINDOWS_95 SR2;
}

else if (m_osVersion.MinorVersion==10)

{

Appendix A GAIA Utility Classes

m_platform=WINDOWS_98;

}
else if (m_osVersion.MinorVersion>10)
{
m_platform=WINDOWS_ME;
}

}
else if (0SVersion.dwPlatformId==

VER_PLATFORM_WIN32_NT)

{
m_osVersion.Build
=0SVersion.dwBuildNumber;
if (m_osVersion.MajorVersion<4)
{
m_platform=WINDOWS_NT;
}
else if (m_osVersion.MajorVersion == 4)
{
m_platform=WINDOWS_2K;
}
else if (m_osVersion.MajorVersion == 5)
{
m_platform=WINDOWS_XP;
}
else
{
m_platform=WINDOWS_ FUTURE;
}
}
else
{
m_platform =UNKNOWN;;
m_osVersion.Build =0S8Version.dwBuildNumber;
}
/1
// Check for extended CPU facilities
/1

m_cpuFlags = get_processor_flags();

309

310 Real-Time 3D Terrain Engines Using C++ and DirectX 9

LISTINGA.5 Assembly-language functions for determining CPU features.

bool cpu_supports_cpuid()

{
uint32 result=0;
_asm{
pushfd // Get original EFLAGS
pop eax
mov ecx, eax
xor eax, 200000h // Flip ID bit in EFLAGS
push eax // Save new EFLAGS value
popfd // Replace current EFLAGS
pushfd /] Get new EFLAGS
pop eax /] Store new EFLAGS in EAX
xor eax, ecx
jz THE_END // Failure - NO CPUID
// The processor supports the CPUID instruction.
mov result,1
THE_END:
}
return (result ? true:false);
}
u32Flags get_cpu_feature_flags()
{
u32Flags result=0;
if (cpu_supports_cpuid())
{
_asm
{
pushad
mov eax,1 ; select feature flags
cpuid
mov result,edx
popad
}
}
return (result);
}

// report if 0S allows Intel SSE extensions
bool os_supports_sse_instructions()
{

Appendix A GAIA Utility Classes 311

_try
{
__asm
{
pushad;
// attempt an SSE call
orps xmmi,xmmi;
popad;
}
}
__except(1)
{
return(false);
}

return(true);

/] report if 0S allows Intel SSE2 extensions
bool os_supports_sse2_instructions()

{
__try
{
__asm
{
pushad;
// attempt an SSE2 call
paddgq xmm1, xmm2
popad;
}
}
__except(1)
{
return(false);
}
return(true);
}

u32Flags get_processor_flags()

{
u32Flags result=get_cpu_feature_flags();

// if the SSE flags are set,
// double-check with the 0S

312 Real-Time 3D Terrain Engines Using C++ and DirectX 9

if (result.testBit(25))

{
if (los_supports_sse_instructions())
{
result.clearBit(25);
}
else
{
if (result.testBit(26))
{
if (los_supports_sse2_instructions())
{
result.clearBit(26);
}
}
}
}

return result;

LISTINGA.6 Assembly-language functions for determining (PU speed.

void cSystemInfo::readCPUCounter(uinté4 *pCounter)

{
_asm
{
RDTSC
mov edi, pCounter
mov DWORD PTR {edi], eax
mov DWORD PTR {edi+4], edx
}s
}

void cSystemInfo::computeProcessorspeed()

{

uint64 startTime, endTime;
cTimer localTimer;

// start the timer
localTimer.start();

// sample the cpu counter
readCPUCounter (&startTime);
// waste some time
Sleep(100);

// resample the cpu counter

Appendix A GAIA Utility Classes 313

readCPUCounter (&endTime) ;
/] stop the clock
localTimer.stop();

// compute the CPU speed

// as ticks per millisecond

uint64 sampleDelta =
endTime - startTime;

uint32 elapsedMilliseconds =
localTimer.elapsedMilliseconds();

m_processorSpeed =
(uint32)sampleDelta/elapsedMilliseconds;

ASSERT, WARNINGS, AND COMMENTS

The top priority for any suite of debugging tools is the humble assert
macro. Assertions are a useful tool in checking assumptions within the
code and trapping for error cases before they evolve into hard-to-find
bugs. Essentially, the macros take some condition and panic if the condi-
tion turns out to be false. The panic is displayed in the form of a message
box displayed on screen to show the failed assertion. Given the code as-
sert(x==5), a message box will appear if x does not equal 5 at the time the
assert macro is processed. The Standard C library provides an assert
macro that does an amiable job of trapping error cases, but it falls short in
two key areas.

First, when the common assert macro traps an error, it puts up a
message box with very little information. The only data presented to the
user is the condition that caused the assert macro to fail. In practice, this
could mean that the code assert (x==17) would trigger the panic case
when x1=17 and display something cryptic like “Assertion Failed! Expres-
sion: x==17" in a message box. The information, while factual, is not very
useful.

In fact, the only time the assert macro is useful is when the applica-
tion is running within a debugging environment, or Just-In-Time debug-
ging is enabled on the host machine. If either is true, the message box
provides a button that will break into the code and grant the opportunity
to inspect the problem. This is where the second shortcoming becomes
apparent, because the break point actually resides inside the file assert.c,
where the assert functionality lives. Since the application project usually
does not contain the standard library’s assert.c file, the first thing Visual
C++ presents is a file dialog box asking for the location of assert.c. After

314

Real-Time 3D Terrain Engines Using C++ and DirectX 9

canceling the file search dialog box and navigating up the call stack, the
actual line of code that triggered the assertion can be found. Granted,
these extra steps to get to the root of the problem are a minor annoyance,
but they are a nuisance we can easily remove.

Given the goals of providing more useful information and granting
the ability to break on the exact line of code containing the condition we
are testing, the next step is to forge a replacement for the standard assert
macro. Luckily, other programmers have been annoyed by the shortcom-
ings of the standard C assert, and an ample list of good replacement ideas
is available to us already. As with many areas of game programming,
there are always others out there seeking answers to the same problems.

John Robbins, author of the “Bug Slayer” column for Microsoft Systems
Journal, wrote about the idea of a Super Assert in his February 1999 arti-
cle [Robbins]. Among other innovations, he added a complete stack trace
to the output message box. Armed with call stack information, a pro-
grammer could deduce what had caused the error while running the ap-
plication outside a debugging environment. This is common in beta
testing, where the testers might not have full debugging environments at
their disposal.

Steve Rabin contributed an article to the book Game Programming
Gems [Rabin] that builds upon Robbins” work. His additions included
adding clipboard-pasting functionality to the debug output, so the error
text and call stack could be easily reported via e-mail or logged to a file.
Rabin also introduced the idea of making the assert notification condi-
tional, giving the user the option to switch a specific assert off while still
allowing other asserts to function. These are both excellent ideas that we
will employ in our own replacement for assert.

Finally, the folks at Microsoft provided a set of functions in the
DirectX library that are also incredibly useful. DXGetErrorString9() and
DXGetErrorDescription9() can convert DirectX and Win32 error codes
into human-readable strings. Using these functions, we can provide a
specific type of assert macro to trap errors reported when DirectX or
Win32 functions fail.

Using all of these ideas, we will craft a set of assert macros of our
own. However, unlike Rabin and Robbins, we will not be using a custom
dialog box. Because we want to build the assertion into our static Core
library, we do not have access to application resources such as a custom
dialog box template. Instead, we will continue using the built-in Abort,
Retry, Fail message box provided by Win32, albeit a little differently than
the standard assert macro uses it.

Our first step is to build the function that will construct and display
the message box, and then return the user’s choice to abort, retry, or

ONTHE(D

Appendix A GAIA Utility Classes 315

ignore the assert. Unlike the standard assert macro, the buttons of our
message box retain their true meaning. Whereas the Retry button of the
standard assert is used to break into the code, ours will imply that the
user wants to continue processing the application. The Ignore button will
be used to ignore all future occurrences of the specific assert condition
being tested. The Abort button will ask the user if he wishes to exit the
application or break into the code. Using these button definitions, we get
all of our desired functionality while still using the buttons of the stan-
dard abort, retry, fail message box intuitively.

Armed with the ability to trace through the current call stack and
create a sting of its contents (the code for which can be found in
core\stack_trace.cpp on the accompanying CD-ROM), we can now con-
struct our assertion reporting function. Its responsibilities include gather-
ing all necessary information, building an output string of the assertion
failure, and presenting the user with the abort, retry, fail message box.
The user’s reply to the message box is translated into enumerated values
that describe what to do next. The function is shown in Listing A.7.

LISTINGA.7 Reporting errors to the user.

// Assert function return values
enum ERROR_RESULT

{
VR_IGNORE = 0,
VR_CONTINUE,
VR_BREAKPOINT,
VR_ABORT

};

ERROR_RESULT displayError(const tchar* errorTitle,
const tchar* errorText,
const tchar* errorDescription,
const tchar* fileName,
int lineNumber)

const int NAME_SIZE = 255;
tchar moduleName{NAME_SIZE];

// attempt to get the module name
if (!GetModuleFileName (NULL, moduleName, NAME_SIZE))
{

_tcscpy (moduleName, _text(“<unknown application>7)});

316 Real-Time 3D Terrain Engines Using C++ and DirectX 9

// if stack tracing is enabled,
// build a string containing the
/! unwound stack information
#ifdef _STACKTRACE
’ const int STACK_STRING_SIZE = 255;
tchar stackText[STACK _STRING_SIZE];

buildStackTrace(stackText, STACK STRING_SIZE, 2);
#else

tchar stackText[] = _text(“<stack trace disabled>");
#endif

// build a colossal string containing
// the entire error message

const int MAX_BUFFER_SIZE = 1024;
tchar buffer[MAX_BUFFER_SIZE];

int Size =
_sntprintf (buffer,

MAX_BUFFER_SIZE,
_text(“%ss\n\n” \
“Program : %s\n” \
“File : %s\n” \
“Line @ %d\n” \
“Error: %s\n” \
“Comment: %s\n” \
“\nStack:\n%s\n\n” \
“Abort to exit (or debug), “\
“Retry to continue,\n”\
“Ignore to disregard all occurrences“\
“ of this error\n”),
errorTitle,
moduleName,
fileName,
lineNumber,
errorText,
errorDescription,
stackText
)i

/! place a copy of the message into the clipboard
if (OpenClipboard(NULL))
{
uint32 bufferLength = _tcsclen(buffer);
HGLOBAL hMem =
GlobalAlloc (GHND | GMEM_DDESHARE, bufferLength+1);

Appendix A GAIA Utility Classes

if (hMem)

{
uint8* pMem = (uint8*)GloballLock(hMem);
memcpy (pMem, buffer, bufferLength);

GlobalUnlock (hMem) ;
EmptyClipboard();
SetClipboardData(CF_TEXT, hMem);
}
CloseClipboard();

// find the top most window of the current application
HWND hWndParent = GetActiveWindow () ;
if (NULL != hWndParent)

{
hwndParent = GetLastActivePopup (hWndParent) ;

// put up a message box with the error

int iRet = MessageBox(hWndParent,
buffer,
_text (“ERROR NOTIFICATION...” },
MB_TASKMODAL
| MB_SETFOREGROUND
| MB_ABORTRETRYIGNORE
|MB_ICONERROR) ;

// Figure out what to do on the return.
if (iRet == IDRETRY)
{
// ignore this error and continue
return (VR_CONTINUE);

}

if (iRet == IDIGNORE)

{
// ignore this error and continue,
// plus never stop on this error again
return (VR_IGNORE);

}

// The return has to be IDABORT,

// but does the user want to enter the debugger
// or just exit the application?

iRet = MessageBox (hWndParent,

317

318

Real-Time 3D Terrain Engines Using C++ and DirectX 9

“debug the last error?”,
_text (“DEBUG OR EXIT?”)},
MB_TASKMODAL

| MB_SETFOREGROUND

|MB_YESNO
|MB_ICONQUESTION);

if (iRet == IDYES)

{
// inform the caller to break on the
// current line of execution
return (VR_BREAKPOINT);

}

// must be a full-on termination of the app
ExitProcess { (UINT)-1) ;
return (VR_ABORT);

with the displayError function in place, we can now build the macro
that will call it to report our assertions when they fail. This macro tests
the condition supplied, and calls the displayError when the condition is
not met. By incorporating brackets into the macro itself, the code will ex-
pand to create a local scope in which a static variable can also be con-
tained. This variable is used to decide whether the assert failure should be
reported to the user. When the user chooses to ignore all further errors
caused by this assert, the internal static variable is set to prevent the mes-
sage box from displaying again.

When the user chooses to debug the code in question, interrupt
number 3 is signaled, which equates to a code break on Intel-based CPUs.
The line _asm{int 3} causes the debugger, if present, to break into the
code at the exact line containing the interrupt. Since our signaling of the
interrupt is embedded in the macro, the debugger will display the line of
code that contained our original assert condition. Source code for the
debug_assert macro is shown in Listing A.8.

LISTINGA.8 Controlling assertions with a macro.

#define debug_assert(x, comment) {\
static bool _ignoreAssert = false;\
if (!_ignoreAssert && !(x)) \
{A
ERROR_RESULT _err_result = \

Appendix A GAIA Utility Ciasses 319

displayError(_test(“debug assert!”}),\
_text(#x), _text(comment), \

__FILE__, __LINE_); \
if (_err_result == VR_IGNORE) \
{\
_ignoreAssert = true; \
n
else if (_err_result == VR_BREAKPOINT)\
{Q
_asm{int 3};\
N

}}

Unlike the standard assert macro, our debug_assert takes a comment
string as well as the condition to test. This comment is passed on to the
displayError function when the assert condition (x) fails. This allows the
programmer to report meaningful text information inside the message
box. For example, suppose you had a bit field of 32 members and you
wanted to post an error anytime someone tried to request a bit outside
the 0-31 range. The following assertion failure will display a message box
whenever an invalid index is provided:

debug_assert(index>=0 && index<32,
“invalid bit index requested”);

The last piece of functionality to add is the use of the DirectX
functions DXGetErrorString9() and DXGetErrorDescription9() to report
human- readable strings from DirectX and Win32 error codes. To provide
this functionality, we add a second function to convert an error code to a
set of strings and pass them to the displayError function. To add a little
more ease of use to this function, when it is called with an error code of
zero, it will internally call GetLastError to determine the last known error
code. This is useful for Win32 functions that return something other than
an error code, but set an internal error code when they fail. Listing A.9
shows the source code for error reporting, and the macro that uses it.

LISTINGA.9 Looking up Win32 and DirectX error codes and reporting them to the user.

ERROR_RESULT notifyError(uint32 errorCode, const tchar*
fileName, int lineNumber)

/] if no error code is provided,
/] get the last known error

320

Real-Time 3D Terrain Engines Using C++ and DirectX 9

if (errorCode == 0)

{
errorCode = GetLastError();

// use DirectX to supply a string and

// description for our error.

// This will handle all known DirectX

// error codes (HRESULTs)

// as well as Win32 error codes normally

// found via FormatMessage

const tchar* pErrorString =
DXGetErrorString9(errorCode);

const tchar* pErrorDescription =
DXGetErrorDescription9(errorcCode);

// pass the data on to the message box

ERROR_RESULT result = displayError(_text(“Error!”),
pErrorString,
pErrorDescription,
fileName,
lineNumber);

// Put the incoming last error back.
SetLastError(errorCode);

return(result);

#define debug_error(x) {\

static bool _ignoreError = false;\
if (!_ignoreError) \

{\
ERROR_RESULT _err_result = notifyError((x), \
_ FILE__, __LINE_);\
if (_err_result == VR_IGNORE)\
{\
_ignoreError = true;\
n
else if (_err_result == VR_BREAKPOINT)\
{\
_asm{int 3};\
n

}}

Appendix A GAIA Utility Classes 321

COMPILE-TIME ASSERTS

Assertions that trigger during the execution of the application are very
useful, but occasionally there are conditions we want to trap during com-
pilation. These are usually traps we place within the code to catch our-
selves from coding something destructive. Asserts where we verify the
size of a given object, the count of certain objects, or other sensitive in-
formation, are vital to keeping ourselves in check.

One such example is bit flags. Suppose we have created a cBitFlags
object with 8 bits of information to identify a game object such as a mon-
ster. In addition, we want to identify each bit within the bit flags sepa-
rately using enumerated values. This way, we can inquire about the
monster more easily to figure out what type it is. We might create an
enumeration similar to the following:

enum eBitFlagIndices

{
k_hasFangs = 0,
k_hasClaws,
k_smellsAwful,
..etc
k_totalBitFlags,
};

As you can see, if we add eight enum values, they will be automatically
numbered from 0 to 7, providing perfect index values with which to
query the bit flags object. Likewise, the final value, k_totalBitFlags, will
contain the total number of bit indices in the enum, eight. However, what
if we revisit this enum at some point in the future and mistakenly add a
ninth index value? Unless we check the index range elsewhere with as-
serts, our code will attempt to set and read a ninth bit in an 8-bit value,
creating a bug. Even if we do perform a runtime assert to trap this case,
we won't find it until we trigger the section of code that uses this enum. In
short, some time might pass before we actually detect this simple bug.

A simple way to protect against such things is to add a compile-time
assert to the code. In this particular example, we know that k_totalBit-
Flags must be equal to or less than 8 for the bit flags object to perform
within its scope of 8 bits. This is an easy value to test, but how do we do
so during compilation time rather than at the point of execution?

The answer is to create invalid code. This way, the compiler will fail
to build the application until we fix the problem. To build the bogus code,
we use another macro that takes our conditional expression and converts
it to invalid code when the condition is not true. We do this using a

322 Real-Time 3D Terrain Engines Using C++ and DirectX 9

switch statement within the macro. The switch contains a case for values
of 0, and one for a value based on our condition.

#define compiler_assert(x) {\
const int _value = (x) ? 1:0;\
switch (x)\

{\
case 0: \
case _value: \
default: break;\
b}

When the condition (x) is true, _value becomes 1, giving us two per-
fectly reasonable cases within the switch statement. When the condition
fails, however, _value becomes 0 and we have two redundant case state-
ments within the switch. This creates invalid code that the compiler will
catch and report as an error.

There are two limitations with this method, the first being the obvi-
ous condition that the condition being tested is something that can be de-
termined at compile time. This includes the value of constants and sizes
determined by the sizeof() operator. The second limitation is that the
compiler_assert macro must still be used within a function that is being
compiled. Keep in mind that template functions are not compiled un-
less they are actually used by other sections of the code. Therefore,
compiler assert macros placed in these sections will not be compiled and
verified.

DEBUG TEXT MESSAGES

Quite often, we find the need to track the progress of the application
through various functions and libraries. Perhaps we need to track the
value of some variable, the state of some object, or the number of times a
given condition happens. Performing this type of monitoring with assert
macros would convert the application to a mess of message boxes and
halting conditions. Instead, we’ll add a robust debug message manager
that allows us to output text strings to the user in order to monitor the
application.

OutputDebugString performs the task natively, dumping whatever
string is passed to it into the standard output window. However, it can be
very limiting, especially if we want to output the value of some variable
and need to build a custom string to do so. If we also want to log the string
information to a file instead of passing it to the output window, we will

Appendix A GAIA Utility Classes 323

need to create a separate solution to do so, and then decide at each mes-
sage location whether the information should go to OutputDebugString,
some log file controller, or both.

Instead, we will create a single debug message handler that allows us
to build the output string on-the-fly, and categorize the string so the mes-
sage handler can decide where to send it. We do this by providing 32
message types, designated by a bit field that is specified with each debug
message. We can then plug in a listener, which we call a debug channel,
that watches message types to flow into the debug message handler.
These channels can then route the message to the output window, a file,
or anywhere else we choose. This provides us with a great deal of flexi-
bility when recording specific logs of engine performance data, user
input, or error messages. It also provides us with a plug-in interface we
can extend for future debugging needs, such as remote network
monitoring.

First, we need to define what a debug channel is, and how it oper-
ates. Our implementation is little more than a virtual interface to handle
the basics of message output. Since some channels might be linked to files
or other external resources, we provide a common interface that allows
the channel to be opened, written to, and closed. There is no distinction
between opening a channel for overwriting or appending, the assump-
tion being that all channels are opened once at the start of the applica-
tion, written to for the duration of the application’s lifetime, and then
closed at the end. Each debug channel also needs to specify a set of bit
flags for the message types it watches for. The basic class definition is
shown in Listing A.10, along with a specific example of a message chan-
nel derived from it to post all messages to the standard output window. In
the core header file debug_channel.h, there is also a specialized channel
object called cFileOutputChannel that can be used to log messages to disk.

LISTINGA.10 The debug channel base dass and a specificinstance derived from it to output message
to the standard output buffer.

class cDebugMessageChannel

{
public:

// a public set of bitflags used to filter messages
u32Flags messageFilter;

cDebugMessageChannel () :messageFilter(0){}
virtual ~cDebugMessageChannel(){}

324 Real-Time 3D Terrain Engines Using C++ and DirectX 9

private:

// these functions are only called by the
// cDebugMessageHandler object

friend cDebugMessageHandler;

virtual bool open(){return true;}

virtual void close(){}

virtual bool write(const tchar* pText){}

};
class cSystemDebugChannel : public cDebugMessageChannel
{
public:
¢SystemDebugChannel()
{
// accept all message types
messageFilter = Oxffffffff;
}
~cSystemDebugChannel () {}
private:
// output all text to the standard output buffer
bool write(const tchar* pText)
{
_tprintf(pText);
_tprintf(_text(“\n”));
return true;
}
};

Now that the basics are out of the way, we can build the message
handler to receive all the input and route it accordingly. This is a simple
class that accepts string input categorized by a set of message type flags,
and then searches through a list of known listener channels for all mem-
bers who need to be sent the message. We provide 32 message type flags,
and up to 32 user-defined channels for routing the information. We limit
ourselves to 32 so that we can store both sets of information, the message
filter and the active channels, in 32-bit values.

The class interface allows for the user to add and remove active
debug channels, activate or deactivate them, and output text messages to
the active channels. By default, we construct the class with a built-in
cSystemDebugChannel object (see Listing A.10) so it’s ready for use imme-

Appendix A GAIA Utility Classes 325

diately. Adding additional channels or changing the properties of the de-
fault system channel is up to the programmer.

The tricky part is being able to build the input string on-the-fly,
which involves the use of ellipsis (...) arguments. Ellipses allow for a
variable number of arguments to a function, which is the way string-
building functions such as printf get their flexibility. Since we want the
same flexibility, we will use the same method of allowing optional argu-
ments. In fact, out text input function does little more than package the
ellipsis arguments into the corresponding variable-argument list object
(va_list) and pass them to a slightly different version of the printf to
build our string.

Listing A.11 shows the text output functions. We build three func-
tions to get the job done: one that actually does the work (processMes-
sage), and two versions of an output function. The two versions allow us
to send text output to the message handler with or without a message
type flag. When the flag is omitted, an internal default message flag is
used. This allows us to create simple macros such as TRACE to output text
messages without requiring a message flag every time.

LISTINGA.11 The three member functions of cDebugMessageHandler that handle receiving and
processing text messages.

// route text input using the internal default message flag
void cDebugMessageHandler::output(const tchar* text, ...)
{

// build the va_list of optional arguments

va_list arglist;

va_start(arglist, text);

// call the va_list version of output
processMessage (k_defaultMessageFlag, text, arglist);

// end the optional argument list use
va_end(arglist);

// route text input using the message flag provided
void cDebugMessageHandler: :output(uint32 messageFlags,
const tchar* text, ...)

// build the va_list of optional arguments
va_list arglist;
va_start(arglist, text);

326 Real-Time 3D Terrain Engines Using C++ and DirectX 9

// call the va_list version of output
processMessage (messageFlags, text, arglist);

// end the optional argument list use
va_end(arglist);

// the function which handles the actual
// routing of text messages
void cDebugMessageHandler::processMessage (
uint32 messageFlags,
const tchar* text,
va_list arglist)

// are any channels currently open?
if (m_openChannels)

{
// build our output string
tchar buffer{nMaxOutputStringSize+i];
int Size = _vsntprintf(buffer,
nMaxOutputStringSize,
text,
arglist);
// if a string was built...
if(Size > 0)
{
// run through all the channels
for (int i=0; i<nMaxChannels; ++i)
{
/1 if the channel is open
// and it accepts this message type...
if (m_openChannels.testBit(i)
&8& m_channel[i]->messageFilter.testAny(messageFlags))
{
// then send the message through
m_channel[i] ->write(buffer);
}
}
}
}

CODE TIMING

Appendix A GAIA Utility Classes 327

Other than trapping errors and outputting text messages to ourselves to
monitor the application, we also need a simple means to periodically test
the efficiency of the code we are writing. Specialized performance moni-
toring tools such as the Intel VTune™ program or Compuware® DevPart-
ner Profiler™ can provide detailed performance feedback, but we would
still benefit from a profiling method that functions without the need for
such external tools. There is also the occasional need for real-time perfor-
mance feedback, where timing information for a specific function is only
relevant during Key situations. To provide high-level timing feedback, we
will create a set of functions to monitor the speed of our application
wherever we desire to do so. As with the error assertions and text output
functions, we will do this via macros so that our final release builds will
not contain any of this extra monitoring code.

A simple timer object is the first component of this profiling system.
This class uses the QueryPerformanceCounter method to sample time val-
ues from the system. This is arguably faster (and more accurate) than
other time sampling methods such as timeGetTime and GetTickCount, but
not as efficient as using the target CPU’s built-in performance monitoring
counters. Because such CPU performance counters are vendor specific,
we will avoid them for our basic timer class. However, the simple timer
interface we will create will allow us to convert the timer to CPU-specific
methods in the future should the need for greater accuracy arise.

The cTimer object provides this simple interface, allowing us to start,
stop, pause, and un-pause a timer and read the time value at any mo-
ment. Time is reported in floating-point values as fractional seconds. We
do this because this class object will be used for our code profiling, and for
general-purpose timers within our application. Having a universal frame-
work for time values makes using these timer objects more intuitive.

One specific type of cTimer object is the application timer, which we
launch at the start of the application and let run until the program closes.
At any time, we can then query the application timer to get the elapsed
time spent executing our program. The cApplicationTimer class handles
this for us. As a class based on cTimer, cApplicationTimer adds no new
functionality other than to immediately begin a timing session upon con-
struction, and terminate that session upon destruction. This allows us to
create a global instance of this class object, simply named application-
Timer, which is created and destroyed along with the application. Getting
the current time for any point in our code is then just a simple matter of
calling applicationTimer.elapsedTime. The cTimer and cApplicationTimer

328

Real-Time 3D Terrain Engines Using C++ and DirectX 9

g
ONTHE (D

class definitions can be found on the CD-ROM in the timer.h and
application_timer.h files.

with the timer objects in place, the next method to define is how we
will add timing operations to our code to monitor efficiency. To monitor
a section of code over time, data must be tracked regarding the total
amount of time spent in the code and the number of times the code was
executed. An average execution time can be computed from this data. To
provide more information, the minimum and maximum time samples
recorded for all executions of the code will also be tracked. This gives ad-
ditional insight into the maximum fluctuation in efficiency for the code
being examined

Listing A.12 shows the class object used to track this information,
cCodeTimer. This class also contains a pair of pointers to a previous and
next cCodeTimer object—allowing us to chain them all together into a
linked list. Rather than using a fixed-size table of cCodeTimer objects, the
linked list approach allows a more flexible number of code timers to be
active throughout the engine.

LISTINGA.12 The cCodeTimer object definition and key member functions.

class cCodeTimer

{
public:

static cCodeTimer RootTimer;

// Data Types & Constants...
enum eConstants

{

k_maxNameLength = 32
¥
// Public Data...

/] Creators...

cCodeTimer(const tchar* name_string);
~cCodeTimer(){};

// Operators...

// Mutators...
void beginSession();

Appendix A GAIA Utility Classes

void endSession();
void reset();

void resetAllTimers();
void outputAllTimers(u32Flags MessageFlags);

// Accessors...

float averageTime()const;
float totalTime()const;
uint32 totalCalls()const;

float maximumTimeSample()const;
float minimumTimeSample()const;

const tchar* name()const;

private:

b

// Private Data...
cCodeTimer* m_nextProfile;
cCodeTimer* m_lastProfile;

float m_totalTime;
uint32 m_totalCalls;

float m_maximumTimeSample;
float m_minimumTimeSample;

tchar m_name[k_maxNameLength];
float m_startTime;

static cCodeTimer* s_previousTimer;

// the constructor.

cCodeTimer: :cCodeTimer (const tchar* name_string)
:m_nextProfile(0)
,m_lastProfile(s_previousTimer)
,m_totalTime(0.0f)

,m_totalCalls(0)

,m_maximumTimeSample (0.0f)
,m_minimumTimeSample (0.0f)

,m_startTime(0.0f)

{

debug_assert(name_string,

329

330 Real-Time 3D Terrain Engines Using C++ and DirectX 9

“A name must be provided to the code timer”);

// record the timer’s name
1strcpyn(m_name,name_string, k_maxNamelLength);

// append ourselves to the chain of timers
if (s_previousTimer)
{

s_previousTimer->m_nextProfile = this;

}

s_previousTimer = this;

// begin timing a section of code
void cCodeTimer::beginSession()

{
++m_totalCalls;
if (Im_startTime)
{
m_startTime = applicationTimer.elapsedTime();
}
}

// stop timing a section of code
void cCodeTimer::endSession()

{
if (m_startTime)
{
float endTime = applicationTimer.elapsedTime();
float sample = endlime - m_startTime;
m_totalTime += sample;
m_maximumTimeSample =
maximum(m_maximumTimeSample, sample);
m_minimumTimeSample =
minimum(m_maximumTimeSample, sample);
m_startTime = 0.0f;
}
}

All cCodeTimer objects are held as static data within the code they are
profiling. Placing these objects within the code pollutes the area being
monitored, but for high-level profiling such as this, the cost should be

Appendix A GAIA Utility Classes 331

minimal. A static member within the cCodeTimer object itself tracks a
pointer to the last cCodeTimer object created, so new cCodeTimer objects
can link to it and continue the chain. As monitored code is encountered,
static cCodeTimer objects are created and extend the chain. Listing A.13
shows the macros used to create these static objects using names pro-
vided to the macro to construct the local instances of each cCodeTimer.

LISTINGA.13 Macros used to embed a cCodeT imer object within the code being monitored.

// begin a profile session called [name] by
// creating a local static member called _ct_[name]
// and beginning a profile session with it
#define begin_profile(name) static \
cCodeTimer _ct_##name(_text(#name));\
ct##name.beginSession();

// end the profile session by name
#define end_profile(name) _ct_##name.endSession();

Monitoring a section of code is a simple matter of dropping the begin
and end profile macros around the code and providing them with a
matching name describing the code. For example, to profile the time
spent in a loop, the following code could be written:

begin_profile(main_game_loop);
while(!finished)
{
// run the game..
};
end_profile(main_game_loop);

Using the macros shown in Listing A.13, the compiler will expand
this code to create a local, static cCodeTimer object, and profile the section
of code desired.

static cCodeTimer _ct_main_game_loop(“main_game_loop”);
_ct_main_game_loop.beginSession();
while(!finished)
{
// run the game
};
_ct_main_game_loop.endSession();

332

Real-Time 3D Terrain Engines Using C++ and DirectX 9

To periodically query the values held within the code timers, the sta-
tic function outputAllTimers can be called with a set of message flags. In-
ternally, the cCodeTimer class will run through all objects held in the
linked list and transmit their data as a string to the cDebugMessageHandler
object. Using the message flag provided, the text output will be routed to
the proper debug channel, allowing us to display the data in the output
window, log it to a file—whatever we want. This provides a convenient
way to take snapshots of application performance at runtime.

To further enable easy code profiling, another automatic class can be
used to profile any given scope within the source code. Just as the cAp-
plicationTimer object granted automatic use of a cTimer object over its
lifetime, we can create a profiling object to manage code timing during its
existence. By starting a profile session upon creation, and closing the ses-
sion upon destruction, we can profile the amount of time spent while a
given object is in scope—providing a profile of the scope itself. Listing
A.14 shows the source code for this simple profiling class, cScopeTimer,
and the profile_scope macro that makes use of it.

As with the other code timing macros, the profile_scope macro cre-
ates a static cCodeTimer object based on the unique name it is given. This
object is static, so it is only created and added to the cCodeTimer linked list
upon the first execution of this macro. The profile_scope macro also cre-
ates a temporary cScopeTimer, and passes it a pointer to the code timing
object. As long as the cScopeTimer object remains active, the code will be
profiled. As soon as the cScopeTimer goes out of scope and is destroyed,
the profile session will automatically end. Therefore, placing a single
profile_scope macro at the top of a function will profile the entire func-
tion from the point of the macro until the function returns.

LISTINGA.14 The cScopeTimer object, and the macro used to automate its use.

class cScopeTimer

{

public:
cScopeTimer (cCodeTimer* timer)
:m_internalTimerLink(timer)

{
debug_assert(m_internalTimerLink,
“A timer link must be provided”);
m_internalTimerLink->beginSession();
}

~cScopeTimer ()

REFERENCES

Appendix A GAIA Utility Classes 333

m_internalTimerLink->endSession();

private:
cCodeTimer* m_internalTimerLink;

b

#define profile_scope(name) static \
cCodeTimer _ct_##name(_text (#name));\
cScopeTimer _Tt_name (& ct_##name);

[Rabin] Rabin, S., “Squeezing More Out of Assert.” Game Programming
Gems. Charles River Media, Inc., 2000, pp.109-114.

[Robbins] Robbins, J. “Bugslayer.” Microsoft Systems Journal. February
1999. (available online at www.microsoft.com/msj/defaultframe.asp?
page=/msj/0299/bugslayer/bugslayer0299.htm).

[Wyatt] Wyatt, R. “Processor Detection and a Pentium III Update.” (avail-
able online at www.gamasutra.com/features/wyatts_world/19990709/
processor_detection_01.htm).

FLOATING-POINT TRICKS

one thing, but the Gaia toolset must be as robust as possible. The

whole point of spending the time to build a toolset for pushing
bits around is to make our lives easier down the road, so we desire a con-
sistent interface to deal with integer and floating-point numbers alike.
The simple way is to have the floating-point versions of our numeric tools
call out to the Standard C Math Library for support. For many of the nu-
meric tools, this is exactly what we will do, but for a select few we will
bypass the Standard C Library and create our own implementations.

Using floating-point numbers on a computer built to work in a binary
fashion creates two issues with which to contend: speed and accuracy.
Speed is a concern because while the Standard C Math Library contains
every floating-point arithmetic operation we could ever need, many are
too slow for frequent use. A dedicated Floating-point Processing Unit (FPU)
is the only thing separating us from the days of fixed-point math libraries.

Accuracy becomes an issue when you consider that the computer
cannot really represent floating-point numbers in the first place. What
we get instead are approximations that deviate from their true values by
some slight margin. As these approximated values are used together in
math operations, the deviations are compounded, and the result can be
slightly off from the value expected. The result? Equations you expect to
return zero sometimes return tiny values like 1.0e-13, vectors you nor-
malize end up with lengths slightly over or under a unit length, and
bounding boxes you think are side by side overlap by incredibly tiny mar-
gins. It’s enough to take the fun out of floating-point math.

In the numeric tools section of the core library, a few helpful utilities
and macros will be added to address these problems. To do so, a basic un-
derstanding of the floating-point format is needed. The format is defined
by the Institute of Electrical and Electronics Engineers, Inc. (IEEE), and
has been adopted by most, if not all, computer processor manufacturers.

335

| I aving a core set of numeric tools that deals with integer values is

336 Real-Time 3D Terrain Engines Using C++ and DirectX 9

I'm not a big fan of reading through IEEE specifications, and I doubt you
are either. Luckily for us, programmers treaded this path before and cre-
ated ample documentation of the IEEE standard and tricks to abuse it.

EXAMINING FLOATING-POINT DATA

Floating-point data is held by the computer in a specific bit pattern de-
signed for their storage. By peeking at the bits in this pattern, we can dis-
sect a floating-point number and glean some key information about it.
The format for an IEEE-compliant, 32-bit floating-point number is de-
fined as a single sign bit followed by 8 bits of exponent and 23 bits of
mantissa. Figure B.1 shows the bit pattern for single-precision floating-
point numbers.

+— exponent mantissa

0 00000000 1 00000000000000000000000

31 30 23 22 0

FIGUREB.1 The IEEE bit pattern for 32-bit floating point vaiues. The
highest bit is the sign bit, followed by 8 bits of exponent and 23 bits of
mantissa.

Not many carbon-based life forms use exponents and mantissas to
express values, so the format might seem a bit foreign at first. We will
walk through an example and then explore some methods to work with
the floating-point format without concerning ourselves with mantissas
and exponents. The example will consist of converting a decimal value,
8.75, to a set of bits in floating-point format.

To convert a decimal value to the floating-point bit pattern, it must
first be expressed in binary form. The value 8.75 is a little tricky to con-
vert, because it contains a fractional value. Converting the whole portion,
8, is easy enough—it becomes the binary value 1000. To convert the frac-
tional part (.75), remember that bit locations to the right of the decimal
point represent the values 27!, 272, 2-3, and so on. These bit positions can
also be thought of as %, Y4, Y%, and so on. Therefore, .75, which is the
same as %2 (the first binary bit) plus % (the second binary bit), becomes
.11 in binary. The two values are then joined together to represent 8.75
in binary as 1000.11.

Appendix B Floating-Point Tricks 337

Converting to binary isn’t much of a challenge, but the floating-point
format is designed to hold the value in scientific format. To be exact, it’s
designed to reflect a normalized value in scientific format. That’s quite a
mouthful, but it’s rather simple to create such a value. All that is required
is to normalize the binary number. This is just a fancy way of saying
“move the binary point to the right of the most significant bit, and record
the binary point move as the exponent.” This converts the value from
1000.11 to the equivalent, normalized, scientific-notation version
1.00011 x 273. This is the original value normalized by shifting the bi-
nary point three places to the left and recording the 3-bit move as the ex-
ponent.

When broken down into the component parts, 1.00011 x 273 can be
read as a mantissa of 1.00011, an exponent of 3, and a sign bit of 0 (the
value is positive). These are the three values needed to fill the floating-
point data structure, but there are still a couple of hoops to jump through
to build the final bit pattern.

First, the exponent must be expressed in biased form. Exponents can
be positive or negative, but there are only eight bits provided to represent
them within the floating-point data format. The IEEE format handles this
by dividing the exponent value range into two halves: positive and nega-
tive. Consider that the 8 bits can hold 256 individual values (0 through
255). By splitting this range in half, one of the halves can be used for neg-
ative numbers and one for positive. The bias value is 127, since it is the
halfway point that represents zero. Negative values fall in the range 0
through 126, and positive values are in the range 128 through 255. To
store an exponent, simply add the bias to it to move it to the proper half-
space. The exponent value of 3 (from the previous example) would be
stored as 127 + 3 or 130, three units into the positive half-space.

Next is the straightforward task of creating the value stored in the
mantissa. All floating-point mantissas are stored in normalized, binary
form. You'll recall that to normalize a binary number, you simply move
the binary point to the right of the highest bit that is set. This means that
all normalized binary numbers will be in the format 1.x, where x can be
any trailing number of bits. Since it is guaranteed that there is only one
bit present to the left of the binary point, there is no need to store it. The
floating-point data format only stores the bits of the mantissa to the right
of the binary point. The single bit left of the decimal point is discarded,
but will still be used in all floating-point calculations as the implied high
bit of the mantissa. Given the mantissa of 1.00011 from the previous ex-
ample, the bits actually stored would be 00011, followed by 18 bits of
zero to pad out the 23-bit mantissa space.

338 Real-Time 3D Terrain Engines Using C++ and DirectX 9

Now, all three pieces of the floating-point data format are ready to
go. The example input value, 8.75, has been converted to its normalized-
scientific form, 1.00011 x 273, The exponent value, 3, generated by the
normalization, has been biased to fit in 8 bits of space as the value 130,
and the implied high bit has been removed from the mantissa. The final
floating-point bit pattern can now be built by setting the sign bit (zero for
the positive source value of 8.75), shifting the 8-bit exponent into posi-
tion, and setting the mantissa bits. The result is shown in Figure B.2.

+- exponent mantissa

0 10000010 1 00011000000000000000000

31 30 23 22 0

FIGUREB.2 8.75 converted to floating-point format 8.75 in binary form
is 1000.11, or 1.00011 x 223 when normalized. This equates to a sign bit
of 0, an exponent value of 3, and a mantissa of 1.00011. The exponent is
biased to the value 130 (binary 10000010), and the high bit of the man-
tissa is removed for storage, leaving 00011 as the mantissa bits stored,
padded out to fill the 23-bit mantissa space.

So, how can all this mantissa and exponent data be viewed in a sim-
pler way? The key is to think of the stored components as a bit-shifting
recipe rather than scientific notation. The 8-bit exponent value is 130,
which converts back to the original exponent value 3 when the bias
value is subtracted. This is the exact number of binary places the 23-bit
mantissa value must be shifted to the left to get back the original value.

The mantissa bits are 00011 (plus 18 bits of trailing zeroes), which
becomes 1.00011 when the implied high bit and binary point are re-
placed. If the binary point is shifted three places to the right, it will create
the original value of 1000.11, or 8.75. Therefore, rather than thinking of
floating-point values as a sign, exponent, and mantissa in scientific terms,
they can be thought of as a sign bit, a shift count, and a value to be
shifted.

Armed with this knowledge, we can look as some tricks that exploit
the IEEE format. Some handy macros can be defined to perform the bit
encoding and decoding tasks. These become the building blocks for the
various tricks we will create.

// reinterpret a float as an int32
#define fpBits(f) (*reinterpret_cast<const int32*>(&(f)))

THE SIGN BIT

Appendix B Floating-Point Tricks 339

// reinterpret an int32 as a float

#define intBits(i) (*reinterpret_cast<const float*>(&(i)))

// return 0 or -1 based on the sign of the float

#define fpSign(i) (fpBits(f)>31)

// extract the 8 bits of exponent as a signed integer

// by masking out this bits, shifting down by 23,

// and subtracting the bias value of 127

#define fpExponent(f) (((fpBits(f)&Ox7fffffff)>23)-127)

// return 0 or -1 based on the sign of the exponent

#define fpExponentSign(f) (fpExponent(f)>31)

// get the 23 bits of mantissa with the implied bit
replaced

#define fpMantissa(f) ((fpBits(f)&Ox7fffff)| (1<<23))

The first thing to notice is that the sign bit for floating-point numbers re-
sides in the most-significant bit; exactly the same position as in 32-bit in-
teger values. This means that the sign of floating-point numbers can be
found by treating them as integer values. This can be done by aliasing a
floating-point value as an integer, and then testing the sign of the integer
value.

The sameSigns() template function created in the last chapter can
now be updated with this knowledge. For two floating-point numbers to
have the same signs, they must have the same sign bit. Comparing their
signs is just a matter of comparing sign bits of each value. To do this, the
function converts each bit into a mask with a shift operation, and then
simply compares the masks. The fpSign() macro is used to do the rein-
terpret_cast and shifting for us.

template<>
inline bool SameSigns(float ValueA, float ValueB)

{
return (fpSign(ValueA) == fpSign(ValueB));

Converting floating-point numbers to their absolute values is also
trivial when using the sign bit. Up until now, the template function abs()
used the Standard C Library function fabs(), but it’s just as simple to do
the work ourselves. To force any floating-point number to be positive,
the sign bit must be cleared in bit position 31. By performing a bitwise-
and operation with a mask containing the lower 30 bits, any floating-
point number can be converted to its absolute value.

340

Real-Time 3D Terrain Engines Using C++ and DirectX 9

template <> inline float abs(float value)

{
uint32 absValue = fpBits(value);
absValue &= 7fffffff;
return intBits(absValue);

}

CONVERSION FROM FLOATING-POINT TO INTEGER VALUES

The Standard C Library method to convert from floating-point to integer
values is unbearably slow; something in the order of 60 processor cycles,
depending on the platform and compiler. The other obstacle to overcome
is that the ANSI C Standard dictates that fractional values are truncated
when floating-point numbers are converted to integer values—which is
not always the action desired. Both of these issues make the Standard C
Library convention of converting float to integer values undesirable for
the Gaia engine.

In the math library, pre-computed lookup tables will be used to avoid
costly floating-point math routines such a sine and cosine calculations. In
order to facilitate the use of a lookup table, a fast, reliable way to convert
floating-point source values into integer table indexes will be needed. In
addition, different rounding methods might be required when converting
fractional values to their integer counterparts. A few tricky conversion
methods for 32-bit floating-point values can address all of these needs.

The first step is to emulate the simple ANSI cast operation, truncating
all fractional values of the floating-point source value to find the integer
result. The steps are laid out in the function realToInt32(), shown in List-
ing B.1. Don’t worry about the flipSign() macro just yet; its purpose will
be explained as we examine the conversion process.

LISTINGB.1 Converting 32-bit floating-point numbers to integers.

// flipSign is a helper Macro to

/! invert the sign of i if flip equals -1,
// if flip equals 0, it does nothing
#define flipSign(i, flip) ((i~ flip) - flip)

inline int32 realToInt32 (const float& f)

{
// read the exponent and decide how much we need to
// shift the mantissa down

Appendix B Floating-Point Tricks 341

int32 shift = 23-fpExponent(f);

// read the mantissa and shift it down to remove all
// fractional values

int32 result = fpMantissa(f)>shift;

// set the sign of the new result

result = flipSign(result, fpSign(f));

// if the exponent was negative, i.e. (-1.0 < f < 1.,0)
// we must return zero

result &= ~fpExponentSign(f);

// return the result

return result;

Let’s walk through this conversion to understand what it does. The
first step is to determine the amount we will need to shift the mantissa.
The exponent value would normally describe the position to place the bi-
nary point within the mantissa to reconstruct the floating-point value.
Since the binary point currently resides above bit 23, shifting the man-
tissa value to the right by (23-exponent) steps will leave only the bits to
the left of the binary point. The second step reads the mantissa value
from the float value (replacing the implied 1 in the 24 bit) and executes
the shift, producing an integer version of the source float with all frac-
tional values removed.

If it was known that the incoming float value was positive, and that
the value was not purely fractional (outside the range [-1.0, 1.0]), the
function could stop here. However, for this function to handle general
floating-point input, a few extra steps are required to handle negative
numbers and numbers inside the [-1.0, 1.0] range.

To handle negative numbers, the flipSign() macro is used. This
macro employs a handy trick to flip the sign of an integer value based on
an input mask. The mask must be 0 or —1, which equates to having either
all bits clear or all bits set. When all bits are clear, the macro has no effect.
When all bits in the flip mask are set, the combination of bitwise-XOR
and subtraction operations uses the mask to invert the sign of the input
value 7, changing it from positive to negative or vice versa. Because this is
a bitwise operation coupled with a subtraction, it can occur much faster
than multiplying the input value by -1 to invert its sign.

The realToInt32 function can take advantage of this macro because
the routine has produced a positive integer value thus far, even when the
source floating-point value is negative. If the source value is negative, the
sign of the integer result must be inverted. Remember that the sign bit for
a floating-point value is held in bit 31. If the floating-point bit pattern is
shifted to the right by 31 places, it will be converted it to a mask of all 0s

342

Real-Time 3D Terrain Engines Using C++ and DirectX 9

for positive values and all 1s for negative values. Coincidentally, this is
exactly what the f1ipSign() macro needs. If the incoming source value is
positive, an empty mask is created and the macro does nothing. If the in-
coming source value is negative, a full mask is created and the macro in-
verts the sign of the integer result.

The final step is to handle purely fractional values; values between
-1.0 and 1.0. If the incoming value is within this range, the integer result
computed up to this point will be wrong. The correct value to return is
zero, since all fractional floating-point values between -1.0 and 1.0
equate to an integer value of zero when truncating. To test for this case,
the same sign-bit-to-mask trick used for inverting the sign is used, this
time using the sign of the exponent value to build the mask.

If a floating-point value is between —-1.0 and 1.0, its exponent will be
negative. If a mask is built from the sign bit of the exponent, it will be
empty for positive exponents and full for negative exponents. If the mask
is inverted, it can be used in a bitwise-and operation to convert the inte-
ger result into zero when necessary.

The result is a quick method to convert floating-point values to their
equivalent integers. When compared to a standard typecast in C, this
new method runs about five to six times faster. The method can also
provide additional gains, since it does not use the floating-point unit at
all. This leaves the FPU available to process other floating-point opera-
tions in parallel.

To handle other rounding methods, the numeric_tools.h header file
also contains routines to convert between floating-point and integer val-
ues using floor, ceiling, and nearest integer rounding methods. These ad-
ditional functions build upon basic methods defined here by determining
which bits of the mantissa appear to the right of the binary point. This
fractional value is used to decide whether the integer result should be in-
cremented or decremented, depending on the rounding method used.

LIMITING FLOATING-POINT PRECISION

Floating-point numbers can have incredible precision—this can be both
an asset and a curse. When working with tiny values, floating-point pre-
cision is perfectly suited to the task. However, when miniscule precision
is not needed, it can cause trouble when you least expect it. Slight inac-
curacies in floating-point math can sometimes lead to unexpected results.
In the numeric_tools.h header file, we will add a function to help allevi-
ate this problemn.

Appendix B Floating-Point Tricks 343

Now that we understand how to read the IEEE floating-point format,
we can use that knowledge to control the floating-point precision. In
cases where precision must be limited, the fractional value can be read
from the mantissa, and replaced with a lesser number of bits to truncate
the precision. This will allow functions to control how many bits of preci-
sion (up to 23) are allowed to follow the binary point. Listing B.2 shows
the method at work, taking a floating-point value and precision count as
input and returning a rounded floating-point value.

LISTINGB.2 Reducing floating-point precision.

float trimFloat(float input, int32 precision)

float result = input;
int32 exponent
int32 bias

fpExponent (input) ;
23 - (exponent + precision);

It

if (bias < 1)

{
return result;
}
if (bias > 24)
{
result = 0.0f;
return result;
}

int32 value fpBits(input);

if (bias == 24)

{
value &= (1<<31);
exponent = -precision;
value += (exponent+127)<<23;
memcpy (&result, &value, sizeof(value));
return result;
}
_asm
{

clc
mov ecx, bias
mov eax, value

344 Real-Time 3D Terrain Engines Using C++ and DirectX 9

shr eax, cl
adc eax, 0
shl eax, cl

mov value, eax
}

memcpy (&result, &value, sizeof(value));

return result;
};

In the trimFloat method, a bit of inline assembly language is used to
get the job done. Every once in a while, a situation arises that can be per-
formed in assembly-language much more easily than in C++. In the as-
‘sembly code, the mantissa is shifted to the right to push all unwanted bits
out of the register. However, the last bit to get pushed out is the one that
must be examined. Remember that each binary position represents half
the value of the next-higher bit. This means that if the last bit we happen
to push out is set, the entire value being trimmed off is greater or equal to
half the value of the last bit we are keeping, and we must round up.
Luckily, the last bit shifted out is stored in the carry flag of the processor.
The next instruction, ADC (add-with-carry), adds the contents of the
carry flag to our remaining value. If the last bit shifted out of the register
was set ,the carry flag will also be set, and the add-with-carry operation
will increment the remaining value in the register. If the last bit pushed
out was clear, the carry flag will also be clear and the register remains un-
affected. If the value within the register is then shifted back to the former
position, the result will be a mantissa rounded to the precision desired.

This can be a very handy function to have in the tool chest. To con-
trol floating-point drift, values can be rounded to the precision desired. In
addition, floating-point values can now be rounded to fixed precision in-
crements easily. One such example would be in snapping rotation angles
or timing values to fixed intervals.

CLAMPING FLOATING-POINT NUMBERS

Rounding floating-point numbers is useful in controlling the drift caused
by error accumulation, but sometimes we simply need to ensure that a
value is clamped to a certain range. Very often, values need to be
clamped to the range [0,1], or pushed into the negative or positive range.
In the FloatTools.h header, we define a few additional functions to make
these types of clamping operations casy.

Appendix B Floating-Point Tricks 345

Forcing a value to the positive range (if f<0, set f = 0), is the easiest by
far. Given that the sign bit resides in the 31* bit, we can easily to convert
this bit into a mask. Applying the bit mask to the original source value
with a bitwise-and operator will clear all negative values to zero. Forcing
a value into the negative range (if £>0, set f=0) works much the same
way: simply invert the bit mask to clear all positive values to zero.

float clampPositive(float input)

{
// if the value is negative, set it to zero
int value = fpBits(input);
int sign_mask = ~fpSign(input);
return intBits(value & sign_mask);
}
float clampNegative(float input)
{
// if the value is positive, set it to zero
int value = fpBits(input);
int sign_mask = fpSign(input);
return intBits(value & sign_mask);
} .

Using these two functions, clamping can also be performed above or
below any floating-point value. If the desired clamping value is first sub-
tracted from the source value, the positive or negative clamping opera-
tion can be performed. The subtracted value can then be added back to
the cdamped value, resulting in a value clamped above or below the de-
sired point. For example, to clamp a value below two (if £2.0, set f =
2.0), a function similar to the following can be used:

float clampBelowTwo(float input)

{
float result = input - 2.0f;
clampBelowZero(input);
return (result + 2.0f);

}

Apart from zero, the value most often clamped against is 1.0. The
same method used in the example of clamping below 2.0 could be used,
but there is a faster way. In the example method, offsetting the input
value and then replacing the offset after the clamp is performed taxes the
FPU twice, which is not ideal. Since clamping against 1.0 will happen
more frequently, it makes sense to devise a more efficient method.

346

Real-Time 3D Terrain Engines Using C++ and DirectX 9

Thanks to the placement of the exponent in a higher bit range than
the mantissa, we know that if one positive floating-point value is greater
than another, its IEEE bit pattern will also be greater than the other when
treated as integers. The floating-point value for 1.0 has a distinctive bit
pattern of all zeros except for the lower 7 bits of the exponent (127<<23).
This makes it fairly easy to test against. If any positive floating-point
value has an equivalent bit pattern greater than (127<<23), then that
floating-point value is also greater than 1.0.

Note that while this trick will also work when comparing two nega-
tive values, it will not function with a mix of negative and positive values.
Since the sign bit resides in the highest bit position, negative floating
point values will always be greater than their positive counterparts when
treated as unsigned integers. This will cause our tests to fail if steps are
not taken to correct for the sign bit.

float clampBelowOne(float input)

{
/! if the value is greater than one, set it to one
uint32 value = fpBits(input);
uint32 mask = (~fpSign(input)) & Ox7fffffff;
uint32 new_val = value & mask;
new_val -= (127<<23);
new_val >= 31;
uint32 one = (127<<23) & ~new_val;
value = (value & new_val) + one;
return intBits(value);
}

One case in which sign is not an issue is when values need to be
clamped to the range [-1,1]. Such an operation would be useful in
clamping normalized vectors to ensure that no floating-point precision
drift pushes them beyond a single unit length. Because the only concern
is whether the absolute value of the floating-point number is greater than
1.0, we can disregard the sign bit and clamp the positive and negative
range at the same time.

float clampUnitSize(float input)
{
// if the absolute value is greater than one,
// set it to one
uint32 value = fpBits(input);
uint32 abs_value = value & Ox7fffffff;
abs_value -= (127<<23);
abs_value >= 31;

Appendix B Floating-Point Tricks 347

uint32 one = (127<<23) & ~abs_value;
value = (value & abs_value) + one;
return intBits(value);

FLOATING-POINT POWERS OF TWO

ONTHE (D

The last floating-point subject we will examine is rounding to a power-of-
two value. This type of operation is not used very often for floating-point
values, but having a speedy method in our numeric toolbox can’t hurt. As
with the floating-point to integer methods, our core library will contain
versions of this operation that round to the nearest power-of-two, as well
as find the next higher or lower power-of-two values. The functions can
be found in the source\core\numeric_tools.h file on the CD-ROM.

As usual, truncation is the easiest—so that is the example we will
walk through. To convert a floating-point number to a power-of-two
value is easy: simply dump the mantissa bits. Remember that the expo-
nent value is taken from the scientific formula (mantissa2*?), so if the
mantissa is set to zero, all that is left is a truncated power-of-two value.
Note that this truncation will also apply to negative values, returning
negative results. An input value of 2.35 will return -2.0, but an input
value of —2.35 will return —-2.0. Strictly speaking, these are not valid pow-
ers-of-two, since 2 raised to any value could not become negative, but we
will allow this functionality to remain.

The other caveat with this method is that it can also generate results
from negative exponents. That is, when the exponent is negative, the
method will return power-of-two fractions. Keep in mind that fractional
values like %%, Y4, and Y are valid powers-of-two, representing 2!, 2-2 and
273, respectively. These values will be generated when the input value is a
fractional value between —-1.0 and 1.0.

float truncateToPowerOfTwo(float input)
{
/! convert the value to an int
int result = fpBits(m_float);

/! trim away the mantissa
result &= ~((1<<23)-1);

/! convert back to floating-point as we return
return (intBits(result));

PROGRAMMING
REFERENCE SHEETS

INTEL CPU IDENTIFICATION CODES

CPU Feature Flags reported by the CPUID instruction. Information pro-
vided by Intel documentation.

BIT NAME PURPOSE

0 FPU The processor contains an FPU that supports the Intel387
floating-point instruction set.

1 VME The processor supports extensions to virtual-8086 mode.

2 DE The processor supports I/O breakpoints, including the CR4.DE

bit for enabling debug extensions and optional trapping of
access to the DR4 and DRS5 registers.

3 PSE The processor supports 4-Mbyte pages.

“ TSC The RDTSC instruction is supported including the CR4.TSD bit
for access/privilege control.

5 MSR Model Specific Registers are implemented with the RDMSR,
WRMSR instructions.

6 PAE Physical addresses greater than 32 bits are supported.

7 MCE Machine Check Exception, Exception 18, and the CR4.MCE
enable bit are supported.

8 CX8 The compare and exchange 8 bytes instruction is supported.

9 APIC The processor contains a software-accessible Local APIC.

10 Reserved Bit.

349

350 Real-Time 3D Terrain Engines Using C++ and DirectX 9

BIT

NAME

PURPOSE

1"

12

13

14

15

16

17

18

19
20
2]

22

23

24

SEP

MTRR

PGE

MCA

cMov

PAT

PSE-36

PSN

CLFSH

DS

ACPI

MMX

FXSR

Indicates whether the processor supports the Fast System Call
instructions, SYSENTER and SYSEXIT.

The Processor supports the Memory Type Range Registers
specifically the MTRR_CAP register.

The global bit in the Page Directory Entries (PDEs) and page
table entries (PTEs) is supported, indicating TLB entries that
are common to different processes and need not be flushed.
The CR4.PGE bit controls this feature.

The Machine Check Architecture is supported, specifically the
MCG_CAP register.

The processor supports CMOVcg, and if the FPU feature flag
(bit 0} is also set, supports the FCMOVCC and FCOM|
instructions.

Indicates whether the processor supports the Page Attribute
Table. This feature augments the Memory Type Range
Registers (MTRRs), allowing an operating system to specify
attributes of memory on 4K granularity through a linear
address.

Indicates whether the processor supports 4-Mbyte pages that
are capable of addressing physical memory beyond 4GB. This
feature indicates that the upper four bits of the physical
address of the 4-Mbyte page is encoded by bits 13-16 of the
page directory entry.

The processor supports the 96-bit processor serial number
feature, and the feature is enabled.

Indicates that the processor supports the CLFLUSH instruction.
Reserved Bit.

Indicates that the processor has the ability to write a history of
the branch to and from addresses into a memory buffer.

The processor implements internal MSRs that allow processor
temperature to be monitored and processor performance to
be modulated in predefined duty cycles under software
control.

The processor supports the MMX technology instruction set
extensions to Intel Architecture.

Indicates whether the processor supports the FXSAVE and
FXRSTOR instructions for fast save and restore of the floating
point context. Presence of this bit also indicates that
CR4.OSFXSR is available for an operating system to indicate
that it uses the fast save/restore instructions.

BIT

NAME

Appendix C Programming Reference Sheets 351

PURPOSE

25

26

27

28

29

30
31

SSE

SSE2

SS

HTT

™

SBF

The processor supports the Streaming SIMD Extensions to the
Intel Architecture.

Indicates the processor supports the Streaming SIMD
Extensions - 2 Instructions.

The processor supports the management of conflicting
memory types by performing a snoop of its own cache
structure for transactions issued to the bus.

This processor’s microarchitecture has the capability to
operate as multiple logical processors within the same
physical package. This field does not indicate that Hyper-
Threading Technology has been enabled for this specific
processor. To determine if Hyper-Threading Technology is
supported, check the value returned in EBX[23:16] after
executing CPUID with EAX=1. If EBX[23:16] contains a value
>1, then the processor supports Hyper-Threading Technology.

The processor implements the Thermal Monitor automatic
thermal control circuit (TCC).
Reserved Bit.

The processor supports the Signal Break on FERR feature. The
FERR signal is asserted if an interrupt is pending and STPCLK is
asserted.

DIRECT3D HLSL DATA TYPES

Variable types available in HLSL vertex and pixel shaders.

SCALAR DATA TYPES

DESCRIPTION

bool
int

half
float
double

VECTOR DATA TYPES

Boolean values that can be set to true or false.
32-bit signed integer.

A half-precision, 16-bit floating point value.

A full-precision, 32-bit floating point value.

A double-precision, 64-bit floating point value.
DESCRIPTION

vector

vector<t, num>

A vector of four float values.

A vector containing num members of scalar t values.

352 Real-Time 3D Terrain Engines Using C++ and DirectX 9

MATRIX DATA TYPES

DESCRIPTION

matrix

matrix <t, row, col>

A matrix of 16 float values in a 4x4 grid.

A matrix of type t values in a grid of size row by col.

OBJECT DATA TYPES DESCRIPTION

string An ASClI string.

pixelshader A Direct3D pixel shader object.

vertexshader A Direct3D vertex shader object.

sampler An object describing the use and filtering of a texture.
texture A Direct3D texture object.

VECTOR TYPEDEFS DESCRIPTION (# REPRESENTS VALUES BETWEEN 0 AND 4)

bool#x# Defined as vector <bool, #>. Example: bool4.

int#x# Defined as vector <int, #>. Example: int4.

float#x# Defined as vector <float, #>. Example: float4.

half#x# Defined as vector <half, #>. Example: half4.

double#xi# Defined as vector <double, #>. Example: double4.
MATRIX TYPEDEFS DESCRIPTION (# REPRESENTS VALUES BETWEEN 0 AND 4)

bool#x# Defined as matrix <bool, #, #>. Example: bool4x4.
int#x# Defined as matrix <int, #, #>. Example: int4x4.

float#x# Defined as matrix <float, #, #>. Example: float4x4.
half#xi# Defined as matrix <half, #, #>. Example: half4x4.
double#x# Defined as matrix <double, #, #>. Example: double4x4.
double#x# Defined as matrix <double, #, #>. Example: double4x4.

DIRECT3D HLSL EXPRESSIONS

The following is a list of the numeric and conditional expressions sup-
ported by the High-Level Shader Language (HLSL) for vertex and pixel

shaders.

OPERATOR USAGE MEANING

+ value+value Addition of each component.

- value-value Subtraction of each component.

* value*value Multiplication of each component.
/ value/value Division of each component.

%

value%value

variable=value

Modulus of each component.

Assignment of each component.

OPERATOR USAGE

AppendixC Programming Reference Sheets 353

MEANING

+= variable+=value

-= variable-=value

= variable=value
/= variable/=value
%= variable%=value
++ variable++

—_ variable—

++ ++variable

— —variable

- -value

+ +value

I= value I= value

! lvalue

< value < value
> value > value
<= value <= value
>= value >=value

== value == value

&& value && value
1 value||value
7 float?value:value

Addition and assignment of each component.
Subtraction and assignment of each component.
Multiplication and assignment of each component.
Division and assignment of each component.
Modulus and assignment of each component.
Postfix increment of each component.

Postfix decrement of each component.

Prefix increment of each component.

Prefix decrement of each component.

Unary minus of each component (negation).
Unary plus of each component.

Inequality test each component.

Logical not each component.

Less than each component.

Greater than each component.

Less than or equal to each component.

Greater than or equal to each component.
Equality test each component.

Logical AND each component.

Logical OR each component.

Conditional operator.

DIRECT3D HLSL INTRINSIC FUNCTIONS

The following is a list of the intrinsic functions provided by HLSL for ver-

tex and pixel shaders.
FUNCTION

DEFINITION

value abs(value a)

acos(x)

all(x)
any(x)
asin(x)

atan(x)

Absolute value of each component.

Returns the arccosine of each component of x. Each
component should be in the range [-1, 1].

Test if all components of x are nonzero.
Test is any component of x is nonzero.

Returns the arcsine of each component of x. Each
component should be in the range [-pi/2, pi/2].
Returns the arctangent of x. The return values are in the
range [-pi/2, pi/2].

FUNCTION

Real-Time 3D Terrain Engines Using C++ and DirectX 9

DEFINITION

atan2(y, x)

ceil(x)

clamp(x, min, max)

clip(x)

cos(x)

cosh(x)

cross(a, b)
D3DCOLORtoUBYTE4(x)

ddx(x)

ddy(x)

degrees(x)
determinant(m)
distance(a, b)

dot(a, b)

exp(x)

value exp2(value a)
faceforward(n, i, ng)

floor(x)

fmod(a, b)

frac(x)

value frc(value a)

Returns the arctangent of y/x. The signs of y and x are
used to determine the quadrant of the return values in
the range [-pi, pil. atan2 is well defined for every point
other than the origin, even if x equals 0 and y does not
equal 0.

Returns the smallest integer that is greater than or
equal to x.

Clamps x to the range [min, max].

Discards the current pixel, if any component of x is less
than zero. This can be used to simulate clip planes, if
each component of x represents the distance from a
plane.

Returns the cosine of x.
Returns the hyperbolic cosine of x.
Returns the cross product of two 3-D vectors aand b.

Swizzles and scales components of the 4-D vector x to
compensate for the lack of UBYTE4 support in some
hardware.

Returns the partial derivative of x with respect to the
screen-space x-coordinate.

Returns the partial derivative of x with respect to the
screen-space y-coordinate.

Converts x from radians to degrees.

Returns the determinant of the square matrix m.
Returns the distance between two points a and b.
Returns the dot product of two vectors a and b.
Returns the base-e exponent ex.

Base 2 Exp of each component.

Returns —n * sign(dot(i, ng)).

Returns the greatest integer that is less than or equal to
X

Returns the floating-point remainder fof a/ b such that
a=i*b+f whereiis an integer, f has the same sign as
x, and the absolute value of f is less than the absolute
value of b.

Returns the fractional part f of x, such that f is a value
greater than or equal to 0, and less than 1.

Fractional part of each component.

Appendix C Programming Reference Sheets 355

FUNCTION DEFINITION

frexp(x, out exp) Returns the mantissa and exponent of x. frexp returns
the mantissa, and the exponent is stored in the output
parameter exp. If x is 0, the function returns 0 for both
the mantissa and the exponent.

fwidth(x) Returns abs(ddx(x))+abs(ddy(x)).

isfinite(x) Returns true if x is finite, false otherwise.

isinf(x) Returns true if x is +INF or -INF, false otherwise.

isnan(x) Returns true if xis NAN or QNAN, false otherwise.

Idexp(x, exp)
float len(value a)
length(v)

lerp(a, b, s)

lit(ndotl, ndoth, m)

log(x)

log10(x)

log2(x)

max(a, b)
min(a, b)

modf(x, out ip)

mul(a, b)

noise(x)

Returns x * 2exp.
Vector length.
Returns the length of the vector v.

Returns a + s(b — a). This linearly interpolates between a
and b, such that the return value isa whensis0,and b
whensis 1.

Returns a lighting vector (ambient, diffuse, specular, 1):
ambient = 1; diffuse = (ndotl < 0) ? 0 : ndotl; specular =
(ndotl < 0) || (ndoth <0) ?0: (ndoth * m);

Returns the base-e logarithm of x. If x is negative, the
function returns indefinite. If x is 0, the function returns
+INF.

Returns the base-10 logarithm of x. If x is negative, the
function returns indefinite. If x is 0, the function returns
+INF.

Returns the base-2 logarithm of x. If x is negative, the
function returns indefinite. If xis 0, the function returns
+INF.

Selects the greater of aand b.
Selects the lesser of a and b.

Splits the value x into fractional and integer parts, each
of which has the same sign and x. The signed fractional
portion of xis returned. The integer portion is stored in
the output parameter ip.

Performs matrix multiplication betweenaand b.Ifaisa
vector, it treated as a row vector. If b is a vector, it is
treated as a column vector. The inner dimension
acolumns and brows must be equal. The result has the
dimension arows x bcolumns.

Not yet implemented.

FUNCTION

Real-Time 3D Terrain Engines Using C++ and DirectX 9

DEFINITION

normalize(v)

pow(x, y)
radians(x)

reflect(i, n)

refract(i, n, eta)

round(x)
rsqrt(x)
saturate(x)

sign(x)

sin(x)

sincos(x, out s, out ¢)

sinh(x)

smoothstep(min, max, x)

value sqrt(value a)
step(a, x)

tan(x)

tanh(x)

tex1D(s, t)

tex1D(s, t, ddx, ddy)

tex1Dproj(s, 1)

Returns the normalized vector v/ length(v). If the length
of vis 0, the result is indefinite.

Returns x.
Converts x from degrees to radians.

Returns the reflection vector v, given the entering ray
direction i, and the surface normal n. Such thatv=i-2*
dot(i, n) * n.

Returns the refraction vector v, given the entering ray
direction i, the surface normal n, and the relative index
of refraction eta. If the angle between i and n is too
great for a given eta, refract returns {0,0,0).

Rounds x to the nearest integer.
Returns 1/ sqrt(x).
Clamps x to the range [0, 1].

Computes the sign of x. Returns -1 if xis less than 0, 0 if
xequals 0, and 1 if x is greater than zero.

Returns the sine of x.

Returns the sine and cosine of x. sin(x) is stored in the
output parameter s. cos(x) is stored in the output
parameter c.

Returns the hyperbolic sine of x.

Returns 0 if x < min. Returns 1 if x > max. Returns a
smooth Hermite interpolation between 0 and 1, if xis in
the range [min, max].

Square root of each component.
Returns(x>=a)?1:0.

Returns the tangent of x.

Returns the hyperbolic tangent of x.

1-D texture lookup. s is a sampler or a sampler1D object.
tis ascalar.

1-D texture lookup, with derivatives. s is a sampler or
sampler1D object. t, ddx, and ddy are scalars.

1-D projective texture lookup. s is a sampler or
sampleriD object. tis a 4-D vector. t is divided by its
last component before the lookup takes place.

tex1Dbias(s, t)

tex2D(s, t)

tex2D(s, t, ddx, ddy)

tex2Dproj(s, t)

tex2Dbias(s, t)

tex3D(s, t)

tex3D(s, t, ddx, ddy)

tex3Dproj(s, t)

tex3Dbias(s, t)

texCUBE(s, t)

texCUBE(s, t, ddx, ddy)

texCUBEproj(s, t)

texCUBEbias(s, t)

transpose(m)

Appendix C Programming Reference Sheets 357

1-D biased texture lookup. s is a sampler or sampler1D
object. tis a 4-D vector. The mip level is biased by t.w
before the lookup takes place.

2-D texture lookup. s is a sampler or a sampler2D object.
tis a 2-D texture coordinate.

2-D texture lookup, with derivatives. s is a sampler or
sampler2D object. t, ddx, and ddy are 2-D vectors.

2-D projective texture lookup. s is a sampler or
sampler2D object. tis a 4-D vector. t is divided by its last
component before the lookup takes place.

2-D biased texture lookup. s is a sampler or sampler2D
object. tis a 4-D vector. The mip level is biased by t.w
before the lookup takes place.

3-D volume texture lookup. s is a sampler or a
sampler3D object. t is a 3-D texture coordinate.

3-D volume texture lookup, with derivatives. s is a
sampler or sampler3D object. t, ddx, and ddy are 3-D
vectors.

3-D projective volume texture lookup. s is a sampler or
sampler3D object. tis a 4-D vector. t is divided by its last
component before the lookup takes place.

3-D biased texture lookup. s is a sampler or sampler3D
object. tis a 4-D vector. The mip level is biased by t.w
before the lookup takes place.

3-D cube texture lookup. s is a sampler or a
samplerCUBE object. t is a 3-D texture coordinate.

3-D cube texture lookup, with derivatives. s is a sampler
or samplerCUBE object. t, ddx, and ddy are 3-D vectors.

3-D projective cube texture lookup. s is a sampler or
samplerCUBE object. tis a 4-D vector. t is divided by its
last component before the lookup takes place.

3-D biased cube texture lookup. s is a sampler or
samplerCUBE object. tis a 4-dimensional vector. The
mip levelis biased by t.w before the lookup takes place.

Returns the transpose of the matrix m. If the source is
dimension mrows x mcolumns, the result is dimension
mcolumns x mrows.

358

DIRECT3D HLSL SAMPLER SETTINGS

Real-Time 3D Terrain Engines Using C++ and DirectX 9

The following is a list of the values that may be specified when building
texture samplers for HLSL shaders.

SAMPLER STATE

TYPE

ACCEPTABLE VALUES

AddressU

AddressV
AddressW

BorderColor

MagFilter

MinFilter
MipFilter
MaxAnisotropy
MaxMipLevel

MipMapLodBias

SRGBTexture

Elementindex

dword

dword
dword
float4

dword

dword
dword
dword
int
float

bool

dword

WRAP = 1,
MIRROR = 2,
CLAMP = 3,
BORDER = 4,
MIRRORONCE = 5

Same as AddressU.
Same as AddressU.

A color value. The vector contains REBA values from
0-1.

NONE = 0,

POINT = 1,
LINEAR = 2,
ANISOTROPIC = 3,
PYRAMIDALQUAD = 6,
GAUSSIANQUAD = 7E

Same as MagfFilter.

Same as MagfFilter.

Maximum anisotropy value. Default valueiis 1.
Maximum mipmap level to use from 0-n, where n is
the number of mipmaps available. The largest
texture is index 0. The smallest texture is index (n-1).
A bias value applied to the mipmap level chosen.
The default is 0.0.

Set to true (non-zero value) when the texture being
sampled is in SRGB format (gamma correction 2.2).

See the DirectX SDK for more information on
Gamma.
When a multi-element texture is assigned to the

sampler, this indicates which element index to use.
The default value is 0.

RECOMMENDED READING

Following is a list of references cited in the book, along with some addi-
tional material we recommend for further reading.

Lengyel, Eric. Mathematics for 3D Game Programming & Computer Graphics.
Charles River Media, 2002.

Gribb, G., and K. Hartmann. “Fast Extraction of Viewing Frustum Planes
from the World-View-Projection Matrix,” (available online at
www2.ravensoft.com/users/qgribb/plane % 20extraction.pdf).

Deloura, M., Game Programming Gems. Charles River Media, Inc., 2000.

Deloura, M., Game Programming Gems 2. Charles River Media, Inc., 2001.

Treglia, D., Game Programming Gems 3. Charles River Media, Inc., 2002.

Watt, A. 3D Computer Graphics. Addison-Wesley, 1993.

Watt, A. and Watt, M. Advanced Animation and Rendering Techniques. Addi-
son-Wesley, 1992.

Microsoft DirectX9 Development FAQ, (available online at http://msdn.mi-
crosoft.com/library/en-us/dndxgen/html/directx9devfaq.asp).

Engel, W. ShaderX. Wordware Publishing, Inc. 2002.

Wenzel, C. “Ocean Scene,” (available online at http://meshuggah.4fo.de/
OceanScene.htm).

359

360 Real-Time 3D Terrain Engines Using C++ and DirectX 9

ACADEMIC RESEARCH
Perlin, K. “Making Noise: Tutorial and History of the Noise Function,”
(available online at www.noisemachine.com).
Perlin, K. “Improving Noise.” Computer Graphics, Vol. 35 No. 3 (available
online at http://mrlnyu.edu/~perlin/paperd45.pdf).
Preetham, A. J., P. Shirley, and B. Smits. “A Practical Analytic Model for
Daylight.” Siggraph proceedings 1999 (available online at www:.cs.
utah.edu/vissim/papers/sunsky).
Hoffman, N., and A. J, Preetham. “Rendering Outdoor Light Scattering
in Real Time,” (available online at www.ati.com/developer/dx9/ATI-
LightScattering.pdf).
Fournier, A, and W. T. Reeves. “A Simple Model of Ocean Waves.” Com-
puter Graphics, Vol. 20, No. 4, 1986, pp.75-84.
Peachey, D. “Modeling Waves and Surf.” Computer Graphics, Vol. 20, No.
4, 1986, pp. 65-74.
Mastin, G. A., P. A. Watterger, and J. F. Mareda. “Fourier Synthesis of
Ocean Scenes.” IEEE CG&A, March 1987, pp. 16-23.
OTHER USEFUL WEB SITES
The author’s Web site: www.mightystudios.com
The ATI developer Web page: www.ati.com/developer/
NVIDIA developer relations Web page: http://developer.nvidia.com/
FlipCode: www flipcode.com
GameDev: www.gamedev.net
GamaSutra: www.gamasutra.com
USGS Geological Data: www.usgs.gov/
Virtual Terrain Project: www.vterrain.org
TooLs AND UTILITIES

3DEM, Visualization Software, LLC: www.visualizationsoftware.com/3dem.
html

T2: Texture Generation Program: www.petra.demon.co.uk/Games/texgen.
html

ABOUT THE CD-ROM

and DirectX 9 contains all of the files necessary to compile the en-

gine discussed in the book. It also includes the source code and ex-
ecutables for the demonstrations mentioned in each chapter. All model,
texture, and effect files are also provided. Special thanks to Christopher
Barrett for his help in creating some of the models and textures found on
the CD-ROM

T he CD-ROM included with Real-Time 3D Terrain Engines Using C++

CD FOLDERS

SOURCE: All of the source code is contained within this folder. Subfold-
ers are provided for each section of the engine, and for each individ-
ual demo program. A bin folder contains precompiled executables for
each demo, along with all the media required to run them.

DIRECTX: The entire DirectX 9.0 SDK. To install the SDK, follow the in-
structions provided in this folder.

TOOLS: We have included a set of tools to aid in building your own ter-
rain. Check the homepages listed for each tool to download more re-
cent versions when available.

The first is a version of T2 by Keith Ditchburn. This useful texture
generation program can construct texture maps for any terrain given a
set of parameters. More information can be found at www.petra.demon.co.
uk/Games/texgen.html.

The second application is 3DEM from Visualization Software, LLC.
This program is capable of converting real-world terrain information
from a variety of sources into height maps for use in a terrain engine.
More information and support for this product can be obtained from

361

362 Real-Time 3D Terrain Engines Using C++ and DirectX 9

www.visualizationsoftware.com. This Web page also lists locations to down-
load free terrain data for use with the program.

SYSTEM REQUIREMENTS
Windows 2000/XP:

¢ Pentium III Processor, 1 GHz+

e DirectX 9-compatable video card providing hardware-accelerated,
programmable vertex and pixel shaders (NVIDIA GeForce 3 or
higher, ATI Radeon 8500 and beyond)

¢ CD-ROM'/hard drive

e 128MB RAM (256 MB recommended)

* 500MB of free disk space to install the DirectX SDK, the sample
source code, and the tools provided

SOFTWARE REQUIREMENTS

Microsoft Visual Studio.NET or Microsoft Visual Studio 6.0 is required to
edit and compile the source code provided. Other editors and compilers
might be compatible, but have not been tested.

INSTALLATION

To use this CD-ROM, make sure that your system matches at least the
minimum system requirements. Each tool provided has its own installa-
tion instructions, and you should contact the developer directly if you
have any problems with installation. The source code folder can be
copied directly to your hard drive for editing with a program of your
choice.

UPDATES AND ERRATA

Be sure to visit the Web sites of Charles River Media (www.charlesriver.
com) and the author (www.mightystudios.com) for any updates or errata
associated with this book and the included source code.

	Cover
	Dedication
	Contents
	Acknowledgments
	Part I: A Foundation in 3D
	Chapter 1: Getting Started With DX9 and D3DX
	Chapter 2: Fundamental 3D Objects
	Chapter 3: The High-Level Shader Language
	Chapter 4: Gaia Engine Overview

	Part II: Introduction To Terrain Systems
	Chapter 5: World Management
	Chapter 6: Basic Terraing Geometry
	Chapter 7: The Roam Terrain System
	Chapter 8: Tiled Geometry Techniques
	Chapter 9: Texturing Techniques

	Part III: Extending The Engine
	Chapter 10: Big Sky Country
	Chapter 11: Rendering Outdoor Scenes
	Chapter 12: The 3D Gardener
	Chapter 13: Ocean Water

	Appendix A: Gaia Utility Classes
	Appendix B: Floating-Point Tricks
	Appendix C: Programming Reference Sheets
	Appendix D: Recommended Reading
	Appendix E: About the CD-ROM

