

Scrum
�R

in Action:

Agile Software

Project

Management and

Development

Andrew Pham

Phuong-Van Pham

Course Technology PTR

A part of Cengage Learning

Australia . Brazil . Japan . Korea . Mexico . Singapore . Spain . United Kingdom . United States

Scrum�
R

in Action: Agile Software Project

Management and Development

Andrew Pham and Phuong-Van Pham

Publisher and General Manager, Course

Technology PTR: Stacy L. Hiquet

Associate Director of Marketing:

Sarah Panella

Manager of Editorial Services:

Heather Talbot

Marketing Manager: Mark Hughes

Senior Acquisitions Editor: Mitzi Koontz

Project Editor: Jenny Davidson

Technical Reviewer: Ben Oguntona

Copy Editor: Sandy Doell

Interior Layout Tech: MPS Limited, a Macmillan

Company

Cover Designer: Mike Tanamachi

Indexer: Broccoli Information Management

Proofreader: Sara Gullion

© 2012 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright

herein may be reproduced, transmitted, stored, or used in any form or

by any means graphic, electronic, or mechanical, including but not

limited to photocopying, recording, scanning, digitizing, taping, Web

distribution, information networks, or information storage and retrieval

systems, except as permitted under Section 107 or 108 of the 1976

United States Copyright Act, without the prior written permission of the

publisher.

For product information and technology assistance, contact us at

Cengage Learning Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product,

submit all requests online at www.cengage.com/permissions

Further permissions questions can be emailed to

permissionrequest@cengage.com

Scrum is a registered trademark of Scrum Alliance.

All other trademarks are the property of their respective owners.

All images © Cengage Learning unless otherwise noted.

Library of Congress Control Number: 2010942047

ISBN-13: 978-1-4354-5913-7

ISBN-10: 1-4354-5913-X

Course Technology, a part of Cengage Learning

20 Channel Center Street

Boston, MA 02210

USA

Cengage Learning is a leading provider of customized learning solutions

with office locations around the globe, including Singapore, the United

Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at:

international.cengage.com/region

Cengage Learning products are represented in Canada by Nelson

Education, Ltd.

For your lifelong learning solutions, visit courseptr.com

Visit our corporate website at cengage.com

Printed in the United States of America
1 2 3 4 5 6 7 13 12 11

eISBN-10: 1-4354-5914-8

To our family with love.

This book is dedicated to all the professionals throughout the world whose
intelligence and hard work have made, and will make, the world a better place.

“A journey of a thousand miles begins with a single step.”

—Lao-tzu, Chinese philosopher

This book is a valuable, practical, no-nonsense addition to the Agile literature.
Co-authors Andrew and Phuong-Van quickly get down to brass tacks in covering
a very broad software development and management landscape. In valuable
detail, they cover Agile foundations, finance, management buy-in, Agile
requirements, architecture vision, product owner role, focused testing, teamwork,
Agile management, and how to adapt Scrum without destroying it, and they top it
off with a readiness assessment tool.

I see two major groups of people who will find this book really useful: those
coming from a more traditional plan-driven mindset and those coming from a
newer Agile mindset. The strength of this tome is that it is practical without being
dogmatic, and therefore provides a bridge to the others’ thinking for people in
both these groups.

For those of you coming from a traditional, plan-driven background, there are
several wonderful sections of information. The material on visioning architecture;
creating smart requirements for the Scrum Product Backlog; being an effective
product owner in true Agile, servant leader mode; focusing on automated,
regression, and integration tests; being an enthusiastic and productive team
member; and adapting Scrum without killing its Agile core will serve two pur-
poses. On one hand, it should provide warmth and comfort if your heart has been
chilled by myths that Agile teams are lacking in essential software development
disciplines. On the other, it will expose you to some of the really critical soft stuff:
the wonderful people, team and leadership elements of Scrum that have made it
so popular with the rank and file and enlightened managers alike.

Foreword

Foreword v

For those of you coming from a newer Agile mindset, especially if you may not
have been exposed to more traditional rigor, the material that covers considering
earned value in particular and finance in general, creating an architecture vision
and applying it to the Scrum product backlog, and performing criteria-based
estimation as an addition to planning poker should help expand your thinking
without raising your hackles. The treatment of traditional rigor here is quite
sensible and appropriate, and I really believe that you should have no issues with
finding a way to apply some of these proven traditional techniques almost
immediately on your projects.

If you’re a project manager, developer, tester, product manager, business analyst,
or in fact, anyone involved with software development, you will find that this
book helps you understand the nitty gritty of work on Scrum teams with a very
focused practicality. It is a comprehensive work that I believe you will enjoy, no
matter where your starting point.

I met Andrew in one of my ScrumMaster classes, and was quickly impressed by
the depth of his knowledge and the sincerity of his viewpoints. Quite frankly, he
could have taught the class, and his humility in sharing his knowledge was
remarkable. Along with co-author Phuong-Van, Andrew invites you on an
exciting journey into Agile management and development. I hope you will accept
the invitation.

Sanjiv Augustine

Author, Managing Agile Projects

Certified Scrum Trainer

Co-Founder, Agile Project Leadership Network

President, LitheSpeed

Agile, as a software development process, is frequently misunderstood to mean no
requirements, we’ll figure out the design as we go, and anything remotely
resembling a planning meeting is simply out of the question. This book very
effectively puts that misconception to rest.

For those new to Agile and Scrum development practices, it’s frequently difficult
to discern not only what you need to be doing but how to tell if you’re doing it
correctly. Without spending real sprints with experienced practitioners, it’s dif-
ficult to understand the impact of trade-offs that occur constantly during real-
world project development. Are your sprints too long? Too short? Are you
spending too much time doing retrospectives? Why exactly are you doing them to
begin with? Andrew Pham’s and Phuong-Van Pham’s book not only helps
explain why you should be doing a particular Agile or Scrum practice, but also
provides hard-earned experience in helping you understand if you’re doing it
properly. This book provides the desperately needed straw man for activities that
are frequently new to everyone on the team.

One of my favorite parts of the book is the time spent looking at Agile from the
non-developer perspective. What does it mean to you, as an enterprise architect, if
your organization has decided to start using Scrum for its development process?
What if you’re the customer? What if you’re in charge of the effort and need to
somehow meld the Agile process you want to support with financial and progress
tracking information in your department? For as much as some development
teams like to think terms like ROI and EVM are for management to deal with, this
book helps tie a project together without losing what makes Agile so effective.

Foreword

Foreword vii

Unlike what is sometimes taught in the theoretical classroom, this book is for
professionals who would like—and need—to know how to apply Agile and
Scrum to real-life situations. This is to say that this is not a book for process
dogmatists but for professional pragmatists whose mission is to deliver real
software in real companies with real people and real situations.

Deploying Agile, and especially Scrum, processes into an organization is no small
feat, given all the constraints we know. This book is a valuable resource to help
make that a reality.

Dan Pilone

Author, Head First Software Development and Head First iPhone Development

Founder and Managing Partner of Element 84, LLC

We owe a tremendous amount of thanks and gratitude to many people who have
helped us with the writing of this book.

First, there is our family with all their unwavering and unconditional love and
support.

Next, we would like to thank the team at Course Technology PTR. And to begin
with, there is Mitzi Koontz, senior acquisitions editor, who believed in our book
from day one; next Sandy Doell, copy editor, who did a wonderful job in making
the book flowmuch better than when we first started; and finally, Jenny Davidson,
project editor, who made it all happen by ensuring a remarkable co-ordination
between all of us.

Next, we would like to extend a technical thank you to:

n David K Pham, Formerly CTO with KTD Media Corporation and Founder
of 7billion, LLC, for having tested all the ideas in this book and helped
improve them even more.

n Scott Booth, MCP, Manager with Pariveda Solutions, a Texas-based
consultancy, who not only attended Andrew’s presentation on the Influence
of Architecture Vision on Team Velocity and Software Quality at the DFW
ScrumUser Group, but also took quite a lot of time to review the book for us.

n Sameer Bendre, CSM and PMP, a Senior Consultant with 3i Infotech
Consulting, who was so enthusiastic about the book and who also put some
of his friends in contact with us.

Acknowledgments

Acknowledgments ix

n Mike Vizdos, a Certified Scrum Trainer based in Richmond, Virginia, who
took time to give us his feedback despite his busy teaching schedule.

n Linda Rising, author, who did not hesitate to take time out of her busy
schedule to give us some quick feedback for an early draft on her way to catch
a flight to Germany.

n Henrik Kniberg, author of Scrum and XP in the Trenches and a Certified
Scrum Trainer, based in Stockholm, Sweden, who was the first one who
made us think of a better title for the book.

n Anwar Bardai, a Senior Computer Specialist with Compucom, Inc., who
worked with Andrew Pham a few years ago in successfully using some
elements of Scrum and Agile to implement an ERP package in record time
for a large computer retailer.

n Benjamin Oguntona, Senior System Manager with AT&T, who worked
with Andrew Pham when Andrew was Technical Director with SBC
and then Principal and Chief Architect with Cingular Wireless, for
enthusiastically taking the time to review and to edit the book.

n Dennis Palmer, a product owner with Esquire Innovations, Inc., a software
company based in California, who took time to review the book when it was
still at an early stage.

n Dennis Simpson, IT Rescue Mission Specialist, based in Dallas, Texas, who
not only took time to review the book at length but also helped edit the book
to make it more polished.

n Harold Thomas, CBAP, a Business Analyst with the Ohio State Department
of Job & Family Services, who did not hesitate to take time from his own
writing schedule to review our book and help edit it.

n Sanjiv Augustine, Certified Scrum Trainer, co-founder of the Agile Project
Leadership Network (APLN), and author of Managing Agile Projects, who
not only took the time out of his busy schedule to review the book but was
also very kind in writing a foreword for our book.

n Dan Pilone, author of Head First Software Development and Head First
iPhone Development, and Managing Partner with Element 84, LLC, for
having taken the time to review the book and for writing the foreword for it.

x Acknowledgments

Last but not least, our thanks also go to all the authors whose works we have cited
here. To those we have not mentioned, please know that we have made every
effort to trace all the copyright holders, but if any have been inadvertently
overlooked, please let us or our publisher know so that we can make the necessary
amendments at the earliest opportunity.

Andrew Pham

Phuong-Van Pham

Andrew Pham is a Certified ScrumMaster (CSM), a Certified Scrum Product
Owner (CSPO), and a Certified Scrum Professional (CSP).

In addition to this, he is also a PMP (Project Management Professional), a longtime
Architect for Java Technologies certified by Sun Microsystems, and an early OOAD
(Object-Oriented Analysis and Design) UML professional certified by IBM.

An elect-senior member with IEEE and member of the PMI, Andrew Pham has
held top positions in project management, enterprise architecture, and software
development in start-up, mid-sized, and multi-billion-dollar corporations. An
experienced Agile and Lean coach, Andrew has helped numerous companies
successfully use Agile (Scrum) and Lean (kanban) on real-world projects as well
as taught development teams both in the USA and abroad.

An entrepreneur at heart, Andrew Pham is also President of Agile Enterprise
Consulting, LLC, a consulting, training, and software development company. You
can contact him at andrew@agileenterpriseconsulting.com.

Phuong-Van Pham is currently project manager in a multi-billion-dollar
company. Phuong-Van is also a PMP (Project Management Professional), a
Certified ScrumMaster (CSM), a Certified Scrum Practitioner (CSP), and a
Certified Project Manager for Technology (Project+) by the Computer Tech-
nology Industry Association (CompTIA).

In addition to her responsibility at work, she is also an active member with the
Association of UniversityWomen (AUA), the Project Management Institute (PMI),
the PMI New York Chapter, the New York Scrum User Group, the Agile Project
Leadership Network (APLN), and the Women in Project Management Special
Interest Group (SIG).

About the Authors

Introduction . xvii

Praise for the Book . xxxiv

Chapter 1 Setting the Stage: Agile and Scrum 1

What Is the Foundation of Agile Software Development

and Project Management? . 3

Scrum Origins . 5

How Scrum Works . 6

Why Are Agile and Scrum Effective in Software Project

Management? . 12

Summary . 15

Chapter 2 Finance Speak . 17

Calculate Project Costs . 17

Select Project Investments . 18

The Payback Period . 18

Buy Versus Build . 19

Net Present Value (NPV) . 21

Internal Rate of Return (IRR), or Return on Investment (ROI) . . . 22

Monitor Project Performance . 24

Cost Performance . 25

Schedule Performance . 26

Project Budget Forecasting . 27

Summary . 29

Contents

xii

Contents xiii

Chapter 3 Secure Top Management Support but Make

Sure to Obtain Middle Management Buy-In 31

Working with Top Business Management . 32

Working with Top IT Management . 35

Program Management Office . 35

Working with IT Middle Management . 36

Quality Assurance . 38

Operations Management . 39

Enterprise Architecture (EA) . 40

Turning Your Direct Management into an Ally 43

Summary . 44

Chapter 4 A Visual Requirements Gathering for the

Product Backlog . 47

A New Visual Requirements Gathering Process for Agile

and Scrum . 47

First Step: Identify the Stakeholders and Their Goals 47

The SMART Rules . 48

Second Step: Gather Requirements for the Product Backlog 49

The CUTFIT Rules . 51

An Example . 54

Summary . 59

Chapter 5 Making the Story Point Estimate Comparable

for Scrum Enterprise-Wide Implementation 61

Problems with a Non-Comparable Story Point 61

Cultural Problems with Planning Poker . 62

An Objective Criteria-Based Estimating Process 62

Example . 71

Summary . 73

Chapter 6 The Influence of Architecture Vision on Team Velocity

and Software Quality . 75

The Importance of Architecture Vision . 77

How to Identify Architecture Vision . 78

Another Benefit of Having an Architecture Vision 82

Summary . 92

Chapter 7 From Architecture Vision to Release and Sprints

Planning to Parallel Software Development 93

From Architecture Vision to Release and Sprints Planning 93

From Incremental to Parallel Software Development 103

Summary . 105

Chapter 8 Did You Say Product Owner? . 107

Managing Stakeholders’ Expectations and Prioritization 109

Having a Clear Product Vision and Knowledge 109

Knowing How to Gather Requirements for the Product Backlog . . 111

Making Oneself Always Available . 111

Knowing How to Be a Good Organizer . 111

Knowing How to Communicate Better Than the Average Person . 112

Knowing That It Is All About Servant Leadership 112

Summary . 112

Chapter 9 The Importance of Automated, Regression, and

Integration Tests . 113

The Importance of the Definition of Done 115

The Most Important Tests . 117

Automated Testing . 118

Continuous Integration Testing . 119

Organizing the Testing Infrastructure . 119

Summary . 121

Chapter 10 The Importance of Teamwork . 123

The Individuals . 124

The Group . 125

The Team . 126

The Keirsey Temperament Types . 126

The Five Team Stages . 129

Techniques to Resolve Team Conflicts . 129

Conditions of Great Teamwork . 131

Summary . 132

Chapter 11 The New Nature of Management and Leadership on

a Scrum Project . 135

Coaching for Superior Performance: The GROW Model 141

xiv Contents

Traits of a Caring Leader and Manager . 143

Summary . 144

Chapter 12 How to Adapt Scrum (Without Destroying

Its Agile Foundations or Doing Negative ScrumButs) . . . 145

How to Adapt Scrum Without Doing Negative “ScrumButs”

with Excuses . 146

Examples of Situational Scrum Adaptations 147

Organization Dimension . 147

Infrastructure Dimension . 151

Team Dimension . 152

Technology Dimension . 152

Process Dimension . 153

Business Dimension . 154

Summary . 154

Chapter 13 Scrum Project Readiness Self-Assessment 157

A Simple Tool for Your Scrum Readiness Assessment 157

Organization Dimension . 160

Infrastructure Dimension . 160

Team Dimension . 161

Technology Dimension . 161

Process Dimension . 162

Business Dimension . 162

Example . 164

Putting It Together . 169

Summary . 170

Chapter 14 When Do You Need a ScrumMaster? 173

In Depth Theoretical and Practical Knowledge of Scrum 174

Great Servant-Leadership Ability . 175

Strong Organizational Skills . 175

Great Communication Skills . 175

Excellent Presentation Skills . 176

Conflict Resolution Skills . 176

Great Human Development Skills . 176

Summary . 176

Contents xv

Chapter 15 Parting Thoughts . 177

Appendix A Two Real-World Software Product Development

Case Studies . 181

Introduction . 181

Ruby and Ruby on Rails (RoR) . 181

Ruby, the Language . 181

Ruby on Rails (RoR), the Web Framework 185

Version Control and Testing for Web Development with RoR 189

Git—Version Control . 189

Testing and Testing Framework . 189

Case Study 1 (Noshster) . 192

Product Vision and Goal . 192

Requirements Gathering Using the Book’s Visual Technique . . . 192

Architecture Vision and Release/Sprint Planning 192

Project Estimation Using the Objective Criteria Technique 197

Noshster Development . 199

Case Study 2 (Conferous) . 242

Product Vision and Goal . 242

Requirements Gathering Using the Book’s Visual Technique . . . 242

Architecture Vision and Release/Sprint Planning 242

Project Estimation Using the Objective Criteria Technique 244

Conferous Development . 246

Appendix B Could You or Should You Have an Abnormal

Termination of a Sprint? . 265

Introduction . 265

When Can a Sprint Be Terminated Earlier Than Planned? 265

How to Avoid Terminating a Sprint Earlier Than Planned 266

How to Restart After Terminating a Sprint Earlier Than Planned . . 267

Glossary . 269

References . 275

Index . 277

xvi Contents

What Is This Book About?

While there are some good books on Scrum out there, we believe none of them
deal with all the essentials a software project team needs to know in order to begin
and complete a Scrum software project within corporate constraints (by corporate
constraints, we mean in companies where Scrum or Agile has not been suc-
cessfully deployed enterprise-wide).

In order to help these teams succeed, sometimes in navigating treacherous
corporate constraints, we set out to write a practical book on Scrum using the
knowledge we essentially acquired from the trenches.

To this end, the 15 chapters of this book will provide you with all the knowledge
you need as if an experienced ScrumMaster were advising you in person. In
addition to this, you will also find in Appendix A two case studies for two software
products that had been successfully built and deployed using the techniques and
advice outlined in this book.

Chapter 1: Setting the Stage: Agile and Scrum

Chapter 1’s focus is the foundation of Agile with emphasis on Scrum as part of the
Agile family. Chapter 1 also serves as an introduction to the fundamentals of
Scrum and corrects some of the inaccurate information about Scrum, more or
less like Alan Shalloway and his team did in Lean-Agile Software Development
Achieving Enterprise Agility (p. 84–92). This is a way for us to get you on the same
page with us before we move forward.

Introduction

xvii

Chapter 2: Finance Speak

Whether you are passionate about Agile and Scrum or not, one thing to
remember is that the language of business management is finance.

In Chapter 2, you will learn the essentials of finance, what you should know in
order to better collaborate with business management in helping them select
projects, estimate a project budget, and forecast how much money and time you
will need to finish your project.

Chapter 3: Secure Top Management Support but Make
Sure to Obtain Middle Management Buy-In

Although it is important to work with top business management to get their
approval, it is even more important to work with middle management on a daily
basis since middle management is where the rubber meets the road. The goal of
Chapter 3 is to give you enough knowledge to be successful at both.

Chapter 4: A Visual Requirements Gathering for the
Product Backlog

Once the approval is given to a project team to move forward, there is nothing
more important than a good set of requirements. Chapter 4 presents a very simple
and visual process to gather requirements for a Scrum project that any of us can
use.

Chapter 5: Making the Story Point Estimate Comparable
for Scrum Enterprise-Wide Implementation

As Agile and Scrum become more and more widely accepted, one of the problems
we encounter with the current story point system (upon which team velocity is
built) is that it does not allow for comparison between teams. This hinders many
IT departments’ desire to implement Scrum across the board, especially when
it comes to overall resource allocation and re-allocation. As in Chapter 4, we
present here an approach that has been successfully used on many projects. It will
help you estimate your stories and back up what you say, not with your gut
feelings but with tangible data as well as make it possible to compare velocity
between different teams within the same organization.

xviii Introduction

Chapter 6: The Influence of Architecture Vision on Team
Velocity and Software Quality

For anyone who has ever worked on even one single Scrum project, you should
have seen that team velocity fluctuates up and down, often reducing team pro-
ductivity and ability to deliver. This chapter will walk you through the reasons for
fluctuations in team velocity; and it will suggest how to use architecture vision,
similar to what others call architecture intent, to remedy it.

Chapter 7: From Architecture Vision to Release and Sprints
Planning to Parallel Software Development

In addition to the fact that it can help team velocity, or even increase it over time,
a good architecture vision has additional benefits. This may include a positive
impact on release and Sprint planning.

Chapter 8: Did You Say Product Owner?

Everyone is important on a Scrum project, but the product owner is the person who
can help the team deliver the most value for the business. Chapter 8 reviews the
personal and professional qualities a product owner should have to be successful.

Chapter 9: The Importance of Automated, Regression, and
Integration Tests

Not all testing is created equal. In this chapter, we will provide an in-depth
treatment of a few tests that are, in our opinion, most important to Scrum
projects, and explain why they are key to a successful Scrum project team.

Chapter 10: The Importance of Teamwork

Who among us has not heard about teamwork and how important it is. Even if it
sounds like an old cliché, Chapter 10 affirms that teamwork is essential in order for
the Scrum team to deliver value, especially since the team is now self-organized.
Beyond saying that teamwork is important, this chapter offers some insight into
human psychology and temperament types that can help co-workers better
understand one another and work well together. In addition, this chapter also offers
some techniques for conflict resolution, taking into account the stage at which the
conflict happens on a project.

Introduction xix

Chapter 11: The New Nature of Management
and Leadership on a Scrum Project

Even though Scrum teams are self-organizing, there is still a need for project
management and team leadership. The ways that project management morphs
into something a bit different in the Scrum environment will be explored. The key
thing to remember here is that servant leadership will replace the command and
control style of the past. Chapter 11 reviews some useful coaching and leadership
techniques for Scrum Masters and product owners as they team up to help guide
the team toward their final project delivery.

Chapter 12: How to Adapt Scrum (Without Destroying Its
Agile Foundations or Doing Negative ScrumButs)

Wouldn’t it be wonderful if someone could invent a methodology or process that
could fit every company and every problem, that we could use without ever
having to adapt it to our environment? The reality is that we must often adapt the
methodology to our constraints, to get it to work. This is also true with Scrum.

Unlike the negative “ScrumButs,” which are wrong applications of Scrum, we will
review here several examples of positive “ScrumButs,” or good adaptations of
Scrum, in the same way as Jurgen Appelo, CIO at CSM eCompany in the
Netherlands, did in his “ScrumButs are the best part of Scrum”.

Chapter 13: Scrum Project Readiness Self-Assessment

Chapter 13 provides an example of a Scrum project readiness self-assessment,
which you should try to fill out at the very beginning of your Scrum project. This
will allow you to identify where the obstacles may be which could hurt your
project team’s ability to deliver.

Depending on your score, you will know how easy or how hard it is going to be for
your team to perform within your current environment and try to improve it so
that you can deliver more readily.

Chapter 14: When Do You Need a ScrumMaster?

Unless you or your team is experienced with Scrum, you will need a ScrumMaster
to guide you through some of the tribulations that will accompany your first
attempts with Scrum.

xx Introduction

Even though this book is supposed to serve as your ScrumMaster, Chapter 14
reviews the personal and professional qualities a ScrumMaster should have to be
successful.

Chapter 15: Parting Thoughts

Rather than just let you move ahead alone, Chapter 15 provides some suggestions
as to what main applications you should draw from the different chapters and the
order in which you should apply them to your project situations.

Appendix A: Two Real-World Software Product
Development Case Studies

In Appendix A we showcase two successful software products that were built and
deployed using the advice given in this book, from requirements gathering to
architecture vision to release and Sprint planning and testing.

The first case study provides an example of an application that is developed
vertically, while the second case study provides an example of an application that
is developed horizontally.

Appendix B: Could You or Should You Have an Abnormal
Termination of a Sprint?

Normally, your Scrum project should go smoothly if you have followed all the
advice we have given in this book. This being said, there may be instances where
you will be experiencing what is called an abnormal termination of a sprint, which
is due sometimes to your underestimation of your team’s velocity or the com-
plexity of some of your user stories.

To advise you in what to do in this situation, included in this book is also a small
chapter on the abnormal termination of a sprint, what the causes are, how to
avoid it, how to deal with it and how to restart the project team’s work after one.

Glossary

In order to facilitate the understanding of certain key Scrum terms, a glossary is
provided at the end of the book.

Introduction xxi

xxii Introduction

Who Should Read This Book?
Depending on your title or the role you have in your current organization, here
are some suggestions as to what chapters you should read and in what order.
There are two kinds of people who will find this book useful: (1) those who are
new to Scrum and (2) those who already have some experience with Scrum.

If You Are New to Scrum
If You Are a Member of the Management Team

As you are part of management, you should first read Chapter 1 to get familiar
with the Agile evolution, how it got started and with Scrum origin as well as its
basics. Next, you should read Chapter 3 to see what advice we give to the Scrum
team to work with management, with both top business management and middle
management. Next, you should read Chapter 8 and Chapter 14, respectively, on
the product owner’s and ScrumMaster’s quality and role.

Scrum or not, we guess you should wonder how you or your team is going to gather
requirements for the so-called product backlog which you have heard so much
about. If this is the case, then the next chapter you should read is Chapter 4 on how
we identify user goals and use a visual technique to gather requirements for Scrum
projects. You may also have heard that with planning poker every team’s velocity,
which is the number of user stories a Scrum team can deliver for every Sprint, is
different from one team to another. If this is what you have heard and if youwonder
how you could make it comparable for a large-scale implementation across many
teams, then you may want to read Chapter 5. It is effectively in Chapter 5 that we
present a straightforward way to estimate your requirements, which will make it
possible for every team member to back up their estimate and to make the team
velocity comparable. This latter is, without any doubt, a key condition for a suc-
cessful enterprise implementation of Scrum across many teams.

If you have more time, we suggest that you read the book as a whole, from start to
finish, including Appendix A where two examples of two software products that
had been built and deployed using the advice given in this book are showcased.
You will be surprised to see how much you have learned about Agile and Scrum.

If You Are a Member of the Technical Management Team

As you are part of management, you should first read Chapter 1 to get familiar
with the Agile evolution, how it got started, and with Scrum origin as well as its

basics. Next, you should read Chapter 3 to see what advice we give to the Scrum
team to work with management, both top business management and middle
management. Next, you should read Chapter 8 and Chapter 14, respectively, on
the product owner’s and ScrumMaster’s quality and role.

Scrum or not, we guess you should wonder how you or your team is going to
gather requirements for the so-called product backlog which you have heard so
much about. If this is the case, then the next chapter you should read is Chapter 4
on how we identify user goals and use a visual technique to gather requirements
for Scrum projects. You may also have heard that with planning poker, every
team’s velocity, which is the number of user stories a Scrum team can deliver for
every Sprint, is different from one team to another. If this is the case and if you
wonder how you could make it comparable for a large-scale implementation
across many teams, then you may want to read Chapter 5. It is during Chapter 5
that we present a straightforward way to estimate your requirements, which will
make it possible for every teammember to back up their estimate and to make the
team velocity comparable. This latter is, without any doubt, a key condition for a
successful enterprise-wide implementation of Scrum.

Since you come from a technical background, we next suggest that you read
Chapter 6 on architecture vision and how it can help your team maintain a good
velocity and even do a better job at release and Sprint planning (Chapter 7).

If you want to know who is going to drive requirements and the business needs in
Scrum, then Chapter 8 on the product owner is for you. Likewise, if you want to
know who will be responsible to help the team and the product owner understand
and properly apply Scrum, then you will want to read Chapter 14.

Without having to get your hands dirty anymore since you are part of manage-
ment, you may still want to read Chapter 9 to know what the three most
important tests are for us and how to get organized to help your team or orga-
nization to deliver. As a member of the management team, we guess you should
be curious to know how the team is going to be managed since you have heard
that they are now self-managed in Scrum. If this is the case, then Chapter 10 is for
you to read. Naturally, since you are a member of the management team, we next
suggest that you read Chapter 11 on project management and team leadership. As
any seasoned professional who is part of management, you know for a fact that no
process or process framework could easily fit into an organization without a
certain amount of adaptation. If this is the case, then Chapter 12 is the chapter you
should read next. After this, if you wonder how you know where you stand with

Introduction xxiii

Scrum, then Chapter 13 is what you will want to review and start using the
questionnaire.

Last but not least, if you have more time, we suggest that you read the book as a
whole, from start to finish, including Appendix A where two examples of two
software products that had been built and deployed using the advice given in this
book are showcased. You will be surprised to see how much you have learned
about Agile and Scrum.

If You Are a Project Manager

Since you are someone who may be asked to act as the ScrumMaster on the
project and since you are somewhat part of management, or should we say that as
a project manager you likely have the same concerns as management, we suggest
that you read the entire book.

You will be surprised to see howmuch you have learned about Agile and Scrum to
understand what experts talk about and how to move forward in all confidence.

If You Are a Developer

Since you are part of the technical team, we make the assumption that you are
interested mainly in the chapters that can help you understand how to get the
development job done. If this is the case, read:

n Chapter 1 (It is all about Agile and Scrum)

n Chapter 5 (Estimating user stories to make the story point comparable for
Scrum enterprise-wide implementation)

n Chapter 6 (The influence of architecture vision on team velocity and soft-
ware quality)

n Chapter 7 (From architecture vision to release and Sprints planning)

n Chapter 8 (Did you say product owner?)

n Chapter 9 (The importance of automated, regression, and integration tests)

n Chapter 10 (The importance of teamwork)

n Chapter 14 (When do you need a ScrumMaster?)

xxiv Introduction

Now, if you have more time, we suggest that you read the book as a whole, from
start to finish, including Appendix A, where two examples of two software pro-
ducts that had been built and deployed using the advice given in this book are
showcased. You will be surprised to see how much you have learned about Agile
and Scrum to understand what experts talk about and how to move forward in all
confidence.

If You Are a Business Analyst

Like the developer, we make the assumption that you are mainly interested in the
non-technical chapters that can help you learn to know what Scrum is and how to
get the job done. If this is the case, read:

n Chapter 1 (It is all about Agile and Scrum)

n Chapter 2 (Finance speak)

n Chapter 4 (Requirements gathering for the product backlog)

n Chapter 5 (Estimating user stories to make the story point comparable for
Scrum enterprise-wide implementation)

n Chapter 8 (Did you say product owner?)

n Chapter 10 (The importance of teamwork)

n Chapter 11 (The new nature of management and leadership on a Scrum
project)

n Chapter 14 (When do you need a ScrumMaster?)

If you have some technical background or time, we recommend that you also read
Chapters 6 and 7 on architecture vision. We have written them in such a way that
they are also understandable to the non-technical team members. They will
provide you with the same understanding as the technical folks on the team,
allowing you to have the best collaboration with the technical folks.

Now, if you have more time, we suggest that you read the book as a whole, from
start to finish, including Appendix A where two examples of two software pro-
ducts that had been built and deployed using the advice given in this book are
showcased.

Introduction xxv

If You Are a Tester

Like the developer and the business analyst, we make the assumption that you are
mainly interested in the chapters that can help you learn to know what Scrum is
and how to get the job done.

If this is the case, read:

n Chapter 1 (It is all about Agile and Scrum)

n Chapter 4 (Requirements gathering for the product backlog)

n Chapter 9 (The importance of automated, regression, and integration tests)

n Chapter 10 (The importance of teamwork)

n Chapter 11 (The new nature of management and leadership on a Scrumproject)

If you have some interest in knowing how your colleagues gather requirements
and do their estimate on a Scrum project, read Chapters 4 and 5. If you have some
technical background, we recommend that you also read Chapters 6 and 7 on
architecture vision. We have written them in such a way that they are also
understandable to the non-technical team members. Try to read them and you
will not regret it since they will provide you with the same understanding as the
technical folks on the team, allowing you to have the best collaboration with the
technical folks.

Now, if you have more time, we suggest that you read the book as a whole, from
start to finish, including Appendix A where two examples of two software pro-
ducts that had been built and deployed using the advice given in this book are
showcased. You will be surprised to see how much you have learned about Agile
and Scrum.

If You Are an Application Architect

Like the developer and the business analyst, we make the assumption that you are
mainly interested in the chapters that can help you understand what Scrum is and
how to get the job done.

If this is the case, read:

n Chapter 1 (It is all about Agile and Scrum)

n Chapter 4 (Requirements gathering for the product backlog)

xxvi Introduction

n Chapter 6 (The influence of architecture vision on team velocity and soft-
ware quality)

n Chapter 7 (From architecture vision to release and Sprints planning)

n Chapter 10 (The importance of teamwork)

n Chapter 11 (The new nature of management and leadership on a Scrum
project)

Next, read Chapter 3, especially section 3.3.

Now, if you have more time, we suggest that you read the book as a whole, from
start to finish, including Appendix A where two examples of two software pro-
ducts that had been built and deployed using the advice given in this book are
showcased. You will be surprised to see how much you have learned about Agile
and Scrum.

If You Are an Enterprise Architect

Unlike the developer, tester, and the business analyst, as an enterprise architect
you are mainly interested in ensuring that the Scrum project architecture fits into
the overall enterprise architecture. For this, read:

n Chapter 1 (It is all about Agile and Scrum)

n Chapter 4 (Requirements gathering for the product backlog)

n Chapter 6 (The influence of architecture vision on team velocity and soft-
ware quality)

n Chapter 7 (From architecture vision to release and Sprints planning)

n Chapter 8 (Did you say product owner?)

n Chapter 10 (The importance of teamwork)

n Chapter 11 (The new nature of management and leadership on a Scrum
project)

n Chapter 14 (When do you need a ScrumMaster?)

Next, read Chapter 3, especially section 3.3.

Introduction xxvii

Now, if you have more time, we suggest that you read the book as a whole, from
start to finish, including Appendix A where two examples of two software pro-
ducts that had been built and deployed using the advice given in this book are
showcased. You will be surprised to see how much you have learned about Agile
and Scrum.

If You Are a Member of the PMO

As your team is interested in IT alignment on business needs and in IT perfor-
mance, you will want to read:

n Chapter 1 (It is all about Agile and Scrum)

n Chapter 2 (Finance speak)

n Chapter 3 (Secure top management support but obtain middle management
buy-in)

n Chapter 4 (Requirements gathering for the product backlog)

n Chapter 5 (Estimating user stories to make the story point comparable for
Scrum enterprise-wide implementation)

n Chapter 6 (The influence of architecture vision on team velocity and soft-
ware quality)

n Chapter 7 (From architecture vision to release and Sprints planning)

n Chapter 8 (Did you say product owner?)

n Chapter 11 (The new nature of management and leadership on a Scrum
project)

n Chapter 12 (How to adapt Scrum)

n Chapter 13 (Scrum project readiness self-assessment)

n Chapter 14 (When do you need a ScrumMaster?)

If you have more time, we suggest that you read the book as a whole, from start to
finish, including Appendix A where two examples of two software products that
had been built and deployed using the advice given in this book are showcased.
You will be surprised to see how much you have learned about Agile and Scrum.

xxviii Introduction

If You Are a Member of Operations

As your team is responsible for the daily running of the organization’s software
applications, you will want to read:

n Chapter 1 (It is all about Agile and Scrum)

n Chapter 3 (Secure top management support but obtain middle management
buy-in)

n Chapter 6 (The influence of architecture vision on team velocity and soft-
ware quality)

n Chapter 7 (From architecture vision to release and Sprints planning)

n Chapter 8 (Did you say product owner?)

n Chapter 9 (The importance of automated, regression, and integration tests)

n Chapter 14 (When do you need a ScrumMaster?)

If you have more time, we suggest that you read the book as a whole, from start to
finish, including Appendix A where two examples of two software products that
had been built and deployed using the advice given in this book are showcased.
You will be surprised to see how much you have learned about Agile and Scrum.

If You Are a Product Owner

For the responsibility you have on the business of the project, read:

n Chapter 8 (Did you say product owner?)

n Chapter 2 (Finance speak)

n Chapter 3 (Secure top management support but obtain middle management
buy-in)

n Chapter 4 (Requirements gathering for the product backlog)

n Chapter 5 (Estimating user stories to make the story point comparable for
Scrum enterprise-wide implementation)

n Chapter 9 (The importance of automated, regression, and integration tests)

Introduction xxix

n Chapter 11 (The new nature of management and leadership on a Scrum
project)

n Chapter 14 (When do you need a ScrumMaster?)

If you are interested in seeing the team build a robust application that does not
break after you go live, we suggest that you read:

n Chapter 6 (The influence of architecture vision on team velocity and
software quality)

n Chapter 7 (From architecture vision to release and Sprints planning)

Now, if you have more time available, we suggest that you read the book as a
whole, from start to finish. You will be surprised to see how much you have
learned about Agile and Scrum.

If You Are a Business Sponsor

As the person who is behind the business needs for the project and who provides
the main funding for it, you should be interested in reading:

n Chapter 1 (It is all about Agile and Scrum)

n Chapter 8 (Did you say product owner?)

n Chapter 2 (Finance speak)

n Chapter 3 (Secure top management support but obtain middle management
buy-in)

n Chapter 11 (The new nature of management and leadership on a Scrum
project)

n Chapter 14 (When do you need a ScrumMaster?)

If you have more time available, we suggest that you read the book as a whole,
from start to finish, including Appendix A, where two examples of two software
products that had been built and deployed using the advice given in this book are
showcased. You will be surprised to see how much you have learned about Agile
and Scrum.

xxx Introduction

If You Are Already Experienced with Scrum
If You Are a ScrumMaster

As an experienced ScrumMaster, you should read:

n Chapter 14 (When do you need a ScrumMaster?)

n Chapter 2 (Finance speak)

n Chapter 3 (Secure top management support but obtain middle management
buy-in)

n Chapter 4 (Requirements gathering for the product backlog)

n Chapter 5 (Estimating user stories to make the story point comparable for
Scrum enterprise-wide implementation)

n Chapter 6 (The influence of architecture vision on team velocity and soft-
ware quality)

n Chapter 7 (From architecture vision to release and Sprints planning)

n Chapter 11 (The new nature of management and leadership on a Scrum
project)

n Chapter 12 (How to adapt Scrum)

n Chapter 13 (Scrum project readiness self-assessment)

If you have more time, we suggest that you read the book as a whole, from start to
finish, including Appendix A where two examples of two software products that
had been built and deployed using the advice given in this book are showcased.

If You Are a Product Owner

As an experienced product owner, you should read:

n Chapter 8 (Did you say product owner?)

n Chapter 2 (Finance speak)

n Chapter 4 (Requirements gathering for the product backlog)

Introduction xxxi

n Chapter 5 (Estimating user stories to make the story point comparable for
Scrum enterprise-wide implementation)

n Chapter 6 (The influence of architecture vision on team velocity and soft-
ware quality)

n Chapter 7 (From architecture vision to release and Sprints planning)

n Chapter 11 (The new nature of management and leadership on a Scrum
project)

n Chapter 13 (Scrum project readiness self-assessment)

n Chapter 12 (How to adapt Scrum)

n Chapter 14 (When do you need a ScrumMaster?)

If you have more time, we suggest that you read the book as a whole, from start to
finish, including Appendix A where two examples of two software products that
had been built and deployed using the advice given in this book are showcased.

If You Are a Member of the (Development) Team

Even though you have had some experience with Scrum, you may find something
interesting here in reading:

n Chapter 3 (Secure top management support but obtain middle management
buy-in)

n Chapter 4 (Requirements gathering for the product backlog)

n Chapter 5 (Estimating user stories to make the story point comparable for
Scrum enterprise-wide implementation)

n Chapter 6 (The influence of architecture vision on team velocity and soft-
ware quality)

n Chapter 7 (From architecture vision to release and Sprints planning)

n Chapter 8 (Did you say product owner?)

n Chapter 9 (The importance of automated, regression, and integration tests)

n Chapter 10 (The importance of teamwork)

xxxii Introduction

n Chapter 13 (Scrum project readiness self-assessment)

n Chapter 14 (When do you need a ScrumMaster?)

If you have more time, we suggest that you read the book as a whole, from start to
finish, including Appendix A where two examples of two software products that
had been built and deployed using the advice given in this book are showcased.

Introduction xxxiii

Andrew Pham’s book is an answer to the prayers of newbies to Agile/Scrum. Right
from assessment techniques for your project/enterprise for agility, to guidance on
implementing it—he has included, not only theoretical aspect, but also human
and practical aspects. Simply put, for all the impediments he and his team faced
over years he has put together a learning guide and answered for us most of the
questions which we might face to start with Agile transformation. A great tool for
any team trying to explore the Agile path!

Sameer Bendre, Certified ScrumMaster, PMP

3i Infotech Consulting

I have known Andrew Pham for many years and always enjoyed learning
something new from him, starting from the time I was still working under his
direction at AT&T (formerly known as SBC).

Andrew Pham was particularly clear then in explaining Agile and Architecture
Vision to us, something he has done again with this book.

For a technical book, this is a very interesting book with new ideas to look at
project management or software development process in general. Very well
written and a must-read for those that must improve on current way of doing
things and a good reference book for all in IT.

Ben Oguntona, MBA

Senior Systems Manager, AT&T

Praise for the Book

xxxiv

Andrew Pham takes a different look at Scrum in this book and helps shed light on
many of the questions project teams face when beginning to adopt Scrum.
Andrew describes many good project management techniques on how to get the
most from your project teams. Andrew also bridges the gaps between many
Scrum and project management books by addressing how to communicate with
executives using financial terms, how to use an objective estimation technique in
lieu of the common “poker estimation”, and where software architecture fits into
Scrum.

A good, quick read to prepare project managers on how to successfully implement
Scrum.

Scott Booth, MCP, Manager

Pariveda Solutions, Dallas, Texas

The book was a concise presentation of the steps and concepts that an organi-
zation should be aware of when adopting Scrum. The company I work for is
currently in our 3rd Sprint of our very first Scrum project. I can’t wait for the final
version of this book to be released so that I can share it with the rest of my team. In
many ways it was good confirmation that we are on the right track and it was a
great reminder of the things that we still need to work on. The chapter on what
makes a good Product Owner described almost exactly the person who is filling
that role in our company. I haven’t had the chance to complete the Certified
ScrumMaster training yet, so reading about how the ScrumMaster and Product
Owner work together to manage the team provided some key insight for me.

Dennis Palmer

Product Manager / ScrumMaster

Esquire Innovations, Inc.

Andrew Pham’s book is a very concise reference for Agile and Scrum and is
written more on a practical term than just academics. It is an easy read for the
novice and advance project managers alike. The language of the book lends itself
to showing the fact that Agile and Scrum are absolutely a more natural way of
looking at project management.

As Andrew Pham and I had successfully led the first successful PeopleSoft
package implementation at Computer City many years ago, I can recognize in this

Praise for the Book xxxv

book many Scrum elements he was using then. Essentially, they were to build a
good and frequent collaboration with the users, to empower the team while
ensuring that they deliver on short demonstrable increments.

The book definitely puts this natural progression in a more formal framework
while highlighting the building flexibilities in the process. As a Senior Software
Specialist having worked on small and large projects, I feel that this book is a great
asset to the project managers regardless of the size and extent of the projects.

Anwar Bardai, Senior Software Specialist

CompuCom, Inc.

I found Andrew Pham and Phuong-Van Pham’s book to be immensely practical.
It answers in a concise manner what is the minimum I need to do. Of course you
can read the entire book, and it is well worth it. But today, many feel they don’t
have the time to read a book, they just want the answer. And a book is way too
general, containing things that are not pertinent to you. But each team’s situation
is different. This book is the answer. Given your situation, it tells you which
chapters should be read. Just look down the list of situations, pick yours, write
down the chapters to read, and now the book is customized to your situation.

Other books on Agile/Scrum I’ve read typically gloss over the complaints or
shortcomings of Agile/Scrum that are usually given when a company might
initially consider Agile/Scrum. Andrew addresses these questions or difficulties
head on, and gives practical advice on what your options might be and how to
implement them to help assure a successful project.

Dennis Simpson, Systems Crisis Resolution, MBA, MS, CCP

Andrew and Phuong-Van Pham’s book is a clear, concise presentation of Agile
and Scrum concepts for professionals and executives who are wondering whether
their IT projects can benefit from them. While it provides excellent technical
advice on project management and business analysis issues, it also has the rare
virtue of addressing financial and human resource issues that affect business
management. If one book can make Agile work for an organization, this is it.

Harold Thomas, CBAP

Ohio State Department of Job & Family Services

xxxvi Praise for the Book

Setting the Stage:

Agile and Scrum

Like many people, we are excited about the adoption of Agile (adaptive) project
management and development in general, and about the adoption of Scrum in
particular.

Unlike many people who are so dogmatic about Agile or Scrum, however, we do
not believe that the current corporate world has been reorganized completely for
Scrum. Maybe some commercial software companies have done that, but the
large majority of corporations have not fired all their specialists or given them a
new generalist title as some Scrum dogmatists believe they should. Most of these
companies still have their current organizations the way they are, with many
separate functions in their IT departments. CapitalOne, one of the companies
that has adopted Agile often cited by many Scrum trainers, is still hiring business
analysts, business systems analysts, and project managers. This is also true of
many large companies known for having transitioned into Scrum, such as Sabre,
Verizon, NBC Universal, General Dynamics, Texas Instruments, and American
Airlines.com, just to mention a few.

We will talk more about Scrum’s origin and fundamentals later in this chapter
but for now, let’s say that Scrum, as in the sport of rugby, is a way of restarting
the rugby game, either after an incident or after the ball is out of play. The idea is
to keep the game (software development) rolling.

Chapter 1

1

Even though Scrum can be used outside of software development, we will focus
in this book on Scrum as an Agile process framework for software project
management and development alone.

Having managed projects in the traditional command and control style for a
long time, we have both witnessed, time and again, that Agile and Scrum seem to
help our teams produce software results more effectively than their command
and control counterparts.

This is not to say that the traditional plan-driven style no longer works in
any circumstances; there is much rigor in the traditional approach that even Agile
and Scrum can benefit from. What we are simply saying is that we can do better if
we know how to take a few steps back to reflect on what we do and learn to
improve our techniques and processes with new ideas and concepts.

Because people and companies tend to embrace change slowly, the fact that
the Agile movement, and especially Scrum, has taken off and generated this much
excitement is a very good sign. Together, we hope to contribute to spreading the
adoption of Agile and Scrum with this book, which is derived from many years of
experience in software project management and development in real-life.

Like many of us, if you can get past obstacles, you will find Agile and Scrum
amazingly refreshing and you will learn how to successfully implement them on
a project. Otherwise, your road can be littered with difficulties, which ultimately
may cause your project to fail.

There are many reasons why teams sometimes fail with Scrum. One of the most
common reasons is that many professionals are still unaccustomed to Scrum,
even after taking a Scrum class or reading a few white papers about it. The
second reason may be that their project is so complex that more advanced
techniques are needed to reduce the project’s complexity and get it under
control. A third could be that their organization is not yet set up for Scrum, or
that the teams do not know how to use Scrum within a company’s current
constraints. This could either be because of lack of experience or because the
team has been ill-advised by dogmatic ScrumMasters or coaches, something we
address in this practical guide.

Whatever the reason, Agile and Scrum come with change, and change is always
difficult unless properly managed. But with good management these difficulties
can be turned into opportunities.

2 Chapter 1 n Setting the Stage: Agile and Scrum

One of our goals in this book is to prepare you for the changes you and your
team will go through with Agile and Scrum. We want to help you make the
process as smooth as possible while giving your team a chance to adapt to,
embrace, and succeed in your Scrum project.

What Is the Foundation of Agile Software

Development and Project Management?

The foundations of Agile Software Development and Project Management are,
without a doubt, the Agile Manifesto and the Declaration of Inter-Dependence.

In 2001, a group of software experts got together in the Snowbird resort of Utah
to draft what is known as the Agile Manifesto (www.agilemanifesto.org):

“We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

n Individuals and interactions over processes and tools

n Working software over comprehensive documentation

n Customer collaboration over contract negotiation

n Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the
left more.”

[© 2001 Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern, Brian
Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave Thomas.]

Along with these four values, the Agile Manifesto has twelve principles:

1. Our highest priority is to satisfy the customer through early and continu-
ous delivery of valuable software.

2. Welcome changing requirements, even late in development. Agile proc-
esses harness change for the customer’s competitive advantage.

3. Deliver working software frequently, from a couple of weeks to a couple
of months, with a preference to the shorter timescale.

What Is the Foundation of Agile Software Development and Project Management? 3

4. Business people and developers must work together daily throughout the
project.

5. Build projects around motivated individuals. Give them the environment
and support they need, and trust them to get the job done.

6. The most efficient and effective method of conveying information to and
within a development team is face-to-face conversation.

7. Working software is the primary measure of progress.

8. Agile processes promote sustainable development. The sponsors, develop-
ers, and users should be able to maintain a constant pace indefinitely.

9. Continuous attention to technical excellence and good design enhances
agility.

10. Simplicity—the art of maximizing the amount of work not done—is
essential.

11. The best architectures, requirements, and designs emerge from self-
organizing teams.

12. At regular intervals, the team reflects on how to become more effective,
then tunes and adjusts its behavior accordingly.

Although the Agile Manifesto was drafted in 2001, a few years after Scrum was
announced at Object Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA) in 1996, it is a well-known fact among experts that it has great
influence on Scrum. This influence was obvious in Ken Schwaber’s second book,
Agile Project Management with Scrum, in which he wrote that Scrum is one of the
Agile processes with values and principles as described in the Agile Manifesto.

While the Agile Manifesto dealt with software development, the Agile Project
Management “Declaration of Interdependence” which another group of experts
pulled together in 2005 focused more on the project management side (http://
pmdoi.org):

“We are a community of project leaders that are highly successful at delivering
results. To achieve these results:

n We increase return on investment by making continuous flow of value
our focus.

4 Chapter 1 n Setting the Stage: Agile and Scrum

n We deliver reliable results by engaging customers in frequent
interactions and shared ownership.

n We expect uncertainty and manage for it through iterations,
anticipation, and adaptation.

n We unleash creativity and innovation by recognizing that individuals
are the ultimate source of value, and creating an environment where
they can make a difference.

n We boost performance through group accountability for results and
shared responsibility for team effectiveness.

n We improve effectiveness and reliability through situationally specific
strategies, processes and practices.”

[©2005 David Anderson, Sanjiv Augustine, Christopher Avery, Alistair Cockburn, Mike Cohn,
Doug DeCarlo, Donna Fitzgerald, Jim Highsmith, Ole Jepsen, Lowell Lindstrom, Todd Little, Kent
McDonald, Pollyanna Pixton, Preston Smith and Robert Wysocki.]

Whether the Agile Manifesto and the Declaration of Interdependence (DOI)
came to the experts’ minds first or after they had been somewhat influenced by
Scrum or by any other then existing Agile processes, it does not really matter.

What matters is that if your truly understand the meaning of the Manifesto and
the DOI, you will have a leg up in adapting Scrum, should the need arise,
without betraying its Agile foundation.

Scrum Origins

Historically, the term Scrum comes from an article published by Hirotaka
Takeuchi and Ikujiro Nonaka in the Harvard Business Review in 1986. In that
paper, entitled “The New New Product Development Game,” Takeuchi and
Nonaka described a holistic approach in which project teams are made up of
small cross-functional teams, working successfully toward a common goal,
which the authors compared to the Scrum formation in rugby.

While working on building an Object Oriented Analysis and Design (OOAD)
tool at Easel, Jeff Sutherland, then VP of Engineering at Easel, Inc. realized that
his software team would need an enhanced version of rapid application
development. What he wanted was a process similar to Scrum where at the
end of short iterations, the CEO at Easel would see working code demonstrated,
rather than paper Gantt charts.

Scrum Origins 5

During more or less the same period, Ken Schwaber (see recommended further
reading in the bibliography) was actively looking into how he could help his
company, Advanced Development Methods, Inc. (ADM), enhance their software
process in order to improve their teams’ productivity.

After further analyzing how other successful independent software vendors
(ISV) built software, Ken came to realize that all their development processes
were similar in that they all used empirical processes, which requires constant
inspection and adaptation.

At the request of the Object Management Group (OMG) in 1995, Jeff and Ken
worked together to summarize what they had learned throughout the years; they
created a newmethodology, which they named Scrum, and described in Schwaber’s
article, “Scrum and the Perfect Storm,” at www.controlchaos.com/my-articles.

How Scrum Works

Notice in Figure 1.1 that the Scrum team, which should be a cross-functional
team, is composed of a ScrumMaster, a product owner, and the development
team (or simply, “the team”), with all the skills needed (such as requirements
gathering, designing, coding, and testing) to build the software product.

Even in the best situations, when the Scrum team composition is fully cross-
functional, it does not necessarily follow that the Scrum project members are,
organizationally and hierarchically, all part of the permanent Scrum project
team structure. Unless your company is a resolute proponent of enterprise-wide
Scrum deployment and has completely reorganized itself, following Scrum
organizational structure recommendations, Scrum teams are still borrowed
from different organizations to which they belong, such as QA, Enterprise
Architecture, Pre-production, or DBA.

Even some of those companies often cited as having adopted Scrum still have
Project Management, QA, Pre-Production, Business System Analysis Groups,
and Enterprise Architecture working as separate functions in IT, and project
teams have to negotiate with these groups to get their Scrum projects going.
Very rarely does a company fire all its project managers (Scrum does not have a
project manager per se) or change their title to ScrumMaster or reorganize all its
separate IT groups around multi-disciplinary Scrum project teams. That would
be the dream, but it is not the current reality yet.

6 Chapter 1 n Setting the Stage: Agile and Scrum

In Figure 1.1, you can see how a Scrum project gets started. As you can see in the
diagram, it all begins with the product owner who is responsible for taking input
from different stakeholders, or users who represent them, to elaborate a list of
requirements to create a product backlog.

Simply put, the product backlog is a prioritized list of requirements, which can
include everything from business features to technologies to technical issues to
bug fixes.

Some practitioners and authors, such as Henrik Knitberg in his book, Scrum and
XP from the Trenches would prefer to keep the product backlog at the business
level to include only business requirements, as we do.

As you will learn in Chapter 4, “A Visual Requirements Gathering for the
Product Backlog,” the user requirements for Scrum product backlog are usually
gathered as short user stories during a one- or two-day requirements workshop
prior to the release and Sprint planning meeting.

Figure 1.1

Product backlog, release backlog, and Sprint backlog.

Scrum Origins 7

While release planning in Scrum was somewhat optional in the early days, it has
proven to help many Scrum teams become even more effective throughout the
years. Thus, we strongly recommend that the product owner go through release
planning with the team even if this is a difficult exercise, as it will require you to
learn about the product prior to the planning meeting.

The more you, as the product owner, know the product, the more you can help
the team. The key goal of release planning is for the Scrum team to identify all
the releases the software product should have, along with a probable delivery
schedule. Normally, release planning should last four hours for a Scrum team
with four-week Sprints.

Besides release planning, the Scrum team should also go through some Sprint
planning, either as part of the release planning process or independently after
the release planning is done.

Normally, the Sprint planning meeting should be around eight hours for Sprints
of four weeks and should be adjusted to four hours for Sprints of two weeks.

As a common practice, the Sprint planning meeting should be divided into two
equal four-hour meetings.

During the first part of the meeting, the product owner will go through the
requirements, as user stories, to decide, with the team’s feedback, which ones
should be part of which Sprints and what their goals are. The first of the two-
part meeting is mainly to answer the “What” question.

During the second part of the Sprint planning meeting, which focuses on the
“How,” the Development team will try to identify tasks from the previously
chosen stories and deduce how much time (in hours) it will take them to turn
these tasks into potentially shippable product increments. Unless the team uses
some kind of planning software, all the development tasks that are part of the
Sprint will normally be consigned to a Task Board, some kind of white board on
a wall, for easy team allocation and tracking.

As soon as the release and Sprint planning meeting is done, then starts the actual
sprinting work (Figure 1.2) along with its 15-minute daily Scrum, or Daily
Standup.

Originally, the Daily Standup could last up to 30 minutes, but as part of Scrum
evolution, or adjustment, which we will talk more about in Chapter 12, “How to

8 Chapter 1 n Setting the Stage: Agile and Scrum

Adapt Scrum (Without Destroying Its Agile Foundations or Doing Negative
ScrumButs),” its duration has been reduced more and more in practice, to
around 15 minutes today.

Normally, the duration of a Sprint will be from one to four weeks. Except under
very special circumstances, no additional items should be added to or deleted
from the Sprint backlog while the Sprint is underway, unless the team and the
product owner agree to them, but this is something like an exception rather than
the norm.

Unlike the traditional process where the project manager is responsible for
organizing weekly status meetings to track project status, with Scrum, the team
will get together every day to inspect, not the project status, but the team’s
progress toward the Sprint goal. This is the reason you often hear people say that
the daily Scrum is not a status meeting.

To keep track of the team progress towards the Sprint goal, a burndown chart
will be created by the team to show how much work remains until the team is

Figure 1.2

Sprints, a burndown chart, and daily Scrums.

Scrum Origins 9

done with the Sprint. Even though the creation of this burndown chart is the
team’s responsibility, it can be updated by the ScrumMaster whenever the team
does not have time to do so.

Just before the end of every Sprint, the team will meet with the product owner,
as part of Scrum’s Inspect and Adapt mechanism, to go through what is known
as a Sprint review organized by the ScrumMaster (Figure 1.3). This is another
time-boxed meeting, which normally lasts four hours for a four-week Sprint or
two hours for a two-week Sprint.

The objective of this meeting is multi-fold: The first is for the Scrum team and
the product owner to discuss what was done and what was not done. The second
is for the team to demonstrate what was built to the product owner and get her
feedback. Finally, the third objective is to get updates from the product owner
regarding any new changes to the product or market direction.

Figure 1.3

Sprint review and retrospective.

10 Chapter 1 n Setting the Stage: Agile and Scrum

Right after the Sprint review and prior to the next Sprint, the Scrum team will
also meet to go through a Sprint retrospective to identify what worked and what
did not work during the current Sprint. The intent is to see how they could make
their collaboration even more effective going into the next Sprint.

As a common practice, the retrospective meeting should normally last three
hours for a monthly Sprint but its duration should be adjusted, as is the case for
all the other timed-box meetings, in proportion to the length of the Sprint, such
as two hours for a two-week Sprint.

Figure 1.4 provides an overall graphic of the collaborative responsibilities of
Scrum team members.

Figure 1.4

It’s all about collaboration between the team, the ScrumMaster, and the product owner.

Scrum Origins 11

Overall, Scrum does not sound too complicated as a general project framework,
right? Yes, but while Scrum sounds simple in theory, it can be very difficult to
implement, especially if your company is still new to Scrum practice or if you
want to turbo-charge your Scrum project with some of the current practices.

Why Are Agile and Scrum Effective in

Software Project Management?

Even though Agile and especially Scrum can be difficult to implement, it has
proven to be extremely effective when properly deployed.

As you read this book, you will see many reasons why Agile and Scrum are
normally more effective in project management and development. There are,
however, four advantages that we would like to emphasize up front:

n A systematic risk reduction mechanism: All of us who are responsible for
project planning and execution know how important it is to reduce the
level of risk or uncertainty to zero or to the lowest level possible.

While there are as many as four different ways to deal with risks (avoid-
ance, transfer, accept, and mitigate), project managers often end up hav-
ing to mitigate risks in the end. This is where Scrum excels with its
frequent Inspect and Adapt cycle.

n A leaner software development life cycle:

In Figures 1.5 and 1.6, we see the large difference in timeline, with one
of the teams using a longer life cycle (Figure 1.5) while another team is

Figure 1.5

Traditional value stream.

12 Chapter 1 n Setting the Stage: Agile and Scrum

using a leaner life cycle (Figure 1.6), making more efficient use of pro-
ductive time.

n A more adaptive project management process. Unlike the sequential
process used within the waterfall environment, which considers project
stability as the foundation (Figure 1.7), Scrum will look more like
Figure 1.8, in which change is considered to be the only constant.

n A project management and development process framework based on
people’s motivation and pride. More than anything else, this may be one
of the most powerful tenets of Agile and Scrum. The new focus is not on
having the manager dictate to team members what they should be doing,
but to let the teams decide for themselves how they would go about
accomplishing their work on their own.

Scrum proposes a new software management framework, which is based on a
project team’s self-organization, motivation, ownership, and pride in their
achievement.

Figure 1.6

Scrum value stream.

Why Are Agile and Scrum Effective in Software Project Management? 13

This introduction to Agile and especially to Scrum, although short, will provide
you with enough understanding to be able to move forward with the rest of this
book.

But before doing this, let’s also say that since our focus is on Scrum, we will,
therefore, refer only to Scrum for the rest of this book.

Figure 1.8

Adaptive project management framework with Scrum.

Figure 1.7

The traditional project management process.

14 Chapter 1 n Setting the Stage: Agile and Scrum

Summary

The Agile was born in 2001 when a group of experts got together in Utah to
draft what is now known as the Agile Manifesto, the focus of which is on the
software development side.

As a complement to the Agile Manifesto, another group of experts came
together in 2005 to draft another document called the PM Declaration of
Interdependence (DOI), the emphasis of which is on the project management
side.

Together, the Agile Manifesto and the DOI form the foundation of the Agile
movement and of all Agile development and project management processes,
including Scrum.

Since Scrum cannot be used in many contexts without some sort of adaptation, a
good knowledge of the foundation of the Agile movement and processes will
enable you to know how to adapt Scrum to your environment.

While you will see all the advantages of Scrum during the course of this book,
four of them are worth pointing out right away: (1) a risk reduction mechanism,
(2) a leaner software process, (3) a more adaptive software project management
process, and (4) a framework based on a team’s self-organization, motivation,
ownership, and pride.

Since the focus of this book is on Scrum, we will refer only to Scrum from now
on throughout this book.

Summary 15

This page intentionally left blank

Finance Speak

Although not often addressed in Scrum literature, an understanding of finance
will enable you and your team to have a more successful dialogue with business
people.

It will not be enough to tell the business and management team to trust that
your project is a good investment and that your software product will be better if
you use Scrum. You need numbers to support your business case.

To avoid spending more time than needed on finances, we have selected a few
key financial concepts and formulas to help you get your project approved; you
can also use the information in this chapter to keep track of your project’s
financial health.

Calculate Project Costs

Even though it is not a value or an artifact, one concept that is essential to Scrum
is team velocity. Team velocity is the number of user stories or product backlog
items, in number of points, that the team can deliver during a Sprint.

We will discuss team velocity in more detail in Chapter 5, “Making the Story
Point Estimate Comparable for Scrum Enterprise-Wide Implementation,” but it
is pertinent here due to the role it plays in the calculation of the human resource
cost of the project.

Chapter 2

17

For illustration purposes, let’s assume that your project team’s velocity is 20
story points per Sprint and a Sprint lasts 4 weeks. So, if your project is estimated
at 160 points, you can guess that it will take your team around 8 Sprints, or 32
weeks, to finish the project.

Assume that your project team costs are $150,000 per year including salary and
benefits. This means that the team cost for this project would be equal to
$92,308 ([$150,000 � 32 weeks]/52 weeks).

Now, if you add the other project costs, such as computer equipment and
telecom, to this human resource cost, you will be able to obtain the overall
project cost.

From this discussion, you can guess that the sooner you know your team
velocity, the better you will be able to estimate your project team cost with
Scrum. Otherwise, you will still need to use the technique or approach that
currently exists in your company.

Select Project Investments

Now that we have seen how to calculate project human resource costs using
team velocity, let’s see how to calculate project returns before a company can
make the decision to invest in a project or not.

There are many ways to calculate project returns, but the most frequently used
are Payback Period, Buy Versus Build, Net Present Value (NPV), and Return on
Investment (ROI).

The Payback Period

To convince business people that your project is worth investing in, you will
need to know the payback period. In simple terms, the payback period is the
length of time it takes a company to recoup the initial investment; this is also
referred to as the break even point.

This technique contrasts the investment cost (equipment and human resource
costs, etc.) with the cash flow or revenue expected over the life of the new
software product, as shown in Figure 2.1.

18 Chapter 2 n Finance Speak

As an illustration, let’s imagine that your project will require an initial invest-
ment cost of $200,000. Per your projections, the cash inflows, or revenue, will be
around $28,572 for every quarter.

Given the calculations, it will take 7 quarters ($200,000/$28,572 ¼ 7), or
21 months, to break even on this project.

Although this technique does not take into account the value of money over
time, it is still used quite often in many companies, especially when it comes to
internal software development.

Buy Versus Build

This technique is relatively simple if we follow the procedure in the right order.

First, we must calculate the difference in fixed price between the fixed price to
build and the fixed price to buy, which is called the price difference.

Next, we have to calculate the difference in monthly fees by subtracting the
monthly buy fee from the monthly build fee as follows.

Figure 2.1

Break even point.

Select Project Investments 19

Finally, we will calculate the number of time periods by dividing the price
difference by the monthly fee difference.

Price difference / Monthly fee difference ¼ Number of months

More specifically, there are three scenarios:

1. The build fixed cost and the build monthly fee are both higher than the
buy fixed cost and the buy monthly fee. In this case, the logical option is
for the company to buy.

2. The buy fixed cost and the buy monthly fee are both higher than the
build fixed cost and the build monthly fee. In this case, the logical option
is for the company to build.

3. The third scenario is more complex and will necessitate some calculation:

a. The build fixed cost is higher than the buy fixed cost and the monthly
buy fee is higher than the monthly build fee. In this case, the com-
pany should buy if it intends to keep the software product less than
the calculated number of months.

b. The buy fixed cost is higher than the build fixed cost and the
monthly build fee is higher than the monthly buy fee. In this case,
the company should build if it intends to keep the software product
for less than the calculated number of months.

For an illustration of the third scenario, let’s assume that we have two projects, A
and B.

For project A, the Build fixed cost is $1,000,000 and the Build monthly fee is
$50,000.

For project B, the Buy fixed cost is $900,000 and the Buy monthly fee is
$100,000.

If we plug these numbers into the formulas previously reviewed, we will get:

Price difference ¼ Build fixed cost � Buy fixed cost ¼ $1,000,000 � $900,000 ¼
$100,000

Monthly Fee difference ¼ Monthly buy fee � Monthly build fee ¼ $10,000 �

$50,000 ¼ $50,000

20 Chapter 2 n Finance Speak

Now, if we divide $100,000 by $50,000, we will get 2 months, which is the point
at which both the build and buy options will have the same cost (fixed cost þ
aggregated monthly fees).

So the conclusion is if we intend to keep the software for less than 2 months,
then we should buy because the total cost of buying ($900,000 þ $100,000 ¼

$1,000,000) will be less than the total cost of building ($1,000,000 þ $50,000 ¼

$1,050,000). But if, on the contrary, we plan on keeping the software for more
than 2 months, then we should build because the total cost of building
($1,000,000 þ $50,000 þ $50,000 þ $50,000 ¼ $1,150,000) will be less than
the total cost of buying ($900,000 þ $100,000 þ $100,000 þ $100,000 ¼

$1,200,000). Normally, companies keep software for longer than two months,
but this is an example for illustration purposes only.

Net Present Value (NPV)

Let’s talk about Present Value before we discuss Net Present Value (NPV) and
Return on Investment (ROI) as a way to select projects to invest in.

Present Value (PV) is a more sophisticated technique than the previous payback
technique because it takes into account the time value of money. This is
important because money received in the future is usually worth less than the
same amount of money received today.

The formula to calculate PV is PV ¼ FV/(1 þ i)n

FV is the Future Value (the value of the sum of money in the future), PV is the
Present Value, i is the interest or inflation rate, and n is the number of time
periods during which the interest is paid.

For illustration purposes, let’s assume that you have $4,000 and wonder what
this will be worth in three years with an interest or inflation rate of 5%.

Using this formula, you will find that FV is equal to $4,630, which is the product
of $4,000 multiplied by (1.05)3 or $4,000 multiplied by (1.157625).

In other words, the PV (Present Value) of $4,630.50 in the future is $4,000 in
today’s dollars.

Select Project Investments 21

So, if you have to choose between two projects with two different values or yields
in the future, what you should do is choose the project that has the higher
Present Value (PV).

To apply this technique to the project selection process, let’s assume that you
must choose between two projects, A and B. Project A has a PV of $70,000 and
project B has a PV of $80,000. By applying the PV rule, based on a purely
financial perspective, you should select project B because it has a higher Present
Value (PV) than that of project A.

In the same way Present Value (PV) gives today’s value of future cash flows or
revenue, Net Present Value (NPV) is the present value of the total revenue
minus the present value of the investment cost over a period of time.

By the end of the calculations, you will have three situations to choose from:

n If the NPV of a project is greater than zero, the project should be
accepted.

n If the NPV is less than zero, the project should be rejected.

n If there are two or more projects to choose from, choose the project with
the highest NPV.

For illustration purposes, let’s suppose that we need to calculate the NPV of a
project with a 10% interest rate over a period of three years. Given the estimated
revenue of $25,000, $100,000, and $200,000, respectively, for the first, second,
and third year and the annual calculated project cost of $100,000 per year for the
next three years, as shown in Figure 2.2, we will have:

Difference NPV ¼ Revenue NPV � Project cost NPV

Difference NPV ¼ $252,046 � $281,654 ¼ �$29,608

Given that the NPV is a negative number, business management should not
invest in this project.

Internal Rate of Return (IRR), or Return
on Investment (ROI)

Calculating the IRR, or ROI, is rather complex and will require a computer or a
sophisticated calculator. However, there is a practical way CEOs often use to
calculate ROI by using only two concepts: velocity and profit margin.

22 Chapter 2 n Finance Speak

The first concept, velocity, is practically the same concept as Scrum velocity. In
business, velocity defines how quickly a company can make enough revenue (or
reduce costs) to pay for the cost of its investment (or asset or inventory), plus the
profit it hopes to realize.

The second concept, profit margin, is the money, or profit, the company makes
after paying all its expenses, costs associated with making and selling its
products or services as well as taxes and loan interest.

To calculate the ROI on your project, you will only need to know the project
velocity and your company’s profit margin. The finance department should have
calculated this for your company and will provide it to you if you ask.

ROI ¼ Velocity � Margin

Let’s assume that your project can bring in $4 million in revenue for a total cost
of investment of $2 million, and if your company’s profit margin is 10 percent,
then, using the above formula, the ROI for this project will be equal to:

ROI ¼ (4,000,000/2,000,000)� 10%

ROI ¼ 20%

Figure 2.2

Net present value (NPV).

Select Project Investments 23

When having to compare between different projects, remember to select the
project which has the highest ROI.

Monitor Project Performance

Earned Value is used to measure the performance of a project team’s work
against what was planned, in order to identify variances, or risks of deviation,
both in schedule and cost.

Earned Value (EV) is the sum of work that has been accomplished up to date
and the authorized budget for that work. So, if a project has a budget of $100,000
and 30% of the work has been completed, its EV is $30,000.

For this book’s practical purposes, we will review the following three formulas
that are of interest to the project team.

1. Formulas for Cost Performance:

Cost Variance (CV) ¼ Earned Value (EV) � Actual Cost (AC)

Cost Performance Index (CPI) ¼ Earned Value (EV)/Actual Cost (AC)

2. Formulas for Schedule Performance:

Schedule Variance (SV) ¼ Earned Value (EV) � Planned Value (PV)

Schedule Performance Index (SPI) ¼ Earned Value (EV)/Planned Value
(PV)

3. Project Budget Forecasting:

Estimate at Completion (EAC) ¼ Budget at Completion (BAC)/Cost
Performance Index (CPI)

Estimate to Complete (ETC) ¼ Estimate at Completion (EAC) � Actual
Cost (AC)

Variance at Completion (VAC) ¼ Budget at Completion (BAC) � Esti-
mate at Completion (EAC)

24 Chapter 2 n Finance Speak

Cost Performance

The goal of cost performance is primarily to calculate the project performance in
terms of cost efficiencies. It can also be used to predict trends in future cost
performance.

Cost Variance (CV)

Cost variance is the difference between the value of work accomplished (EV)
and the actual cost (AC) of the project.

If you wonder what AC is, it is the actual cost, or the actual amount of money
that has been spent on the project so far. For example, if a project has a budget
of $100,000 and $40,000 has been spent on the project so far, then the AC of the
project is $40,000.

Knowing EVC and AC will make it possible to calculate project variances,
schedule, and performance indexes, thus allowing the project manager to
determine any new course of action or whether the project should be continued.

A positive CV implies that the project is under budget, while a negative cost
variance means that the project is over budget.

Cost Variance (CV) ¼ Earned Value (EV) � Actual Cost (AC)

Cost Performance Index (CPI)

While a variance is an actual number, negative or positive, such as �$25,000, an
index, like the Cost Performance Index (CPI), is a ratio that should be between 0
and 2.

The formula to calculate the Cost Performance Index (CPI) is as follows.

Cost Performance Index (CPI) ¼ Earned Value (EV)/Actual Cost (AC)

A CPI greater than 1 indicates that we get more value for work performed than
the cost incurred. A CPI less than 1 implies that the value of the project work
accomplished is less than the cost incurred. In other words, the project team is
burning cash faster than they are creating value, and therefore, will probably be
over budget. The graph in Figure 2.3 shows how the CPI varies with the
changing EV and AC.

So, a CPI equal to 0.90 would mean that the project is over budget.

Monitor Project Performance 25

Schedule Performance

The goal of schedule performance is primarily to calculate the project perform-
ance in terms of schedule efficiencies. It can also be used to predict trends in
schedule performance.

Schedule Variance (SV)

While AC refers to cost, Schedule Variance (SV) gives us an indication as to
whether the project is behind or ahead of schedule.

Schedule Variance (SV) ¼ Earned Value (EV) � Planned Value (PV)

Planned Value (PV) is the work that had been planned given the authorized
budget. For example, if a project has a budget of $500,000, and it had been
planned that 50% of the project would be accomplished by a certain date, then
PV will be equal to $250,000 on that date.

A negative Schedule Variance means that the project is behind schedule, while a
positive Schedule Variance means that the project is ahead of schedule.

Figure 2.3

Cost Performance Index (CPI).

26 Chapter 2 n Finance Speak

To illustrate this, let’s assume that instead of accomplishing 50% as had been
planned, the team only achieved 40% of the work, in which case EV would be
equal to $200,000.

As a result, SV will be equal to �$50,000 ($200,000�$250,000), which means
that the project is behind schedule.

Schedule Performance Index (SPI)

SPI is close to CPI in principle, but unlike the CPI, which tracks the cost
performance, the SPI tracks the project schedule.

The formula to calculate the Schedule Performance Index (SPI) is as follows.

Schedule Performance Index (SPI) ¼ Earned Value (EV)/Planned Value (PV)

As with the CPI, the SPI is a ratio, which should be between 0 and 2 as shown in
Figure 2.4.

An SPI greater than 1 indicates that the team performs better than scheduled,
whereas an SPI less than 1 implies that the project team is behind.

So, an SPI equal to 0.70 means that the project team is way off target.

Project Budget Forecasting

The idea behind project budget forecasting is to use Earned Value (EV) to
forecast what your project will actually cost when it is done.

Figure 2.4

Schedule Performance Index.

Monitor Project Performance 27

For the valuable help they can bring to the project team, we will review three of
these values in the following pages, namely the EAC (Estimate at Completion),
the ETC (Estimate to Complete), and the VAC (Variance at Completion).

Estimate at Completion (EAC)

If you know your cost performance index (CPI), you should be able to forecast
how much your total project cost will be when completed. The formula is

EAC ¼ BAC/CPI (with BAC being the original budget)

So, if BAC ¼ $200,000 and CPI ¼ 0.85, then EAC ¼ $200,000/0.8 ¼ $235,294.

What this means is that originally you had asked for $200,000, but given the
current state of the project, it is likely to cost a total of $235,294, or $35,294
more than originally had been planned.

Estimate to Complete (ETC)

The Estimate to Complete (ETC) is how much money will be needed to
complete the project for the work that remains to be done, the same thing as
indicated by the Scrum Burndown chart. The formula is

ETC ¼ EAC � AC.

Assume that EAC ¼ $500,000, which is the total amount you will have to spend
on this project. Now, if AC, the actual cost of what you have already spent, is
equal to $450,000, then ETC will cost you another $50,000 (ETC¼$500,000�
$450,000) to get the remaining work be done.

Variance at Completion (VAC)

The Variance at Completion (VAC) calculates the difference between what had
been planned, the original budget (as indicated by BAC), and what is estimated
at completion (EAC). The formula is

VAC ¼ BAC � EAC

So, if BAC ¼ $25,000 and EAC ¼ $13,400, then VAC ¼ $11,600 ($25,000�13,400).
This means that someone must come up with $11,600 to pay for the variance.

28 Chapter 2 n Finance Speak

Summary

Unlike many books on Agile or Scrum in which almost no mention is made of
finance, we believe that knowing the basics of finance can only enhance your
chance of a successful dialogue with business management.

Without wanting to turn this book into a treatise on finance, we have chosen to
cover in this chapter only a few useful concepts and formulas relating to project
finance. Some are to justify project investments, some to calculate the project
costs, and some are to be used during project execution to estimate how much
more you will need to spend to get the job done.

As software professionals, most of us will not need to become experts in finance,
but we believe you will, at least, need the basics, which are covered here.
Knowing some of these essential financial concepts and formulas will help you
to better communicate with business management.

A few key things to remember about EV are that:

n When it comes to variance, it is EV subtracted by either AC (cost) or
PV (schedule).

n When it comes to index, it is EV divided by either AC (cost) or PV
(schedule).

n When the variance is negative, it is bad, but if the variance is positive, it
is good.

n When the index is less than 1, it is bad, but when the index is more
than 1, it is good.

Summary 29

This page intentionally left blank

Secure Top Management

Support but Make Sure

to Obtain Middle

Management Buy-In
Unless you are working alone or in a small start-up company, the project
manager will have many people to deal with, within an organization, to move
the project forward (see Figure 3.1).

Even though Scrum does not have a project manager per se, that does not mean
that project management has been abandoned. For those of us who have some
deeper experience with Scrum, we know that project management responsibility
in Scrum is simply transformed and divided among the product owner, the
team, and the ScrumMaster. You can learn more about this in Ken Schwaber’s
seminal book, Agile Project Management with Scrum, p.15.

What Ken says in his book is that rather than having one single project manager
(or ScrumMaster) taking care of all the interaction with the outside actors like in
the old command and control environment, the responsibility of project
management is now shared by the development team, the product owner, and
the ScrumMaster as shown in Figure 3.2.

We will talk about the specifics of the ScrumMaster’s and the product
owner’s responsibility in leading and managing a Scrum project in a later
chapter. This chapter is mainly to raise your awareness about what you should
do when interacting with the rest of the company, especially if your company is
new to Scrum or if it has not chosen to adopt Scrum enterprise-wide on a large-
scale.

Chapter 3

31

As we discussed in Chapter 2, you will need to speak to top business or IT
management in terms they can understand (the language of finance), because
they will have to give the green light before you can do anything else.

Working with Top Business Management

When interacting with top business management, such as your CEO, President,
CFO, or Senior Vice President of a Business Unit, we recommend that you avoid
talking about how much Scrum will help you to build better software faster.

Figure 3.1

The traditional role of project manager within a company.

32 Chapter 3 n Secure Top Management Support

As business executives, they will be polite, but they will ultimately reject you
while wondering why someone has ever hired you into the company—who
wastes their time talking in general terms, rather than presenting the ideas to
them in financial terms that they can more easily understand.

Although building better software or improving programmer productivity is
important to executives, they are more interested in the company’s overall
market share, large scale savings, or overall profit margin.

So, despite your excitement for Scrum, do not let yourself get carried away
talking with top business management about how wonderful your software will

Figure 3.2

The changing role of project management with Scrum.

Working with Top Business Management 33

be or how fast you will be able to build it if they will only allow you to use
Scrum.

Instead, always relate your technical prowess and passion to an executive’s financial
concerns in terms of numbers or at least to their overall business strategy.

Whenever you are talking to anyone in the organization, you must consider the
point of view of the listener and speak to those concerns.

To help you better interact with top business executives, we have reproduced an
example of the balance scorecard (Figure 3.3) for a fictional company, quite
similar to one you may encounter in real life situations. The balance scorecard is
a well-known concept among business executives.

Figure 3.3

Top business management balance scorecard.

34 Chapter 3 n Secure Top Management Support

The balanced scorecard for this fictional company shows what top business
management considers to be their main business goals and strategy.

In this example, their goals are to:

1. Grow revenue

2. Lower expenses

3. Drive growth through acquisitions

4. Generate cash flows

What follows is their strategy in terms of customer value and what they think
the company should do in terms of business processes, IT projects, and human
resources.

Knowing how IT projects will fit into your business executives’ overall vision
and strategy will help you communicate more effectively to them how your project
will contribute to the overall strategy of the firm. Always remember that it is
important to relate your project’s contribution to the company in terms of finance,
which is the language of business. Your executives will thank you for that.

Working with Top IT Management

In some companies, the program management office (PMO) is not considered
part of top IT management. We have listed it here because it is the Chief
Information Officer (CIO)’s main representative in the IT department’s effort to
align IT on business strategies and to continuously improve and track IT
performance.

Program Management Office

As the group responsible for IT performance and alignment with a company’s
business needs and strategy, the program management office, or PMO, is the
first group that you should try to meet and work with.

If you understand the PMO’s concerns, you should not have any difficulty
turning the PMO into an ally, since its mission is to ensure that IT projects bring
the most value to the business. This is, after all, what we all have learned the
product owner’s mission should be on a Scrum project, right?

Working with Top IT Management 35

Figure 3.4 shows one of the many matrices maintained by the PMO. The upper
left quadrant is the most desirable because it has high business value and low
cost. Use this matrix to quantify your project in order to gain a realistic view of
the true business value and cost associated with your project. If it falls into the
upper left quadrant for high business value and lower cost, your project has a
good chance of being approved.

The PMO’s other responsibility is IT project governance. Figure 3.5 should give
you an idea of the overall process that goes from the time a project is approved
until the post-implementation meeting where the project is reconciled with the
original targets to ensure the project’s goals were met. So, verify your product
owner has solid criteria and goals for you to work with to ensure that you can
meet their expectations.

Working with IT Middle Management

Before we get too deep into the discussion about the functions of middle level or
operational management, we should make it clear that these are the people
whose job will be most impacted by your project(s) in terms of daily

Figure 3.4

IT business prioritization matrix.

36 Chapter 3 n Secure Top Management Support

responsibility. It is, therefore, necessary that you obtain their buy-in to success-
fully get the project to the finish line.

Remember that middle management’s role is not to rock the boat, but to keep it
going.

Their concern is to keep issues to a minimum, look like a winning team, and do
things at the right time.

Change is always difficult and needs to be properly managed. You, as the person
who brings change along with your project, should know the process of how
people normally experience change (Figure 3.6). You must know how to
communicate with middle management and give them enough reasons to
think that these changes will result in something good for them.

Figure 3.5

PMO IT project governance.

Working with IT Middle Management 37

When people hear that change is coming, the best you can expect is that they
will try to understand the consequences those changes will bring with them.
Hopefully, their response will not be outright fear and resistance.

Next, depending on the quality and quantity of communication and information
they receive, they will either resist, directly or indirectly, or they will embrace
change if they think it will be good for their work or career. So, when
communicating, keep the interests of the other party in mind to ensure that
your communication produces the result you hope for and provides you the
support you need from these people.

You should plan to contact, stay in touch with, and communicate with the
people who will be affected by the change your project will bring, and you
should communicate in such a way that they can clearly see that this is good for
them.

Quality Assurance

Given the importance and changing nature of testing with Scrum, you will want
to build a good relationship with the Quality Assurance team.

Figure 3.6

Stages of the change process.

38 Chapter 3 n Secure Top Management Support

Depending on whether your company is already set up for common Scrum
practice, mainly in terms of testing infrastructure, you may need to do more or
less here. If Scrum is part of the culture, then you may only need to know the
procedures and learn to follow and leverage them.

If Scrum isn’t already part of the company’s culture, you might need to explain
Scrum to Quality Assurance management, especially to those who are in charge
of testing, and ask for their support. You might request that they make someone
available from their team to work on your project throughout the life cycle, and/
or help set up the appropriate testing environment for your project, which you
will learn more about in Chapter 9, “The Importance of Automated, Regression,
and Integration Tests.” This way you can be ready quickly with automated,
regression, and continuous integration testing.

Operations Management

Like it or not, you cannot avoid Operations management. They are the people
who are in control of all the pre-production and/or production activities. Make
sure to pay them a visit to explain to them what you need, so that the code you
deliver at the end of every single Sprint will be to the level they expect. First and
foremost, remember that the development and operations departments have
different, and sometimes opposite, objectives.

The objective for you, as part of the development organization, is to produce a
continuous stream of well-perceived value to the business. But in so doing, you
bring about change; whereas the objective of operations is to produce a
continuous stream of value while making sure that everything stays stable.

By the very nature of Scrum development, there will be more software releases,
often in many smaller updates, as opposed to a few larger ones, which the
operations team will need to handle.

Operations will not and cannot drop their control procedures for you just
because your updates are small. To do so would lead to an increase in interruptions
in running business systems. The operations team simply has to remain as strict as
ever before applying their pre-production verification tests. The entire change
process has to remain intact, even for smaller updates.

Working with IT Middle Management 39

So, unless your company is ready for some sort of self-service deployment or
more precisely the automation of the self-service deployment process, try to
work out some sort of schedule arrangement with operations since that will help
them deal with frequent updates. In return, they will help as well as thank you
for it.

In time, operations will find that it has more time to complete its other work and
will be glad to support change for the development department while, at the
same time, retaining all the control over their production environment.

Enterprise Architecture (EA)

If your company has a group called enterprise architecture, try to find out where
they fit in or how much clout they have in the IT organization.

Take the time to understand the concerns of this group and work with them to
show how your application will fit into their enterprise architecture.

Find out what they need from you but avoid being dragged to many meetings
without any tangible results to show.

If the enterprise architecture team is seriously in the process of moving towards
a Service-Oriented Architecture (SOA), your company’s EA overall diagram
may look like that shown Figure 3.7.

In this case, make sure to explain your needs to the enterprise architecture team
in a timely manner and request that they deliver or help deliver the other
services, so that you can get all the pieces connected before the end of the
iteration or deadline.

If, however, your company is still leveraging a more traditional architectural
style, then the EA framework might look like that shown in Figure 3.8.

Every layer of the enterprise architecture framework shown in Figure 3.8 can fill
a whole book by itself, but for the purpose of this book, let’s focus only on the
last layer, the data architecture layer.

Whether your background is in data architecture or application architecture,
there should be no doubt in your mind that data architecture is an important
topic within a company. Data architecture is also an often quite messy issue that
leads the enterprise data warehouse team to produce reports that cannot be

40 Chapter 3 n Secure Top Management Support

counted on. There are many examples of this, but the most commonly cited one
is that the values of the reports often vary from one department to another, even
when it comes to the same so-called sales figures.

Based on the illustration in Figure 3.9, there should be no surprise that the
reports are often conflicting and the data unreliable.

This situation often frustrates business executives, especially the CFO. As a
result, IT usually tries to turn it into something more organized like the diagram
in Figure 3.10, by creating a new Master Data Management layer, or MDM for
short.

Figure 3.7

Your project and the SOA enterprise architecture.

Working with IT Middle Management 41

You need to know what your company’s enterprise data architecture currently
looks like and what the future enterprise data architecture plan is.

Knowing this will help you make sure that your new application’s data
architecture will be designed in such a way that it fits into or contributes to
the creation of the future enterprise data architecture.

As you will see in Chapter 6, “The Influence of Architecture Vision on Team
Velocity and Software Quality,” and Chapter 7, “From Architecture Vision to
Release and Sprints Planning to Parallel Software Development,” the architec-
tural approach we recommend is very much based on core business data
elements, and is therefore stable. This is why it can very much help contribute

Figure 3.8

Your project and the traditional enterprise architecture.

42 Chapter 3 n Secure Top Management Support

to the creation of the Master Data Management (MDM) layer (Figure 3.11), a
key ingredient to better enterprise data or information management.

Turning Your Direct Management into an Ally

As known in the industry, the goal of middle management is to keep going and
to avoid rocking the boat, so unless you report to the CIO or CEO, make sure
that you spend time with your middle manager to ensure that she fully
understands Scrum and what it entails.

If your manager doesn’t understand how Scrum works and your project doesn’t
go well or lags behind schedule, there is a risk that your direct management will
want to revert to the old command and control style very quickly.

Figure 3.9

Current enterprise data chaos.

Turning Your Direct Management into an Ally 43

You must do what you can to educate your management before you start: about
what Scrum is, how Scrum works during the daily execution of the project, and
how it works when things go well and how it works when things do not go well.

Summary

Besides the obvious need for you to secure agreement from top business
management for your project funding, it will be critical for you to gain middle
management buy-in, as it is with these same people that you, as part of the
Scrum team, interact with most on a day-to-day basis. It is, as the popular saying
goes, where the rubber meets the road. These people will either make or break
your project.

Unlike the dialogue with business management, which is based mainly on
financial numbers, the relationship with middle management requires more

Figure 3.10

Re-architecting the enterprise data architecture.

44 Chapter 3 n Secure Top Management Support

finesse. Finances are the concern of executives in your company. Middle
managers are more concerned with workload, recognition, and job safety, to
name a few.

Before you start your project, and while working on your project, do not just
inform middle management of the changes that will take place as you implement
Scrum; try also to help them with the new workload or the new changes. This,
along with an effective communication strategy, will help you obtain their
support, a necessary condition for your project’s success.

For this same reason, remember to work closely with the enterprise architecture
group to ensure that your new application architecture fits into the enterprise
architecture group’s plan and vision, especially with regard to the data
architecture, which is often in a chaotic situation in many companies and a
headache for the CFO.

Figure 3.11

Fitting into the new enterprise data architecture.

Summary 45

This page intentionally left blank

A Visual Requirements

Gathering for the

Product Backlog

Assume now that you have been so effective in presenting your project to top
business management that they have given your project their full support, and
you are eager to move forward. What else do you think you still need to have for
your project?

The answer is a good product backlog and, to create this backlog, a good way to
capture requirements in the form of user stories, which are called in this case
Product Backlog Items (PBI).

Below is an approach we have used to help many teams capture user stories for
their product backlog. Given the complexity of some other techniques, it is a
small contribution we are making to the Agile community, hoping that you will
find it useful, as many people do.

A New Visual Requirements Gathering

Process for Agile and Scrum

This two-step process first helps identify the stakeholders and their goals. Then,
using a “forest and tree” analogy, it helps gather requirements for users who
represent the stakeholders and links those requirements back to the stake-
holders’ goals for prioritization.

First Step: Identify the Stakeholders and Their Goals

Identify the different categories of stakeholders of the new software product.

Chapter 4

47

When you first start your project, make an effort to identify all parties who have
an interest or stake in, or need for, your software product (see Figure 4.1).

Next, inventory stakeholders and their goals. Identify their goals by asking questions
such as “What are your business objectives or goals?” “Why would you need the
new software product?” and “How do you measure your goals accomplishment?”

The SMART Rules

There are many ways to help identify goals, but one of them is known as the
SMART rules, which we used extensively to help set goals for many teams:

n Specific: Everyone will have the same understanding as to what the goals
are.

n Measurable: We can objectively determine if the goals have been
reached.

Figure 4.1

Product boundary and its stakeholders.

48 Chapter 4 n A Visual Requirements Gathering for the Product Backlog

n Achievable: The stakeholders agree as to what the goals are.

n Realistic: We shall be able to achieve the goals for the project with the
resources we have.

n Time-Based: We will be given enough time to achieve the goals.

An example of the stakeholders’ goals and measurements is presented in
Figure 4.2.

Second Step: Gather Requirements for the
Product Backlog

During this step, you will meet with the stakeholders’ representative users, each
in her individual role, to try to understand the needs of some of the users and
turn those needs into requirements for the new software product.

Our technique, called “the trees and the forest” and illustrated in Figure 4.3, is
visual and easy to use.

Figure 4.2

Stakeholders’ goals and measurements. Measures can be criteria such as cost savings (30%), number of
service calls (35%), or the number of registered users (35%).

A New Visual Requirements Gathering Process for Agile and Scrum 49

Start at the forest, or overall product, level. Ask yourself what your new product
should be composed of. In other words, how many “trees” should be in your
“forest”?

Next, further divide a tree into its branches (Figure 4.5).

Then, divide the branch into leaves as shown in Figure 4.6.

In addition to going top down like this, you may also ask the users to list all the
stories, or leaves, they can think of first, then try to group them together, using
this tree and forest analogy to get from the leaves to the branches, then from the
branches to the trees, and then from the trees to the forest.

In the same way that the product owner can use the SMART rules to verify the
stakeholders’ goals, he and the team can use the CUTFIT rules listed in the next
section to verify that their stories, or PBIs, are properly written, ready for the
development team to estimate and develop.

Figure 4.3

The trees and the forest analogy.

50 Chapter 4 n A Visual Requirements Gathering for the Product Backlog

The CUTFIT Rules

There are many ways to help verify that the requirements are well written, but
one of them is known as the CUTFIT rules, which we used extensively to help
validate the user stories.

n Consistent: A consistent requirement does not conflict with another
requirement.

Figure 4.4

A view of the forest.

A New Visual Requirements Gathering Process for Agile and Scrum 51

n Unambiguous: The reviewers of a requirement statement should be able
to draw only one interpretation of it, regardless of their role.

n Testable: We should be able to create test cases for a requirement. If a
requirement is not testable, trying to determine whether it is correctly
implemented is a matter of opinion.

n Feasible: It must be possible to implement each requirement within the
known capabilities and limitations of the system environment.

n Independent: No user story (PBI) should be dependent on another user
story (PBI).

n Traceable: You should be able to link each requirement to a user and to
his goals.

Figure 4.5

Tree branches.

52 Chapter 4 n A Visual Requirements Gathering for the Product Backlog

A question often asked of us is how someone knows whether she is done with
writing a user story, without having to flesh out all the details, as we had
traditionally done within the waterfall environment. The answer we usually give
is that one can stop writing the story when:

1. The user cannot decompose that story into more end-to-end stories,
meaning stories that touch all the layers of the application.

2. The team can derive tasks, ranging from 4 to 8 hours, from those stories
to start their development work.

Figure 4.6

A branch with its leaves.

A New Visual Requirements Gathering Process for Agile and Scrum 53

3. When the team can start estimating the point of that story using the cri-
teria-based technique we will be presenting in Chapter 5 to estimate the
number of points of the story.

An Example

Following is a simple example that illustrates our visual requirements gathering
(or elicitation) process, not to show all of its strengths (especially in helping
correct errors made with other requirements gathering techniques), but only to
show how it is easy to use.

Let’s start with Figure 4.7, which shows the product boundary and its stake-
holders.

Next, by talking with the stakeholders, we can identify some of the key goals, as
listed in Figure 4.8, which also shows how they can be measured.

By following the technique as laid down in the previous section, we can identify
three trees (or areas of interest) for this new software product, as demonstrated
in Figure 4.9.

Figure 4.7

Product boundary and its stakeholders.

54 Chapter 4 n A Visual Requirements Gathering for the Product Backlog

Figure 4.8

User’s goals and their measurements.

Figure 4.9

Private Room Reservation software product and its trees.

An Example 55

More specifically, the trees in this software product are called user management,
room management, and reservation management.

By looking at the “User Management Tree,” we can see that it has two branches,
the “New User Management Branch” and the “Current User Management
Branch,” as can be seen in Figure 4.10.

Finally, by looking at all the leaves on all the branches, we should be able to list
them all as shown in Figure 4.11.

As to Figure 4.12, it is how the software product will look like with all the leaves,
all the branches, and all the trees within the forest.

Figure 4.10

User Management tree and its branches.

56 Chapter 4 n A Visual Requirements Gathering for the Product Backlog

As a result of their prioritization, we can assume that the stakeholders will first
want to focus on the user stories that bring in the most value to their company
or business unit.

After this decision is made, a story card, as shown in Figure 4.13, can be used
to describe some high level tasks that the users would want to perform
along with all the test cases (“verify that”) that should be performed for
that user story.

Figure 4.11

The Private Room Reservation software product and its leaves.

An Example 57

Figure 4.12

The trees and forest approach applied to software product development.

Figure 4.13

An original story card.

58 Chapter 4 n A Visual Requirements Gathering for the Product Backlog

Summary

One of the Scrum project team's most critical tasks is to identify the stakeholders
and their goals in order to capture requirements for these stakeholders’
representative users, each in their specific role.

While different approaches exist, we offered here a simple and visual two-step
process which all of us can use. The first step is to identify the stakeholders and
their goals. The second step is to identify the users who will represent these
stakeholders, along with their requirements. We did all of this using a visual
technique called the Forest and the Tree approach.

To verify that the stakeholders’ goals are well written, they can use a series of
rules called the SMART rules. These rules require that the goal be specific,
measurable, achievable, realistic, and time-based, meaning achievable within a
given timeframe.

To verify that the requirements (user stories or PBIs) are properly written and
ready for development, the product owner and the team can use the CUTFIT
rules. These rules require that the story point be consistent, unambiguous,
testable, feasible, independent, and traceable.

When asked how someone knows if she is done with writing user stories for
release and sprints planning, meaning without having to flesh out all the details,
a three-point test was given in this chapter to help make that determination.

Summary 59

This page intentionally left blank

Making the Story Point

Estimate Comparable for

Scrum Enterprise-Wide

Implementation

If you have ever had any experience with Agile or Scrum estimation and
planning, you should have surely heard or read about planning poker. In a
nutshell, planning poker is an estimation technique used by agile project teams
to collectively estimate the relative size of their stories using a measurement
called story point.

To be effective with planning poker, the project team is supposed to be
composed of generalists who have experience with the different software
development tasks such as requirements, analysis, design, coding, and testing.

Problems with a Non-Comparable Story Point

As long as Agile or Scrum was implemented on some isolated project and there
was no need for an enterprise-wide implementation of Agile or Scrum across
many teams, everything was acceptable. But now that the subject of enterprise-
wide implementation of Agile or Scrum has become of interest, it is clear that
the fact that the story point is not comparable between the different teams risks
having a negative impact on a successful enterprise-wide implementation of
Agile or Scrum.

To be clear, what we are referring to here is not some unhealthy or unnecessary
comparison or competition among teams. What we’re simply saying is that
when Scrum is deployed across different teams, the least we should expect is to
be able to update management when there is a change in a project team

Chapter 5

61

composition, as a result of some transfer of personnel, and whether that change
will affect the project deadline or not.

Unless you work in a company where you are the only member of the staff, how
can you give an estimate to complete (ETC) to business or IT management when
members resign from the company or transfer out of a project, if nothing is
comparable between different teams?

As a consequence, you can see why it has become a problem for some PMO to
plan on an enterprise-wide deployment of Scrum or Agile when the story point,
and, therefore, the team velocity as it is based on story point, are not comparable
between teams.

Cultural Problems with Planning Poker

In addition to the above, as Agile and Scrum spread beyond the border of the
United States into other countries, we have observed that planning poker does
not always work well in non-Western cultures, especially Asian, where we come
from. The reason is in many non-Western cultures, the respect for older people
and for people in leadership roles often inhibits team members from coming up
with an estimate that is different from that of their older or higher ranking team
member.

Despite these above shortcomings, we have to say that planning poker has had a
very good impact on our community as a whole, especially at the early stage of
Scrum or of the Agile movement. This being said, the time seems to have come
for us to find another, more objective approach, especially with the need we have
for Agile or Scrum enterprise-wide deployment and resource allocation.

An Objective Criteria-Based Estimating

Process

It would not be truthful if we said that we invented the estimating approach that
follows after many years in a prestigious research lab to impress you. Instead, we
will simply say that the approach we present here is a combination of ideas that
originated with remarkable professionals we learned from after many years of
managing and performing estimation for numerous projects of all kinds. The

62 Chapter 5 n Making the Story Point Estimate

other thing we will say is that this method has worked on real projects that have
been actually deployed.

In Figure 5.1, you will see that an application is nothing more than (1) some
business users trying to interact with some working code that implements
(2) some business rules running against (3) a model containing some business
entities, whose values are stored in the physical database (4) which it is to create,
read, update, or delete.

So, if we all agree, this is how we are going to estimate the user story or Product
Backlog Item, one type at a time (Figure 5.2).

1. Interaction type

2. Business rules

Figure 5.1

Different aspects of an application.

An Objective Criteria-Based Estimating Process 63

3. Number of entities manipulated

4. Data to be created, read, updated, and deleted (CRUD)

The table in Figure 5.2 means that if the story you are looking at requires a
human interaction, you should give it a value of 3. If it requires, however, only
an interaction with another application, according to a well defined protocol,
then that user story should get a value of 1 for the interaction.

Next, let’s calculate the complexity based on the number of business rules to be
applied (Figure 5.3).

Figure 5.2

Interaction type.

Figure 5.3

Business rules complexity.

64 Chapter 5 n Making the Story Point Estimate

If there is only one business rule, then you should give the story a value of 1. If
there is more than one rule but less than three, then that story should get a value
of 2. If there are more than three rules, give the story a value of 3.

Although the table in Figure 5.3 on the interaction type is rather obvious, we can
already hear your question about what is a business rule. A business rule is a
statement that tells you when you may or may not do something.

What then is the difference between a business rule and a business requirement?
To simplify, a business requirement is what you need to do to enable the
implementation of and compliance with a business rule as dictated by the law or
by a company’s policy.

Example of a business rule:

A patron should be 18 years or older.

A possible business requirement to enforce this rule:

The patron must be in possession of a valid driver’s license or a valid US
passport with photo to verify that he is at least 18 years old.

Next, we need to determine the number of data entities needed to execute this
user story (Figure 5.4).

The number of entities manipulated means that if the number of data entities is
only one, then you should give that story a value of 1, but if it is between two and
three, then that story should get a value of 2, and so on.

Figure 5.4

Number of business entities manipulated.

An Objective Criteria-Based Estimating Process 65

Following is an example of what we mean by business entities. In this small data
model (see Figure 5.5), we can see that there are three data entities total, which
are 1) the customer, 2) the loan, and 3) the customer representative serving that
customer.

Finally, we need to determine the data manipulation (CRUD) factor.

Create, Read, Update, Delete (CRUD), is illustrated in Figure 5.6:

Figure 5.5

A simple data structure with three business entities.

Figure 5.6

CRUD.

66 Chapter 5 n Making the Story Point Estimate

Let’s now imagine that one of the user stories is called “add a (conference)
room.” Let’s try together to calculate its Unadjusted Points (UP) before we take
into account the project’s environment dimensions (ED):

A. Interaction Type = 3 points

B. Business rules = 1 point

C. Number of entities manipulated = 1 point

D. Create, Read, Update, Delete (CRUD) = 2 points

UP = 7 points (for the Unadjusted Points for the “add a room” story or PBI).

Next, let’s take into account the Environment Dimensions (ED), which can have
either a negative or positive impact on the team in its effort to deliver the “add a
room” story:

1. Organization Dimension

2. Development Infrastructure Dimension

3. Team Dimension

4. Technology Dimension

5. Process Dimension

6. Business Dimension

For each of these dimensions, a higher value indicates higher team ability
or capability, whereas a lower or minus value indicates a lower team ability or
capability. A zero will mean the lowest score, while a positive value indicates a
high level of ability or capability with 2 being the maximum. As you did with the
previous tables, you should go through these dimensions, one by one, and see
what value you should give to a question.

Toward the end of these tables (Figures 5.7–5.12), you will total the estimate in
points for the story for all the environment dimensions (ED). It will vary
between 0 for the minimum and 36 for the maximum.

An Objective Criteria-Based Estimating Process 67

Depending on this total value, three scenarios will be possible:

1. If the ED value is between 0 and 11, then the multiplication coeffi-

cient C will be 2. This implies that the environment dimensions are
such that the team will not be able deliver as many stories during the
Sprint than if the ED score had been higher.

Figure 5.8

Development infrastructure dimension.

Figure 5.7

Organization dimension.

68 Chapter 5 n Making the Story Point Estimate

2. If the ED value is between 12 and 23, then the multiplication coeffi-

cient C will be 1. This implies that the environment makes the team job
neither difficult nor easy.

3. If the ED value is between 24 and 36, then the multiplication coefficient

C will be ½. This implies that the environment dimensions are such that
the team should be able to deliver more stories during the Sprint.

Figure 5.9

Team dimension.

Figure 5.10

Technology dimension.

An Objective Criteria-Based Estimating Process 69

So, to calculate the total value in points for a single story, simply use the
following formula:

AP (Adjusted Points) = UP (Unadjusted Points) � C (Coefficient)

PPS (Points per Story) = (AP � ED)/36

Figure 5.11

Process dimension.

Figure 5.12

Business dimension.

70 Chapter 5 n Making the Story Point Estimate

Example

Let’s take the “add a room” feature again and assume that the values of its
environment dimensions (ED) are equal to the following coefficient for every
dimension listed below:

1. Organization = 3
2. Infrastructure = 2
3. Team = 4
4. Technology = 3
5. Process = 2
6. Business = 4

Adding up all of these values gives us an ED that is equal to 18. Since ED is equal
to 18, this would mean, as previously mentioned, that the coefficient of
multiplication to be used will be equal to 1.

In other words, the calculation for the story “add a room” will be equal to:

AP ¼ UP� C

AP ¼ 7� 1 ¼ 7

(with UP equal to 7 points, as was calculated previously).

Then,

PPS ¼ ðAP� EDÞ=36

PPS ¼ ð7� 18Þ=36 ¼ 126=36 ¼ 3:5 points:

Using the same formula for every other story or PBI, the table in Figure 5.13
provides the overall estimate for the entire product to be built.

By now, it should be obvious that the advantage of this type of calculation is that
it is based on objective criteria; therefore, it is more appropriate for comparison
between different teams and even between different members of the same
project team.

For what we have just gone through, it looks like we will be able to improve the
common story card examples to make them look like that shown in Figure 5.14,

An Objective Criteria-Based Estimating Process 71

Figure 5.13

Overall estimation matrix.

7
2

C
h
a
p
te
r
5

n
M
a
k
in
g
th
e
S
to
ry

P
o
in
t
E
stim

a
te

and this, in order to fully take advantage of the estimation process just
presented.

Summary

As a consequence of Scrum success, more and more companies are contemplat-
ing rolling out Scrum to their entire IT department.

One of the impediments to this is the fact that the story point value is
unfortunately not comparable between teams. With the weight of the velocity
so different from one team to another, you can see why it has become a problem
for many Agile PMOs to plan an enterprise-wide deployment of Scrum.

In this chapter, we offered a new technique based on an objective criteria-based
estimating process in the form of a series of relatively straightforward tables to
guide the team in their effort to estimate the different stories or PBIs. As simple
as it is, this method allows us to make objective comparisons among teams as
well as among different members of the same Scrum team.

Figure 5.14

Improved story card.

Summary 73

This page intentionally left blank

The Influence of

Architecture Vision on

Team Velocity and

Software Quality (*)

The title of this chapter may sound technical, but we hope we have presented the
information in such a way that even the nontechnical person can understand the
concepts covered in this chapter.

Because it is very important for everyone on the Scrum team to understand what
is meant by architecture and architecture vision, let’s take a few minutes to
define what we mean by these two terms before we move forward.

Imagine for a moment that you are trying to pay for the construction of your
dream house (your new software product). Of course, you would not want the
construction crew to just show up one day in front of your empty lot and start
their building work (coding).

You would first want to meet with the builder team members to tell them what
your vision and needs are for the house (the software product). You would tell
them, for instance, that your vision is to have a two-story house with as many
glass windows as possible (user stories or requirements).

You might also tell them that you plan on having one more child in addition to
the two children you already have (another requirement). As for your other
requirements (software product requirements), you might also say that you want
the children to live downstairs (a constraint) because you cannot bear the noise
made by children running and jumping around over your head.

Chapter 6

75

What the builder team will do upon hearing these expressions of your needs or
requirements is to create some kind of drawing (architecture vision), at a high
level, of how the house should look and how the main elements will be arranged.

This is how the builder (software developer) is going to get some idea of what
they should do and where they should do it (architecture built over time).

The high level drawing resulting from this vision of needs is what we call an
architecture vision, or high level architecture blueprint, while the end result of
the team’s construction work will be the house architecture (software architec-
ture), some sort of main frame supporting the house as a whole.

Now, going back to what we were discussing at the beginning of this chapter,
one of the most interesting things we have observed on different Scrum projects
is that team velocity (the number of user stories the project team can deliver per
sprint) often fluctuates for quite a while. And the more complex the project, the
more team velocity is going to fluctuate, resulting very often in the reduction of
the team velocity and, therefore, their ability to deliver.

There may be many reasons for this but one of the main causes, from an
architecture perspective, is that teams are often busy trying to figure out or fix
their software architecture on the go. Because of this, their velocity often
fluctuates as seen in Figure 6.1.

If you were to build a small website or trivial application (a dog house to
continue with the construction metaphor), this fixing may not be too time
consuming, but if you are building a large application, these fixes on the go can
take a lot of effort and time. They might also cause some of the functionalities
previously delivered to need to be redesigned and all the tests to be rerun. The
tests themselves might also need to be modified prior to being run again.

Just a few years ago many software teams were excited about drawing architecture
and design diagrams using all state-of-the-art tools and UML for Object-Oriented
Analysis and Design (OOAD). UML for OOAD is a good technique, but
sometimes, too much is too much, especially when all of that hard work only
results in beautiful paper documentation and not enough working software.

But having no design at all, even in intent, will be just as harmful to the team
productivity and effectiveness, possibly more so.

76 Chapter 6 n The Influence of Architecture Vision

The Importance of Architecture Vision

Scrum or not, you should have guessed by now that a good architecture vision is
a key element in software development, even if you have to build it as you go.

With a clear architecture vision, something similar to what others call archi-
tecture intent, what happens is that the team may be somewhat slow at the start
of the release or sprint. However, their velocity usually goes back up quite
quickly and stays at a pretty good level as seen in Figure 6.2. This increases the
team confidence and ability to perform over the long run.

From a technical perspective, where there is no architectural vision, what the
developers normally get from the Product Owner is a big chunk of user stories
(Figure 6.3) to work with without any idea of what the final product will look
like or even how the different components will fit together.

From there, the reason team velocity fluctuates so much is because the team will be
tempted to try to move all the small rectangles (representing the user stories), very
often one by one, into their proper locations. Figures 6.4, 6.5, 6.6, and 6.7 illustrate
the time and effort it will take the team to work without architecture vision.

Figure 6.1

Velocity fluctuations due to lack of an architecture intent.

The Importance of Architecture Vision 77

What is interesting to observe is that their effort will ultimately lead them to an
architecture (Figure 6.7) that is the same as the architecture which the team
could have laid down had they decided to spend a little time at the beginning,
figuring out the architecture vision first and not hurrying to get into the sprints
with all their detailed stories.

How to Identify Architecture Vision

In order to arrive at this architecture vision, there are two things the team can
do. One is to look at the product vision and goal to identify the main business
data that would support that product vision, or pertain to that business domain,
as some experts put it.

An alternative would be to use the visual high-level requirements gathering
technique presented in Chapter 4, “A Visual Requirements Gathering for the
Product Backlog,” to see which core user-visible stories share the same common
business data grouping. For example, all book reservation stories should have
some common data related to the book and its characteristics.

Figure 6.2

A more consistent and increasing velocity with the existence of an architecture intent.

78 Chapter 6 n The Influence of Architecture Vision

This does not mean that all the user stories with the same data should not
necessarily be built together, but they should at least be candidates for being
built together.

Following this strategy, the team should be able to identify user stories that can
be clustered based on common business, therefore stable, data elements as
shown in Figure 6.8, with the core elements being in the middle ring.

After this first grouping, the team will want to split up the stories even more, to
separate the ones that are to be created from the ones that are to be updated,
read, or deleted. This is illustrated in Figure 6.9.

Figure 6.3

Coding application without an architecture plan or intent.

How to Identify Architecture Vision 79

If they wanted to, the team could next split up the user stories one step further,
as shown in Figure 6.10.

The advantage of all of this additional effort is that the team can eventually
organize the development in parallel or concurrently, as shown in Figure 6.11.
This is similar to the way teams organize their work in kanban, a lean technique,
famous for its contribution to Toyota Production System (TPS), and which has
attracted quite a bit of interest in software development, especially in software
maintenance and support.

Figure 6.4

Figuring out the architecture during sprint #2.

80 Chapter 6 n The Influence of Architecture Vision

In addition to this benefit, another advantage of organizing the work by
common data elements is that as long as the core data elements are identified
and worked on first, the product owner can re-prioritize, switching between
detailed user stories as shown in Figures 6.12 and 6.13, without this re-
prioritization having an impact on the team velocity. This is true as long as the
team had laid down the data foundation by doing all the creations for all the
base data entities first.

Figure 6.5

Figuring out the architecture during sprint #3.

How to Identify Architecture Vision 81

Another Benefit of Having an Architecture

Vision

In addition to the previous benefits, identifying common business data early on
can also bring in an additional benefit to the team in that it will likely help the
team lay down some kind of good and stable data architecture. This is essential
for good data warehouse reporting. Unless your application is the only one that
your company has, this will help your application easily fit into the enterprise
data architecture along with the rest of the company’s applications.

Figure 6.6

Figuring out the architecture during sprint #4.

82 Chapter 6 n The Influence of Architecture Vision

As before, you have here two possible ways to create the data architecture
for your library application. The first is to do it horizontally as shown in
Figures 6.14 and especially 6.15. In Figure 6.15, an extension has been made to
the first data architecture layer by adding “Teen Book” and “Toddler Book”
sub-types to the Book type and by adding the “Woman” and “Girl” sub-types
to the Patron type, which already exists in the current data model.

Another way is to work vertically, as shown in Figures 6.16 and 6.17, by working
on a new data entity type at every sprint. You would first add the Book concept

Figure 6.7

Figuring out the architecture during sprint #5.

Another Benefit of Having an Architecture Vision 83

Figure 6.8

Identify common data-based user stories/PBIs clustering.

Figure 6.9

Split common business data-based user stories into smaller features clusters.

84 Chapter 6 n The Influence of Architecture Vision

Figure 6.10

Split common business data-based user stories into even smaller features clusters.

Figure 6.11

Building user stories/PBIs in concurrence.

Another Benefit of Having an Architecture Vision 85

Figure 6.12

Changing product prioritization.

Figure 6.13

Changing product prioritization without impacting teamwork.

86 Chapter 6 n The Influence of Architecture Vision

Figure 6.14

A beginning data architecture in progress.

Figure 6.15

A horizontal data architecture in progress.

Another Benefit of Having an Architecture Vision 87

Figure 6.16

A vertical data architecture in progress.

Figure 6.17

A data architecture in progress.

88 Chapter 6 n The Influence of Architecture Vision

during the first sprint, then add the Patron concept during the second sprint, and
then add the Day (Calendar) concept during the third sprint, and so on.

Both strategies will evolve into the final data model shown in Figure 6.18.

When closely examined, we can assume that the data model in Figure 6.18 will
have all the relationships and cardinalities as the data model in Figure 6.19.

Figure 6.20 is an extension of the previous transactional data model with two
new entity sub-types, Teenager and Adult, added to the Patron type.

Figure 6.21 shows how you could construct the star schema for this application.
You first add a Fact table, called Visit, to the middle of the model. You then
surround it by the Quarter, the Patron, and the Library Location, called
Dimensions, and which came from the transactional data model in Figure 6.20.

Figure 6.22 shows how your application will ultimately fit into the overall
enterprise data architecture of the company. Rather than building applications

Figure 6.18

Your application final data architecture.

Another Benefit of Having an Architecture Vision 89

Figure 6.19

Your transactional data model.

Figure 6.20

Extending your transactional data model into covering Woman and Girl.

90 Chapter 6 n The Influence of Architecture Vision

Figure 6.21

Your data mart star schema.

Figure 6.22

Fitting into the new enterprise data architecture.

Another Benefit of Having an Architecture Vision 91

in such a way that you can only hope they will fit into the enterprise
architecture, your effort to lay down some kind of architecture vision could
help ensure that your system will fit seamlessly into your company’s IT
enterprise architecture.

Summary

As software professionals, many of us are accustomed to doing a lot of
architectural design using all kinds of tools. Then along came eXtreme
Programming, which dictated that we should only design as we go. The success
of Scrum seems to have amplified this phenomenon.

Suddenly, no one seems to want to use the term architecture or design any more,
lest they be considered to be living in the past.

But as lessons start to emerge from Scrum projects, it has become clear that
without an architecture vision, the chunk of user stories the teams get from the
product owner will look like a stack of cards, without any clear idea of what the
final product will look like.

As a result, the team will have to spend time and effort trying to get the different
stories to fit into some kind of blurred image of an ever-changing architecture.

With a clear architecture vision laid down at the beginning, one observes that
team velocity does not fluctuate much, but instead increases over time. The team
members feel more confident in their ability to deliver.

To arrive at this architecture vision, we must first identify user stories that share
common business data and consider building them together. By splitting the
user stories along common business data elements, the team will be able to
organize their work and develop in parallel. This is something many software
managers have dreamt of because they see the potential benefit it can be to team
performance.

Working with common business data also allows the team to lay down some sort
of stable data architecture, a key ingredient to good data reporting and analytics.
Another benefit of this is to allow the product owner to change the project’s
sequencing without negatively affecting the team’s velocity.

92 Chapter 6 n The Influence of Architecture Vision

From Architecture Vision

to Release and Sprints

Planning to Parallel

Software Development(*)

You have learned about the benefits of an early architecture vision, not only
in terms of velocity but also in terms of software quality. The benefits of
architecture vision for your product, however, do not stop here. They continue
into the area of release and Sprint planning.

Armed with this knowledge, you can better work with the product owner to
suggest adjustments to the sequence of work that will bring the most value to the
business. At the same time, you will be able to maintain a good velocity
and progressively build a solid foundation for a good application and data
architecture.

Even though the product owner is likely to pay more attention to customer or
user requests, a good Scrum product owner will pay attention to suggestions
from the development team as well.

From Architecture Vision to Release and

Sprints Planning

Rather than passively letting the product owner decide what she would like the
team to work on during a specific sprint, it is our experience that the team would
benefit more from the collaboration with the product owner if they have a more
proactive attitude.

Chapter 7

(*) Pham, Andrew. “Scrum: The Influence of Architecture Vision on Release/Sprint Planning,” University of Pennsylvania,
June, 2010.

93

Figure 7.1

Inspecting the set of user stories for a central library system.

Figure 7.2

Identifying the architecture intent for the central library system.

94 Chapter 7 n From Architecture Vision to Release and Sprints Planning to Parallel

The team should take an active look at the set of stories prior to the planning
and try to see whether they can derive an architecture vision from them.

Let’s assume that a recent workshop just concluded and a set of user stories has
been identified as illustrated in Figure 7.1.

The team might take a quick look at the set of stories and be able to identify a
high level architecture that would look like that shown in Figure 7.2.

Then, using the common data element approach described in Chapter 6, “The
Influence of Architecture Vision on Team Velocity and Software Quality,” the team
will be able to divide the user stories among different rings as shown in Figure 7.3.

Figure 7.3

Dividing user stories among common data elements.

From Architecture Vision to Release and Sprints Planning 95

By continuing to further divide, the team may be able to split the user stories
into smaller groups. This results in separating the data elements that would need
to be created from the ones that would only need to be read, updated, or deleted
as shown in Figure 7.4.

At this point, there will be two options for the team to envision the release,
either by horizontally slicing or vertically slicing.

Horizontally slicing means that the team can envision developing the
software product by creating the foundation for the key data elements and

Figure 7.4

Further dividing the user stories among the common data elements.

96 Chapter 7 n From Architecture Vision to Release and Sprints Planning to Parallel

entities across all the rings, starting from the core in the middle to the
outermost ring.

In the case of a central library system, that could mean to lay the foundation for
the book and patron entities first in release #1, and then reservation and location
in release #2, as shown in Figure 7.5.

Next, by virtue of common data (and probably also of team velocity), release #1
can be split into two sprints. Sprint #1 will focus on the first part of the book
concept while sprint #2 focuses on the first part of the patron concept.

Figure 7.5

Organizing the release by horizontal slicing.

From Architecture Vision to Release and Sprints Planning 97

The same approach can be applied to release #2, which can also be divided into
two sprints, with sprint #3 focusing on the reservation concept while Sprint #4
puts the emphasis on the library location concept (Figure 7.6).

Vertically slicing means the team could develop the software product by
creating the foundation for all the data elements and entities, ring by ring.
Going back to our central library system, this means that the team could first
lay the foundation for everything that relates to the book concept in release
#1; then, all the details for the patron concept could be in release #2, and so
on (Figure 7.7).

Next, we apply the same virtue of common data (and probably also of team
velocity) to this second type of slicing. Release #1 (Figure 7.7), which focuses

Figure 7.6

Divide the horizontal release into sprints.

98 Chapter 7 n From Architecture Vision to Release and Sprints Planning to Parallel

completely on the book concept, can be split into two sprints. Sprint #1 will
focus on the basics of the book concept, while sprint #2 will focus its extension
in terms of sub-types.

The same approach can then be applied to release #2, also shown in Figure 7.7.
That can also be divided into two sprints (Figure 7.8), with sprint #3 focusing on
the basics of the patron concept while sprint #4 focuses its extension in terms of
patron sub-types, and so forth (Figure 7.8).

Figure 7.7

Organizing the release by vertical slicing.

From Architecture Vision to Release and Sprints Planning 99

After a while, if you are concerned that you may lose track of all the release and
sprint goals, you may want to organize them, along with their respective high-
level stories descriptions, using a matrix like the one in Figure 7.9.

In addition to the benefit it brings to the Scrum team for their release and sprint
planning, the diagram in Figure 7.9 can be easily turned into a new and
improved sprint backlog (Figure 7.10) to help both allocate teamwork assign-
ments and track team progress.

Figure 7.8

Divide the vertical release into sprints.

100 Chapter 7 n From Architecture Vision to Release and Sprints Planning to Parallel

Because we are talking about tracking team progress, we would like to make our
position clear with regard to the so-called technical debts, defined as the
accumulated amount of technical rework that will be necessary to correct the
software design.

From experience, we have found that technical debts are an inverse relationship
to software quality (Figure 7.11). Because technical debt hides the fact that a
release is actually late, we are absolutely opposed to having it around.

If you are reporting that you are well on track to finish your sprint goals, yet you
know that you have a heavy load of technical debt, you are not being honest with
yourself and with your team members.

You should therefore strive at any cost to not let technical debt interfere with the
tracking of your true project progress.

Figure 7.9

Tracing sprint goals back to release goals (horizontal slicing).

From Architecture Vision to Release and Sprints Planning 101

Figure 7.10

A sprint backlog organized by sprints and by release.

1
0
2

C
h
a
p
te
r
7

n
F
ro
m

A
rch

ite
ctu

re
V
isio

n
to

R
e
le
a
se

a
n
d
S
p
rin

ts
P
la
n
n
in
g
to

P
a
ra
lle

l

From Incremental to Parallel Software

Development

In addition to the helping hand an architecture vision can bring to the whole
Scrum team in terms of release and sprint planning, there is one more concept
the team could greatly benefit from: parallel software development (even within
the seven-member Scrum team).

In other words, by organizing work around common data elements and the
CRUD concept, you will be able to speed development by having small sub-
teams (even within the current seven-member Scrum team) work in parallel on
specific and self-contained user stories as shown in Figure 7.12. This, along with
an effective continuous integration mechanism (using a tool such as Git), should
allow the Scrum team to tremendously speed up their velocity.

Figure 7.11

The inverse relationship between technical debt and software quality.

From Incremental to Parallel Software Development 103

Because more than one team is working together, you should modify the
questions you ask during your daily Standup (still called daily Scrum).

In addition to the three well-known questions which are asked during these
meetings:

1. What did you do yesterday?

2. What do you plan on doing tomorrow?

3. What prevents you from making progress?

We suggest that you add two more questions, which should allow the sub-teams
to be easily synchronized:

1. What are you doing that can help my sub-team?

2. What are you doing that slows down my sub-team?

To remind everyone on the Scrum team of their responsibility with regard to
what they have to do, a summary is provided in Figure 7.13.

Figure 7.12

Sub-teams developing in parallel.

104 Chapter 7 n From Architecture Vision to Release and Sprints Planning to Parallel

Summary

Identifying architecture vision early on not only helps the team avoid velocity
fluctuation but can increase software quality and lay down the foundation for a
good application and data architecture.

In addition, it can help the development team have a more active, better
collaboration with the product owner during the release and sprints planning
meeting.

Figure 7.13

Collaboration for release and sprint planning.

Summary 105

As a result, the Scrum team can increase both stakeholders’ business value and
the robustness of their application while experiencing more satisfactory team-
work and effective collaboration.

Finally, using the common data architectural approach presented in this book
can allow the team to speed up development by splitting the Scrum team into
smaller size teams (which can be referred to as feature teams) that can perform
work in parallel. This along with an effective continuous integration mechanism
should allow the team to speed up their velocity or ability to finish their work
even earlier than planned. With or without Scrum, this is something that has
been the dream of software project managers and software managers for years.

106 Chapter 7 n From Architecture Vision to Release and Sprints Planning to Parallel

Did You Say Product

Owner?

Everyone is needed on an Agile project but an Agile project cannot succeed
without a good product owner, who is the guardian of the product vision and
goals, because the focus on an Agile or Scrum project is to deliver business
results and values.

More than that, an Agile or Scrum project needs not just a good, but a great,
product owner.

So the question is how can one be the best product owner possible?

We believe, based on our experience, that a product owner should possess seven
key qualities. These qualities are listed in Figure 8.1.

The seven qualities of a great product owner are:

1. Know how to successfully manage the stakeholders’ expectations and
sometimes conflicting priorities.

2. Have a clear vision and knowledge of the product.

3. Know how to gather requirements to turn the product vision into a good
product backlog.

4. Be fully available to actively engage with the team, not only during the
sprint, but also during the release and sprint planning.

Chapter 8

107

5. Be a good organizer who can juggle multiple activities, while keeping
things in perspective and maintaining her composure.

6. Know how to communicate the product vision; not only to the team, but
also with the business, so their trust in the team remains intact through-
out the life of the project.

7. Be a good leader, able to guide, coach, and support the team as needed
while making sure that the business gets the value they expect out of IT.

Figure 8.1

The seven qualities of a product owner.

108 Chapter 8 n Did You Say Product Owner?

Let’s now review these qualities, one by one:

Managing Stakeholders’ Expectations

and Prioritization

One of the most important activities for the product owner is to interact with
and manage stakeholders’ expectations and often conflicting priorities.

Since you may not have the time needed to spend with the stakeholders, we
suggest that you learn to know and manage them differently depending on their
influence on the future success of your project (Figure 8.2).

This is to say that most of your time should be spent working with the
category B stakeholders who have a lot of influence and interest in your
project. At the same time, you should try to get the A category to move
towards the B category and, to a lesser extent, the C category to move towards
the D category.

Having a Clear Product Vision and Knowledge

If the product owner has a clear vision about the product that will help her easily
set goals and priorities, it brings a lot to the project team in its effort to create a
good release and sprint plan.

Figure 8.2

Stakeholder management matrix.

Having a Clear Product Vision and Knowledge 109

Everyone has a different way to come up with a product vision, but what we use
is a simple technique called the 5W, which is:

n Whom? (The customer target.)

n Why? (In what way is this product special?)

n What? (What does the product offer?)

n Where? (Location.)

n When? (Time zone.)

For illustration purposes, an example would be to build a website which answers
those questions in the following way as shown in Figure 8.3.

n Whom? All foodie gourmets.

n Why? Find the best dishes around the world.

n What? The dishes are being rated, rather than by restaurants.

n Where? All regions of the world.

n When? 24/7

Figure 8.3

Noshter: A worldwide foodie social network.

110 Chapter 8 n Did You Say Product Owner?

Knowing How to Gather Requirements

for the Product Backlog

Even though having a product vision is important, maybe even more important
is the product owner’s ability to come up with a good list of user stories for the
product backlog.

So if you feel that you or your product owner are not skillful at gathering
requirements (yet), do not hesitate to go back to Chapter 4, “A Visual Require-
ments Gathering for the Product Backlog” to review how to gather requirements
that can easily be understood by developers and converted into tasks.

Making Oneself Always Available

Perhaps you are lucky enough to work with a product owner who has a clear
product vision and who knows how to gather requirements and backlog items.

However, that will not be enough if the product owner is not available to work
and dialogue with the development team.

The product owner should be someone who is available, ideally on a daily basis,
to interact with the team and attend each review meeting.

If you find yourself in a company where there is no such product owner, you
should then make it a priority to explain to management that the team needs
one and why the team will need to have someone who is both business savvy and
empowered to interact regularly with the team and to make decisions for the
business.

Knowing How to Be a Good Organizer

Unless you are lucky enough to work in a small company where the product
owner has plenty of time, chances are that she is someone busy dealing with all
kinds of priorities, from working with the marketing department to dealing with
business issues within her own department.

If this is the case, you should be diplomatic but do not hesitate to remind the
product owner that her active participation is critically necessary as part of the
process.

Knowing How to Be a Good Organizer 111

Knowing How to Communicate Better

Than the Average Person

Besides having a good product vision and the ability to write requirements that
are doable and easy to understand, the best thing a product owner can do is to
be an active advocate for the team with business management.

For this, he or she will need to actively work with management and users alike,
always helping them to understand the team's status relative to release goals and
business value.

Knowing That It Is All About Servant

Leadership

Finally, the product owner should be someone who knows how to be a good
servant leader, someone who can guide, support, mentor, and, as needed, coach
the team towards achieving the project vision and goals.

By looking at these qualities, you can ask yourself whether the product owner
has all the qualities needed to be effective.

If the answer is a resounding yes, then there is nothing for you to do or to worry
about.

However, if you see a gap, then it may be time for you to work with the
ScrumMaster to help educate or remind the product owner of her role.

Summary

Everyone on the Scrum team has a role to play. The question is to know who can
bring the most value to the business to justify the project. It should be the
product owner.

The next question is how one can be the best product owner possible.

From our experience on real-life projects, the product owner should possess the
seven qualities outlined in this chapter.

112 Chapter 8 n Did You Say Product Owner?

The Importance of

Automated, Regression,

and Integration Tests

Testing, whether system testing or user acceptance testing, traditionally was
done at the end of the waterfall life cycle, as illustrated in Figure 9.1.

Without further questioning the effectiveness of this model, let’s simply say that
in an Agile or Scrum project, testing is no longer performed at the end of the life
cycle but is “baked” throughout the different iterations or sprints, as shown in
Figure 9.2.

Without doubt, testing is one of the things that make the most difference in
Scrum development. Whether or not the team is capable of producing regular
shippable increments will most likely be determined by how well testing is
organized and run.

Even on a small Scrum project, it is difficult to conceive how teams can regularly
deliver without some kind of automated testing mechanism already in place and
fully functioning.

The more automated testing infrastructure is in place, the more the team’s
velocity is likely to increase in the long run (Figure 9.3).

Chapter 9

113

Figure 9.1

Testing within the traditional waterfall software process.

Figure 9.2

A new place for testing in the new Agile/Scrum process framework.

114 Chapter 9 n The Importance of Automated, Regression, and Integration Tests

The Importance of the Definition of Done

Before we go further with our discussion of testing, let’s first talk about the
definition of the word done. This is what will determine which types of testing
should be done by the team. By testing types, we referred to something like user-
acceptance or technical testing.

Like most experts, including Henrik Kniberg, in his book, Scrum and XP from
the Trenches, we prefer done to mean “ready to deploy to production.” But also
like Kniberg, we sometimes have to accept that the definition of done can be
somewhat different.

The definition of done often differs depending on the project situation. In the
following sections, we will review two or three definitions of done as we have
seen on real-life projects.

The first definition of done in Figure 9.4 shows that the team has decided to
consider their work done by the end of coding and unit testing.

In the example illustrated in Figure 9.4, many teams are working in parallel
on the same product line. The teams decided that it would be most beneficial
for them to deliver their different work results after unit testing, so that
integration and stabilization work can be done before they move into the
next iteration.

Figure 9.3

Degree of automation.

The Importance of the Definition of Done 115

This is a situation you are likely to encounter in real-life—that the done is
declared at the unit testing level. This approach is fine as long as the team has
also accounted for the additional integration and testing effort that will be
needed before deployment.

Figure 9.5 shows a common scenario where the team considers that they are
done only after all new stories have been integrated and tested before they do
their sprint demo.

Figure 9.6 shows the best scenario, in which some business users are part of the
Scrum team, where they are responsible for performing acceptance testing
before done is certified. Whether or not a project is using Scrum, user

Figure 9.4

A definition of done.

116 Chapter 9 n The Importance of Automated, Regression, and Integration Tests

acceptance test development has become more and more a widespread practice
which should be incorporated into release iterations as early as possible in the
process.

The Most Important Tests

Because Scrum is mainly a project management framework, it is silent about the
engineering practices related to coding and testing.

However, in our experience, the following testing should be in place in your
organization to sustain your Scrum effort:

Figure 9.5

Another definition of done.

The Most Important Tests 117

1. Automated testing

2. Continuous integration testing

Automated Testing

The reason we list automated testing first is because as soon as you start seeing
your team churn out regular software increments, you will realize that you
cannot really sustain their pace unless some kind of automation is in place.

Figure 9.6

Another definition (still) of done.

118 Chapter 9 n The Importance of Automated, Regression, and Integration Tests

Automated testing will save you time and will enable your team to cruise along
quite smoothly.

Unlike manual testing where you are required to go through all the test cases
yourself manually, automated testing can take hours, even days, depending on
your code base. One of the main benefits of automated testing is that a software
program will handle all the testing for you.

Of course, in order to do automated testing, you must do a little more work and
have bought a tool and have got all the test cases created. But that is only a
fraction of time compared to all the time it will take should you have to do
everything manually.

Continuous Integration Testing

Another type of test that we think is critical to your Scrum project success is
continuous integration testing.

The reason this test is important to perform regularly is that you want to make
sure that your software product is always shippable.

Organizing the Testing Infrastructure

Now that we have covered the different testing types and the ones we consider to
be most fundamental, let’s turn our attention to organizing the testing.

If you are lucky and the company where you work is fully committed to
Scrum, you would not need to do anything more than working and commu-
nicating closely with the quality assurance department. Otherwise, if you are
like us, you may find yourself in companies that have not implemented Scrum
throughout the enterprise and, because of that, little or no infrastructure has
been set up in terms of automated and continuous integration testing for
Scrum.

In case this happens, this chapter provides you with some idea of what you
should see in terms of testing infrastructure, either for your own needs or for the
company, should they ask you.

Figure 9.7 shows a very decent environment, in which the software is organized
around three different environments: development, testing, and production.

Organizing the Testing Infrastructure 119

There is a natural flow from development to testing and from testing to
production.

Perhaps you are not so fortunate as to be in a company where everything is set
up like this. We suggest that you get together with your technical team members
at the very beginning of your project, and see how they can set up a makeshift
testing environment within your project’s own development environment, as
shown in Figure 9.8.

We know from experience that many teams do not start with this, but, it has
been an essential part of all the successful Agile or Scrum projects we have
worked on. This is why we include this information here to help save you time
and headache. We think that you will thank us later.

Figure 9.7

From development to testing to production.

120 Chapter 9 n The Importance of Automated, Regression, and Integration Tests

Unless you have taken the time to organize your testing strategy and organ-
ization, you will not be able to deliver with Scrum if your testing does not follow
or support you.

Summary

Testing no longer takes place at the end of the software life cycle. We have
emphasized in this chapter just a few tests, which are critical to your Scrum
project success. This is why you do not hear about test-driven development
(TDD), despite its remarkable effectiveness for the average programmer team to
churn out good code. Instead, this chapter focused more on automatic and

Figure 9.8

Organize testing in your development environment.

Summary 121

continuous integration testing, the two most important types of testing for every
Scrum project team to set up as soon as possible.

This chapter then focused on testing organization.

If you do not work in a company where a good testing infrastructure has been
set up, we recommend that you work with technical team members at the
beginning of your project to set up a makeshift testing environment—if
necessary within your project’s development environment. This testing environ-
ment will provide an indispensible support for the development team as they
turn out new increment after new increment, sprint after sprint.

Because the definition of done has a large impact on how much of a testing type
you would need to do, this chapter also covered some different definitions of
done in order to give you an idea of what you may need to do on your project.

122 Chapter 9 n The Importance of Automated, Regression, and Integration Tests

The Importance of

Teamwork

We are sure that, like most people, you have heard a lot about teamwork, and
you might be wondering what new information we have to share on the subject.

As we value your time, we are not going to repeat the things you have heard a
hundred times already. That being said, teamwork is still a very critical element
on a Scrum project.

Even if you have had support from management and pulled together the best
possible product backlog, you can still fail if your team members do not work
well together. From our experience, we do not remember any successful project
where the team did not work well together but still delivered.

For a short project, it may not be that important due to the limited duration. But
when people are required to work together every day for a long period of time
on a mid- or large-sized project, it takes more than luck to make good teamwork
happen.

If a project’s team members do not get along and nothing is done about it, we
have seen that the project almost always ends in trouble. This is true with
traditional projects and even more so with Agile and Scrum since these two
process frameworks rely heavily on team self-management and team account-
ability.

One of the Scrum engagement rules is that everyone is supposed to rely on
everyone else to perform as a team. While this topic may sound cliché, nothing

Chapter 10

123

is more important to a Scrum project than to get team members to work well
together.

In the following pages, we will provide you with some ideas and techniques we
have learned throughout the years that will help you, as a team, avoid conflicts,
or at least learn to resolve them as much as you can, before they break your
project.

Before talking about the team, though, let’s talk about the individuals on the
team because all teams consist of individuals.

The Individuals

Computers are complex machines, but there is nothing more complex than a
human being.

Fortunately, learning more about humans has always been a subject of study,
which has provided us with a good understanding of ourselves as human beings.

We won’t turn this book into a treatise on human psychology, but we will
discuss those elements of human nature that can help the Scrum team work well
together.

First, let’s mention the study done by Abraham Maslow, still known as Maslow’s
Pyramid, or hierarchy of needs, which sheds some light on human needs as
individuals.

Viewing the pyramid in Figure 10.1 from the bottom, we see that an individual
must first satisfy some bodily needs, such as food and water.

Once these needs are fulfilled, one next needs to feel safe. Safety can be provided
by a roof to live under or a place to protect oneself from weather or external
dangers.

After this, the individual needs to have some social contact.

The last levels of the pyramid, the self-esteem and self-actualization layers, are
what the Agile gurus and Scrum experts count on the most for a team to be
empowered to do their work and self-manage. This is exactly why we ended up
in Scrum with team self-management and empowerment to select their tasks
and do whatever they like to accomplish their commitments.

124 Chapter 10 n The Importance of Teamwork

So much for the individuals, but before we study the team in detail, let’s talk
about the group.

The Group

Whenever an individual feels the need for some sense of belonging or to share a
common need or ideas, he tends to find other people with whom he can
associate.

A group, however, has no common goal that will unite individuals; no goal for
which they will be held accountable.

Going back to what we understand about teamwork and team performance,
whenever a project team fails, when it is not due to some other reason, it may

Figure 10.1

Maslow’s Hierarchy of Needs.

The Group 125

well be because the project team has performed at the level of the group, not
feeling accountable for something together.

The Team

When a group of people comes together to achieve a common goal, there is the
beginning of a team. Whether the team is a high-performance team or a low-
performance team depends on their ability to work together as a self-organized
team and on the people who lead them in the traditional command and control
environment.

As soon as we say that there is a team, or a group of people with a goal to
accomplish, disagreements as to who should do what, how long, how much, and
why will begin.

In paraphrasing Patrick Lencioni, in Five Dysfunctions of Teams, it is teamwork,
not finance or technology, that gives us the competitive advantage.

Therefore, it is critical for all members of the team to know how to work well
together.

Among all the things you can know about your teammates, nothing is more
important than knowing their personality type. Having that knowledge enables
you to communicate with teammates in such a way that they understand and
accept what you say more easily. Likewise, this knowledge allows you to hear
and more easily accept things from them. This will help you avoid misunder-
standing and potential conflict.

The Keirsey Temperament Types

Tracing the idea of temperament back to the ancient Greeks, David Keirsey
developed a modern temperament theory, which is composed of 16 tempera-
ment types, called the Keirsey Temperament Sorter (Figure 10.2).

The Keirsey Temperament Types Sorter is designed to help people better
understand themselves and contains a total of 16 temperament types:

1. Inspectors are careful and meticulous. These individuals are extremely
dependable on following through with things, which they promise to get
done.

126 Chapter 10 n The Importance of Teamwork

2. Protectors are warm and kind-hearted. They value cooperation and are
sensitive to co-workers’ feelings.

3. Counselors are gentle, caring, and highly intuitive individuals. Counse-
lors are perfectionist, stubborn, and tend to ignore other people’s opin-
ions, thinking that they are right.

4. Masterminds are introspective, pragmatic, and attentive. Masterminds
observe the world to look for ideas and opportunities. Their minds con-
stantly gather information.

5. Crafters have a compelling drive to understand the way things work.
They're logical and thrive on action. Usually fearless, crafters are very
independent.

6. Composers are quiet and reserved, difficult to get to know well. They
keep their ideas and opinions to themselves, except from those who they
are closest to.

7. Healers are introspective and cooperative. They do not like conflict and
go to great lengths to avoid it. If they must face it, they will always
approach it from the perspective of their feelings.

8. Architects are introspective but pragmatic. Their primary interest is to
determine how things are structured, built, or configured. They live

Figure 10.2

The 16 Keirsey temperament types.

The Keirsey Temperament Types 127

primarily inside their own minds, and enjoy analyzing difficult problems
to come up with logical resolutions. Not surprisingly, they are very toler-
ant and flexible.

9. Promoters are doers who live in action. Blunt, risk-takers, they are will-
ing to jump into things and get their hands dirty.

10. Performers enjoy being the center of attention. In social situations, they
are informative and expressive. Lively and fun, performers like to attract
the attention of other people. They live in the here-and-now, keeping
abreast of the latest trends.

11. Champions are enthusiastic people, typically very bright and full of potential.
Champions like to make their thoughts known to the world. Big believers in
possibilities, their enthusiasm often inspires and motivates others.

12. Inventors are less interested in developing plans or making decisions
than they are in generating ideas. Intensely curious, they have an entre-
preneurial character and are always looking for new projects.

13. Supervisors live in the present with their eye constantly observing the
environment to make sure that everything is running smoothly and
systematically.

14. Providers are naturally interested in others. They like people and have a
special skill at bringing out the best in others.

15. Teachers have excellent people skills. They understand and care about
people, and have a special talent for also bringing out the best in people.

16. Field Marshals are natural born leaders. They live in a world of chal-
lenges and want to be the ones responsible for surmounting them. Their
talent for contingency planning is only second to their ability to execute
strategy or action plan.

Knowing your team members’ personality types helps a lot in learning to know
one another and work well together, but sometimes that may not be enough to
avoid problems and conflicts.

Depending on the stage at which the problem or conflict occurs, there are
techniques that we can leverage to resolve conflicts, something we are going to
review next.

128 Chapter 10 n The Importance of Teamwork

But let’s review the various team stages and the different conflict resolution
techniques before deciding which one would be the most appropriate to use for a
good conflict resolution, depending on the team stage.

The Five Team Stages

In 1965, Bruce Tuckman identified five stages a team goes through in coming
together:

1. Forming: This is when the team is brought together for the first time. At
this time, people tend to behave in a formal and reserved manner.

2. Storming: In this stage, team members start to position themselves
against one another, often in a rather confrontational way. This is where
the manager’s, or leader’s, role is most useful in helping to build the
trust between team members. We will review this in greater detail in the
next chapter.

3. Norming: This is when team members are confrontational with one
another as they tackle project issues.

4. Performing: This is the time when team members become effective and
productive working together. The trust between team members is high.

5. Adjourning: The adjourning stage is the last stage just before the team is
released after the teamwork is completed.

Techniques to Resolve Team Conflicts

Even though none of us likes to have conflict, it is unfortunately something we
all have encountered or will encounter during our lifetime at work.

Many conflict resolution techniques exist, but among the most known is the
following technique identified by Kenneth Thomas and Ralph Kilmann in the
1970s:

1. Accommodating (ACCO): This technique indicates a willingness to meet
the needs of others at the expense of one’s own needs.

2. Compromise (COMP): This happens when everyone in the conflict gives
up something to reach an agreement.

Techniques to Resolve Team Conflicts 129

3. Competitive (COMPE): This is a useful technique when there is an
emergency and a decision needs to be made fast or when the decision is
unpopular.

4. Collaborating (COLLA): All the perspectives of the different team mem-
bers are examined. This technique normally leads to a good consensus.

5. Avoidance (AVOID): One of the parties refuses to discuss the conflict.
This is an example of a lose-lose conflict resolution technique.

Now, let’s combine the team stage, the project life cycle, and the conflict
resolution techniques into a conflict resolution matrix (Figure 10.3) to help
guide team members when they go through difficulties.

According to this matrix, if the team is still at the forming stage, and if the
project is still at the early initial planning stage, then the two most appropriate
techniques to use are either accommodating or competition.

The reason for this is that accommodating will allow people to first get to know
one another better, which may be the best thing to do in some cultures such as
in Asia. Then, the next best technique to use is competition. Yes, competition, so
that people can have a chance to challenge one another’s ideas based on factual
data, which may be the best thing to do in Western cultures. When this happens
early in the life of the project, the confrontation that results will not greatly affect

Figure 10.3

The most appropriate resolution techniques to use when conflict arises in a team.

130 Chapter 10 n The Importance of Teamwork

the progress of the project. The good thing after this type of confrontation in the
early stage is that people will learn one another’s opinion better and tend to
move towards a more collaborative approach. If a project team is unable to
resolve its own conflicts within the team itself, the ScrumMaster and the product
owner should intervene, indirectly of course, to try to get everything on track
again.

Conditions of Great Teamwork

Work would be wonderful if there were no conflict, but since conflicts happen
and they can hurt the team’s progress, what should we do to avoid it?

We have seen the same patterns emerge time and again. We call these patterns
the (five) conditions of great teamwork, and they can be seen in Figure 10.4.
These conditions help team members work well together.

As a team member, you should come to the team with a very open mind and
think in terms of team rather than individual. Try to see things from someone
else’s perspective and have the desire to learn about the other team members.

Figure 10.4

Conditions for great teamwork.

Conditions of Great Teamwork 131

Only with this open mindset can you hope to blend successfully into the team
with so many different personalities.

Secondly, you should care. You should want everyone to be heard and to have a
chance to contribute. The more people feel they are listened to, the more likely it
is that the team will function well.

Then, find opportunities to show respect for one another on the team.

Next, remember that trust is the glue we need to get everything to stick together
for great teamwork.

Finally, we add job safety, or security, as the central condition of great teamwork
because people can’t be productive or get along with others when they worry
about losing their jobs.

This is where the ScrumMaster and the product owner can help by working
closely with the team’s direct management to help team members feel safe
working together, as we will discuss in the next chapter.

As a result of their collaboration, we can identify three types of teams, based on
how successfully they work together: (1) the high-performance team, (2) the
average-performance team, and (3) the mediocre or low-performance (political)
team.

High-performance teams are fun, open-minded, and caring. By contrast, low-
performance teams are usually characterized by silence in meetings, forced
smiles, and a cover-up attitude. The team members on an average-performance
team just go with the flow at work each day, doing only what is needed to turn in
the hours and get paid, but they bring no value to the organization. The only
difference between them and the mediocre or low-performance team is that they
do not resort to cover-ups and political games.

Summary

The absence of a project manager on a Scrum project does not mean that this
responsibility can be abandoned. Nor have we done away with project
leadership.

Unlike a traditional project using the command-and-control style, the team is
self-organized in Scrum. This means that they are empowered to decide for

132 Chapter 10 n The Importance of Teamwork

themselves how they would like to share in the work. No one, no project
manager, will tell the team what to do anymore.

Because the team is self-managed, they should learn to resolve conflicts among
themselves. This is the reason we have reviewed in this chapter, not only the
different Keirsey temperament types for the team to learn to know one another,
but also the different techniques for conflict resolution.

Because conflict happens, it is important to consider the stage at which it
happens. A conflict that takes place when the team is formed does not require
the same resolution techniques as a conflict that occurs in the middle of
sprinting.

Because conflicts do hurt a team’s progress, we need to ask ourselves how to
avoid them. One of the answers to this question is what we call the five
conditions of great teamwork. Four of these five elements are Open, Trust,
Caring, and Respect, while the last one is Job Safety. While team members have
little control over their job safety, the product owner and the ScrumMaster
may have more influence over it by working closely with the team’s direct
management.

Summary 133

This page intentionally left blank

The New Nature of

Management and

Leadership on a Scrum

Project

Even if you have learned that there is no project manager on a Scrum project,
that does not mean that there is no management, or especially, leadership on a
Scrum project. This misconception was corrected in a discussion by Mike Cohn
posted Aug 25, 2009 on InformIT. You can find that article at www.informit.
com/articles/article.aspx?p=1382538.

Unlike the traditional command and control environment, management respon-
sibility is now split among the three different components of the Scrum team:
the ScrumMaster, the development team and the product owner. Although the
ScrumMaster and the product owner do not directly manage the team, they are
responsible for project reporting to the management of the business. This is true,
according to Ken Schwaber in Agile Project Management with Scrum, even if we
no longer report by tasks on a Scrum project but only by requirements.

Anyone can be considered a leader on a Scrum project as long as that person has
some influence over the team. To the surprise of some purists and our delight, in
his blog, Mike Cohn mentioned product owner, ScrumMaster, and even func-
tional manager, as examples of leaders who can influence the direction and success
of a Scrum project, and we wholeheartedly agree with him. See his blog at http://
blog.mountaingoatsoftware.com/the-role-of-leaders-on-a-self-organizing-team.

Chapter 11

135

But to paraphrase what Mike Cohn wrote on his blog, there is more to leading a
self-organizing team than buying food or letting the team do what they want.
Leaders on a Scrum project should influence teams in an indirect way, and that
is what we address in this chapter.

Last but not least, people often compare management with leadership as if they
were opposing one another. We think they complete one another rather than
oppose, and this is why we think of them as being two halves of a round circle,
as illustrated in Figure 11.1. No side is better than the other, and they are often
intertwined.

Like Peter Ducker, the late management guru, said, “strategy without execution
is only a vision.” We would say leadership without management is like having a
strategy without being able to execute it.

Applied to Scrum, this means that the ScrumMaster and the product owner
should not hesitate, even with a self-organizing team, to exercise their leadership
and management skills in talking to the development team, should they feel that
the project is not progressing as it should or the team is not performing as it
should.

Figure 11.1

Management and leadership as two halves of a round circle.

136 Chapter 11 n The New Nature of Management and Leadership

Things become more interesting when you realize that they have to exercise
these skills with subtlety, and indirectly, both with the team and with people
outside of the team, but who can influence the team’s performance (Figure 11.2).

What Figure 11.2 conveys is that there are two sides to the product owner and
the ScrumMaster’s project management and team leadership roles: one facing
internally toward the team and the other facing the external world.

Traditionally, people took the position that the ScrumMaster should protect the
team from disturbances coming from outside of the team, including from the
product owner who may come to the team, during the sprint, to ask them to take
care of some new requests.

Figure 11.2

The two sides of management and leadership

The New Nature of Management and Leadership 137

However, with practice, it has become clear that there are instances where the
product owner is not the business manager of a business unit but someone who
has to work with different business units and who has to resolve sometimes
conflicting priority between these units.

This is to say that the product owner may need, in some cases, to push back the
different business units, in order to protect the team, when it comes to new
requests these business units may want to introduce in the middle of a sprint.
This is when the product owner truly acts as a servant-leader, assisted in this role
by the ScrumMaster, trying to protect the team from outside disturbances.

Even though our discussion that follows is somewhat different from the CDE
(Container, Difference, Exchange) discussion on how to lead a self-organizing
team in Mike Cohn’s excellent book, “Succeeding with Agile Using Scrum” it
does share a common premise with Mike Cohn’s book in that the Scrum project
team requires quite a bit of management and leadership to work, contrary to
popular beliefs.

To better understand the management and leadership role of both the product
owner and the ScrumMaster, let’s review the internally facing side, as shown in
the quadrant of servant-leadership in Figure 11.3, and see what their different
aspects are and what the product owner and ScrumMaster could or should do to
help improve the team’s progress toward the project goals.

Figure 11.3

The CSM/PO internal servant-leadership quadrant.

138 Chapter 11 n The New Nature of Management and Leadership

Vision: This is what the product owner role is most known for—being
responsible for the product vision, goals, and business requirements. By asking
probing questions, the ScrumMaster can help the product owner formulate his
or her vision and identify the product goals more clearly. Having a clear product
vision will help the product owner answer any questions the team may have
regarding business requirements and the product direction.

Supporting: This is something both the product owner and the ScrumMaster
are there to provide. Normally, the ScrumMaster’s most known role is to help
remove impediments and assist the team in understanding the Scrum process,
but removing impediments is something the product owner could and should
also help with when it comes, for example as indicated above, in resisting
business people’s pressure to have team members work on a new item that was
not planned for the current sprint.

Guiding: By this, we mean the ability for the ScrumMaster and the product
owner, two of the three types of leaders Mike Cohn referred to in his book, to
exert a positive influence on the team, either to promote more collaboration or a
better performance.

Mentoring:Whenever possible, the ScrumMaster and the product owner should
not hesitate to share with the team what they know in order to help team
members become even better at what they do, especially when the product
owner and ScrumMaster happen to be experts themselves in those areas.

Coaching: One of the least practiced aspects of management and leadership in
the traditional command and control environment, coaching is a technique the
product owner or ScrumMaster could and should often use to unleash a team
member’s potential.

Now that we have reviewed the different aspects of the internally facing side
of team leadership, let’s turn our attention to the externally facing responsi-
bility of the ScrumMaster and the product owner and see what they should and
could do to help the team with the external environment, namely with
the team’s direct management and with other outside stakeholders. On top
of what the product owner and the ScrumMaster can do to support, guide,
and coach the team, there is something else, which is as important or even
more important, they should do to provide the team with the most critical

The New Nature of Management and Leadership 139

condition for great teamwork: namely, the job safety factor as mentioned in
Chapter 10.

Figure 11.4 captures this kind of intervention the ScrumMaster and the product
owner should do, for instance, with the team members’ functional managers by
explaining to them what Scrum is and why team members should not be
punished for refusing to work on any ad hoc issues that could interfere with
their sprint work.

Figure 11.4

Outside intervention in team members’ favor.

140 Chapter 11 n The New Nature of Management and Leadership

Coaching for Superior Performance:

The GROW Model

A well-known technique for coaching, one of the preferred techniques used by
servant-leaders to enhance a team member’s performance, is known as the
GROW model (which stands for Goal, Reality, Options, and Will). This
technique can be used by anyone and requires no special training. It is known
to provide a very structured and effective approach for employees and managers
to establish goals and identify ways to work toward achieving them.

Every coach has his own way to coach but what follows is an example of how a
coaching session can be structured using the GROW model, which we extended
with a new stage (Results) in order to provide an opportunity for continuous
improvement.

1. Goal Establishing: First, help your team member define his goals. To do
this, you can use the same SMART technique that was discussed in
Chapter 4, “A Visual Requirements Gathering for the Product Backlog.”
With SMART (Specific, Measurable, Achievable, Realistic, and Time-
based) the goal can be achieved within a given timeframe.

Figure 11.5

The extended GROW technique.

Coaching for Superior Performance: The GROW Model 141

2. Examine (Current) Reality: Next, ask your team member to describe his
Reality, meaning the current reality he lives in. This is an important step.
Too often people try to solve a problem without fully considering their
starting point, and, therefore, often miss some of the information they
need to solve the problem effectively. As the Chinese proverb goes, if you
do not know where you are, no map can ever help you know how to get
to where you want to go. As your team member tells you about his
Current Reality, the solution to his problem will begin to emerge.

3. Explore the Options: Once you and your team member have established
the Goals and explored the (Current) Reality, it’s time to explore what is
possible—meaning, all the possible options you have for solving the
problem. Resist the temptation to do this by yourself. Instead, help your
team member generate on his own as many good options as possible,
and discuss them with your team.

Let your team member do most of the talking and offer ideas first. Then
suggest your ideas.

4. Establish the Will: By examining the current Reality and exploring the
Options, your team member will now have a good idea of how he can
achieve his Goal.

That’s great but it may not be enough, so your final step as coach is to
get your team member to commit to some specific actions. In so doing,
you will help the team member establish his or her will and motivation
to improve.

5. Review Results (extended by us): By reviewing the results he achieves
against the established goals, you and your team member will be able to
identify gaps and what needs to be done to improve his performance.

For a useful example of the GROW model, imagine that you plan to make a trip.

First, you start with a map to visualize where your team wants to go (Goals) and
identify where your team currently is (Current Reality). Then you explore
various ways (Options) your team can make the trip. Finally, you will help
ensure that your team is committed to making the trip (Wills) and is prepared
for all the conditions and obstacles they may encounter on their way. As they
progress on their road toward the destination (the established goals), you should

142 Chapter 11 n The New Nature of Management and Leadership

remember to review their achievements (Results) regularly in order to identify
gaps and actions they may need to take to put themselves back on the right track
until they reach the final destination (Goals).

Traits of a Caring Leader and Manager

Before moving further ahead, let’s say that in order to be a good leader or a true
manager, we think you should be:

1. Honest: Honest means that you should say what you do and do what
you say. This also means that when you make a mistake, you will not
hesitate to admit it. Because no one is perfect, people will not hold a
grudge against if you sincerely admit your mistakes; on the contrary,
they will respect you more for your honesty. And if people respect you,
they will be more likely to follow you than someone they do not respect.

2. Open: One of the most important character traits of a leader is to be
open to people’s ideas and opinions. Do not shut down any suggestion
coming from the team or from people around you without first reviewing
its merits.

3. Authentic: This means that you should not try to behave in a way that
is not true to your values and beliefs. In other words, you do not try to
play games by pretending to be someone you are not.

4. Available: We are all busy in corporate environments, but as a leader
people expect you to be available to give them advice, listen to their
concerns, and to give them feedback or clarification about something
they do not understand well. So, adjust your calendar if you have to, but
try to make yourself available to sit down with team members for at least
a short talk before you find out if their issues or concerns would warrant
any further clarification or meeting. As a servant-leader, you should keep
your door open as much as possible to signal that even though you may
be busy as a leader, you are always available to support the team.

5. Caring about others: In a society where success and promotion are key
words, it may be hard to ask you to care about others. But when you
think about it, it is ultimately your success that you are taking care of
when you help your team members succeed at what they do. So, when

Traits of a Caring Leader and Manager 143

worse comes to worst, do try to think of taking care of the people you
work with. That can only help you become even more successful. But if
you are also a true servant leader who cares about people without always
thinking about your own benefits, then that can enhance your image as a
leader and a good human being.

Summary

The fact that the Scrum development team is self-organizing does not mean that
there is no project management or leadership on a Scrum project, as is often the
misconception.

Unlike the traditional command and control environment, the management
responsibility is now split among the three components of the Scrum team: the
ScrumMaster, the development team, and the product owner.

As far as leadership goes, anyone can be a leader as long as she has some
influence over the team, but the people who we think can exert a lot of positive
leadership over the team are mainly the product owner and the ScrumMaster,
two of the three main types of what Mike Cohn referred to as leaders in his
book, Succeeding with Agile using Scrum.

In order to sum up the different aspects of leadership along with techniques,
which the product owner and the ScrumMaster could use, a quadrant of servant-
leadership was presented, which has five components, namely vision, support,
guide, mentoring, and coaching.

While most of these leadership aspects are somewhat well known, coaching is
still relatively new, at least in software development. This is the reason we went
into more detail on coaching in this chapter and, in particular, on the GROW
model, which we extended with a new stage (Results) to provide an opportunity
for continuous improvement as a support for the idea of continuous improve-
ment in Agile.

To round out our discussion on management and leadership, you were also
reminded in this chapter that the product owner and ScrumMaster should
possess the following qualities to be good leaders and managers: (1) honesty, (2)
openness, (3) authenticity, (4) availability, and (5) caring (about others).

144 Chapter 11 n The New Nature of Management and Leadership

How to Adapt Scrum

(Without Destroying Its

Agile Foundations or

Doing Negative

ScrumButs)

Unless you are lucky enough to work for a company where top management
supports Scrum, middle management also supports Scrum, and the whole
company or IT department has been completely reorganized for Scrum, your
project or company environment may not be as perfect as Scrum prescribes.

Usually, you will find yourself in a company where management may have heard
about Scrum or may even have tried it on a few projects, but they have not fired
all the specialists and hired generalists or let go of all their project managers to
replace them with only ScrumMasters. With the exception of some commercial
software companies, most of corporate America, which represents around 99%
of all companies, is still organized the old way, meaning with many separate
functions within the IT departments. To see the truth of this statement, go to the
Career page on the website of Capital One, one of the companies often cited as
having adopted Scrum, and see how many business analysts, business systems
analysts, and project managers they are still hiring. The same observation is true
of the other large companies known for having moved into Agile or Scrum, such
as Verizon, Sabre, NBC Universal, General Dynamics, Texas Instruments, and
American Airlines, just to mention a few.

Because of this, you and your Scrum team will normally have to do a lot of
education and negotiation to make things happen. All in all what we are saying
is that you will need to adapt Scrum (without destroying its Agile roots) to make

Chapter 12

145

it work in your current company as it is currently set up. Scrum is, after all, only
a means to an end, and for this reason, you should be, not dogmatic as some
experts tend to be, but pragmatic as a practitioner should be.

If you need further convincing that you can and must adapt Scrum to your
environment, refer to the article, “Scrum in the Church,” by Jeff Sutherland, one
of the original creators of Scrum, and Arline C. Sutherland, his spouse, in which
they considered that adaptations were necessary as environments changed.

In that same article, Arline mentioned that, rather than every day, her church
volunteers had their daily stand up only once every Friday when they came to
church because they did not come to the church every day.

So, if you are convinced that we can adapt Scrum to our environments if we
have to, the question now is how we can adapt Scrum without destroying its
Agile foundations, or doing what is known as negative ScrumButs.

How to Adapt Scrum Without Doing Negative

“ScrumButs” with Excuses

We asked ourselves this question some time ago while feeling completely lost
when we first started to use Scrum. Luckily, after a few years, things started to
sink in and we began to understand more about how we can adapt Scrum
without betraying its Agile principles.

Things happen as if there were two kinds of “ScrumButs”: the good ones and the
bad ones.

The bad ones are more like what Ken Schwaber called “ScrumButs,” or bad
excuses, or wrong application of Scrum.

One example of negative “ScrumButs” would be: “We do Scrum, but we do not
have anyone available to serve as a product owner.”

The good ones would be more like the ones Jurgen Appelo, a CIO and well
known Agile blogger, wrote about on his blog (“Scrumbuts are the best part of
Scrum”) back in 2009 where he gave some examples of positive “ScrumButs,”
which he called, like us, Scrum adaptations.

He went on to say that this is the best part of what teams can learn from Scrum
Retrospectives, and we agree with him. On that same page of Jurgen Appelo's
blog, Mike Cottmeyer, founder of the APLN in Atlanta, also agreed that the

146 Chapter 12 n How to Adapt Scrum

dogmatism of many Scrum practitioners was quite counter-productive. He
believed, like us, that making adaptations should be encouraged unless it is to
hide legitimate impediments.

We believe the subtle difference between these two types of ScrumButs is mainly
based on whether the reason you have for not doing something as Scrum would
normally require is good or bad. How to know if it is a positive or negative
“ScrumBut” will take a lot of practice and especially a good understanding of the
Agile spirit that we shared with you in Chapter 1, “It Is All About Agile and
Scrum—Setting the Stage.”

Examples of Situational Scrum Adaptations

Without pretending to be exhaustive, below are some examples of situations
where we have seen Scrum somewhat modified or even have suggested to teams
to use Scrum somewhat differently from what it should be so that we can still
use it despite the fact that some of the Scrum conditions were not present.

Organization Dimension

What if your organization still requires that your project status be reported

in a PMO weekly meeting, using another template instead of the Burndown

chart?

Besides the need to adapt to the request, mention should also be made with regard
to the validity of the Burndown chart as a way to report the project team progress.

We have to admit to seasoned project managers, PMP or not, Burndown charts
can be good quality, but what kind of progress do you think this chart really
shows to a seasoned manager? Some but not much, but because the sprint is
relatively short (around 30 days), it is somewhat acceptable.

When you take the time to think about it, you can easily see that knowing how many
hours remain to perform does not really tell you any detail as to what has been done.

The remaining hours may sound a little more realistic than the traditional
percentage of completion but not really much.

Because Scrum relies on transparency, we think a better measurement would be
to report on the progress of the user stories, as shown in Figures 12.1 and 12.2,
respectively, the story bar chart and its update.

Examples of Situational Scrum Adaptations 147

Figure 12.1

Burndown chart as story bar.

Figure 12.2

Story bar update.

148 Chapter 12 n How to Adapt Scrum

What if management wants to see how much money has been spent on your

Scrum project?

We have not found much in the general Scrum literature that addresses this
legitimate question, and this is why we talked about the earned Value Analysis in
Chapter 2, “Finance Speak.”

If Scrum experts do not show enough interest in business management concerns
with regard to financial project analysis, we are afraid that Scrum will not be part
of the project management mainstream for a long time to come.

What if your organization still requires that someone be designated as the

project manager on your Scrum project?

In this case, you should try to make it clear to management that one of the tenets
of Scrum principles is team self-organization and the impact this would have in
terms of project management.

As a matter of fact, being an Agile project manager would not mean directing
people’s work anymore but motivating and removing impediments to protect
the teamwork during its sprint. Does that mean that the project manager can no
longer suggest to the team what they should do to reach a high-level perform-
ance? Probably yes, but indirectly though.

What if no one is available or experienced enough to take on the role of the

ScrumMaster?

There are two possible scenarios here:

First, if the team is new to Scrum, you may be in trouble unless you find out that
someone from the team is quite versed in Scrum and ask her to play that role.

Second, if the team has had some experience working together with Scrum, the
solution to this may be that you can just forgo the ScrumMaster role. If this is
the case, just share the duties of the ScrumMaster among yourselves, as Jurgen
Appelo also wrote about in his above mentioned blog.

What if management insists that one of the functional managers takes on the

role of ScrumMaster?

Believe it or not, we have seen this before. The danger with this is that the
manager is still used to the old style of command-and-control management

Examples of Situational Scrum Adaptations 149

philosophy and not Scrum. You simply cannot be a ScrumMaster if you have
not made the transition from command and control to servant leadership and,
especially, if you do not know and understand the servant-leadership foundation
of Scrum. Among all other scenarios we have gone through so far, this may be
the most potentially damaging situation.

So, before things get out of hand, you should have plenty to talk about with the
manager regarding the changes in project management responsibilities with
Scrum. Rather than saying no, you should say yes to give everyone a chance to
transition into a new role, but if you are their coach, there will be a lot of
education and hand holding that you will need to do. But that is what a coach is
for, right?

What if team members are not able to meet physically or hold their daily

stand-ups every day?

It can be okay if you can neither meet physically nor hold the daily standups
every day. The only thing to remember in this situation is to be creative in
finding a way to keep team members abreast of their progress towards the sprint
goals. Skype and/or an electronic task board will be helpful.

Should you feel the need to be convinced by a higher authority about the fact
that you cannot do daily Standup, find a copy of “Scrum in Church,” an article
co-written by Arline Conan Sutherland and her husband, Dr. Jeff Sutherland,
one of the creators of Scrum, for Agile 2009. By reading that article, you will find
out that this is exactly what Dr. Sutherland’s wife went through herself in trying
to implement Scrum daily Standup in her church environment.

What if the company management gives you a big team, larger than nine or

ten people, to get the job done?

As long as management does not require that you keep a team this big, split the
team into two to reach for an optimum team size between seven and nine
people. Next, divide their work around the common-data element concept as we
explained in Chapter 6, “The Influence of Architecture Vision on Team Velocity
and Software Quality.” This will help you organize the project teamwork around
the feature team concept, which should allow small teams to operate, as
independently as possible, while integrating as smoothly as possible their
work into the larger product architecture.

150 Chapter 12 n How to Adapt Scrum

Infrastructure Dimension

What if the needed testing infrastructure is not in place to help the team do

automated, regression, or integration testing?

This could be a problem because automated testing and continuous integration
are critical to Scrum success. One thing you can do in this case is either (1) try to
talk with the QA department to get their help with this as soon as you can, or (2)
try to do it on your own by having your team safely download some open-source
automated testing and continuous integration software, even in your own
development space, as suggested in Chapter 9, “The Importance of Automated
Testing, and Continuous Integration.”

What if your development team does not want to practice TDD (Test-Driven

Development)?

Just in case you may be not familiar with TDD, let’s say that it is an engineering
practice by which your developers are asked to write unit test cases first (trying
to make them fail) before they write your code (trying to make these same tests
successful).

We know that many Scrum experts have come out in favor of TDD, and we
think that it can be great. But if your team does not know, or want to do, TDD,
you may still be okay (as long as you get your users do a lot of acceptance tests).

We say this because we have had the opportunity to work with excellent
developers who did not do TDD but still delivered excellent code that worked
the first time every time.

We still strongly recommend, if you have time and money, that you get your
team to learn and practice TDD because it has proven to be a very effective
engineering practice.

What if the testing team does not have anyone available to assign to work on

your new Scrum project?

This will be a problem since early and continuous testing is a key part of being
Agile. So, the first thing to do is to get some BA’s (Business Analysts) or
developers who can jump in to play this role. Your team velocity may take a hit
at the beginning while the new guys try to get used to the tasks, but everything
will likely work out as soon as you take action early on.

Examples of Situational Scrum Adaptations 151

Team Dimension

What if most of your team members are new to Scrum and you do not have a

ScrumMaster available to guide them?

This could be a problem unless you have someone on the team who is
experienced with Scrum. If this is the case, ask him or her to serve as the
ScrumMaster for the rest of the team and move forward.

If you do not have anyone on the team who knows enough about Scrum, this
may be the time to ask for a coach.

What if they think that both the product owner and ScrumMaster should be

combined into one due to budget constraints?

We do not think that this is optimal, but it is a scenario that has worked for us,
although with some risks. Even though some experts have said that this should
not be allowed, we still think that you go for it if this is the only way to try your
hand at Scrum. But take precaution to ensure that this person is fully committed
to do whatever it takes to get this new and combined role to work. By
commitment, what we mean is that:

1. He should be committed to clearly let the team know when he is acting
as a ScrumMaster and when he is acting as the product owner.

2. He should never take advantage of the situation to flip flop between the
two for his own benefit.

All in all, this may be one of riskiest “ScrumButs” situations, but if this is the
only option you are given to try Scrum, then go for it, while watching for the
first opportunity, whenever you can, to get the roles to be split up.

Technology Dimension

What if the team is new to some supporting technology or infrastructure

(such as automated or continuous integration tools), but no training in the

technology will be provided?

As far as we can tell, this is going to be a problem that, sooner or later, will hit the
team very hard because of their lack of knowledge of the tools they are supposed
to use to help with their work. So, even if you are in a hurry to try Scrum, make

152 Chapter 12 n How to Adapt Scrum

sure to include some training money in your budget to ensure that your people are
properly trained before you deploy them.

Process Dimension

What if teams do not define what they mean by done?

Even when one team works by itself, it is important to define what we mean by
done since so many activities will depend on that. But when you have two or
more Scrum teams working together, and no one wants to define done, then you
are headed for problems. You have to define done whether you like it or not.

What if management suggests that you get some specialized phases organized

in Scrum to take care of some of the activities that the team would not have

time to take care of?

One of the Scrum principles is that everything should be done within the sprint.
This is to say that you should never really need specialized Scrum phases, such
as a testing iteration or a requirements phase.

Avoid this specialization phasing as much as you can, because it will bring you
back to the waterfall model before you realize it.

What if someone suggests that a sprint should be longer than 30 days?

You have to be careful in dealing with this even though you do have some
leeway to decide whether the sprint length should be more than 30 days.

While we have heard of six-week sprints, we really think that there is no reason
not to stay with four-week sprints if you do Scrum. We recommend that you
stay with four-week sprints and reduce the number of points to deliver, but do
not extend the sprint length only because you think your product is a rather
complex one and, therefore, your team will need more time to design code.

What if your company says that they still want requirements to be gathered

as much as possible at the beginning of the project?

Believe it or not, this is something we still see happen too often in too many
companies, especially the ones that are not readily set up for Scrum. But, doing
this will defeat the very purpose of Agile and Scrum, which both talk about daily
(or at least regular) interaction with the business end users to help ensure that

Examples of Situational Scrum Adaptations 153

their requirements be understood. So, do not do this and try to start on the right
footing by gathering only high-level requirements for release planning and then
gather some more by keeping the conversation going with the business users
throughout the process.

What if management still insists that you use Scrum within your company’s

current Software Development Life Cycle (SDLC)?

If your company SDLC is a waterfall life cycle, then it is going to be impossible
because Scrum is based on an incremental framework. So, go back to your
management and explain to them that Agile is not waterfall but incremental and
iterative.

What if the QA or infrastructure team tells you that they do not have a good

foundation for continuous integration or daily build?

Dangerous situation for sure since this is the very foundation of Agile and
Scrum. Do not start your Scrum project unless something like this exists first
and you will not regret it.

Business Dimension

What if business management does not have any product owner?

In this case, ask if you could have access to someone such as a business manager
or, at least, a knowledgeable and respectable business analyst, who could take on
this role. This person should have the needed empowerment and support from
their business management to make all the decisions for them.

We know we have not covered all the situations in this chapter you may
encounter in the real life world. The intent here was only to give you an idea
how you can adapt Scrum to your real world situations while keeping your
adaptations fully in line with the Agile and, therefore, Scrum, spirit.

Summary

We all have, at one time or another in our software professional life, wished that
we could discover some process or methodology that we could apply to every
project, and that it would ensure that things just work out for the best.

154 Chapter 12 n How to Adapt Scrum

Unfortunately, work life is not that simple, and for those of us who have been
looking for a long time, no such process or methodology has ever existed nor
will it. This is also true for Scrum.

Without giving way to what some experts call negative “ScrumButs,” we have
reviewed in this chapter some examples of situations where you may need to
adapt Scrum while trying not to destroy its Agile spirit. This is the reason we
started our book with a discussion on the Agile Manifesto in Chapter 1.

Others, such as Rev. Arline Conan Sutherland, Dr. Jeff Sutherland’s spouse, and
Jurgen Appelo, have written about their experience with Scrum adaptations,
which Jurgen considers to be the best of Scrum retrospectives.

In following their example, we have also related some of our experience with the
positive “ScrumButs” in this chapter for you to take inspiration from. We are
sure that you will have your own adaptation to write about sometime in the near
future.

Summary 155

This page intentionally left blank

Scrum Project Readiness

Self-Assessment

It would be great to know what your chance of success is before you start your
Scrum journey so that you can know where you should put your focus to
improve your odds. In this chapter you will learn how to do a straightforward
self-assessment of your project so that you can predict your chances of success
before you begin.

A Simple Tool for Your Scrum Readiness

Assessment

In Figure 13.1, you can see that the assessment is based on a scoring of six
dimensions, which we have seen throughout the book.

1. Organization Dimension

This is mainly to assess if your different departments and teams are
familiar with Scrum values and practices or not. The more they are, the
better your experience will be.

2. Infrastructure Dimension

This is mainly to assess if your testing infrastructure is in place to allow
your team to perform all the needed tests, which we mentioned in Chap-
ter 6, “The Influence of Architecture Vision on Team Velocity and Soft-
ware Quality.”

Chapter 13

157

3. Team Dimension

This is mainly to assess the level of relationship between your project
team members, a key ingredient to a good teamwork.

4. Technology Dimension

This is mainly to assess whether your team is knowledgeable about the
technology to be used. While not being a problem per se on a Scrum
project, this is to help you know where your team stands on this so you
can factor it into your estimate.

Figure 13.1

The Scrum self-assessment readiness matrix.

158 Chapter 13 n Scrum Project Readiness Self-Assessment

5. Process Dimension

This is mainly to assess if your company has already had good knowl-
edge or practical experience with Scrum or not.

6. Business Dimension

This is mainly to assess whether your business partner is quite aware of
or familiar with Scrum requirements and practices. As you can guess, the
more they are aware, the better you will be. Among the first benefit of
the business knowing about Scrum is that you will likely get a product
owner who is empowered, fully engaged, and knowledgeable.

Depending on the answers and scores you get for these, they will either help you
or make your Scrum journey a rather difficult one.

The way the questionnaire works, the more your answer to a question is good or
positive, the higher your score will be; the maximum (best) is þ2 while the
minimum (worst) is 0.

When you total up all your responses, you will get a score somewhere between 0
and 36.

If you get a total of 0 (minimum), it means that your project environment is
such that you are going to have a hard time delivering on your project promises.

If you get a total of 36 (maximum), it means that your project environment is
such that you have a maximum chance of being successful at delivering on your
project promises.

If your score is over 18 (with þ18 being the average), you are above average and
can be very successful with Scrum, but it looks as if you have some issues to
work on to improve your team’s ability to deliver. This could be to help the
project team members work well together if they are new to one another or if
they have had some bad experience on a previous project.

If you get a total of less than 18, this means that your chance of success is far less
than average. You can still be successful, though, if you try hard to improve
some issues in your project’s surrounding environment, thereby increasing your
team’s ability to deliver.

A Simple Tool for Your Scrum Readiness Assessment 159

Print out this questionnaire in Figures 13.2–13.7 and complete it to the best of
your ability, and soon you will be on your way towards becoming a Scrum
practitioner.

Organization Dimension

Infrastructure Dimension

Figure 13.2

Organization dimension.

Figure 13.3

Infrastructure dimension.

160 Chapter 13 n Scrum Project Readiness Self-Assessment

Team Dimension

Technology Dimension

Figure 13.4

Team dimension.

Figure 13.5

Technology dimension.

A Simple Tool for Your Scrum Readiness Assessment 161

Process Dimension

Business Dimension

Figure 13.6

Process dimension.

Figure 13.7

Business dimension.

162 Chapter 13 n Scrum Project Readiness Self-Assessment

Here you are at the end of the questionnaire.

Depending on all the answers you get, you may get a minimum of 0, represented
by a small dot in the middle of Figure 13.8.

However, if you are really lucky, you may get a maximum of 36, which covers
the whole of Figure 13.9, with the second ring representing the average value.

If you are like some teams and companies, you may get a total value that
averages around 18, with some high and some low scores on the different
dimensions. Figure 13.10 illustrates this case.

Figure 13.8

A minimum score on the Scrum self-assessment readiness matrix.

A Simple Tool for Your Scrum Readiness Assessment 163

If this is the case, it will be your responsibility to try to get the lower score to
become higher as you go (or before you go) in order to improve on your project
team’s chance of being successful with Scrum.

Example

For illustration purposes, let’s go through the six dimensions and see how we
scored when we first started to use Scrum in our business a few years ago
(Figures 13.11–13.15).

Take a look at the score for each dimension in Figure 13.16. You will notice that
while we were doing quite well with our organization, business, technology,
team, and process dimensions, we need to make an effort to improve on our
(testing) infrastructure dimension, which only got a score of 1.

Figure 13.9

A maximum score (36) on the Scrum self-assessment readiness matrix.

164 Chapter 13 n Scrum Project Readiness Self-Assessment

Figure 13.10

An average score (18) on the Scrum self-assessment matrix.

Figure 13.11

Organization dimension.

Example 165

Add the scores for the six environment dimensions to determine the total value
we obtained for the self-assessment. In this case, the total is 20
(3þ1þ4þ4þ3þ5). What this means to us is (1) that the environment makes
our project team job neither difficult nor easy, and (2) therefore, the coefficient
of multiplication we should use to do the story estimation is 1.

Figure 13.12

Development infrastructure dimension.

Figure 13.13

Team dimension.

166 Chapter 13 n Scrum Project Readiness Self-Assessment

With this in mind and with our first sprint planning meeting under way, we
were able to calculate our story point and obtain the table in Figure 13.17 for the
first three stories, which had an UP (Unadjusted Point) of 7, 7, and 8.

As a result of our effort to improve on our testing infrastructure, we were able to
improve our score on the testing dimension and obtain a total value of 25 for the
self-assessment as can be seen in Figure 13.18.

Figure 13.14

Technology dimension.

Figure 13.15

Process dimension.

Example 167

Figure 13.17

Estimation matrix for sprint 1. Legend: Remember that AP (Adjusted Points) = UP (Unadjusted Points)
� C (Coefficient) and PPS (Points Per Story) = (AP � ED)/36.

Figure 13.16

The scoring of a start-up company when it starts its first Scrum project.

168 Chapter 13 n Scrum Project Readiness Self-Assessment

With this result, we knew that we were able to improve on our coefficient of
multiplication and, therefore, should use 0.5 (instead of 1 during sprint 1),
which yields the table in Figure 13.19, knowing that the UP (Unadjusted Points)
for the four new stories were all equal to 8.

Putting It Together

The idea behind this assessment is that once you know where you land, you can
then try to improve your score from that dimension until it reaches a certain
value, like 4, which should give you a better hope to be more successful with
Scrum.

Figure 13.18

The scoring after testing infrastructure was improved.

Putting It Together 169

All in all, your goal will be to get closer and stay close to the following targets:

1. Frequent software delivery.

2. Regular collaboration between the business and the software team.

3. Time-boxing everything or every meeting to avoid having things drag
out too long.

4. Frequent inspect and adapt cycle.

5. Team self-management and empowerment.

6. And everything, at a sustainable pace (for team not to be burned out).

Summary

One of the ways to know what your chance of success is with Scrum is to
perform an honest self-assessment of where you stand using some sort of Scrum
project readiness matrix. In this chapter we provided you with an easy to use
and straightforward matrix, comprising six dimensions.

1. Organization Dimension

2. Infrastructure Dimension

Figure 13.19

Estimation matrix for sprint 2 after testing infrastructure is improved. Legend: Remember that AP (Adjusted
Points) = UP (Unadjusted Points) � C (Coefficient) and PPS (Points Per Story) = (AP � ED)/36.

170 Chapter 13 n Scrum Project Readiness Self-Assessment

3. Team Dimension

4. Technology Dimension

5. Process Dimension

6. Business Dimension

Your answers and the scores you get for these dimensions will help or hinder
your Scrum journey.

If you get a total of 36 (maximum), this means that your project environment is
such that you have a maximum chance of being successful.

If you get a total of more than 18 (with 18 being the average), this means that
your chances of success are above average, and although there are some issues,
you can be very successful with Scrum.

If your total is less than 18, this means that your chance of success is below
average.

If you get a total of 0 (minimum), this means that your project environment is
such that you are going to have a hard time delivering on your project promises.

For illustration purposes, an example was given in this chapter of the scores of a
start-up company when it started its first Scrum project for the six environ-
mental dimensions. The company’s total was 20.

We also provided some suggestions in this chapter on how to improve your odds
for success.

Summary 171

This page intentionally left blank

When Do You Need a

ScrumMaster?

We have not discussed in depth the ScrumMaster until now because, in a way,
this book should serve as your ScrumMaster. However, in order to complete the
description of the role of the ScrumMaster we will describe, in this chapter, the
qualities you should look for in a human ScrumMaster.

Experience has taught us that a ScrumMaster should, first and foremost, possess
seven qualities and skills, shown in Figure 14.1.

The seven qualities a ScrumMaster should have are:

1. In depth theoretical and practical knowledge of Scrum

2. Great servant-leadership ability

3. Strong organizational skills

4. Great communication skills

5. Excellent presentation skills

6. Conflict resolution skills

7. Excellent human development skills

Let’s review these qualities, one by one:

Chapter 14

173

In Depth Theoretical and Practical

Knowledge of Scrum

Among the seven qualities of a ScrumMaster, it is quite understandable that
knowledge of Scrum should rank first.

More than a theoretical knowledge of Scrum, even if that knowledge is
confirmed by certification, a practical knowledge of Scrum earned from
experience is what will serve you best in a ScrumMaster.

Figure 14.1

The seven qualities of a ScrumMaster.

174 Chapter 14 n When Do You Need a ScrumMaster?

As you know by now, although Scrum looks simple in theory, implementing Scrum
in the real world is quite challenging, especially if the company in which you work
has not reorganized its operations around Scrum. This is why we covered early in
this book how to approach the other teams to get their buy-in and collaboration.

Great Servant-Leadership Ability

Because Scrum is part of the Agile movement and is based on the idea that a team
will be more effective if its members are allowed to be self-organized and
empowered to do their job as they see fit, it is important that the ScrumMaster
should be someone who understands and believes in servant-leadership.

In other words, one of the most critical roles of the ScrumMaster is to serve the
team during sprints by removing as many impediments as possible and to
protect the team as much as possible from external disturbances.

Strong Organizational Skills

If the team and the product owner are new to Scrum (or even when they are
familiar with Scrum), they will rely on the ScrumMaster to help organize quite a
few meetings as required by Scrum to reap the benefits of Scrum and to carry
out their work.

From release planning to sprint planning meetings to the daily Scrum to Scrum
review and retrospective, it is clear that there are quite a few meetings that the
ScrumMaster should help organize.

Without the ScrumMaster’s help, the team and the product owner will have
difficulty copingwith all themeetingswhile trying tomove forwardwith their work.

Great Communication Skills

With the ScrumMaster being the person who is supposed to know the most
about Scrum, there is no doubt that communication skills should be high on her
list of skills and qualities.

Why? It is because the project’s ScrumMaster will be expected to communicate
with a lot of people, including team members, other teams, technical and
business management, and the product owner to help them understand the
benefits and requirements of Scrum.

Great Communication Skills 175

A less well known aspect of the ScrumMaster’s role is to help the product owner
prepare for and attend management reporting meetings, which, obviously,
requires that the ScrumMaster be well versed in communication.

Excellent Presentation Skills

Because communication is one of the most crucial aspects of a ScrumMaster’s
role, the ability to do presentations is another skill the ScrumMaster should have
to be successful. Whether by using PowerPoint or any other tool for presenta-
tion to communicate with the rest of the organization, it is key that the
ScrumMaster hone as much as possible his presentation skills.

Conflict Resolution Skills

Unless you are lucky enough to work in a company where everyone loves
everyone else or where Scrum has proven to be so successful that no one is in
conflict with anyone else, your team is likely to experience conflict. One of the
skills the ScrumMaster should absolutely master is knowing how to help team
members resolve conflict in case their conflict ends up affecting the team’s
ability to deliver. This is another lesser known aspect of the ScrumMaster’s
leadership role. It isn’t often discussed in a classroom setting, but it is, in
practice, something the ScrumMaster is expected to help with in order to keep
the team moving forward.

Great Human Development Skills

This is another skill the ScrumMaster should have to help guide and develop the
team into a high performance team. This can be accomplished mostly by way of
indirect challenge and encouragement.

Summary

One of the most critical roles on a Scrum project, the ScrumMaster is, whether
one likes it or not, someone who should be expected not only to help remove
impediments but also to help resolve conflict and help turn the team into a high
performance team. For this, he should have at least seven qualities, which we
reviewed in this chapter.

176 Chapter 14 n When Do You Need a ScrumMaster?

Parting Thoughts

Here you are at the end of our book. Thank you and congratulations! Rather
than just let you move ahead alone, here are some parting words as to how to
apply the book to your real-world project situations.

The first assumption we make is that you read Chapter 1 first, either as your
introduction to Agile and Scrum or as a refreshment of the Scrum class you just
took with the team. Even if you may have read other books or whitepapers on
Agile or Scrum, Chapter 1 will help you be on the same page as us and help you
successfully adapt Scrum to your environment in case you have constraints that
will not let you use Scrum “out of the box,” as is the case in most of the project
situations we have seen.

In order to benefit the most from what you have learned in this book, you should:

n Use or customize the questionnaires in Chapter 13 to do a Scrum
readiness self-assessment of your project environment as soon as you
can in order to have an idea of your chance of being able to deliver with
Scrum. Do this preferably before you begin your project journey or as
soon as you get management’s green light to move forward. Try to be
honest in answering the questions.

n Because the focus of business executives is on the financial side, try to
temper your excitement for Agile or Scrum by talking less about how
much you are going to be able to deliver better software faster and

Chapter 15

177

more about financial returns. Quantify what you think management will
get from your project in terms of financial returns and costs, and
management will be more likely to listen to your ideas. This is what we
deal with in Chapter 2.

n Although it is important to have support from your executives and top
management, remember to seek good buy-in and collaboration from
middle management; it is during their interaction with Scrum teams that
the rubber meets the road for your project. As we said in Chapter 3, this
relationship with middle management will make or break your project,
regardless of the support you may have from top business management.

n Believe it or not, we have seen more Scrum projects lag in performance
or simply fail due to a lack of good, properly written, requirements for
Scrum rather than a lack of funding or technical know-how. So unless
you are an expert in requirements gathering for Agile or Scrum,
Chapter 4 should be something you want to read in order to investigate
a technique that is useful to everyone. The way requirements are written
also has an impact on how successful you will be with your project
release and sprint planning, and we show you how to write effective
Agile requirements.

n As Agile and Scrum become more widespread, one of the impediments
to their implementation across the enterprise is the fact that team
velocity, or the number of user story points that the team can deliver per
iteration or sprint, is not comparable between different teams. So, if you
want to know how to estimate story points so that they can be easily
explained and comparable between different teams, you should make it a
point to try the technique in Chapter 5.

n Despite the fact that some of us may wish that we no longer have
anything to do with software architecture altogether, in the same way
that architecture is essential to the stability and scalability of a building,
software architecture is critical to our software quality and, therefore,
project success. Given the Agile nature of our project, the key here is to
learn how to identify it or at least its intent without spending all our
time fleshing it out first, and to use it to improve team velocity and
software quality. This is the main subject of Chapter 6.

178 Chapter 15 n Parting Thoughts

n The benefits of a good architecture vision are expanded upon in
Chapter 7. You should leverage the developments in Chapter 7 to
understand how to use architecture vision to come up with release plans
that can deliver the most business value yet avoid having user stories
drive a fractional, and ultimately incoherent, system design.

n Everyone is important on a Scrum project, but the product owner is
without a doubt the one person who could make the business love or
hate your team. You may want to refer to Chapter 8 often to see what
personal and professional qualities a product owner should have to make
sure that your product owner has what it takes. If, for some reason, your
product owner happens not to be like the person we describe in
Chapter 8, then you have your work cut out for you.

n Among all the important things you should verify is whether your
project testing environment is ready for your delivery. As we guess that
you do not have an unlimited timeline or budget, we will recommend
that you do the three most important tests: automatic, regression, and
continuous integration tests. Review this in Chapter 9 to know how you
should organize your testing infrastructure.

n Even though budget, requirements, and testing infrastructure, among
other things, are important items for you to take care of, we strongly
recommend that you pay attention to the dynamics between all the team
members who have been lined up on your project. For all the projects
we have been involved with, it is always teamwork that either makes or
breaks the project. This is something Patrick Lencioni discusses in his
book, Five Dysfunctions of Teams. Refer to Chapter 10 as often as you
need because teamwork is key to your success.

n Believe it or not, the fact that the team is self-managed on a Scrum
project does not make project management and team leadership easier,
just different. In some ways, the leadership and project management
challenges can become even more complex.

n So, as we recommend that you look into your team dynamics as early as
possible, we will make you the same recommendation that you look into
the soft side of project management and team leadership as soon as you
can. You will find guidance for this in Chapter 11.

Parting Thoughts 179

n As soon as you finish the self-assessment for your Scrum project
readiness, you should look at the results and see how you can gain
inspiration from Chapter 12 to see what aspect of Scrum you should
modify in order to get it to work in your environment. The sooner you
take care of this, the more time you will have to find out whether your
adaptation is working or not and eventually make another round of
adaptations, as needed.

n Last but not least, Chapter 14 will give you a summary of the human
qualities that each ScrumMaster should have to be successful.

Good luck to you in your Agile/Scrum journey!

Andrew Pham

Phuong-Van Pham

180 Chapter 15 n Parting Thoughts

Two Real-World Software

Product Development

Case Studies

Introduction

In this appendix, we will lead you through two examples of how the advice given
in this book has been successfully used to build and deploy two software
products, with Scrum teams as small as five people and Sprints as short as one
week.

Ruby and Ruby on Rails (RoR)

In order to better understand the examples, which are a subset of the actual
applications, it is recommended that you know a bit of Ruby on Rails. If you
have no previous experience with Ruby on Rails but have used other web
frameworks, like Django or CakePHP, feel free to skip on to the case studies. If
you have no experience, no problem! We will explain Ruby, Ruby on Rails, and
all the code examples as we present them.

Ruby, the Language

In order to provide you with some knowledge about Ruby if you happen not to
be a Ruby developer, we are going to review the fundamental Ruby syntax in the
following pages. While it is by no means a complete introduction, it will help
you understand the examples written in Ruby later in this appendix.

Appendix A

181

Syntax and Constructs

Ruby syntax is extremely simple yet versatile—meant to be adopted by the
programmer in the way she prefers. For example, while in other languages you
would always have semicolons to terminate a statement, Ruby lets you leave them
off. However, if you want, Ruby lets you terminate each line with a semicolon. It
all depends on your personal programming style. We will go through syntax and
constructs simultaneously because they are not mutually exclusive topics.

Since Ruby is primarily an object-oriented programming language, we will delve
into the topic of objects and how to create them in Ruby. Object-oriented
languages allow us to structure our programs in terms of real-world objects,
which many argue makes it easier to organize code and develop in general.

Classes and Objects

First, it is important to understand the relationship between classes and objects
in all object-oriented languages, not just Ruby. A class acts as a blueprint from
which an object is created. An often-used analogy is that a class is a blueprint for
a house, and each object is an actual house created from that blueprint. Classes
are important because they allow us to set up the state (attributes) and behavior
of each object instantiated (created) from it.

So as an example, let us create an empty class that will model a person, and we
will fill in as we go along in the chapter.

class Person
end

That’s it! Now we have a class Person that we can fill in to truly model a person
with its attributes and behaviors. If we wanted to create an actual object from this
class, it would be simple in Ruby. All you have to do is use the new method like so:

Person.new

Now, we can begin to fill in the attributes of a person. In order to do so,
however, we need to first learn about variables in Ruby.

Variables

Variables are ways for programs to hold data and manipulate it throughout the
program’s life. However, variables in Ruby are different from typed languages

182 Appendix A n Two Real-World Software Product Development Case Studies

such as Java because you do not need to explicitly state the kind of data you
expect it to hold beforehand. For example, to create a variable in Java that will
hold a number, you must do this:

int variableInJava = 10;
String variableInJava = "This is a string";
Array variableInJava = {1, 2, 3, 4, 5};

In Ruby, all you have to do is this:

variableInRuby = 10;
variableInRuby = "This is a string"
variableInRuby = [1, 2, 3, 4, 5];

Although this is an extremely simple example, this ability lets you create or
change variables easily during runtime (when a program is running) which is
very useful as your programs increase in complexity.

Now, let’s add some attributes to the Person class.

class Person
This is a comment - this line is ignored by the interpreter.
attr_accessor :name, :age, :weight, :height

end

Now the Person class has the ability to create Person objects, each with a name,
age, weight, and height. There are a couple of new things introduced in the
previous example, namely, the attr_accessor method (and methods for that
matter) and the strange ‘:’ syntax.

attr_accessor is a method (we’ll explain more about what methods are later) that
essentially creates instance variables with names corresponding to the list of
names we give it (in this case, we gave them the names name, age, weight, and
height). Because our class has this declaration, each instance (object) of our class
will have those instance variables available. The ‘:’ is a literal constructor of
Ruby’s Symbol class. It is essentially a way of identifying something immutably.
With that in mind, let’s go on to talk about data types in Ruby.

Data Types

Ruby has many different data types represented by the classes String, Array,
Hash, Fixnum, Symbol, and more.

Ruby and Ruby on Rails (RoR) 183

Strings are essentially ways for Ruby to represent letters, words, sentences, or
anything similar. To create a string in Ruby, you can do this:

@string = "This is a string"

This will create an instance variable that holds the string “This is a string.”

Arrays are used to hold collections of objects in Ruby. For example, this would
be similar to the concept of a family—a family is merely a collection of people
related to one another. To create an array in Ruby, you can do this:

@family = [’John’, ’Mary’, ’Adam’, ’Susan’]

To get ‘John’ from the array, you use an index like so:

@family[0] # This will give you ’John’

Hashes are similar to arrays except you can identify each value with a unique key
for retrieval later. For example, going back to the previous example, instead of
having to use a number-based index to get ‘John’, you could create a hash like
this:

@family = {’Dad’ => ’John’, ’Mom’ => ’Mary’, ’Son’ => ’Adam’, ’Daughter’ => ’Susan’ }

And then you could get ‘John’ from the hash by doing this:

@family[’Dad’]

Whole numbers in Ruby are commonly represented by Fixnums. Creating a
whole number is simple; all you have to do is this:

@number = 1

This will give you an instance variable with a value of 1.

Symbols are similar to strings but are usually used to identify other things—just
like the definition of symbol itself. They are commonly used in hashes to act as a
key for a value. So like the example before, you could create a hash for a family
like this:

@family = { :dad => ’John’, :mom => ’Mary’, :son => ’Adam’, :daughter => ’Susan’ }

Methods

Methods are ways of introducing behavior into programs. Typically, you would
call a method in an object in order to make it do something. For example, let’s
add a greet method to the Person class.

184 Appendix A n Two Real-World Software Product Development Case Studies

class Person
This is a comment - this line is ignored by the interpreter.
attr_accessor :name, :age, :weight, :height

def greet
puts "Hello, my name is #{self.name}."

end
end

If we create a new Person and give him the name ‘John’, and then call greet, this
will happen:

@person = Person.new
@person.name = "John"
@person.greet
=> Hello, my name is John.

As you can see from the introduction above, Ruby stresses simplicity and ease;
therefore, many programs written in Ruby can usually be read and understood
by non-programmers, since the syntax is meant to reflect natural language as
much as possible. While it is often considered simple, Ruby is also a very
versatile language with the ability to combine many simple constructs to create
programs that accomplish extremely complex goals.

Let’s now examine the Ruby on Rails framework while simultaneously explain-
ing the Ruby code used within each example.

Ruby on Rails (RoR), the Web Framework

Ruby on Rails is a web framework used in conjunction with Ruby by David
Heinemeier Hansson. The term “web framework” in the real-world usually
refers to software that enables you to write better programs by giving you
specific or recommended ways of organizing your code. It also gives you much
reusable code, which prevents you from wasting development time re-creating
the wheel.

Two oft-stated principles of Ruby on Rails are don’t repeat yourself and
convention over configuration. Don’t repeat yourself simply means that you
should structure your program in such a way that you can reuse code as much as
possible, not wasting time coding the same thing over and over again. Con-
vention over configuration means that Ruby on Rails comes with a predefined

Ruby and Ruby on Rails (RoR) 185

configuration that is often well-suited for the creation of most web applications.
You won’t have to waste time tweaking the software to match your need. Of
course, if you absolutely have to, you still have the option of tweaking the
software. These principles make Ruby on Rails a good candidate as a web
framework for Scrum teams hoping to create a web application.

MVC

One of the biggest advantages of Ruby on Rails comes in the form of how it
recommends (essentially forces) you to organize your code. This three-tiered
structure is typically referred to as MVC or Model-View-Controller. Three-
tiered simply means that there are three different related layers of code that work
together to produce a desired effect in an application. In the following sections,
we will explain what each part of the MVC architecture does, but in a different
order than is often shown in different books.

View The View is what the user sees. When you go to a website, the page that
shows up on your screen is called the View. It usually comprises HTML, CSS,
and embedded Ruby, which structure, style, and populate the View, respectively.

What is typically shown in the View? Data that is most relevant to the user—but
where does that come from? Here’s where the model comes in. . ..

Model The Model is the way data in your application is stored, retrieved, and
manipulated. Often, the Model is described as the part that contains business
logic and data.

In Rails, the Model is a class that typically uses ActiveRecord to access data in
the database. The use of ActiveRecord is what creates an object-relational
mapping between your objects and database-backed data. What that means is
that each row in the database has the potential to be interacted with as an object
(instead of long, complex SQL statements), leading to more simplistic and
comprehensible data manipulation within your application. As an example, say
you have a Computer model. The Computer model has a few properties such as
speed, memory, and hard drive. With ActiveRecord, you would have a table in
your database called Computers with columns labeled Speed, Memory, and
Hard drive. Now, when you want to add a row to the Computers table, you
would declare and instantiate a new computer somewhere in your application
(usually in the controller or model) with the following code:

@computer = Computer.new

186 Appendix A n Two Real-World Software Product Development Case Studies

Then you would define the properties of the computer to your liking (see how
ActiveRecord automatically maps these property names to columns in your
database without you having to ever declare it?):

@computer.speed = "2"
@computer.memory = "1024"
@computer.hard_drive = "320"

This is where the beauty of the ActiveRecord component in Rails comes in—if
you want to save this new computer object to the database, all you have to do is:

@computer.save

That’s it! Now your computer is saved to the database. But what if you want to
retrieve it later to inspect its properties? All you have to do is (assuming this
computer is the first computer in the Computers table):

@computer = Computer.find(1)

Now, you can inspect its properties with:

This is a comment
puts simply prints out whatever you ask it to, to the console – in this case,
"speed", "memory", and "hard_drive"
puts @computer.speed
puts @computer.memory
puts @computer.hard_drive

In case you ever want to delete a computer, all you have to do is (if you know the
ID of the computer in the database):

@computer.destroy

ActiveRecord certainly makes developers’ lives easier when it comes to access-
ing, manipulating, or deleting data in a database by acting as a more intelligent
layer between your classes and the database.

The last question is, how does the application know what View to show and,
correspondingly, what data to retrieve, from the Model to show in the View?

Controller The controller acts like a middleman between the view and model.
When you type a URL in your browser, you are sending a request to the servers
the website is located or hosted on. There is a controller-like structure that
receives that request and sends the view you want back to you while also
retrieving the data from the model to be shown in the view.

Ruby and Ruby on Rails (RoR) 187

A summary of how RoR will fit into an MVC framework is presented in
Figure A.1 below, taken mainly from what you saw in Chapters 6 and 7.

So Why Is MVC Good? The MVC architecture allows you to organize your
code in such a way that, for example, changing how parts of it look to users only
requires you to modify a certain part of the application as opposed to having to
dig through the entire application to find different parts to change, which often
takes hours or days.

Figure A.1

Diagram of the MVC Framework.

188 Appendix A n Two Real-World Software Product Development Case Studies

This means that under real-world constraints and conditions in which change is
imminent and inevitable, you can easily be flexible and move with the flow
without incurring large development costs.

Version Control and Testing for Web

Development with RoR

To develop the case studies which are presented in this appendix, we used Ruby
on Rails in conjunction with Git for version control, and Test::Unit for testing,
both of which helped create an environment very conducive to better develop-
ment for reasons we will soon be explaining.

Git—Version Control

Git is an open-source and free version control system that was created as an
alternative to Subversion, Mercurial, and CVS. A version control system allows
you to essentially store all of your code into one central place in the form of
snapshots. This means, if you begin working on a part of the application and you
realize that you just messed up the entire application, you can easily get the last
working code you stored in the version control system and start over on a clean
slate.

However, the real benefits of a version control system such as Git are the
collaboration capabilities. Since all the code is stored in a central location, this
means that several developers can work together in parallel on different or the
same parts of the application (an important tenet of this book) and “push” the
code they worked on back into the repository while Git merges all of the code
together to produce a copy of code that integrates all of the changes made in
parallel by the different developers (another important tenet of this book).

While the decision of which version control system to use depends on the needs
of your application, we decided to use Git because it is easy-to-use, simple to set
up, and free (because it is open-source software).

Testing and Testing Framework

Testing is important not only in that it ensures that your application functions
as expected without much effort (and therefore allows for more flexibility in
development because changing the application has a lower cost since you have

Version Control and Testing for Web Development with RoR 189

tests to ensure it still works), but also in that it ensures that the application
fulfills the needs of the client, specifically with user acceptance tests.

Test::Unit is a testing framework for Ruby and Ruby on Rails that, despite its
name, can do unit, functional, and integration testing. It is a very straightfor-
ward and simple testing framework with much of the testing done through
assertions—which are programmatic ways of saying, “The result this code
produces should match this expected outcome.”

There are three major types of tests that you can run using an automated testing
tool such as Test::Unit on a RoR project:

1. Unit tests: Testing individual, atomic parts (can no longer be broken
down into a smaller part) of your application—usually for errors in logic
with strict inputs and outputs.

2. Functional tests: Testing the coordination of individual, atomic parts of
your application without the interface (which is often the view).

3. Integration tests: Testing the coordination of individual, atomic parts of
your application along with the interface (which is often the view).

Automated Testing

As we explained in Chapter 9, automated testing differs from manual testing in
that a software program runs all your code tests, instead of requiring you to go
through and manually test each part of the code yourself, which could take
hours, even days, depending on your code base. But in order to do automated
testing, you must do a little more work and create tests using one of the testing
frameworks available, such as Test::Unit, which we used and which we will be
demonstrating in our case studies later on. However, the payoff in doing a little
extra work allows you to greatly minimize the cost of changing your code and
adding features since, if you’re ever worried about breaking another part of your
application after changing a part of it, you can simply run a command and have
all of your tests run to ensure nothing is broken.

Regression Testing

Regression testing seeks to ensure that with every change to the code, no other
parts of the code are broken, which could lead to the loss of functionalities.

190 Appendix A n Two Real-World Software Product Development Case Studies

Regression testing can easily be done by doing automated testing, which can run
all the tests automatically. Having good automated testing (meaning that it tests
all of your code in different scenarios) is the same as having good regression
testing. This is very important to have since it reduces the cost of changing
already coded parts of an application—which will inevitably happen. The reason
it reduces the cost of changing already coded parts is because if you change a
part of an application, you can simply run the automated tests to ensure that
nothing was broken. Therefore, you will have fewer reservations about changing
parts of your application since all of the uncertainty of new code is taken out.

User Acceptance Testing

User acceptance testing is one of the most important processes that is usually
performed at the finish of a project. It involves designating a person, other than
the person who created the automated tests, to design scenarios to be performed
in reality by your client. Doing this allows you to ensure that the application
meets the needs of the client and satisfies them. User acceptance testing is very
crucial since, while the application may function as expected, it may not
necessarily fulfill the user’s needs. Doing user acceptance testing makes sure
that it does.

Test::Unit—A Testing Framework

Test::Unit is a testing framework for Ruby and Ruby on Rails that, despite its
name, can do unit, functional, and integration testing. It is a very straightfor-
ward and simple testing framework with much of the testing done through
assertions—which are programmatic ways of saying, “The result this code
produces should match this expected outcome.”

Version Control and Testing for Web Development with RoR 191

Case Study 1 (Noshster)

Noshster is a worldwide social network for foodies to blog about the dishes
they’ve eaten and share and review the restaurants where they ate them.

Product Vision and Goal

The product vision of Noshster is to create a social network for foodies that can
be simply and intuitively used to track the dishes they’ve eaten, discover new
foods by following other Noshster members they find interesting, and share
reviews of the restaurants where they’ve eaten different dishes.

The overall goal of Noshster is to give the user the ability to satisfy a craving by
helping them find the best restaurant that serves a particular dish.

Using the approach we recommended in Chapter 8 for the Product Owner to
identify product vision, Noshster’s vision can be summarized as follows:

n Who: Foodies

n Why: Find the best dishes around the world

n What: Dishes rated, rather than restaurants

n Where: Best food by looking at rating of dishes in all regions of the
world

n When: 24� 7

Requirements Gathering Using the Book’s Visual Technique

Using the visual requirements gathering technique in Chapter 4, the team was
able to identify the following requirements using the tree and forest analogy
(Figure A.2).

Architecture Vision and Release/Sprint Planning

With Noshster, as an example for this book, we decided to vertically slice the
application. That is, instead of working on the same “tree” of features in
different Sprints, we worked on and finished the same tree within one Sprint.
We will go through an example where we horizontally slice the application in
the next case study.

192 Appendix A n Two Real-World Software Product Development Case Studies

Whether you vertically slice or horizontally slice the application depends on
several factors such as:

1. What foundation of features do you need in order to develop the rest of
the application efficiently without having to redesign? Do you need to
have each “tree” of features completely developed before moving on to
the next, or do you only need a subset?

2. Which organization of features allows you to provide the most business
value to the product owner or the business as you progress through
development?

But first let’s get back to the process and see how we were able to see things more
clearly using the recommendations that were given in this book. At first, we were
presented with several requirements, which, when thrown together, looked quite
overwhelming as in Figure A.3 below.

Figure A.2

The tree and forest requirements pyramid for the social food network Noshster.

Case Study 1 (Noshster) 193

Architecture Vision

Using the approach we learned in Chapter 6, we were able to quickly see more
clearly, as in Figure A.4 below.

In discussions with the CEO, the Scrum team suggested and got the CEO to
agree to get the team to focus on the user concept first to make sure that all
different types of users around the world were identified as part of the
foundation for this worldwide application. After that, they will get to the dish,

Figure A.3

When the requirements list was thrown at us at first sight.

194 Appendix A n Two Real-World Software Product Development Case Studies

then to the restaurant, and finally, to the review. In other words, they were
building the software by working vertically around its common data elements.
They did this because having all of the user characteristics first would allow the
company to ensure that the software be really worldwide. This is to say that their
architecture vision looked like that shown in Figure A.5.

By looking at the business data elements, the team envisions that the application
data architecture will look like that shown in Figure A.6, at least at a high level.

Figure A.4

See the forest for the trees.

Case Study 1 (Noshster) 195

Noshster Release and Sprint Planning

Forest Trees Leaves

Social Foodie
Network

Release 1

Sprint 1

User
Management

Sign up, Sign in, Logout, View
Profile, Edit Profile, Delete Profile,
Browse Users

Sprint 2

Dish
Management

Add Dish, Edit Dish, View Dish,
Browse Dishes

Figure A.5

Slicing Noshster vertically.

196 Appendix A n Two Real-World Software Product Development Case Studies

(Continued)

Forest Trees Leaves

Release 2

Sprint 3

Restaurant
Management

Add Restaurant, Edit Restaurant,
View Restaurant, Browse Restau-
rants

Sprint 4

Review
Management

Add Review, Edit Review, Delete
Review

Project Estimation Using the Objective Criteria Technique

The chart below is a summary of the points estimated for each story within each
Sprint using the objective criteria technique presented earlier in the book. You
can find the formulas used to calculate each column in Chapter 5.

Figure A.6

Noshster high level data model.

Case Study 1 (Noshster) 197

Characteristics

PBIs

(Story)

Interac-

tion

Type

Busi-

ness

Rules

Enti

ties

Data

Manipul-

ation

Type

Total UP

(Unadju-

sted

Points)

Coeffi-

cient

AP

(Adjus-

ted

Points)

ED (Envi-

ronment

Dimensi-

ons)

PPS

(=(AP*

ED)/36)

Release 1

Sprint 1

Sign up 3 1 1 2 7 1 7 18 3.5

Sign in 3 1 1 2 7 1 7 18 3.5

Logout 3 1 1 1 6 1 6 18 3

View
Profile

3 1 1 1 6 1 6 18 3

Edit Profile 3 1 1 3 8 1 8 18 4

Delete
Profile

3 1 1 1 6 1 6 18 3

Browse
Users

3 1 1 1 6 1 6 18 3

Sprint 2

Add Dish 3 1 1 2 7 1 7 18 3.5

Edit Dish 3 1 1 3 8 1 8 18 4

View Dish 3 1 1 1 6 1 6 18 3

Browse
Dishes

3 1 1 1 6 1 6 18 3

Release 2

Sprint 3

Add
Restaurant

3 1 1 2 7 1 7 18 3.5

Edit
Restaurant

3 1 1 3 8 1 8 18 4

View
Restaurant

3 1 1 1 6 1 6 18 3

Browse
Restaurants

3 1 1 1 6 1 6 18 3

Sprint 4

Add
Review

3 1 1 2 7 1 7 18 3.5

Edit Review 3 1 1 3 8 1 8 18 4

Delete
Review

3 1 1 1 6 1 6 18 3

198 Appendix A n Two Real-World Software Product Development Case Studies

Noshster Development

Now, we will begin going through the code that makes up each Sprint in each
release for the example application and show how we integrated them.

Noshster Release 1—Sprint 1

The goal of the first Sprint of release 1 was to create a solid foundation of user
management features upon which the second Sprint will be built.

Stories (Release 1—Sprint 1) The stories that will be developed during release
1—Sprint 1 are:

1. Sign up

2. Sign in

3. Logout

4. View profile

5. Edit profile

6. Delete profile

7. Browse users

In Figure A.7, you will find the organization of data models for Release 1—
Sprint 1.

In Figure A.8, you will find a more detailed description of the data models for
Release 1—Sprint 1.

Models The User model enables the Noshster application to store user
registration information. It uses the Authlogic plugin and specifies that a
potential user does not need to type in a password confirmation (only a
username, password, email, etc.) to sign up. The Authlogic plugin is a great
user management plugin that adds user registration and authentication capa-
bilities to an application. It abstracts away some details so that you don’t have to
worry about coding this often-used and often-constant part of an application.
Some of the details that it abstracts away are the user validation (ensuring the
user provides input for certain fields like a username, password, or email) and
password encryption (manipulating the password so that it is stored in the
database in such a manner that if the database were hacked, no one would be
able to sign in with your password because it’s encrypted).

Case Study 1 (Noshster) 199

Figure A.7

Focusing development on the user business concept.

Figure A.8

Data model in progress (Release 1—Sprint 1).

200 Appendix A n Two Real-World Software Product Development Case Studies

class User < ActiveRecord::Base
acts_as_authentic do |c|

c.require_password_confirmation = false
end

end

The UserSession model enables the Noshster application to authenticate user sign-
ins against user registration information stored in the database. Therefore, when a
user tries to sign in with invalid credentials that don’t match what is in the
database, the application puts out a friendly error. Otherwise, it lets the user go
into what is normally a restricted area. This model abstracts a lot of details out and
that’s okay in this case because signing in to an application is typically the same
across all applications and doesn’t require much customization. It allows you to
worry about the parts of your application that can actually provide unique value.

class UserSession < Authlogic::Session::Base
def to_key

new_record? ? nil : [self.send(self.class.primary_key)]
end

end

Views

Sign up

Figure A.9

Sign up page.

Case Study 1 (Noshster) 201

This view takes the above sign up form and adds extra information like a title,
etc.

<h1>Sign up</h1>
<%= form_for @user do |f| %>

<%= f.error_messages %>
<%= render :partial => ’form’, :object => f%>
<%= f.submit ’Sign up’ %>

<% end %>

Form partial (a form used in both sign up and edit profile pages)

This is a reusable form that shows the user a sign up form, which they can then
use to fill in their user registration information. It is used on the line <%= render
:partial => ‘form’, :object => f %> in the Sign up code.

<p>
<%= form.label :username %>

<%= form.text_field :username %>

</p>
<p>

<%= form.label :password %>

<%= form.password_field :password %>

</p>
<p>

<%= form.label :email_address %>

<%= form.text_field :email_address %>

</p>

Sign in

Figure A.10

Sign in page.

202 Appendix A n Two Real-World Software Product Development Case Studies

This view takes the sign up form, but gears it towards allowing users to use the
form to sign in to the web application.

<h1>Sign in</h1>
<%= form_for @user_session do |f| %>

<%= f.error_messages %>
<p>

<%= f.label :username %>

<%= f.text_field :username %>

</p>
<p>

<%= f.label :password %>

<%= f.password_field :password %>

</p>
<%= f.submit ’Sign in’ %>

<% end %>

Logout page

Figure A.11

Logout page.

Case Study 1 (Noshster) 203

View/delete profile

This view shows the user pertinent profile information and presents a button
that allows users to delete their accounts.

<h1><%= @user.email_address %></h1>
<% if @user == current_user %>

<%= button_to ’Delete profile’, @user, :method => :delete %>
<% end %>

Edit profile

This view presents an edit user form so that the user can update his profile.

<h1>Edit Profile</h1>
<%= form_for @user do |f| %>

<%= f.error_messages %>
<%= render :partial => ’form’, :object => f %>
<%= f.submit ’Update profile’ %>

<% end %>

Figure A.12

View/delete profile page.

204 Appendix A n Two Real-World Software Product Development Case Studies

Form partial (a form used in both sign up and edit profile pages)

This is a reusable form that shows the user a sign up form, which he can then
use to fill in his user registration information. It is used on the line <%= render :
partial => ‘form’, :object => f %> in the Edit Profile code.

<p>
<%= form.label :username %>

<%= form.text_field :username %>

</p>
<p>

<%= form.label :password %>

<%= form.password_field :password %>

</p>
<p>

<%= form.label :email_address %>

<%= form.text_field :email_address %>

</p>

Figure A.13

Edit profile page.

Case Study 1 (Noshster) 205

Delete profile

This view shows the user pertinent profile information and presents a button
that allows her to delete her account.

<h1><%= @user.email_address %></h1>
<% if @user == current_user %>

<%= button_to ’Delete profile’, @user, :method => :delete %>
<% end %>

Browse users

This view takes all of the users returned from the database in the controller and
displays them.

<h1>Browse users</h1>
<%= render @users %>

Figure A.14

Delete profile page.

206 Appendix A n Two Real-World Software Product Development Case Studies

User partial (to reuse showing user details on browse user’s page)

This is the reusable view partial that is used in the above page on the line <%=
render @users %> to display user information in a specific way.

<div class="user">
<%= link_to user.email_address, user %>

</div>

Controllers

The UserController controller takes in the request from the browser and returns
the proper view and necessary data. For example, if a user goes to the sign up
page, the UserController controller returns the sign up page along with an
empty User object to be filled in later. In another example, when a user actually
clicks the sign up button, the controller receives the information typed into the
form, puts it into the empty User object, and tells the object to save itself (this is
when the model takes over and validates the data).

Figure A.15

Browse user’s page.

Case Study 1 (Noshster) 207

class UsersController < ApplicationController
before_filter :require_no_user, :only => [:new, :create]
before_filter :require_user, :only => [:edit, :update]

the index action asks the User model to query the "users" table in the
database and get all the users in order of alphabetical email addresses.

def index
@users = User.order(’email_address ASC’).all

end

the new action instantiates a new User object, but it isn’t created and saved
to the database just yet.

def new
@user = User.new

end

the create action instantiates a new User object, populates it with user in-
putted values (params[:user]), and then attempts to save it. This may fail if the
user did not provide all the values required by the model in its validations or
provided incorrect data. If it saves successfully, then it creates a notice that
will be displayed to the user and redirects them to a new page. If not, it will
render the new action, which is typically a page a form, so that they can retry.

def create
@user = User.new(params[:user])
if @user.save

flash[:notice] = ’Sign up successful!’
redirect_to @user

else
render :new

end
end

the show action asks the User model to query the database for a specific user so
that in the view, it can display a user’s details.

def show
@user = User.find(params[:id])

end

the edit action uses some of the functionality provided by the Authlogic
plugin which stores the currently signed-in user in the @current_user object.
Then it creates a new variable to hold that user. The view for the edit action

208 Appendix A n Two Real-World Software Product Development Case Studies

typically contains a form with the user’s details already filled in, for easier
updating.

def edit
@user = @current_user

end

the update action takes in the form values (params[:user]) and then attempts
to update the current user’s details in the database. This may fail if the user did
not provide all the values required by the model in its validations or provided
incorrect data. If it succeeds, then a notice is created that will be shown to the
user and then it will redirect the user to another page. If it fails, the user will
be shown a form to retry.

def update
@user = @current_user
if @user.update_attributes(params[:user])

flash[:notice] = ’Profile updated!’
redirect_to @user

else
render :edit

end
end

the destroy action takes the current user and deletes their information from
the database – therefore making them no longer a user.

def destroy
@user = @current_user
current_user_session.destroy
@user.destroy
redirect_to root_path

end
end

The UserSessionsController controller takes in credentials provided by the user in
the sign in form, puts it into an empty UserSession object, and then tells it to save
itself. It will then take the necessary action depending on whether the model object
was able to save itself (meaning it was authenticated successfully). It also has the
capability to log users out of the system and return them to the homepage.

class UserSessionsController < ApplicationController
before_filter :require_no_user, :only => [:new, :create]
before_filter :require_user, :only => :destroy

Case Study 1 (Noshster) 209

the new action instantiates a new UserSession object
def new

@user_session = UserSession.new
end

the create action instantiates a new UserSession object and fills it with
input from the user (params[:user_session]). It then tries to save it, which will
authenticate the credentials provided by the user and try to match it to the values
stored in the database. If this succeeds, it will create a notice to show the user
and redirect them to their user page. If it fails, it will show a page with a form so
that they may retry.

def create
@user_session = UserSession.new(params[:user_session])
if @user_session.save

flash[:notice] = ’Sign in successful!’
redirect_back_or_default @user_session.user

else
render :new

end
end

the destroy method takes the current user session and deletes it from stored
values, essentially logging out the currently signed in user.

def destroy
current_user_session.destroy
flash[:notice] = ’Logout successful!’
redirect_to root_path

end
end

Noshster Release 1—Sprint 2

The goal of the second Sprint of release 1 is to build the dish management
features on top of the user management foundation of features developed in the
preceding Sprint.

Stories (Release 1—Sprint 2) The stories that will be developed during this
Sprint are:

1. Add dish

2. Edit dish

3. View dish

4. Browse dishes

210 Appendix A n Two Real-World Software Product Development Case Studies

As mentioned in the book, one of the benefits of organizing development work
around common core business data elements is to allow teams to work in
parallel, as we also did here with Noshster, in splitting the developers into three
separate groups to work concurrently on the view dish and edit dish after we
were almost done with implementing the add dish user story.

In Figure A.16, you will find the organization of data models for Release 1—
Sprint 2.

In Figure A.17, you will find the relationship of the data models for Release 1—
Sprint 2.

Figure A.16

Extension to the first data ring.

Case Study 1 (Noshster) 211

Noshster Parallel (Concurrent) Software Development(Release 1—Sprint 2)

As indicated in Chapters 6 and 7, one of the numerous advantages of designing
and developing software around common data elements is the fact that after the
entity is created, we can have two or more teams work in parallel (concurrent)
with one another. And that was done for Noshster Sprint #2, as can be seen in
Figure A.18. Parallel software development is made very easy with the use of
a version control system, such as Git, since developers can simply work on

Figure A.17

Noshster’s high level data model for the second Sprint.

Figure A.18

Noshster’s parallel software development.

212 Appendix A n Two Real-World Software Product Development Case Studies

different parts of an application and have them be automatically merged together
when they put them in the version control system.

Noshster Model—View—Controller (Release 1—Sprint 2) The Dish model
allows the Noshster web application to store dish information that is provided
by the user. It ensures that a dish name and description is provided and that the
dish name is unique. It also accepts a file and stores it onto Amazon S3 while
connecting it to the dish record in the database so that it can be retrieved later.

class Dish < ActiveRecord::Base
validates :name, :presence => true, :uniqueness => true
validates :description, :presence => true

has_attached_file :picture, :styles => { :medium => ’350x350#’, :small =>
’150x150#’, :thumb => ’75x75#’ }, :storage => :s3, :s3_credentials =>
"#{Rails.root}/config/s3.yml", :path => ":attachment/:id/:style.:extension"

validates_attachment_presence :picture
end

Views

Add dish

Figure A.19

Add dish page.

Case Study 1 (Noshster) 213

This page allows the user to add a dish by taking the following partial and
adding extra information like a title, etc.

<h1>Add a dish</h1>
<%= form_for @dish, :html => { :multipart => true } do |f| %>

<%= f.error_messages %>
<%= render :partial => ’form’, :object => f %>
<%= f.submit ’Add dish’ %>

<% end %>

Form partial (a form reused across add dish and edit dish pages)

This reusable form partial presents a form, which allows a user to input dish
information to add a new dish or edit dish information. It is called on the line
<%= render :partial => ‘for’, :object => f %> in the Add Dish code.

<p>
<%= form.label :name %>

<%= form.text_field :name %>

</p>
<p>

<%= form.label :description %>

<%= form.text_area :description, :rows => 5, :cols => 50 %>

</p>
<p>

<%= form.label :picture %>

<%= form.file_field :picture %>

</p>

Edit dish

This page allows the user to edit a dish by taking the preceding partial and
adding extra information like a title, etc.

<h1>Edit dish</h1>
<%= form_for @dish, :html => { :multipart => true } do |f| %>

<%= f.error_messages %>
<%= render :partial => ’form’, :object => f %>
<%= f.submit ’Update dish’ %>

<% end %>

214 Appendix A n Two Real-World Software Product Development Case Studies

Form partial (a form reused across add dish and edit dish pages)

This reusable form partial presents a form, which allows a user to input dish
information to add a new dish or edit dish information. It is called on the line <
%= render :partial => ‘for’, :object => f %> in the “Edit Dish” code.

<p>
<%= form.label :name %>

<%= form.text_field :name %>

</p>
<p>

<%= form.label :description %>

<%= form.text_area :description, :rows => 5, :cols => 50 %>

</p>
<p>

<%= form.label :picture %>

<%= form.file_field :picture %>

</p>

Figure A.20

Edit dish page.

Case Study 1 (Noshster) 215

View dish

This page allows the user to view dish information by taking the dish object
returned from the database and displaying it in a structured format on the page.

<h1><%= @dish.name %></h1>
<p>

<%= image_tag @dish.picture.url(:medium), :alt => @dish.name %>
</p>
<p>

<%= @dish.description %>
</p>
<% if signed_in? %>

<p>
<%= link_to ’Edit dish’, edit_dish_path(@dish) %>

</p>
<% end %>

Figure A.21

View dish page.

216 Appendix A n Two Real-World Software Product Development Case Studies

Browse dishes

This page takes all the dishes returned from the database and presents them to
the user.

<h1>Browse dishes</h1>
<%= render @dishes %>

Dish partial (to reuse showing dish details on browse dishes page)

This partial is used in the preceding page to display a single dish’s information.
It is called on the line <%= render @dishes %>.

<div class="dish">
<div class="picture">

<%= link_to image_tag(dish.picture.url(:thumb), :alt => dish.name),
dish %>

</div>

Figure A.22

Browse dishes page.

Case Study 1 (Noshster) 217

<p class="details">
<%= link_to dish.name, dish %>

<%= truncate dish.description, :length => 100 %>

</p>
</div>

Controllers The DishesController controller takes a request from the user and
returns the corresponding view and data from the database. For example, if a
user goes to the browse dishes page, the DishesController controller finds all the
dishes in the database and returns it along with the corresponding browse dishes
view.

class DishesController < ApplicationController
before_filter :require_user, :only => [:new, :create, :edit, :update]
before_filter :get_dish, :only => [:show, :edit, :update]

the index action asks the Dish model to query the database and retrieve all of
the dishes in alphabetical order by name.

def index
@dishes = Dish.order(’name ASC’)

end

the new action instantiates a new Dish object
def new

@dish = Dish.new
end

the create action instantiates a new Dish object and fills it with data from
the user (params[:dish]). It then tries to save it. This may fail if the user did
not provide all the values required by the model in its validations or provided
incorrect data. If it succeeds, it will create a notice that will be shown to the
user and redirect them to a new page with dish details. If it fails, it will show
them a page with a form to retry.

def create
@dish = Dish.new(params[:dish])
if @dish.save

flash[:notice] = ’You have successfully added a dish!’
redirect_to @dish

else
render :new

end
end

218 Appendix A n Two Real-World Software Product Development Case Studies

the show action is special in this controller. In the DishesController at the
top, there is a line "before_filter :get_dish, :only => [:show, :edit, :update]".
This is called a filter which, for the show, edit, and update actions, will execute
the get_dish action. The get_dish action retrieves a specific dish from the da-
tabase for presentation.

def show
end

the edit action is essentially the same as the show action.
def edit
end

the update action takes the dish retrieved from the get_dish action and
attempts to update it with data provided by the user (params[:dish]). This may
fail if the user did not provide all the values required by the model in its
validations or provided incorrect data. If it succeeds, it will create a notice
that will be shown to the user and redirect them to a new page with dish
details. If it fails, it will show them a page with a form to retry.

def update
if @dish.update_attributes(params[:dish])

flash[:notice] = "You have successfully updated #{@dish.name}!"
redirect_to @dish

else
render :edit

end
end

private
the get_dish action is created to promote reusability. Since several actions

in this controller require a dish to be retrieved from the database, it can be
created in a separate place instead of being copied multiple times.

def get_dish
@dish = Dish.find(params[:id])

end
end

Noshster Release 2—Sprint 3

The goal of the second Sprint of release 1 is to build the restaurant management
features on top of the dish and user management foundation of features
developed in the preceding Sprint.

Case Study 1 (Noshster) 219

Stories (Release 2—Sprint 3) The stories that will be developed during this
Sprint are:

1. Add restaurant

2. Edit restaurant

3. View restaurant

4. Browse restaurants

Developing these features first will help us in the last Sprint, which must have
the dish and restaurant management features already created in order to
function properly.

In Figure A.23, you will find the organization of data models for Release 1—
Sprint 3.

Figure A.23

The common data ring during Sprint 3.

220 Appendix A n Two Real-World Software Product Development Case Studies

In Figure A.24, you will find the relationship of data models for Release 1—
Sprint 1.

Noshster Model—View—Controller (Release 2—Sprint 3) The Restaurant
model allows the Noshster web application to store restaurant information and
ensures that there is a name, address, city, state, and zip code passed to the
database. It also ensures that the zip code is a number and that the restaurant is
not a duplicate.

class Restaurant < ActiveRecord::Base
validates :name, :presence => true
validates :address_1, :presence => true
validates :city, :presence => true
validates :state, :presence => true
validates :zip_code, :presence => true, :numericality => true

validate :restaurant_is_not_duplicate

private
def restaurant_is_not_duplicate

ifRestaurant.where(:name=>self.name,:address_1=>self.address_1).count>0
errors[:base] << ’That restaurant already exists.’
return false

end
end

end

Figure A.24

Noshster’s data model during Sprint 3.

Case Study 1 (Noshster) 221

Views

Add restaurant

This page allows the user to add a restaurant by taking the above partial and
adding extra information like a title, etc.

<h1>Add a restaurant</h1>
<%= form_for @restaurant do |f| %>

<%= f.error_messages %>
<%= render :partial => ’form’, :object => f %>
<%= f.submit ’Add restaurant’ %>

<% end %>

Form partial (a form reused across add restaurant and edit restaurant pages)

This reusable form partial presents a form, which allows a user to input
restaurant information to add a new restaurant or edit restaurant information.

Figure A.25

Add restaurant page.

222 Appendix A n Two Real-World Software Product Development Case Studies

It is called on the line <%= render :partial => ‘form’, :object => f %> in the Add
Restaurant code.

<p>
<%= form.label :name %>

<%= form.text_field :name %>

</p>
<p>

<%= form.label :address_1 %>

<%= form.text_field :address_1 %>

</p>
<p>

<%= form.label :address_2 %>

<%= form.text_field :address_2 %>

</p>
<p>

<%= form.label :city %>

<%= form.text_field :city %>

</p>
<p>

<%= form.label :state %>

<%= select :restaurant, :state, [’[List of states]’] %>

</p>
<p>

<%= form.label :zip_code %>

<%= form.text_field :zip_code %>

</p>

Edit restaurant

This page allows the user to edit a restaurant by taking the preceding partial and
adding extra information like a title, etc.

<h1>Edit restaurant</h1>
<%= form_for @restaurant do |f| %>

<%= f.error_messages %>
<%= render :partial => ’form’, :object => f %>
<%= f.submit ’Update restaurant’ %>

<% end %>

Case Study 1 (Noshster) 223

Form partial (a form reused across add restaurant and edit restaurant pages)

This reusable form partial presents a form, which allows a user to input
restaurant information to add a new restaurant or edit restaurant information.
It is called on the line <%= render :partial => ‘form’, :object => f %> in the Edit
Restaurant code.

<p>
<%= form.label :name %>

<%= form.text_field :name %>

</p>
<p>

<%= form.label :address_1 %>

<%= form.text_field :address_1 %>

</p>
<p>

<%= form.label :address_2 %>

Figure A.26

Edit restaurant page.

224 Appendix A n Two Real-World Software Product Development Case Studies

<%= form.text_field :address_2 %>
</p>
<p>

<%= form.label :city %>

<%= form.text_field :city %>

</p>
<p>

<%= form.label :state %>

<%= select :restaurant, :state, [’[List of states]’] %>

</p>
<p>

<%= form.label :zip_code %>

<%= form.text_field :zip_code %>

</p>

View restaurant

Figure A.27

View restaurant page.

Case Study 1 (Noshster) 225

This page allows the user to view restaurant information by taking the restaurant
object returned from the database and displaying it in a structured format on the
page.

<h1><%= @restaurant.name %></h1>
<p>

<%= @restaurant.address_1 %>

<% unless @restaurant.address_2.empty? %>

<%= @restaurant.address_2 %>

<% end %>
<%= @restaurant.city %>, <%= @restaurant.state %> <%= @restaurant.zip_code %>

</p>
<% if signed_in? %>

<p>
<%= link_to ’Edit restaurant’, edit_restaurant_path(@restaurant) %>

</p>
<% end %>

Browse restaurants

Figure A.28

Browse restaurants page.

226 Appendix A n Two Real-World Software Product Development Case Studies

This page takes all the restaurants returned from the database and presents them
to the user.

<h1>Browse restaurants</h1>
<%= render @restaurants %>

Restaurant partial (to reuse showing restaurant details on browse restaurants

page)

This partial is used in the preceding page to display a single restaurant’s
information. It is called on the line <%= render @restaurants %>.

<div class="restaurant">
<%= link_to restaurant.name, restaurant %>

</div>

Controllers The RestaurantsController controller takes a request from the user
and returns the corresponding view and data from the database. For example, if
a user goes to the browse restaurants page, the RestaurantsController controller
finds all the restaurants in the database and returns them along with the
corresponding browse restaurants view.

class RestaurantsController < ApplicationController
before_filter :require_user, :only => [:new, :create, :edit, :update]
before_filter :get_restaurant, :only => [:show, :edit, :update]

the index action asks the Restaurant model to query the "restaurants" table in
the database and get all the restaurants in order of alphabetical name.

def index
@restaurants = Restaurant.order(’name ASC’)

end

the new action instantiates a Restaurant object
def new

@restaurant = Restaurant.new
end

the create action instantiates a new Restaurant object, populates it with
user inputted values (params[:restaurant]), and then attempts to save it. This
may fail if the user did not provide all the values required by the model in its
validations or provided incorrect data. If it saves successfully, then it
creates a notice that will be displayed to the user and redirects them to a new
page. If not, it will render the new action, which is typically a page a form,
so that they can retry.

Case Study 1 (Noshster) 227

def create
@restaurant = Restaurant.new(params[:restaurant])
if @restaurant.save

flash[:notice] = ’You have successfully added a restaurant!’
redirect_to @restaurant

else
render :new

end
end

the show action is special in this controller. In the RestaurantsController at
the top, there is a line "before_filter :get_restaurant, :only => [:show, :edit,
:update]". This is called a filter which, for the show, edit, and update actions,
will execute the get_restaurant action. The get_restaurant action retrieves a
specific restaurant from the database for presentation.

def show
end

the edit action is essentially the same as the show action
def edit
end

the update action takes the dish retrieved from the get_restaurant action and
attempts to update it with data provided by the user (params[:restaurant]). This
may fail if the user did not provide all the values required by the model in its
validations or provided incorrect data. If it succeeds, it will create a notice
that will be shown to the user and redirect them to a new page with restaurant
details. If it fails, it will show them a page with a form to retry.

def update
if @restaurant.update_attributes(params[:restaurant])

flash[:notice] = "You have successfully updated #{@restaurant.name}!"
redirect_to @restaurant

else
render :edit

end
end

private
the get_restaurant action is created to promote reusability. Since several

actions in this controller require a restaurant to be retrieved from the database,

228 Appendix A n Two Real-World Software Product Development Case Studies

it can be created in a separate place instead of being copied multiple times.
def get_restaurant

@restaurant = Restaurant.find(params[:id])
end

end

Noshster Release 2—Sprint 4

The goal of the second Sprint of release 2 is to build the review management
features on top of the restaurant management foundation of features developed
in the preceding Sprint.

Stories (Release 2—Sprint 4) The stories that will be developed during this
Sprint are:

1. Add review

2. Edit review

3. View review

After developing all of the other features in the preceding Sprints, we are now
able to develop the last “tree” of features.

In Figure A.29, you will find the organization of data models for Release 1—
Sprint 4.

In Figure A.30, you will find the relationship of the data models for Release 1—
Sprint 1.

Noshster Model—View—Controller (Release 2—Sprint 4) The Review
model allows the Noshster web application to store review information in the
database that is connected to a user, dish, and restaurant for later reporting. It
ensures that there is a body, rating, and restaurant attached to the review.

class Review < ActiveRecord::Base
validates :body, :presence => true
validates :rating, :presence => true
validates :restaurant_id, :presence => true

belongs_to :user
belongs_to :dish
belongs_to :restaurant

end

Case Study 1 (Noshster) 229

The User model is modified to form a relationship between users and reviews—
that is, a user has many reviews so that when a review is displayed, we can tell
the viewer who wrote the review.

class User < ActiveRecord::Base
acts_as_authentic do |c|

c.require_password_confirmation = false
end

has_many :reviews

end

Figure A.29

Data rings during Sprint 4.

230 Appendix A n Two Real-World Software Product Development Case Studies

The Dish model is modified to form a relationship between dishes, reviews, and
restaurants so that by retrieving a dish from the database, you can also see all the
related reviews and restaurants.

class Dish < ActiveRecord::Base
validates :name, :presence => true, :uniqueness => true
validates :description, :presence => true

has_attached_file :picture, :styles => { :medium => ’350x350#’, :small =>
’150x150#’, :thumb => ’75x75#’ }, :storage => :s3, :s3_credentials =>
"#{Rails.root}/config/s3.yml", :path => ":attachment/:id/:style.:extension"

validates_attachment_presence :picture

has_many :reviews

has_many :restaurants, :through => :reviews

end

Figure A.30

Noshster’s data model during Sprint 4.

Case Study 1 (Noshster) 231

The Restaurant model is modified to be connected to reviews and dishes for the
same reasons as the Dish model.

class Restaurant < ActiveRecord::Base
validates :name, :presence => true
validates :address_1, :presence => true
validates :city, :presence => true
validates :state, :presence => true
validates :zip_code, :presence => true, :numericality => true

validate :restaurant_is_not_duplicate

has_many :reviews
has_many :dishes, :through => :reviews

private
def restaurant_is_not_duplicate

ifRestaurant.where(:name=>self.name,:address_1=>self.address_1).count>0
errors[:base] << ’That restaurant already exists.’
return false

end
end

end

Views

Add review

This page allows the user to add a review by taking the preceding partial and
adding extra information like a title, etc.

<% content_for :head do %>
<%= javascript_include_tag ’/restaurants’ %>
<script type="text/javascript">

$(document).ready(function() {
$(’#restaurant_name’).autocomplete(data, {

matchContains: true,
mustMatch: true,
formatItem: function(item) {

return item.name + ’
’ + item.address;
},
formatMatch: function(item) {

return item.name;
},

232 Appendix A n Two Real-World Software Product Development Case Studies

formatResult: function(item) {
return item.name;

}
}).result(function(event, item) {

$(’#review_restaurant_id’).attr(’value’, item.id);
});

});
</script>

<% end %>
<h1>Add a review for <%= @dish.name %></h1>
<%= form_for [@dish, @review] do |f| %>

<%= f.error_messages %>
<p>

<%= label_tag "Where did you eat #{@dish.name}?" %>

<%= text_field_tag :restaurant_name, params[:restaurant_name] %>

<%= link_to ’Add a new restaurant’, new_restaurant_path %>
<%= f.hidden_field :restaurant_id %>

</p>
<%= render :partial => ’form’, :object => f %>
<%= f.submit ’Add review’ %>

<% end %>

Figure A.31

Add review page.

Case Study 1 (Noshster) 233

Form partial (a form reused across add review and edit review pages)

This reusable form partial presents a form, which allows a user to input review
information to add a new review or edit review information. It is used on the
line <%= render :partial => ‘form’, :object => f %> in the “Add Review” code.

<p>
<%= form.label :body, ’Review’ %>

<%= form.text_area :body, :rows => 5, :cols => 50 %>

</p>
<p>

<%= form.label :rating %>

1 <%= form.radio_button :rating, 1 %>
2 <%= form.radio_button :rating, 2 %>
3 <%= form.radio_button :rating, 3 %>
4 <%= form.radio_button :rating, 4 %>
5 <%= form.radio_button :rating, 5 %>

</p>

Edit Review

Figure A.32

Edit review page.

234 Appendix A n Two Real-World Software Product Development Case Studies

This page allows the user to edit a review by taking the preceding partial and
adding extra information like a title, etc.

<h1>Edit review for <%= @dish.name %></h1>
<%= form_for [@dish, @review] do |f| %>

<%= f.error_messages %>
<%= render :partial => ’form’, :object => f %>
<%= f.submit ’Update review’ %>

<% end %>

Form partial (a form reused across add review and edit review pages)

This reusable form partial presents a form, which allows a user to input review
information to add a new review or edit review information. It is used on the
line <%= render :partial => ‘form’, :object => f %> in the Edit Review code.

<p>
<%= form.label :body, ’Review’ %>

<%= form.text_area :body, :rows => 5, :cols => 50 %>

</p>
<p>

<%= form.label :rating %>

1 <%= form.radio_button :rating, 1 %>
2 <%= form.radio_button :rating, 2 %>
3 <%= form.radio_button :rating, 3 %>
4 <%= form.radio_button :rating, 4 %>
5 <%= form.radio_button :rating, 5 %>

</p>

Review partial/delete review

This partial presents reviews in a specific format along with a delete review
button that allows a user to delete their own review.

<div class="review">
<p>

<%= link_to review.user.email_address, review.user %> gave <%= link_to
review.restaurant.name, review.restaurant %> <%= review.rating %> stars for
this dish!

</p>

Case Study 1 (Noshster) 235

<p>
<%= review.body %>

</p>
<p>

<% if signed_in? %>
<% if review.user == current_user %>

<%= link_to ’Edit review’, edit_dish_review_path(review.dish,
review) %>

<%= button_to ’Delete review’, dish_review_path(review.dish,
review), :method => :delete %>

<% end %>
<% end %>

</p>
</div>

Figure A.33

Delete review page.

236 Appendix A n Two Real-World Software Product Development Case Studies

Controllers The ReviewsController controller takes a request from the user
and returns the corresponding view and data from the database. For example, if
a user goes to the add a review page, the ReviewsController controller finds the
relevant dish and restaurant in the database and an empty review object to be
filled in later and returns it along with the corresponding add a review view.

class ReviewsController < ApplicationController
before_filter :require_user, :only => [:new, :create, :edit, :update, :destroy]
before_filter :get_dish
before_filter :get_review, :only => [:edit, :update, :destroy]
before_filter :authorize_user, :only => [:edit, :update, :destroy]

the new action gets the signed-in user using Authlogic’s built-in
current_user action which retrieves a signed-in user and instantiates a Review
object.

def new
store_location
@user = current_user
@review = @user.reviews.build

end

the create action gets the signed-in user and instantiates a Review object
while populating it with data provided by the user (params[:review]). It then
sets the parent object of that Review object to the dish retrieved by the
database in the get_dish action. It then tries to save it. This may fail if the
user did not provide all the values required by the model in its validations or
provided incorrect data. If it succeeds, it will create a notice that will be
shown to the user and redirect them to a new page with the dish details and all
of its reviews. If it fails, it will show them a page with a form to retry.

def create
@user = current_user
@review = @user.reviews.build(params[:review])
@review.dish = @dish
if @review.save

flash[:notice] = "You have successfully reviewed #{@dish.name}!"
redirect_to @dish

else
render :new

end
end

Case Study 1 (Noshster) 237

the edit action uses the before_filter which runs get_review in order to
provide a Review object to the view.

def edit
end

the update action uses the before_filter which runs get_review to get a review
which it then attempts to update with user provided values. It then tries to save
it. This may fail if the user did not provide all the values required by the model
in its validations or provided incorrect data. If it succeeds, it will create a
notice that will be shown to the user and redirect them to a new page with dish
details. If it fails, it will show them a page with a form to retry.

def update
if @review.update_attributes(params[:review])

flash[:notice] = ’You have successfully updated your review!’
redirect_to @dish

else
render :edit

end
end

the destroy action also uses the before_filter which runs get_review in order
to retrieve a specific review before attempting to delete it from the database.

def destroy
@review.destroy
flash[:notice] = ’You have successfully deleted your review!’
redirect_to @dish

end

private
def get_dish

@dish = Dish.find(params[:dish_id])
end

def get_review
@review = Review.find(params[:id])

end

def authorize_user
unless @review.user == current_user

238 Appendix A n Two Real-World Software Product Development Case Studies

flash[:notice] = ’You do not have permission to perform this action.’
redirect_to current_user

end
end

end

Testing Noshster

Example Unit Test An example unit test for our Dish model was:

class DishTest < ActiveSupport::TestCase
test ’Dish is successfully created’ do

old_count = Dish.count
Dish.create(:name => ’Example’, :description => ’Example’, :picture =>

’Example.jpg’)
new_count = Dish.count
assert_equal(new_count, old_count + 1) # Make sure that there is 1 more dish

in the database than before
end

end

The test itself ensures that you can successfully add a dish to the database given
it has all the necessary properties such as a name, description, and picture.

An example functional test for our Dish controller was:

class DishControllerTest < ActiveSupport::TestCase
test ’Dish is successfully created through the controller’ do

post :create, :dish => { :name => ’Example’, :description => ’Example’,
:picture => ’Example.jpg’ }

assert :redirect # Make sure the POST request to the create action was
successful

end
end

This ensures that the controller properly accepts dish information and saves a
new dish to the database and responds by redirecting the user to the right page.

Example Integration Test An example integration test for our Add a dish
feature was:

class DishFlowsTest < ActionController::IntegrationTest
test ’Sign in and add a dish’ do

get ’/sign_in’
assert_response :success

Case Study 1 (Noshster) 239

post_via_redirect ’/sign_in’, :username => ’example’, :password =>
’example’

assert_equal ’/welcome’, path

post :create, :dish => { :name => ’Example’, :description => ’Example’,
:picture => ’Example.jpg’ }

assert :redirect # Make sure the POST request to the create action was
successful

end
end

This test ensures that a given certain user flow (going to the sign in page, signing
in, being redirected to the sign in page, and then creating a dish) works properly.

Example User Acceptance Test An example user acceptance test for the
Noshster sign up feature would be:

Feature: Sign up
In order to use Noshster
As a non-member
I want to be able to register

Scenario: Sign up
Given I have filled in all the form’s fields username, password, and email

address with andrewpham, password, andrewpham@example.com
When I click sign up
Then I should be redirected to my newly created profile page

Given /^I have filled in all the form\’s required fields username, password, and
email address with (.+)$/ do |inputs|

user_fields = inputs.split(’,)
@user = User.new
@user.username = user_fields[0]
@user.password = user_fields[1]
@user.email_address = user_fields[2]

end

When /^I click sign up$/ do
@user.save!

end

240 Appendix A n Two Real-World Software Product Development Case Studies

Then /^I should be redirected to my newly created profile page$/ do
assert_response :redirect
assert_redirected_to @user

end

This test emulates a real-world user and ensures that if a real-world user were to
use the web application, it would work as expected.

Case Study 1 (Noshster) 241

Case Study 2 (Conferous)

Conferous is an online conference call management web application that allows
teams and groups to easily collaborate by making the setting up of conference
calls simple.

Product Vision and Goal

The product vision of Conferous is to create an extremely simple and easy-to-
use online conference call management web application that can be used to
create easily accessible and easily remembered conference calls that are recorded
for later reference for teams and groups.

The overall goal of Conferous is to make hosting conference calls simple.

n Who: Corporate conference users

n Why: Make conference calls easy to use and remember

n What: Conference calls

n Where: Limited to the U.S.A. only

n When: 24� 7

Requirements Gathering Using the Book’s Visual Technique

Using the visual requirements gathering technique in Chapter 4, the team was
able to identify the following requirements using the tree and forest analogy
(Figure A.34).

Architecture Vision and Release/Sprint Planning

At first, we were presented with several requirements, which, when thrown
together, looked quite overwhelming as shown in Figure A.35.

Architecture Vision

Using the approach we learned in Chapter 6, we were able to quickly see more
clearly, as shown in Figure A.36.

With Conferous, we decided to horizontally slice the application; that is, instead
of developing entire trees of features within the same Sprint, we decided to
develop more than one tree subset of features in one Sprint, and to expand
progressively into other features as we moved into subsequent Sprints.

242 Appendix A n Two Real-World Software Product Development Case Studies

The reason for this was that we needed the user to be able to sign up for the
basic features of a teleconference room to start using our application right away
rather than having to wait for us to finish all the features of a room. And as it
turned out, our calculation was correct.

Conferous Release and Sprint Planning

Forest Trees Leaves

Online
Conference Call
Management

Release 1

Sprint 1

User
Management

Sign up, Sign in,
Logout

Room
Management

Add Room,
Delete Room, Browse Rooms

Sprint 2

Recording
Management

Browse Recordings

User
Management

Edit Profile,
Cancel Account

Figure A.34

The requirements pyramid for the conference management software conferous.

Case Study 2 (Conferous) 243

Project Estimation Using the Objective Criteria Technique

The chart below is a summary of the points estimated for each story within each
Sprint using the objective criteria technique presented earlier in the book. You
can find the formulas used to calculate each column in Chapter 5.

Figure A.35

When requirements list was thrown at us at first sight.

244 Appendix A n Two Real-World Software Product Development Case Studies

Characteristics

PBIs

(Story)

Inter-

action

Type

Busi-

ness

Rules

Enti-

ties

Data

Manipul-

ation

Type

Total UP

(Unadj-

usted

Points)

Coeffi-

cient

AP

(Adju-

sted

Points)

ED (Envi-

ronment

Dimens-

ions)

PPS

(=(AP*

ED)/36)

Sprint 1

Sign up 3 1 1 2 7 1 7 18 3.5

Sign in 3 1 1 2 7 1 7 18 3.5

Logout 3 1 1 1 6 1 6 18 3

Add Room 3 1 1 2 7 1 7 18 3.5

Figure A.36

Slicing the application horizontally.

Case Study 2 (Conferous) 245

Characteristics

PBIs

(Story)

Inter-

action

Type

Busi-

ness

Rules

Enti-

ties

Data

Manipul-

ation

Type

Total UP

(Unadj-

usted

Points)

Coeffi-

cient

AP

(Adju-

sted

Points)

ED (Envi-

ronment

Dimens-

ions)

PPS

(=(AP*

ED)/36)

Delete
Rooms

3 1 1 3 8 1 8 18 4

Browse
Rooms

3 1 1 1 6 1 6 18 3

Sprint 2

Edit Profile 3 1 1 3 8 1 8 18 4

Cancel
Account

3 1 1 2 7 1 7 18 3.5

Browse
Recordings

3 1 1 1 6 1 6 18 3

Conferous Development

Conferous Sprint 1

The goal of the first Sprint is to develop only the necessary features needed for
the development of the later application-centric features.

Stories (Sprint 1) The stories that will be developed during this Sprint are:

1. Sign up

2. Sign in

3. Logout

4. Add Room

5. Delete Room

6. Browse Rooms

In Figure A.37, you will find the organization of data models for Release 1—
Sprint 1.

In Figure A.38, you will find the relationship of the data models for Release 1—
Sprint 1.

(Continued)

246 Appendix A n Two Real-World Software Product Development Case Studies

Figure A.38

Conferous data model during Sprint 1.

Figure A.37

Conferous data ring during Sprint 1.

Case Study 2 (Conferous) 247

Conferous Model—View—Controller (Sprint 1) The User model enables the
Conferous application to store user registration information. It uses the
Authlogic plugin and specifies that a potential user does not need to type in a
password confirmation (only a username, password, email, etc.) to sign up.

class User < ActiveRecord::Base
acts_as_authentic do |c|

c.require_password_confirmation = false

end

has_many :rooms
end

The UserSession model enables the Conferous application to authenticate user
sign ins against user registration information stored in the database. Therefore,
when a user tries to sign in with invalid credentials that don’t match what is in
the database, the application will put out a friendly error. Otherwise, it will let
the user go into what is normally a restricted area.

class UserSession < Authlogic::Session::Base
def to_key

new_record? ? nil : [self.send(self.class.primary_key)]
end

end

The Room model enables the Conferous application to store room information.
It ensures that a name and description for the room is provided and that the
name for the room is unique. It also establishes a connection between the user
who created it and the room itself for later reporting.

class Room < ActiveRecord::Base
validates :name, :presence => true, :uniqueness => true
validates :description, :presence => true

belongs_to :user
end

Views

Sign up

This view takes the following sign up form partial and adds extra information
such as a title, etc.

248 Appendix A n Two Real-World Software Product Development Case Studies

<h1>Sign up</h1>
<%= form_for @user do |f| %>

<%= f.error_messages %>
<%= render :partial => ’form’, :object => f %>
<%= f.submit ’Sign up’ %>

<% end %>

Form partial—(for use in sign up and edit profile—in the future—pages)

This is a reusable form that shows users a sign up form, which they can then use
to fill in their user registration information. It is called on the line <%= render :
partial => ‘form’, :object => f %> in the Sign up code.

<p>
<%= form.label :username %>

<%= form.text_field :username %>

</p>

Figure A.39

Sign up page.

Case Study 2 (Conferous) 249

<p>
<%= form.label :password %>

<%= form.password_field :password %>

</p>
<p>

<%= form.label :email_address %>

<%= form.text_field :email_address %>

</p>

Sign in

This view takes the sign up form, but gears it towards allowing users to use the
form to sign in to the web application.

Figure A.40

Sign in page.

250 Appendix A n Two Real-World Software Product Development Case Studies

<h1>Sign in</h1>
<%= form_for @user_session do |f| %>

<%= f.error_messages %>
<p>

<%= f.label :username %>

<%= f.text_field :username %>

</p>
<p>

<%= f.label :password %>

<%= f.password_field :password %>

</p>
<%= f.submit ’Sign in’ %>

<% end %>

Add room

This view presents the add a room form and allows it to accept user input to
create a room.

Figure A.41

Add a room page.

Case Study 2 (Conferous) 251

<h1>Add a room</h1>
<%= form_for [@user, @room] do |f| %>

<%= f.error_messages %>
<p>

<%= f.label :name %>

<%= f.text_field :name %>

</p>
<p>

<%= f.label :description %>

<%= f.text_area :description, :rows => 5, :cols => 50 %>

</p>
<%= f.submit ’Add room’ %>

<% end %>

Delete room

This view presents a delete room button, which allows the user to delete a
specific room.

Figure A.42

Delete a room page.

252 Appendix A n Two Real-World Software Product Development Case Studies

<div class="room">
<p>

Name: <%= room.name %>
</p>
<p>

Description: <%= room.description %>
</p>
<p>

<%= button_to ’Delete room’, user_room_path(@user, room), :method => :
delete %>

</p>
</div>

Browse rooms

This view takes all of the rooms returned from the database in the controller and
displays them.

Figure A.43

Browse rooms page.

Case Study 2 (Conferous) 253

<h1>Rooms</h1>
<%= link_to ’Add a room’, new_user_room_path(@user) %>
<div id="rooms">

<%= render @user.rooms %>
</div>

Room partial—(to reuse showing room details)

This is the reusable view partial that is used in the preceding page to display
room information in a specific way.

<div class="room">
<p>

Name: <%= room.name %>
</p>
<p>

Description: <%= room.description %>
</p>
<p>

<%= button_to ’Delete room’, user_room_path(@user, room), :method => :
delete %>

</p>
</div>

Controllers The UserController controller takes in the request from the
browser and returns the proper view and necessary data. For example, if a
user goes to the sign up page, the UserController controller returns the sign up
page along with an empty User object to be filled in later. In another example,
when a user actually clicks the sign up button, the controller receives the
information typed into the form, puts it into the empty User object, and tells the
object to save itself (this is when the model takes over and validates the data).

class UsersController < ApplicationController
before_filter :require_no_user, :only => [:new, :create]

the new action instantiates a new User object.
def new

@user = User.new
end

the create action instantiates a new User object and fills it with user-
provided values (params[:user]). It then tries to save it. This may fail if the
user did not provide all the values required by the model in its validations or

254 Appendix A n Two Real-World Software Product Development Case Studies

provided incorrect data. If it succeeds, it will create a notice that will be shown
to the user and redirect them to a new page with user details. If it fails, it will
show them a page with a form to retry.

def create
@user = User.new(params[:user])
if @user.save

flash[:notice] = ’Sign up successful!’
redirect_to @user

else
render :new

end
end

the show action takes the currently signed-in user through an Authlogic-
provided method and puts it into the @user variable.

def show
@user = current_user

end
end

The UserSessionsController controller takes in credentials provided by the user
in the sign in form, puts it into an empty UserSession object, and then tells it to
save itself. It then takes the necessary action depending on whether the model
object was able to save itself (meaning it was authenticated successfully). It also
has the capability to log the user out of the system and return her to the
homepage.

class UserSessionsController < ApplicationController
before_filter :require_no_user, :only => [:new, :create]
before_filter :require_user, :only => :destroy

the new action instantiates a new UserSession object
def new

@user_session = UserSession.new
end

the create action instantiates a new UserSession object and fills it with
user-provided values (params[:user_session]). It then tries to save it. This may
fail if the user did not provide all the values required by the model in its val-
idations or provided incorrect data. If it succeeds, it will create a notice that

Case Study 2 (Conferous) 255

will be shown to the user and redirect them to a new page with user details. If it
fails, it will show them a page with a form to retry.

def create
@user_session = UserSession.new(params[:user_session])
if @user_session.save

flash[:notice] = ’Sign in successful!’
redirect_back_or_default @user_session.user

else
render :new

end
end

the destroy method takes the current user session and deletes it from stored
values, essentially logging out the currently signed in user.

def destroy
current_user_session.destroy
flash[:notice] = ’Logout successful!’
redirect_to root_path

end
end

class RoomsController < ApplicationController

before_filter :require_user
before_filter :get_user

the new action takes the currently signed-in user through the get_user
filter, and instantiates a Room object.

def new
@room = @user.rooms.build

end

the create action instantiates a Room object and fills it with user-provided
values (params[:room]). It then tries to save it, which will authenticate the
credentials provided by the user and try to match it to the values stored in the
database. If this succeeds, it will create a notice to show the user and redirect
them to their user page. If it fails, it will show a page with a form so that they
may retry.

def create
@room = @user.rooms.build(params[:room])

256 Appendix A n Two Real-World Software Product Development Case Studies

if @room.save
flash[:notice] = ’You have successfully created a room!’
redirect_to @user

else
render :new

end
end

the destroy action takes a specific room and attempts to delete it from the
database.

def destroy
@room = @user.rooms.find(params[:id])
@room.destroy
flash[:notice] = ’You have successfully deleted a room!’
redirect_to @user

end

private
def get_user

@user = current_user
end

end

Conferous Sprint 2

The goal of the second Sprint is to build upon the foundation of the first Sprint
and develop valuable application-centric features.

Stories (Sprint 2) The stories that will be developed during this Sprint are:

1. Browse recordings

2. Edit profile

3. Cancel account

In Figure A.44, you will find the organization of data models for Release 1—
Sprint 2.

In Figure A.45, you will find the relationship of data models for Release 1—
Sprint 2.

Case Study 2 (Conferous) 257

Figure A.44

Conferous data ring during Sprint 2.

Figure A.45

Conferous data model during Sprint 2.

258 Appendix A n Two Real-World Software Product Development Case Studies

Conferous Model—View—Controller (Sprint 2) The Recording model allows
the Conferous web application to store recording information for each confer-
ence call made in a specific room.

class Recording < ActiveRecord::Base
belongs_to :room

end

The Room model is modified to create a connection between itself and
corresponding recordings so that when a user tries to look at the recordings
made in a specific room, they can easily be found in the database.

class Room < ActiveRecord::Base
validates :name, :presence => true, :uniqueness => true
validates :description, :presence => true

has_many :recordings

belongs_to :user

after_create :setup_test_data

private
def setup_test_data

1.upto(3) do
self.recordings.create

end
end

end

Views

Browse recordings

This view takes all of the rooms returned from the database in the controller and
displays them along with all of their recordings.

<% content_for :head do %>
<script type="text/javascript">

$(document).ready(function() {
$(’#view_recordings’).click(function() {

$(’.recordings’).slideToggle();

Case Study 2 (Conferous) 259

return false;
})

});
</script>

<% end %>
<h1>Rooms</h1>
<%= link_to ’Add a room’, new_user_room_path(@user) %>
<div id="rooms">

<%= render @user.rooms %>
</div>

Room partial—(to reuse showing room details)

This is the reusable view partial that is used in the preceding page to display
room information in a specific way. It is modified from the previous Sprint to
show recordings that are attached to the room. It is used in the line <%= render
@user.rooms %> in the Browse Rooms code.

Figure A.46

Browse recordings page.

260 Appendix A n Two Real-World Software Product Development Case Studies

<div class="room">
<p>

Name: <%= room.name %>
</p>
<p>

Description: <%= room.description %>
</p>
<p>

<%= button_to ’Delete room’, user_room_path(@user, room), :method =>
:delete %>

</p>
<p>

<%= link_to ’View recordings’, nil, :id => ’view_recordings’ %>
</p>
<p class="recordings">

<%= render room.recordings %>
</p>

</div>

Edit profile

This view takes the following edit profile form partial and adds extra informa-
tion such as a title, etc.

Figure A.47

Edit profile page.

Case Study 2 (Conferous) 261

<h1>Edit profile</h1>
<%= form_for @user do |f| %>

<%= f.error_messages %>
<%= render :partial => ’form’, :object => f %>
<%= f.submit ’Update profile’ %>

<% end %>

Form partial—(for use in the sign up and edit profile pages)

This is a reusable form that shows users an edit profile form, which they
can then use to update their user registration information. It is called on the line
<%= render :partial => ‘form’, :object => f %> in the Edit profile code.

<p>
<%= form.label :username %>

<%= form.text_field :username %>

</p>
<p>

<%= form.label :password %>

<%= form.password_field :password %>

</p>
<p>

<%= form.label :email_address %>

<%= form.text_field :email_address %>

</p>

Cancel account

This view takes the current user in the database and displays a form for him to
edit his information. At the same time, it also allows him to cancel his account
with a Delete account button.

<h1>Edit Profile</h1>
<%= form_for @user do |f| %>

<%= f.error_messages %>
<%= render :partial => ’form’, :object => f %>
<%= f.submit ’Update profile’ %>

<% end %>
<%= button_to ’Delete account’, @user, :method => :delete %>

262 Appendix A n Two Real-World Software Product Development Case Studies

Form partial—(for use in sign up and edit profile—in the future—pages)

This is a reusable form that shows the user a sign up form, which he can
then use to fill in his user registration information. It is called on the line <%=
render :partial => ‘form’, :object => f %> in the Cancel account code.

<p>
<%= form.label :username %>

<%= form.text_field :username %>

</p>
<p>

<%= form.label :password %>

<%= form.password_field :password %>

</p>
<p>

<%= form.label :email_address %>

<%= form.text_field :email_address %>

</p>

Controllers The UserController controller is modified to allow for the Cancel
account feature.

class UsersController < ApplicationController
before_filter :require_no_user, :only => [:new, :create]

the new action instantiates a new User object.
def new

@user = User.new
end

the create action instantiates a new User object and fills it with user-
provided values (params[:user]). It then tries to save it. This may fail if the
user did not provide all the values required by the model in its validations or
provided incorrect data. If it succeeds, it will create a notice that will be shown
to the user and redirect them to a new page with user details. If it fails, it will
show them a page with a form to retry.

def create
@user = User.new(params[:user])
if @user.save

flash[:notice] = ’Sign up successful!’
redirect_to @user

else

Case Study 2 (Conferous) 263

render :new
end

end

the show action takes the currently signed-in user through an Authlogic-
provided method and puts it into the @user variable.

def show
@user = current_user

end

the destroy action finds the specified user and deletes it from the database,
thereby canceling the account.

def destroy
@user = User.find(params[:id])
@user.destroy
flash[:notice] = ’You have successfully canceled your account!’
redirect_to root_path

end
end

264 Appendix A n Two Real-World Software Product Development Case Studies

Could You or Should

You Have an Abnormal

Termination of a Sprint?

Introduction

If you have read and followed all the suggestions we make throughout this book,
you should never have to ask yourself this question or go through this ordeal, unless
your Sprint termination is due to an order from management or the business.

Normally, terminating a Sprint before its terms is not something you would like
to do since it is rather demoralizing for the team, but it is something you should
be able to deal with because it does happen in the real world.

Before we discuss how to restart after an abnormal termination of a Sprint, let’s
go through three different scenarios where this could happen.

When Can a Sprint Be Terminated Earlier

Than Planned?

n By management order:

An example of this is when management has to call off a project or a
Sprint when they have to announce:

1. Lay-off

2. Plant closing

3. Re-organization

All of these require the termination of your project or Sprint.

Appendix B

265

n By the business:

An example of this is when, for example, the marketing team has to re-
direct their strategy towards a new segment of the market which requires
the redirection of the fund that had been allocated to your project.

n By the team:

An example of this is when the team comes to realize that it will not be
able to meet its commitment, either due to a wrong technical decision or
because of some conflicts that have been plaguing the team’s work.

How to Avoid Terminating a Sprint Earlier

Than Planned

As we have seen, terminating a Sprint is almost unavoidable if it is due to
management or business decisions.

When it comes to the team’s own actions or their lack of ability to reach the
Sprint goal, however, there are things you can do—or should have done—to
avoid having to terminate a Sprint before its term:

n Reduce the team’s velocity (or scope) when first started on your Scrum
project:

When you first start with Scrum, it is always advisable to be more con-
servative with people’s time and to schedule their time as if they would
be working part-time at first.

n Do not hurry to make wrong technical or architectural decisions:

To be straightforward, we will recommend that you follow our advice
here in Chapters 6 and 7 before you make any decision regarding the
future architecture of your application.

n Make sure to get management commitment to provide you with all the
resources needed before you start.

Scrum or not, there is no way you can get anything done without the
appropriate resources.

n Keep track of your project one day at a time.

n Keep an eye open on your Burndown chart, one day at a time.

266 Appendix B n Could You or Should YouHave an Abnormal Termination of a Sprint?

n Make sure to get your management to understand that they should not
get you to take care of something else during the course of a Sprint.

Classic cases of impediments still happen very often in our corporations.

How to Restart After Terminating a Sprint

Earlier Than Planned

Whenever you re-start after an abnormal termination of a Sprint, always make
sure to know the reason for the interruption of the Sprint, not just the
symptoms, but the root causes of the termination. Next, what you should do
is to have a new planning session to make sure you take into account the
new situation and environment before you run ahead into another Sprint
termination.

How to Restart After Terminating a Sprint Earlier Than Planned 267

This page intentionally left blank

Agile. Generic name that often means the opposite of a rigid and heavyweight
software development and/or project management approach or process.

Agile manifesto. Document drafted during a meeting in Utah in 2001, which
initiated a more adaptive and lightweight movement in software development.

Architecture. The overall design or arrangement of the main components of a
software application.

Architecture vision. Similar to what some other people call architecture intent,
this is a high-level vision of what the architecture will look like once all the
details are fleshed out.

Burndown chart. Diagram used by the Scrum team to display how much work
remains in the Sprint.

Coaching. The art of developing someone’s talents or helping someone grow or
reach some specific goals by helping the person identify his own roadmap
and commitments that will be required of him to get to the results.

Conflict resolution techniques. Teams are self-organizing in Scrum; these are
techniques that project team members can use to resolve conflicts among
themselves: Accommodating, Compromise, Competitive, Collaborating, and
Avoidance.

Core business data elements. Data elements that relate to the core of the
business domain or to the organization’s business. Room and reservation

Glossary

269

are, for example, core data elements of a hotel, while book and patron are
core data elements of a library. Designing and building software applications
around these core data elements ensures the long-term stability of the
software product and helps extend it more easily into the future without
the excessive costs of rebuild.

CUTFIT technique. Simple rules that a Scrum team can use to validate its user
stories (while gathering requirements). CUTFIT stands for Consistent,
Unambiguous, Testable, Feasible, Independent, and Traceable.

The (development) team. The team that is responsible for all the software
development activities within a Scrum team, from writing requirements to
designing to coding and testing.

Daily Scrum (Daily Standup). A daily progress meeting where the team
members get together, physically or virtually, to synchronize and learn
how much they have progressed towards the Sprint goal. Three questions
have to be answered during this meeting:

1. What have I been able to accomplish since yesterday’s meeting?

2. What do I plan on accomplishing before tomorrow’s meeting?

3. What stands in my way?

Done. Agreement by all the three parties of the Scrum team as to what the end
state is supposed to be for the development team by the end of the sprint.

Enterprise Architecture. High-level blueprint of a company’s eco-system that
shows the relationship and inter-dependencies between its business vision,
strategy, processes, software applications, data, and infrastructure.

Enterprise Architecture team. A team, which exists in many IT organizations,
that is responsible for the overall architecture of the company’s IT systems
and with which the Scrum team often must interact to get their project’s
application approved and to ensure that their new application architecture
fits into the overall enterprise architecture.

Iteration. Still called a Sprint in Scrum, this is a time-boxed cycle in Scrum
during which the development team is asked to turn some selected
(prioritized) user stories into an increment of potentially shippable product.

270 Glossary

Kanban. A process improvement framework famous for its contribution to the
Toyota Production System (TPS).

kanban (with a lower case). Denotes a card and technique, derived from the
broader Kanban framework, which is used to limit work-in-process, thus,
increasing workflow.

Lean. Generic name that covers all processes or techniques, which is known to
eliminate waste from a system or process.

Potentially shippable product increment. An increment of working software
product that was developed during a Sprint and which can be eventually
shipped to customers.

Project Management Office (PMO). A team within many IT departments that
is in charge of business and IT alignment and tracking IT performance,
mainly in terms of project costs, benefits, and timely delivery.

Product Owner. A member of the Scrum team who is responsible for the
product vision, product backlog items (requirements), and their prioritiza-
tion, from a business perspective. In some cases, the product owner is
required to play the mediation role between different business units within a
company in order to prioritize their conflicting business needs and require-
ments.

Quality Assurance (QA). A team with many IT departments, which is
responsible for quality assurance and testing activities of all new software
development. It is not part of the Scrum process framework but is a unit with
which the Scrum team must interact, even if only to get a testing professional
to be loaned to the Scrum project team to create a cross-functional
capability.

Release planning. Meeting during which the product owner shares with the
Scrum team his product vision and what functionality, in terms of user
stories, should be delivered by when. With the architectural approach we
recommend in this book, the development team members could have some
very positive influence on what user stories should be built first, rather than
passively attending the meeting as some used to in the past.

Remaining work. Number of hours estimated to be needed for a team to finish
any unfinished task during a Sprint.

Glossary 271

Sprint retrospective. Meeting during which the Scrum team will go through
what worked and what did not work during the Sprint they just finished and
determine whether there is anything they can learn from their experience
that will make the process even better for the next Sprint.

ScrumMaster. Scrum specialist whose responsibility it is to help the rest of the
team (and the organization) understand and properly apply Scrum to a
project.

The Scrum team. Generic name that covers the ScrumMaster, the product
owner, and the (development) team.

Sprint. A time-boxed cycle, or iteration, during which the development team is
supposed to turn some selected requirements (user stories) into a potentially
shippable product increment.

Sprint backlog. List of all the tasks the development team has to do during a
Sprint.

Sprint planning meeting. A two-phase meeting: during the first part, the
product owner lets the team know which requirements she thinks should
be part of the Sprint, and during the second part, the team decides how to
turn the selected requirements into an increment of potentially shippable
product.

Sprint review. Meeting during which the team provides a demonstration of
what they have built to the product owner and the stakeholders.

Self-organizing team. A concept in Agile and Scrum, which dictates that the
development team should be responsible for organizing itself as the members
see fit to get the job done. If the team does not deliver, self-organization does
not mean that the ScrumMaster or product owner could not or should not
intervene, in a subtle way and indirectly, to help the team move forward.

Sprint goal. The goal that the product owner will give to the team for their
Sprint, such as “laying down the foundation for US credit cards.”

ScrumButs (Negative). Wrong adaptation of Scrum, often equated to an excuse
to hide the organization’s weaknesses.

ScrumButs (Positive). Good adaptation of Scrum that helps get the team
moving forward despite some constraints they have to deal with in the
real world.

272 Glossary

Scrum readiness assessment. A quick assessment at the beginning of a Scrum
project that serves to assess the team’s ability to deliver on their results using
Scrum. Knowing where the team stands with the assessment allows the team
to know what they should do in order to improve their chance of using
Scrum with success.

Servant-leadership. A leadership philosophy which considers that the leader or
manager can be more successful and effective in helping the team by
removing impediments rather than ordering them around as in the old
command and control style.

SMART (technique). Simple technique known to be very effective in helping
management and teams identify goals that they can achieve within a
reasonable amount of time and with available resources. SMART stands
for Measurable, Achievable, Realistic, and Time-Based.

Stakeholders. A generic name to indicate any person or team that has a stake in
the Scrum project team’s success.

Story card. Index card used to describe a user story, both in agile and lean
processes.

Task board. Whiteboard where team tasks and assignments are recorded in all
transparency.

Toyota Production System (TPS). Production system considered to be the
leanest and most effective in the world.

Traits of a caring leader. Qualities that help someone be a good leader. Being
honest, open, authentic, available, and caring are some examples of these
qualities.

Unadjusted estimation points. Requirements estimate made before taking into
account the weight of the surrounding environment.

User role. Roles played by different users during the course of the project.
Sometimes one person can play more than one role; for instance, one person
can be both a system administrator and a billing approver.

User story. Generic name used in agile software development to indicate user
business requirements.

Velocity. Number of user stories (usually measured in points) the development
team can deliver during a Sprint.

Glossary 273

Visual requirements gathering technique. Visual technique based on the tree
and forest hierarchy that can simplify the effort put into gathering user
requirements for complex projects.

Waterfall. A sequential software development process that makes the assump-
tion that all the requirements should be gathered first, then analyzed, then
developed, and only then tested for user sign-off before being put into
production for use.

274 Glossary

Anderson, David, Kanban, Blue Hole Press, 2010.

Appelo, Jurgen. ScrumButs Are the Best Part of Scrum, September, 2009. (http://www.noop.nl/
2009/09/scrumbuts-are-the-best-part-of-scrum.html)

Augustine, Sanjiv. Managing Agile Projects, Prentice-Hall, 2005.

Cohn, Mike. User Stories Applied: For Agile Software Development, Upper Saddle River: Addison-
Wesley, 2004.

Cohn, Mike. Agile Estimating & Planning, Boston: Prentice-Hall, 2005.

Cohn, Mike. Succeeding with Agile: Leading a Self-Organizing Team, August, 2009. (www
.informit.com/articles/article.aspx?p=1382538).

Cohn, Mike. Succeeding with Agile: Software Development Using Scrum, Addison-Wesley, 2009.

Davies, Rachel, and Sedley, Liz. Agile Coaching, The Pragmatic Programmer, 2009.

Derby, Esther, and Larson, Diana. Agile Retrospectives: Making Good Teams Great, Raleigh:
Pragmatic Bookshelf, 2006.

Hirotaka Takeuchi and Ikujiro Nonaka. “The New New Product Development Game.” Harvard
Business Review, 1986.

Highsmith, Jim. Agile Software Development Ecosystems, Addison-Wesley, 2002.

Highsmith, Jim. Agile Project Management, Addison-Wesley, 2004.

Japan Management Asociation. Kanban: Just in time at Toyota, English translation and revised
edition, Productivity Inc, 1989.

Kniberg, Henrik. Scrum and XP from the Trenches, InfoQ, 2007.

Lencioni, Patrick. Five Dysfunctions of Teams, Jossey-Bass, A Wiley company, 2002.

Martin, Robert. Agile Software Development: Principles, Patterns and Practices, Upper Saddle
River, New Jersey: Pearson Education, 2005.

References

275

Moore, Geoffrey. Crossing the Chasm, HarperBusiness Essentials, 2004.

Pham, Andrew. “Influence of Architecture on Team Velocity and Software Quality,” Presentation
at the Dallas Scrum User Group, March, 2010.

Pham, Andrew. Scrum presentation to the University of Pennsylvania, School of Medicine
Information Services, June, 2010.

Poppendieck, Mary, and Poppendieck, Tom. Lean Software Development, Addison-Wesley
Professional, 2006.

Katzenbach, Jon, and Smith, Douglas. The Wisdom of Teams: Creating a High Performance
Organization, Collins Business, 1993.

Rising, Linda, and Manns, Mary Lynn. Fearless Change: Patterns for Introducing New Ideas,
Addison-Wesley, 2004.

Schwaber, Ken, and Beedle, Mike. Agile Software Development with Scrum, Prentice Hall, 2002.

Schwaber, Ken. Agile Project Management with Scrum, Microsoft Press, 2004.

Schwaber, Ken, and Sutherland, Jeff. Scrum Guide, Feb. 2010, Scrum.org.

Shalloway, Alan; Beaver, Guy; and Trott, James. Lean-Agile Software Development Achieving
Enterprise Agility, Addison-Wesley, 2010.

Sutherland, Jeff; Sutherland, Irene; and Hegarty, Christine. Scrum in Church, Agile 2009.

276 References

Special Characters
`:' literal constructor, Ruby language, 183

5W technique, 110

A
acceptance testing, 116–118

accommodating (ACCO) technique,

129–130

accountability, on group level, 125–126

achievable goals, 49

ActiveRecord component, Ruby on Rails,

186–187

actual cost (AC), 25, 28

adapting Scrum, 145–155

business dimension, 154

examples of situational adaptations,

147–154

infrastructure dimension, 151

organization dimension, 147–150

process dimension, 153–154

team dimension, 152

technology dimension, 152–153

without negative ScrumButs,

146–147

adaptive project management, 13–14

Add dish feature, Noshster

overview, 213–214

testing, 239–240

Add restaurant page, Noshster, 222

Add review page, Noshster,

232–233

Add room view, Conferous,

251–252

adjourning stage of teams, 129

Adjusted Points (AP), 70

admitting mistakes as leadership

quality, 143

advocate, product owner as, 112

Agile Manifesto, 3–4

Agile Project Management with Scrum, 4,

31, 135

Agile Software Development and Project

Management, 1–15

application to real-world projects,

177–180

effectiveness of, 12–14

foundation of, 3–5

AP (Adjusted Points), 70

Appelo, Jurgen, 146, 149

applications, aspects of, 63

architects, Keirsey Temperament Types

Sorter, 127–128

architecture

data, 40–45, 82–83, 87–89, 195, 197

defined, 75–76

enterprise, 40–45, 82–83, 89, 91–92

software, 178

architecture vision, 75–106

benefit of, 82–92

Conferous case study, 242–244

identifying, 78–82

importance of, 77–78

Noshster case study, 192–197

overview, 178–179

parallel software development, 103–105

release and sprints planning, 93–103

arrays in Ruby language, 184

Asian cultures, planning poker in, 62

assertions, testing through, 190–191

assessment of project readiness, 157–171

business dimension, 162

example, 164–169

improving score, 169–170

infrastructure dimension, 160

organization dimension, 160

overview, 177, 180

process dimension, 162

scores, 163–164, 169–170

simple tool for, 157–164

team dimension, 161

technology dimension, 161

attr_accessor method, Ruby language, 183

authentic leaders, 143

Authlogic plugin

Conferous, 248

Noshster, 199

automated testing

general discussion, 118–119

infrastructure for, 151

team velocity, 113, 115

Web development with Ruby on Rails,

190–191

availability

of leaders/managers, 143

of product owner, 111

average score, project readiness

self-assessment, 163–165

average-performance teams, 132

avoidance (AVOID) technique, 130

B
BAC (Budget at Completion), 28

backlog, product, 47–59

CUTFIT rules, 51–54

defined, 6–7

example, 54–58

gathering requirements for backlog,

49–51

identifying stakeholders and goals, 47–48

SMART rules, 48–49

visual requirements gathering process,

47–54

backlog, Sprint, 7–8, 100, 102

bad ScrumButs, 146–147

balance scorecard, 34–35

belonging, in groups, 125–126

break even point, 18–19

Browse dishes page, Noshster, 217

Browse recordings view, Conferous,

259–260

Browse restaurants page, Noshster,

226–227

Browse rooms view, Conferous, 253–254

Browse users view, Noshster, 206–207

277

INDEX

Budget at Completion (BAC), 28

budget forecasting, 27–28

Estimate at Completion, 28

Estimate to Complete, 28

formulas for, 24

Variance at Completion, 28

burndown charts, 9, 147–148

business dimension

project readiness self-assessment,

159, 162

Scrum adaptation for, 154

in story point estimation, 70

business entities in story point

estimation, 65–66

business management

focusing on finance with, 177–178

product owner, lack of, 154

working with top, 32–35

business prioritization matrix, IT, 36

business requirements, 65

business rules in story point estimate, 63–65

business units and team management, 138

buy versus build, 19–21

buy-in, management. See project

management

C
calculating project costs, 17–18

call management web application.

See Conferous case study

Cancel account view, Conferous, 262–263

Capital One, 145

caring

in teamwork, 132

as trait of leader and manager, 143–144

case studies, software development,

181–264

See also Conferous case study; Noshster

case study

Ruby language, 181–185

Ruby on Rails as web framework,

185–189

Web development with Ruby on Rails,

189–191

cash flow, in payback period, 18–19

CDE (Container, Difference, Exchange)

concept, 138

central library system example, 94–102

champions, Keirsey Temperament Types

Sorter, 128

change process, 37–39

classes, Ruby language, 182

clustering user stories, 84–85

coaching

adapting Scrum, 150

in leadership, 139

by product owner, 112

for superior performance, 141–143

code

reusing in Ruby on Rails, 185

version control, 189

Cohn, Mike, 135–136, 138

collaborating (COLLA) technique, 130

collaboration, in Scrum, 11. See also

project management

collaboration capabilities, version control

system, 189

command-and-control management,

149–150

commitment, of dual product owner/

ScrumMaster, 152

common data element approach, 95–100,

150

communication skills

of product owner, 112

ScrumMaster, 175–176

communication with IT middle

management, 38

comparable story point estimate, 61–73

cultural problems with planning poker,

62

example, 71–73

objective criteria-based estimating

process, 62–70, 197–198, 244–246

overview, 178

problems with non-comparable, 61–62

readiness self-assessment, 167–168

competitive (COMPE) technique, 130–131

composers, Keirsey Temperament Types

Sorter, 127

compromise (COMP) technique, 129–130

concurrent (parallel) software

development

architecture vision, 80, 103–105

Noshster, 211–213

version control systems, 189

Conferous case study, 242–264

architecture vision, 242–244

product vision and goal, 242

project estimation, 244–246

release planning, 242–244

Sprint 1, 246–257

Sprint 2, 257–264

Sprint planning, 242–244

visual requirements gathering process,

242–243

conflict resolution

ScrumMaster skills at, 176

techniques for, 129–131

consistent, unambiguous, testable,

feasible, independent, traceable

(CUTFIT) rules, 51–54

constructs, Ruby language, 182

Container, Difference, Exchange (CDE)

concept, 138

continuous integration testing, 119,

151, 154

controllers, in MVC

Conferous Sprint 1, 254–257

Conferous Sprint 2, 263–264

Noshster, testing, 239

Noshster release 1—Sprint 1, 207–210

Noshster release 1—Sprint 2, 218–219

Noshster release 2—Sprint 3, 227–229

Noshster release 2—Sprint 4, 237–239

overview, 187–188

convention over configuration principle,

Ruby on Rails, 185–186

cost performance

Cost Performance Index, 25–26

cost variance, 25

formulas for, 24

Cost Performance Index (CPI), 25–26, 28

cost variance (CV), 25

costs

calculating project, 17–18

human resource, of project, 17–18

payback period, 18–19

Cottmeyer, Mike, 146–147

counselors, Keirsey Temperament Types

Sorter, 127

crafters, Keirsey Temperament Types

Sorter, 127

Create, Read, Update, Delete (CRUD), 66

criteria-based estimating process

Conferous case study, 244–246

example, 71–73

general discussion, 62–70

Noshster case study, 197–198

overview, 178

readiness self-assessment, 167–168

CSM/PO internal servant-leadership

quadrant, 138–139

cultural problems with planning poker, 62

Current Reality in GROW model, 142

CUTFIT Rules (consistent, unambiguous,

testable, feasible, independent,

traceable), 51–54

CV (cost variance), 25

D
daily builds, 154

Daily Standup (daily Scrum), 8–9,

104, 150

data architecture

architecture vision, 82–83, 87–89

enterprise architecture, 40–45

Noshster, 195, 197

data entities in story point estimation,

65–66

data manipulation factor in story point

estimation, 66

data models

Conferous Sprint 1, 246–247

Conferous Sprint 2, 257–258

Noshster release 1—Sprint 1, 199–200

Noshster release 1—Sprint 2, 211–212

Noshster release 2—Sprint 3, 220–221

Noshster release 2—Sprint 4, 229–231

data-based user stories, 79–81, 84–85

dates types, Ruby language, 183–184

debts, technical, 101, 103

Declaration of Inter-Dependence, 4–5

Delete profile page, Noshster, 206

278 Index

Delete review page, Noshster, 235–236

Delete room view, Conferous, 252–253

deleting with ActiveRecord, 187

design. See architecture vision

development, parallel software

architecture vision, 80, 103–105

Noshster, 211–213

version control systems, 189

development, Web, with Ruby on Rails,

189–191

testing, 189–191

version control with Git, 189

development environment, 119–121

development example, trees and forest

technique, 54–58

development infrastructure dimension, 68

development of software with Scrum, 1–15

See also case studies, software

development; project management

application to real-world projects,

177–180

effectiveness of Agile and Scrum, 12–14

foundation of Agile, 3–5

origins of Scrum, 5

Scrum process, 5–12

development team

management, 31–32, 135–136

product owner availability, 111

suggestions to project owner, 93

TDD, 151

Dish model, Noshster, 213, 231, 239

Dish partial, Noshster, 217–218

DishesController controller, Noshster,

218–219

done, defining, 115–117, 153

don’t repeat yourself principle, Ruby on

Rails, 185

Ducker, Peter, 136

E
EA (enterprise architecture), 40–45, 82–83,

89, 91–92

EAC (Estimate at Completion), 28

Earned Value (EV)

cost variance, 25

defined, 24

project budget forecasting, 27

Schedule Variance, 26–27

ED (environment dimensions)

example, 71

general discussion, 67–70

Edit dish page, Noshster, 214–215

Edit profile view

Conferous, 261–262

Noshster, 204–205

Edit restaurant page, Noshster, 223–224

Edit review page, Noshster, 234–235

elicitation process. See requirements

gathering process

encryption, password, 199

engineering, TDD in, 151

enterprise architecture (EA), 40–45, 82–83,

89, 91–92

enterprise-wide implementation, 61–73

cultural problems with planning

poker, 62

example, 71–73

objective criteria-based estimating

process, 62–70, 197–198, 244–246

problems with non-comparable story

point, 61–62

entities, quantity of in story point

estimation, 65–66

environment dimensions (ED)

example, 71

general discussion, 67–70

Estimate at Completion (EAC), 28

Estimate to Complete (ETC), 28

estimating comparable story point, 61–73

Conferous case study, 244–246

cultural problems with planning

poker, 62

example, 71–73

Noshster case study, 197–198

objective criteria-based estimating

process, 62–70, 197–198, 244–246

overview, 178

problems with non-comparable story

point, 61–62

readiness self-assessment, 167–168

EV (Earned Value)

cost variance, 25

defined, 24

project budget forecasting, 27

Schedule Variance, 26–27

executives. See project management

expectations of stakeholders, product

owner management of, 109

extended GROW model, 141–143

externally facing side of leadership,

137–140

F
failure with Scrum, 2

feasible requirements, 52

field marshals, Keirsey Temperament

Types Sorter, 128

finances, 17–29

buy versus build, 19–21

calculating project costs, 17–18

cost performance, 25–26

focus on, 177–178

monitoring project performance, 24–28

Net Present Value, 21–22

payback period, 18–19

project budget forecasting, 27–28

reporting on, 149

Return on Investment, 22–24

schedule performance, 26–27

selecting project investments, 18–24

Five Dysfunctions of Teams, 126, 179

5W technique, 110

fixed price, buy versus build technique,

19–21

Fixnums, 184

forecasting, budget, 27–28

Estimate at Completion, 28

Estimate to Complete, 28

formulas for, 24

Variance at Completion, 28

Form partial

Conferous, 249–250, 262–263

Noshster, 202, 205, 214–215, 222–225,

234–235

forming stage of teams, 129–130

four-week Sprints, 153

framework, web, Ruby on Rails as,

185–189

general discussion, 185–186

MVC (Model-View-Controller),

186–189

functional managers

intervention with, 140

as ScrumMaster, 149–150

functional tests, 190, 239

Future Value (FV), 21

G
gathering requirements, 47–54

adapting Scrum, 153–154

architecture vision, 78

Conferous case study, 242–243

CUTFIT rules, 51–54

gathering requirements for backlog,

49–54

identifying stakeholders and goals,

47–49

Noshster case study, 192–193

overview, 178

product owner skill at, 111

SMART rules, 48–49

Git version control system, 189

goal, reality, options, and will (GROW)

model, 141–143

goals

in groups, 125

GROW model, 141–143

product, 78, 109–110, 139, 192, 242

release, 100–101

SMART rules, 48–49

Sprint, 100–101

stakeholder, 47–49, 54–55

top business management, 35

good ScrumButs, 146–147

governance, PMO IT project, 36–37

great teamwork, conditions of,

131–132

groups, teamwork by, 125–126

GROW (goal, reality, options, and will)

model, 141–143

guidance

in leadership, 139

by product owner, 112

Index 279

H
hashes in Ruby language, 184

healers, Keirsey Temperament Types

Sorter, 127

hierarchy of needs, 124–125

high-performance teams, 126, 132

honesty, as quality of leader, 143

horizontal data architecture, 83, 87

horizontal slicing

Conferous case study, 242–243, 245

overview, 96–98, 101

versus vertical slicing, 193

human development skills, ScrumMaster,

176

human nature, 124–125

human resource cost of Scrum project,

17–18

I
impediments, removal by leaders, 139

independent requirements, 52

individuals in team, 124–125

inflation rate, 21–22

influence of leaders on team, 139

InformIT, 135

infrastructure

organizing testing, 119–121

team experience with, 152–153

infrastructure dimension

project readiness self-assessment, 157,

160, 166

Scrum adaptation for, 151

infrastructure team, 154

Inspect and Adapt cycle, Scrum, 12

inspecting properties with ActiveRecord,

187

inspectors, Keirsey Temperament Types

Sorter, 126

integration tests, 116–117, 119, 190,

239–240

interaction type in story point estimate,

63–64

interest rate, 21–22

Internal Rate of Return (IRR), 22–24

internally facing side of leadership,

137–139

inventors, Keirsey Temperament Types

Sorter, 128

investments, selecting project,

18–24

buy versus build, 19–21

Net Present Value, 21–23

payback period, 18–19

Return on Investment, 22–24

IT business prioritization matrix, 36

IT middle management, 36–43

concerns of, 36–38

enterprise architecture, 40–43

Operations management, 39–40

Quality Assurance, 38–39

IT top management, 35–36

J
job safety, 132, 140

K
kanban technique, 80

Keirsey Temperament Types Sorter,

126–129

Kilmann, Ralph, 129

Kniberg, Henrik, 6, 115

knowledge

product, of product owner, 109–110

Scrum, of ScrumMaster, 174–175

L
leadership, 135–144

coaching with GROW model, 141–143

versus management, 135–140

overview, 179

traits of caring leader, 143–144

Lencioni, Patrick, 126, 179

life cycle, software development, 12–13

Logout page, Noshster, 203

low-performance teams, 126, 132

M
management, project, 1–15, 31–45,

135–144

See also adapting Scrum

adapting Scrum, 149

adaptive, 13–14

Agile foundations, 3–5

coaching with GROW model, 141–143

effectiveness of Agile and Scrum, 12–14

focusing on finance, 177–178

IT middle management, 36–43

versus leadership, 135–140

overview, 179

program management office, 35–36

Scrum origins, 5

Scrum process, 5–12

top business management, 32–35

top IT management, 35–36

traits of caring leader and manager,

143–144

turning management into ally, 43–44

management matrix, stakeholder, 109

manual testing, 119, 190

Maslow’s Hierarchy of Needs, 124–125

Master Data Management (MDM) layer,

41, 43–45

masterminds, Keirsey Temperament

Types Sorter, 127

matrices

conflict resolution, 130

estimation, 168, 170

IT business prioritization, 36

self-assessment readiness, 158, 163–165

stakeholder management, 109

story point estimation, 72

maximum score, project readiness self-

assessment, 163–164

measurable goals, 48

measurements, stakeholder, 49, 55

mediocre-performance teams, 132

meetings

See also Daily Standup

adapting Scrum, 150

ScrumMaster role in organizing, 175

Sprint planning, 8

Sprint retrospective, 10–11

Sprint review, 10

mentoring

in leadership, 139

by product owner, 112

methods, Ruby language, 184–185

middle management, IT, 36–43

concerns of, 36–38

enterprise architecture, 40–43

Operations management, 39–40

overview, 178

Quality Assurance, 38–39

minimum score, project readiness self-

assessment, 163

mistakes, leader admission of, 143

models, in MVC

Conferous Sprint 1, 248

Conferous Sprint 2, 259

Noshster, testing, 239

Noshster release 1—Sprint 1, 199,

201–202

Noshster release 1—Sprint 2, 213

Noshster release 2—Sprint 3, 221

Noshster release 2—Sprint 4, 229–232

overview, 186–187

Model-View-Controller. See controllers,

in MVC; models, in MVC; MVC;

Views, in MVC

monitoring project performance, 24–28

cost performance, 25–26

overview, 24

project budget forecasting, 27–28

schedule performance, 26–27

monthly fees, buy versus build technique,

19–21

motivation

framework based on, 13

in GROW model, 142

MVC (Model-View-Controller)

See also controllers, in MVC; models, in

MVC; Views, in MVC

Conferous Sprint 1, 248–257

Conferous Sprint 2, 259–264

Noshster release 1—Sprint 2, 213–219

Noshster release 2—Sprint 3, 221–229

Noshster release 2—Sprint 4, 229–239

overview, 186–189

N
needs, hierarchy of, 124–125

negative ScrumButs, 146–147

280 Index

Net Present Value (NPV), 21–23

new method, Ruby, 182

“The New New Product Development

Game” paper, 5

Nonaka, Ikujiro, 5

non-comparable story point, problems

with, 61–62

non-Western cultures, planning

poker in, 62

norming stage of teams, 129–130

Noshster case study, 192–241

5W technique, 110

architecture vision, 192–197

product vision and goal, 192

project estimation, 197–198

release 1-Sprint 1, 199–210

release 1-Sprint 2, 210–219

release 2-Sprint 3, 219–229

release 2-Sprint 4, 229–239

release planning, 192–197

Sprint planning, 192–197

testing, 239–241

visual requirements gathering,

192–193

NPV (Net Present Value), 21–23

numbers in Ruby language, 184

O
objective criteria-based estimating process

Conferous case study, 244–246

example, 71–73

general discussion, 62–70

Noshster case study, 197–198

overview, 178

readiness self-assessment, 167–168

Object-Oriented Analysis and Design

(OOAD), UML for, 76

object-oriented programming languages,

182

object-relational mapping, 186–187

objects, Ruby language, 182

open mindset

of leaders, 143

in teamwork, 131–132

open-source version control

system, 189

operational management, IT, 36–43

concerns of, 36–38

enterprise architecture, 40–43

Operations management, 39–40

Quality Assurance, 38–39

Operations management, 39–40

options, GROW model, 142

organization dimension

project readiness self-assessment, 157,

160, 165

Scrum adaptation for, 147–150

in story point estimation, 68

organizational skills,

ScrumMaster, 175

organizer, product owner as, 111

P
parallel (concurrent) software

development

architecture vision, 80, 103–105

Noshster, 211–213

version control systems, 189

participation, product owner, 111

password encryption, 199

payback period, 18–19

PBIs (Product Backlog Items)

See also story point estimate; user stories

building in concurrence, 85

defined, 47

performance, coaching for superior,

141–143

performance, monitoring project, 24–28

cost performance, 25–26

project budget forecasting, 27–28

schedule performance, 26–27

performers, Keirsey Temperament Types

Sorter, 128

performing stage of teams, 129–130

personality types, 126–127

phases, specialized Scrum, 153

Planned Value (PV), 26–27

planning, release/Sprint

architecture vision, 93–103

Conferous case study, 242–244

Noshster case study, 192–197

overview, 7–8

planning poker, 61–62

PMO (programmanagement office), 35–36

positive ScrumButs, 146–147

PPS (Points per Story), 70–71

practical knowledge of Scrum,

ScrumMaster, 174–175

Present Value (PV), 21–22

presentation skills, ScrumMaster, 176

price difference, buy versus build

technique, 19–21

pride, framework based on, 13

prioritization

changing product, 81, 86

of stakeholders, product owner

management of, 109

prioritization matrix, IT business, 36

Private Room Reservation software

product example, 54–58

process dimension

project readiness self-assessment, 159,

162, 167

Scrum adaptation for, 153–154

in story point estimation, 70

product backlog, 47–59

CUTFIT rules, 51–54

defined, 6–7

example, 54–58

gathering requirements for backlog,

49–51

identifying stakeholders and goals, 47–48

product owner skill at gathering

requirements for, 111

SMART rules, 48–49

visual requirements gathering process,

47–54

Product Backlog Items (PBIs)

See also story point estimate; user

stories

building in concurrence, 85

defined, 47

product owner, 107–112

architecture vision, 81

availability of, 111

collaboration for release and sprint

planning, 105

communication skills, 112

conflict resolution, 131

CUTFIT rules, 50

defined, 6–7

as good organizer, 111

job safety of team members, 132

lack of, adapting to, 154

management and leadership, 135–140

overview, 179

product backlog, skill at gathering

requirements for, 111

product vision and knowledge, 109–110

project management, 31, 33

responsibilities of, 11

as ScrumMaster, 152

ScrumMaster role in helping, 176

servant leadership, 112

Sprint review, 10

stakeholder expectations and

prioritization, managing, 109

suggestions from development team, 93

product prioritization, changing, 81, 86

product vision and goals

architecture vision, 78

Conferous case study, 242

Noshster case study, 192

of product owner, 109–110, 139

production environment, 119–120

profit margin in ROI, 23

program management office (PMO),

35–36

progress, reporting team, 147–148

project budget forecasting, 27–28

Estimate at Completion, 28

Estimate to Complete, 28

formulas for, 24

Variance at Completion, 28

project costs, calculating, 17–18

project governance, PMO IT, 36–37

project investments, selecting, 18–24

buy versus build, 19–21

Net Present Value, 21–22

payback period, 18–19

Return on Investment, 22–24

project management, 1–15, 31–45,

135–144

adapting Scrum, 149

adaptive, 13–14

Agile foundations, 3–5

Index 281

project management (continued)
coaching with GROW model, 141–143

effectiveness of Agile and Scrum, 12–14

focusing on finance, 177–178

IT middle management, 36–43

versus leadership, 135–140

overview, 179

program management office, 35–36

Scrum origins, 5

Scrum process, 5–12

top business management, 32–35

top IT management, 35–36

traits of caring leader and manager,

143–144

turning management into ally, 43–44

project performance, monitoring, 24–28

cost performance, 25–26

project budget forecasting, 27–28

schedule performance, 26–27

project readiness self-assessment, 157–171

business dimension, 162

example, 164–170

improving score, 169–170

infrastructure dimension, 160

organization dimension, 160

overview, 177, 180

process dimension, 162

scores, 163–164, 169–170

simple tool for, 157–164

team dimension, 161

technology dimension, 161

project status, reporting, 147–148

promoters, Keirsey Temperament Types

Sorter, 128

protectors, Keirsey Temperament Types

Sorter, 127

providers, Keirsey Temperament Types

Sorter, 128

PV (Planned Value), 26–27

PV (Present Value), 21–22

pyramid of needs, 124–125

Q
QA (Quality Assurance) management,

38–39, 154

qualities, product owner

availability of, 111

communication skills, 112

as good organizer, 111

overview, 107–109

product backlog, skill at gathering

requirements for, 111

product vision and knowledge, 109–110

servant leadership, 112

stakeholder expectations and

prioritization, managing, 109

qualities, ScrumMaster, 173–176

communication skills, 175–176

conflict resolution skills, 176

human development skills, 176

knowledge of Scrum, 174–175

organizational skills, 175

presentation skills, 176

servant-leadership ability, 175

Quality Assurance (QA) management,

38–39, 154

questionnaires, readiness self-assessment,

159–164, 177

R
readiness self-assessment, project, 157–171

business dimension, 162

example, 164–169

improving score, 169–170

infrastructure dimension, 160

organization dimension, 160

overview, 177, 180

process dimension, 162

scores, 163–164, 169–170

simple tool for, 157–164

team dimension, 161

technology dimension, 161

realistic goals, 49

Reality, in GROW model, 142

real-world software product development

case studies, 181–264

See also Conferous case study; Noshster

case study

Ruby language, 181–185

Ruby on Rails as web framework,

185–189

Web development with Ruby on Rails,

189–191

Recording model, Conferous Sprint 2, 259

regression testing, 190–191

release planning

architecture vision, 93–103

Conferous case study, 242–244

Noshster case study, 192–197

overview, 7

requirements, business, 65

requirements gathering process, 47–54

adapting Scrum, 153–154

architecture vision, 78

Conferous case study, 242–243

CUTFIT rules, 51–54

identifying stakeholders and goals, 47–49

Noshster case study, 192–193

overview, 49–54, 178

product owner skill at, 111

SMART rules, 48–49

respect

in teamwork, 132

towards leaders, 143

Restaurant model, Noshster, 221, 232

Restaurant partial, Noshster, 227

RestaurantsController controller,

Noshster, 227–229

results, reviewing in GROW model,

142–143

retrospective, Sprint, 10–11

Return on Investment (ROI), 22–24

returns, calculating project, 18–24

buy versus build, 19–21

Net Present Value, 21–22

payback period, 18–19

Return on Investment, 22–24

reusing code in Ruby on Rails, 185

revenue, payback period, 18–19

review, Sprint, 10

Review model, Noshster, 229

Review partial, Noshster, 235–236

reviewing results inGROWmodel, 142–143

ReviewsController controller, Noshster,

237–239

risk reduction mechanism, Scrum, 12

ROI (Return on Investment), 22–24

Room model, Conferous, 248, 259

Room partial, Conferous, 254, 260–261

Ruby language, 181–185

classes, 182

constructs, 182

dates types, 183–184

methods, 184–185

objects, 182

syntax, 182

variables, 182–183

Ruby on Rails (RoR)

MVC, 186–189

testing, 189–191

version control with Git, 189

Web development with, 189–191

as web framework, 185–189

rules, business, in story point estimate,

63–65

S
saving with ActiveRecord, 187

schedule performance, 26–27

formulas for, 24

Schedule Performance Index, 27

Schedule Variance, 26–27

Schedule Performance Index (SPI), 27

Schedule Variance (SV), 26–27

Schwaber, Ken, 4–5, 31, 135, 146

scorecard, balance, 34–35

scores, project readiness self-assessment,

159, 163–170

Scrum, 1–15

application to real-world projects,

177–180

effectiveness in project management,

12–14

general discussion, 5–12

origins of, 5

“Scrum and the Perfect Storm” article, 5

Scrum and XP from the Trenches, 6, 115

“Scrum in the Church” article, 146, 150

ScrumButs, 146–147, 152. See also

adapting Scrum

ScrumMaster, 173–176

adapting Scrum in absence of, 149

burndown chart, 9

282 Index

collaboration for release and sprint

planning, 105

communication skills, 175–176

conflict resolution, 131, 176

functional managers as, 149–150

human development skills, 176

job safety of team members, 132

knowledge of Scrum, 174–175

lack of, adapting to, 152

management and leadership, 135–140

organizational skills, 175

overview, 180

presentation skills, 176

as product owner, 152

project management, 31, 33

responsibilities of, 11

servant-leadership ability, 175

Sprint review, 10

SDLC (Software Development Life

Cycle), 154

self-actualization, 124

self-assessment, project readiness, 157–171

business dimension, 162

example, 164–169

improving score, 169–170

infrastructure dimension, 160

organization dimension, 160

overview, 177, 180

process dimension, 162

scores, 163–164, 169–170

simple tool for, 157–164

team dimension, 161

technology dimension, 161

self-esteem, 124

self-organization, team, 126, 149

semicolons in Ruby language, 182

servant leadership

internally facing leadership, 138–139

by product owner, 112

by ScrumMaster, 150, 175

Service-OrientedArchitecture(SOA),40–41

Sign in view

Conferous, 250–251

Noshster, 202–203

Sign up view

Conferous, 248–249

Noshster, 201–202

sign-ins, Noshster, 201

situational Scrum adaptation examples,

147–154

business dimension, 154

infrastructure dimension, 151

organization dimension, 147–150

process dimension, 153–154

team dimension, 152

technology dimension, 152–153

SMART (specific, measurable, achievable,

realistic, time-based) rules, 48–49,

141

SOA(Service-OrientedArchitecture), 40–41

social network case study. See Noshster

case study

software architecture, 178

software development case studies, 181–264

See also Conferous case study; Noshster

case study

Ruby language, 181–185

Ruby on Rails as web framework,

185–189

Web development with Ruby on Rails,

189–191

software development example, trees and

forest technique, 54–58

Software Development Life Cycle

(SDLC), 154

software development, parallel

architecture vision, 80, 103–105

Noshster, 211–213

version control systems, 189

software development with Scrum, 1–15

See also project management

application to real-world projects,

177–180

effectiveness of Agile and Scrum, 12–14

foundation of Agile, 3–5

origins of Scrum, 5

Scrum process, 5–12

software project management. See project

management

software quality, and technical debt, 103.

See also architecture vision

specialized Scrum phases, 153

specific, measurable, achievable, realistic,

time-based (SMART) rules, 48–49, 141

SPI (Schedule Performance Index), 27

Sprint backlog, 7–8, 100, 102

Sprint planning

architecture vision, 93–103

Conferous case study, 242–244

Noshster case study, 192–197

overview, 7–8

Sprint retrospective, 10–11

Sprint review, 10

Sprints

See also Conferous case study; Noshster

case study

defined, 8–9

length of, 153

ScrumMaster role during, 175

stages, team, 129–130

stakeholders

identifying, 47–49

management matrix, 109

product owner management of, 109

SMART rules, 48–49

visual requirements gathering process,

54–55

star schema, 89

status of project, reporting, 147–148

stories, user

See also story point estimate; visual

requirements gathering process

architecture vision, 77–86, 94–96

Conferous case study, 246–247, 257–258

CUTFIT rules, 51–54

example of, 57–58

gathering, 49–51

Noshster case study, 199, 210–212,

220–221, 229

parallel software development, 103–104

product owner skill at gathering, 111

reporting on progress of, 147–148

Sprint planning meeting, 8

storming stage of teams, 129–130

story bar charts, 147–148

story card, 57–58, 71, 73

story point estimate, 61–73

Conferous case study, 244–246

cultural problems with planning

poker, 62

example, 71–73

Noshster case study, 197–198

objective criteria-based estimating

process, 62–70

overview, 178

problems with non-comparable, 61–62

readiness self-assessment, 167–168

strategy, top business management, 35

strings in Ruby language, 184

sub-teams, 103–104

“Succeeding with Agile Using Scrum”

article, 138

success, predicting. See project readiness

self-assessment

supervisors, Keirsey Temperament Types

Sorter, 128

support

in leadership, 139

by product owner, 112

Sutherland, Arline C., 146, 150

Sutherland, Jeff, 5, 146, 150

SV (Schedule Variance), 26–27

symbols in Ruby language, 184

syntax, Ruby language, 182

T
Takeuchi, Hirotaka, 5

Task Board, 8

TDD (Test-Driven Development), 151

teachers, Keirsey Temperament Types

Sorter, 128

team, defined, 126

team, Scrum

See also development team; leadership;

teamwork

architecture vision, 93–103

general discussion, 5–7

objective criteria-based estimating

process, 71

parallel software development, 103–105

problems with non-comparable story

point, 61–62

product owner as advocate of, 112

project management, 31, 33

release planning, 93–103

Index 283

team, Scrum (continued)
responsibilities of, 11

ScrumMaster conflict resolution

skills, 176

size of, 150

Sprints planning, 93–103

team dimension

project readiness self-assessment, 158,

161, 166

Scrum adaptation for, 152

in story point estimation, 69

team velocity

architecture vision, 76–78, 178

automated testing, 113, 115

defined, 17–18

teamwork, 123–133

conditions of great, 131–132

conflict resolution techniques, 129–131

group, 125–126

individuals, 124–125

Keirsey temperament types, 126–129

overview, 179

team, defined, 126

team stages, 129

technical debts, 101, 103

technology dimension

project readiness self-assessment, 158,

161, 167

Scrum adaptation for, 152–153

in story point estimation, 69

teleconferences. See Conferous case study

temperament types, Keirsey, 126–129

test cases, in TDD, 151

testable requirements, 52

Test-Driven Development (TDD), 151

testing, 113–122

acceptance, 116–118

adapting Scrum, 151

automated, 113, 115, 118–119, 151,

190–191

continuous integration, 119, 151, 154

done, definition of, 115–117

functional, 190, 239

integration, 116–117, 119, 190, 239–240

manual, 119, 190

Noshster case study, 239–241

organizing infrastructure, 119–121

overview, 179

Quality Assurance management, 39

regression, 190–191

Test::Unit framework, 191

unit, 115–116, 151, 190, 239

user acceptance, 116–118, 191, 240–241

Web development with Ruby on Rails,

189–191

Test::Unit testing framework, 190–191

theoretical knowledge of Scrum,

ScrumMaster, 174–175

Thomas, Kenneth, 129

three-tiered structure, MVC, 186

time value of money, 21–22

time-based goals, 49

top business management, 32–35

top IT management, 35–36

traceable requirements, 52

training, technology, 152–153

traits of caring leader and manager,

143–144. See also qualities, product

owner; qualities, ScrumMaster

transactional data model, 89–90

trees and forest technique

Conferous case study, 242–243

example of, 54–58

Noshster case study, 192–193

overview, 49–53

trust, in teamwork, 132

Tuckman, Bruce, 129

U
UML for Object-Oriented Analysis and

Design (OOAD), 76

Unadjusted Points (UP), 67

unambiguous requirements, 52

unit testing

defined, 190

done, definition of, 115–116

Noshster, 239

in TDD, 151

updates, 39–40

user acceptance testing

done, definition of, 116–118

Noshster, 240–241

Web development with Ruby on

Rails, 191

User Management Tree, 56

User model

Conferous, 248

Noshster, 199, 201, 230

User partial view, Noshster, 207

user sign-ins, Noshster, 201

user stories

See also story point estimate; visual

requirements gathering process

architecture vision, 77–86, 94–96

Conferous case study, 246–247, 257–

258

CUTFIT rules, 51–54

example of, 57–58

gathering, 49–51

Noshster case study, 199, 210–212,

220–221, 229

parallel software development, 103–104

product owner skill at gathering, 111

reporting on progress of, 147–148

Sprint planning meeting, 8

user validation, 199

UserController controller

Conferous, 254–255, 263–264

Noshster, 207–209

UserSession model

Conferous, 248

Noshster, 201

UserSessionsController controller

Conferous, 255–257

Noshster, 209–210

V
validation, user, 199

variables, Ruby language, 182–183

Variance at Completion (VAC), 28

velocity, in ROI, 23

velocity, team

architecture vision, 76–78, 178

automated testing, 113, 115

defined, 17–18

version control systems, 189, 212–213

vertical data architecture, 83, 88

vertical slicing, 98–100, 192–193, 195–196

View dish page, Noshster, 216

View restaurant page, Noshster, 225–226

View/delete profile page, Noshster, 204

Views, in MVC

Conferous, 248–254, 259–263

Noshster, 201–207, 213–218, 222–227,

232–236

overview, 186

vision, in leadership, 139

vision, product

architecture vision, 78

Conferous case study, 242

Noshster case study, 192

of product owner, 109–110, 139

visual requirements gathering process,

47–54

adapting Scrum, 153–154

architecture vision, 78

Conferous case study, 242–243

CUTFIT rules, 51–54

gathering requirements for backlog,

49–54

identifying stakeholders and goals,

47–49

Noshster case study, 192–193

overview, 178

product owner skill at, 111

SMART rules, 48–49

W
waterfall software process, 113–114, 154

Web development with Ruby on Rails,

189–191

testing, 189–191

version control with Git, 189

web framework, Ruby on Rails as,

185–189

whole numbers in Ruby language, 184

will, in GROW model, 142

284 Index

	Contents
	Introduction
	Praise for the Book
	Chapter 1 Setting the Stage: Agile and Scrum
	What Is the Foundation of Agile Software Development and Project Management?
	Scrum Origins
	How Scrum Works

	Why Are Agile and Scrum Effective in Software Project Management?
	Summary

	Chapter 2 Finance Speak
	Calculate Project Costs
	Select Project Investments
	The Payback Period
	Buy Versus Build
	Net Present Value (NPV)
	Internal Rate of Return (IRR), or Return on Investment (ROI)

	Monitor Project Performance
	Cost Performance
	Schedule Performance
	Project Budget Forecasting

	Summary

	Chapter 3 Secure Top Management Support but Make Sure to Obtain Middle Management Buy-In
	Working with Top Business Management
	Working with Top IT Management
	Program Management Office

	Working with IT Middle Management
	Quality Assurance
	Operations Management
	Enterprise Architecture (EA)

	Turning Your Direct Management into an Ally
	Summary

	Chapter 4 A Visual Requirements Gathering for the Product Backlog
	A New Visual Requirements Gathering Process for Agile and Scrum
	First Step: Identify the Stakeholders and Their Goals
	The SMART Rules
	Second Step: Gather Requirements for the Product Backlog
	The CUTFIT Rules

	An Example
	Summary

	Chapter 5 Making the Story Point Estimate Comparable for Scrum Enterprise-Wide Implementation
	Problems with a Non-Comparable Story Point
	Cultural Problems with Planning Poker
	An Objective Criteria-Based Estimating Process
	Example

	Summary

	Chapter 6 The Influence of Architecture Vision on Team Velocity and Software Quality
	The Importance of Architecture Vision
	How to Identify Architecture Vision
	Another Benefit of Having an Architecture Vision
	Summary

	Chapter 7 From Architecture Vision to Release and Sprints Planning to Parallel Software Development
	From Architecture Vision to Release and Sprints Planning
	From Incremental to Parallel Software Development
	Summary

	Chapter 8 Did You Say Product Owner?
	Managing Stakeholders’ Expectations and Prioritization
	Having a Clear Product Vision and Knowledge
	Knowing How to Gather Requirements for the Product Backlog
	Making Oneself Always Available
	Knowing How to Be a Good Organizer
	Knowing How to Communicate Better Than the Average Person
	Knowing That It Is All About Servant Leadership
	Summary

	Chapter 9 The Importance of Automated, Regression, and Integration Tests
	The Importance of the Definition of Done
	The Most Important Tests
	Automated Testing
	Continuous Integration Testing

	Organizing the Testing Infrastructure
	Summary

	Chapter 10 The Importance of Teamwork
	The Individuals
	The Group
	The Team
	The Keirsey Temperament Types
	The Five Team Stages
	Techniques to Resolve Team Conflicts
	Conditions of Great Teamwork
	Summary

	Chapter 11 The New Nature of Management and Leadership on a Scrum Project
	Coaching for Superior Performance: The GROW Model
	Traits of a Caring Leader and Manager
	Summary

	Chapter 12 How to Adapt Scrum (Without Destroying Its Agile Foundations or Doing Negative ScrumButs)
	How to Adapt Scrum Without Doing Negative “ScrumButs” with Excuses
	Examples of Situational Scrum Adaptations
	Organization Dimension
	Infrastructure Dimension
	Team Dimension
	Technology Dimension
	Process Dimension
	Business Dimension

	Summary

	Chapter 13 Scrum Project Readiness Self-Assessment
	A Simple Tool for Your Scrum Readiness Assessment
	Organization Dimension
	Infrastructure Dimension
	Team Dimension
	Technology Dimension
	Process Dimension
	Business Dimension

	Example
	Putting It Together
	Summary

	Chapter 14 When Do You Need a ScrumMaster?
	In Depth Theoretical and Practical Knowledge of Scrum
	Great Servant-Leadership Ability
	Strong Organizational Skills
	Great Communication Skills
	Excellent Presentation Skills
	Conflict Resolution Skills
	Great Human Development Skills
	Summary

	Chapter 15 Parting Thoughts
	Appendix A: Two Real-World Software Product Development Case Studies
	Introduction
	Ruby and Ruby on Rails (RoR)
	Ruby, the Language
	Ruby on Rails (RoR), the Web Framework

	Version Control and Testing for Web Development with RoR
	Git—Version Control
	Testing and Testing Framework

	Case Study 1 (Noshster)
	Product Vision and Goal
	Requirements Gathering Using the Book’s Visual Technique
	Architecture Vision and Release/Sprint Planning
	Project Estimation Using the Objective Criteria Technique
	Noshster Development

	Case Study 2 (Conferous)
	Product Vision and Goal
	Requirements Gathering Using the Book’s Visual Technique
	Architecture Vision and Release/Sprint Planning
	Project Estimation Using the Objective Criteria Technique
	Conferous Development

	Appendix B: Could You or Should You Have an Abnormal Termination of a Sprint?
	Introduction
	When Can a Sprint Be Terminated Earlier Than Planned?
	How to Avoid Terminating a Sprint Earlier Than Planned
	How to Restart After Terminating a Sprint Earlier Than Planned

	Glossary
	A
	B
	C
	D
	E
	I
	K
	L
	P
	Q
	R
	S
	T
	U
	V
	W

	References
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

