GLOBAL /
EDITION

Computer Security

Principles and Practice

FOURTH EDITION

William Stallings Lawrie Brown

P)

Digital Resources for Students

Your new textbook provides 12-month access to digital resources that may include VideoNotes
(step-by-step video tutorials on programming concepts), source code, web chapters, quizzes, and
more. Refer to the preface in the textbook for a detailed list of resources.

Follow the instructions below to register for the Companion Website for William Stallings/Lawrie
Brown’s Computer Security: Principles and Practice, Fourth Edition, Global Edition.

Go to www.pearsonglobaleditions.com/stallings.

Enter the title of your textbook or browse by author name.

Click Companion Website.

Click Register and follow the on-screen instructions to create a login name and
password.

o=

Use a coin to scratch off the coating and reveal your access code.
Do not use a sharp knife or other sharp object as it may damage the code.

Use the login name and password you created during registration to start using the
online resources that accompany your textbook.

IMPORTANT:
This access code can only be used once. This subscription is valid for 12 months upon activation and
is not transferrable. If the access code has already been revealed it may no longer be valid.

For technical support go to https://support.pearson.com/getsupport/

http://www.pearsonglobaleditions.com/stallings
https://support.pearson.com/getsupport/

COMPUTER SECURITY
PRINCIPLES AND PRACTICE

Fourth Edition

Global Edition

William Stallings

Lawrie Brown
UNSW Canberra at the Australian Defence Force Academy

@ Pearson
330 Hudson Street, New York, NY 10013

Director, Portfolio Management: Engineering, Rights and Permissions Manager: Ben Ferrini

Computer Science & Global Editions: Manufacturing Buyer, Higher Ed, Lake Side
Julian Partridge Communications Inc (LSC): Maura Zaldivar-Garcia

Specialist, Higher Ed Portfolio Management: Senior Manufacturing Controller, Global Edition:
Tracy Johnson (Dunkelberger) Angela Hawksbee

Acquisitions Editor, Global Edition: Sourabh Inventory Manager: Ann Lam

Maheshwari Product Marketing Manager: Yvonne Vannatta

Portfolio Management Assistant: Meghan Jacoby Field Marketing Manager: Demetrius Hall

Managing Content Producer: Scott Disanno Marketing Assistant: Jon Bryant

Content Producer: Robert Engelhardt Cover Designer: Lumina Datamatics, Inc.

Project Editor, Global Edition: K.K. Neelakantan Cover Photo: Alex Kosev / Shutterstock

Web Developer: Steve Wright Full-Service Project Management: Kirthika Raj,

Manager, Media Production, Global Edition: Vikram SPi Global

Kumar

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appear on page 777.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

Pearson Education Limited
KAO Two

KAO Park

Harlow

CM17 9NA

United Kingdom

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsonglobaleditions.com

© Pearson Education Limited 2018

The rights of William Stallings and Lawrie Brown to be identified as the authors of this work have been asserted
by them in accordance with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Computer Security: Principles and Practice, 4"
Edition, ISBN 978-0-13-479410-5 by William Stallings and Lawrie Brown published by Pearson Education © 2018.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior
written permission of the publisher or a license permitting restricted copying in the United Kingdom issued by the
Copyright Licensing Agency Ltd, Saffron House, 6-10 Kirby Street, London ECIN 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does
not vest in the author or publisher any trademark ownership rights in such trademarks, nor does the use of such
trademarks imply any affiliation with or endorsement of this book by such owners.

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10987654321

ISBN 10: 1-292-22061-9
ISBN 13: 978-1-292-22061-1

Typeset by SPi Global
Printed and bound in Malaysia

http://www.pearsonglobaleditions.com/

For my loving wife, 'Iiicia
—IS
To my extended family and friends, who helped
make this all possible

This page intentionally left blank

CONTENTS

Preface 12
Notation 21
About the Authors 22

Chapter 1 Overview 23

1.1 Computer Security Concepts 24

1.2 Threats, Attacks, and Assets 31

1.3 Security Functional Requirements 37

1.4 Fundamental Security Design Principles 39

1.5 Attack Surfaces and Attack Trees 43

1.6 Computer Security Strategy 46

1.7 Standards 48

1.8 Key Terms, Review Questions, and Problems 49

PART ONE COMPUTER SECURITY TECHNOLOGY AND PRINCIPLES 52
Chapter 2 Cryptographic Tools 52

241 Confidentiality with Symmetric Encryption 53

2.2 Message Authentication and Hash Functions 59

2.3 Public-Key Encryption 67

2.4 Digital Signatures and Key Management 72

2.5 Random and Pseudorandom Numbers 77

2.6 Practical Application: Encryption of Stored Data 79
2.7 Key Terms, Review Questions, and Problems 80

Chapter 3 User Authentication 85

31 Digital User Authentication Principles 86
3.2 Password-Based Authentication 92
3.3 Token-Based Authentication 104

34 Biometric Authentication 109
3.5 Remote User Authentication 114
3.6 Security Issues for User Authentication 117

3.7 Practical Application: An Iris Biometric System 119
3.8 Case Study: Security Problems for ATM Systems 121
3.9 Key Terms, Review Questions, and Problems 124

Chapter 4 Access Control 127

4.1 Access Control Principles 128

4.2 Subjects, Objects, and Access Rights 131
4.3 Discretionary Access Control 132

4.4 Example: UNIX File Access Control 139
4.5 Role-Based Access Control 142

4.6 Attribute-Based Access Control 148

6 CONTENTS

4.7 Identity, Credential, and Access Management 154
4.8 Trust Frameworks 158
4.9 Case Study: RBAC System for a Bank 162

4.10 Key Terms, Review Questions, and Problems 164

Chapter 5 Database and Data Center Security 169

5.1 The Need for Database Security 170

5.2 Database Management Systems 171

5.3 Relational Databases 173

5.4 SQL Injection Attacks 177

5.5 Database Access Control 183

5.6 Inference 188

5.7 Database Encryption 190

5.8 Data Center Security 194

5.9 Key Terms, Review Questions, and Problems 200

Chapter 6 Malicious Software 205

6.1 Types of Malicious Software (Malware) 207
6.2 Advanced Persistent Threat 209
6.3 Propagation—Infected Content—Viruses 210
6.4 Propagation—Vulnerability Exploit—Worms 215
6.5 Propagation—Social Engineering—Spam E-mail, Trojans 224
6.6 Payload—System Corruption 227
6.7 Payload—Attack Agent—Zombie, Bots 229
6.8 Payload—Information Theft—Keyloggers, Phishing, Spyware 231
6.9 Payload—Stealthing—Backdoors, Rootkits 233
6.10 Countermeasures 236
6.11 Key Terms, Review Questions, and Problems 242

Chapter 7 Denial-of-Service Attacks 246

7.1 Denial-of-Service Attacks 247

7.2 Flooding Attacks 255

7.3 Distributed Denial-of-Service Attacks 256

7.4 Application-Based Bandwidth Attacks 258

7.5 Reflector and Amplifier Attacks 261

7.6 Defenses Against Denial-of-Service Attacks 265
7.7 Responding to a Denial-of-Service Attack 269
7.8 Key Terms, Review Questions, and Problems 270

Chapter 8 Intrusion Detection 273
8.1 Intruders 274

8.2 Intrusion Detection 278

8.3 Analysis Approaches 281

8.4 Host-Based Intrusion Detection 284

8.5 Network-Based Intrusion Detection 289

8.6 Distributed or Hybrid Intrusion Detection 295
8.7 Intrusion Detection Exchange Format 297

CONTENTS

8.8 Honeypots 300
8.9 Example System: Snort 302
8.10 Key Terms, Review Questions, and Problems 306

Chapter 9 Firewalls and Intrusion Prevention Systems 310

9.1 The Need for Firewalls 311

9.2 Firewall Characteristics and Access Policy 312

9.3 Types of Firewalls 314

9.4 Firewall Basing 320

9.5 Firewall Location and Configurations 323

9.6 Intrusion Prevention Systems 328

9.7 Example: Unified Threat Management Products 332
9.8 Key Terms, Review Questions, and Problems 336

PART TWO SOFTWARE AND SYSTEM SECURITY 341
Chapter 10 Buffer Overflow 341

10.1 Stack Overflows 343

10.2 Defending Against Buffer Overflows 364

10.3 Other forms of Overflow Attacks 370

10.4 Key Terms, Review Questions, and Problems 377

Chapter 11 Software Security 379

11.1 Software Security Issues 380

11.2 Handling Program Input 384

11.3 Writing Safe Program Code 395

11.4 Interacting with the Operating System and Other Programs 400
11.5 Handling Program Output 413

11.6 Key Terms, Review Questions, and Problems 415

Chapter 12 Operating System Security 419

12.1 Introduction to Operating System Security 421
12.2 System Security Planning 422

12.3 Operating Systems Hardening 422

12.4 Application Security 426

12.5 Security Maintenance 428

12.6 Linux/Unix Security 429

12.7 Windows Security 433

12.8 Virtualization Security 435

12.9 Key Terms, Review Questions, and Problems 443

Chapter 13 Cloud and IoT Security 445

13.1 Cloud Computing 446

13.2 Cloud Security Concepts 454

13.3 Cloud Security Approaches 457

13.4 The Internet of Things 466

13.5 IoT Security 470

13.6 Key Terms and Review Questions 478

8 CONTENTS

PART THREE MANAGEMENT ISSUES 480

Chapter 14

14.1
14.2
14.3
14.4
14.5
14.6

Chapter 15

15.1
15.2
15.3
15.4
15.5
15.6
15.7

Chapter 16

16.1
16.2
16.3
16.4
16.5
16.6
16.7

Chapter 17

17.1
17.2
17.3
17.4
17.5

Chapter 18

18.1
18.2
18.3
18.4
18.5
18.6

Chapter 19

19.1
19.2
19.3
19.4
19.5

IT Security Management and Risk Assessment 480

IT Security Management 481

Organizational Context and Security Policy 484
Security Risk Assessment 487

Detailed Security Risk Analysis 490

Case Study: Silver Star Mines 502

Key Terms, Review Questions, and Problems 507

IT Security Controls, Plans, and Procedures 510

IT Security Management Implementation 511
Security Controls or Safeguards 511

IT Security Plan 520

Implementation of Controls 521

Monitoring Risks 522

Case Study: Silver Star Mines 524

Key Terms, Review Questions, and Problems 527

Physical and Infrastructure Security 529

Overview 530

Physical Security Threats 531

Physical Security Prevention and Mitigation Measures 538
Recovery from Physical Security Breaches 541

Example: A Corporate Physical Security Policy 541
Integration of Physical and Logical Security 542

Key Terms, Review Questions, and Problems 548

Human Resources Security 550

Security Awareness, Training, and Education 551
Employment Practices and Policies 557

E-mail and Internet Use Policies 560

Computer Security Incident Response Teams 561
Key Terms, Review Questions, and Problems 568

Security Auditing 570

Security Auditing Architecture 572

Security Audit Trail 576

Implementing the Logging Function 581

Audit Trail Analysis 592

Security Information and Event Management 596
Key Terms, Review Questions, and Problems 598

Legal and Ethical Aspects 600

Cybercrime and Computer Crime 601
Intellectual Property 605

Privacy 611

Ethical Issues 618

Key Terms, Review Questions, and Problems 624

CONTENTS

PART FOUR CRYPTOGRAPHIC ALGORITHMS 627
Chapter 20 Symmetric Encryption and Message Confidentiality 627

20.1 Symmetric Encryption Principles 628

20.2 Data Encryption Standard 633

20.3 Advanced Encryption Standard 635

20.4 Stream Ciphers and RC4 641

20.5 Cipher Block Modes of Operation 644

20.6 Key Distribution 650

20.7 Key Terms, Review Questions, and Problems 652

Chapter 21 Public-Key Cryptography and Message Authentication 656

21.1 Secure Hash Functions 657

21.2 HMAC 663

21.3 Authenticated Encryption 666

21.4 The RSA Public-Key Encryption Algorithm 669

21.5 Diffie-Hellman and Other Asymmetric Algorithms 675
21.6 Key Terms, Review Questions, and Problems 679

PART FIVE NETWORK SECURITY 682
Chapter 22 Internet Security Protocols and Standards 682

22.1 Secure E-mail and S/MIME 683

22.2 Domainkeys Identified Mail 686

22.3 Secure Sockets Layer (SSL) and Transport Layer Security (TLS) 690
22.4 HTTPS 697

22.5 IPv4 and IPv6 Security 698

22.6 Key Terms, Review Questions, and Problems 703

Chapter 23 Internet Authentication Applications 706

231 Kerberos 707

23.2 X.509 713

23.3 Public-Key Infrastructure 716

23.4 Key Terms, Review Questions, and Problems 719

Chapter 24 Wireless Network Security 722

24.1 Wireless Security 723

24.2 Mobile Device Security 726

24.3 IEEE 802.11 Wireless LAN Overview 730

24.4 IEEE 802.111 Wireless LAN Security 736

24.5 Key Terms, Review Questions, and Problems 751

Appendix A Projects and Other Student Exercises for Teaching Computer Security 754

Al Hacking Project 754

A.2 Laboratory Exercises 755

A3 Security Education (SEED) Projects 755
A4 Research Projects 757

A5 Programming Projects 758

A.6 Practical Security Assessments 758

10 CONTENTS

A7 Firewall Projects 758
A.8 Case Studies 759
A9 Reading/Report Assignments 759
A.10 Writing Assignments 759
A.11 Webcasts for Teaching Computer Security 760

Acronyms 761

List of NIST and ISO Documents 762
References 764

Credits 777

Index 780

11

ONLINE CHAPTERS AND APPENDICES!
Chapter 25 Linux Security
25.1 Introduction
2D Linux’s Security Model
25.3 The Linux DAC in Depth: Filesystem Security
25.4 Linux Vulnerabilities
25.5 Linux System Hardening
25.6 Application Security
25.7 Mandatory Access Controls
25.8 Key Terms, Review Questions, and Problems
Chapter 26 Windows and Windows Vista Security
26.1 ‘Windows Security Architecture
26.2 ‘Windows Vulnerabilities
26.3 Windows Security Defenses
26.4 Browser Defenses
26.5 Cryptographic Services
26.6 Common Criteria
26.7 Key Terms, Review Questions, Problems, and Projects
Chapter 27 Trusted Computing and Multilevel Security
27.1 The Bell-LaPadula Model for Computer Security
272 Other Formal Models for Computer Security
27.3 The Concept of Trusted Systems
27.4 Application of Multilevel Security
27.5 Trusted Computing and the Trusted Platform Module
27.6 Common Ceriteria for Information Technology Security Evaluation
27.7 Assurance and Evaluation
27.8 Key Terms, Review
Appendix B Some Aspects of Number Theory
Appendix C Standards and Standard-Setting Organizations
Appendix D Random and Pseudorandom Number Generation
Appendix E Message Authentication Codes Based on Block Ciphers
Appendix F TCP/IP Protocol Architecture
Appendix G Radix-64 Conversion
Appendix H The Domain Name System
Appendix I The Base-Rate Fallacy
Appendix] SHA-3
Appendix K Glossary

!Online chapters, appendices, and other documents are Premium Content, available via the access code at
the front of this book.

PREFACE

WHAT’S NEW IN THE FOURTH EDITION

Since the third edition of this book was published, the field has seen continued innovations
and improvements. In this new edition, we try to capture these changes while maintaining a
broad and comprehensive coverage of the entire field. To begin the process of revision, the
third edition of this book was extensively reviewed by a number of professors who teach the
subject and by professionals working in the field. The result is that in many places the narra-
tive has been clarified and tightened, and illustrations have been improved.

Beyond these refinements to improve pedagogy and user-friendliness, there have

been major substantive changes throughout the book. The most noteworthy changes are
as follows:

12

Data center security: Chapter 5 includes a new discussion of data center security,
including the TIA-492 specification of reliability tiers.

Malware: The material on malware in Chapter 6 has been revised to include additional
material on macro viruses and their structure, as they are now the most common form
of virus malware.

Virtualization security: The material on virtualization security in Chapter 12 has been
extended, given the rising use of such systems by organizations and in cloud computing
environments. A discussion of virtual firewalls, which may be used to help secure these
environments, has also been added.

Cloud security: Chapter 13 includes a new discussion of cloud security. The discussion
includes an introduction to cloud computing, key cloud security concepts, an analysis of
approaches to cloud security, and an open-source example.

IoT security: Chapter 13 includes a new discussion of security for the Internet of Things
(IoT). The discussion includes an introduction to IoT, an overview of IoT security issues,
and an open-source example.

SEIM: The discussion of Security Information and Event Management (SIEM) systems
in Chapter 18 has been updated.

Privacy: The section on privacy issues and its management in Chapter 19 has been
extended with additional discussion of moral and legal approaches, and the privacy
issues related to big data.

Authenticated encryption: Authenticated encryption has become an increasingly wide-
spread cryptographic tool in a variety of applications and protocols. Chapter 21 includes
a new discussion of authenticated description and describes an important authenticated
encryption algorithm known as offset codebook (OCB) mode.

PREFACE 13

BACKGROUND

Interest in education in computer security and related topics has been growing at a dramatic rate
in recent years. This interest has been spurred by a number of factors, two of which stand out:

1. As information systems, databases, and Internet-based distributed systems and com-
munication have become pervasive in the commercial world, coupled with the increased
intensity and sophistication of security-related attacks, organizations now recognize the
need for a comprehensive security strategy. This strategy encompasses the use of special-
ized hardware and software and trained personnel to meet that need.

2. Computer security education, often termed information security education or information
assurance education,has emerged as a national goal in the United States and other coun-
tries, with national defense and homeland security implications. The NSA/DHS National
Center of Academic Excellence in Information Assurance/Cyber Defense is spearhead-
ing a government role in the development of standards for computer security education.

Accordingly, the number of courses in universities, community colleges, and other
institutions in computer security and related areas is growing.

OBJECTIVES

The objective of this book is to provide an up-to-date survey of developments in computer
security. Central problems that confront security designers and security administrators include
defining the threats to computer and network systems, evaluating the relative risks of these
threats, and developing cost-effective and user friendly countermeasures.

The following basic themes unify the discussion:

e Principles: Although the scope of this book is broad, there are a number of basic prin-
ciples that appear repeatedly as themes and that unify this field. Examples are issues
relating to authentication and access control. The book highlights these principles and
examines their application in specific areas of computer security.

* Design approaches: The book examines alternative approaches to meeting specific
computer security requirements.

e Standards: Standards have come to assume an increasingly important, indeed dominant,
role in this field. An understanding of the current status and future direction of technol-
ogy requires a comprehensive discussion of the related standards.

* Real-world examples: A number of chapters include a section that shows the practical
application of that chapter’s principles in a real-world environment.

SUPPORT OF ACM/IEEE COMPUTER SCIENCE CURRICULA 2013

This book is intended for both an academic and a professional audience. As a textbook,
it is intended as a one- or two-semester undergraduate course for computer science, com-
puter engineering, and electrical engineering majors. This edition is designed to support

14

Coverage of CS2013 Information Assurance and Security (IAS) Knowledge Area

IAS Knowledge Units

Topics

Textbook Coverage

Foundational Concepts
in Security (Tier 1)

¢ CIA (Confidentiality, Integrity, and
Availability)

¢ Risk, threats, vulnerabilities, and attack
vectors

e Authentication and authorization, access
control (mandatory vs. discretionary)

e Trust and trustworthiness

e Ethics (responsible disclosure)

1—Overview

3—User Authentication

4— Access Control

19—Legal and Ethical Aspects

Principles of Secure
Design (Tier 1)

e Least privilege and isolation

e Fail-safe defaults

* Open design

¢ End-to-end security

¢ Defense in depth

e Security by design

¢ Tensions between security and other design
goals

1—Overview

Principles of Secure
Design (Tier 2)

e Complete mediation

e Use of vetted security components

¢ Economy of mechanism (reducing trusted
computing base, minimize attack surface)

e Usable security

e Security composability

® Prevention, detection, and deterrence

1—Overview

Defensive Programming
(Tier 1)

e Input validation and data sanitization

e Choice of programming language and
type-safe languages

e Examples of input validation and data
sanitization errors (buffer overflows, integer
errors, SQL injection, and XSS vulnerability)

e Race conditions

e Correct handling of exceptions and
unexpected behaviors

11—Software Security

Defensive Programming
(Tier 2)

e Correct usage of third-party components
e Effectively deploying security updates

11—Software Security
12—OS Security

Threats and Attacks
(Tier 2)

o Attacker goals, capabilities, and motivations

® Malware

e Denial of service and distributed denial of
service

e Social engineering

6—Malicious Software
7—Denial-of-Service Attacks

Network Security
(Tier 2)

* Network-specific threats and attack types

e Use of cryptography for data and network
security

e Architectures for secure networks

e Defense mechanisms and countermeasures

e Security for wireless, cellular networks

8—Intrusion Detection
9—Firewalls and Intrusion
Prevention Systems

Part 5—Network Security

Cryptography (Tier 2)

e Basic cryptography terminology

e Cipher types

e Overview of mathematical preliminaries
e Public key infrastructure

2— Cryptographic Tools
Part 4— Cryptographic
Algorithms

PREFACE 15

the recommendations of the ACM/IEEE Computer Science Curricula 2013 (CS2013). The
CS2013 curriculum recommendation includes, for the first time, Information Assurance and
Security (IAS) as one of the Knowledge Areas in the Computer Science Body of Knowledge.
CS2013 divides all course work into three categories: Core-Tier 1 (all topics should be
included in the curriculum), Core-Tier 2 (all or almost all topics should be included), and
Elective (desirable to provide breadth and depth). In the IAS area, CS2013 includes three
Tier 1 topics, five Tier 2 topics, and numerous Elective topics, each of which has a number of
subtopics. This text covers all of the Tier 1 and Tier 2 topics and subtopics listed by CS2013,
as well as many of the elective topics. Table P.1 shows the support for the ISA Knowledge
Area provided in this textbook.

COVERAGE OF CISSP SUBJECT AREAS

This book provides coverage of all the subject areas specified for CISSP (Certified Information
Systems Security Professional) certification. The CISSP designation from the International
Information Systems Security Certification Consortium (ISC)? is often referred to as the
“gold standard” when it comes to information security certification. It is the only univer-
sally recognized certification in the security industry. Many organizations, including the U.S.
Department of Defense and many financial institutions, now require that cyber security per-
sonnel have the CISSP certification. In 2004, CISSP became the first I'T program to earn
accreditation under the international standard ISO/IEC 17024 (General Requirements for
Bodies Operating Certification of Persons).

The CISSP examination is based on the Common Body of Knowledge (CBK), a compen-
dium of information security best practices developed and maintained by (ISC)?, a nonprofit
organization. The CBK is made up of 8 domains that comprise the body of knowledge that is
required for CISSP certification.

The 8 domains are as follows, with an indication of where the topics are covered in this
textbook:

* Security and risk management: Confidentiality, integrity, and availability concepts;
security governance principles; risk management; compliance; legal and regulatory
issues; professional ethics; and security policies, standards, procedures, and guidelines.
(Chapter 14)

* Asset security: Information and asset classification; ownership (e.g. data owners, system
owners); privacy protection; appropriate retention; data security controls; and handling
requirements (e.g., markings, labels, storage). (Chapters 5, 15, 16, 19)

* Security engineering: Engineering processes using secure design principles; security
models; security evaluation models; security capabilities of information systems; security
architectures, designs, and solution elements vulnerabilities; web-based systems vulner-
abilities; mobile systems vulnerabilities; embedded devices and cyber-physical systems
vulnerabilities; cryptography; and site and facility design secure principles; physical secu-
rity. (Chapters 1, 2, 13, 15, 16)

° Communication and network security: Secure network architecture design (e.g., IP and
non-IP protocols, segmentation); secure network components; secure communication
channels; and network attacks. (Part Five)

16 PREFACE

 Identity and access management: Physical and logical assets control; identification and
authentication of people and devices; identity as a service (e.g. cloud identity); third-
party identity services (e.g., on-premise); access control attacks; and identity and access
provisioning lifecycle (e.g., provisioning review). (Chapters 3, 4, 8, 9)

* Security assessment and testing: Assessment and test strategies; security process data
(e.g., management and operational controls); security control testing; test outputs
(e.g., automated, manual); and security architectures vulnerabilities. (Chapters 14,
15,18)

* Security operations: Investigations support and requirements; logging and monitoring
activities; provisioning of resources; foundational security operations concepts; resource
protection techniques; incident management; preventative measures; patch and vulner-
ability management; change management processes; recovery strategies; disaster recov-
ery processes and plans; business continuity planning and exercises; physical security;
and personnel safety concerns. (Chapters 11, 12, 15, 16, 17)

* Software development security: Security in the software development lifecycle; devel-
opment environment security controls; software security effectiveness; and acquired
software security impact. (Part Two)

SUPPORT FOR NSA/DHS CERTIFICATION

The U.S. National Security Agency (NSA) and the U.S. Department of Homeland Security
(DHS) jointly sponsor the National Centers of Academic Excellence in Information Assur-
ance/Cyber Defense (IA/CD). The goal of these programs is to reduce vulnerability in our
national information infrastructure by promoting higher education and research in IA and
producing a growing number of professionals with IA expertise in various disciplines. To
achieve that purpose, NSA/DHS have defined a set of Knowledge Units for 2- and 4-year
institutions that must be supported in the curriculum to gain a designation as a NSA/DHS
National Center of Academic Excellence in IA/CD. Each Knowledge Unit is composed
of a minimum list of required topics to be covered and one or more outcomes or learning
objectives. Designation is based on meeting a certain threshold number of core and optional
Knowledge Units.

In the area of computer security, the 2014 Knowledge Units document lists the following
core Knowledge Units:

e Cyber Defense: Includes access control, cryptography, firewalls, intrusion detection sys-
tems, malicious activity detection and countermeasures, trust relationships, and defense
in depth.

e Cyber Threats: Includes types of attacks, legal issues, attack surfaces, attack trees, insider
problems, and threat information sources.

* Fundamental Security Design Principles: A list of 12 principles, all of which are covered
in Section 1.4 of this text.

* Information Assurance Fundamentals: Includes threats and vulnerabilities, intrusion
detection and prevention systems, cryptography, access control models, identification/
authentication, and audit.

PREFACE 17

* Introduction to Cryptography: Includes symmetric cryptography, public-key
cryptography, hash functions, and digital signatures.

e Databases: Includes an overview of databases, database access controls, and security
issues of inference.

This book provides extensive coverage in all of these areas. In addition, the book
partially covers a number of the optional Knowledge Units.

PLAN OF THE TEXT

The book is divided into five parts (see Chapter 0):

e Computer Security Technology and Principles
e Software and System Security
* Management Issues
e Cryptographic Algorithms
* Network Security
The text is also accompanied by a number of online chapters and appendices that pro-
vide more detail on selected topics.
The text includes an extensive glossary, a list of frequently used acronyms, and a bib-

liography. Each chapter includes homework problems, review questions, a list of key words,
and suggestions for further reading.

INSTRUCTOR SUPPORT MATERIALS

The major goal of this text is to make it as effective a teaching tool for this exciting and fast-moving
subject as possible. This goal is reflected both in the structure of the book and in the supporting
material. The text is accompanied by the following supplementary material to aid the instructor:

* Projects manual: Project resources including documents and portable software, plus sug-
gested project assignments for all of the project categories listed in the following section.

* Solutions manual: Solutions to end-of-chapter Review Questions and Problems.

* PowerPoint slides: A set of slides covering all chapters, suitable for use in lecturing.

e PDF files: Reproductions of all figures and tables from the book.

e Test bank: A chapter-by-chapter set of questions.

e Sample syllabuses: The text contains more material than can be conveniently covered
in one semester. Accordingly, instructors are provided with several sample syllabuses
that guide the use of the text within limited time. These samples are based on real-world
experience by professors with the first edition.

All of these support materials are available at the Instructor Resource Center (IRC) for
this textbook, which can be reached through the publisher’s Website www.pearsonglobaleditions
.comy/stallings . To gain access to the IRC, please contact your local Pearson sales representative.

http://www.pearsonglobaleditions.com/stallings
http://www.pearsonglobaleditions.com/stallings

18 PREFACE

The Companion Website includes the following:

e Links to Web sites for other courses being taught using this book.

e Sign-up information for an Internet mailing list for instructors using this book to
exchange information, suggestions, and questions with each other and with the author.

STUDENT RESOURCES

For this new edition, a tremendous amount of original support-
ing material for students has been made available online, at
two Web locations. The Companion Website, includes a list of
relevant links organized by chapter and an errata sheet for the
book.

Purchasing this textbook now grants the reader 12 months of
access to the Premium Content Site, which includes the following
materials:

¢ Online chapters: To limit the size and cost of the book, three
chapters of the book are provided in PDF format. The chapters
are listed in this book’s table of contents.

* Online appendices: There are numerous interesting topics that support material found in
the text but whose inclusion is not warranted in the printed text. A total of eleven online
appendices cover these topics for the interested student. The appendices are listed in
this book’s table of contents.

* Homework problems and solutions: To aid the student in understanding the material,
a separate set of homework problems with solutions is available. These enable the stu-
dents to test their understanding of the text.

To access the Premium Content site, click on the link at www.pearsonglobaleditions
.com/stallings and enter the student access code found on the inside front cover.

PROJECTS AND OTHER STUDENT EXERCISES

For many instructors, an important component of a computer security course is a project or
set of projects by which the student gets hands-on experience to reinforce concepts from the
text. This book provides an unparalleled degree of support for including a projects component
in the course. The instructor’s support materials available through Pearson not only include
guidance on how to assign and structure the projects but also include a set of user manuals for
various project types plus specific assignments, all written especially for this book. Instructors
can assign work in the following areas:

* Hacking exercises: Two projects that enable students to gain an understanding of the
issues in intrusion detection and prevention.

* Laboratory exercises: A series of projects that involve programming and experimenting
with concepts from the book.

http://www.pearsonglobaleditions.com/stallings
http://www.pearsonglobaleditions.com/stallings

PREFACE 19

* Security education (SEED) projects: The SEED projects are a set of hands-on exercises,
or labs, covering a wide range of security topics.

* Research projects: A series of research assignments that instruct the students to research
a particular topic on the Internet and write a report.

* Programming projects: A series of programming projects that cover a broad range of
topics and that can be implemented in any suitable language on any platform.

o Practical security assessments: A set of exercises to examine current infrastructure and
practices of an existing organization.

e Firewall projects: A portable network firewall visualization simulator is provided,
together with exercises for teaching the fundamentals of firewalls.

e Case studies: A set of real-world case studies, including learning objectives, case descrip-
tion, and a series of case discussion questions.

* Reading/report assignments: A list of papers that can be assigned for reading and writing
a report, plus suggested assignment wording.

° Writing assignments: A list of writing assignments to facilitate learning the material.

* Webcasts for teaching computer security: A catalog of webcast sites that can be used
to enhance the course. An effective way of using this catalog is to select, or allow the
student to select, one or a few videos to watch, and then to write a report/analysis of
the video.

This diverse set of projects and other student exercises enables the instructor to use the
book as one component in a rich and varied learning experience and to tailor a course plan to
meet the specific needs of the instructor and students. See Appendix A in this book for details.

ACKNOWLEDGMENTS

This new edition has benefited from review by a number of people, who gave generously of
their time and expertise. The following professors and instructors reviewed all or a large part
of the manuscript: Bernardo Palazzi (Brown University), Jean Mayo (Michigan Technological
University), Scott Kerlin (University of North Dakota), Philip Campbell (Ohio University),
Scott Burgess (Humboldt State University), Stanley Wine (Hunter College/CUNY), and
E. Mauricio Angee (Florida International University).

Thanks also to the many people who provided detailed technical reviews of one or
more chapters: Umair Manzoor (UmZ), Adewumi Olatunji (FAGOSI Systems, Nigeria), Rob
Meijer, Robin Goodchil, Greg Barnes (Inviolate Security LL.C), Arturo Busleiman (Buanzo
Consulting), Ryan M. Speers (Dartmouth College), Wynand van Staden (School of Computing,
University of South Africa), Oh Sieng Chye, Michael Gromek, Samuel Weisberger, Brian
Smithson (Ricoh Americas Corp, CISSP), Josef B. Weiss (CISSP), Robbert-Frank Ludwig
(Veenendaal, ActStamp Information Security), William Perry, Daniela Zamfiroiu (CISSP),
Rodrigo Ristow Branco, George Chetcuti (Technical Editor, TechGenix), Thomas Johnson
(Director of Information Security at a banking holding company in Chicago, CISSP), Robert
Yanus (CISSP), Rajiv Dasmohapatra (Wipro Ltd), Dirk Kotze, Ya’akov Yehudi, and Stanley
Wine (Adjunct Lecturer, Computer Information Systems Department, Zicklin School of
Business, Baruch College).

20 PREFACE

Dr. Lawrie Brown would first like to thank Bill Stallings for the pleasure of working with
him to produce this text. I would also like to thank my colleagues in the School of Engineering
and Information Technology, UNSW Canberra at the Australian Defence Force Academy for
their encouragement and support. In particular, thanks to Gideon Creech, Edward Lewis, and
Ben Whitham for discussion and review of some of the chapter content.

Finally, we would like to thank the many people responsible for the publication of the
book, all of whom did their usual excellent job. This includes the staff at Pearson, particularly
our editor Tracy Dunkelberger, her editorial assistant Kristy Alaura, and project manager Bob
Engelhardt. Thanks also to the marketing and sales staffs at Pearson, without whose efforts
this book would not be in front of you.

ACKNOWLEDGMENTS FOR THE GLOBAL EDITION

Pearson would like to thank and acknowledge Somitra Sanadhya (Indian Institute of Technol-
ogy Ropar) for contributing to the Global Edition, and Arup Bhattacharya (RCC Institute of
Technology), A. Kannammal (Coimbatore Institute of Technology), and Khyat Sharma for
reviewing the Global Edition.

NOTATION

Symbol Expression Meaning
D, K D(K,Y) Symmetric decryption of ciphertext Y using secret key K
D, PR, D(PR,Y) Asymmetric decryption of ciphertext Y using A’s private key PR,
D, PU, D(rU,, Y) Asymmetric decryption of ciphertext Y using A’s public key PU,
E,K E(K, X) Symmetric encryption of plaintext X using secret key K
E, PR, E(PR,, X) Asymmetric encryption of plaintext X using A’s private key PR,
E,PU, E(PU,, X) Asymmetric encryption of plaintext X using A’s public key PU,
K Secret key
PR, Private key of user A
PU, Public key of user A
H(X) Hash function of message X

a4 x+y Logical OR: x OR y
o xey Logical AND:x AND y

=~ ~ 5 Logical NOT: NOT x
@ A characteristic formula, consisting of a logical formula over the

values of attributes in a database

X X(C) Query set of C, the set of records satisfying C

|, X | X(O)] Magnitude of X(C): the number of records in X(C)
N X(C) N X(D) Set intersection: the number of records in both X(C) and X(D)
[x| |y x concatenated with y

21

ABOUT THE AUTHORS

Dr. William Stallings authored 18 textbooks, and, counting revised
editions, a total of 70 books on various aspects of these sub-
jects. His writings have appeared in numerous ACM and IEEE
publications, including the Proceedings of the IEEE and ACM
Computing Reviews. He has 13 times received the award for the
best Computer Science textbook of the year from the Text and
Academic Authors Association.

In over 30 years in the field, he has been a technical
contributor, technical manager, and an executive with several
high-technology firms. He has designed and implemented both

TCP/IP-based and OSI-based protocol suites on a variety of computers and operating systems,
ranging from microcomputers to mainframes. Currently he is an independent consultant
whose clients have included computer and networking manufacturers and customers, software
development firms, and leading-edge government research institutions.

He created and maintains the Computer Science Student Resource Site at Computer
ScienceStudent.com. This site provides documents and links on a variety of subjects of general
interest to computer science students (and professionals). He is a member of the editorial
board of Cryptologia, a scholarly journal devoted to all aspects of cryptology.

LEe0

Dr. Lawrie Brown is a visiting senior lecturer in the School of
Engineering and Information Technology, UNSW Canberra at
the Australian Defence Force Academy.

His professional interests include communications and
computer systems security and cryptography, including research
on pseudo-anonymous communication, authentication, security
and trust issues in Web environments, the design of secure remote
code execution environments using the functional language
Erlang, and on the design and implementation of the LOKI
family of block ciphers.

During his career, he has presented courses on cryptography, cybersecurity, data
communications, data structures, and programming in Java to both undergraduate and

postgraduate students.

22

http://www.ScienceStudent.com

OVERVIEW

1.1 Computer Security Concepts

A Definition of Computer Security
Examples

The Challenges of Computer Security
A Model for Computer Security

1.2 Threats, Attacks, and Assets

Threats and Attacks
Threats and Assets

1.3 Security Functional Requirements
1.4 Fundamental Security Design Principles

1.5 Attack Surfaces and Attack Trees

Attack Surfaces
Attack Trees

1.6 Computer Security Strategy

Security Policy
Security Implementation
Assurance and Evaluation

1.7 Standards

1.8 Key Terms, Review Questions, and Problems

23

24 CHAPTER 1 / OVERVIEW

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

@ Describe the key security requirements of confidentiality, integrity, and
availability.

@ Discuss the types of security threats and attacks that must be dealt with

and give examples of the types of threats and attacks that apply to different
categories of computer and network assets.

€ Summarize the functional requirements for computer security.

@ Explain the fundamental security design principles.

@ Discuss the use of attack surfaces and attack trees.

€ Understand the principle aspects of a comprehensive security strategy.

This chapter provides an overview of computer security. We begin with a discussion
of what we mean by computer security. In essence, computer security deals with
computer-related assets that are subject to a variety of threats and for which various
measures are taken to protect those assets. Accordingly, the next section of this
chapter provides a brief overview of the categories of computer-related assets that
users and system managers wish to preserve and protect, and a look at the various
threats and attacks that can be made on those assets. Then, we survey the measures
that can be taken to deal with such threats and attacks. This we do from three dif-
ferent viewpoints, in Sections 1.3 through 1.5. We then lay out in general terms a
computer security strategy.

The focus of this chapter, and indeed this book, is on three fundamental
questions:

1. What assets do we need to protect?
2. How are those assets threatened?

3. What can we do to counter those threats?

1.1 COMPUTER SECURITY CONCEPTS

A Definition of Computer Security

The NIST Internal/Interagency Report NISTIR 7298 (Glossary of Key Information
Security Terms, May 2013) defines the term computer security as follows:

Computer Security: Measures and controls that ensure confidentiality, integrity,
and availability of information system assets including hardware, software, firm-
ware, and information being processed, stored, and communicated.

1.1 / COMPUTER SECURITY CONCEPTS 25

This definition introduces three key objectives that are at the heart of computer
security:

¢ Confidentiality: This term covers two related concepts:

— Data confidentiality:1 Assures that private or confidential information is
not made available or disclosed to unauthorized individuals.

— Privacy: Assures that individuals control or influence what information
related to them may be collected and stored and by whom and to whom that
information may be disclosed.

 Integrity: This term covers two related concepts:

— Data integrity: Assures that information and programs are changed only
in a specified and authorized manner.

— System integrity: Assures that a system performs its intended function in
an unimpaired manner, free from deliberate or inadvertent unauthorized
manipulation of the system.

* Availability: Assures that systems work promptly and service is not denied to
authorized users.

These three concepts form what is often referred to as the CIA triad. The three
concepts embody the fundamental security objectives for both data and for information
and computing services. For example, the NIST standard FIPS 199 (Standards for Security
Categorization of Federal Information and Information Systems, February 2004) lists con-
fidentiality, integrity, and availability as the three security objectives for information and
for information systems. FIPS 199 provides a useful characterization of these three objec-
tives in terms of requirements and the definition of a loss of security in each category:

* Confidentiality: Preserving authorized restrictions on information access and
disclosure, including means for protecting personal privacy and proprietary infor-
mation. A loss of confidentiality is the unauthorized disclosure of information.

* Integrity: Guarding against improper information modification or destruction,
including ensuring information nonrepudiation and authenticity. A loss of integ-
rity is the unauthorized modification or destruction of information.

e Availability: Ensuring timely and reliable access to and use of information.
A loss of availability is the disruption of access to or use of information or an
information system.

Although the use of the CIA triad to define security objectives is well estab-
lished, some in the security field feel that additional concepts are needed to present a
complete picture (see Figure 1.1). Two of the most commonly mentioned are as follows:

* Authenticity: The property of being genuine and being able to be verified and
trusted; confidence in the validity of a transmission, a message, or message

IRFC 4949 (Internet Security Glossary, August 2007) defines information as “facts and ideas, which can
be represented (encoded) as various forms of data,” and data as “information in a specific physical rep-
resentation, usually a sequence of symbols that have meaning; especially a representation of information
that can be processed or produced by a computer.” Security literature typically does not make much of a
distinction; nor does this book.

26 CHAPTER 1 / OVERVIEW

and
services

Availability

Figure 1.1 Essential Network and
Computer Security Requirements

originator. This means verifying that users are who they say they are and that
each input arriving at the system came from a trusted source.

* Accountability: The security goal that generates the requirement for actions
of an entity to be traced uniquely to that entity. This supports nonrepudiation,
deterrence, fault isolation, intrusion detection and prevention, and after-action
recovery and legal action. Because truly secure systems are not yet an achiev-
able goal, we must be able to trace a security breach to a responsible party.
Systems must keep records of their activities to permit later forensic analysis
to trace security breaches or to aid in transaction disputes.

Note that FIPS 199 includes authenticity under integrity.

Examples

We now provide some examples of applications that illustrate the requirements just
enumerated.? For these examples, we use three levels of impact on organizations or
individuals should there be a breach of security (i.e., a loss of confidentiality, integrity,
or availability). These levels are defined in FIPS 199:

* Low: The loss could be expected to have a limited adverse effect on organiza-
tional operations, organizational assets, or individuals. A limited adverse effect
means that, for example, the loss of confidentiality, integrity, or availability
might: (i) cause a degradation in mission capability to an extent and duration
that the organization is able to perform its primary functions, but the effec-
tiveness of the functions is noticeably reduced; (ii) result in minor damage to
organizational assets; (iii) result in minor financial loss; or (iv) result in minor
harm to individuals.

These examples are taken from a security policy document published by the Information Technology
Security and Privacy Office at Purdue University.

1.1 / COMPUTER SECURITY CONCEPTS 27

* Moderate: The loss could be expected to have a serious adverse effect on
organizational operations, organizational assets, or individuals. A serious
adverse effect means that, for example, the loss might: (i) cause a significant
degradation in mission capability to an extent and duration that the organiza-
tion is able to perform its primary functions, but the effectiveness of the func-
tions is significantly reduced; (ii) result in significant damage to organizational
assets; (iii) result in significant financial loss; or (iv) result in significant harm to
individuals that does not involve loss of life or serious life-threatening injuries.

e High: The loss could be expected to have a severe or catastrophic adverse effect
on organizational operations, organizational assets, or individuals. A severe or
catastrophic adverse effect means that, for example, the loss might: (i) cause a
severe degradation in or loss of mission capability to an extent and duration
that the organization is not able to perform one or more of its primary func-
tions; (ii) result in major damage to organizational assets; (iii) result in major
financial loss; or (iv) result in severe or catastrophic harm to individuals involv-
ing loss of life or serious life-threatening injuries.

ConripentiaLiTy - Student grade information is an asset whose confidentiality is
considered to be highly important by students. In the United States, the release of
such information is regulated by the Family Educational Rights and Privacy Act
(FERPA). Grade information should only be available to students, their parents, and
employees that require the information to do their job. Student enrollment informa-
tion may have a moderate confidentiality rating. While still covered by FERPA, this
information is seen by more people on a daily basis, is less likely to be targeted than
grade information, and results in less damage if disclosed. Directory information, such
as lists of students or faculty or departmental lists, may be assigned a low confiden-
tiality rating or indeed no rating. This information is typically freely available to the
public and published on a school’s website.

INTEGRITY Several aspects of integrity are illustrated by the example of a hospital
patient’s allergy information stored in a database. The doctor should be able to trust
that the information is correct and current. Now, suppose an employee (e.g.,a nurse)
who is authorized to view and update this information deliberately falsifies the data
to cause harm to the hospital. The database needs to be restored to a trusted basis
quickly, and it should be possible to trace the error back to the person responsible.
Patient allergy information is an example of an asset with a high requirement for
integrity. Inaccurate information could result in serious harm or death to a patient,
and expose the hospital to massive liability.

An example of an asset that may be assigned a moderate level of integrity
requirement is a website that offers a forum to registered users to discuss some spe-
cific topic. Either a registered user or a hacker could falsify some entries or deface the
website. If the forum exists only for the enjoyment of the users, brings in little or no
advertising revenue, and is not used for something important such as research, then
potential damage is not severe. The Webmaster may experience some data, financial,
and time loss.

An example of a low integrity requirement is an anonymous online poll. Many
websites, such as news organizations, offer these polls to their users with very few

28 CHAPTER 1 / OVERVIEW

safeguards. However, the inaccuracy and unscientific nature of such polls is well
understood.

AvarLapiLiry The more critical a component or service is, the higher will be the
level of availability required. Consider a system that provides authentication services
for critical systems, applications, and devices. An interruption of service results in the
inability for customers to access computing resources and staff to access the resources
they need to perform critical tasks. The loss of the service translates into a large
financial loss in lost employee productivity and potential customer loss.

An example of an asset that would typically be rated as having a moderate
availability requirement is a public website for a university; the website provides
information for current and prospective students and donors. Such a site is not a
critical component of the university’s information system, but its unavailability will
cause some embarrassment.

An online telephone directory lookup application would be classified as a low
availability requirement. Although the temporary loss of the application may be an
annoyance, there are other ways to access the information, such as a hardcopy direc-
tory or the operator.

The Challenges of Computer Security

Computer security is both fascinating and complex. Some of the reasons are as follows:

1. Computer security is not as simple as it might first appear to the novice. The
requirements seem to be straightforward; indeed, most of the major require-
ments for security services can be given self-explanatory one-word labels:
confidentiality, authentication, nonrepudiation, and integrity. But the mecha-
nisms used to meet those requirements can be quite complex, and understanding
them may involve rather subtle reasoning.

2. Indeveloping a particular security mechanism or algorithm, one must always con-
sider potential attacks on those security features. In many cases, successful attacks
are designed by looking at the problem in a completely different way, therefore
exploiting an unexpected weakness in the mechanism.

3. Because of Point 2, the procedures used to provide particular services are often
counterintuitive. Typically, a security mechanism is complex, and it is not obvious
from the statement of a particular requirement that such elaborate measures are
needed. Only when the various aspects of the threat are considered do elaborate
security mechanisms make sense.

4. Having designed various security mechanisms, it is necessary to decide where to
use them. This is true both in terms of physical placement (e.g., at what points in
a network are certain security mechanisms needed) and in a logical sense [e.g.,
at what layer or layers of an architecture such as TCP/IP (Transmission Control
Protocol/Internet Protocol) should mechanisms be placed].

5. Security mechanisms typically involve more than a particular algorithm or
protocol. They also require that participants be in possession of some secret
information (e.g., an encryption key), which raises questions about the creation,
distribution, and protection of that secret information. There may also be a reli-
ance on communications protocols whose behavior may complicate the task of

1.1 / COMPUTER SECURITY CONCEPTS 29

developing the security mechanism. For example, if the proper functioning of the
security mechanism requires setting time limits on the transit time of a message
from sender to receiver, then any protocol or network that introduces variable,
unpredictable delays may render such time limits meaningless.

6. Computer security is essentially a battle of wits between a perpetrator who tries
to find holes, and the designer or administrator who tries to close them. The great
advantage that the attacker has is that he or she need only find a single weak-
ness, while the designer must find and eliminate all weaknesses to achieve perfect
security.

7. There is a natural tendency on the part of users and system managers to perceive
little benefit from security investment until a security failure occurs.

8. Security requires regular, even constant monitoring, and this is difficult in today’s
short-term, overloaded environment.

9. Security is still too often an afterthought to be incorporated into a system after
the design is complete, rather than being an integral part of the design process.

10. Many users and even security administrators view strong security as an impedi-
ment to efficient and user-friendly operation of an information system or use
of information.

The difficulties just enumerated will be encountered in numerous ways as we
examine the various security threats and mechanisms throughout this book.

A Model for Computer Security

We now introduce some terminology that will be useful throughout the book.* Table
1.1 defines terms and Figure 1.2, based on [CCPS12a], shows the relationship among
some of these terms. We start with the concept of a system resource or asset, that
users and owners wish to protect. The assets of a computer system can be categorized
as follows:

e Hardware: Including computer systems and other data processing, data storage,
and data communications devices.
¢ Software: Including the operating system, system utilities, and applications.

e Data: Including files and databases, as well as security-related data, such as
password files.

* Communication facilities and networks: Local and wide area network com-
munication links, bridges, routers, and so on.

In the context of security, our concern is with the vulnerabilities of system
resources. [NRCO02] lists the following general categories of vulnerabilities of a com-
puter system or network asset:

¢ The system can be corrupted, so it does the wrong thing or gives wrong answers.
For example, stored data values may differ from what they should be because
they have been improperly modified.

3See Chapter 0 for an explanation of RFCs.

30 CHAPTER 1 / OVERVIEW

Table 1.1 Computer Security Terminology

Adversary (threat agent)
Individual, group, organization, or government that conducts or has the intent to conduct detrimental activities.

Attack

Any kind of malicious activity that attempts to collect, disrupt, deny, degrade, or destroy information system
resources or the information itself.

Countermeasure

A device or techniques that has as its objective the impairment of the operational effectiveness of undesirable
or adversarial activity, or the prevention of espionage, sabotage, theft, or unauthorized access to or use of
sensitive information or information systems.

Risk

A measure of the extent to which an entity is threatened by a potential circumstance or event, and typically a function
of 1) the adverse impacts that would arise if the circumstance or event occurs; and 2) the likelihood of occurrence.
Security Policy

A set of criteria for the provision of security services. It defines and constrains the activities of a data process-
ing facility in order to maintain a condition of security for systems and data.

System Resource (Asset)

A major application, general support system, high impact program, physical plant, mission critical system, per-
sonnel, equipment, or a logically related group of systems.

Threat

Any circumstance or event with the potential to adversely impact organizational operations (including mission, func-
tions, image, or reputation), organizational assets, individuals, other organizations, or the Nation through an informa-
tion system via unauthorized access, destruction, disclosure, modification of information, and/or denial of service.
Vulnerability

Weakness in an information system, system security procedures, internal controls, or implementation that
could be exploited or triggered by a threat source.

Source: Stallings, William, Computer Security: Principles and Practice, 4e., ©2019. Reprinted and electronically
reproduced by permission of pearson education, inc., new york, ny.

* The system can become leaky. For example, someone who should not have
access to some or all of the information available through the network obtains
such access.

* The system can become unavailable or very slow. That is, using the system or
network becomes impossible or impractical.

Owners Threat agents
Value

. Wish to abuse
Wish to Impose and/or
minimize may damage
Give
(Countermeasure9 (Assets) rise to
To
reduce
Risk To To Threats

That

t increase

Figure 1.2 Security Concepts and Relationships

1.2 / THREATS, ATTACKS, AND ASSETS 31

These three general types of vulnerability correspond to the concepts of integrity,
confidentiality, and availability, enumerated earlier in this section.

Corresponding to the various types of vulnerabilities to a system resource are
threats that are capable of exploiting those vulnerabilities. A threat represents a
potential security harm to an asset. An attack is a threat that is carried out (threat
action) and, if successful, leads to an undesirable violation of security, or threat con-
sequence. The agent carrying out the attack is referred to as an attacker or threat
agent. We can distinguish two types of attacks:

* Active attack: An attempt to alter system resources or affect their operation.

* Passive attack: An attempt to learn or make use of information from the system
that does not affect system resources.

We can also classify attacks based on the origin of the attack:

* Inside attack: Initiated by an entity inside the security perimeter (an “insider”).
The insider is authorized to access system resources but uses them in a way not
approved by those who granted the authorization.

¢ Qutside attack: Initiated from outside the perimeter, by an unauthorized or ille-
gitimate user of the system (an “outsider”). On the Internet, potential outside
attackers range from amateur pranksters to organized criminals, international
terrorists, and hostile governments.

Finally, a countermeasure is any means taken to deal with a security attack.
Ideally, a countermeasure can be devised to prevent a particular type of attack from
succeeding. When prevention is not possible, or fails in some instance, the goal is to
detect the attack then recover from the effects of the attack. A countermeasure may
itself introduce new vulnerabilities. In any case, residual vulnerabilities may remain
after the imposition of countermeasures. Such vulnerabilities may be exploited by
threat agents representing a residual level of risk to the assets. Owners will seek to
minimize that risk given other constraints.

THREATS, ATTACKS, AND ASSETS

We now turn to a more detailed look at threats, attacks, and assets. First, we look at
the types of security threats that must be dealt with, and then give some examples of
the types of threats that apply to different categories of assets.

Threats and Attacks

Table 1.2, based on RFC 4949, describes four kinds of threat consequences and lists
the kinds of attacks that result in each consequence.

Unauthorized disclosure is a threat to confidentiality. The following types of
attacks can result in this threat consequence:

* Exposure: This can be deliberate, as when an insider intentionally releases sen-
sitive information, such as credit card numbers, to an outsider. It can also be
the result of a human, hardware, or software error, which results in an entity
gaining unauthorized knowledge of sensitive data. There have been numerous

32 CHAPTER 1 / OVERVIEW

Table 1.2

Threat Consequences, and the Types of Threat Actions that Cause Each Consequence

Threat Consequence

Threat Action (Attack)

Unauthorized Disclosure
A circumstance or event whereby
an entity gains access to data for
which the entity is not authorized.

Exposure: Sensitive data are directly released to an unauthorized
entity.

Interception: An unauthorized entity directly accesses sensitive
data traveling between authorized sources and destinations.

Inference: A threat action whereby an unauthorized entity
indirectly accesses sensitive data (but not necessarily the
data contained in the communication) by reasoning from
characteristics or by-products of communications.

Intrusion: An unauthorized entity gains access to sensitive data
by circumventing a system’s security protections.

Deception
A circumstance or event that
may result in an authorized entity
receiving false data and believing it
to be true.

Masquerade: An unauthorized entity gains access to a system or
performs a malicious act by posing as an authorized entity.

Falsification: False data deceive an authorized entity.

Repudiation: An entity deceives another by falsely denying
responsibility for an act.

Disruption
A circumstance or event that
interrupts or prevents the correct
operation of system services and

Incapacitation: Prevents or interrupts system operation by
disabling a system component.

Corruption: Undesirably alters system operation by adversely
modifying system functions or data.

A circumstance or event that results
in control of system services or
functions by an unauthorized entity.

e Obstruction: A threat action that interrupts delivery of system
services by hindering system operation.
Usurpation Misappropriation: An entity assumes unauthorized logical or

physical control of a system resource.

Misuse: Causes a system component to perform a function or
service that is detrimental to system security.

Source: Based on RFC 4949

instances of this, such as universities accidentally posting confidential student
information on the Web.

¢ Interception: Interception is a common attack in the context of communica-
tions. On a shared local area network (LAN), such as a wireless LAN or a
broadcast Ethernet, any device attached to the LAN can receive a copy of
packets intended for another device. On the Internet, a determined hacker can
gain access to e-mail traffic and other data transfers. All of these situations cre-
ate the potential for unauthorized access to data.

¢ Inference: An example of inference is known as traffic analysis, in which an
adversary is able to gain information from observing the pattern of traffic on
a network, such as the amount of traffic between particular pairs of hosts on
the network. Another example is the inference of detailed information from a
database by a user who has only limited access; this is accomplished by repeated
queries whose combined results enable inference.

e Intrusion: An example of intrusion is an adversary gaining unauthorized access
to sensitive data by overcoming the system’s access control protections.

1.2 / THREATS, ATTACKS, AND ASSETS 33

Deception is a threat to either system integrity or data integrity. The following
types of attacks can result in this threat consequence:

* Masquerade: One example of masquerade is an attempt by an unauthorized
user to gain access to a system by posing as an authorized user; this could hap-
pen if the unauthorized user has learned another user’s logon ID and password.
Another example is malicious logic, such as a Trojan horse, that appears to
perform a useful or desirable function but actually gains unauthorized access
to system resources, or tricks a user into executing other malicious logic.

e Falsification: This refers to the altering or replacing of valid data or the intro-
duction of false data into a file or database. For example, a student may alter
his or her grades on a school database.

* Repudiation: In this case, a user either denies sending data, or a user denies
receiving or possessing the data.

Disruption is a threat to availability or system integrity. The following types of
attacks can result in this threat consequence:

* Incapacitation: This is an attack on system availability. This could occur as a
result of physical destruction of or damage to system hardware. More typically,
malicious software, such as Trojan horses, viruses, or worms, could operate in
such a way as to disable a system or some of its services.

e Corruption: This is an attack on system integrity. Malicious software in this
context could operate in such a way that system resources or services function
in an unintended manner. Or a user could gain unauthorized access to a system
and modify some of its functions. An example of the latter is a user placing
backdoor logic in the system to provide subsequent access to a system and its
resources by other than the usual procedure.

* Obstruction: One way to obstruct system operation is to interfere with commu-
nications by disabling communication links or altering communication control
information. Another way is to overload the system by placing excess burden
on communication traffic or processing resources.

Usurpation is a threat to system integrity. The following types of attacks can
result in this threat consequence:

* Misappropriation: This can include theft of service. An example is a distributed
denial of service attack, when malicious software is installed on a number of hosts
to be used as platforms to launch traffic at a target host. In this case, the malicious
software makes unauthorized use of processor and operating system resources.

¢ Misuse: Misuse can occur by means of either malicious logic or a hacker that
has gained unauthorized access to a system. In either case, security functions
can be disabled or thwarted.

Threats and Assets

The assets of a computer system can be categorized as hardware, software, data, and
communication lines and networks. In this subsection, we briefly describe these four

34 CHAPTER 1 / OVERVIEW

(D Access to the data
must be controlled

categories and relate these to the concepts of integrity, confidentiality, and availability
introduced in Section 1.1 (see Figure 1.3 and Table 1.3).

HArRDWARE A major threat to computer system hardware is the threat to availabil-
ity. Hardware is the most vulnerable to attack and the least susceptible to automated
controls. Threats include accidental and deliberate damage to equipment as well as
theft. The proliferation of personal computers and workstations and the widespread
use of LANSs increase the potential for losses in this area. Theft of USB drives can
lead to loss of confidentiality. Physical and administrative security measures are
needed to deal with these threats.

Sorrware Software includes the operating system, utilities, and application pro-
grams. A key threat to software is an attack on availability. Software, especially
application software, is often easy to delete. Software can also be altered or damaged
to render it useless. Careful software configuration management, which includes
making backups of the most recent version of software, can maintain high avail-
ability. A more difficult problem to deal with is software modification that results
in a program that still functions but that behaves differently than before, which is a
threat to integrity/authenticity. Computer viruses and related attacks fall into this
category. A final problem is protection against software piracy. Although certain

Computer system

(@ Sensitive files
must be secure
Data (file security)

Computer system

Data

]
AN

|

@ Data must be
securely transmitted
through networks
(network security)

N

/\

\

(protection) / \

Processes representing users Processes representing users

|
O
O

@Acoess to the computer
facility must be controlled
(user authentication)

} Users making requests

Figure 1.3 Scope of Computer Security

Note: This figure depicts security concerns other than physical security, including controlling of
access to computers systems, safeguarding of data transmitted over communications systems, and

safeguarding of stored data.

1.2 / THREATS, ATTACKS, AND ASSETS 35

Table 1.3 Computer and Network Assets, with Examples of Threats

Availability Confidentiality Integrity
Hardware | Equipment is stolen or An unencrypted
disabled, thus denying USB drive is stolen.
service.
Software | Programs are deleted, An unauthorized copy of A working program is modi-
denying access to users. software is made. fied, either to cause it to fail

during execution or to cause
it to do some unintended task.

Data | Files are deleted, denying An unauthorized read Existing files are modified or
access to users. of data is performed. An new files are fabricated.
analysis of statistical data
reveals underlying data.

Communication | Messages are destroyed or | Messages are read. The Messages are modified,
Lines and | deleted. Communication traffic pattern of messages | delayed, reordered, or dupli-
Networks | lines or networks are is observed. cated. False messages are

rendered unavailable. fabricated.

countermeasures are available, by and large the problem of unauthorized copying
of software has not been solved.

Dara Hardware and software security are typically concerns of computing cen-
ter professionals or individual concerns of personal computer users. A much more
widespread problem is data security, which involves files and other forms of data
controlled by individuals, groups, and business organizations.

Security concerns with respect to data are broad, encompassing availability,
secrecy, and integrity. In the case of availability, the concern is with the destruction
of data files, which can occur either accidentally or maliciously.

The obvious concern with secrecy is the unauthorized reading of data files or
databases, and this area has been the subject of perhaps more research and effort
than any other area of computer security. A less obvious threat to secrecy involves the
analysis of data and manifests itself in the use of so-called statistical databases, which
provide summary or aggregate information. Presumably, the existence of aggregate
information does not threaten the privacy of the individuals involved. However, as
the use of statistical databases grows, there is an increasing potential for disclosure
of personal information. In essence, characteristics of constituent individuals may be
identified through careful analysis. For example, if one table records the aggregate of
the incomes of respondents A, B, C, and D and another records the aggregate of the
incomes of A, B, C, D, and E, the difference between the two aggregates would be the
income of E. This problem is exacerbated by the increasing desire to combine data
sets. In many cases, matching several sets of data for consistency at different levels
of aggregation requires access to individual units. Thus, the individual units, which
are the subject of privacy concerns, are available at various stages in the processing
of data sets.

Finally, data integrity is a major concern in most installations. Modifications to
data files can have consequences ranging from minor to disastrous.

36 CHAPTER 1 / OVERVIEW

CommunicaTioN LINES AND NETworks Network security attacks can be classified
as passive attacks and active attacks. A passive attack attempts to learn or make use of
information from the system, but does not affect system resources. An active attack
attempts to alter system resources or affect their operation.

Passive attacks are in the nature of eavesdropping on, or monitoring of, trans-
missions. The goal of the attacker is to obtain information that is being transmit-
ted. Two types of passive attacks are the release of message contents and traffic
analysis.

The release of message contents is easily understood. A telephone conversation,
an electronic mail message, and a transferred file may contain sensitive or confiden-
tial information. We would like to prevent an opponent from learning the contents
of these transmissions.

A second type of passive attack, traffic analysis, is more subtle. Suppose we
had a way of masking the contents of messages or other information traffic so oppo-
nents, even if they captured the message, could not extract the information from
the message. The common technique for masking contents is encryption. If we had
encryption protection in place, an opponent might still be able to observe the pattern
of these messages. The opponent could determine the location and identity of com-
municating hosts and could observe the frequency and length of messages being
exchanged. This information might be useful in guessing the nature of the communi-
cation that was taking place.

Passive attacks are very difficult to detect because they do not involve any
alteration of the data. Typically, the message traffic is sent and received in an appar-
ently normal fashion and neither the sender nor receiver is aware that a third party
has read the messages or observed the traffic pattern. However, it is feasible to pre-
vent the success of these attacks, usually by means of encryption. Thus, the emphasis
in dealing with passive attacks is on prevention rather than detection.

Active attacks involve some modification of the data stream or the creation
of a false stream, and can be subdivided into four categories: replay, masquerade,
modification of messages, and denial of service.

Replay involves the passive capture of a data unit and its subsequent retrans-
mission to produce an unauthorized effect.

A masquerade takes place when one entity pretends to be a different entity.
A masquerade attack usually includes one of the other forms of active attack. For
example, authentication sequences can be captured and replayed after a valid
authentication sequence has taken place, thus enabling an authorized entity with
few privileges to obtain extra privileges by impersonating an entity that has those
privileges.

Modification of messages simply means that some portion of a legitimate
message is altered, or that messages are delayed or reordered, to produce an unau-
thorized effect. For example, a message stating, “Allow John Smith to read confi-
dential file accounts” is modified to say, “Allow Fred Brown to read confidential
file accounts.”

The denial of service prevents or inhibits the normal use or management of
communication facilities. This attack may have a specific target; for example, an
entity may suppress all messages directed to a particular destination (e.g., the security

1.3 / SECURITY FUNCTIONAL REQUIREMENTS 37

audit service). Another form of service denial is the disruption of an entire network,
either by disabling the network or by overloading it with messages so as to degrade
performance.

Active attacks present the opposite characteristics of passive attacks. Whereas
passive attacks are difficult to detect, measures are available to prevent their success.
On the other hand, it is quite difficult to prevent active attacks absolutely, because
to do so would require physical protection of all communication facilities and paths
at all times. Instead, the goal is to detect them and to recover from any disruption
or delays caused by them. Because the detection has a deterrent effect, it may also
contribute to prevention.

1.3 SECURITY FUNCTIONAL REQUIREMENTS

There are a number of ways of classifying and characterizing the countermeasures
that may be used to reduce vulnerabilities and deal with threats to system assets. In
this section, we view countermeasures in terms of functional requirements, and we
follow the classification defined in FIPS 200 (Minimum Security Requirements for
Federal Information and Information Systems). This standard enumerates 17 security-
related areas with regard to protecting the confidentiality, integrity, and availability of
information systems and the information processed, stored, and transmitted by those
systems. The areas are defined in Table 1.4.

The requirements listed in FIPS 200 encompass a wide range of counter-
measures to security vulnerabilities and threats. Roughly, we can divide these
countermeasures into two categories: those that require computer security technical
measures (covered in Parts One and Two), either hardware or software, or both; and
those that are fundamentally management issues (covered in Part Three).

Each of the functional areas may involve both computer security technical mea-
sures and management measures. Functional areas that primarily require computer
security technical measures include access control, identification and authentica-
tion, system and communication protection, and system and information integrity.
Functional areas that primarily involve management controls and procedures include
awareness and training; audit and accountability; certification, accreditation, and
security assessments; contingency planning; maintenance; physical and environmen-
tal protection; planning; personnel security; risk assessment; and systems and services
acquisition. Functional areas that overlap computer security technical measures and
management controls include configuration management, incident response, and
media protection.

Note the majority of the functional requirements areas in FIPS 200 are either
primarily issues of management or at least have a significant management com-
ponent, as opposed to purely software or hardware solutions. This may be new to
some readers, and is not reflected in many of the books on computer and informa-
tion security. But as one computer security expert observed, “If you think tech-
nology can solve your security problems, then you don’t understand the problems
and you don’t understand the technology” [SCHNOO]. This book reflects the need

38

Security Requirements

Access Control: Limit information system access to authorized users, processes acting on behalf of authorized
users, or devices (including other information systems) and to the types of transactions and functions that
authorized users are permitted to exercise.

Awareness and Training: (i) Ensure that managers and users of organizational information systems are made
aware of the security risks associated with their activities and of the applicable laws, regulations, and policies
related to the security of organizational information systems; and (ii) ensure that personnel are adequately
trained to carry out their assigned information security-related duties and responsibilities.

Audit and Accountability: (i) Create, protect, and retain information system audit records to the

extent needed to enable the monitoring, analysis, investigation, and reporting of unlawful, unauthorized,
or inappropriate information system activity; and (ii) ensure that the actions of individual information
system users can be uniquely traced to those users so they can be held accountable for their

actions.

Certification, Accreditation, and Security Assessments: (i) Periodically assess the security controls in
organizational information systems to determine if the controls are effective in their application; (ii) develop
and implement plans of action designed to correct deficiencies and reduce or eliminate vulnerabilities in
organizational information systems; (iii) authorize the operation of organizational information systems and
any associated information system connections; and (iv) monitor information system security controls on an
ongoing basis to ensure the continued effectiveness of the controls.

Configuration Management: (i) Establish and maintain baseline configurations and inventories of
organizational information systems (including hardware, software, firmware, and documentation)
throughout the respective system development life cycles; and (ii) establish and enforce security
configuration settings for information technology products employed in organizational information
systems.

Contingency Planning: Establish, maintain, and implement plans for emergency response, backup
operations, and postdisaster recovery for organizational information systems to ensure the availability
of critical information resources and continuity of operations in emergency situations.

Identification and Authentication: Identify information system users, processes acting on behalf of users, or
devices, and authenticate (or verify) the identities of those users, processes, or devices, as a prerequisite to
allowing access to organizational information systems.

Incident Response: (i) Establish an operational incident-handling capability for organizational information
systems that includes adequate preparation, detection, analysis, containment, recovery, and user-response
activities; and (ii) track, document, and report incidents to appropriate organizational officials and/or
authorities.

Maintenance: (i) Perform periodic and timely maintenance on organizational information systems; and
(ii) provide effective controls on the tools, techniques, mechanisms, and personnel used to conduct
information system maintenance.

Media Protection: (i) Protect information system media, both paper and digital; (ii) limit access to information
on information system media to authorized users; and (iii) sanitize or destroy information system media before
disposal or release for reuse.

Physical and Environmental Protection: (i) Limit physical access to information systems, equipment, and
the respective operating environments to authorized individuals; (ii) protect the physical plant and support
infrastructure for information systems; (iii) provide supporting utilities for information systems; (iv) protect
information systems against environmental hazards; and (v) provide appropriate environmental controls in
facilities containing information systems.

Planning: Develop, document, periodically update, and implement security plans for organizational informa-
tion systems that describe the security controls in place or planned for the information systems and the rules
of behavior for individuals accessing the information systems.

(Continued)

1.4 / FUNDAMENTAL SECURITY DESIGN PRINCIPLES 39

Personnel Security: (i) Ensure that individuals occupying positions of responsibility within organizations
(including third-party service providers) are trustworthy and meet established security criteria for those
positions; (ii) ensure that organizational information and information systems are protected during and after
personnel actions such as terminations and transfers; and (iii) employ formal sanctions for personnel failing to
comply with organizational security policies and procedures.

Risk Assessment: Periodically assess the risk to organizational operations (including mission, functions,
image, or reputation), organizational assets, and individuals, resulting from the operation of organizational
information systems and the associated processing, storage, or transmission of organizational information.

Systems and Services Acquisition: (i) Allocate sufficient resources to adequately protect organizational
information systems; (ii) employ system development life cycle processes that incorporate information security
considerations; (iii) employ software usage and installation restrictions; and (iv) ensure that third-party
providers employ adequate security measures to protect information, applications, and/or services outsourced
from the organization.

System and Communications Protection: (i) Monitor, control, and protect organizational communications
(i.e., information transmitted or received by organizational information systems) at the external boundaries
and key internal boundaries of the information systems; and (ii) employ architectural designs, software devel-
opment techniques, and systems engineering principles that promote effective information security within
organizational information systems.

System and Information Integrity: (i) Identify, report, and correct information and information system flaws
in a timely manner; (ii) provide protection from malicious code at appropriate locations within organizational
information systems; and (iii) monitor information system security alerts and advisories and take appropriate
actions in response.

Source: Based on FIPS 200

to combine technical and managerial approaches to achieve effective computer
security.

FIPS 200 provides a useful summary of the principal areas of concern, both
technical and managerial, with respect to computer security. This book attempts to
cover all of these areas.

1.4 FUNDAMENTAL SECURITY DESIGN PRINCIPLES

Despite years of research and development, it has not been possible to develop secu-
rity design and implementation techniques that systematically exclude security flaws
and prevent all unauthorized actions. In the absence of such foolproof techniques, it is
useful to have a set of widely agreed design principles that can guide the development
of protection mechanisms. The National Centers of Academic Excellence in Infor-
mation Assurance/Cyber Defense, which is jointly sponsored by the U.S. National
Security Agency and the U. S. Department of Homeland Security, list the following
as fundamental security design principles [NCAE13]:

* Economy of mechanism

Fail-safe defaults

Complete mediation
e Open design

40 CHAPTER 1 / OVERVIEW

e Separation of privilege

¢ Least privilege

* Least common mechanism
e Psychological acceptability
e Isolation

* Encapsulation

* Modularity

e Layering

e Least astonishment

The first eight listed principles were first proposed in [SALT75] and have with-
stood the test of time. In this section, we briefly discuss each principle.

Economy of mechanism means the design of security measures embodied in
both hardware and software should be as simple and small as possible. The motiva-
tion for this principle is that relatively simple, small design is easier to test and verify
thoroughly. With a complex design, there are many more opportunities for an adver-
sary to discover subtle weaknesses to exploit that may be difficult to spot ahead of
time. The more complex the mechanism is, the more likely it is to possess exploitable
flaws. Simple mechanisms tend to have fewer exploitable flaws and require less
maintenance. Furthermore, because configuration management issues are simpli-
fied, updating or replacing a simple mechanism becomes a less intensive process.
In practice, this is perhaps the most difficult principle to honor. There is a constant
demand for new features in both hardware and software, complicating the security
design task. The best that can be done is to keep this principle in mind during system
design to try to eliminate unnecessary complexity.

Fail-safe default means access decisions should be based on permission rather
than exclusion. That is, the default situation is lack of access, and the protection
scheme identifies conditions under which access is permitted. This approach exhibits
a better failure mode than the alternative approach, where the default is to per-
mit access. A design or implementation mistake in a mechanism that gives explicit
permission tends to fail by refusing permission, a safe situation that can be quickly
detected. On the other hand, a design or implementation mistake in a mechanism that
explicitly excludes access tends to fail by allowing access, a failure that may long go
unnoticed in normal use. For example, most file access systems work on this principle
and virtually all protected services on client/server systems work this way.

Complete mediation means every access must be checked against the access
control mechanism. Systems should not rely on access decisions retrieved from
a cache. In a system designed to operate continuously, this principle requires that, if
access decisions are remembered for future use, careful consideration be given to how
changes in authority are propagated into such local memories. File access systems
appear to provide an example of a system that complies with this principle. However,
typically, once a user has opened a file, no check is made to see of permissions change.
To fully implement complete mediation, every time a user reads a field or record
in a file, or a data item in a database, the system must exercise access control. This
resource-intensive approach is rarely used.

1.4 / FUNDAMENTAL SECURITY DESIGN PRINCIPLES 41

Open design means the design of a security mechanism should be open rather
than secret. For example, although encryption keys must be secret, encryption
algorithms should be open to public scrutiny. The algorithms can then be reviewed
by many experts, and users can therefore have high confidence in them. This is the
philosophy behind the National Institute of Standards and Technology (NIST) pro-
gram of standardizing encryption and hash algorithms, and has led to the widespread
adoption of NIST-approved algorithms.

Separation of privilege is defined in [SALT75] as a practice in which multiple
privilege attributes are required to achieve access to a restricted resource. A good
example of this is multifactor user authentication, which requires the use of mul-
tiple techniques, such as a password and a smart card, to authorize a user. The term
is also now applied to any technique in which a program is divided into parts that
are limited to the specific privileges they require in order to perform a specific
task. This is used to mitigate the potential damage of a computer security attack.
One example of this latter interpretation of the principle is removing high privilege
operations to another process and running that process with the higher privileges
required to perform its tasks. Day-to-day interfaces are executed in a lower privi-
leged process.

Least privilege means every process and every user of the system should operate
using the least set of privileges necessary to perform the task. A good example of the
use of this principle is role-based access control, as will be described in Chapter 4. The
system security policy can identify and define the various roles of users or processes.
Each role is assigned only those permissions needed to perform its functions. Each
permission specifies a permitted access to a particular resource (such as read and
write access to a specified file or directory, and connect access to a given host and
port). Unless permission is granted explicitly, the user or process should not be able
to access the protected resource. More generally, any access control system should
allow each user only the privileges that are authorized for that user. There is also a
temporal aspect to the least privilege principle. For example, system programs or
administrators who have special privileges should have those privileges only when
necessary; when they are doing ordinary activities the privileges should be withdrawn.
Leaving them in place just opens the door to accidents.

Least common mechanism means the design should minimize the functions
shared by different users, providing mutual security. This principle helps reduce the
number of unintended communication paths and reduces the amount of hardware
and software on which all users depend, thus making it easier to verify if there are
any undesirable security implications.

Psychological acceptability implies the security mechanisms should not
interfere unduly with the work of users, and at the same time meet the needs of
those who authorize access. If security mechanisms hinder the usability or acces-
sibility of resources, users may opt to turn off those mechanisms. Where possible,
security mechanisms should be transparent to the users of the system or at most
introduce minimal obstruction. In addition to not being intrusive or burdensome,
security procedures must reflect the user’s mental model of protection. If the pro-
tection procedures do not make sense to the user or if the user, must translate his
or her image of protection into a substantially different protocol, the user is likely
to make errors.

42 CHAPTER 1 / OVERVIEW

Isolation is a principle that applies in three contexts. First, public access systems
should be isolated from critical resources (data, processes, etc.) to prevent disclo-
sure or tampering. In cases where the sensitivity or criticality of the information is
high, organizations may want to limit the number of systems on which that data are
stored and isolate them, either physically or logically. Physical isolation may include
ensuring that no physical connection exists between an organization’s public access
information resources and an organization’s critical information. When implement-
ing logical isolation solutions, layers of security services and mechanisms should
be established between public systems and secure systems that is responsible for
protecting critical resources. Second, the processes and files of individual users should
be isolated from one another except where it is explicitly desired. All modern oper-
ating systems provide facilities for such isolation, so individual users have separate,
isolated process space, memory space, and file space, with protections for preventing
unauthorized access. And finally, security mechanisms should be isolated in the sense
of preventing access to those mechanisms. For example, logical access control may
provide a means of isolating cryptographic software from other parts of the host
system and for protecting cryptographic software from tampering and the keys from
replacement or disclosure.

Encapsulation can be viewed as a specific form of isolation based on object-
oriented functionality. Protection is provided by encapsulating a collection of pro-
cedures and data objects in a domain of its own so that the internal structure of a
data object is accessible only to the procedures of the protected subsystem and the
procedures may be called only at designated domain entry points.

Modularity in the context of security refers both to the development of secu-
rity functions as separate, protected modules, and to the use of a modular architec-
ture for mechanism design and implementation. With respect to the use of separate
security modules, the design goal here is to provide common security functions
and services, such as cryptographic functions, as common modules. For example,
numerous protocols and applications make use of cryptographic functions. Rather
than implementing such functions in each protocol or application, a more secure
design is provided by developing a common cryptographic module that can be
invoked by numerous protocols and applications. The design and implementation
effort can then focus on the secure design and implementation of a single crypto-
graphic module, including mechanisms to protect the module from tampering. With
respect to the use of a modular architecture, each security mechanism should be
able to support migration to new technology or upgrade of new features without
requiring an entire system redesign. The security design should be modular so that
individual parts of the security design can be upgraded without the requirement to
modify the entire system.

Layering refers to the use of multiple, overlapping protection approaches
addressing the people, technology, and operational aspects of information systems.
By using multiple, overlapping protection approaches, the failure or circumvention
of any individual protection approach will not leave the system unprotected. We will
see throughout this book that a layering approach is often used to provide multiple
barriers between an adversary and protected information or services. This technique
is often referred to as defense in depth.

1.5 / ATTACK SURFACES AND ATTACK TREES 43

Least astonishment means a program or user interface should always respond

in the way that is least likely to astonish the user. For example, the mechanism for
authorization should be transparent enough to a user that the user has a good intui-
tive understanding of how the security goals map to the provided security mechanism.

1.5 ATTACK SURFACES AND ATTACK TREES

Section 1.2 provided an overview of the spectrum of security threats and attacks
facing computer and network systems. Section 8.1 will go into more detail about the
nature of attacks and the types of adversaries that present security threats. In this
section, we elaborate on two concepts that are useful in evaluating and classifying
threats: attack surfaces and attack trees.

Attack Surfaces

An attack surface consists of the reachable and exploitable vulnerabilities in a system
[BELL16, MANA11, HOWAO3]. Examples of attack surfaces are the following:

Open ports on outward facing Web and other servers, and code listening on
those ports

Services available on the inside of a firewall

Code that processes incoming data, e-mail, XML, office documents, and
industry-specific custom data exchange formats

Interfaces, SQL, and web forms

An employee with access to sensitive information vulnerable to a social engi-
neering attack

Attack surfaces can be categorized in the following way:

Network attack surface: This category refers to vulnerabilities over an enterprise
network, wide-area network, or the Internet. Included in this category are net-
work protocol vulnerabilities, such as those used for a denial-of-service attack,
disruption of communications links, and various forms of intruder attacks.

Software attack surface: This refers to vulnerabilities in application, utility,
or operating system code. A particular focus in this category is Web server
software.

Human attack surface: This category refers to vulnerabilities created by person-
nel or outsiders, such as social engineering, human error, and trusted insiders.

An attack surface analysis is a useful technique for assessing the scale and

severity of threats to a system. A systematic analysis of points of vulnerability makes
developers and security analysts aware of where security mechanisms are required.
Once an attack surface is defined, designers may be able to find ways to make the
surface smaller, thus making the task of the adversary more difficult. The attack sur-
face also provides guidance on setting priorities for testing, strengthening security
measures, or modifying the service or application.

44 CHAPTER 1 / OVERVIEW

As illustrated in Figure 1.4, the use of layering, or defense in depth, and attack
surface reduction complement each other in mitigating security risk.

Attack Trees

An attack tree is a branching, hierarchical data structure that represents a set of
potential techniques for exploiting security vulnerabilities [MAUWO0S5, MOORO1,
SCHN99]. The security incident that is the goal of the attack is represented as the
root node of the tree, and the ways by which an attacker could reach that goal are
iteratively and incrementally represented as branches and subnodes of the tree. Each
subnode defines a subgoal, and each subgoal may have its own set of further subgoals,
and so on. The final nodes on the paths outward from the root, that is, the leaf nodes,
represent different ways to initiate an attack. Each node other than a leaf is either
an AND-node or an OR-node. To achieve the goal represented by an AND-node,
the subgoals represented by all of that node’s subnodes must be achieved; and for
an OR-node, at least one of the subgoals must be achieved. Branches can be labeled
with values representing difficulty, cost, or other attack attributes, so that alternative
attacks can be compared.

The motivation for the use of attack trees is to effectively exploit the informa-
tion available on attack patterns. Organizations such as CERT publish security advi-
sories that have enabled the development of a body of knowledge about both general
attack strategies and specific attack patterns. Security analysts can use the attack tree
to document security attacks in a structured form that reveals key vulnerabilities. The
attack tree can guide both the design of systems and applications, and the choice and
strength of countermeasures.

A
B Medium High
S| Security Risk Security Risk
n
an
g
o)
)
<
=
= Low Medium
K| Security Risk Security Risk
Small Large
Attack Surface

Figure 1.4 Defense in Depth and Attack Surface

1.5 / ATTACK SURFACES AND ATTACK TREES 45

Figure 1.5, based on a figure in [DIMI07],is an example of an attack tree analysis
for an Internet banking authentication application. The root of the tree is the objective
of the attacker, which is to compromise a user’s account. The shaded boxes on the tree
are the leaf nodes, which represent events that comprise the attacks. The white boxes
are categories which consist of one or more specific attack events (leaf nodes). Note
that in this tree, all the nodes other than leaf nodes are OR-nodes. The analysis used
to generate this tree considered the three components involved in authentication:

e User terminal and user (UT/U): These attacks target the user equipment,
including the tokens that may be involved, such as smartcards or other password
generators, as well as the actions of the user.

* Communications channel (CC): This type of attack focuses on communication

links.

* Internet banking server (IBS): These types of attacks are offline attack against
the servers that host the Internet banking application.

Five overall attack strategies can be identified, each of which exploits one or
more of the three components. The five strategies are as follows:

| Bank Account Compromise |

—| User credential compromisel——' UT/Ula User surveillance

UT/U1b Theft of token and
handwritten notes

|| Malicious software
installation

—|UT/U3a Smartcard analyzers

UT/U3b Smartcard reader
manipulator

UT/U3c Brute force attacks
with PIN calculators

—| CC2 Sniffing

User communication

Vulnerability exploit |

UT/U2a Hidden code|

UT/U2b Worms

UT/U2c¢ E-mails with
malicious code

with attacker

—| Injection of commands

CC3 Active man-in-the
middle attacks

|_

—| User credential guessing

|—| IBS1 Brute force attacks |

|| IBS2 Security policy
violation

: UT/U4a Social engineering

UT/U4b Web page
obfuscation

Redirection of
communication toward
fraudulent site

CC1 Pharming

—| IBS3 Web site manipulationl

Use of known authenticated
session by attacker

Normal user authentication

CC4 Pre-defined session

with specified session ID

IDs (session hijacking)

Figure 1.5

An Attack Tree for Internet Banking Authentication

46 CHAPTER 1 / OVERVIEW

* User credential compromise: This strategy can be used against many elements
of the attack surface. There are procedural attacks, such as monitoring a user’s
action to observe a PIN or other credential, or theft of the user’s token or
handwritten notes. An adversary may also compromise token information using
a variety of token attack tools, such as hacking the smartcard or using a brute
force approach to guess the PIN. Another possible strategy is to embed mali-
cious software to compromise the user’s login and password. An adversary may
also attempt to obtain credential information via the communication channel
(sniffing). Finally, an adversary may use various means to engage in communica-
tion with the target user, as shown in Figure 1.5.

* Injection of commands: In this type of attack, the attacker is able to intercept
communication between the UT and the IBS. Various schemes can be used to
be able to impersonate the valid user and so gain access to the banking system.

° User credential guessing: It is reported in [HILT06] that brute force
attacks against some banking authentication schemes are feasible by send-
ing random usernames and passwords. The attack mechanism is based on
distributed zombie personal computers, hosting automated programs for
username- or password-based calculation.

* Security policy violation: For example, violating the bank’s security policy in
combination with weak access control and logging mechanisms, an employee
may cause an internal security incident and expose a customer’s account.

* Use of known authenticated session: This type of attack persuades or forces the
user to connect to the IBS with a preset session ID. Once the user authenticates
to the server, the attacker may utilize the known session ID to send packets to
the IBS, spoofing the user’s identity.

Figure 1.5 provides a thorough view of the different types of attacks on an Inter-
net banking authentication application. Using this tree as a starting point, security
analysts can assess the risk of each attack and, using the design principles outlined in
the preceding section, design a comprehensive security facility. [DIMOOQ7] provides
a good account of the results of this design effort.

1.6 COMPUTER SECURITY STRATEGY

We conclude this chapter with a brief look at the overall strategy for providing com-
puter security. [LAMPO04] suggests that a comprehensive security strategy involves
three aspects:

e Specification/policy: What is the security scheme supposed to do?

* Implementation/mechanisms: How does it do it?

¢ Correctness/assurance: Does it really work?

Security Policy

The first step in devising security services and mechanisms is to develop a security
policy. Those involved with computer security use the term security policy in vari-
ous ways. At the least, a security policy is an informal description of desired system

1.6 / COMPUTER SECURITY STRATEGY 47

behavior [NRC91]. Such informal policies may reference requirements for security,
integrity, and availability. More usefully, a security policy is a formal statement of
rules and practices that specify or regulate how a system or organization provides
security services to protect sensitive and critical system resources (RFC 4949). Such a
formal security policy lends itself to being enforced by the system’s technical controls
as well as its management and operational controls.

In developing a security policy, a security manager needs to consider the
following factors:

* The value of the assets being protected
e The vulnerabilities of the system
* Potential threats and the likelihood of attacks

Further, the manager must consider the following trade-offs:

* Ease of use versus security: Virtually all security measures involve some penalty
in the area of ease of use. The following are some examples: Access control
mechanisms require users to remember passwords and perhaps perform other
access control actions. Firewalls and other network security measures may
reduce available transmission capacity or slow response time. Virus-checking
software reduces available processing power and introduces the possibility of
system crashes or malfunctions due to improper interaction between the secu-
rity software and the operating system.

e Cost of security versus cost of failure and recovery: In addition to ease of use
and performance costs, there are direct monetary costs in implementing and
maintaining security measures. All of these costs must be balanced against
the cost of security failure and recovery if certain security measures are
lacking. The cost of security failure and recovery must take into account not
only the value of the assets being protected and the damages resulting from
a security violation, but also the risk, which is the probability that a particu-
lar threat will exploit a particular vulnerability with a particular harmful
result.

Security policy is thus a business decision, possibly influenced by legal
requirements.

Security Implementation
Security implementation involves four complementary courses of action:

* Prevention: An ideal security scheme is one in which no attack is successful.
Although this is not practical in all cases, there is a wide range of threats in
which prevention is a reasonable goal. For example, consider the transmission
of encrypted data. If a secure encryption algorithm is used, and if measures
are in place to prevent unauthorized access to encryption keys, then attacks on
confidentiality of the transmitted data will be prevented.

e Detection: In a number of cases, absolute protection is not feasible, but it is
practical to detect security attacks. For example, there are intrusion detection
systems designed to detect the presence of unauthorized individuals logged
onto a system. Another example is detection of a denial of service attack,

48 CHAPTER 1 / OVERVIEW

in which communications or processing resources are consumed so they are
unavailable to legitimate users.

* Response: If security mechanisms detect an ongoing attack, such as a denial of
service attack, the system may be able to respond in such a way as to halt the
attack and prevent further damage.

* Recovery: An example of recovery is the use of backup systems, so if data
integrity is compromised, a prior, correct copy of the data can be reloaded.

Assurance and Evaluation

Those who are “consumers” of computer security services and mechanisms (e.g., sys-
tem managers, vendors, customers, and end users) desire a belief that the security
measures in place work as intended. That is, security consumers want to feel that the
security infrastructure of their systems meet security requirements and enforce secu-
rity policies. These considerations bring us to the concepts of assurance and evaluation.

Assurance is an attribute of an information system that provides grounds for
having confidence that the system operates such that the system’s security policy is
enforced. This encompasses both system design and system implementation. Thus,
assurance deals with the questions,“Does the security system design meet its require-
ments?” and “Does the security system implementation meet its specifications?”
Assurance is expressed as a degree of confidence, not in terms of a formal proof that
a design or implementation is correct. The state of the art in proving designs and
implementations is such that it is not possible to provide absolute proof. Much work
has been done in developing formal models that define requirements and character-
ize designs and implementations, together with logical and mathematical techniques
for addressing these issues. But assurance is still a matter of degree.

Evaluation is the process of examining a computer product or system with respect
to certain criteria. Evaluation involves testing and may also involve formal analytic or
mathematical techniques. The central thrust of work in this area is the development of
evaluation criteria that can be applied to any security system (encompassing security ser-
vices and mechanisms) and that are broadly supported for making product comparisons.

1.7 STANDARDS

Many of the security techniques and applications described in this book have been
specified as standards. Additionally, standards have been developed to cover man-
agement practices and the overall architecture of security mechanisms and services.
Throughout this book, we will describe the most important standards in use or that
are being developed for various aspects of computer security. Various organizations
have been involved in the development or promotion of these standards. The most
important (in the current context) of these organizations are as follows:

* National Institute of Standards and Technology: NIST is a U.S. federal agency
that deals with measurement science, standards, and technology related to U.S.
government use and to the promotion of U.S. private sector innovation. Despite
its national scope, NIST Federal Information Processing Standards (FIPS) and
Special Publications (SP) have a worldwide impact.

1.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 49

* Internet Society: ISOC is a professional membership society with worldwide
organizational and individual membership. It provides leadership in addressing
issues that confront the future of the Internet, and is the organization home
for the groups responsible for Internet infrastructure standards, including the
Internet Engineering Task Force (IETF) and the Internet Architecture Board
(IAB). These organizations develop Internet standards and related specifica-
tions, all of which are published as Requests for Comments (RFCs).

e ITU-T: The International Telecommunication Union (ITU) is a United Nations
agency in which governments and the private sector coordinate global telecom
networks and services. The ITU Telecommunication Standardization Sector
(ITU-T) is one of the three sectors of the ITU. ITU-T’s mission is the produc-
tion of standards covering all fields of telecommunications. ITU-T standards
are referred to as Recommendations.

e ISO: The International Organization for Standardization (ISO) is a worldwide
federation of national standards bodies from more than 140 countries. ISO is a
nongovernmental organization that promotes the development of standardiza-
tion and related activities with a view to facilitating the international exchange
of goods and services, and to developing cooperation in the spheres of intel-
lectual, scientific, technological, and economic activity. ISO’s work results in
international agreements that are published as International Standards.

A more detailed discussion of these organizations is contained in Appendix C.
A list of ISO and NIST documents referenced in this book is provided at the
end of the book.

1.8 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
access control data confidentiality interceptions
active attack data integrity intrusion
adversary denial of service isolation
asset disruption layering
assurance economy of mechanism least astonishment
attack encapsulation least common mechanism
attack surface encryption least privilege
attack tree evaluation masquerade
authentication exposure misappropriation
authenticity fail-safe defaults misuse
availability falsification modularity
complete mediation incapacitation nonrepudiation
confidentiality inference obstruction
corruption inside attack open design
countermeasure integrity OSI security architecture

(Continued)

50 CHAPTER 1 / OVERVIEW

outside attack
passive attack

risk
security attack

system resource
threat agent

prevent security mechanism traffic analysis

privacy security policy unauthorized disclosure
psychological acceptability security service usurpation

replay separation of privilege vulnerabilities
repudiation system integrity

Review Questions

1.1 What is meant by the CIA triad?.

1.2 What is the difference between data integrity and system integrity?

1.3 List and briefly define the kinds of threat consequences and the types of threat actions
which cause these consequences.

1.4 List and briefly define the fundamental security design principles.

1.5 What is a security policy? What are the actions involved when implementing a secu-
rity policy?

1.6 Differentiate between a network attack surface and a software attack surface.

Problems

1.1 Consider a student information system (SIS) in which students provide a university
student number (USN) and a card for account access. Give examples of confidential-
ity, integrity, and availability requirements associated with the system and, in each
case, indicate the degree of the importance of the requirement.

1.2 Repeat Problem 1.1 for a network routing system that routes data packets through a
network based on the IP address provided by the sender.

1.3 Consider a desktop publishing system used to produce documents for various
organizations.
a. Give an example of a type of publication for which confidentiality of the stored

data is the most important requirement.
b. Give an example of a type of publication in which data integrity is the most impor-
tant requirement.

c¢. Give an example in which system availability is the most important requirement.

1.4 For each of the following assets, assign a low, moderate, or high impact level for the

loss of confidentiality, availability, and integrity, respectively. Justify your answers.

a. An organization managing public information on its Web server.

b. A law enforcement organization managing extremely sensitive investigative
information.

c. A financial organization managing routine administrative information (not privacy-
related information).

d. An information system used for large acquisitions in a contracting organization
contains both sensitive, pre-solicitation phase contract information and routine
administrative information. Assess the impact for the two data sets separately and
the information system as a whole.

e. A power plant contains a SCADA (supervisory control and data acquisition) sys-
tem controlling the distribution of electric power for a large military installation.
The SCADA system contains both real-time sensor data and routine administra-
tive information. Assess the impact for the two data sets separately and the infor-
mation system as a whole.

sk
w

1.6
1.7

1.8

1.8 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 51

Consider the following general code for allowing access to a resource:
DWORD dwRet = IsAccessAllowed(...);

if (dwRet == ERROR_ACCESS_DENIED) {

// Security check failed.

// Inform user that access is denied.

} else {

// Security check OK.

}

a. Explain the security flaw in this program.
b. Rewrite the code to avoid the flaw.

Hint: Consider the design principle of fail-safe defaults.
Develop an attack tree for gaining access to the contents of a physical safe.

Consider a company whose operations are housed in two buildings on the same
property: one building is headquarters, the other building contains network and com-
puter services. The property is physically protected by a fence around the perimeter.
The only entrance to the property is through a guarded front gate. The local networks
are split between the Headquarters’” LAN and the Network Services’ LAN. Internet
users connect to the Web server through a firewall. Dial-up users get access to a par-
ticular server on the Network Services’ LAN. Develop an attack tree in which the root
node represents disclosure of proprietary secrets. Include physical, social engineering,
and technical attacks. The tree may contain both AND and OR nodes. Develop a tree
that has at least 15 leaf nodes.

Read all of the classic papers cited in the Recommended Reading document at http://
williamstallings.com/ComputerSecurity/ Compose a 500-1000 word paper (or 8-12
slide presentation) that summarizes the key concepts that emerge from these papers,
emphasizing concepts that are common to most or all of the papers.

http://williamstallings.com/ComputerSecurity/
http://williamstallings.com/ComputerSecurity/

PART ONE: Computer Security
Technology and
Principles

CRYPTOGRAPHIC TOOLS

2.1 Confidentiality with Symmetric Encryption

Symmetric Encryption
Symmetric Block Encryption Algorithms
Stream Ciphers

2.2 Message Authentication and Hash Functions

Authentication Using Symmetric Encryption
Message Authentication without Message Encryption
Secure Hash Functions

Other Applications of Hash Functions

2.3 Public-Key Encryption
Public-Key Encryption Structure
Applications for Public-Key Cryptosystems
Requirements for Public-Key Cryptography
Asymmetric Encryption Algorithms

2.4 Digital Signatures and Key Management

Digital Signature

Public-Key Certificates

Symmetric Key Exchange Using Public-Key Encryption
Digital Envelopes

2.5 Random and Pseudorandom Numbers

The Use of Random Numbers
Random versus Pseudorandom

2.6 Practical Application: Encryption of Stored Data

2.7 Key Terms, Review Questions, and Problems

52

2.1 / CONFIDENTIALITY WITH SYMMETRIC ENCRYPTION 53

LEARNING OBJECTIVES
After studying this chapter, you should be able to:

@ Explain the basic operation of symmetric block encryption algorithms.
@ Compare and contrast block encryption and stream encryption.

@ Discuss the use of secure hash functions for message authentication.

@ List other applications of secure hash functions.

@ Explain the basic operation of asymmetric block encryption algorithms.

Present an overview of the digital signature mechanism and explain the
concept of digital envelopes.

@ Explain the significance of random and pseudorandom numbers in
cryptography.

An important element in many computer security services and applications is the
use of cryptographic algorithms. This chapter provides an overview of the various
types of algorithms, together with a discussion of their applicability. For each type of
algorithm, we will introduce the most important standardized algorithms in common
use. For the technical details of the algorithms themselves, see Part Four.

We begin with symmetric encryption, which is used in the widest variety of
contexts, primarily to provide confidentiality. Next, we examine secure hash functions
and discuss their use in message authentication. The next section examines public-
key encryption, also known as asymmetric encryption. We then discuss the two most
important applications of public-key encryption, namely digital signatures and key
management. In the case of digital signatures, asymmetric encryption and secure hash
functions are combined to produce an extremely useful tool.

Finally, in this chapter, we provide an example of an application area for cryp-
tographic algorithms by looking at the encryption of stored data.

CONFIDENTIALITY WITH SYMMETRIC ENCRYPTION

The universal technique for providing confidentiality for transmitted or stored data
is symmetric encryption. This section introduces the basic concept of symmetric
encryption. This is followed by an overview of the two most important symmetric
encryption algorithms: the Data Encryption Standard (DES) and the Advanced
Encryption Standard (AES), which are block encryption algorithms. Finally, this
section introduces the concept of symmetric stream encryption algorithms.

Symmetric Encryption

Symmetric encryption, also referred to as conventional encryption or single-key
encryption, was the only type of encryption in use prior to the introduction of public-
key encryption in the late 1970s. Countless individuals and groups, from Julius Caesar
to the German U-boat force to present-day diplomatic, military,and commercial users,

54 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

Plaintext
input

X : ciphertext :
—_—— —_——
o Y = E[K, X] o X =DI[K,Y]

Figure 2.1

Secret key shared by Secret key shared by
sender and recipient sender and recipient
Transmitted

- Y - d Plaintext
Encryption algorithm Decryption algorithm output
(e.g., DES) (reverse of encryption
algorithm)

Simplified Model of Symmetric Encryption

have used symmetric encryption for secret communication. It remains the more widely
used of the two types of encryption.

A symmetric encryption scheme has five ingredients (see Figure 2.1):

Plaintext: This is the original message or data that is fed into the algorithm as
input.

Encryption algorithm: The encryption algorithm performs various substitu-
tions and transformations on the plaintext.

Secret key: The secret key is also input to the encryption algorithm. The exact
substitutions and transformations performed by the algorithm depend on
the key.

Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the secret key. For a given message, two different keys will
produce two different ciphertexts.

Decryption algorithm: This is essentially the encryption algorithm run in
reverse. It takes the ciphertext and the secret key and produces the original
plaintext.

There are two requirements for secure use of symmetric encryption:

We need a strong encryption algorithm. At a minimum, we would like the algo-
rithm to be such that an opponent who knows the algorithm and has access to one
or more ciphertexts would be unable to decipher the ciphertext or figure out the
key. This requirement is usually stated in a stronger form: The opponent should be
unable to decrypt ciphertext or discover the key even if he or she is in possession of
anumber of ciphertexts together with the plaintext that produced each ciphertext.

The sender and receiver must have obtained copies of the secret key in a secure
fashion and must keep the key secure. If someone can discover the key and
knows the algorithm, all communication using this key is readable.

There are two general approaches to attacking a symmetric encryption scheme.

The first attack is known as eryptanalysis. Cryptanalytic attacks rely on the nature
of the algorithm plus perhaps some knowledge of the general characteristics of the
plaintext, or even some sample plaintext-ciphertext pairs. This type of attack exploits
the characteristics of the algorithm to attempt to deduce a specific plaintext or to

2.1 / CONFIDENTIALITY WITH SYMMETRIC ENCRYPTION 55

deduce the key being used. If the attack succeeds in deducing the key, the effect is
catastrophic: All future and past messages encrypted with that key are compromised.

The second method, known as the brute-force attack, is to try every possible key
on a piece of ciphertext until an intelligible translation into plaintext is obtained. On
average, half of all possible keys must be tried to achieve success. That is, if there are
x different keys, on average an attacker would discover the actual key after x/2 tries.
There is more to a brute-force attack than simply running through all possible keys.
Unless known plaintext is provided, the analyst must be able to recognize plaintext
as plaintext. If the message is just plain text in English, then the result pops out eas-
ily, although the task of recognizing English would have to be automated. If the text
message has been compressed before encryption, then recognition is more difficult.
And if the message is some more general type of data, such as a numerical file, and
this has been compressed, the problem becomes even more difficult to automate.
Thus, to supplement the brute-force approach, some degree of knowledge about
the expected plaintext is needed, and some means of automatically distinguishing
plaintext from garble is also needed.

Symmetric Block Encryption Algorithms

The most commonly used symmetric encryption algorithms are block ciphers. A block
cipher processes the plaintext input in fixed-size blocks and produces a block of
ciphertext of equal size for each plaintext block. The algorithm processes longer
plaintext amounts as a series of fixed-size blocks. The most important symmetric algo-
rithms, all of which are block ciphers, are the Data Encryption Standard (DES), triple
DES, and the Advanced Encryption Standard (AES); see Table 2.1. This subsection
provides an overview of these algorithms. Chapter 20 will present the technical details.

Dara ENCRYPTION STANDARD Until recently, the most widely used encryption
scheme was based on the Data Encryption Standard (DES) adopted in 1977 by the
National Bureau of Standards, now the National Institute of Standards and Tech-
nology (NIST), as FIPS PUB 46 (Data Encryption Standard, January 1977).! The
algorithm itself is referred to as the Data Encryption Algorithm (DEA). DES takes a
plaintext block of 64 bits and a key of 56 bits, to produce a ciphertext block of 64 bits.

Concerns about the strength of DES fall into two categories: concerns about the
algorithm itself, and concerns about the use of a 56-bit key. The first concern refers to

Table 2.1 Comparison of Three Popular Symmetric Encryption Algorithms

DES Triple DES AES
Plaintext block size (bits) 64 64 128
Ciphertext block size (bits) 64 64 128
Key size (bits) 56 112 or 168 128,192, or 256

DES = Data Encryption Standard
AES = Advanced Encryption Standard

ISee Appendix C for more information on NIST and similar organizations, and the “List of NIST and ISO
Documents” for related publications that we discuss.

56 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

the possibility that cryptanalysis is possible by exploiting the characteristics of the DES
algorithm. Over the years, there have been numerous attempts to find and exploit weak-
nesses in the algorithm, making DES the most-studied encryption algorithm in existence.
Despite numerous approaches, no one has so far reported a fatal weakness in DES.

A more serious concern is key length. With a key length of 56 bits, there are 23
possible keys, which is approximately 7.2 X 10'¢ keys. Given the speed of commercial
off-the-shelf processors, this key length is woefully inadequate. A paper from Seagate
Technology [SEAGOS8] suggests that a rate of one billion (10”) key combinations per
second is reasonable for today’s multicore computers. Recent offerings confirm this.
Both Intel and AMD now offer hardware-based instructions to accelerate the use
of AES. Tests run on a contemporary multicore Intel machine resulted in an encryp-
tion rate of about half a billion encryptions per second [BASU12]. Another recent
analysis suggests that with contemporary supercomputer technology, a rate of 10"
encryptions/s is reasonable [AROR12].

With these results in mind, Table 2.2 shows how much time is required for a
brute-force attack for various key sizes. As can be seen, a single PC can break DES in
about a year; if multiple PCs work in parallel, the time is drastically shortened. And
today’s supercomputers should be able to find a key in about an hour. Key sizes of
128 bits or greater are effectively unbreakable using simply a brute-force approach.
Even if we managed to speed up the attacking system by a factor of 1 trillion (10'?),
it would still take over 100,000 years to break a code using a 128-bit key.

Fortunately, there are a number of alternatives to DES, the most important of
which are triple DES and AES, discussed in the remainder of this section.

TripLe DES The life of DES was extended by the use of triple DES (3DES), which
involves repeating the basic DES algorithm three times, using either two or three
unique keys, for a key size of 112 or 168 bits. 3DES was first standardized for use in
financial applications in ANSI standard X9.17 in 1985. 3DES was incorporated as
part of the Data Encryption Standard in 1999, with the publication of FIPS PUB 46-3.

3DES has two attractions that assure its widespread use over the next few
years. First, with its 168-bit key length, it overcomes the vulnerability to brute-force
attack of DES. Second, the underlying encryption algorithm in 3DES is the same as
in DES. This algorithm has been subjected to more scrutiny than any other encryption
algorithm over a longer period of time, and no effective cryptanalytic attack based
on the algorithm rather than brute force has been found. Accordingly, there is a high

Table 2.2 Average Time Required for Exhaustive Key Search

Key Size Number of Time Required at Time Required at
bits Cipher Alternative Keys 10° decryptions/us 10" decryptions/us
p y YP M yP [
56 DES 2% ~ 72 x 10'° 2 us = 1.125 years 1 hour
128 AES 218 ~ 34 x 10% 2127 s = 5.3 X 10?! years 5.3 X 10" years
168 Triple DES [2168 = 37 x 10°° | 2!97 us = 5.8 X 10% years 5.8 X 10 years
192 AES 212 = 63 x 10°7 | 2" us = 9.8 X 10* years 9.8 X 10°® years
256 AES PO = 1.7 5% 1177 2255 us = 1.8 X 10% years 1.8 X 10°° years

2.1 / CONFIDENTIALITY WITH SYMMETRIC ENCRYPTION 57

level of confidence that 3DES is very resistant to cryptanalysis. If security were the
only consideration, then 3DES would be an appropriate choice for a standardized
encryption algorithm for decades to come.

The principal drawback of 3DES is that the algorithm is relatively sluggish in
software. The original DES was designed for mid-1970s hardware implementation
and does not produce efficient software code. 3DES, which requires three times as
many calculations as DES, is correspondingly slower. A secondary drawback is that
both DES and 3DES use a 64-bit block size. For reasons of both efficiency and secu-
rity, a larger block size is desirable.

ADVANCED ENCRYPTION STANDARD Because of its drawbacks, 3DES is not a rea-
sonable candidate for long-term use. As a replacement, NIST in 1997 issued a call
for proposals for a new Advanced Encryption Standard (AES), which should have a
security strength equal to or better than 3DES and significantly improved efficiency.
In addition to these general requirements, NIST specified that AES must be a sym-
metric block cipher with a block length of 128 bits and support for key lengths of
128,192, and 256 bits. Evaluation criteria included security, computational efficiency,
memory requirements, hardware and software suitability, and flexibility.

In a first round of evaluation, 15 proposed algorithms were accepted. A sec-
ond round narrowed the field to 5 algorithms. NIST completed its evaluation process
and published the final standard as FIPS PUB 197 (Advanced Encryption Standard,
November 2001). NIST selected Rijndael as the proposed AES algorithm. AES is now
widely available in commercial products. AES will be described in detail in Chapter 20.

Pracricar SEcuriry Issues Typically, symmetric encryption is applied to a unit of
data larger than a single 64-bit or 128-bit block. E-mail messages, network packets,
database records, and other plaintext sources must be broken up into a series of fixed-
length block for encryption by a symmetric block cipher. The simplest approach to
multiple-block encryption is known as electronic codebook (ECB) mode, in which
plaintext is handled b bits at a time and each block of plaintext is encrypted using the
same key. Typically b = 64 or b = 128. Figure 2.2a shows the ECB mode. A plain text
of length nb is divided into n b-bit blocks (Py, P, . . ., P,). Each block is encrypted
using the same algorithm and the same encryption key, to produce a sequence of
n b-bit blocks of ciphertext (Cy, Cs, ..., C,).

For lengthy messages, the ECB mode may not be secure. A cryptanalyst may be
able to exploit regularities in the plaintext to ease the task of decryption. For example,
if it is known that the message always starts out with certain predefined fields, then the
cryptanalyst may have a number of known plaintext-ciphertext pairs with which to work.

To increase the security of symmetric block encryption for large sequences
of data, a number of alternative techniques have been developed, called modes of
operation. These modes overcome the weaknesses of ECB; each mode has its own
particular advantages. This topic will be explored in Chapter 20.

Stream Ciphers

A block cipher processes the input one block of elements at a time, producing an
output block for each input block. A stream cipher processes the input elements con-
tinuously, producing output one element at a time, as it goes along. Although block

58 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

=
g
3 e o o
g b
o
g b
5 e o o K
2 b
a
(a) Block cipher encryption (electronic codebook mode)
Key Key
K K
Pseudorandom byte Pseudorandom byte
generator generator
(key stream generator) (key stream generator)
Plai k k
. talfitext PS Ciphertext ~\ Plaintext
yte ;1 ream U byte stream A byte stream
ENCRYPTION C DECRYPTION M

(b) Stream encryption

Figure 2.2 Types of Symmetric Encryption

ciphers are far more common, there are certain applications in which a stream cipher
is more appropriate. Examples will be given subsequently in this book.

A typical stream cipher encrypts plaintext one byte at a time, although a stream
cipher may be designed to operate on one bit at a time or on units larger than a byte
at a time. Figure 2.2b is a representative diagram of stream cipher structure. In this
structure, a key is input to a pseudorandom bit generator that produces a stream
of 8-bit numbers that are apparently random. A pseudorandom stream is one that
is unpredictable without knowledge of the input key and which has an apparently
random character (see Section 2.5). The output of the generator, called a keystream,

2.2 / MESSAGE AUTHENTICATION AND HASH FUNCTIONS 59

is combined one byte at a time with the plaintext stream using the bitwise exclusive-
OR (XOR) operation.

With a properly designed pseudorandom number generator, a stream cipher
can be as secure as a block cipher of comparable key length. The primary advantage
of a stream cipher is that stream ciphers are almost always faster and use far less code
than do block ciphers. The advantage of a block cipher is that you can reuse keys. For
applications that require encryption/decryption of a stream of data, such as over a
data communications channel or a browser/Web link, a stream cipher might be the
better alternative. For applications that deal with blocks of data, such as file transfer,
e-mail, and database, block ciphers may be more appropriate. However, either type
of cipher can be used in virtually any application.

2.2 MESSAGE AUTHENTICATION AND HASH FUNCTIONS

Encryption protects against passive attack (eavesdropping). A different requirement
is to protect against active attack (falsification of data and transactions). Protection
against such attacks is known as message or data authentication.

A message, file, document, or other collection of data is said to be authentic
when it is genuine and came from its alleged source. Message or data authentication
is a procedure that allows communicating parties to verify that received or stored
messages are authentic.” The two important aspects are to verify that the contents of
the message have not been altered and that the source is authentic. We may also wish
to verify a message’s timeliness (it has not been artificially delayed and replayed) and
sequence relative to other messages flowing between two parties. All of these con-
cerns come under the category of data integrity, as was described in Chapter 1.

Authentication Using Symmetric Encryption

It would seem possible to perform authentication simply by the use of symmetric
encryption. If we assume that only the sender and receiver share a key (which is
as it should be), then only the genuine sender would be able to encrypt a mes-
sage successfully for the other participant, provided the receiver can recognize a
valid message. Furthermore, if the message includes an error-detection code and a
sequence number, the receiver is assured that no alterations have been made and
that sequencing is proper. If the message also includes a timestamp, the receiver is
assured that the message has not been delayed beyond that normally expected for
network transit.

In fact, symmetric encryption alone is not a suitable tool for data authentication.
To give one simple example, in the ECB mode of encryption, if an attacker reorders
the blocks of ciphertext, then each block will still decrypt successfully. However, the
reordering may alter the meaning of the overall data sequence. Although sequence
numbers may be used at some level (e.g., each IP packet), it is typically not the case
that a separate sequence number will be associated with each b-bit block of plaintext.
Thus, block reordering is a threat.

2For simplicity, for the remainder of this section, we refer to message authentication. By this, we mean both
authentication of transmitted messages and of stored data (data authentication).

60 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

Message Authentication without Message Encryption

In this section, we examine several approaches to message authentication that do
not rely on message encryption. In all of these approaches, an authentication tag
is generated and appended to each message for transmission. The message itself is
not encrypted and can be read at the destination independent of the authentication
function at the destination.

Because the approaches discussed in this section do not encrypt the message,
message confidentiality is not provided. As was mentioned, message encryption by
itself does not provide a secure form of authentication. However, it is possible to com-
bine authentication and confidentiality in a single algorithm by encrypting a message
plus its authentication tag. Typically, however, message authentication is provided as
a separate function from message encryption. [DAVI89] suggests three situations in
which message authentication without confidentiality is preferable:

1. There are a number of applications in which the same message is broadcast to
a number of destinations. Two examples are notification to users that the net-
work is now unavailable, and an alarm signal in a control center. It is cheaper
and more reliable to have only one destination responsible for monitoring
authenticity. Thus, the message must be broadcast in plaintext with an associ-
ated message authentication tag. The responsible system performs authen-
tication. If a violation occurs, the other destination systems are alerted by a
general alarm.

2. Another possible scenario is an exchange in which one side has a heavy load and
cannot afford the time to decrypt all incoming messages. Authentication is carried
out on a selective basis, with messages being chosen at random for checking.

3. Authentication of a computer program in plaintext is an attractive service. The
computer program can be executed without having to decrypt it every time,
which would be wasteful of processor resources. However, if a message authen-
tication tag were attached to the program, it could be checked whenever assur-
ance is required of the integrity of the program.

Thus, there is a place for both authentication and encryption in meeting security
requirements.

MESSAGE AUTHENTICATION CopE One authentication technique involves the use
of a secret key to generate a small block of data, known as a message authentication
code, that is appended to the message. This technique assumes that two communicat-
ing parties, say A and B, share a common secret key K, 3. When A has a message to
send to B, it calculates the message authentication code as a complex function of the
message and the key: MAC,, = F(K 5, M).? The message plus code are transmitted

3Because messages may be any size and the message authentication code is a small fixed size, there must
theoretically be many messages that result in the same MAC. However, it should be infeasible in practice
to find pairs of such messages with the same MAC. This is known as collision resistance.

2.2 / MESSAGE AUTHENTICATION AND HASH FUNCTIONS 61

to the intended recipient. The recipient performs the same calculation on the received
message, using the same secret key, to generate a new message authentication code.
The received code is compared to the calculated code (see Figure 2.3). If we assume
that only the receiver and the sender know the identity of the secret key, and if the
received code matches the calculated code, then:

1.

The receiver is assured that the message has not been altered. If an attacker
alters the message but does not alter the code, then the receiver’s calculation
of the code will differ from the received code. Because the attacker is assumed
not to know the secret key, the attacker cannot alter the code to correspond to
the alterations in the message.

The receiver is assured that the message is from the alleged sender. Because no
one else knows the secret key, no one else could prepare a message with a proper
code.

If the message includes a sequence number (such as is used with X.25, HDLC,
and TCP), then the receiver can be assured of the proper sequence, because an
attacker cannot successfully alter the sequence number.

A number of algorithms could be used to generate the code. The now with-

drawn NIST publication FIPS PUB 113 (Computer Data Authentication, May 1985),
recommended the use of DES. However AES would now be a more suitable choice.

DES

Message

or AES is used to generate an encrypted version of the message, and some of

K

K

Figure 2.3

MAC
algorithm

. MAC
Transmit algorithm
—_—

j \ }—> Compare

MAC

Message Authentication Using a Message Authentication Code (MAC)

62 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

the bits of ciphertext are used as the code. A 16- or 32-bit code used to be typical, but
would now be much too small to provide sufficient collision resistance, as we will
discuss shortly.*

The process just described is similar to encryption. One difference is that the
authentication algorithm need not be reversible, as it must for decryption. It turns
out that because of the mathematical properties of the authentication function, it is
less vulnerable to being broken than encryption.

ONE-WAY Hasn Funcrion An alternative to the message authentication code is
the one-way hash function. As with the message authentication code, a hash function
accepts a variable-size message M as input and produces a fixed-size message digest
H(M) as output (see Figure 2.4). Typically, the message is padded out to an integer
multiple of some fixed length (e.g., 1024 bits) and the padding includes the value of
the length of the original message in bits. The length field is a security measure to
increase the difficulty for an attacker to produce an alternative message with the
same hash value.

Unlike the MAC, a hash function does not take a secret key as input. Figure 2.5
illustrates three ways in which the message can be authenticated using a hash
function. The message digest can be encrypted using symmetric encryption

L bits

Message or data block M (variable length) P, L

~

Hash value 2 p
(fixed length) m

P, L = padding plus length field

Figure 2.4 Cryptographic Hash Function; h = H(M)

“#Recall from our discussion of practical security issues in Section 2.1 that for large amounts of data, some
mode of operation is needed to apply a block cipher such as DES to amounts of data larger than a single
block. For the MAC application mentioned here, DES is applied in what is known as cipher block chaining
mode (CBC). In essence, DES is applied to each 64-bit block of the message in sequence, with the input to
the encryption algorithm being the XOR of the current plaintext block and the preceding ciphertext block.
The MAC is derived from the final block encryption. See Chapter 20 for a discussion of CBC.

2.2 / MESSAGE AUTHENTICATION AND HASH FUNCTIONS 63

~—— Source A —— > ~—— Destination B —>

Message
Message
Message

2030503
KK

03030
KK

(a) Using symmetric encryption

(9] L Q
) o0 oD
< < (53
p= p= p=
KR 2030304
£oEe%eN fo%e%
(b) Using public-key encryption
K K
% % %
5] (3] 5] Yo 0%
% —_— 2| -> 7 —»B—» }:"‘:‘1
Q)) 29.9.9.
p= p= p=
K - ': K Compare
- ——————— —|

"

(c) Using secret value

Figure 2.5 Message Authentication Using a One-Way Hash Function

(see Figure 2.5a);if it is assumed that only the sender and receiver share the encryp-
tion key, then authenticity is assured. The message digest can also be encrypted using
public-key encryption (see Figure 2.5b); this is explained in Section 2.3. The public-
key approach has two advantages: It provides a digital signature as well as message
authentication, and it does not require the distribution of keys to communicating

parties.

64 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

These two approaches have an advantage over approaches that encrypt the
entire message, in that less computation is required. But an even more common
approach is the use of a technique that avoids encryption altogether. Several reasons
for this interest are pointed out in [TSUD92]:

e Encryption software is quite slow. Even though the amount of data to be
encrypted per message is small, there may be a steady stream of messages into
and out of a system.

e Encryption hardware costs are nonnegligible. Low-cost chip implementations
of DES and AES are available, but the cost adds up if all nodes in a network
must have this capability.

e Encryption hardware is optimized toward large data sizes. For small blocks of
data, a high proportion of the time is spent in initialization/invocation overhead.

° An encryption algorithm may be protected by a patent.

Figure 2.5¢ shows a technique that uses a hash function but no encryption for
message authentication. This technique, known as a keyed hash MAC, assumes that
two communicating parties, say A and B, share a common secret key K. This secret
key is incorporated into the process of generating a hash code. In the approach illus-
trated in Figure 2.5¢c, when A has a message to send to B, it calculates the hash function
over the concatenation of the secret key and the message: MD,, = H(K|| M || K).>
It then sends [M || MD,,] to B. Because B possesses K, it can recompute H(K || M || K)
and verify M D,,. Because the secret key itself is not sent, it should not be possible
for an attacker to modify an intercepted message. As long as the secret key remains
secret, it should not be possible for an attacker to generate a false message.

Note the secret key is used as both a prefix and a suffix to the message. If the
secret key is used as either only a prefix or only a suffix, the scheme is less secure.
This topic will be discussed in Chapter 21. Chapter 21 also describes a scheme known
as HMAC, which is somewhat more complex than the approach of Figure 2.5¢ and
which has become the standard approach for a keyed hash MAC.

Secure Hash Functions

The one-way hash function, or secure hash function, is important not only in message
authentication but also in digital signatures. In this section, we begin with a discus-
sion of requirements for a secure hash function. Then we discuss specific algorithms.

Hasn Funcrion ReouiremeNTs The purpose of a hash function is to produce a
“fingerprint” of a file, message, or other block of data. To be useful for message
authentication, a hash function H must have the following properties:

1. H can be applied to a block of data of any size.

2. H produces a fixed-length output.

3. H(x) is relatively easy to compute for any given x, making both hardware and
software implementations practical.

3| denotes concatenation.

2.2 / MESSAGE AUTHENTICATION AND HASH FUNCTIONS 65

4. For any given code 4, it is computationally infeasible to find x such that H(x) = A.
A hash function with this property is referred to as one-way or preimage
resistant.’

5. For any given block x, it is computationally infeasible to find y # x with
H(y) = H(x). A hash function with this property is referred to as second preim-
age resistant. This is sometimes referred to as weak collision resistant.

6. It is computationally infeasible to find any pair (x, y) such that H(x) = H(y).
A hash function with this property is referred to as collision resistant. This is
sometimes referred to as strong collision resistant.

The first three properties are requirements for the practical application of a hash
function to message authentication.

The fourth property is the one-way property: It is easy to generate a code given
a message, but virtually impossible to generate a message given a code. This prop-
erty is important if the authentication technique involves the use of a secret value
(see Figure 2.5¢). The secret value itself is not sent; however, if the hash function
is not one-way, an attacker can easily discover the secret value: If the attacker can
observe or intercept a transmission, the attacker obtains the message M and the hash
code MD,, = H(K||M|| K). The attacker then inverts the hash function to obtain
K| M| K = H {(MD,,). Because the attacker now has both M and (K || M || K) it is
a trivial matter to recover K

The fifth property guarantees that it is impossible to find an alternative mes-
sage with the same hash value as a given message. This prevents forgery when an
encrypted hash code is used (see Figure 2.5a and b). If this property were not true,
an attacker would be capable of the following sequence: First, observe or intercept
a message plus its encrypted hash code; second, generate an unencrypted hash code
from the message; and third, generate an alternate message with the same hash code.

A hash function that satisfies the first five properties in the preceding list is
referred to as a weak hash function. If the sixth property is also satisfied, then it
is referred to as a strong hash function. A strong hash function protects against an
attack in which one party generates a message for another party to sign. For example,
suppose Alice agrees to sign an IOU for a small amount that is sent to her by Bob.
Suppose also that Bob can find two messages with the same hash value, one of which
requires Alice to pay the small amount, and one that requires a large payment. Alice
signs the first message, and Bob is then able to claim that the second message is
authentic.

In addition to providing authentication, a message digest also provides data
integrity. It performs the same function as a frame check sequence: If any bits in the
message are accidentally altered in transit, the message digest will be in error.

SEcUrITy oF HAsn Funcrions As with symmetric encryption, there are two
approaches to attacking a secure hash function: cryptanalysis and brute-force attack.
As with symmetric encryption algorithms, cryptanalysis of a hash function involves
exploiting logical weaknesses in the algorithm.

®For f(x) = y, x is said to be a preimage of y. Unless f is one-to-one, there may be multiple preimage
values for a given y.

66 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

The strength of a hash function against brute-force attacks depends solely on
the length of the hash code produced by the algorithm. For a hash code of length n,
the level of effort required is proportional to the following:

Preimage resistant 2"

Second preimage resistant | 2"

Collision resistant oni2

If collision resistance is required (and this is desirable for a general-purpose
secure hash code), then the value 2"/? determines the strength of the hash code against
brute-force attacks. Van Oorschot and Wiener [VANOY4] presented a design for a
$10 million collision search machine for MDS5, which has a 128-bit hash length, that
could find a collision in 24 days. Thus, a 128-bit code may be viewed as inadequate.
The next step up, if a hash code is treated as a sequence of 32 bits, is a 160-bit hash
length. With a hash length of 160 bits, the same search machine would require over
four thousand years to find a collision. With today’s technology, the time would be
much shorter, so 160 bits now appears suspect.

SECURE HAsH FUNCTION ALGORITHMS In recent years, the most widely used hash
function has been the Secure Hash Algorithm (SHA). SHA was developed by the
National Institute of Standards and Technology (NIST) and published as a fed-
eral information processing standard (FIPS 180) in 1993. When weaknesses were
discovered in SHA, a revised version was issued as FIPS 180-1 in 1995 and is gener-
ally referred to as SHA-1. SHA-1 produces a hash value of 160 bits. In 2002, NIST
produced a revised version of the standard, FIPS 180-2, that defined three new ver-
sions of SHA, with hash value lengths of 256, 384, and 512 bits, known as SHA-256,
SHA-384, and SHA-512. These new versions, collectively known as SHA-2, have the
same underlying structure and use the same types of modular arithmetic and logical
binary operations as SHA-1. SHA-2, particularly the 512-bit version, would appear to
provide unassailable security. However, because of the structural similarity of SHA-2
to SHA-1, NIST decided to standardize a new hash function that is very different
from SHA-2 and SHA-1. This new hash function, known as SHA-3, was published in
2015 and is now available as an alternative to SHA-2.

Other Applications of Hash Functions

We have discussed the use of hash functions for message authentication and for the
creation of digital signatures (the latter will be discussed in more detail later in this
chapter). Here are two other examples of secure hash function applications:

e Passwords: Chapter 3 will explain a scheme in which a hash of a password is
stored by an operating system rather than the password itself. Thus, the actual
password is not retrievable by a hacker who gains access to the password file.
In simple terms, when a user enters a password, the hash of that password is
compared to the stored hash value for verification. This application requires
preimage resistance and perhaps second preimage resistance.

2.3 / PUBLIC-KEY ENCRYPTION 67

* Intrusion detection: Store the hash value for a file, H(F), for each file on a
system and secure the hash values (e.g., on a write-locked drive or write-once
optical disk that is kept secure). One can later determine if a file has been
modified by recomputing H(F). An intruder would need to change F without
changing H(F). This application requires weak second preimage resistance.

2.3 PUBLIC-KEY ENCRYPTION

Of equal importance to symmetric encryption is public-key encryption, which finds
use in message authentication and key distribution.

Public-Key Encryption Structure

Public-key encryption, first publicly proposed by Diffie and Hellman in 1976
[DIFF76],is the first truly revolutionary advance in encryption in literally thousands
of years. Public-key algorithms are based on mathematical functions rather than on
simple operations on bit patterns, such as are used in symmetric encryption algo-
rithms. More important, public-key cryptography is asymmetric, involving the use
of two separate keys, in contrast to symmetric encryption, which uses only one key.
The use of two keys has profound consequences in the areas of confidentiality, key
distribution, and authentication.

Before proceeding, we should first mention several common misconceptions
concerning public-key encryption. One is that public-key encryption is more secure
from cryptanalysis than symmetric encryption. In fact, the security of any encryp-
tion scheme depends on (1) the length of the key and (2) the computational work
involved in breaking a cipher. There is nothing in principle about either symmetric
or public-key encryption that makes one superior to another from the point of view
of resisting cryptanalysis. A second misconception is that public-key encryption is
a general-purpose technique that has made symmetric encryption obsolete. On the
contrary, because of the computational overhead of current public-key encryption
schemes, there seems no foreseeable likelihood that symmetric encryption will be
abandoned. Finally, there is a feeling that key distribution is trivial when using pub-
lic-key encryption, compared to the rather cumbersome handshaking involved with
key distribution centers for symmetric encryption. For public-key key distribution,
some form of protocol is needed, often involving a central agent, and the procedures
involved are no simpler or any more efficient than those required for symmetric
encryption.

A public-key encryption scheme has six ingredients (see Figure 2.6a):

e Plaintext: This is the readable message or data that is fed into the algorithm
as input.

* Encryption algorithm: The encryption algorithm performs various transforma-
tions on the plaintext.

* Public and private key: This is a pair of keys that have been selected so if one is
used for encryption, the other is used for decryption. The exact transformations

68 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

performed by the encryption algorithm depend on the public or private key that
is provided as input.’

e Ciphertext: This is the scrambled message produced as output. It depends on
the plaintext and the key. For a given message, two different keys will produce
two different ciphertexts.

* Decryption algorithm: This algorithm accepts the ciphertext and the matching
key and produces the original plaintext.

As the names suggest, the public key of the pair is made public for others to
use, while the private key is known only to its owner. A general-purpose public-key
cryptographic algorithm relies on one key for encryption and a different but related
key for decryption.

The essential steps are the following:

1. Each user generates a pair of keys to be used for the encryption and decryption
of messages.

2. Each user places one of the two keys in a public register or other accessible file.
This is the public key. The companion key is kept private. As Figure 2.6a suggests,
each user maintains a collection of public keys obtained from others.

3. If Bob wishes to send a private message to Alice, Bob encrypts the message using
Alice’s public key.

4. When Alice receives the message, she decrypts it using her private key. No
other recipient can decrypt the message because only Alice knows Alice’s pri-
vate key.

With this approach, all participants have access to public keys, and private keys
are generated locally by each participant and therefore need never be distributed. As
long as a user protects his or her private key, incoming communication is secure. At
any time, a user can change the private key and publish the companion public key to
replace the old public key.

Figure 2.6b illustrates another mode of operation of public-key cryptography.
In this scheme, a user encrypts data using his or her own private key. Anyone who
knows the corresponding public key will then be able to decrypt the message.

Note the scheme of Figure 2.6a is directed toward providing confidentiality.
Only the intended recipient should be able to decrypt the ciphertext because only
the intended recipient is in possession of the required private key. Whether in fact
confidentiality is provided depends on a number of factors, including the security of
the algorithm, whether the private key is kept secure, and the security of any protocol
of which the encryption function is a part.

The scheme of Figure 2.6b is directed toward providing authentication and/
or data integrity. If a user is able to successfully recover the plaintext from Bob’s
ciphertext using Bob’s public key, this indicates only Bob could have encrypted the

"The key used in symmetric encryption is typically referred to as a secret key. The two keys used for
public-key encryption are referred to as the public key and the private key. Invariably, the private key is
kept secret, but it is referred to as a private key rather than a secret key to avoid confusion with symmetric
encryption.

2.3 / PUBLIC-KEY ENCRYPTION 69

Bobs’s
public key

Y

Mike Alice
PU,, | Alice’s public PR, | Alice’s private
key key
Transmitted
& ciphertext &
€) @
i Y =E[PU,, X] 1
Plaintext Plaintext
iarinuix Encryption algorithm Decryption algorithm (:11? 5?
p (e.g., RSA) Vy\")
Bob Alice

(a) Encryption with public key

Alice’s
public key

Ji
ib 4 Ted
Mike Bob
PR,, | Bob’s private PU;, | Bob’s public
key key
Transmitted X=
X % ciphertext A D[PU,, Y]
a = E[PRb,)(] 3
Plaintext Plaintext
iarinuix Encryption algorithm Decryption algorithm (:E? 5?
P (e.2., RSA) P
Bob Alice

(b) Encryption with private key

Figure 2.6 Public-Key Cryptography

plaintext, thus providing authentication. Further, no one but Bob would be able to
modify the plaintext because only Bob could encrypt the plaintext with Bob’s private
key. Once again, the actual provision of authentication or data integrity depends on
a variety of factors. This issue will be addressed primarily in Chapter 21, but other
references are made to it where appropriate in this text.

70 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

Applications for Public-Key Cryptosystems

Public-key systems are characterized by the use of a cryptographic type of algorithm
with two keys, one held private and one available publicly. Depending on the appli-
cation, the sender uses either the sender’s private key or the receiver’s public key, or
both, to perform some type of cryptographic function. In broad terms, we can classify
the use of public-key cryptosystems into three categories: digital signature, symmetric
key distribution, and encryption of secret keys.

These applications will be discussed in Section 2.4. Some algorithms are suit-
able for all three applications, whereas others can be used only for one or two of
these applications. Table 2.3 indicates the applications supported by the algorithms
discussed in this section.

Requirements for Public-Key Cryptography

The cryptosystem illustrated in Figure 2.6 depends on a cryptographic algorithm
based on two related keys. Diffie and Hellman postulated this system without dem-
onstrating that such algorithms exist. However, they did lay out the conditions that
such algorithms must fulfill [DIFF76]:

1. It is computationally easy for a party B to generate a pair (public key PU,,
private key PRy,).

2. Itis computationally easy for a sender A, knowing the public key and the message
to be encrypted, M, to generate the corresponding ciphertext:

C = E(PU,, M)

3. It is computationally easy for the receiver B to decrypt the resulting ciphertext
using the private key to recover the original message:

M = D(PR,, C) = D[PR,, E(PU,, M)]

4. Tt is computationally infeasible for an opponent, knowing the public key, PU,, to
determine the private key, PRy,

5. Itis computationally infeasible for an opponent, knowing the public key, PU,,
and a ciphertext, C, to recover the original message, M.

Table 2.3 Applications for Public-Key Cryptosystems

Symmetric Key Encryption of
Algorithm Digital Signature Distribution Secret Keys
RSA Yes Yes Yes
Diffie-Hellman No Yes No
DSS Yes No No
Elliptic Curve Yes Yes Yes

2.3 / PUBLIC-KEY ENCRYPTION 71

We can add a sixth requirement that, although useful, is not necessary for all
public-key applications:

6. Either of the two related keys can be used for encryption, with the other used
for decryption.

M = D[PU,, E(PR,, M)] = D[PR,, E(PU,, M)]

Asymmetric Encryption Algorithms

In this subsection, we briefly mention the most widely used asymmetric encryption
algorithms. Chapter 21 will provide technical details.

RSA One of the first public-key schemes was developed in 1977 by Ron Rivest, Adi
Shamir, and Len Adleman at MIT and first published in 1978 [RIVE78]. The RSA
scheme has since reigned supreme as the most widely accepted and implemented
approach to public-key encryption. RSA is a block cipher in which the plaintext and
ciphertext are integers between 0 and n — 1 for some n.

In 1977 the three inventors of RSA dared Scientific American readers to decode
a cipher they printed in Martin Gardner’s “Mathematical Games” column. They
offered a $100 reward for the return of a plaintext sentence, an event they predicted
might not occur for some 40 quadrillion years. In April of 1994, a group working over
the Internet and using over 1600 computers claimed the prize after only eight months
of work [LEUT94]. This challenge used a public-key size (length of) of 129 decimal
digits, or around 428 bits. This result does not invalidate the use of RSA; it simply
means that larger key sizes must be used. Currently, a 1024-bit key size (about 300
decimal digits) is considered strong enough for virtually all applications.

Dirrre-HeELLMAN KEy AGreEemMENT The first published public-key algorithm
appeared in the seminal paper by Diffie and Hellman that defined public-key cryptog-
raphy [DIFF76] and is generally referred to as Diffie-Hellman key exchange, or key
agreement. A number of commercial products employ this key exchange technique.
The purpose of the algorithm is to enable two users to securely reach agree-
ment about a shared secret that can be used as a secret key for subsequent symmetric
encryption of messages. The algorithm itself is limited to the exchange of the keys.

DiIGITAL SIGNATURE STANDARD — The National Institute of Standards and Technology
(NIST) published this originally as FIPS PUB 186 (Digital Signature Standard (DSS),
May 1994). The DSS makes use of SHA-1 and presents a new digital signature tech-
nique, the Digital Signature Algorithm (DSA). The DSS was originally proposed in
1991 and revised in 1993 in response to public feedback concerning the security of the
scheme. There were further revisions in 1998, 2000, 2009, and most recently in 2013 as
FIPS PUB 186—4.The DSS uses an algorithm that is designed to provide only the digital
signature function. Unlike RSA, it cannot be used for encryption or key exchange.

Ervipric CURVE CRyPrOGRAPHY The vast majority of the products and standards
that use public-key cryptography for encryption and digital signatures use RSA.
The bit length for secure RSA use has increased over recent years, and this has
put a heavier processing load on applications using RSA. This burden has ramifica-
tions, especially for electronic commerce sites that conduct large numbers of secure

72 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

transactions. Recently, a competing system has begun to challenge RSA: elliptic curve
cryptography (ECC). Already, ECC is showing up in standardization efforts, includ-
ing the IEEE (Institute of Electrical and Electronics Engineers) P1363 Standard for
Public-Key Cryptography.

The principal attraction of ECC compared to RSA is that it appears to offer
equal security for a far smaller bit size, thereby reducing processing overhead. On
the other hand, although the theory of ECC has been around for some time, it is
only recently that products have begun to appear and that there has been sustained
cryptanalytic interest in probing for weaknesses. Thus, the confidence level in ECC
is not yet as high as that in RSA.

2.4 DIGITAL SIGNATURES AND KEY MANAGEMENT

As mentioned in Section 2.3, public-key algorithms are used in a variety of applica-
tions. In broad terms, these applications fall into two categories: digital signatures,
and various techniques to do with key management and distribution.

With respect to key management and distribution, there are at least three
distinct aspects to the use of public-key encryption in this regard:

e The secure distribution of public keys
¢ The use of public-key encryption to distribute secret keys
e The use of public-key encryption to create temporary keys for message encryption

This section provides a brief overview of digital signatures and the various types of
key management and distribution.

Digital Signature

Public-key encryption can be used for authentication with a technique known as the
digital signature. NIST FIPS PUB 186-4 [Digital Signature Standard (DSS), July 2013]
defines a digital signature as follows: The result of a cryptographic transformation
of data that, when properly implemented, provides a mechanism for verifying origin
authentication, data integrity and signatory non-repudiation.

Thus, a digital signature is a data-dependent bit pattern, generated by an agent
as a function of a file, message, or other form of data block. Another agent can access
the data block and its associated signature and verify (1) the data block has been
signed by the alleged signer, and (2) the data block has not been altered since the
signing. Further, the signer cannot repudiate the signature.

FIPS 186-4 specifies the use of one of three digital signature algorithms:

* Digital Signature Algorithm (DSA): The original NIST-approved algorithm,
which is based on the difficulty of computing discrete logarithms.
* RSA Digital Signature Algorithm: Based on the RSA public-key algorithm.
¢ Elliptic Curve Digital Signature Algorithm (ECDSA): Based on elliptic-curve
cryptography.
Figure 2.7 is a generic model of the process of making and using digital signa-
tures. All of the digital signature schemes in FIPS 186-4 have this structure. Suppose

2.4 / DIGITAL SIGNATURES AND KEY MANAGEMENT 73

Bob wants to send a message to Alice. Although it is not important that the message
be kept secret, he wants Alice to be certain that the message is indeed from him.
For this purpose, Bob uses a secure hash function, such as SHA-512, to generate a
hash value for the message. That hash value, together with Bob’s private key, serve
as input to a digital signature generation algorithm that produces a short block that
functions as a digital signature. Bob sends the message with the signature attached.
When Alice receives the message plus signature, she (1) calculates a hash value for
the message; (2) provides the hash value and Bob’s public key as inputs to a digital
signature verification algorithm. If the algorithm returns the result that the signature
is valid, Alice is assured that the message must have been signed by Bob. No one else

Bob Alice

)

Message M Message M S

Cryptographic
hash
function

Cryptographic
hash
function

h Bob’s h BOb’.S
. public
private
key key
Digital | Digitaq
signature signature
generation verification
algorithm algorithm
Message M S _ Retum
signature valid
Bob’s or not valid
signature
for M
(a) Bob signs a message (b) Alice verifies the signature

Figure 2.7 Simplified Depiction of Essential Elements of Digital Signature Process

74 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

has Bob’s private key, and therefore no one else could have created a signature that
could be verified for this message with Bob’s public key. In addition, it is impossible to
alter the message without access to Bob’s private key, so the message is authenticated
both in terms of source and in terms of data integrity.

The digital signature does not provide confidentiality. That is, the message being
sent is safe from alteration, but not safe from eavesdropping. This is obvious in the
case of a signature based on a portion of the message, because the rest of the mes-
sage is transmitted in the clear. Even in the case of complete encryption, there is no
protection of confidentiality because any observer can decrypt the message by using
the sender’s public key.

Public-Key Certificates

On the face of it, the point of public-key encryption is that the public key is public. Thus,
if there is some broadly accepted public-key algorithm, such as RSA, any participant
can send his or her public key to any other participant or broadcast the key to the com-
munity at large. Although this approach is convenient, it has a major weakness. Anyone
can forge such a public announcement. That is, some user could pretend to be Bob and
send a public key to another participant or broadcast such a public key. Until such time
as Bob discovers the forgery and alerts other participants, the forger is able to read all
encrypted messages intended for Bob and can use the forged keys for authentication.

The solution to this problem is the public-key certificate. In essence, a certifi-
cate consists of a public key plus a user ID of the key owner, with the whole block
signed by a trusted third party. The certificate also includes some information about
the third party plus an indication of the period of validity of the certificate. Typically,
the third party is a certificate authority (CA) that is trusted by the user community,
such as a government agency or a financial institution. A user can present his or her
public key to the authority in a secure manner and obtain a signed certificate. The
user can then publish the certificate. Anyone needing this user’s public key can obtain
the certificate and verify that it is valid by means of the attached trusted signature.
Figure 2.8 illustrates the process.

The key steps can be summarized as follows:

1. User software (client) creates a pair of keys: one public and one private.

2. Client prepares an unsigned certificate that includes the user ID and user’s
public key.

3. User provides the unsigned certificate to a CA in some secure manner. This might
require a face-to-face meeting, the use of registered e-mail, or happen via a Web
form with e-mail verification.

4. CA creates a signature as follows:

a. CA uses a hash function to calculate the hash code of the unsigned certifi-
cate. A hash function is one that maps a variable-length data block or mes-
sage into a fixed-length value called a hash code, such as SHA family that
we will discuss in Sections 2.2 and 21.1.

b. CA generates digital signature using the CA’s private key and a signature
generation algorithm.

5. CA attaches the signature to the unsigned certificate to create a signed certificate.

2.4 / DIGITAL SIGNATURES AND KEY MANAGEMENT 75

Unsigned certificate:
contains user ID,
user’s public key,

as well as information

2

Generate hash
code of unsigned
certificate

concerning the CA <

Bob’s ID
information

Bob’s public key

CA
information

Generate hash code
of certificate not
including signature

7

/

[
L

Return signature
valid or not valid

T Signed certificate T

Generate digital signature
using CA’s private key

Verify digital signature
using CA’s public key

~

Create signed
digital certificate

~

Use certificate to
verify Bob’s public key

Figure 2.8 Public-Key Certificate Use

6. CA returns the signed certificate to client.
7. Client may provide the signed certificate to any other user.
8. Any user may verify that the certificate is valid as follows:

a. User calculates the hash code of certificate (not including signature).

b. User verifies digital signature using CA’s public key and the signature veri-
fication algorithm. The algorithm returns a result of either signature valid
or invalid.

One scheme has become universally accepted for formatting public-key
certificates: the X.509 standard. X.509 certificates are used in most network security
applications, including IP Security (IPsec), Transport Layer Security (TLS), Secure
Shell (SSH), and Secure/Multipurpose Internet Mail Extension (S/MIME). We will
examine most of these applications in Part Five.

Symmetric Key Exchange Using Public-Key Encryption

With symmetric encryption, a fundamental requirement for two parties to communi-
cate securely is that they share a secret key. Suppose Bob wants to create a messaging
application that will enable him to exchange e-mail securely with anyone who has
access to the Internet, or to some other network that the two of them share. Suppose
Bob wants to do this using symmetric encryption. With symmetric encryption, Bob
and his correspondent, say, Alice, must come up with a way to share a unique secret
key that no one else knows. How are they going to do that? If Alice is in the next
room from Bob, Bob could generate a key and write it down on a piece of paper or

76 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

store it on a disk or thumb drive and hand it to Alice. But if Alice is on the other
side of the continent or the world, what can Bob do? He could encrypt this key using
symmetric encryption and e-mail it to Alice, but this means that Bob and Alice must
share a secret key to encrypt this new secret key. Furthermore, Bob and everyone
else who uses this new e-mail package faces the same problem with every potential
correspondent: Each pair of correspondents must share a unique secret key.

One approach is the use of Diffie—-Hellman key exchange. This approach
is indeed widely used. However, it suffers the drawback that, in its simplest form,
Diffie-Hellman provides no authentication of the two communicating partners. There
are variations to Diffie-Hellman that overcome this problem. In addition, there are
protocols using other public-key algorithms that achieve the same objective.

Digital Envelopes

Another application in which public-key encryption is used to protect a symmetric
key is the digital envelope, which can be used to protect a message without needing
to first arrange for sender and receiver to have the same secret key. The technique
is referred to as a digital envelope, which is the equivalent of a sealed envelope con-
taining an unsigned letter. The general approach is shown in Figure 2.9. Suppose Bob

QRRRIRIKRS
QRIRIRIRIIALRS
SRIRIRRARRIRHKRS
Message SRRRRIRIRARIKIK
Random

JRKKK
QORRIIIKAKRKKLS
Encrypted
message
symmetric @—L.r
ke -
Y | m Digital
> > @ envelope

E ™
Receiver’s Encrypted
public % symmetric
key key

(a) Creation of a digital envelope

QR IKRIRRRE,
KRR M
QRIRRIEIRARKS essage
SRIRKEERKEEK
SRR
Encrypted
message Random
@; ~° symmetric
— key
Digital m *

envelope @ = D
Encrypted f Receiver’s
symmetric O private

key key
(b) Opening a digital envelope

Figure 2.9 Digital Envelopes

2.5 / RANDOM AND PSEUDORANDOM NUMBERS 77

wishes to send a confidential message to Alice, but they do not share a symmetric
secret key. Bob does the following:

1.

0N A W N

Prepare a message.

. Generate a random symmetric key that will be used this one time only.

. Encrypt that message using symmetric encryption the one-time key.

. Encrypt the one-time key using public-key encryption with Alice’s public key.

. Attach the encrypted one-time key to the encrypted message and send it to

Alice.

Only Alice is capable of decrypting the one-time key and therefore of recov-

ering the original message. If Bob obtained Alice’s public key by means of Alice’s
public-key certificate, then Bob is assured that it is a valid key.

2.5 RANDOM AND PSEUDORANDOM NUMBERS

Random numbers play an important role in the use of encryption for various net-
work security applications. We provide a brief overview in this section. The topic is
examined in detail in Appendix D.

The Use of Random Numbers

A number of network security algorithms based on cryptography make use of ran-
dom numbers. For example:

Generation of keys for the RSA public-key encryption algorithm (to be
described in Chapter 21) and other public-key algorithms.

Generation of a stream key for symmetric stream cipher.

Generation of a symmetric key for use as a temporary session key or in creating
a digital envelope.

In a number of key distribution scenarios, such as Kerberos (to be described in
Chapter 23), random numbers are used for handshaking to prevent replay attacks.

Session key generation, whether done by a key distribution center or by one
of the principals.

These applications give rise to two distinct and not necessarily compatible

requirements for a sequence of random numbers: randomness, and unpredictability.

RanpomnEss Traditionally, the concern in the generation of a sequence of alleg-
edly random numbers has been that the sequence of numbers be random in some
well-defined statistical sense. The following two criteria are used to validate that a
sequence of numbers is random:

Uniform distribution: The distribution of numbers in the sequence should be
uniform; that is, the frequency of occurrence of each of the numbers should be
approximately the same.

Independence: No one value in the sequence can be inferred from the others.

78 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

Although there are well-defined tests for determining that a sequence of num-
bers matches a particular distribution, such as the uniform distribution, there is no
such test to “prove” independence. Rather, a number of tests can be applied to dem-
onstrate if a sequence does not exhibit independence. The general strategy is to apply
a number of such tests until the confidence that independence exists is sufficiently
strong.

In the context of our discussion, the use of a sequence of numbers that appear
statistically random often occurs in the design of algorithms related to cryptography.
For example, a fundamental requirement of the RSA public-key encryption scheme is
the ability to generate prime numbers. In general, it is difficult to determine if a given
large number N is prime. A brute-force approach would be to divide N by every odd
integer less than VN. If Nis on the order, say, of 10", a not uncommon occurrence in
public-key cryptography, such a brute-force approach, is beyond the reach of human
analysts and their computers. However, a number of effective algorithms exist that
test the primality of a number by using a sequence of randomly chosen integers as
input to relatively simple computations. If the sequence is sufficiently long (but far, far
less than \/10"°), the primality of a number can be determined with near certainty. This
type of approach, known as randomization, crops up frequently in the design of algo-
rithms. In essence, if a problem is too hard or time-consuming to solve exactly, a
simpler, shorter approach based on randomization is used to provide an answer with
any desired level of confidence.

UnrrepicrapiLITy In applications such as reciprocal authentication and session
key generation, the requirement is not so much that the sequence of numbers be
statistically random, but that the successive members of the sequence are unpre-
dictable. With “true” random sequences, each number is statistically independent of
other numbers in the sequence and therefore unpredictable. However, as discussed
shortly, true random numbers are not always used; rather, sequences of numbers that
appear to be random are generated by some algorithm. In this latter case, care must
be taken that an opponent is not be able to predict future elements of the sequence
on the basis of earlier elements.

Random versus Pseudorandom

Cryptographic applications typically make use of algorithmic techniques for ran-
dom number generation. These algorithms are deterministic and therefore produce
sequences of numbers that are not statistically random. However, if the algorithm is
good, the resulting sequences will pass many reasonable tests of randomness. Such
numbers are referred to as pseudorandom numbers.

You may be somewhat uneasy about the concept of using numbers generated
by a deterministic algorithm as if they were random numbers. Despite what might
be called philosophical objections to such a practice, it generally works. That is,
under most circumstances, pseudorandom numbers will perform as well as if they
were random for a given use. The phrase “as well as” is unfortunately subjective, but
the use of pseudorandom numbers is widely accepted. The same principle applies
in statistical applications, in which a statistician takes a sample of a population and
assumes the results will be approximately the same as if the whole population were
measured.

2.6 / PRACTICAL APPLICATION: ENCRYPTION OF STORED DATA 79

A true random number generator (TRNG) uses a nondeterministic source to
produce randomness. Most operate by measuring unpredictable natural processes,
such as pulse detectors of ionizing radiation events, gas discharge tubes, and leaky
capacitors. Intel has developed a commercially available chip that samples ther-
mal noise by amplifying the voltage measured across undriven resistors [JUN99].
LavaRnd is an open source project for creating truly random numbers using inex-
pensive cameras, open source code, and inexpensive hardware. The system uses a
saturated charge-coupled device (CCD) in a light-tight can as a chaotic source to
produce the seed. Software processes the result into truly random numbers in a vari-
ety of formats. The first commercially available TRNG that achieves bit production
rates comparable with that of PRNGs is the Intel digital random number generator
(DRNG) [TAYLI11], offered on new multicore chips since May 2012.

PRACTICAL APPLICATION: ENCRYPTION

OF STORED DATA

One of the principal security requirements of a computer system is the protection of
stored data. Security mechanisms to provide such protection include access control,
intrusion detection, and intrusion prevention schemes, all of which are discussed in
this book. The book also describes a number of technical means by which these vari-
ous security mechanisms can be made vulnerable. But beyond technical approaches,
these approaches can become vulnerable because of human factors. We list a few
examples here, based on [ROTHO5]:

e In December of 2004, Bank of America employees backed up then sent to its
backup data center tapes containing the names, addresses, bank account num-
bers, and Social Security numbers of 1.2 million government workers enrolled
in a charge-card account. None of the data were encrypted. The tapes never
arrived, and indeed have never been found. Sadly, this method of backing up
and shipping data is all too common. As an another example, in April of 2005,
Ameritrade blamed its shipping vendor for losing a backup tape containing
unencrypted information on 200,000 clients.

e In April of 2005, San Jose Medical group announced that someone had physi-
cally stolen one of its computers and potentially gained access to 185,000 unen-
crypted patient records.

e There have been countless examples of laptops lost at airports, stolen from a
parked car, or taken while the user is away from his or her desk. If the data on
the laptop’s hard drive are unencrypted, all of the data are available to the thief.

Although it is now routine for businesses to provide a variety of protections,
including encryption, for information that is transmitted across networks, via the
Internet, or via wireless devices, once data are stored locally (referred to as data at
rest), there is often little protection beyond domain authentication and operating
system access controls. Data at rest are often routinely backed up to secondary stor-
age such as optical media, tape or removable disk, archived for indefinite periods.
Further, even when data are erased from a hard disk, until the relevant disk sectors

80 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

are reused, the data are recoverable. Thus, it becomes attractive, and indeed should
be mandatory, to encrypt data at rest and combine this with an effective encryption
key management scheme.

There are a variety of ways to provide encryption services. A simple approach
available for use on a laptop is to use a commercially available encryption package
such as Pretty Good Privacy (PGP). PGP enables a user to generate a key from a
password and then use that key to encrypt selected files on the hard disk. The PGP
package does not store the password. To recover a file, the user enters the password,
PGP generates the key, and then decrypts the file. So long as the user protects his
or her password and does not use an easily guessable password, the files are fully
protected while at rest. Some more recent approaches are listed in [COLLO06]:

* Back-end appliance: This is a hardware device that sits between servers and stor-
age systems and encrypts all data going from the server to the storage system, and
decrypts data going in the opposite direction. These devices encrypt data at close
to wire speed, with very little latency. In contrast, encryption software on servers
and storage systems slows backups. A system manager configures the appliance
to accept requests from specified clients, for which unencrypted data are supplied.

e Library-based tape encryption: This is provided by means of a co-processor
board embedded in the tape drive and tape library hardware. The co-processor
encrypts data using a nonreadable key configured into the board. The tapes
can then be sent off-site to a facility that has the same tape drive hardware. The
key can be exported via secure e-mail, or a small flash drive that is transported
securely. If the matching tape drive hardware co-processor is not available at
the other site, the target facility can use the key in a software decryption pack-
age to recover the data.

* Background laptop and PC data encryption: A number of vendors offer soft-
ware products that provide encryption that is transparent to the application
and the user. Some products encrypt all or designated files and folders. Other
products, such as Windows BitLocker and MacOS FileVault, encrypt an entire
disk or disk image located on either the user’s hard drive or maintained on a
network storage device, with all data on the virtual disk encrypted. Various key
management solutions are offered to restrict access to the owner of the data.

2.7 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
Advanced Encryption collision resistant Decryption
Standard (AES) confidentiality Diffie-Hellman key exchange
asymmetric encryption cryptanalysis digital signature
authentication Data Encryption Standard Digital Signature Standard
brute-force attack (DES) (DSS)
ciphertext data integrity elliptic curve cryptography

encryption

hash function

keystream

message authentication

message authentication
code (MAC)

modes of operation

one-way hash function

preimage resistant
private key
pseudorandom number
public key

public-key certificate
public-key encryption
random number

RSA

2.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 81

second preimage resistant
secret key

secure hash algorithm (SHA)
secure hash function

strong collision resistant
symmetric encryption

triple DES

weak collision resistant

plaintext

Review Questions

'
(8

wn A5 W

NN NDNNDNNN
=)

N=T- I |

How is cryptanalysis different from brute-force attack?

List and briefly explain the different approaches to attacking a symmetric encryption
scheme.

What are the two principal requirements for the secure use of symmetric encryption?
List the two important aspects of data authentication.

What is one-way hash function?

Briefly describe the three schemes illustrated in Figure 2.3.

What properties must a hash function have to be useful for message authentication?
What are the principal ingredients of a public-key cryptosystem?

List and briefly define three uses of a public-key cryptosystem.

2.10 What advantage might elliptic curve cryptography (ECC) have over RSA?
2.11 Do digital signatures provide confidentiality?
2.12 What s a public-key certificate?
2.13 What are three different ways in which random numbers are used in cryptography?
Problems
2.1 Typically, in practice, the length of the message is greater than the block size of the
encryption algorithm. The simplest approach to handle such encryption is known as
electronic codebook (ECB) mode. Explain this mode. Mention a scenario where it
cannot be applied. Explain briefly why it is not a secure mode of encryption.
2.2 This problem uses a real-world example of a symmetric cipher, from an old U.S.

Special Forces manual (public domain). The document, filename Special Forces.pdf,is
available at box.com/CompSec4e.
a. Using the two keys (memory words) cryptographic and network security, encrypt
the following message:
Be at the third pillar from the left outside the lyceum theatre tonight at
seven. If you are distrustful bring two friends.
Make reasonable assumptions about how to treat redundant letters and excess let-
ters in the memory words and how to treat spaces and punctuation. Indicate what
your assumptions are.
Note: The message is from the Sherlock Holmes novel The Sign of Four.
b. Decrypt the ciphertext. Show your work.
c¢. Comment on when it would be appropriate to use this technique and what its
advantages are.

http://www.box.com/CompSec4e

82 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

2.3

Consider a very simple symmetric block encryption algorithm, in which 64-bits blocks
of plaintext are encrypted using a 128-bit key. Encryption is defined as

C=(POK)HK

where C = ciphertext; K = secret key; K, = leftmost 64 bits of K; K; = rightmost

64 bits of K, @ = bitwise exclusive or; and F is addition mod 2%.

a. Show the decryption equation. That is, show the equation for P as a function of C,
K1 and Kz.

b. Suppose an adversary has access to two sets of plaintexts and their corresponding
ciphertexts and wishes to determine K. We have the two equations:

C=(PO®K)BK:C = (P DK)BK

First, derive an equation in one unknown (e.g., K). Is it possible to proceed further
to solve for K,?

Perhaps the simplest “serious” symmetric block encryption algorithm is the Tiny
Encryption Algorithm (TEA). TEA operates on 64-bit blocks of plaintext using a
128-bit key. The plaintext is divided into two 32-bit blocks (L, Ry), and the key is
divided into four 32-bit blocks (Kj, K, K,, K3). Encryption involves repeated applica-
tion of a pair of rounds, defined as follows for rounds i and i + 1:

L; = R
R = L BHF(R;,, Ko, Ky, 8)
Liyi = R

Ry = LiBF(R, K>, K3, 8;11)
where F is defined as
F(M, K, K;, 6) = (M <) HK) D (M > 5)HK) DM + §)

and where the logical shift of x by y bits is denoted by x << y; the logical right shift x

by y bits is denoted by x >> y; and §; is a sequence of predetermined constants.

a. Comment on the significance and benefit of using the sequence of constants.

b. Illustrate the operation of TEA using a block diagram or flow chart type of
depiction.

c. If only one pair of rounds is used, then the ciphertext consists of the 64-bit block
(L,, Ry). For this case, express the decryption algorithm in terms of equations.

d. Repeat part (c) using an illustration similar to that used for part (b).

In this problem, we will compare the security services that are provided by digital

signatures (DS) and message authentication codes (MAC). We assume Oscar is able

to observe all messages sent from Alice to Bob and vice versa. Oscar has no knowl-
edge of any keys but the public one in case of DS. State whether and how (i) DS and

(ii) MAC protect against each attack. The value auth(x) is computed with a DS or a

MAC algorithm, respectively.

a. (Message integrity) Alice sends a message x = “Transfer $1000 to Mark” in the
clear and also sends auth(x) to Bob. Oscar intercepts the message and replaces
“Mark” with “Oscar.” Will Bob detect this?

b. (Replay) Alice sends a message x = “Transfer $1000 to Oscar” in the clear and
also sends auth(x) to Bob. Oscar observes the message and signature and sends
them 100 times to Bob. Will Bob detect this?

c. (Sender authentication with cheating third party) Oscar claims that he sent some
message x with a valid auth(x) to Bob but Alice claims the same. Can Bob clear
the question in either case?

d. (Authentication with Bob cheating) Bob claims that he received a message x
with a valid signature auth(x) from Alice (e.g., “Transfer $1000 from Alice to
Bob”) but Alice claims she has never sent it. Can Alice clear this question in
either case?

2.7 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 83

2.6 Suppose H(M) is a cryptographic hash function that maps a message of an arbitrary bit
length on to an n-bit hash value. Briefly explain the primary security requirements of the
hash function H. Assume that H outputs 16-bit hash values. How many random messages
would be required to find two different messages M and M' such that H(M) = H(M').

2.7 This problem introduces a hash function similar in spirit to SHA that operates on let-
ters instead of binary data. It is called the toy tetragraph hash (tth).® Given a message
consisting of a sequence of letters, tth produces a hash value consisting of four letters.
First, tth divides the message into blocks of 16 letters, ignoring spaces, punctuation,
and capitalization. If the message length is not divisible by 16, it is padded out with
nulls. A four-number running total is maintained that starts out with the value (0,0, 0,
0); this is input to a function, known as a compression function, for processing the first
block. The compression function consists of two rounds. Round 1: Get the next block
of text and arrange it as a row-wise 4 X 4 block of text and convert it to numbers
(A = 0,B = 1), for example, for the block ABCDEFGHIJKLMNOP, we have

A|lB|C|D 0 1 2 |3
E|F|G|H 7
I J|K]|L 9 (10 | 11
M| N[O | P

1213114 |15

Then, add each column mod 26 and add the result to the running total, mod 26. In this
example, the running total is (24, 2, 6, 10). Round 2: Using the matrix from round 1,
rotate the first row left by 1, second row left by 2, third row left by 3, and reverse the
order of the fourth row. In our example,

1 2 |3
6
111819 |10
1514113]12

|t |lQ|w
Ol—=|TZ|O
Z|=|m|T
Zl=[=]|>

Now, add each column mod 26 and add the result to the running total. The new run-

ning total is (5,7 9, 11). This running total is now the input into the first round of the

compression function for the next block of text. After the final block is processed,

convert the final running total to letters. For example, if the message is ABCDEF-

GHIJKLMNOP, then the hash is FHJL.

a. Draw figures of the overall tth logic and the compression function logic.

b. Calculate the hash function for the 48-letter message “I leave twenty million
dollars to my friendly cousin Bill.”

c. To demonstrate the weakness of tth, find a 48-letter block that produces the same
hash as that just derived. Hint: Use lots of As.

2.8 Prior to the discovery of any specific public-key schemes, such as RSA, an existence
proof was developed whose purpose was to demonstrate that public-key encryption
is possible in theory. Consider the functions f(x;) = zi; H(x, o) = 223 (%3, ¥3) = 23,
where all values are integers with 1 = x;, y;, z; = N. Function f; can be represented
by a vector M1 of length N, in which the kth entry is the value of fi(k). Similarly,

81 thank William K. Mason and The American Cryptogram Association for providing this example.

84 CHAPTER 2 / CRYPTOGRAPHIC TOOLS

f>and f; can be represented by N X N matrices M2 and M3. The intent is to represent
the encryption/decryption process by table look-ups for tables with very large values
of N. Such tables would be impractically huge but could, in principle, be constructed.
The scheme works as follows: Construct M1 with a random permutation of all integers
between 1 and N; that is, each integer appears exactly once in M1. Construct M2 so
each row contains a random permutation of the first N integers. Finally, fill in M3 to
satisfy the following condition:

HA(fik), p), k) = pforallk,pwithl = k,p = N

In words,

1. M1 takes an input k£ and produces an output x.

2. M2 takes inputs x and p giving output z.

3. M3 takes inputs z and k and produces p.

The three tables, once constructed, are made public.

a. It should be clear that it is possible to construct M3 to satisfy the preceding condi-
tion. As an example, fill in M3 for the following simple case:

5021341 5
4125113 1
113]2[4|5]| M3=|3
3[114([2 15 4
2151341 2

Convention: The ith element of M1 corresponds to & = i. The ith row of M2 cor-
responds to x = i; the jth column of M2 corresponds to p = j. The ith row of M3
corresponds to z = i; the jth column of M3 corresponds to k = j. We can look at
this in another way. The ith row of M1 corresponds to the ith column of M3. The
value of the entry in the ith row selects a row of M2.The entries in the selected M3
column are derived from the entries in the selected M2 row. The first entry in the
M2 row dictates where the value 1 goes in the M3 column. The second entry in the
M2 row dictates where the value 2 goes in the M3 column, and so on.

b. Describe the use of this set of tables to perform encryption and decryption between
two users.

c. Argue that this is a secure scheme.

Construct a figure similar to Figure 2.9 that includes a digital signature to authenticate
the message in the digital envelope.

USER AUTHENTICATION

3.1

3.2

3.3

34

3.5

3.6

3.7

3.8

3.9

Digital User Authentication Principles
A Model for Digital User Authentication
Means of Authentication
Risk Assessment for User Authentication
Password-Based Authentication

The Vulnerability of Passwords
The Use of Hashed Passwords
Password Cracking of User-Chosen Passwords
Password File Access Control
Password Selection Strategies
Token-Based Authentication

Memory Cards

Smart Cards

Electronic Identify Cards
Biometric Authentication

Physical Characteristics Used in Biometric Applications
Operation of a Biometric Authentication System
Biometric Accuracy

Remote User Authentication

Password Protocol

Token Protocol

Static Biometric Protocol
Dynamic Biometric Protocol

Security Issues for User Authentication
Practical Application: An Iris Biometric System
Case Study: Security Problems for ATM Systems

Key Terms, Review Questions, and Problems

85

86 CHAPTER 3 / USER. AUTHENTICATION

LEARNING OBJECTIVES
After studying this chapter, you should be able to:

@ Discuss the four general means of authenticating a user’s identity.

4 Explain the mechanism by which hashed passwords are used for user
authentication.

4 Understand the use of the Bloom filter in password management.
@ Present an overview of token-based user authentication.

@ Discuss the issues involved and the approaches for remote user
authentication.

€ Summarize some of the key security issues for user authentication.

In most computer security contexts, user authentication is the fundamental building
block and the primary line of defense. User authentication is the basis for most types
of access control and for user accountability. User authentication encompasses two
functions. First, the user identifies herself to the system by presenting a credential,
such as user ID. Second, the system verifies the user by the exchange of authentica-
tion information.

For example, user Alice Toklas could have the user identifier ABTOKLAS. This
information needs to be stored on any server or computer system that Alice wishes
to use, and could be known to system administrators and other users. A typical item
of authentication information associated with this user ID is a password, which is kept
secret (known only to Alice and to the system)'. If no one is able to obtain or guess
Alice’s password, then the combination of Alice’s user ID and password enables
administrators to set up Alice’s access permissions and audit her activity. Because
Alice’s ID is not secret, system users can send her e-mail, but because her password
is secret, no one can pretend to be Alice.

In essence, identification is the means by which a user provides a claimed iden-
tity to the system; user authentication is the means of establishing the validity of the
claim. Note user authentication is distinct from message authentication. As defined in
Chapter 2, message authentication is a procedure that allows communicating parties
to verify that the contents of a received message have not been altered, and that the
source is authentic. This chapter is concerned solely with user authentication.

This chapter first provides an overview of different means of user authentica-
tion, then examines each in some detail.

DIGITAL USER AUTHENTICATION PRINCIPLES

NIST SP 800-63-3 (Digital Authentication Guideline, October 2016) defines digi-
tal user authentication as the process of establishing confidence in user identities
that are presented electronically to an information system. Systems can use the

"Typically, the password is stored in hashed form on the server and this hash code may not be secret, as
explained subsequently in this chapter.

3.1 / DIGITAL USER AUTHENTICATION PRINCIPLES 87

authenticated identity to determine if the authenticated individual is authorized
to perform particular functions, such as database transactions or access to system
resources. In many cases, the authentication and transaction, or other authorized
function, take place across an open network such as the Internet. Equally authen-
tication and subsequent authorization can take place locally, such as across a local
area network. Table 3.1, from NIST SP 800-171 (Protecting Controlled Unclassified
Information in Nonfederal Information Systems and Organizations, December 2016),
provides a useful list of security requirements for identification and authentication
services.

A Model for Digital User Authentication

NIST SP 800-63-3 defines a general model for user authentication that involves
a number of entities and procedures. We discuss this model with reference to
Figure 3.1.

The initial requirement for performing user authentication is that the user
must be registered with the system. The following is a typical sequence for registra-
tion. An applicant applies to a registration authority (RA) to become a subscriber
of a credential service provider (CSP). In this model, the RA is a trusted entity that
establishes and vouches for the identity of an applicant to a CSP. The CSP then
engages in an exchange with the subscriber. Depending on the details of the over-
all authentication system, the CSP issues some sort of electronic credential to the
subscriber. The credential is a data structure that authoritatively binds an identity
and additional attributes to a token possessed by a subscriber, and can be verified
when presented to the verifier in an authentication transaction. The token could
be an encryption key or an encrypted password that identifies the subscriber. The

Table 3.1 Identification and Authentication Security Requirements (NIST SP 800-171)

Basic Security Requirements:

1 Identify information system users, processes acting on behalf of users, or devices.

2 Authenticate (or verify) the identities of those users, processes, or devices, as a prerequisite to allowing
access to organizational information systems.

Derived Security Requirements:

3 Use multifactor authentication for local and network access to privileged accounts and for network access
to non-privileged accounts.

4 Employ replay-resistant authentication mechanisms for network access to privileged and non-privileged accounts.

5 Prevent reuse of identifiers for a defined period.

6 Disable identifiers after a defined period of inactivity.

7 Enforce a minimum password complexity and change of characters when new passwords are created.

8 Prohibit password reuse for a specified number of generations.

9 Allow temporary password use for system logons with an immediate change to a permanent password.

10 Store and transmit only cryptographically-protected passwords.

11 Obscure feedback of authentication information.

88 CHAPTER 3 / USER AUTHENTICATION

Registration, credential issuance,
and maintenance

Reglstra.tlon Identity proofing Subscriber/ Authenticated session Relying
authority < n A .
User registration claimant party (RP)
(RA) d A
Registration Authenticated
confirmation assertion

/

Credential Token/credential .
service <" """~~~ """ T Validation ~ Verifier
provider (CSP)

E-Authentication using
token and credential

Figure 3.1 The NIST SP 800-63-3 E-Authentication Architectural Model

token may be issued by the CSP, generated directly by the subscriber, or provided
by a third party. The token and credential may be used in subsequent authentica-
tion events.

Once a user is registered as a subscriber, the actual authentication process can
take place between the subscriber and one or more systems that perform authen-
tication and, subsequently, authorization. The party to be authenticated is called a
claimant, and the party verifying that identity is called a verifier. When a claimant
successfully demonstrates possession and control of a token to a verifier through an
authentication protocol, the verifier can verify that the claimant is the subscriber
named in the corresponding credential. The verifier passes on an assertion about the
identity of the subscriber to the relying party (RP). That assertion includes identity
information about a subscriber, such as the subscriber name, an identifier assigned
at registration, or other subscriber attributes that were verified in the registration
process. The RP can use the authenticated information provided by the verifier to
make access control or authorization decisions.

An implemented system for authentication will differ from or be more com-
plex than this simplified model, but the model illustrates the key roles and functions
needed for a secure authentication system.

Means of Authentication

There are four general means of authenticating a user’s identity, which can be used
alone or in combination:

* Something the individual knows: Examples include a password, a personal
identification number (PIN), or answers to a prearranged set of questions.

* Something the individual possesses: Examples include electronic keycards,
smart cards, and physical keys. This type of authenticator is referred to as a
token.

3.1 / DIGITAL USER AUTHENTICATION PRINCIPLES 89

* Something the individual is (static biometrics): Examples include recognition
by fingerprint, retina, and face.

* Something the individual does (dynamic biometrics): Examples include recog-
nition by voice pattern, handwriting characteristics, and typing rhythm.

All of these methods, properly implemented and used, can provide secure user
authentication. However, each method has problems. An adversary may be able to
guess or steal a password. Similarly, an adversary may be able to forge or steal a token.
A user may forget a password or lose a token. Further, there is a significant admin-
istrative overhead for managing password and token information on systems and
securing such information on systems. With respect to biometric authenticators, there
are a variety of problems, including dealing with false positives and false negatives,
user acceptance, cost, and convenience. Multifactor authentication refers to the use
of more than one of the authentication means in the preceding list (see Figure 3.2).
The strength of authentication systems is largely determined by the number of factors
incorporated by the system. Implementations that use two factors are considered to
be stronger than those that use only one factor; systems that incorporate three factors
are stronger than systems that only incorporate two of the factors, and so on.

Risk Assessment for User Authentication

Security risk assessment in general will be dealt with in Chapter 14. Here, we introduce
a specific example as it relates to user authentication. There are three separate concepts
we wish to relate to one another: assurance level, potential impact, and areas of risk.

Authentication
logic using
first factor

Authentication
logic using
second factor

Pass

Pass e o o

Client Fail Client Fail

Figure 3.2 Multifactor Authentication

90 CHAPTER 3 / USER AUTHENTICATION

AssuranNceE LEvVEL An assurance level describes an organization’s degree of cer-
tainty that a user has presented a credential that refers to his or her identity. More
specifically, assurance is defined as (1) the degree of confidence in the vetting process
used to establish the identity of the individual to whom the credential was issued, and
(2) the degree of confidence that the individual who uses the credential is the individ-
ual to whom the credential was issued. SP 800-63-3 recognizes four levels of assurance:

e Level 1: Little or no confidence in the asserted identity’s validity. An example
of where this level is appropriate is a consumer registering to participate in a
discussion at a company website discussion board. Typical authentication tech-
nique at this level would be a user-supplied ID and password at the time of the
transaction.

e Level 2: Some confidence in the asserted identity’s validity. Level 2 credentials
are appropriate for a wide range of business with the public where organi-
zations require an initial identity assertion (the details of which are verified
independently prior to any action). At this level, some sort of secure authentica-
tion protocol needs to be used, together with one of the means of authentication
summarized previously and discussed in subsequent sections.

e Level 3: High confidence in the asserted identity’s validity. This level is appro-
priate to enable clients or employees to access restricted services of high value
but not the highest value. An example for which this level is appropriate:
A patent attorney electronically submits confidential patent information to the
U.S. Patent and Trademark Office. Improper disclosure would give competitors
a competitive advantage. Techniques that would need to be used at this level
require more than one factor of authentication; that is, at least two independent
authentication techniques must be used.

e Level 4: Very high confidence in the asserted identity’s validity. This level is
appropriate to enable clients or employees to access restricted services of very
high value or for which improper access is very harmful. For example, a law
enforcement official accesses a law enforcement database containing crimi-
nal records. Unauthorized access could raise privacy issues and/or compromise
investigations. Typically, level 4 authentication requires the use of multiple fac-
tors as well as in-person registration.

Porenriar Impact A concept closely related to that of assurance level is potential
impact. FIPS 199 (Standards for Security Categorization of Federal Information and
Information Systems,2004) defines three levels of potential impact on organizations
or individuals should there be a breach of security (in our context, a failure in user
authentication):

e Low: An authentication error could be expected to have a limited adverse effect
on organizational operations, organizational assets, or individuals. More spe-
cifically, we can say that the error might: (1) cause a degradation in mission
capability to an extent and duration that the organization is able to perform its
primary functions, but the effectiveness of the functions is noticeably reduced;
(2) result in minor damage to organizational assets; (3) result in minor financial
loss to the organization or individuals; or (4) result in minor harm to individuals.

3.1 / DIGITAL USER. AUTHENTICATION PRINCIPLES 91

* Moderate: An authentication error could be expected to have a serious adverse
effect. More specifically, the error might: (1) cause a significant degradation in
mission capability to an extent and duration that the organization is able to per-
form its primary functions, but the effectiveness of the functions is significantly
reduced; (2) result in significant damage to organizational assets; (3) result in
significant financial loss; or (4) result in significant harm to individuals that does
not involve loss of life or serious life-threatening injuries.

e High: An authentication error could be expected to have a severe or cata-
strophic adverse effect. The error might: (1) cause a severe degradation in or
loss of mission capability to an extent and duration that the organization is not
able to perform one or more of its primary functions; (2) result in major damage
to organizational assets; (3) result in major financial loss to the organization or
individuals; or (4) result in severe or catastrophic harm to individuals involving
loss of life or serious life-threatening injuries.

AREAS oF Risk The mapping between the potential impact and the appropriate
level of assurance that is satisfactory to deal with the potential impact depends on
the context. Table 3.2 shows a possible mapping for various risks that an organiza-
tion may be exposed to. This table suggests a technique for doing risk assessment.
For a given information system or service asset of an organization, the organization
needs to determine the level of impact if an authentication failure occurs, using the
categories of impact, or risk areas, that are of concern.

For example, consider the potential for financial loss if there is an authentica-
tion error that results in unauthorized access to a database. Depending on the nature
of the database, the impact could be:

* Low: At worst, an insignificant or inconsequential unrecoverable financial
loss to any party, or at worst, an insignificant or inconsequential organization
liability.

* Moderate: At worst, a serious unrecoverable financial loss to any party, or a
serious organization liability.

* High: Severe or catastrophic unrecoverable financial loss to any party; or severe
or catastrophic organization liability.

Table 3.2 Maximum Potential Impacts for Each Assurance Level

Assurance Level Impact Profiles

Potential Impact Categories for Authentication Errors 1 2 3 4
Inconvenience, distress, or damage to standing or reputation Low Mod Mod High
Financial loss or organization liability Low Mod Mod High
Harm to organization programs or interests None Low Mod High
Unauthorized release of sensitive information None Low Mod High
Personal safety None None Low Mod/

High
Civil or criminal violations None Low Mod High

92 CHAPTER 3 / USER. AUTHENTICATION

The table indicates that if the potential impact is low, an assurance level of 1
is adequate. If the potential impact is moderate, an assurance level of 2 or 3 should
be achieved. And if the potential impact is high, an assurance level of 4 should be
implemented. Similar analysis can be performed for the other categories shown in
the table. The analyst can then pick an assurance level such that it meets or exceeds
the requirements for assurance in each of the categories listed in the table. So, for
example, for a given system, if any of the impact categories has a potential impact of
high, or if the personal safety category has a potential impact of moderate or high,
then level 4 assurance should be implemented.

PASSWORD-BASED AUTHENTICATION

A widely used line of defense against intruders is the password system. Virtually all
multiuser systems, network-based servers, Web-based e-commerce sites, and other
similar services require that a user provide not only a name or identifier (ID) but also
a password. The system compares the password to a previously stored password for
that user ID, maintained in a system password file. The password serves to authen-
ticate the ID of the individual logging on to the system. In turn, the ID provides
security in the following ways:

e The ID determines whether the user is authorized to gain access to a system.
In some systems, only those who already have an ID filed on the system are
allowed to gain access.

e The ID determines the privileges accorded to the user. A few users may have
administrator or “superuser” status that enables them to read files and perform
functions that are especially protected by the operating system. Some systems
have guest or anonymous accounts, and users of these accounts have more
limited privileges than others.

e The ID is used in what is referred to as discretionary access control. For exam-
ple, by listing the IDs of the other users, a user may grant permission to them
to read files owned by that user.

The Vulnerability of Passwords

In this subsection, we outline the main forms of attack against password-based
authentication and briefly outline a countermeasure strategy. The remainder of
Section 3.2 goes into more detail on the key countermeasures.

Typically, a system that uses password-based authentication maintains a pass-
word file indexed by user ID. One technique that is typically used is to store not the
user’s password but a one-way hash function of the password, as described subsequently.

We can identify the following attack strategies and countermeasures:

e Offline dictionary attack: Typically, strong access controls are used to protect
the system’s password file. However, experience shows that determined hack-
ers can frequently bypass such controls and gain access to the file. The attacker
obtains the system password file and compares the password hashes against

3.2 / PASSWORD-BASED AUTHENTICATION 93

hashes of commonly used passwords. If a match is found, the attacker can gain
access by that ID/password combination. Countermeasures include controls to
prevent unauthorized access to the password file, intrusion detection measures
to identify a compromise, and rapid reissuance of passwords should the pass-
word file be compromised.

Specific account attack: The attacker targets a specific account and submits
password guesses until the correct password is discovered. The standard coun-
termeasure is an account lockout mechanism, which locks out access to the
account after a number of failed login attempts. Typical practice is no more
than five access attempts.

Popular password attack: A variation of the preceding attack is to use a popu-
lar password and try it against a wide range of user IDs. A user’s tendency is
to choose a password that is easily remembered; this unfortunately makes the
password easy to guess. Countermeasures include policies to inhibit the selec-
tion by users of common passwords and scanning the IP addresses of authenti-
cation requests and client cookies for submission patterns.

Password guessing against single user: The attacker attempts to gain knowl-
edge about the account holder and system password policies and uses that
knowledge to guess the password. Countermeasures include training in and
enforcement of password policies that make passwords difficult to guess. Such
policies address the secrecy, minimum length of the password, character set,
prohibition against using well-known user identifiers, and length of time before
the password must be changed.

Workstation hijacking: The attacker waits until a logged-in workstation is unat-
tended. The standard countermeasure is automatically logging the workstation
out after a period of inactivity. Intrusion detection schemes can be used to
detect changes in user behavior.

Exploiting user mistakes: If the system assigns a password, then the user is
more likely to write it down because it is difficult to remember. This situation
creates the potential for an adversary to read the written password. A user may
intentionally share a password, to enable a colleague to share files, for example.
Also, attackers are frequently successful in obtaining passwords by using social
engineering tactics that trick the user or an account manager into revealing a
password. Many computer systems are shipped with preconfigured passwords
for system administrators. Unless these preconfigured passwords are changed,
they are easily guessed. Countermeasures include user training, intrusion detec-
tion, and simpler passwords combined with another authentication mechanism.

Exploiting multiple password use: Attacks can also become much more effec-
tive or damaging if different network devices share the same or a similar pass-
word for a given user. Countermeasures include a policy that forbids the same
or similar password on particular network devices.

Electronic monitoring: If a password is communicated across a network to log
on to a remote system, it is vulnerable to eavesdropping. Simple encryption will
not fix this problem, because the encrypted password is, in effect, the password
and can be observed and reused by an adversary.

94 CHAPTER 3 / USER AUTHENTICATION

Despite the many security vulnerabilities of passwords, they remain the most
commonly used user authentication technique, and this is unlikely to change in the
foreseeable future [HERLI12]. Among the reasons for the persistent popularity of
passwords are the following:

1. Techniques that utilize client-side hardware, such as fingerprint scanners and
smart card readers, require the implementation of the appropriate user authen-
tication software to exploit this hardware on both the client and server systems.
Until there is widespread acceptance on one side, there is reluctance to imple-
ment on the other side, so we end up with a who-goes-first stalemate.

2. Physical tokens, such as smart cards, are expensive and/or inconvenient to carry
around, especially if multiple tokens are needed.

3. Schemes that rely on a single sign-on to multiple services, using one of the non-
password techniques described in this chapter, create a single point of security risk.

4. Automated password managers that relieve users of the burden of knowing and
entering passwords have poor support for roaming and synchronization across
multiple client platforms, and their usability had not be adequately researched.

Thus, it is worth our while to study the use of passwords for user authentication
in some detail.

The Use of Hashed Passwords

A widely used password security technique is the use of hashed passwords and a salt
value. This scheme is found on virtually all UNIX variants as well as on a number
of other operating systems. The following procedure is employed (see Figure 3.3a).
To load a new password into the system, the user selects or is assigned a password.
This password is combined with a fixed-length salt value [MORR79]. In older imple-
mentations, this value is related to the time at which the password is assigned to the
user. Newer implementations use a pseudorandom or random number. The password
and salt serve as inputs to a hashing algorithm to produce a fixed-length hash code.
The hash algorithm is designed to be slow to execute in order to thwart attacks. The
hashed password is then stored, together with a plaintext copy of the salt, in the
password file for the corresponding user ID. The hashed password method has been
shown to be secure against a variety of cryptanalytic attacks [WAGNOO].

When a user attempts to log on to a UNIX system, the user provides an 1D
and a password (see Figure 3.3b). The operating system uses the ID to index into the
password file and retrieve the plaintext salt and the encrypted password. The salt
and user-supplied password are used as input to the encryption routine. If the result
matches the stored value, the password is accepted.

The salt serves three purposes:

e It prevents duplicate passwords from being visible in the password file. Even if
two users choose the same password, those passwords will be assigned different
salt values. Hence, the hashed passwords of the two users will differ.

e It greatly increases the difficulty of offline dictionary attacks. For a salt of length
b bits, the number of possible passwords is increased by a factor of 2°, increasing
the difficulty of guessing a password in a dictionary attack.

3.2 / PASSWORD-BASED AUTHENTICATION 95

&

Salt

Password
Password file
User ID Salt Hash code

Slow hash Load
function

(a) Loading a new password

Password file
User Id User ID Salt Hash code

Salt

Password

Select —
J

Slow hash
function

Hashed password

Compare

(b) Verifying a password
Figure 3.3 UNIX Password Scheme

e It becomes nearly impossible to find out whether a person with passwords on
two or more systems has used the same password on all of them.

To see the second point, consider the way that an offline dictionary attack
would work. The attacker obtains a copy of the password file. Suppose first that the
salt is not used. The attacker’s goal is to guess a single password. To that end, the
attacker submits a large number of likely passwords to the hashing function. If any
of the guesses matches one of the hashes in the file, then the attacker has found a
password that is in the file. But faced with the UNIX scheme, the attacker must take

96 CHAPTER 3 / USER AUTHENTICATION

each guess and submit it to the hash function once for each salt value in the dictionary
file, multiplying the number of guesses that must be checked.

There are two threats to the UNIX password scheme. First, a user can gain
access on a machine using a guest account or by some other means then run a
password guessing program, called a password cracker, on that machine. The
attacker should be able to check many thousands of possible passwords with
little resource consumption. In addition, if an opponent is able to obtain a copy
of the password file, then a cracker program can be run on another machine at
leisure. This enables the opponent to run through millions of possible passwords
in a reasonable period.

UNIX ImPLEMENTATIONS — Since the original development of UNIX, many imple-
mentations have relied on the following password scheme. Each user selects a pass-
word of up to eight printable characters in length. This is converted into a 56-bit
value (using 7-bit ASCII) that serves as the key input to an encryption routine. The
hash routine, known as crypt(3), is based on DES. A 12-bit salt value is used. The
modified DES algorithm is executed with a data input consisting of a 64-bit block
of zeros. The output of the algorithm then serves as input for a second encryption.
This process is repeated for a total of 25 encryptions. The resulting 64-bit output is
then translated into an 11-character sequence. The modification of the DES algo-
rithm converts it into a one-way hash function. The crypt(3) routine is designed to
discourage guessing attacks. Software implementations of DES are slow compared
to hardware versions, and the use of 25 iterations multiplies the time required
by 25.

This particular implementation is now considered woefully inadequate. For
example, [PERRO03] reports the results of a dictionary attack using a supercomputer.
The attack was able to process over 50 million password guesses in about 80 minutes.
Further, the results showed that for about $10,000, anyone should be able to do the
same in a few months using one uniprocessor machine. Despite its known weaknesses,
this UNIX scheme is still often required for compatibility with existing account man-
agement software or in multivendor environments.

There are other much stronger hash/salt schemes available for UNIX. The
recommended hash function for many UNIX systems, including Linux, Solaris, and
FreeBSD (a widely used open source UNIX), is based on the MDS5 secure hash algo-
rithm (which is similar to, but not as secure as SHA-1). The MD5 crypt routine uses a
salt of up to 48 bits and effectively has no limitations on password length. It produces
a 128-bit hash value. It is also far slower than crypt(3).To achieve the slowdown, MD5
crypt uses an inner loop with 1000 iterations.

Probably the most secure version of the UNIX hash/salt scheme was developed
for OpenBSD, another widely used open source UNIX. This scheme, reported in
[PROV99], uses a hash function based on the Blowfish symmetric block cipher. The
hash function, called Berypt, is quite slow to execute. Berypt allows passwords of up
to 55 characters in length and requires a random salt value of 128 bits, to produce a
192-bit hash value. Berypt also includes a cost variable; an increase in the cost vari-
able causes a corresponding increase in the time required to perform a Beyrpt hash.
The cost assigned to a new password is configurable, so administrators can assign a
higher cost to privileged users.

3.2 / PASSWORD-BASED AUTHENTICATION 97

Password Cracking of User-Chosen Passwords

TrADITIONAL ArPPROACHES The traditional approach to password guessing,
or password cracking as it is called, is to develop a large dictionary of possible
passwords and to try each of these against the password file. This means that each
password must be hashed using each available salt value then compared with
stored hash values. If no match is found, the cracking program tries variations on
all the words in its dictionary of likely passwords. Such variations include back-
ward spelling of words, additional numbers or special characters, or sequence of
characters.

An alternative is to trade off space for time by precomputing potential hash
values. In this approach the attacker generates a large dictionary of possible pass-
words. For each password, the attacker generates the hash values associated with
each possible salt value. The result is a mammoth table of hash values known as a
rainbow table. For example, [OECHO03] showed that using 1.4 GB of data, he could
crack 99.9% of all alphanumeric Windows password hashes in 13.8 seconds. This
approach can be countered using a sufficiently large salt value and a sufficiently large
hash length. Both the FreeBSD and OpenBSD approaches should be secure from
this attack for the foreseeable future.

To counter the use of large salt values and hash lengths, password crackers
exploit the fact that some people choose easily guessable passwords. A particular
problem is that users, when permitted to choose their own password, tend to choose
short ones. [BONN12] summarizes the results of a number of studies over the past
few years involving over 40 million hacked passwords, as well as their own analysis
of almost 70 million anonymized passwords of Yahoo! users, and found a tendency
toward six to eight characters of length and a strong dislike of non-alphanumeric
characters in passwords.

The analysis of the 70 million passwords in [BONN12] estimates that pass-
words provide fewer than 10 bits of security against an online, trawling attack,
and only about 20 bits of security against an optimal offline dictionary attack. In
other words, an attacker who can manage 10 guesses per account, typically within
the realm of rate-limiting mechanisms, will compromise around 1% of accounts,
just as they would against random 10-bit strings. Against an optimal attacker
performing unrestricted brute force and wanting to break half of all available
accounts, passwords appear to be roughly equivalent to 20-bit random strings.
It can be seen then that using offline search enables an adversary to break
a large number of accounts, even if a significant amount of iterated hashing is
used.

Password length is only part of the problem. Many people, when permitted
to choose their own password, pick a password that is guessable, such as their own
name, their street name, a common dictionary word, and so forth. This makes the job
of password cracking straightforward. The cracker simply has to test the password
file against lists of likely passwords. Because many people use guessable passwords,
such a strategy should succeed on virtually all systems.

One demonstration of the effectiveness of guessing is reported in [KLEI90].
From a variety of sources, the author collected UNIX password files, containing
nearly 14,000 encrypted passwords. The result, which the author rightly characterizes

98 CHAPTER 3 / USER. AUTHENTICATION

as frightening, was that in all, nearly one-fourth of the passwords were guessed. The
following strategy was used:

1. Try the user’s name, initials, account name, and other relevant personal informa-
tion. In all, 130 different permutations for each user were tried.

2. Try words from various dictionaries. The author compiled a dictionary of over
60,000 words, including the online dictionary on the system itself, and various
other lists as shown.

3. Try various permutations on the words from step 2. This included making the
first letter uppercase or a control character, making the entire word uppercase,
reversing the word, changing the letter “o” to the digit “zero,” and so on. These
permutations added another 1 million words to the list.

4. Try various capitalization permutations on the words from step 2 that were not
considered in step 3. This added almost 2 million additional words to the list.

Thus, the test involved nearly 3 million words. Using the fastest processor available,
the time to encrypt all these words for all possible salt values was under an hour.
Keep in mind that such a thorough search could produce a success rate of about
25%, whereas even a single hit may be enough to gain a wide range of privileges on
a system.

Attacks that use a combination of brute-force and dictionary techniques have
become common. A notable example of this dual approach is John the Ripper, an
open-source password cracker first developed in 1996, and still in use [OPEN13].

MopERN ArproAcHES — Sadly, this type of vulnerability has not lessened in the past
25 years or so. Users are doing a better job of selecting passwords, and organiza-
tions are doing a better job of forcing users to pick stronger passwords, a concept
known as a complex password policy, as discussed subsequently. However, password-
cracking techniques have improved to keep pace. The improvements are of two
kinds. First, the processing capacity available for password cracking has increased
dramatically. Now used increasingly for computing, graphics processors allow
password-cracking programs to work thousands of times faster than they did just a
decade ago on similarly priced PCs that used traditional CPUs alone. A PC running
a single AMD Radeon HD7970 GPU, for instance, can try on average an 8.2 X 10°
password combinations each second, depending on the algorithm used to scramble
them [GOOD12a]. Only a decade ago, such speeds were possible only when using
pricey supercomputers.

The second area of improvement in password cracking is in the use of sophisti-
cated algorithms to generate potential passwords. For example, [NARAO5] developed
a model for password generation using the probabilities of letters in natural language.
The researchers used standard Markov modeling techniques from natural language
processing to dramatically reduce the size of the password space to be searched.

But the best results have been achieved by studying examples of actual pass-
words in use. To develop techniques that are more efficient and effective than simple
dictionary and brute-force attacks, researchers and hackers have studied the struc-
ture of passwords. To do this, analysts need a large pool of real-word passwords to
study, which they now have. The first big breakthrough came in late 2009, when an
SQL injection attack against online games service Rock You.com exposed 32 million

http://www.RockYou.com

3.2 / PASSWORD-BASED AUTHENTICATION 99

plaintext passwords used by its members to log in to their accounts [TIMM10]. Since
then, numerous sets of leaked password files have become available for analysis.

Using large datasets of leaked passwords as training data, [WEIR09] reports
on the development of a probabilistic context-free grammar for password cracking.
In this approach, guesses are ordered according to their likelihood, based on the fre-
quency of their character-class structures in the training data, as well as the frequency
of their digit and symbol substrings. This approach has been shown to be efficient in
password cracking [KELL12, ZHAN10].

[MAZU13] reports on an analysis of the passwords used by over 25,000 students
at a research university with a complex password policy. The analysts used the pass-
word-cracking approach introduced in [WEIRO09]. They used a database consisting
of a collection of leaked password files, including the RockYou file. Figure 3.4 sum-
marizes a key result from the paper. The graph shows the percentage of passwords
that have been recovered as a function of the number of guesses. As can be seen, over
10% of the passwords are recovered after only 10'° guesses. After 10" guesses, almost
40% of the passwords are recovered.

Password File Access Control

One way to thwart a password attack is to deny the opponent access to the password
file. If the hashed password portion of the file is accessible only by a privileged user,
then the opponent cannot read it without already knowing the password of a privi-
leged user. Often, the hashed passwords are kept in a separate file from the user IDs,
referred to as a shadow password file. Special attention is paid to making the shadow

50%

40% /

/
=
%
g 30%
on
5
5
&~ 20% //
10% //
/
0%
10* 107 1010 103

Number of guesses

Figure 3.4 The Percentage of Passwords Guessed After a Given Number of Guesses

100 CHAPTER 3 / USER. AUTHENTICATION

password file protected from unauthorized access. Although password file protection
is certainly worthwhile, there remain vulnerabilities:

° Many systems, including most UNIX systems, are susceptible to unanticipated
break-ins. A hacker may be able to exploit a software vulnerability in the oper-
ating system to bypass the access control system long enough to extract the
password file. Alternatively, the hacker may find a weakness in the file system
or database management system that allows access to the file.

* An accident of protection might render the password file readable, thus com-
promising all the accounts.

* Some of the users have accounts on other machines in other protection domains,
and they use the same password. Thus, if the passwords could be read by anyone
on one machine, a machine in another location might be compromised.

e A lack of, or weakness in, physical security may provide opportunities for a
hacker. Sometimes, there is a backup to the password file on an emergency
repair disk or archival disk. Access to this backup enables the attacker to read
the password file. Alternatively, a user may boot from a disk running another
operating system such as Linux and access the file from this OS.

¢ Instead of capturing the system password file, another approach to collecting
user IDs and passwords is through sniffing network traffic.

Thus, a password protection policy must complement access control measures with
techniques to force users to select passwords that are difficult to guess.

Password Selection Strategies

When not constrained, many users choose a password that is too short or too
easy to guess. At the other extreme, if users are assigned passwords consisting
of eight randomly selected printable characters, password cracking is effectively
impossible. But it would be almost as impossible for most users to remember their
passwords. Fortunately, even if we limit the password universe to strings of char-
acters that are reasonably memorable, the size of the universe is still too large to
permit practical cracking. Our goal, then, is to eliminate guessable passwords while
allowing the user to select a password that is memorable. Four basic techniques
are in use:

e User education
¢ Computer-generated passwords
e Reactive password checking

e Complex password policy

Users can be told the importance of using hard-to-guess passwords and can be
provided with guidelines for selecting strong passwords. This user education strategy
is unlikely to succeed at most installations, particularly where there is a large user
population or a lot of turnover. Many users will simply ignore the guidelines. Others
may not be good judges of what is a strong password. For example, many users (mis-
takenly) believe that reversing a word or capitalizing the last letter makes a password
unguessable.

3.2 / PASSWORD-BASED AUTHENTICATION 101

Nonetheless, it makes sense to provide users with guidelines on the selection
of passwords. Perhaps the best approach is the following advice: A good technique
for choosing a password is to use the first letter of each word of a phrase. How-
ever, do not pick a well-known phrase like “An apple a day keeps the doctor away”
(Aaadktda). Instead, pick something like “My dog’s first name is Rex” (MdfniR) or
“My sister Peg is 24 years old” (MsPi24yo). Studies have shown users can generally
remember such passwords, but they are not susceptible to password guessing attacks
based on commonly used passwords.

Computer-generated passwords also have problems. If the passwords are quite
random in nature, users will not be able to remember them. Even if the password is
pronounceable, the user may have difficulty remembering it and so be tempted to write
it down. In general, computer-generated password schemes have a history of poor accep-
tance by users. FIPS 181 defines one of the best-designed automated password genera-
tors. The standard includes not only a description of the approach but also a complete
listing of the C source code of the algorithm. The algorithm generates words by forming
pronounceable syllables and concatenating them to form a word. A random number gen-
erator produces a random stream of characters used to construct the syllables and words.

A reactive password checking strategy is one in which the system periodically
runs its own password cracker to find guessable passwords. The system cancels any
passwords that are guessed and notifies the user. This tactic has a number of draw-
backs. First, it is resource intensive if the job is done right. Because a determined
opponent who is able to steal a password file can devote full CPU time to the task for
hours or even days, an effective reactive password checker is at a distinct disadvan-
tage. Furthermore, any existing passwords remain vulnerable until the reactive pass-
word checker finds them. A good example is the openware Jack the Ripper password
cracker (openwall.com/john/pro/), which works on a variety of operating systems.

A promising approach to improved password security is a complex password
policy, or proactive password checker. In this scheme, a user is allowed to select his or
her own password. However, at the time of selection, the system checks to see if the
password is allowable and, if not, rejects it. Such checkers are based on the philosophy
that, with sufficient guidance from the system, users can select memorable passwords
from a fairly large password space that are not likely to be guessed in a dictionary attack.

The trick with a proactive password checker is to strike a balance between user
acceptability and strength. If the system rejects too many passwords, users will com-
plain that it is too hard to select a password. If the system uses some simple algorithm
to define what is acceptable, this provides guidance to password crackers to refine
their guessing technique. In the remainder of this subsection, we will look at possible
approaches to proactive password checking.

RurLe EnrForcemENT The first approach is a simple system for rule enforcement.
For example, NIST SP 800-63-2 suggests the following alternative rules:
» Password must have at least sixteen characters (basic16).

e Password must have at least eight characters including an uppercase and
lowercase letter, a symbol, and a digit. It may not contain a dictionary word
(comprehensive8).

Although NIST considers basicl6 and comprehensive8 equivalent, [KELL12]
found that basicl6 is superior against large numbers of guesses. Combined with a

http://openwall.com/john/pro/

102 CHAPTER 3 / USER. AUTHENTICATION

prior result that basicl6 is also easier for users [KOMA11], this suggests basicl6 is
the better policy choice.

Although this approach is superior to simply educating users, it may not be suf-
ficient to thwart password crackers. This scheme alerts crackers as to which passwords
not to try, but may still make it possible to do password cracking.

The process of rule enforcement can be automated by using a proactive pass-
word checker, such as the openware pam_passwdqc (openwall.com/passwdqc/), which
enforces a variety of rules on passwords and is configurable by the system administrator.

PAassworp CHECKER Another possible procedure is simply to compile a large dic-
tionary of possible “bad” passwords. When a user selects a password, the system
checks to make sure that it is not on the disapproved list. There are two problems
with this approach:

* Space: The dictionary must be very large to be effective.

e Time: The time required to search a large dictionary may itself be large. In addi-
tion, to check for likely permutations of dictionary words, either those words
must be included in the dictionary, making it truly huge, or each search must
also involve considerable processing.

Broom FiLter A technique [SPAF92a, SPAF92b] for developing an effective
and efficient proactive password checker that is based on rejecting words on a list
has been implemented on a number of systems, including Linux. It is based on the
use of a Bloom filter [BLOO70]. To begin, we explain the operation of the Bloom
filter. A Bloom filter of order k consists of a set of k independent hash functions
Hi(x), Hy(x), ... , H/(x), where each function maps a password into a hash value in
the range 0 to N — 1. That is,

I_Ii(Xj)zy l=i=k 1=j=D; 0=y=N-1
where

X

7 = jth word in password dictionary

D = number of words in password dictionary
The following procedure is then applied to the dictionary:

1. A hash table of N bits is defined, with all bits initially set to 0.

2. For each password, its k hash values are calculated, and the corresponding bits
in the hash table are set to 1. Thus, if H; (X;) = 67 for some (i, j), then the
sixty-seventh bit of the hash table is set to 1; if the bit already has the value 1,
it remains at 1.

When a new password is presented to the checker, its k hash values are calcu-
lated. If all the corresponding bits of the hash table are equal to 1, then the password
is rejected. All passwords in the dictionary will be rejected. But there will also be
some “false positives” (i.e., passwords that are not in the dictionary but that produce
a match in the hash table). To see this, consider a scheme with two hash functions.
Suppose the passwords undertaker and hulkhogan are in the dictionary, but xG %#jj98
is not. Further suppose that

http://openwall.com/passwdqc/

Pr(false positive]

3.2 / PASSWORD-BASED AUTHENTICATION 103

Hj(undertaker) = 25 H; (hulkhogan) = 83 H; (xG%#jj98) = 665
H,(undertaker) = 998 H, (hulkhogan) = 665 H, (xG%#jj98) = 998

If the password xG %#jj98 is presented to the system, it will be rejected even
though it is not in the dictionary. If there are too many such false positives, it will be
difficult for users to select passwords. Therefore, we would like to design the hash
scheme to minimize false positives. It can be shown that the probability P of a false

positive can be approximated by
P = (1 _ e—kD/N)k — (1 _ e—k/R)k
or, equivalently,
—k
R~ Uk
In(1 = p™)
where
k = number of hash functions
N = number of bits in hash table
D = number of words in dictionary
R = NID, ratio of hash table size (bits) to dictionary size (words)

Figure 3.5 plots P as a function of R for various values of k. Suppose we have a
dictionary of 1 million words, and we wish to have a 0.01 probability of rejecting a

0.1

0.01

0.001

0 5 10 15 20
Ratio of hash table size (bits) to dictionary size (words)

Figure 3.5 Performance of Bloom Filter

104 CHAPTER 3 / USER. AUTHENTICATION

password not in the dictionary. If we choose six hash functions, the required ratio is
R = 9.6. Therefore, we need a hash table of 9.6 X 10° bits or about 1.2 MB of storage.
In contrast, storage of the entire dictionary would require on the order of 8 MB. Thus,
we achieve a compression of almost a factor of 7 Furthermore, password checking
involves the straightforward calculation of six hash functions and is independent of
the size of the dictionary, whereas with the use of the full dictionary, there is substan-
tial searching.’

3.3 TOKEN-BASED AUTHENTICATION

Objects that a user possesses for the purpose of user authentication are called tokens.
In this section, we examine two types of tokens that are widely used; these are cards
that have the appearance and size of bank cards (see Table 3.3).

Memory Cards

Memory cards can store but not process data. The most common such card is the bank
card with a magnetic stripe on the back. A magnetic stripe can store only a simple
security code, which can be read (and unfortunately reprogrammed) by an inexpensive
card reader. There are also memory cards that include an internal electronic memory.

Memory cards can be used alone for physical access, such as a hotel room. For
authentication, a user provides both the memory card and some form of password
or personal identification number (PIN). A typical application is an automatic teller
machine (ATM). The memory card, when combined with a PIN or password, provides
significantly greater security than a password alone. An adversary must gain physical
possession of the card (or be able to duplicate it) plus must gain knowledge of the
PIN. Among the potential drawbacks NIST SP 800-12 (An Introduction to Computer
Security: The NIST Handbook, October 1995) notes the following:

* Regquires special reader: This increases the cost of using the token and creates
the requirement to maintain the security of the reader’s hardware and software.

Table 3.3 Types of Cards Used as Tokens

Card Type Defining Feature Example
Embossed Raised characters only, on front Old credit card
Magnetic stripe Magnetic bar on back, characters on front Bank card
Memory Electronic memory inside Prepaid phone card
Smart Electronic memory and processor inside Biometric ID card

Contact Electrical contacts exposed on surface
Contactless Radio antenna embedded inside

The Bloom filter involves the use of probabilistic techniques. There is a small probability that some
passwords not in the dictionary will be rejected. It is often the case in designing algorithms that the use of
probabilistic techniques results in a less time-consuming or less complex solution, or both.

3.3 / TOKEN-BASED AUTHENTICATION 105

* Token loss: A lost token temporarily prevents its owner from gaining system
access. Thus, there is an administrative cost in replacing the lost token. In
addition, if the token is found, stolen, or forged, then an adversary need only
determine the PIN to gain unauthorized access.

e User dissatisfaction: Although users may have no difficulty in accepting the use
of a memory card for ATM access, its use for computer access may be deemed
inconvenient.

Smart Cards

A wide variety of devices qualify as smart tokens. These can be categorized along
four dimensions that are not mutually exclusive:

* Physical characteristics: Smart tokens include an embedded microprocessor.
A smart token that looks like a bank card is called a smart card. Other smart
tokens can look like calculators, keys, or other small portable objects.

e User interface: Manual interfaces include a keypad and display for human/
token interaction.

¢ Electronic interface: A smart card or other token requires an electronic inter-
face to communicate with a compatible reader/writer. A card may have one or
both of the following types of interface:

— Contact: A contact smart card must be inserted into a smart card reader
with a direct connection to a conductive contact plate on the surface of the
card (typically gold plated). Transmission of commands, data, and card status
takes place over these physical contact points.

— Contactless: A contactless card requires only close proximity to a reader.
Both the reader and the card have an antenna, and the two communicate
using radio frequencies. Most contactless cards also derive power for the
internal chip from this electromagnetic signal. The range is typically one-half
to three inches for non-battery-powered cards, ideal for applications such as
building entry and payment that require a very fast card interface.

* Authentication protocol: The purpose of a smart token is to provide a means
for user authentication. We can classify the authentication protocols used with
smart tokens into three categories:

— Static: With a static protocol, the user authenticates himself or herself to the
token then the token authenticates the user to the computer. The latter half
of this protocol is similar to the operation of a memory token.

— Dynamic password generator: In this case, the token generates a unique
password periodically (e.g., every minute). This password is then entered
into the computer system for authentication, either manually by the user
or electronically via the token. The token and the computer system must be
initialized and kept synchronized so the computer knows the password that
is current for this token.

106 CHAPTER 3 / USER. AUTHENTICATION

— Challenge-response: In this case, the computer system generates a challenge,
such as a random string of numbers. The smart token generates a response
based on the challenge. For example, public-key cryptography could be used
and the token could encrypt the challenge string with the token’s private key.

For user authentication, the most important category of smart token is the
smart card, which has the appearance of a credit card, has an electronic interface, and
may use any of the type of protocols just described. The remainder of this section
discusses smart cards.

A smart card contains within it an entire microprocessor, including processor,
memory, and I/O ports. Some versions incorporate a special co-processing circuit for
cryptographic operation to speed the task of encoding and decoding messages or
generating digital signatures to validate the information transferred. In some cards,
the I/O ports are directly accessible by a compatible reader by means of exposed
electrical contacts. Other cards rely instead on an embedded antenna for wireless
communication with the reader.

A typical smart card includes three types of memory. Read-only memory (ROM)
stores data that does not change during the card’s life, such as the card number and
the cardholder’s name. Electrically erasable programmable ROM (EEPROM) holds
application data and programs, such as the protocols that the card can execute. It also
holds data that may vary with time. For example, in a telephone card, the EEPROM
holds the remaining talk time. Random access memory (RAM) holds temporary data
generated when applications are executed.

Figure 3.6 illustrates the typical interaction between a smart card and a reader
or computer system. Each time the card is inserted into a reader, a reset is initiated
by the reader to initialize parameters such as clock value. After the reset function
is performed, the card responds with answer to reset (ATR) message. This message
defines the parameters and protocols that the card can use and the functions it can
perform. The terminal may be able to change the protocol used and other parameters
via a protocol type selection (PTS) command. The card’s PTS response confirms
the protocols and parameters to be used. The terminal and card can now execute the
protocol to perform the desired application.

Electronic Identity Cards

An application of increasing importance is the use of a smart card as a national
identity card for citizens. A national electronic identity (eID) card can serve the same
purposes as other national ID cards, and similar cards such as a driver’s license, for
access to government and commercial services. In addition, an eID card can provide
stronger proof of identity and be used in a wider variety of applications. In effect, an
elD card is a smart card that has been verified by the national government as valid
and authentic.

One of the most recent and most advanced eID deployments is the German eID
card neuer Personalausweis [POLL12]. The card has human-readable data printed on
its surface, including the following:

* Personal data: Such as name, date of birth, and address; this is the type of
printed information found on passports and drivers’ licenses.

3.3 / TOKEN-BASED AUTHENTICATION 107

Smart card Card reader

Smart Card Activation

ATR

Protocol negotiation PTS

Negotiation Answer PTS

Command APDU
< Response APDU

End of Session

APDU = Application protocol data unit
ATR = Answer to reset
PTS = Protocol type selection

Figure 3.6 Smart Card/Reader Exchange

* Document number: An alphanumerical nine-character unique identifier of
each card.

¢ Card access number (CAN): A six-digit decimal random number printed on the
face of the card. This is used as a password, as explained subsequently.

* Machine readable zone (MRZ): Three lines of human- and machine-readable
text on the back of the card. This may also be used as a password.

Erp Funcrions The card has the following three separate electronic functions, each
with its own protected dataset (see Table 3.4):

e ePass: This function is reserved for government use and stores a digital repre-
sentation of the cardholder’s identity. This function is similar to, and may be
used for, an electronic passport. Other government services may also use ePass.
The ePass function must be implemented on the card.

e eID: This function is for general-purpose use in a variety of government and
commercial applications. The eID function stores an identity record that autho-
rized service can access with cardholder permission. Citizens choose whether
they want this function activated.

e eSign: This optional function stores a private key and a certificate verifying the
key; it is used for generating a digital signature. A private sector trust center
issues the certificate.

108 CHAPTER 3 / USER. AUTHENTICATION

Table 3.4 Electronic Functions and Data for eID Cards

Function Purpose PACE Password Data Uses
. . Face image; two Offline biometric
Authorized offline . o . . .
ePass (mandatory) | inspection systems | CAN or MRZ flngffrprlnt 1Mages 1flent1ty verifica-
read the data (optional); MRZ tion reserved for
’ data government access
Online applica-
tions read the (.iata eID PIN Family and given Identification; age
or access functlons names; artistic name | verification; com-
SIIB (Eafation as authorized. and doctoral degree: | munity ID verifi-
D) Offline inspection date and place of cation; restricted
P systems read the birth; address and identification
data and update CAN or MRZ community ID; (pseudonym);
the address and expiration date revocation query
community ID.
A certification
auth9r1ty installs ID PIN
the signature
eSign (certificate certificate online. Signature key; Electronic
optional) Citizens make X.509 certificate signature creation
electronic signa-
ture with eSign CAN
PIN.

CAN = card access number

MRZ = machine-readable zone

PACE = password authenticated connection establishment
PIN = personal identification number

The ePass -function is an offline function. That is, it is not used over a network,
but is used in a situation where the cardholder presents the card for a particular ser-
vice at that location, such as going through a passport control checkpoint.

The eID function can be used for both online and offline services. An exam-
ple of an offline use is an inspection system. An inspection system is a terminal
for law enforcement checks, for example, by police or border control officers. An
inspection system can read identifying information of the cardholder as well as bio-
metric information stored on the card, such as facial image and fingerprints. The
biometric information can be used to verify that the individual in possession of the
card is the actual cardholder.

User authentication is a good example of online use of the eID function.
Figure 3.7 illustrates a Web-based scenario. To begin, an eID user visits a website and
requests a service that requires authentication. The Web site sends back a redirect
message that forward an authentication request to an eID server. The eID server
requests that the user enter the PIN number for the eID card. Once the user has
correctly entered the PIN, data can be exchanged between the eID card and the
terminal reader in encrypted form. The server then engages in an authentication
protocol exchange with the microprocessor on the eID card. If the user is authenti-
cated, the results are sent back to the user system to be redirected to the Web server
application.

3.4 / BIOMETRIC AUTHENTICATION 109

—

elD
server

6. User enters PIN

1. User requests service
(e.g., via Web browser)

Host/application
server

Figure 3.7 User Authentication with eID

For the preceding scenario, the appropriate software and hardware are required
on the user system. Software on the main user system includes functionality for
requesting and accepting the PIN number and for message redirection. The hard-
ware required is an eID card reader. The card reader can be an external contact or
contactless reader or a contactless reader internal to the user system.

PASSWORD AUTHENTICATED CONNECTION ESTABLISHMENT (PACE) Password
Authenticated Connection Establishment (PACE) ensures that the contactless RF
chip in the eID card cannot be read without explicit access control. For online appli-
cations, access to the card is established by the user entering the 6-digit PIN, which
should only be known to the holder of the card. For offline applications, either the
MRZ printed on the back of the card or the six-digit card access number (CAN)
printed on the front is used.

3.4 BIOMETRIC AUTHENTICATION

A biometric authentication system attempts to authenticate an individual based on
his or her unique physical characteristics. These include static characteristics, such
as fingerprints, hand geometry, facial characteristics, and retinal and iris patterns;

110 CHAPTER 3 / USER. AUTHENTICATION

and dynamic characteristics, such as voiceprint and signature. In essence, biomet-
rics is based on pattern recognition. Compared to passwords and tokens, biometric
authentication is both technically more complex and expensive. While it is used in a
number of specific applications, biometrics has yet to mature as a standard tool for
user authentication to computer systems.

Physical Characteristics Used in Biometric Applications

A number of different types of physical characteristics are either in use or under
study for user authentication. The most common are the following:

Facial characteristics: Facial characteristics are the most common means
of human-to-human identification; thus it is natural to consider them for
identification by computer. The most common approach is to define charac-
teristics based on relative location and shape of key facial features, such as
eyes, eyebrows, nose, lips, and chin shape. An alternative approach is to use an
infrared camera to produce a face thermogram that correlates with the underly-
ing vascular system in the human face.

Fingerprints: Fingerprints have been used as a means of identification for cen-
turies, and the process has been systematized and automated particularly for
law enforcement purposes. A fingerprint is the pattern of ridges and furrows on
the surface of the fingertip. Fingerprints are believed to be unique across the
entire human population. In practice, automated fingerprint recognition and
matching system extract a number of features from the fingerprint for storage
as a numerical surrogate for the full fingerprint pattern.

Hand geometry: Hand geometry systems identify features of the hand, includ-
ing shape, and lengths and widths of fingers.

Retinal pattern: The pattern formed by veins beneath the retinal surface is
unique and therefore suitable for identification. A retinal biometric system
obtains a digital image of the retinal pattern by projecting a low-intensity beam
of visual or infrared light into the eye.

Iris: Another unique physical characteristic is the detailed structure of the iris.

Signature: Each individual has a unique style of handwriting and this is reflected
especially in the signature, which is typically a frequently written sequence.
However, multiple signature samples from a single individual will not be identi-
cal. This complicates the task of developing a computer representation of the
signature that can be matched to future samples.

Voice: Whereas the signature style of an individual reflects not only the unique
physical attributes of the writer but also the writing habit that has developed,
voice patterns are more closely tied to the physical and anatomical characteris-
tics of the speaker. Nevertheless, there is still a variation from sample to sample
over time from the same speaker, complicating the biometric recognition task.

Figure 3.8 gives a rough indication of the relative cost and accuracy of these

biometric measures. The concept of accuracy does not apply to user authentication
schemes using smart cards or passwords. For example, if a user enters a password,
it either matches exactly the password expected for that user or not. In the case of

3.4 / BIOMETRIC AUTHENTICATION 111

A
Iris
Hand
_ Retina
z | Signature
O
Face Finger
Voice
Accuracy

Figure 3.8 Cost Versus Accuracy of Various Biometric
Characteristics in User Authentication Schemes

biometric parameters, the system instead must determine how closely a presented
biometric characteristic matches a stored characteristic. Before elaborating on the
concept of biometric accuracy, we need to have a general idea of how biometric
systems work.

Operation of a Biometric Authentication System

Figure 3.9 illustrates the operation of a biometric system. Each individual who is to be
included in the database of authorized users must first be enrolled in the system. This
is analogous to assigning a password to a user. For a biometric system, the user pres-
ents a name and, typically, some type of password or PIN to the system. At the same
time, the system senses some biometric characteristic of this user (e.g., fingerprint
of right index finger). The system digitizes the input then extracts a set of features
that can be stored as a number or set of numbers representing this unique biometric
characteristic; this set of numbers is referred to as the user’s template. The user is now
enrolled in the system, which maintains for the user a name (ID), perhaps a PIN or
password, and the biometric value.

Depending on application, user authentication on a biometric system involves
either verification or identification. Verification is analogous to a user logging on to
a system by using a memory card or smart card coupled with a password or PIN. For
biometric verification, the user enters a PIN and also uses a biometric sensor. The
system extracts the corresponding feature and compares that to the template stored
for this user. If there is a match, then the system authenticates this user.

For an identification system, the individual uses the biometric sensor but pres-
ents no additional information. The system then compares the presented template
with the set of stored templates. If there is a match, then this user is identified. Oth-
erwise, the user is rejected.

Biometric Accuracy

In any biometric scheme, some physical characteristic of the individual is mapped
into a digital representation. For each individual, a single digital representation, or

112 CHAPTER 3 / USER. AUTHENTICATION

Name (PIN)

Biometric Feature
sensor extractor

Biometric
database

User interface

(a) Enrollment

Name (PIN)
Biometric Feature
sensor extractor Biometric
¥ database
User interface True/false Feature
matcher One template
(b) Verification
Biometric Feature
sensor extractor Biometric
+ database
User interface User’s identity or Feature
“user unidentified” matcher N templates

(c) Identification

Figure 3.9 A Generic Biometric System Enrollment creates an association
between a user and the user’s biometric characteristics. Depending on the appli-
cation, user authentication either involves verifying that a claimed user is the
actual user or identifying an unknown user.

template, is stored in the computer. When the user is to be authenticated, the system
compares the stored template to the presented template. Given the complexities of
physical characteristics, we cannot expect that there will be an exact match between
the two templates. Rather, the system uses an algorithm to generate a matching
score (typically a single number) that quantifies the similarity between the input and
the stored template. To proceed with the discussion, we define the following terms.
The false match rate is the frequency with which biometric samples from different
sources are erroneously assessed to be from the same source. The false nonmatch rate
is the frequency with which samples from the same source are erroneously assessed
to be from different sources.

Figure 3.10 illustrates the dilemma posed to the system. If a single user is tested
by the system numerous times, the matching score s will vary, with a probability

3.4 / BIOMETRIC AUTHENTICATION 113

Probability
density function
Decision
Imposter threshold (#) Profile of
profile genuine user

AN e

False
nonmatch False
possible match
possible

Average matching ~ Average matching Matching score (s)
value of imposter value of genuine user

Figure 3.10 Profiles of a Biometric Characteristic of an Imposter and an
Authorized User In this depiction, the comparison between the presented
feature and a reference feature is reduced to a single numeric value. If
the input value (s) is greater than a preassigned threshold (¢), a match is
declared.

density function typically forming a bell curve, as shown. For example, in the case of a
fingerprint, results may vary due to sensor noise; changes in the print due to swelling
or dryness; finger placement; and so on. On average, any other individual should have
a much lower matching score, but again will exhibit a bell-shaped probability density
function. The difficulty is that the range of matching scores produced by two individu-
als, one genuine and one an imposter, compared to a given reference template, are
likely to overlap. In Figure 3.10, a threshold value is selected thus that if the presented
value s = tra match is assumed, and for s < ¢, a mismatch is assumed. The shaded part
to the right of ¢ indicates a range of values for which a false match is possible, and the
shaded part to the left indicates a range of values for which a false nonmatch is pos-
sible. A false match results in the acceptance of a user who should not be accepted,
and a false mismatch triggers the rejection of a valid user. The area of each shaded
part represents the probability of a false match or nonmatch, respectively. By moving
the threshold, left or right, the probabilities can be altered, but note that a decrease
in false match rate results in an increase in false nonmatch rate, and vice versa.

For a given biometric scheme, we can plot the false match versus false nonmatch
rate, called the operating characteristic curve. Figure 3.11 shows idealized curves for
two different systems. The curve that is lower and to the left performs better. The
dot on the curve corresponds to a specific threshold for biometric testing. Shifting
the threshold along the curve up and to the left provides greater security and the
cost of decreased convenience. The inconvenience comes from a valid user being
denied access and being required to take further steps. A plausible trade-off is to

114 CHAPTER 3 / USER. AUTHENTICATION

100%

10%

False nonmatch rate

1%

0.1% "
0.0001% 0.001% 0.01% 0.1% 1% 10% 100%

False match rate

Figure 3.11 Idealized Biometric Measurement Operating Characteristic Curves
(log-log scale)

pick a threshold that corresponds to a point on the curve where the rates are equal.
A high-security application may require a very low false match rate, resulting in a
point farther to the left on the curve. For a forensic application, in which the system
is looking for possible candidates, to be checked further, the requirement may be for
a low false nonmatch rate.

Figure 3.12 shows characteristic curves developed from actual product testing.
The iris system had no false matches in over 2 million cross-comparisons. Note that
over a broad range of false match rates, the face biometric is the worst performer.

3.5 REMOTE USER AUTHENTICATION

The simplest form of user authentication is local authentication, in which a user
attempts to access a system that is locally present, such as a stand-alone office PC
or an ATM machine. The more complex case is that of remote user authentication,
which takes place over the Internet, a network, or a communications link. Remote
user authentication raises additional security threats, such as an eavesdropper being

3.5 / REMOTE USER AUTHENTICATION 115

® Face o Fingerprint ®Voice ¢ Hand Iris

100%

T
N

| 0%

1% —

False nonmatch rate

0.1%
0.6001% 0.001% 0.01% 0.1% 1% 10% 100%

False match rate

Figure 3.12 Actual Biometric Measurement Operating Characteristic
Curves To clarify differences among systems, a log-log scale is used.
Source: From [MANSO1]. Mansfield, T., Gavin Kelly, David Chandler,
Jan Kane. Biometric Product Testing Final Report. National Physics
Laboratory, United Kingdom, March 2001. United Kingdom National
Archives, Open Government Licence v3.0.

able to capture a password, or an adversary replaying an authentication sequence
that has been observed.

To counter threats to remote user authentication, systems generally rely on some
form of challenge-response protocol. In this section, we present the basic elements
of such protocols for each of the types of authenticators discussed in this chapter.

Password Protocol

Figure 3.13a provides a simple example of a challenge-response protocol for authen-
tication via password. Actual protocols are more complex, such as Kerberos, to be
discussed in Chapter 23. In this example, a user first transmits his or her identity to
the remote host. The host generates a random number r, often called a nonce, and
returns this nonce to the user. In addition, the host specifies two functions, /() and
f(), to be used in the response. This transmission from host to user is the challenge.
The user’s response is the quantity f(r’, h(P")), where r' = r and P’ is the user’s
password. The function 4 is a hash function, so the response consists of the hash func-
tion of the user’s password combined with the random number using the function f.

The host stores the hash function of each registered user’s password, depicted
as h(P(U)) for user U. When the response arrives, the host compares the incom-
ing f(r', h(P")) to the calculated f(r, h(P(U))). If the quantities match, the user is
authenticated.

This scheme defends against several forms of attack. The host stores not the
password but a hash code of the password. As discussed in Section 3.2, this secures
the password from intruders into the host system. In addition, not even the hash of the
password is transmitted directly, but rather a function in which the password hash is
one of the arguments. Thus, for a suitable function f, the password hash cannot be cap-
tured during transmission. Finally, the use of a random number as one of the arguments

116 CHAPTER 3 / USER. AUTHENTICATION

Client Hoat
U, User —U)
r, random number
(r, h0), f0) hQ), f(), functions
P
7', return of r 0 (P

if f(r', h(P")) =
Sf(r, h(P(U)))

yes/no then yes else no

(a) Protocol for a password

Client
Host
U User ——d3p
r, random number
(r, EO) E(), function

B'=—» BT’ biometric
D' biometric device

E(r',D’, BT
7', return of r)
E'EG, P BT =
(', P', BT")
if ¥=rAND D' =D
AND BT' = BT(U)
then yes else no
yes/no

(c) Protocol for static biometric

Client Hoxt
U, User —U)
r, random number
(r, h0, f0) h(), f0), functions
P—W

password to
passcode via token

7', return of r S, (W)
if f(r', ((W")) =
flr, (W(U)))
yes/no then yes else no

(b) Protocol for a token

Client
Host
U User ——do3p
r, random number
x, random sequence
challenge
(r, x, EO) E(), function
B, x' —>BS'(x")
E(r', BS'(x")

r', return of r

EVEG, BS()) =
(r', BS'(x"))
extract B
from (+', BS'(x"))
if ¥ =r AND x' = x
AND B’ = B(U)

yes/no then yes else no

(d) Protocol for dynamic biometric

Figure 3.13 Basic Challenge-Response Protocols for Remote User Authentication

Source: Based on [OGORO03].

of fdefends against a replay attack, in which an adversary captures the user’s transmis-
sion and attempts to log on to a system by retransmitting the user’s messages.

Token Protocol

Figure 3.13b provides a simple example of a token protocol for authentication. As
before, a user first transmits his or her identity to the remote host. The host returns a

3.6 / SECURITY ISSUES FOR USER AUTHENTICATION 117

random number and the identifiers of functions f{() and /() to be used in the response.
At the user end, the token provides a passcode W'. The token either stores a static
passcode or generates a one-time random passcode. For a one-time random pass-
code, the token must be synchronized in some fashion with the host. In either case,
the user activates the passcode by entering a password P’. This password is shared
only between the user and the token and does not involve the remote host. The
token responds to the host with the quantity f{(r’, hi(W'")). For a static passcode, the
host stores the hashed value #(W(U)); for a dynamic passcode, the host generates a
one-time passcode (synchronized to that generated by the token) and takes its hash.
Authentication then proceeds in the same fashion as for the password protocol.

Static Biometric Protocol

Figure 3.13c is an example of a user authentication protocol using a static biometric.
As before, the user transmits an ID to the host, which responds with a random num-
ber r and, in this case, the identifier for an encryption E(). On the user side is a client
system that controls a biometric device. The system generates a biometric template
BT’ from the user’s biometric B’ and returns the ciphertext E(r’, D', BT"), where D'
identifies this particular biometric device. The host decrypts the incoming message to
recover the three transmitted parameters and compares these to locally stored values.
For a match, the host must find ' = r. Also, the matching score between BT and
the stored template must exceed a predefined threshold. Finally, the host provides
a simple authentication of the biometric capture device by comparing the incoming
device ID to a list of registered devices at the host database.

Dynamic Biometric Protocol

Figure 3.13d is an example of a user authentication protocol using a dynamic biomet-
ric. The principal difference from the case of a stable biometric is that the host pro-
vides a random sequence as well as a random number as a challenge. The sequence
challenge is a sequence of numbers, characters, or words. The human user at the client
end must then vocalize (speaker verification), type (keyboard dynamics verifica-
tion), or write (handwriting verification) the sequence to generate a biometric signal
BS’(x"). The client side encrypts the biometric signal and the random number. At
the host side, the incoming message is decrypted. The incoming random number r’
must be an exact match to the random number that was originally used as a challenge
(r). In addition, the host generates a comparison based on the incoming biometric
signal BS'(x"), the stored template BT(U) for this user and the original signal x. If
the comparison value exceeds a predefined threshold, the user is authenticated.

3.6 SECURITY ISSUES FOR USER AUTHENTICATION

As with any security service, user authentication, particularly remote user authen-
tication, is subject to a variety of attacks. Table 3.5, from [OGORO3], summarizes
the principal attacks on user authentication, broken down by type of authenticator.
Much of the table is self-explanatory. In this section, we expand on some of the table’s
entries.

118 CHAPTER 3 / USER. AUTHENTICATION

Table 3.5 Some Potential Attacks, Susceptible Authenticators, and Typical Defenses
Attacks Authenticators Examples Typical Defenses
Password Guessing, exhaustive Large entropy; limited attempts
search
Token Exhaustive search Large entropy; limited attempts;
Client attack theft of object requires
presence
Biometric False match Large entropy; limited
attempts
Password Plaintext theft, Hashing; large entropy;
dictionary/exhaustive protection of password
search database
Host attack Token Passcode theft Same as password; 1-time
passcode
Biometric Template theft Capture device authentication;
challenge response
Password “Shoulder surfing” User diligence to keep secret;
administrator diligence to quickly
revoke compromised passwords;
Eavesdropping multifactor authentication
9
theft, and Token Theft, counterfeiting Multifactor authentication; tamper
copying hardware resistant/evident token
Biometric Copying (spoofing) Copy detection at capture device
biometric and capture device
authentication
Password Replay stolen password Challenge-response protocol
response
Token Replay stolen passcode Challenge-response protocol;
Replay response 1-time passcode
Biometric Replay stolen biometric Copy detection at capture
template response device and capture device
authentication via challenge-
response protocol
Trojan horse Password, token, Installation of rogue Authentication of client or
biometric client or capture device capture device within trusted
security perimeter
Denial Password, token, Lockout by multiple Multifactor with token
of service biometric failed authentications

Client attacks are those in which an adversary attempts to achieve user authen-
tication without access to the remote host or to the intervening communications
path. The adversary attempts to masquerade as a legitimate user. For a password-
based system, the adversary may attempt to guess the likely user password. Multiple
guesses may be made. At the extreme, the adversary sequences through all possible
passwords in an exhaustive attempt to succeed. One way to thwart such an attack is
to select a password that is both lengthy and unpredictable. In effect, such a password

3.7 / PRACTICAL APPLICATION: AN IRIS BIOMETRIC SYSTEM 119

has large entropy; that is, many bits are required to represent the password. Another
countermeasure is to limit the number of attempts that can be made in a given time
period from a given source.

A token can generate a high-entropy passcode from a low-entropy PIN or pass-
word, thwarting exhaustive searches. The adversary may be able to guess or acquire
the PIN or password, but must additionally acquire the physical token to succeed.

Host attacks are directed at the user file at the host where passwords, token
passcodes, or biometric templates are stored. Section 3.2 discusses the security consid-
erations with respect to passwords. For tokens, there is the additional defense of using
one-time passcodes, so passcodes are not stored in a host passcode file. Biometric
features of a user are difficult to secure because they are physical features of the user.
For a static feature, biometric device authentication adds a measure of protection. For
a dynamic feature, a challenge-response protocol enhances security.

Eavesdropping in the context of passwords refers to an adversary’s attempt
to learn the password by observing the user, finding a written copy of the password,
or some similar attack that involves the physical proximity of user and adversary.
Another form of eavesdropping is keystroke logging (keylogging), in which malicious
hardware or software is installed so that the attacker can capture the user’s keystrokes
for later analysis. A system that relies on multiple factors (e.g., password plus token
or password plus biometric) is resistant to this type of attack. For a token, an analo-
gous threat is theft of the token or physical copying of the token. Again, a multifactor
protocol resists this type of attack better than a pure token protocol. The analogous
threat for a biometric protocol is copying or imitating the biometric parameter so as
to generate the desired template. Dynamic biometrics are less susceptible to such
attacks. For static biometrics, device authentication is a useful countermeasure.

Replay attacks involve an adversary repeating a previously captured user
response. The most common countermeasure to such attacks is the challenge-response
protocol.

In a Trojan horse attack, an application or physical device masquerades as an
authentic application or device for the purpose of capturing a user password, pass-
code, or biometric. The adversary can then use the captured information to masquer-
ade as a legitimate user. A simple example of this is a rogue bank machine used to
capture user ID/password combinations.

A denial-of-service attack attempts to disable a user authentication service by
flooding the service with numerous authentication attempts. A more selective attack
denies service to a specific user by attempting logon until the threshold is reached
that causes lockout to this user because of too many logon attempts. A multifactor
authentication protocol that includes a token thwarts this attack, because the adver-
sary must first acquire the token.

PRACTICAL APPLICATION: AN IRIS BIOMETRIC SYSTEM

As an example of a biometric user authentication system, we look at an iris biometric
system that was developed for use by the United Arab Emirates (UAE) at border
control points [DAUGO04, TIRO05, NBSPO08]. The UAE relies heavily on an outside
workforce, and has increasingly become a tourist attraction. Accordingly, relative to

120 CHAPTER 3 / USER. AUTHENTICATION

its size, the UAE has a very substantial volume of incoming visitors. On a typical day,
more than 6,500 passengers enter the UAE via seven international airports, three
land ports, and seven sea ports. Handling a large volume of incoming visitors in an
efficient and timely manner thus poses a significant security challenge. Of particular
concern to the UAE are attempts by expelled persons to re-enter the country. Tra-
ditional means of preventing reentry involve identifying individuals by name, date
of birth, and other text-based data. The risk is that this information can be changed
after expulsion. An individual can arrive with a different passport with a different
nationality and changes to other identifying information.

To counter such attempts, the UAE decided on using a biometric identification
system and identified the following requirements:

¢ Identify a single person from a large population of people.

* Rely on a biometric feature that does not change over time.

* Use biometric features that can be acquired quickly.

* Be easy to use.

* Respond in real-time for mass transit applications.

* Be safe and non-invasive.

¢ Scale into the billions of comparisons and maintain top performance.
* Be affordable.

Iris recognition was chosen as the most efficient and foolproof method. No two irises
are alike. There is no correlation between the iris patterns of even identical twins, or
the right and left eye of an individual.

System implementation involves enrollment and identity checking. All expelled
foreigners are subjected to an iris scan at one of the multiple enrollment centers. This
information is merged into one central database. Iris scanners are installed at all 17
air, land, and sea ports into the UAE. An iris-recognition camera takes a black-and-
white picture 5 to 24 inches from the eye, depending on the camera. The camera uses
non-invasive, near-infrared illumination that is similar to a TV remote control, barely
visible and considered extremely safe. The picture first is processed by software that
localizes the inner and outer boundaries of the iris, and the eyelid contours, in order
to extract just the iris portion. The software creates a so-called phase code for the
texture of the iris, similar to a DNA sequence code. The unique features of the iris
are captured by this code and can be compared against a large database of scanned
irises to make a match. Over a distributed network (see Figure 3.14) the iris codes
of all arriving passengers are compared in realtime exhaustively against an enrolled
central database.

Note this is computationally a more demanding task than verifying an identity.
In this case, the iris pattern of each incoming passenger is compared against the
entire database of known patterns to determine if there is a match. Given the current
volume of traffic and size of the database, the daily number of iris cross-comparisons
is well over 9 billion.

As with any security system, adversaries are always looking for countermeas-
ures. UAE officials had to adopt new security methods to detect if an iris has been
dilated with eye drops before scanning. Expatriates who were banned from the UAE

3.8 / CASE STUDY: SECURITY PROBLEMS FOR ATM SYSTEMS 121

Iris Iris Iris
scanner scanner scanner

=1 8

Iris worl Iris workstation

Iris workstation station

LAN switch

Iris merge
remote

Iris
database

Iris Engine 1 Iris Engine 2

Network
switch

Figure 3.14 General Iris Scan Site Architecture for UAE System

started using eye drops in an effort to fool the government’s iris recognition system
when they try to re-enter the country. A new algorithm and computerized step-by-
step procedure has been adopted to help officials determine if an iris is in normal
condition or an eye-dilating drop has been used.

CASE STUDY: SECURITY PROBLEMS FOR ATM SYSTEMS

Redspin, Inc., an independent auditor, released a report describing a security vulner-
ability in ATM (automated teller machine) usage that affected a number of small to
mid-size ATM card issuers. This vulnerability provides a useful case study illustrating
that cryptographic functions and services alone do not guarantee security; they must
be properly implemented as part of a system.

We begin by defining terms used in this section are as follows:

e Cardholder: An individual to whom a debit card is issued. Typically, this indi-
vidual is also responsible for payment of all charges made to that card.

122 CHAPTER 3 / USER. AUTHENTICATION

¢ Issuer: An institution that issues debit cards to cardholders. This institution is
responsible for the cardholder’s account and authorizes all transactions. Banks
and credit unions are typical issuers.

* Processor: An organization that provides services such as core data processing
(PIN recognition and account updating), electronic funds transfer (EFT), and so
on to issuers. EFT allows an issuer to access regional and national networks that
connect point of sale (POS) devices and ATMs worldwide. Examples of process-
ing companies include Fidelity National Financial and Jack Henry & Associates.

Customers expect 24/7 service at ATM stations. For many small to mid-sized
issuers, it is more cost-effective for contract processors to provide the required data
processing and EFT/ATM services. Each service typically requires a dedicated data
connection between the issuer and the processor, using a leased line or a virtual
leased line.

Prior to about 2003, the typical configuration involving issuer, processor, and
ATM machines could be characterized by Figure 3.15a. The ATM units linked directly
to the processor rather than to the issuer that owned the ATM, via leased or virtual
leased line. The use of a dedicated link made it difficult to maliciously intercept

Issuer
(e.g., bank)

Processor
(e.g., Fidelity)

Issuer-owned ATM

EFT exchanée
e.g., Star, VISA

(a) Point-to-point connection to processor

Issuer
(e.g., bank)

EFT exchange
A

Issuer’s e.g., Star, VI

internal network

Processor
(e.g., Fidelity)

Issuer-owned ATM

(b) Shared connection to processor

Figure 3.15 ATM Architectures Most small to mid-sized issuers of debit cards con-
tract processors to provide core data processing and electronic funds transfer (EFT)
services. The bank’s ATM machine may link directly to the processor or to the bank.

3.8 / CASE STUDY: SECURITY PROBLEMS FOR ATM SYSTEMS 123

transferred data.To add to the security, the PIN portion of messages transmitted from
ATM to processor was encrypted using DES (Data Encryption Standard). Proces-
sors have connections to EFT (electronic funds transfer) exchange networks to allow
cardholders access to accounts from any ATM. With the configuration of Figure 3.15a,
a transaction proceeds as follows. A user swipes his or her card and enters his or her
PIN.The ATM encrypts the PIN and transmits it to the processor as part of an autho-
rization request. The processor updates the customer’s information and sends a reply.

In the early 2000s, banks worldwide began the process of migrating from an
older generation of ATMs using IBM’s OS/2 operating system to new systems run-
ning Windows. The mass migration to Windows has been spurred by a number of
factors, including IBM’s decision to stop supporting OS/2 by 2006, market pressure
from creditors such as MasterCard International and Visa International to introduce
stronger Triple DES, and pressure from U.S. regulators to introduce new features for
disabled users. Many banks, such as those audited by Redspin, included a number of
other enhancements at the same time as the introduction of Windows and triple DES,
especially the use of TCP/IP as a network transport.

Because issuers typically run their own Internet-connected local area networks
(LANSs) and intranets using TCP/IP, it was attractive to connect ATMs to these issuer
networks and maintain only a single dedicated line to the processor, leading to the
configuration illustrated in Figure 3.15b. This configuration saves the issuer expen-
sive monthly circuit fees and enables easier management of ATMs by the issuer. In
this configuration, the information sent from the ATM to the processor traverses
the issuer’s network before being sent to the processor. It is during this time on the
issuer’s network that the customer information is vulnerable.

The security problem was that with the upgrade to a new ATM OS and a new
communications configuration, the only security enhancement was the use of triple
DES rather than DES to encrypt the PIN. The rest of the information in the ATM
request message is sent in the clear. This includes the card number, expiration date,
account balances, and withdrawal amounts. A hacker tapping into the bank’s network,
either from an internal location or from across the Internet potentially would have
complete access to every single ATM transaction.

The situation just described leads to two principal vulnerabilities:

¢ Confidentiality: The card number, expiration date, and account balance can
be used for online purchases or to create a duplicate card for signature-based
transactions.

* Integrity: There is no protection to prevent an attacker from injecting or alter-
ing data in transit. If an adversary is able to capture messages en route, the
adversary can masquerade as either the processor or the ATM. Acting as the
processor, the adversary may be able to direct the ATM to dispense money
without the processor ever knowing that a transaction has occurred. If an adver-
sary captures a user’s account information and encrypted PIN, the account is
compromised until the ATM encryption key is changed, enabling the adversary
to modify account balances or effect transfers.

Redspin recommended a number of measures that banks can take to coun-
ter these threats. Short-term fixes include segmenting ATM traffic from the rest of

124 CHAPTER 3 / USER. AUTHENTICATION

the network either by implementing strict firewall rule sets or physically dividing
the networks altogether. An additional short-term fix is to implement network-level
encryption between routers that the ATM traffic traverses.

Long-term fixes involve changes in the application-level software. Protecting

confidentiality requires encrypting all customer-related information that traverses
the network. Ensuring data integrity requires better machine-to-machine authenti-
cation between the ATM and processor and the use of challenge-response protocols
to counter replay attacks.

3.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
biometric identification smart card
challenge-response protocol memory card static biometric
claimant nonce subscriber
credential password token
credential service provider rainbow table user authentication

(CSP) registration authority (RA) verification

dynamic biometric relying party (RP) verifier
enroll salt
hashed password shadow password file

Review Questions

3.1 In general terms, what are four means of authenticating a user’s identity?

3.2 List and briefly describe the principal threats to the secrecy of passwords.

3.3 What is the significance of a shadow password file?

3.4 Explain how the proactive password checker approach can improve password security.

3.5 How can we classify the authentication protocols used with smart tokens?

3.6 List and briefly describe the principal physical characteristics used for biometric
identification.

3.7 In the context of biometric user authentication, explain the terms, enrollment, verifi-
cation, and identification.

3.8 How does remote user authentication differ from local authentication? Which one
raised more security threats?

3.9 Whatis aTrojan horse attack?

Problems

3.1 Explain the suitability or unsuitability of the following passwords:

a. qwerty b. Einstein ¢. wysiwyg (for “what youseeis d. drowssap
what you get”)

e. KVK919 f. Florida g. *laptop_admin# h. cr@zyp@ss

3.2 An early attempt to force users to use less predictable passwords involved

computer-supplied passwords. These passwords were generated using a pseudorandom

e
()]

3.6

3.7

3.10

3.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 125

number generator. Suppose the passwords were nine-character long and were taken
from the character set consisting of uppercase letters and digits so that the adversary
has to search through all character strings of len%th 9 from a 36-character alphabet.
Would a pseudorandom number generator with 2™ possible starting values suffice? If
yes, how? If not, then what should be the appropriate range for this pseudorandom
number generator?

Assume that Personal Identification Numbers (PINs) are formed by nine-digit com-

binations of numbers 0 to 9. Assume that an adversary is able to attempt three PINs

per second.

a. Assuming no feedback to the adversary until each attempt has been completed,
what is the expected time to discover the correct PIN?

b. Assuming feedback to the adversary flagging an error as each incorrect digit is
entered, what is the expected time to discover the correct PIN?

Assume source elements of length k are mapped in some uniform fashion into a tar-

get elements of length p. If each digit can take on one of r values, then the number

of source elements is r* and the number of target elements is the smaller number 7.

A particular source element x; is mapped to a particular target element y;.

a. What is the probability that the correct source element can be selected by an
adversary on one try?

b. What is the probability that a different source element x; (x; # x;) that results in
the same target element, yj, could be produced by an adversary?

c. What is the probability that the correct target element can be produced by an
adversary on one try?

A phonetic password generator picks two segments randomly for each six-letter pass-

word. The form of each segment is CVC (consonant, vowel, consonant), where

V=<a,e,i,o,u> and C = V.

a. What is the total password population?

b. What is the probability of an adversary guessing a password correctly?

Assume that credit card numbers are limited to the use of the 10 digits and that all

numbers are 16 digits in length. Assume that an adversary needs around 31.69 years of

time to test exhaustively all the possible credit card numbers. What is the rate at which

the adversary is testing these numbers?

The NVIDIA Tesla K-20X GPU has 2688 cores, each operating at a 732-MHz fre-

quency. Further, the GPU has 6 GB of DRAM with a bandwidth of 250 GB/sec that

is shared among all the cores. If a password hashing scheme (PHS) takes 2 ms to com-

pute a password:

a. How many passwords can be tested by the GPU in one hour if the PHS consumes
no memory?

b. How many cores can work simultaneously if each hash computation requires 20
MB of DRAM? How many passwords can now be tested by the GPU in one hour?

The inclusion of the salt in the UNIX password scheme increases the difficulty of

guessing by a factor of 4096. But the salt is stored in plaintext in the same entry as the

corresponding ciphertext password. Therefore, those two characters are known to the

attacker and need not be guessed. Why is it asserted that the salt increases security?

Assuming you have successfully answered the preceding problem and understand the

significance of the salt, here is another question. Wouldn’t it be possible to thwart com-

pletely all password crackers by dramatically increasing the salt size to, say, 24 or 48 bits?

Consider the Bloom filter discussed in Section 3.3. Define K = number of hash func-
tions; N = number of bits in hash table; and D = number of words in dictionary.
a. Show that the expected number of bits in the hash table that are equal to zero is

expressed as
k D
=[(1-=
e=(1-3)

https://sanet.st/blogs/polatebooks

126 CHAPTER 3 / USER. AUTHENTICATION

b. Show that the probability that an input word, not in the dictionary, will be falsely
accepted as being in the dictionary is

P=(1-)
c. Show that the preceding expression can be approximated as
P = (1 _ e—kD/N)k

3.11 For the biometric authentication protocols illustrated in Figure 3.13, note the biometric
capture device is authenticated in the case of a static biometric but not authenticated
for a dynamic biometric. Explain why authentication is useful in the case of a stable
biometric, but not needed in the case of a dynamic biometric.

3.12 A relatively new authentication proposal is the Secure Quick Reliable Login (SQRL)
described here: https://www.grc.com/sqrl/sqrl.htm. Write a brief summary of how
SQRL works and indicate how it fits into the categories of types of user authentica-
tion listed in this chapter.

https://www.grc.com/sqrl/sqrl.htm

CHAPTER

Access CONTROL

4.1 Access Control Principles
Access Control Context
Access Control Policies

4.2 Subjects, Objects, and Access Rights

4.3 Discretionary Access Control
An Access Control Model
Protection Domains

4.4 Example: Unix File Access Control
Traditional UNIX File Access Control
Access Control Lists in UNIX

4.5 Role-Based Access Control
RBAC Reference Models

4.6 Attribute-Based Access Control
Attributes
ABAC Logical Architecture
ABAC Policies
4.7 Identity, Credential, and Access Management

Identity Management
Credential Management
Access Management
Identity Federation

4.8 Trust Frameworks

Traditional Identity Exchange Approach
Open Identity Trust Framework

4.9 Case Study: RBAC System for a Bank

4.10 Key Terms, Review Questions, and Problems

127

128 CHAPTER 4 / ACCESS CONTROL

LEARNING OBJECTIVES

After studying this chapter, you should be able to:

€ Explain how access control fits into the broader context that includes
authentication, authorization, and audit.

@ Define the three major categories of access control policies.

@ Distinguish among subjects, objects, and access rights.

@ Describe the UNIX file access control model.

@ Discuss the principal concepts of role-based access control.

4 Summarize the RBAC model.

@ Discuss the principal concepts of attribute-based access control.

@ Explain the identity, credential, and access management model.

@ Understand the concept of identity federation and its relationship to a trust
framework.

Two definitions of access control are useful in understanding its scope.

1. NISTIR 7298 (Glossary of Key Information Security Terms,May 2013), defines
access control as the process of granting or denying specific requests to: (1)
obtain and use information and related information processing services; and
(2) enter specific physical facilities.

2. RFC 4949, Internet Security Glossary, defines access control as a process by
which use of system resources is regulated according to a security policy and
is permitted only by authorized entities (users, programs, processes, or other
systems) according to that policy.

We can view access control as a central element of computer security. The prin-
cipal objectives of computer security are to prevent unauthorized users from gaining
access to resources, to prevent legitimate users from accessing resources in an unau-
thorized manner, and to enable legitimate users to access resources in an authorized
manner. Table 4.1, from NIST SP 800-171 (Protecting Controlled Unclassified Infor-
mation in Nonfederal Information Systems and Organizations, August 2016), provides
a useful list of security requirements for access control services.

We begin this chapter with an overview of some important concepts. Next
we look at three widely used techniques for implementing access control policies.
We then turn to a broader perspective of the overall management of access control
using identity, credentials, and attributes. Finally, the concept of a trust framework
is introduced.

4.1 ACCESS CONTROL PRINCIPLES

In a broad sense, all of computer security is concerned with access control. Indeed,
RFC 4949 defines computer security as follows: measures that implement and assure
security services in a computer system, particularly those that assure access control

4.1 / ACCESS CONTROL PRINCIPLES 129

Table 4.1 Access Control Security Requirements (SP 800-171)

Basic Security Requirements

1 Limit information system access to authorized users, processes acting on behalf of authorized users, or
devices (including other information systems).

2 Limit information system access to the types of transactions and functions that authorized users are
permitted to execute.

Derived Security Requirements

Control the flow of CUI in accordance with approved authorizations.

Separate the duties of individuals to reduce the risk of malevolent activity without collusion.

Employ the principle of least privilege, including for specific security functions and privileged accounts.

Prevent non-privileged users from executing privileged functions and audit the execution of such functions.

Limit unsuccessful logon attempts.

3
4
5
6 Use non-privileged accounts or roles when accessing nonsecurity functions.
7
8
9

Provide privacy and security notices consistent with applicable CUI rules.

10 Use session lock with pattern-hiding displays to prevent access and viewing of data after period of inactivity.

11 Terminate (automatically) a user session after a defined condition.

12 Monitor and control remote access sessions.

13 Employ cryptographic mechanisms to protect the confidentiality of remote access sessions.

14 Route remote access via managed access control points.

15 Authorize remote execution of privileged commands and remote access to security-relevant information.

16 Authorize wireless access prior to allowing such connections.

17 Protect wireless access using authentication and encryption.

18 Control connection of mobile devices.

19 Encrypt CUI on mobile devices.

20 Verify and control/limit connections to and use of external information systems.

21 Limit use of organizational portable storage devices on external information systems.

22 Control CUI posted or processed on publicly accessible information systems.

CUI = controlled unclassified information

Source: From NIST SP 800-171 Protecting Controlled Unclassified Information in Nonfederal Information
Systems and Organizations, December 2016 National Institute of Standards and Technology (NIST), United
States Department of Commerce.

service. This chapter deals with a narrower, more specific concept of access control:
Access control implements a security policy that specifies who or what (e.g., in the
case of a process) may have access to each specific system resource, and the type of
access that is permitted in each instance.

Access Control Context

Figure 4.1 shows a broader context of access control. In addition to access control,
this context involves the following entities and functions:

* Authentication: Verification that the credentials of a user or other system entity
are valid.

130 CHAPTER 4 / ACCESS CONTROL

Authorization
database

8!

Authentication Access control
I I = |[=
| 1 — =
= |==
1 1 =
1 1
1 1 =
Authentication || 1 SO 1 =
. control —
function 1 . 1
1 function 1
1 1
1 1
1 1
User 1 1
' ' System resources
b = ~ ~ - - - -
N P

Figure 4.1 Relationship Among Access Control and Other Security Functions
Source: Based on [SANDY4].

e Authorization: The granting of a right or permission to a system entity to access
a system resource. This function determines who is trusted for a given purpose.

° Audit: An independent review and examination of system records and activi-
ties in order to test for adequacy of system controls, to ensure compliance with
established policy and operational procedures, to detect breaches in security,
and to recommend any indicated changes in control, policy, and procedures.

An access control mechanism mediates between a user (or a process executing
on behalf of a user) and system resources, such as applications, operating systems,
firewalls, routers, files, and databases. The system must first authenticate an entity
seeking access. Typically, the authentication function determines whether the user is
permitted to access the system at all. Then the access control function determines if
the specific requested access by this user is permitted. A security administrator main-
tains an authorization database that specifies what type of access to which resources
is allowed for this user. The access control function consults this database to deter-
mine whether to grant access. An auditing function monitors and keeps a record of
user accesses to system resources.

4.2 / SUBJECTS, OBJECTS, AND ACCESS RIGHTS 131

In the simple model of Figure 4.1, the access control function is shown as a single
logical module. In practice, a number of components may cooperatively share the access
control function. All operating systems have at least a rudimentary, and in many cases
a quite robust, access control component. Add-on security packages can supplement
the native access control capabilities of the operating system. Particular applications
or utilities, such as a database management system, also incorporate access control
functions. External devices, such as firewalls, can also provide access control services.

Access Control Policies

An access control policy, which can be embodied in an authorization database, dic-
tates what types of access are permitted, under what circumstances, and by whom.
Access control policies are generally grouped into the following categories:

* Discretionary access control (DAC): Controls access based on the identity of
the requestor and on access rules (authorizations) stating what requestors are
(or are not) allowed to do. This policy is termed discretionary because an entity
might have access rights that permit the entity, by its own volition, to enable
another entity to access some resource.

° Mandatory access control (MAC): Controls access based on comparing secu-
rity labels (which indicate how sensitive or critical system resources are) with
security clearances (which indicate system entities are eligible to access certain
resources). This policy is termed mandatory because an entity that has clearance
to access a resource may not, just by its own volition, enable another entity to
access that resource.

* Role-based access control (RBAC): Controls access based on the roles that
users have within the system and on rules stating what accesses are allowed to
users in given roles.

o Attribute-based access control (ABAC): Controls access based on attributes
of the user, the resource to be accessed, and current environmental conditions.

DAC is the traditional method of implementing access control, and is exam-
ined in Sections 4.3 and 4.4. MAC is a concept that evolved out of requirements for
military information security and is best covered in the context of trusted systems,
which we deal with in Chapter 27 Both RBAC and ABAC have become increasingly
popular, and are examined in Sections 4.5 and 4.6, respectively.

These four policies are not mutually exclusive. An access control mechanism
can employ two or even all three of these policies to cover different classes of system
resources.

SUBJECTS, OBJECTS, AND ACCESS RIGHTS

The basic elements of access control are: subject, object, and access right.

A subject is an entity capable of accessing objects. Generally, the concept of
subject equates with that of process. Any user or application actually gains access to
an object by means of a process that represents that user or application. The process
takes on the attributes of the user, such as access rights.

132 CHAPTER 4 / ACCESS CONTROL

A subject is typically held accountable for the actions they have initiated, and
an audit trail may be used to record the association of a subject with security-relevant
actions performed on an object by the subject.

Basic access control systems typically define three classes of subject, with
different access rights for each class:

e Owner: This may be the creator of a resource, such as a file. For system resources,
ownership may belong to a system administrator. For project resources, a proj-
ect administrator or leader may be assigned ownership.

e Group: In addition to the privileges assigned to an owner, a named group of
users may also be granted access rights, such that membership in the group is
sufficient to exercise these access rights. In most schemes, a user may belong
to multiple groups.

* World: The least amount of access is granted to users who are able to access the
system but are not included in the categories owner and group for this resource.

An object is a resource to which access is controlled. In general, an object is an
entity used to contain and/or receive information. Examples include records, blocks,
pages, segments, files, portions of files, directories, directory trees, mailboxes, mes-
sages, and programs. Some access control systems also encompass, bits, bytes, words,
processors, communication ports, clocks, and network nodes.

The number and types of objects to be protected by an access control system
depends on the environment in which access control operates and the desired trad-
eoff between security on the one hand, and complexity, processing burden, and ease
of use on the other hand.

An access right describes the way in which a subject may access an object.
Access rights could include the following:

* Read: User may view information in a system resource (e.g., a file, selected
records in a file, selected fields within a record, or some combination). Read
access includes the ability to copy or print.

* Write: User may add, modify, or delete data in system resource (e.g., files,
records, programs). Write access includes read access.

¢ Execute: User may execute specified programs.

e Delete: User may delete certain system resources, such as files or records.

¢ Create: User may create new files, records, or fields.

e Search: User may list the files in a directory or otherwise search the directory.

4.3 DISCRETIONARY ACCESS CONTROL

As was previously stated, a discretionary access control scheme is one in which an
entity may be granted access rights that permit the entity, by its own volition, to
enable another entity to access some resource. A general approach to DAC, as exer-
cised by an operating system or a database management system, is that of an access
matrix. The access matrix concept was formulated by Lampson [LAMP69, LAMP71],

4.3 / DISCRETIONARY ACCESS CONTROL 133

and subsequently refined by Graham and Denning [GRAH?72, DENN71] and by
Harrison et al. [HARR76].

One dimension of the matrix consists of identified subjects that may attempt
data access to the resources. Typically, this list will consist of individual users or user
groups, although access could be controlled for terminals, network equipment, hosts,
or applications instead of or in addition to users. The other dimension lists the objects
that may be accessed. At the greatest level of detail, objects may be individual data
fields. More aggregate groupings, such as records, files, or even the entire database,
may also be objects in the matrix. Each entry in the matrix indicates the access rights
of a particular subject for a particular object.

Figure 4.2a, based on a figure in [SANDY4], is a simple example of an access
matrix. Thus, user A owns files 1 and 3 and has read and write access rights to those
files. User B has read access rights to file 1, and so on.

In practice, an access matrix is usually sparse and is implemented by decom-
position in one of two ways. The matrix may be decomposed by columns, yielding
access control lists (ACLs) (see Figure 4.2b). For each object, an ACL lists users and
their permitted access rights. The ACL may contain a default, or public, entry. This
allows users that are not explicitly listed as having special rights to have a default set
of rights. The default set of rights should always follow the rule of least privilege or
read-only access, whichever is applicable. Elements of the list may include individual
users as well as groups of users.

When it is desired to determine which subjects have which access rights to a
particular resource, ACLs are convenient, because each ACL provides the informa-
tion for a given resource. However, this data structure is not convenient for determin-
ing the access rights available to a specific user.

Decomposition by rows yields capability tickets (see Figure 4.2¢). A capability
ticket specifies authorized objects and operations for a particular user. Each user has a
number of tickets and may be authorized to loan or give them to others. Because tickets
may be dispersed around the system, they present a greater security problem than access
control lists. The integrity of the ticket must be protected, and guaranteed (usually by
the operating system). In particular, the ticket must be unforgeable. One way to accom-
plish this is to have the operating system hold all tickets on behalf of users. These tickets
would have to be held in a region of memory inaccessible to users. Another alternative is
to include an unforgeable token in the capability. This could be a large random password,
or a cryptographic message authentication code. This value is verified by the relevant
resource whenever access is requested. This form of capability ticket is appropriate for
use in a distributed environment, when the security of its contents cannot be guaranteed.

The convenient and inconvenient aspects of capability tickets are the opposite
of those for ACLs. It is easy to determine the set of access rights that a given user
has, but more difficult to determine the list of users with specific access rights for a
specific resource.

[SANDY4] proposes a data structure that is not sparse, like the access matrix,
but is more convenient than either ACLs or capability lists (see Table 4.2). An autho-
rization table contains one row for one access right of one subject to one resource.
Sorting or accessing the table by subject is equivalent to a capability list. Sorting or
accessing the table by object is equivalent to an ACL. A relational database can easily
implement an authorization table of this type.

134 CHAPTER 4 / ACCESS CONTROL

OBJECTS
File 1 File 2 File 3 File 4
Own Own
User A Read Read
Write Write
Own
SUBJECTS User B Read Read Write Read
Write
Own
User C \I;VCr’(ilti Read Read
Write
(a) Access matrix
Filel —>| A — B C User A File 1| —-{File 3
Own R Own Own
R R W R R
w w w
File2 —>| B — C User B File 1| —>{File2| —>File3 File 4
Own Own
R R R R \% R
w w
File3 —>| A —1 B User C File 1| > File2| r—>-File4
Own R Own
R w W R R
w w
File 4 —>| B — C (c) Capability lists for files of part (a)
Own
R R
w

(b) Access control lists for files of part (a)

Figure 4.2 Example of Access Control Structures

An Access Control Model

This section introduces a general model for DAC developed by Lampson, Graham,
and Denning [LAMP71, GRAH72, DENN71]. The model assumes a set of subjects,
a set of objects, and a set of rules that govern the access of subjects to objects. Let us
define the protection state of a system to be the set of information, at a given point in
time, that specifies the access rights for each subject with respect to each object. We
can identify three requirements: representing the protection state, enforcing access
rights, and allowing subjects to alter the protection state in certain ways. The model
addresses all three requirements, giving a general, logical description of a DAC system.

4.3 / DISCRETIONARY ACCESS CONTROL 135

Table 4.2 Authorization Table for Files in Figure 4.2

Subject Access Mode Object
A Own File 1
A Read File 1
A Write File 1
A Own File 3
A Read File 3
A Write File 3
B Read File 1
B Own File 2
B Read File 2
B Write File 2
B Write File 3
B Read File 4
C Read File 1
C Write File 1
C Read File 2
C Own File 4
C Read File 4
@ Write File 4

To represent the protection state, we extend the universe of objects in the access
control matrix to include the following:

* Processes: Access rights include the ability to delete a process, stop (block), and
wake up a process.

* Devices: Access rights include the ability to read/write the device, to control its
operation (e.g., a disk seek), and to block/unblock the device for use.

° Memory locations or regions: Access rights include the ability to read/write
certain regions of memory that are protected such that the default is to disal-
low access.

* Subjects: Access rights with respect to a subject have to do with the ability
to grant or delete access rights of that subject to other objects, as explained
subsequently.

Figure 4.3 is an example. For an access control matrix A, each entry A[S, X]
contains strings, called access attributes, that specify the access rights of subject S to
object X. For example, in Figure 4.3, S| may read file F, because ‘read’ appears in
A[Sls Fl]

From a logical or functional point of view, a separate access control module
is associated with each type of object (see Figure 4.4). The module evaluates each

136 CHAPTER 4 / ACCESS CONTROL

SUBJECTS

OBJECTS
Subjects Files Processes Disk drives
Sy S> S3 F F, P P, D, D,
control owner owner reads . wakeup wakeup seek owner
control owner
control write: execute owner seekx
control write stop

% = copy flag set

Figure 4.3 Extended Access Control Matrix

request by a subject to access an object to determine if the access right exists. An
access attempt triggers the following steps:

1. A subject S issues a request of type « for object X.

2. The request causes the system (the operating system or an access control interface
module of some sort) to generate a message of the form (S, @, X) to the control-
ler for X.

3. The controller interrogates the access matrix A to determine if « is in A[.Sy, X].
If so, the access is allowed; if not, the access is denied and a protection violation
occurs. The violation should trigger a warning and appropriate action.

Figure 4.4 suggests that every access by a subject to an object is mediated by
the controller for that object, and that the controller’s decision is based on the cur-
rent contents of the matrix. In addition, certain subjects have the authority to make
specific changes to the access matrix. A request to modify the access matrix is treated
as an access to the matrix, with the individual entries in the matrix treated as objects.
Such accesses are mediated by an access matrix controller, which controls updates
to the matrix.

The model also includes a set of rules that govern modifications to the access
matrix, as shown in Table 4.3. For this purpose, we introduce the access rights ‘owner’
and ‘control’ and the concept of a copy flag, as explained in the subsequent paragraphs.

The first three rules deal with transferring, granting, and deleting access rights.
Suppose the entry a* exists in A[S,, X]. This means S, has access right « to subject
X and, because of the presence of the copy flag, can transfer this right, with or with-
out copy flag, to another subject. Rule R1 expresses this capability. A subject would
transfer the access right without the copy flag if there were a concern that the new
subject would maliciously transfer the right to another subject that should not have
that access right. For example, S; may place ‘read’ or ‘read*’ in any matrix entry in
the F; column. Rule R2 states that if S, is designated as the owner of object X, then
Sy can grant an access right to that object for any other subject. Rule R2 states that

4.3 / DISCRETIONARY ACCESS CONTROL 137

|<—— System intervention —————>

Subjects Access control mechanisms Objects

read F (S;,read, F) File

S; Files

system

Memory
addressing
hardware |[J—]

Segments
& pages

wakeup P (S;, wakeup, P) PrOCens

manager

S

Processes

Terminal
& device
manager ||

Terminal
& devices

Instruction
decoding
hardware |J—

granta to S,, X (S, grant, @, S, X)

delete 8 from S, Y (S, delete, 3,S,,Y) | Access

1
1
1
1
1
1
1
matrix :
1
1
1
1
1
1
1

m

monitor |

. Acce§s
write | matrix | read

Figure 4.4 An Organization of the Access Control Function

Sp can add any access right to A[S, X] for any S, if Sy has ‘owner’ access to X. Rule R3
permits S, to delete any access right from any matrix entry in a row for which §, con-
trols the subject, and for any matrix entry in a column for which S, owns the object.
Rule R4 permits a subject to read that portion of the matrix that it owns or controls.

The remaining rules in Table 4.3 govern the creation and deletion of subjects
and objects. Rule RS states that any subject can create a new object, which it owns,
and can then grant and delete access to the object. Under Rule R6, the owner of an
object can destroy the object, resulting in the deletion of the corresponding column
of the access matrix. Rule R7 enables any subject to create a new subject; the creator
owns the new subject and the new subject has control access to itself. Rule R8 permits
the owner of a subject to delete the row and column (if there are subject columns)
of the access matrix designated by that subject.

The set of rules in Table 4.3 is an example of the rule set that could be defined
for an access control system. The following are examples of additional or alternative

138 CHAPTER 4 / ACCESS CONTROL

Table 4.3 Access Control System Commands

Rule Command (by S,) Authorization Operation
R1 * “a*’ in A[Sy, X] *
transfer {a } to S, X 0 store {a } in A[S, X]
a [e%
R2 o ‘owner’ in A[S,, X]a a*
grant to S, X store in A[S, X]
a @
R3 ‘control” in A[Sy, S]
delete « from S, X or delete o from A[S, X]
‘owner’ in A[Sy, X]
R4 ‘control’ in A[S, S]
w< read S, X or copy A[S, X] into w
‘owner’ in A[Sy, X]
R5 create object X None add column for X to A;store
‘owner’ in A[S,, X]
R6 destroy object X ‘owner’ in A[Sy, X] delete column for X from A
R7 create subject S none add row for § to A; execute
create object S; store
‘control’ in A[S, S]
R8 destroy subject S ‘owner’ in A[Sy, S] delete row for S from A;
execute destroy object S

rules that could be included. A transfer-only right could be defined, which results in
the transferred right being added to the target subject and deleted from the transfer-
ring subject. The number of owners of an object or a subject could be limited to one
by not allowing the copy flag to accompany the owner right.

The ability of one subject to create another subject and to have ‘owner’ access
right to that subject can be used to define a hierarchy of subjects. For example, in
Figure 4.3, 5] owns S, and S3, s0 S, and S; are subordinate to S;. By the rules of Table
4.3, S) can grant and delete to S, access rights that S; already has. Thus, a subject can
create another subject with a subset of its own access rights. This might be useful, for
example, if a subject is invoking an application that is not fully trusted and does not
want that application to be able to transfer access rights to other subjects.

Protection Domains

The access control matrix model that we have discussed so far associates a set
of capabilities with a user. A more general and more flexible approach, proposed
in [LAMP71], is to associate capabilities with protection domains. A protection
domain is a set of objects together with access rights to those objects. In terms
of the access matrix, a row defines a protection domain. So far, we have equated
each row with a specific user. So, in this limited model, each user has a protection
domain, and any processes spawned by the user have access rights defined by the
same protection domain.

4.4 / EXAMPLE: UNIX FILE ACCESS CONTROL 139

A more general concept of protection domain provides more flexibility. For
example, a user can spawn processes with a subset of the access rights of the user,
defined as a new protection domain. This limits the capability of the process. Such a
scheme could be used by a server process to spawn processes for different classes of
users. Also, a user could define a protection domain for a program that is not fully
trusted, so its access is limited to a safe subset of the user’s access rights.

The association between a process and a domain can be static or dynamic. For
example, a process may execute a sequence of procedures and require different access
rights for each procedure, such as read file and write file. In general, we would like
to minimize the access rights that any user or process has at any one time; the use of
protection domains provides a simple means to satisfy this requirement.

One form of protection domain has to do with the distinction made in many
operating systems, such as UNIX, between user and kernel mode. A user program
executes in a user mode, in which certain areas of memory are protected from the
user’s use and in which certain instructions may not be executed. When the user pro-
cess calls a system routine, that routine executes in a system mode, or what has come
to be called kernel mode, in which privileged instructions may be executed and in
which protected areas of memory may be accessed.

4.4 EXAMPLE: UNIX FILE ACCESS CONTROL

For our discussion of UNIX file access control, we first introduce several basic con-
cepts concerning UNIX files and directories.

All types of UNIX files are administered by the operating system by means of
inodes. An inode (index node) is a control structure that contains the key informa-
tion needed by the operating system for a particular file. Several file names may be
associated with a single inode, but an active inode is associated with exactly one file,
and each file is controlled by exactly one inode. The attributes of the file as well as
its permissions and other control information are stored in the inode. On the disk,
there is an inode table, or inode list, that contains the inodes of all the files in the file
system. When a file is opened, its inode is brought into main memory and stored in
a memory-resident inode table.

Directories are structured in a hierarchical tree. Each directory can contain
files and/or other directories. A directory that is inside another directory is referred
to as a subdirectory. A directory is simply a file that contains a list of file names plus
pointers to associated inodes. Thus, associated with each directory is its own inode.

Traditional UNIX File Access Control

Most UNIX systems depend on, or at least are based on, the file access control scheme
introduced with the early versions of UNIX. Each UNIX user is assigned a unique
user identification number (user ID). A user is also a member of a primary group,
and possibly a number of other groups, each identified by a group ID. When a file is
created, it is designated as owned by a particular user and marked with that user’s
ID. It also belongs to a specific group, which initially is either its creator’s primary
group, or the group of its parent directory if that directory has SetGID permission

140 CHAPTER 4 / ACCESS CONTROL

set. Associated with each file is a set of 12 protection bits. The owner ID, group 1D,
and protection bits are part of the file’s inode.

Nine of the protection bits specify read, write, and execute permission for the
owner of the file, other members of the group to which this file belongs, and all other
users. These form a hierarchy of owner, group, and all others, with the highest relevant
set of permissions being used. Figure 4.5a shows an example in which the file owner
has read and write access; all other members of the file’s group have read access; and
users outside the group have no access rights to the file. When applied to a directory,
the read and write bits grant the right to list and to create/rename/delete files in the
directory.! The execute bit grants the right to descend into the directory or search it
for a filename.

o s
\% \‘b% ‘1>%%
& Q &o\
D
o Sl
rw- | r-- | ---

user: (rw- 4—1

group: :r—-

other::---

(a) Traditional UNIX approach (minimal access control list)

5 S
S S 5
o\‘b X N &)
@) S
& S &
o¥ & S
rw- | rw- | ---

user: rw-— 4—1

Masked { user:joe:rw-

entries | group::r—--

mask::rw-

other::-—-

(b) Extended access control list

Figure 4.5 UNIX File Access Control

Note that the permissions that apply to a directory are distinct from those that apply to any file or direc-
tory it contains. The fact that a user has the right to write to the directory does not give the user the right
to write to a file in that directory. That is governed by the permissions of the specific file. The user would,
however, have the right to rename the file.

4.4 / EXAMPLE: UNIX FILE ACCESS CONTROL 141

The remaining three bits define special additional behavior for files or direc-
tories. Two of these are the “set user ID” (SetUID) and “set group ID” (SetGID)
permissions. If these are set on an executable file, the operating system functions as
follows. When a user (with execute privileges for this file) executes the file, the sys-
tem temporarily allocates the rights of the user’s ID of the file creator, or the file’s
group, respectively, to those of the user executing the file. These are known as the
“effective user ID” and “effective group ID” and are used in addition to the “real user
ID” and “real group ID” of the executing user when making access control decisions
for this program. This change is only effective while the program is being executed.
This feature enables the creation and use of privileged programs that may use files
normally inaccessible to other users. It enables users to access certain files in a con-
trolled fashion. Alternatively, when applied to a directory, the SetGID permission
indicates that newly created files will inherit the group of this directory. The SetUID
permission is ignored.

The final permission bit is the “sticky” bit. When set on a file, this originally indi-
cated that the system should retain the file contents in memory following execution.
This is no longer used. When applied to a directory, though, it specifies that only the
owner of any file in the directory can rename, move, or delete that file. This is useful
for managing files in shared temporary directories.

One particular user ID is designated as “superuser.” The superuser is exempt
from the usual file access control constraints and has systemwide access. Any pro-
gram that is owned by, and SetUID to, the “superuser” potentially grants unrestricted
access to the system to any user executing that program. Hence great care is needed
when writing such programs.

This access scheme is adequate when file access requirements align with users
and a modest number of groups of users. For example, suppose a user wants to give
read access for file X to users A and B, and read access for file Y to users B and C.
We would need at least two user groups, and user B would need to belong to both
groups in order to access the two files. However, if there are a large number of differ-
ent groupings of users requiring a range of access rights to different files, then a very
large number of groups may be needed to provide this. This rapidly becomes unwieldy
and difficult to manage, if even possible at all.> One way to overcome this problem is
to use access control lists, which are provided in most modern UNIX systems.

A final point to note is that the traditional UNIX file access control scheme
implements a simple protection domain structure. A domain is associated with the
user, and switching the domain corresponds to changing the user ID temporarily.

Access Control Lists in UNIX

Many modern UNIX and UNIX-based operating systems support access control
lists, including FreeBSD, OpenBSD, Linux, and Solaris. In this section, we describe
FreeBSD, but other implementations have essentially the same features and interface.
The feature is referred to as extended access control list, while the traditional UNIX
approach is referred to as minimal access control list.

“Most UNTX systems impose a limit on the maximum number of groups to which any user may belong, as
well as to the total number of groups possible on the system.

142 CHAPTER 4 / ACCESS CONTROL

FreeBSD allows the administrator to assign a list of UNIX user IDs and
groups to a file by using the setfacl command. Any number of users and groups
can be associated with a file, each with three protection bits (read, write, execute),
offering a flexible mechanism for assigning access rights. A file need not have an
ACL but may be protected solely by the traditional UNIX file access mechanism.
FreeBSD files include an additional protection bit that indicates whether the file
has an extended ACL.

FreeBSD and most UNIX implementations that support extended ACLs use
the following strategy (e.g., Figure 4.5b):

1. The owner class and other class entries in the 9-bit permission field have the
same meaning as in the minimal ACL case.

2. The group class entry specifies the permissions for the owner group for this file.
These permissions represent the maximum permissions that can be assigned to
named users or named groups, other than the owning user. In this latter role, the
group class entry functions as a mask.

3. Additional named users and named groups may be associated with the file, each
with a 3-bit permission field. The permissions listed for a named user or named
group are compared to the mask field. Any permission for the named user or
named group that is not present in the mask field is disallowed.

When a process requests access to a file system object, two steps are performed.
Step 1 selects the ACL entry that most closely matches the requesting process. The
ACL entries are looked at in the following order: owner, named users, (owning or
named) groups, others. Only a single entry determines access. Step 2 checks if the
matching entry contains sufficient permissions. A process can be a member in more
than one group; so more than one group entry can match. If any of these matching
group entries contain the requested permissions, one that contains the requested per-
missions is picked (the result is the same no matter which entry is picked). If none of
the matching group entries contains the requested permissions, access will be denied
no matter which entry is picked.

4.5 ROLE-BASED ACCESS CONTROL

Traditional DAC systems define the access rights of individual users and groups of
users. In contrast, RBAC is based on the roles that users assume in a system rather
than the user’s identity. Typically, RBAC models define a role as a job function within
an organization. RBAC systems assign access rights to roles instead of individual
users. In turn, users are assigned to different roles, either statically or dynamically,
according to their responsibilities.

RBAC now enjoys widespread commercial use and remains an area of active
research. The National Institute of Standards and Technology (NIST) has issued a stan-
dard, FIPS PUB 140-3 (Security Requirements for Cryptographic Modules,September
2009), that requires support for access control and administration through roles.

The relationship of users to roles is many to many, as is the relationship of roles
to resources, or system objects (see Figure 4.6). The set of users changes, in some

4.5 / ROLE-BASED ACCESS CONTROL 143

Roles Resources

Role 1

Role 2

ANNN

Role 3

Figure 4.6 Users, Roles, and Resources

environments frequently, and the assignment of a user to one or more roles may also
be dynamic. The set of roles in the system in most environments is relatively static,
with only occasional additions or deletions. Each role will have specific access rights
to one or more resources. The set of resources and the specific access rights associated
with a particular role are also likely to change infrequently.

We can use the access matrix representation to depict the key elements of an
RBAC system in simple terms, as shown in Figure 4.7. The upper matrix relates
individual users to roles. Typically there are many more users than roles. Each matrix
entry is either blank or marked, the latter indicating that this user is assigned to this
role. Note a single user may be assigned multiple roles (more than one mark in a
row) and multiple users may be assigned to a single role (more than one mark in a

144

U | X
U, | X

X | X |X|X

Um x

OBJECTS
R, R, R, Fy £ P, P, D, D,
R;| control owner owner read * read wakeup wakeup seek owner
control owner
»n R, control write s execute owner seek
m
=
O o
Mo,
L]
R, control write stop

Access Control Matrix Representation of RBAC

column). The lower matrix has the same structure as the DAC access control matrix,
with roles as subjects. Typically, there are few roles and many objects, or resources. In
this matrix, the entries are the specific access rights enjoyed by the roles. Note a role
can be treated as an object, allowing the definition of role hierarchies.

RBAC lends itself to an effective implementation of the principle of least privi-
lege, referred to in Chapter 1. Each role should contain the minimum set of access

4.5 / ROLE-BASED ACCESS CONTROL 145

rights needed for that role. A user is assigned to a role that enables him or her to
perform only what is required for that role. Multiple users assigned to the same role
enjoy the same minimal set of access rights.

RBAC Reference Models

A variety of functions and services can be included under the general RBAC
approach.To clarify the various aspects of RBAC, it is useful to define a set of abstract
models of RBAC functionality.

[SANDO6] defines a family of reference models that has served as the basis for
ongoing standardization efforts. This family consists of four models that are related
to each other, as shown in Figure 4.8a and Table 4.4. RBAC, contains the minimum
functionality for an RBAC system. RBAC; includes the RBAC| functionality and
adds role hierarchies, which enable one role to inherit permissions from another role.
RBAC, includes RBAC and adds constraints, which restrict the ways in which the

RBAC;
Consolidated model

RBAC; RBAC,
Role hierarchies Constraints

RBAC,
Base model

(a) Relationship among RBAC models

Role
hierarchy (RH)

Permission
assignment (PA)

User
assignment (UA)

Permissions

user_sessions session_roles

(b) RBAC models

Figure 4.8 A Family of Role-Based Access Control Models RBAC is the
minimum requirement for an RBAC system. RBAC, adds role hierarchies
and RBAC, adds constraints. RBAC; includes RBAC; and RBAC,.

146 CHAPTER 4 / ACCESS CONTROL

Table 4.4 Scope RBAC Models

Models Hierarchies Constraints
RBAC, No No
RBAC, Yes No
RBAC, No Yes
RBAC; Yes Yes

components of an RBAC system may be configured. RBAC; contains the functional-
ity of RBAC), RBAC{, and RBAC,.

Base MoperL.—RBAC, Figure 4.8b, without the role hierarchy and constraints,
contains the four types of entities in an RBAC, system:

e User: An individual that has access to this computer system. Each individual
has an associated user ID.

* Role: A named job function within the organization that controls this computer
system. Typically, associated with each role is a description of the authority and
responsibility conferred on this role, and on any user who assumes this role.

e Permission: An approval of a particular mode of access to one or more objects.
Equivalent terms are access right, privilege, and authorization.

* Session: A mapping between a user and an activated subset of the set of roles
to which the user is assigned.

The arrowed lines in Figure 4.8b indicate relationships, or mappings, with a
single arrowhead indicating one, and a double arrowhead indicating many. Thus, there
is a many-to-many relationship between users and roles: One user may have multiple
roles, and multiple users may be assigned to a single role. Similarly, there is a many-
to-many relationship between roles and permissions. A session is used to define a
temporary one-to-many relationship between a user and one or more of the roles to
which the user has been assigned. The user establishes a session with only the roles
needed for a particular task; this is an example of the concept of least privilege.

The many-to-many relationships between users and roles and between roles
and permissions provide a flexibility and granularity of assignment not found in con-
ventional DAC schemes. Without this flexibility and granularity, there is a greater risk
that a user may be granted more access to resources than is needed because of the
limited control over the types of access that can be allowed. The NIST RBAC docu-
ment gives the following examples: Users may need to list directories and modify
existing files without creating new files, or they may need to append records to a file
without modifying existing records.

Rore HierarcHies— RBAC, Role hierarchies provide a means of reflecting the
hierarchical structure of roles in an organization. Typically, job functions with greater
responsibility have greater authority to access resources. A subordinate job function
may have a subset of the access rights of the superior job function. Role hierarchies
make use of the concept of inheritance to enable one role to implicitly include access
rights associated with a subordinate role.

4.5 / ROLE-BASED ACCESS CONTROL 147

Figure 4.9 is an example of a diagram of a role hierarchy. By convention, sub-
ordinate roles are lower in the diagram. A line between two roles implies the upper
role includes all of the access rights of the lower role, as well as other access rights not
available to the lower role. One role can inherit access rights from multiple subordi-
nate roles. For example, in Figure 4.9, the Project Lead role includes all of the access
rights of the Production Engineer role and of the Quality Engineer role. More than
one role can inherit from the same subordinate role. For example, both the Produc-
tion Engineer role and the Quality Engineer role include all of the access rights of
the Engineer role. Additional access rights are also assigned to the Production Engi-
neer Role, and a different set of additional access rights are assigned to the Quality
Engineer role. Thus, these two roles have overlapping access rights, namely, the access
rights they share with the Engineer role.

CoNSTRAINTS—RBAC, Constraints provide a means of adapting RBAC to the
specifics of administrative and security policies in an organization. A constraint is a
defined relationship among roles or a condition related to roles. [SANDY6] lists the fol-
lowing types of constraints: mutually exclusive roles, cardinality, and prerequisite roles.

Mutually exclusive roles are roles such that a user can be assigned to only one
role in the set. This limitation could be a static one, or it could be dynamic, in the
sense that a user could be assigned only one of the roles in the set for a session. The
mutually exclusive constraint supports a separation of duties and capabilities within
an organization. This separation can be reinforced or enhanced by use of mutually
exclusive permission assignments. With this additional constraint, a mutually exclu-
sive set of roles has the following properties:

1. A user can only be assigned to one role in the set (either during a session or
statically).

2. Any permission (access right) can be granted to only one role in the set.

Director

/\

Project Lead 1 Project Lead 2

TN T

Production Quality Production Quality
Engineer 1 Engineer 1 Engineer 2 Engineer Z

~_ >~

Engineer 1 Engineer 2

\/

Engineering dept.

Figure 4.9 Example of Role Hierarchy

148 CHAPTER 4 / ACCESS CONTROL

Thus, the set of mutually exclusive roles have non overlapping permissions. If
two users are assigned to different roles in the set, then the users have non overlapping
permissions while assuming those roles. The purpose of mutually exclusive roles is to
increase the difficulty of collusion among individuals of different skills or divergent
job functions to thwart security policies.

Cardinality refers to setting a maximum number with respect to roles. One such
constraint is to set a maximum number of users that can be assigned to a given role.
For example, a project leader role or a department head role might be limited to a
single user. The system could also impose a constraint on the number of roles that
a user is assigned to, or the number of roles a user can activate for a single session.
Another form of constraint is to set a maximum number of roles that can be granted
a particular permission; this might be a desirable risk mitigation technique for a sensi-
tive or powerful permission.

A system might be able to specify a prerequisite role, which dictates a user can
only be assigned to a particular role if it is already assigned to some other specified
role. A prerequisite can be used to structure the implementation of the least privilege
concept. In a hierarchy, it might be required that a user can be assigned to a senior
(higher) role only if it is already assigned an immediately junior (lower) role. For
example, in Figure 4.9 a user assigned to a Project Lead role must also be assigned to
the subordinate Production Engineer and Quality Engineer roles. Then, if the user
does not need all of the permissions of the Project Lead role for a given task, the
user can invoke a session using only the required subordinate role. Note the use of
prerequisites tied to the concept of hierarchy requires the RBAC; model.

ATTRIBUTE-BASED ACCESS CONTROL

A relatively recent development in access control technology is the attribute-based
access control (ABAC) model. An ABAC model can define authorizations that
express conditions on properties of both the resource and the subject. For example,
consider a configuration in which each resource has an attribute that identifies the
subject that created the resource. Then, a single access rule can specify the owner-
ship privilege for all the creators of every resource. The strength of the ABAC
approach is its flexibility and expressive power. [PLAT13] points out that the main
obstacle to its adoption in real systems has been concern about the performance
impact of evaluating predicates on both resource and user properties for each access.
However, for applications such as cooperating Web services and cloud comput-
ing, this increased performance cost is less noticeable because there is already a
relatively high performance cost for each access. Thus, Web services have been pio-
neering technologies for implementing ABAC models, especially through the intro-
duction of the eXtensible Access Control Markup Language (XAMCL) [BEUC13],
and there is considerable interest in applying the ABAC model to cloud services
[IQOBA12, YANG12].

There are three key elements to an ABAC model: attributes, which are defined
for entities in a configuration; a policy model, which defines the ABAC policies; and
the architecture model, which applies to policies that enforce access control. We will
examine these elements in turn.

4.6 / ATTRIBUTE-BASED ACCESS CONTROL 149

Attributes

Attributes are characteristics that define specific aspects of the subject, object, envi-
ronment conditions, and/or requested operations that are predefined and preassigned
by an authority. Attributes contain information that indicates the class of informa-
tion given by the attribute, a name, and a value (e.g., Class = HospitalRecordsAccess,
Name = PatientInformationAccess, Value = MFBusinessHoursOnly).

The following are the three types of attributes in the ABAC model:

° Subject attributes: A subject is an active entity (e.g., a user, an application, a
process, or a device) that causes information to flow among objects or changes
the system state. Each subject has associated attributes that define the identity
and characteristics of the subject. Such attributes may include the subject’s
identifier, name, organization, job title, and so on. A subject’s role can also be
viewed as an attribute.

° Object attributes: An object, also referred to as a resource, is a passive (in the
context of the given request) information system-related entity (e.g., devices,
files, records, tables, processes, programs, networks, domains) containing or
receiving information. As with subjects, objects have attributes that can be lever-
aged to make access control decisions. A Microsoft Word document, for example,
may have attributes such as title, subject, date, and author. Object attributes can
often be extracted from the metadata of the object. In particular, a variety of
Web service metadata attributes may be relevant for access control purposes,
such as ownership, service taxonomy, or even Quality of Service (QoS) attributes.

* Environment attributes: These attributes have so far been largely ignored in
most access control policies. They describe the operational, technical, and even
situational environment or context in which the information access occurs. For
example, attributes, such as current date and time, the current virus/hacker
activities, and the network’s security level (e.g., Internet vs. intranet), are not
associated with a particular subject nor a resource, but may nonetheless be
relevant in applying an access control policy.

ABAC is a logical access control model that is distinguishable because it con-
trols access to objects by evaluating rules against the attributes of entities (subject
and object), operations, and the environment relevant to a request. ABAC relies
upon the evaluation of attributes of the subject, attributes of the object, and a for-
mal relationship or access control rule defining the allowable operations for subject-
object attribute combinations in a given environment. All ABAC solutions contain
these basic core capabilities to evaluate attributes and enforce rules or relationships
between those attributes. ABAC systems are capable of enforcing DAC, RBAC, and
MAC concepts. ABAC enables fine-grained access control, which allows for a higher
number of discrete inputs into an access control decision, providing a bigger set of
possible combinations of those variables to reflect a larger and more definitive set
of possible rules, policies, or restrictions on access. Thus, ABAC allows an unlimited
number of attributes to be combined to satisfy any access control rule. Moreover,
ABAC systems can be implemented to satisfy a wide array of requirements from
basic access control lists through advanced expressive policy models that fully lever-
age the flexibility of ABAC.

150 CHAPTER 4 / ACCESS CONTROL

ABAC Logical Architecture

Figure 4.10 illustrates in a logical architecture the essential components of an ABAC
system. An access by a subject to an object proceeds according to the following steps:

1. A subject requests access to an object. This request is routed to an access control
mechanism.

2. The access control mechanism is governed by a set of rules (2a) that are defined
by a preconfigured access control policy. Based on these rules, the access control
mechanism assesses the attributes of the subject (2b), object (2c), and current
environmental conditions (2d) to determine authorization.

3. The access control mechanism grants the subject access to the object if access
is authorized, and denies access if it is not authorized.

It is clear from the logical architecture that there are four independent sources
of information used for the access control decision. The system designer can decide
which attributes are important for access control with respect to subjects, objects, and

Subject Object Environmental
attributes attributes attributes

@ Clearance @@ Temperature

Affiliation M

2¢
Y
s N gy Permit
b 1 - : 3
v PRl
> AN
’ Access ,":\w’

= B control ¥ 3 Deny

mechanism S

Subject (user)

[0

Access control
policies

Figure 4.10 ABAC Scenario

4.6 / ATTRIBUTE-BASED ACCESS CONTROL 151

environmental conditions. The system designer or other authority can then define
access control policies, in the form of rules, for any desired combination of attri-
butes of subject, object, and environmental conditions. It should be evident that this
approach is very powerful and flexible. However, the cost, both in terms of the com-
plexity of the design and implementation, and in terms of the performance impact,
is likely to exceed that of other access control approaches. This is a trade-off that the
system authority must make.

Figure 4.11, taken from NIST SP 800-162 [Guide to Attribute Based Access Con-
trol (ABAC) Definition and Considerations, January 2014], provides a useful way
of grasping the scope of an ABAC model compared to a DAC model using access
control lists (ACLs). This figure not only illustrates the relative complexity of the two
models, but also clarifies the trust requirements of the two models. A comparison
of representative trust relationships (indicated by arrowed lines) for ACL use and
ABAC use shows that there are many more complex trust relationships required for
ABAC to work properly. Ignoring the commonalities in both parts of Figure 4.11,
one can observe that with ACLs the root of trust is with the object owner, who ulti-
mately enforces the object access rules by provisioning access to the object through
addition of a user to an ACL. In ABAC, the root of trust is derived from many sources
of which the object owner has no control, such as Subject Attribute Authorities,
Policy Developers, and Credential Issuers. Accordingly, SP 800-162 recommended
that an enterprise governance body be formed to manage all identity, credential,
and access management capability deployment and operation and that each sub-
ordinate organization maintain a similar body to ensure consistency in managing
the deployment and paradigm shift associated with enterprise ABAC implementa-
tion. Additionally, it is recommended that an enterprise develop a trust model that
can be used to illustrate the trust relationships and help determine ownership and
liability of information and services, needs for additional policy and governance, and
requirements for technical solutions to validate or enforce trust relationships. The
trust model can be used to help influence organizations to share their information
with clear expectations of how that information will be used and protected and to
be able to trust the information and attribute and authorization assertions coming
from other organizations.

ABAC Policies

A policy is a set of rules and relationships that govern allowable behavior within an
organization, based on the privileges of subjects and how resources or objects are to
be protected under which environment conditions. In turn, privileges represent the
authorized behavior of a subject; they are defined by an authority and embodied
in a policy. Other terms that are commonly used instead of privileges are rights,
authorizations, and entitlements. Policy is typically written from the perspective of
the object that needs protecting, and the privileges available to subjects.

We now define an ABAC policy model, based on the model presented in
[YUANOS]. The following conventions are used:

1. S, O, and E are subjects, objects, and environments, respectively;

2. SA; (1 =k=K),0A,(1 =m= M), and EA, (1 =n = N) are the pre-
defined attributes for subjects, objects, and environments, respectively;

152 CHAPTER 4 / ACCESS CONTROL

Proper
credential issuance

Identity
credential

Credential validation

Strength of
credential protection

Authentication

Network
authentication

Access control Access control
decision enforcement

Object access rule enforcement

Physical
access Access provisioning
Network

credential Group management

Digital identity

provisioning Access control list
(a) ACL Trust Chain
Identity Subject Object
credential attributes attributes

Proper
credential issuance

Authoritative
object attributes

Authoritative subject

attribute stores <

Credential validation Attribute provisioning Common object

Common subject attribute taxonomy

Strength of .
attribute taxonomy

credential protection . R .
P Attribute integrity

Access control
enforcement

Object access rule enforcement

Attribute integrity

Access control
decision

Authentication

Network
authentication

Physical
access Access provisioning
Network

credential Group management

Digital identity
provisioning

Network access

(b) ABAC Trust Chain

Figure 4.11 ACL and ABAC Trust Relationships

3. ATTR(s), ATTR(0), and ATTR(e) are attribute assignment relations for subject
s, object 0, and environment e, respectively:

ATTR(s) CSA; x SA, x ... x SAg
ATTR (r) COA; x OA, x ... x OAy
ATTR (0) CEA; x EA, x ... x EAy

4.6 / ATTRIBUTE-BASED ACCESS CONTROL 153

‘We also use the function notation for the value assignment of individual attributes.
For example:

Role(s) = “Service Consumer”
ServiceOwner (o) = “XYZ, Inc.”
CurrentDate(e) = “01-23-2005"

4. In the most general form, a Policy Rule, which decides on whether a subject s
can access an object o in a particular environment e, is a Boolean function of the
attributes of 5, 0, and e:

Rule: can_access (s, o, e) < f(ATTR(s), ATTR(o), ATTR(e))

Given all the attribute assignments of s, 0, and e, if the function’s evaluation is true,
then the access to the resource is granted; otherwise the access is denied.

5. A policy rule base or policy store may consist of a number of policy rules, cov-
ering many subjects and objects within a security domain. The access control
decision process in essence amounts to the evaluation of applicable policy rules
in the policy store.

Now consider the example of an online entertainment store that streams movies
to users for a flat monthly fee. We will use this example to contrast RBAC and ABAC
approaches. The store must enforce the following access control policy based on the
user’s age and the movie’s content rating:

Movie Rating Users Allowed Access
R Age 17 and older
PG-13 Age 13 and older
G Everyone

In an RBAC model, every user would be assigned one of three roles: Adult,
Juvenile, or Child, possibly during registration. There would be three permis-
sions created: Can view R-rated movies, Can view PG-13-rated movies, and Can
view G-rated movies. The Adult role gets assigned with all three permissions; the
Juvenile role gets Can view PG-13-rated movies and Can view G-rated movies
permissions, and the Child role gets the Can view G-rated movies permission only.
Both the user-to-role and permission-to-role assignments are manual administra-
tive tasks.

The ABAC approach to this application does not need to explicitly define roles.
Instead, whether a user u can access or view a movie m (in a security environment
e which is ignored here) would be resolved by evaluating a policy rule such as the
following:

Rl:can_access(u, m, e) <
(Age(u) =2 17 A Rating(m) € {R, PG-13, G}) V
(Age(u) > 13 A Age(u) < 17 A Rating(m) € {PG-13, G}) V
(Age (u) < 13 A Rating(m) € {G})

154 CHAPTER 4 / ACCESS CONTROL

where Age and Rating are the subject attribute and the object attribute, respectively.
The advantage of the ABAC model shown here is that it eliminates the definition and
management of static roles, hence eliminating the need for the administrative tasks
for user-to-role assignment and permission-to-role assignment.

The advantage of ABAC is more clearly seen when we impose finer-grained
policies. For example, suppose movies are classified as either New Release or Old
Release, based on release date compared to the current date, and users are classi-
fied as Premium User and Regular User, based on the fee they pay. We would like
to enforce a policy that only premium users can view new movies. For the RBAC
model, we would have to double the number of roles, to distinguish each user
by age and fee, and we would have to double the number of separate permissions
as well.

In general, if there are K subject attributes and M object attributes, and if for
each attribute, Range() denotes the range of possible values it can take, then the
respective number of roles and permissions required for an RBAC model are:

K M

H Range (SA;) and H Range (SA,)
k=1 m=1

Thus, we can see that as the number of attributes increases to accommodate
finer-grained policies, the number of roles and permissions grows exponentially.
In contrast, the ABAC model deals with additional attributes in an efficient way.
For this example, the policy R1 defined previously still applies. We need two new
rules:

R2:can_access(u, m, e) <

(MembershipType (u) = Premium) V

(MembershipType (u) = Regular A MovieType (m) = OldRelease)
R3:can_access(u, m, e) <Rl A R2

With the ABAC model, it is also easy to add environmental attributes. Suppose
we wish to add a new policy rule that is expressed in words as follows: Regular users
are allowed to view new releases in promotional periods. This would be difficult to
express in an RBAC model. In an ABAC model, we only need to add a conjunctive
(AND) rule that checks to see the environmental attribute foday’s date falls in a
promotional period.

4.7 IDENTITY, CREDENTIAL, AND ACCESS MANAGEMENT

We now examine some concepts that are relevant to an access control approach
centered on attributes. This section provides an overview of the concept of identity,
credential, and access management (ICAM), and then Section 4.8 will discuss the use
of a trust framework for exchanging attributes.

ICAM is a comprehensive approach to managing and implementing digital
identities (and associated attributes), credentials, and access control. ICAM has been
developed by the U.S. government, but is applicable not only to government agencies,

4.7 / IDENTITY, CREDENTIAL, AND ACCESS MANAGEMENT 155

but also may be deployed by enterprises looking for a unified approach to access
control. ICAM is designed to:

e Create trusted digital identity representations of individuals and what the
ICAM documents refer to as nonperson entities (NPEs). The latter include
processes, applications, and automated devices seeking access to a resource.

¢ Bind those identities to credentials that may serve as a proxy for the individual
or NPE in access transactions. A credential is an object or data structure that
authoritatively binds an identity (and optionally, additional attributes) to a
token possessed and controlled by a subscriber.

* Use the credentials to provide authorized access to an agency’s resources.

Figure 4.12 provides an overview of the logical components of an ICAM archi-
tecture. We will examine each of the main components in the following subsections.

Identity Management

Identity management is concerned with assigning attributes to a digital identity and
connecting that digital identity to an individual or NPE. The goal is to establish a

Credential Management Identity Management
—
Sponsorship Enrollment B ackg.rou.nd On-boarding
investigation

N —— N ———

T T
Credential

Issuance q

production

—

Credential

Digital identity

lifecycle lifecycle
management management
() Provisioning/deprovisioning
External
agency
N ——
State or local Resource Privilege Policy
management management management
government

|
|

Business Physical Logical
partner access access
——
Citizen Access management
Ne———————
Identity federation

Figure 4.12 Identity, Credential, and Access Management (ICAM)

156 CHAPTER 4 / ACCESS CONTROL

trustworthy digital identity that is independent of a specific application or context.
The traditional, and still most common, approach to access control for applications
and programs is to create a digital representation of an identity for the specific use of
the application or program. As a result, maintenance and protection of the identity
itself is treated as secondary to the mission associated with the application. Further,
there is considerable overlap in effort in establishing these application-specific
identities.

Unlike accounts used to log on to networks, systems, or applications, enterprise
identity records are not tied to job title, job duties, location, or whether access is needed
to a specific system. Those items may become attributes tied to an enterprise identity
record, and may also become part of what uniquely identifies an individual in a specific
application. Access control decisions will be based on the context and relevant attri-
butes of a user—not solely their identity. The concept of an enterprise identity is that
individuals will have a single digital representation of themselves that can be lever-
aged across departments and agencies for multiple purposes, including access control.

Figure 4.12 depicts the key functions involved in identity management. Estab-
lishment of a digital identity typically begins with collecting identity data as part of
an enrollment process. A digital identity is often comprised of a set of attributes that
when aggregated uniquely identify a user within a system or an enterprise. In order to
establish trust in the individual represented by a digital identity, an agency may also
conduct a background investigation. Attributes about an individual may be stored in
various authoritative sources within an agency and linked to form an enterprise view
of the digital identity. This digital identity may then be provisioned into applications
in order to support physical and logical access (part of Access Management) and
de-provisioned when access is no longer required.

A final element of identity management is lifecycle management, which
includes the following:

* Mechanisms, policies, and procedures for protecting personal identity
information

e Controlling access to identity data
* Techniques for sharing authoritative identity data with applications that need it
* Revocation of an enterprise identity

Credential Management

As mentioned, a credential is an object or data structure that authoritatively binds
an identity (and optionally, additional attributes) to a token possessed and controlled
by a subscriber. Examples of credentials are smart cards, private/public cryptographic
keys, and digital certificates. Credential management is the management of the life
cycle of the credential. Credential management encompasses the following five logi-
cal components:

1. An authorized individual sponsors an individual or entity for a credential to
establish the need for the credential. For example, a department supervisor
sponsors a department employee.

2. The sponsored individual enrolls for the credential, a process which typically con-
sists of identity proofing and the capture of biographic and biometric data. This

4.7 / IDENTITY, CREDENTIAL, AND ACCESS MANAGEMENT 157

step may also involve incorporating authoritative attribute data, maintained by
the identity management component.

3. A credential is produced. Depending on the credential type, production may
involve encryption, the use of a digital signature, the production of a smartcard,
or other functions.

4. The credential is issued to the individual or NPE.

5. Finally, a credential must be maintained over its life cycle, which might include
revocation, reissuance/replacement, reenrollment, expiration, personal identi-
fication number (PIN) reset, suspension, or reinstatement.

Access Management

The access management component deals with the management and control of
the ways entities are granted access to resources. It covers both logical and physi-
cal access, and may be internal to a system or an external element. The purpose of
access management is to ensure that the proper identity verification is made when an
individual attempts to access security-sensitive buildings, computer systems, or data.
The access control function makes use of credentials presented by those requesting
access and the digital identity of the requestor. Three support elements are needed
for an enterprise-wide access control facility:

* Resource management: This element is concerned with defining rules for a
resource that requires access control. The rules would include credential
requirements and what user attributes, resource attributes, and environmental
conditions are required for access of a given resource for a given function.

* Privilege management: This element is concerned with establishing and main-
taining the entitlement or privilege attributes that comprise an individual’s
access profile. These attributes represent features of an individual that can be
used as the basis for determining access decisions to both physical and logical
resources. Privileges are considered attributes that can be linked to a digital
identity.

* Policy management: This element governs what is allowable and unallowable in
an access transaction. That is, given the identity and attributes of the requestor,
the attributes of the resource or object, and environmental conditions, a policy
specifies what actions this user can perform on this object.

Identity Federation
Identity federation addresses two questions:

1. How do you trust identities of individuals from external organizations who need
access to your systems?

2. How do you vouch for identities of individuals in your organization when they
need to collaborate with external organizations?

Identity federation is a term used to describe the technology, standards, policies,
and processes that allow an organization to trust digital identities, identity attributes,
and credentials created and issued by another organization. We will discuss identity
federation in the following section.

158 CHAPTER 4 / ACCESS CONTROL

4.8 TRUST FRAMEWORKS

The interrelated concepts of trust, identity, and attributes have become core concerns
of Internet businesses, network service providers, and large enterprises. These concerns
can clearly be seen in the e-commerce setting. For efficiency, privacy, and legal simplic-
ity, parties to transactions generally apply the need-to-know principle: What do you need
to know about someone in order to deal with them? The answer varies from case to case,
and includes such attributes as professional registration or license number, organization
and department, staff ID, security clearance, customer reference number, credit card
number, unique health identifier, allergies, blood type, Social Security number, address,
citizenship status, social networking handle, pseudonym, and so on. The attributes of an
individual that must be known and verified to permit a transaction depend on context.

The same concern for attributes is increasingly important for all types of access
control situations, not just the e-business context. For example, an enterprise may
need to provide access to resources for customers, users, suppliers, and partners.
Depending on context, access will be determined not just by identity, but by the
attributes of the requestor and the resource.

Traditional Identity Exchange Approach

Online or network transactions involving parties from different organizations, or
between an organization and an individual user such as an online customer, gener-
ally require the sharing of identity information. This information may include a host
of associated attributes in addition to a simple name or numerical identifier. Both
the party disclosing the information and the party receiving the information need
to have a level of trust about security and privacy issues related to that information.

Figure 4.13a shows the traditional technique for the exchange of identity infor-
mation. This involves users developing arrangements with an identity service provider
to procure digital identity and credentials, and arrangements with parties that provide
end-user services and applications and that are willing to rely on the identity and
credential information generated by the identity service provider.

The arrangement of Figure 4.13a must meet a number of requirements. The
relying party requires that the user has been authenticated to some degree of assur-
ance, that the attributes imputed to the user by the identity service provider are accu-
rate, and that the identity service provider is authoritative for those attributes. The
identity service provider requires assurance that it has accurate information about the
user and that, if it shares information, the relying party will use it in accordance with
contractual terms and conditions and the law. The user requires assurance that the
identity service provider and relying party can be entrusted with sensitive information
and that they will abide by the user’s preferences and respect the user’s privacy. Most
importantly, all the parties want to know if the practices described by the other par-
ties are actually those implemented by the parties, and how reliable those parties are.

Open Identity Trust Framework

Without some universal standard and framework, the arrangement of Figure 4.13a must
be replicated in multiple contexts. A far preferable approach is to develop an open,

4.8 / TRUST FRAMEWORKS 159

Identity
service
provider

(Possible contract)

Relying
party

Users

(a) Traditional triangle of parties involved in an exchange of identity information

“ Trust framework
providers

Tdentit (Attribute providers
servicey ~— (Attribute exchange ¢ .
roviders network Relying
. A parties
A

A I
| Assessors Dispute 1
\ & auditors resolvers 1

\ 4

Users
(b) Identity attribute exchange elements

Figure 4.13 Identity Information Exchange Approaches

standardized approach to trustworthy identity and attribute exchange. In the remain-
der of this section, we examine such an approach that is gaining increasing acceptance.

Unfortunately, this topic is burdened with numerous acronyms, so it is best to
begin with a definition of the most important of these:

e OpenlD: This is an open standard that allows users to be authenticated by
certain cooperating sites (known as Relying Parties) using a third party service,
eliminating the need for Webmasters to provide their own ad hoc systems and
allowing users to consolidate their digital identities. Users may create accounts
with their preferred OpenlD identity providers, then use those accounts as the
basis for signing on to any Web site that accepts OpenlD authentication.

160 CHAPTER 4 / ACCESS CONTROL

* OIDEF: The OpenlD Foundation is an international nonprofit organization of
individuals and companies committed to enabling, promoting, and protecting
OpenlD technologies. OIDF assists the community by providing needed infra-
structure and help in promoting and supporting expanded adoption of OpenlID.

¢ ICF:The Information Card Foundation is a nonprofit community of companies
and individuals working together to evolve the Information Card ecosystem.
Information Cards are personal digital identities people can use online, and the
key component of identity metasystems. Visually, each Information Card has
a card-shaped picture and a card name associated with it that enable people
to organize their digital identities and to easily select one they want to use for
any given interaction.

* OITEF: The Open Identity Trust Framework is a standardized, open specification
of a trust framework for identity and attribute exchange, developed jointly by
OIDF and ICFE.

e OIX: The Open Identity Exchange Corporation is an independent, neutral,
international provider of certification trust frameworks conforming to the
Open Identity Trust Frameworks model.

° AXN: An Attribute Exchange Network (AXN) is an online Internet-scale
gateway for identity service providers and relying parties to efficiently access
user-asserted, permissioned, and verified online identity attributes in high
volumes at affordable costs.

System managers need to be able to trust that the attributes associated with a
subject or an object are authoritative and are exchanged securely. One approach to
providing that trust within an organization is the ICAM model, specifically the ICAM
components (see Figure 4.12). Combined with an identity federation functionality
that is shared with other organizations, attributes can be exchanged in a trust-worthy
fashion, supporting secure access control.

In digital identity systems, a trust framework functions as a certification program.
It enables a party who accepts a digital identity credential (called the relying party) to
trust the identity, security, and privacy policies of the party who issues the credential
(called the identity service provider) and vice versa. More formally, OIX defines a
trust framework as a set of verifiable commitments from each of the various par-
ties in a transaction to their counter parties. These commitments include (1) controls
(including regulatory and contractual obligations) to help ensure commitments are
delivered and (2) remedies for failure to meet such commitments. A trust framework
is developed by a community whose members have similar goals and perspectives. It
defines the rights and responsibilities of that community’s participants; specifies the
policies and standards specific to the community; and defines the community-specific
processes and procedures that provide assurance. Different trust frameworks can exist,
and sets of participants can tailor trust frameworks to meet their particular needs.

Figure 4.13b shows the elements involved in the OITF. Within any given
organization or agency, the following roles are part of the overall framework:

* Relying parties (RPs): Also called service providers, these are entities deliver-
ing services to specific users. RPs must have confidence in the identities and/or

4.8 / TRUST FRAMEWORKS 161

attributes of their intended users, and must rely upon the various credentials
presented to evince those attributes and identities.

* Subjects: These are users of an RP’s services, including customers, employees,
trading partners, and subscribers.

o Attribute providers (APs): APs are entities acknowledged by the community
of interest as being able to verify given attributes as presented by subjects and
which are equipped through the AXN to create conformant attribute creden-
tials according to the rules and agreements of the AXN. Some APs will be
sources of authority for certain information; more commonly APs will be bro-
kers of derived attributes.

¢ Identity providers (IDPs): These are entities able to authenticate user creden-
tials and to vouch for the names (or pseudonyms or handles) of subjects, and
which are equipped through the AXN or some other compatible Identity and
Access Management (IDAM) system to create digital identities that may be
used to index user attributes.

There are also the following important support elements as part on an AXN:

* Assessors: Assessors evaluate identity service providers and RPs and certify
that they are capable of following the OITF provider’s blueprint.

e Auditors: These entities may be called on to check that parties’ practices have
been in line with what was agreed for the OITFE.

* Dispute resolvers: These entities provide arbitration and dispute resolution
under OIX guidelines.

* Trust framework providers: A trust framework provider is an organization that
translates the requirements of policymakers into an own blueprint for a trust
framework that it then proceeds to build, doing so in a way that is consistent
with the minimum requirements set out in the OITF specification. In almost all
cases, there will be a reasonably obvious candidate organization to take on this
role, for each industry sector or large organization that decides it is appropriate
to interoperate with an AXN.

The solid arrowed lines in Figure 4.13b indicate agreements with the trust
framework provider for implementing technical, operations, and legal require-
ments. The dashed arrowed lines indicate other agreements potentially affected by
these requirements. In general terms, the model illustrated in Figure 4.13b would
operate in the following way. Responsible persons within participating organiza-
tions determine the technical, operational, and legal requirements for exchanges
of identity information that fall under their authority. They then select OITF
providers to implement these requirements. These OITF providers translate the
requirements into a blueprint for a trust framework that may include additional
conditions of the OITF provider. The OITF provider vets identity service provid-
ers and RPs and contracts with them to follow its trust framework requirements
when conducting exchanges of identity information. The contracts carry provi-
sions relating to dispute resolvers, and auditors for contract interpretation and
enforcement.

162 CHAPTER 4 / ACCESS CONTROL

4.9 CASE STUDY: RBAC SYSTEM FOR A BANK

The Dresdner Bank has implemented an RBAC system that serves as a useful prac-
tical example [SCHAO1]. The bank uses a variety of computer applications. Many
of these were initially developed for a mainframe environment; some of these older
applications are now supported on a client-server network, while others remain on
mainframes. There are also newer applications on servers. Prior to 1990, a simple
DAC system was used on each server and mainframe. Administrators maintained a
local access control file on each host and defined the access rights for each employee
on each application on each host. This system was cumbersome, time-consuming, and
error-prone. To improve the system, the bank introduced an RBAC scheme, which
is systemwide and in which the determination of access rights is compartmentalized
into three different administrative units for greater security.

Roles within the organization are defined by a combination of official posi-
tion and job function. Table 4.5a provides examples. This differs somewhat from the
concept of role in the NIST standard, in which a role is defined by a job function. To
some extent, the difference is a matter of terminology. In any case, the bank’s role
structuring leads to a natural means of developing an inheritance hierarchy based
on official position. Within the bank, there is a strict partial ordering of official posi-
tions within each organization, reflecting a hierarchy of responsibility and power. For
example, the positions Head of Division, Group Manager, and Clerk are in descend-
ing order. When the official position is combined with job function, there is a resulting
ordering of access rights, as indicated in Table 4.5b. Thus, the financial analyst/Group
Manager role (role B) has more access rights than the financial analyst/Clerk role
(role A). The table indicates that role B has as many or more access rights than role
A in three applications and has access rights to a fourth application. On the other
hand, there is no hierarchical relationship between office banking/Group Manager
and financial analyst/Clerk because they work in different functional areas. We can
therefore define a role hierarchy in which one role is superior to another if its position
is superior and their functions are identical. The role hierarchy makes it possible to
economize on access rights definitions, as suggested in Table 4.5c.

In the original scheme, the direct assignment of access rights to the individual
user occurred at the application level and was associated with the individual applica-
tion. In the new scheme, an application administration determines the set of access
rights associated with each individual application. However, a given user perform-
ing a given task may not be permitted all of the access rights associated with the
application. When a user invokes an application, the application grants access on the
basis of a centrally provided security profile. A separate authorization administration
associated access rights with roles, and creates the security profile for a use on the
basis of the user’s role.

A user is statically assigned a role. In principle (in this example), each user may
be statically assigned up to four roles and select a given role for use in invoking a par-
ticular application. This corresponds to the NIST concept of session. In practice, most
users are statically assigned a single role based on the user’s position and job function.

All of these ingredients are depicted in Figure 4.14. The Human Resource
Department assigns a unique User ID to each employee who will be using the system.

Table 4.5

4.9 / CASE STUDY: RBAC SYSTEM FOR A BANK 163

Functions and Roles for Banking Example

(a) Functions and Official Positions

Role Function Official Position
A financial analyst Clerk
B financial analyst Group Manager
© financial analyst Head of Division
D financial analyst Junior
E financial analyst Senior
15 financial analyst Specialist
G financial analyst Assistant
X share technician Clerk
Y support e-commerce Junior
% office banking Head of Division

(b) Permission Assignments

(c) Permission Assignment with Inheritance

Role | Application Access Right Role | Application Access Right
money market 1,2,3,4 money market 1,2,3,4
instruments instruments
derivatives 1,2,3,7,10,12 derivatives 1,2,3,7,10,12
A . A .
trading trading
interest 1,4,8,12,14,16 interest 1,4,8,12,14,16
instruments instruments
money market 1,2,3,4,7 money market 7
instruments instruments
deriva.tives 1,2,3,7.10,12,14 I ——— 14
. trading 5 trading
interest 1,4,8,12,14,16
instruments private 1,2,4,7
private consumer 1,2,4,7 p consumer
. Instruments
mstruments

Based on the user’s position and job function, the department also assigns one or
more roles to the user. The user/role information is provided to the Authorization
Administration, which creates a security profile for each user that associates the
User ID and role with a set of access rights. When a user invokes an application, the
application consults the security profile for that user to determine what subset of the
application’s access rights are in force for this user in this role.

A role may be used to access several applications. Thus, the set of access rights
associated with a role may include access rights that are not associated with one of

164 CHAPTER 4 / ACCESS CONTROL

)

User
IDs

Human Resources Department

Roles

Functions

Assigns

—

Positions

Application Administration

Application

Authorization Administration

N M
Application

Figure 4.14 Example of Access Control Administration

the applications the user invokes. This is illustrated in Table 4.5b. Role A has numer-
ous access rights, but only a subset of those rights are applicable to each of the three
applications that role A may invoke.
Some figures about this system are of interest. Within the bank, there are 65
official positions, ranging from a Clerk in a branch, through the Branch Manager, to a
Member of the Board. These positions are combined with 368 different job functions
provided by the human resources database. Potentially, there are 23,920 different
roles, but the number of roles in current use is about 1,300. This is in line with the
experience other RBAC implementations. On average, 42,000 security profiles are
distributed to applications each day by the Authorization Administration module.

4.10 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms

access control
access control list
access management
access matrix
access right
attribute

attribute-based access control
(ABAC)

Attribute Exchange Network
(AXN)

attribute provider

auditor

authorizations

assessor

capability ticket

cardinality

closed access control policy
credential

4.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 165

credential management

discretionary access control
(DAC)

dispute resolver

dynamic separation of duty
(DSD)

entitlements

environment attribute

general role hierarchy

group

identity

identity, credential, and access
management (ICAM)

identity federation

identity management

identity provider

Information Card Foundation
(ICF)

kernel mode

least privilege

limited role hierarchy

mandatory access control
(MAC)

mutually exclusive roles

object

object attribute

open access control policy

Open Identity Exchange
Corporation (OIX)

Open Identity Trust
Framework (OITF)

OpenlD

OpenID Foundation (OIDF)

owner

permission

policy

prerequisite role

privilege

protection domain

relying part

resource

rights

role-based access control
(RBAC)

role constraints

role hierarchies

separation of duty

session

static separation of duty (SSD)

subject

subject attribute

trust framework

trust framework provider

user mode

Review Questions

4.1 What is the difference between authentication and authorization?
4.2 How does RBAC relate to DAC and MAC?
4.3 List and define the three classes of subject in an access control system.
4.4 List and briefly explain the three basic elements of access control.

4.5 Whatis ABAC?

4.6 What is the difference between an access control list and a capability ticket?
4.7 List some of the main types of access control.
4.8 Briefly define the four RBAC models of Figure 4.8a.

4.9 What is meant by mutually exclusive roles in the RBAC; model?

4.10 Describe three types of role hierarchy constraints.

4.11 In the NIST RBAC model, what is the difference between SSD and DSD?

Problems

4.1 For the DAC model discussed in Section 4.3, an alternative representation of the pro-
tection state is a directed graph. Each subject and each object in the protection state
is represented by a node (a single node is used for an entity that is both subject and
object). A directed line from a subject to an object indicates an access right, and the
label on the link defines the access right.

a. Draw a directed graph that corresponds to the access matrix of Figure 4.2a.

b. Draw a directed graph that corresponds to the access matrix of Figure 4.3.

c. Is there a one-to-one correspondence between the directed graph representation
and the access matrix representation? Explain.

166 CHAPTER 4 / ACCESS CONTROL

4.2

4.4

>
th

4.6

4.7

a. Explain, with an appropriate example, how protection domains provide flexibility.
b. How is the concept of protection domains related to operating systems? Explain
by quoting an example from the UNIX operating system.

The VAX/VMS operating system makes use of four processor access modes to

facilitate the protection and sharing of system resources among processes. The access

mode determines:

e Instruction execution privileges: What instructions the processor may execute

e Memory access privileges: Which locations in virtual memory the current instruction
may access

The four modes are as follows:

e Kernel: Executes the kernel of the VMS operating system, which includes memory
management, interrupt handling, and I/O operations

¢ Executive: Executes many of the operating system service calls, including file and
record (disk and tape) management routines

e Supervisor: Executes other operating system services, such as responses to user
commands

e User: Executes user programs, plus utilities such as compilers, editors, linkers, and
debuggers

A process executing in a less-privileged mode often needs to call a procedure that
executes in a more-privileged mode; for example, a user program requires an oper-
ating system service. This call is achieved by using a change-mode (CHM) instruc-
tion, which causes an interrupt that transfers control to a routine at the new access
mode. A return is made by executing the REI (return from exception or interrupt)
instruction.

a. A number of operating systems have two modes: kernel and user. What are the

advantages and disadvantages of providing four modes instead of two?

b. Can you make a case for even more than four modes?

The VMS scheme discussed in the preceding problem is often referred to as a ring pro-
tection structure, as illustrated in Figure 4.15. Indeed, the simple kernel/user scheme is
a two-ring structure. A disadvantage of a ring-structured access control system is that
it violates the principle of least privilege. For example if we wish to have an object
accessible in ring X but not ring Y, this requires that X < Y. Under this arrangement
all objects accessible in ring X are also accessible in ring Y.

a. Explain in more detail what the problem is and why least privilege is violated.

b. Suggest a way that a ring-structured operating system can deal with this problem.

UNIX treats file directories in the same fashion as files; that is, both are defined by the
same type of data structure, called an inode. As with files, directories include a nine-
bit protection string. If care is not taken, this can create access control problems. For
example, consider a file with protection mode 644 (octal) contained in a directory with
protection mode 730. How might the file be compromised in this case?

In the traditional UNIX file access model, which we describe in Section 4.4, UNIX
systems provide a default setting for newly created files and directories, which the
owner may later change. The default is typically full access for the owner combined
with one of the following: no access for group and other, read/execute access for group
and none for other, or read/execute access for both group and other. Briefly discuss
the advantages and disadvantages of each of these cases, including an example of a
type of organization where each would be appropriate.

Consider user accounts on a system with a Web server configured to provide access to
user Web areas. In general, this uses a standard directory name, such as ‘public_html,
in a user’s home directory. This acts as their user Web area if it exists. However, to
allow the Web server to access the pages in this directory, it must have at least search
(execute) access to the user’s home directory, read/execute access to the Web directory,
and read access to any webpages in it. Consider the interaction of this requirement

4.8

4.9

4.10

4.10 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 167

Figure 415 VAX/VMS Access Modes

with the cases you discussed for the preceding problem. What consequences does this

requirement have? Note a Web server typically executes as a special user, and in a

group that is not shared with most users on the system. Are there some circumstances

when running such a Web service is simply not appropriate? Explain.

Assume an application requires access control policies based on the applicant’s age

and the type of funding to be provided. Using an ABAC approach, write policy rules

for each of the following scenarios:

a. If the applicant’s age is more than 35, only “Research Grants (RG)” can be
provided.

b. If the applicant’s age is less than or equal to 35, both “RG and Travel Grants (TG)”
can be provided.

Assume a system with K subject attributes, M object attributes and Range () denotes

the range of possible values that each attribute can take. What are the number of

roles and permissions required for an RBAC model? What is the problem with this

approach if additional attributes are added?

For the NIST RBAC standard, we can define the general role hierarchy as follows:

RH C ROLES X ROLES is a partial order on ROLES called the inheritance rela-
tion, written as =, where r; = r, only if all permissions of r, are also permissions of
r1, and all users of r; are also users of r,. Define the set authorized_permissions(r;) to
be the set of all permissions associated with role r;. Define the set authorized_users(r;)
to be the set of all users assigned to role r;. Finally, node r; is represented as an imme-
diate descendant of r, by r; >> r,, if r; = r,, but no role in the role hierarchy lies
between r and r,.

a. Using the preceding definitions, as needed, provide a formal definition of the gen-

eral role hierarchy.
b. Provide a formal definition of a limited role hierarchy.

168 CHAPTER 4 / ACCESS CONTROL

4.11

4.12

In the example of Section 4.9, use the notation Role(x). Position and Role(x). Function

to denote the position and the function associated with role x.

a. We can define the role hierarchy for this example as one in which one role is
superior to another if its position and functions are both superior. Express this
relationship formally.

b. An alternative role hierarchy is one in which a role is equal to another if its posi-
tion is equal, regardless of the function. Express this relationship formally.

In the example of the online entertainment store in Section 4.6, with the finer-grained

policy that includes premium and regular users, describe the ABAC policy rules for

accessing a movie, and list all the advantages of an ABAC control policy.

DATABASE AND DATA CENTER
SECURITY

5.1

5.2

S

54

SIS

5.6

5b7/

5.8

5.9

The Need for Database Security
Database Management Systems

Relational Databases

Elements of a Relational Database System

Structured Query Language

SQL Injection Attacks

A Typical SQLi Attack

The Injection Technique

SQLi Attack Avenues and Types

SQLi Countermeasures
Database Access Control

SQL-Based Access Definition
Cascading Authorizations
Role-Based Access Control

Inference
Database Encryption

Data Center Security

Data Center Elements
Data Center Security Considerations
TIA-492

Key Terms, Review Questions, and Problems

169

170 CHAPTER 5 / DATABASE AND DATA CENTER SECURITY

LEARNING OBJECTIVES
After studying this chapter, you should be able to:
@ Understand the unique need for database security, separate from ordinary

computer security measures.

@ Present an overview of the basic elements of a database management
system.

Present an overview of the basic elements of a relational database system.

@ Define and explain SOL injection attacks.

@ Compare and contrast different approaches to database access control.
@ Explain how inference poses a security threat in database systems.

@ Discuss the use of encryption in a database system.

@ Discuss security issues related to data centers.

This chapter looks at the unique security issues that relate to databases. The focus
of this chapter is on relational database management systems (RDBMS). The rela-
tional approach dominates industry, government, and research sectors, and is likely
to do so for the foreseeable future. We begin with an overview of the need for data-
base-specific security techniques. Then we provide a brief introduction to database
management systems, followed by an overview of relational databases. Next, we look
at the issue of database access control, followed by a discussion of the inference
threat. Then, we examine database encryption. Finally, we will examine the security
issues related to the deployment of large data centers.

5.1 THE NEED FOR DATABASE SECURITY

Organizational databases tend to concentrate sensitive information in a single logical
system. Examples include:

Corporate financial data
Confidential phone records

Customer and employee information, such as name, Social Security number,
bank account information, and credit card information

Proprietary product information
Health care information and medical records

For many businesses and other organizations, it is important to be able to pro-

vide customers, partners, and employees with access to this information. But such
information can be targeted by internal and external threats of misuse or unauthor-
ized change. Accordingly, security specifically tailored to databases is an increasingly
important component of an overall organizational security strategy.

5.2 / DATABASE MANAGEMENT SYSTEMS 171

[BENNO6] cites the following reasons why database security has not kept pace
with the increased reliance on databases:

1. There is a dramatic imbalance between the complexity of modern database
management systems (DBMS) and the security techniques used to protect these
critical systems. A DBMS is a very complex, large piece of software, providing
many options, all of which need to be well understood and then secured to avoid
data breaches. Although security techniques have advanced, the increasing
complexity of the DBMS —with many new features and services—has brought
a number of new vulnerabilities and the potential for misuse.

2. Databases have a sophisticated interaction protocol called the Structured Query
Language (SQL), which is far more complex, than for example, the Hypertext
Transfer Protocol (HTTP) used to interact with a Web service. Effective database
security requires a strategy based on a full understanding of the security vulner-
abilities of SQL.

3. The typical organization lacks full-time database security personnel. The result is a
mismatch between requirements and capabilities. Most organizations have a staff
of database administrators, whose job is to manage the database to ensure avail-
ability, performance, correctness, and ease of use. Such administrators may have
limited knowledge of security and little available time to master and apply security
techniques. On the other hand, those responsible for security within an organiza-
tion may have very limited understanding of database and DBMS technology.

4. Most enterprise environments consist of a heterogeneous mixture of database
platforms (Oracle, IBM DB2 and Informix, Microsoft, Sybase, etc.), enterprise
platforms (Oracle E-Business Suite, PeopleSoft, SAP, Siebel, etc.), and OS plat-
forms (UNIX, Linux, z/OS, and Windows, etc.). This creates an additional com-
plexity hurdle for security personnel.

An additional recent challenge for organizations is their increasing reliance on
cloud technology to host part or all of the corporate database. This adds an additional
burden to the security staff.

5.2 DATABASE MANAGEMENT SYSTEMS

In some cases, an organization can function with a relatively simple collection of files
of data. Each file may contain text (e.g., copies of memos and reports) or numerical
data (e.g., spreadsheets). A more elaborate file consists of a set of records. However,
for an organization of any appreciable size, a more complex structure known as a
database is required. A database is a structured collection of data stored for use
by one or more applications. In addition to data, a database contains the relation-
ships between data items and groups of data items. As an example of the distinc-
tion between data files and a database, consider the following: A simple personnel
file might consist of a set of records, one for each employee. Each record gives the
employee’s name, address, date of birth, position, salary, and other details needed by
the personnel department. A personnel database includes a personnel file, as just

172 CHAPTER 5 / DATABASE AND DATA CENTER SECURITY

described. It may also include a time and attendance file, showing for each week the
hours worked by each employee. With a database organization, these two files are
tied together so a payroll program can extract the information about time worked
and salary for each employee to generate paychecks.

Accompanying the database is a database management system (DBMS), which
is a suite of programs for constructing and maintaining the database and for offering
ad hoc query facilities to multiple users and applications. A query language provides
a uniform interface to the database for users and applications.

Figure 5.1 provides a simplified block diagram of a DBMS architecture. Data-
base designers and administrators make use of a data definition language (DDL)
to define the database logical structure and procedural properties, which are repre-
sented by a set of database description tables. A data manipulation language (DML)
provides a powerful set of tools for application developers. Query languages are
declarative languages designed to support end users. The database management sys-
tem makes use of the database description tables to manage the physical database.
The interface to the database is through a file manager module and a transaction
manager module. In addition to the database description table, two other tables sup-
port the DBMS. The DBMS uses authorization tables to ensure the user has permis-
sion to execute the query language statement on the database. The concurrent access
table prevents conflicts when simultaneous conflicting commands are executed.

Database systems provide efficient access to large volumes of data and are vital
to the operation of many organizations. Because of their complexity and criticality,
database systems generate security requirements that are beyond the capability of
typical OS-based security mechanisms or stand-alone security packages.

Database User User
utilities applications queries
Y \
DDL DML and query
processor language processor
A
—— ¥ N
o
Database
description
\—_tables
Y Y
A
C 3 DBMS C 3
| At - Concurrent
LU PAL o Transaction File manager —
tables manager g tables

DDL = data definition language
DML = data manipulation language

Physical

database

Figure 5.1 DBMS Architecture

5.3 / RELATIONAL DATABASES 173

Operating system security mechanisms typically control read and write access
to entire files. So, they could be used to allow a user to read or to write any informa-
tion in, for example, a personnel file. But they could not be used to limit access to
specific records or fields in that file. A DBMS typically does allow this type of more
detailed access control to be specified. It also usually enables access controls to be
specified over a wider range of commands, such as to select, insert, update, or delete
specified items in the database. Thus, security services and mechanisms are needed
that are designed specifically for, and integrated with, database systems.

5.3 RELATIONAL DATABASES

The basic building block of a relational database is a table of data, consisting of
rows and columns, similar to a spreadsheet. Each column holds a particular type of
data, while each row contains a specific value for each column. Ideally, the table has
at least one column in which each value is unique, thus serving as an identifier for a
given entry. For example, a typical telephone directory contains one entry for each
subscriber, with columns for name, telephone number, and address. Such a table is
called a flat file because it is a single two-dimensional (rows and columns) file. In
a flat file, all of the data are stored in a single table. For the telephone directory,
there might be a number of subscribers with the same name, but the telephone
numbers should be unique, so the telephone number serves as a unique identifier
for a row. However, two or more people sharing the same phone number might
each be listed in the directory. To continue to hold all of the data for the telephone
directory in a single table and to provide for a unique identifier for each row, we
could require a separate column for secondary subscriber, tertiary subscriber, and
so on. The result would be that for each telephone number in use, there is a single
entry in the table.

The drawback of using a single table is that some of the column positions for a
given row may be blank (not used). In addition, any time a new service or new type
of information is incorporated in the database, more columns must be added and the
database and accompanying software must be redesigned and rebuilt.

The relational database structure enables the creation of multiple tables tied
together by a unique identifier that is present in all tables. Figure 5.2 shows how new
services and features can be added to the telephone database without reconstructing
the main table. In this example, there is a primary table with basic information for
each telephone number. The telephone number serves as a primary key. The database
administrator can then define a new table with a column for the primary key and
other columns for other information.

Users and applications use a relational query language to access the database.
The query language uses declarative statements rather than the procedural instruc-
tions of a programming language. In essence, the query language allows the user to
request selected items of data from all records that fit a given set of criteria. The
software then figures out how to extract the requested data from one or more tables.
For example, a telephone company representative could retrieve a subscriber’s billing
information as well as the status of special services or the latest payment received,
all displayed on one screen.

174 CHAPTER 5 / DATABASE AND DATA CENTER SECURITY

CALLER ID TABLE ADDITIONAL
SUBSCRIBER TABLE

PRIMARY TABLE

BILLING HISTORY CURRENT BILL
TABLE TABLE

Figure 5.2 Example Relational Database Model A relational database uses mul-
tiple tables related to one another by a designated key; in this case the key is the
Phone-Number field.

Elements of a Relational Database System

In relational database parlance, the basic building block is a relation, which is a
flat table. Rows are referred to as tuples, and columns are referred to as attributes
(see Table 5.1). A primary key is defined to be a portion of a row used to uniquely
identify a row in a table; the primary key consists of one or more column names. In
the example of Figure 5.2, a single attribute, PhoneNumber, is sufficient to uniquely
identify a row in a particular table. An abstract model of a relational database table is

Table 5.1 Basic Terminology for Relational Databases

Formal Name Common Name Also Known As
Relation Table File

Tuple Row Record
Attribute Column Field

5.3 / RELATIONAL DATABASES 175

Attributes
e o o i e o o
A, A; Ay
1 X11 e o o Xij e o o X1m
. . . .
. . . .
12
=
St
=]
8 1 Xi1 o o o Xji e o o Xim
~ i ij i
. . . .
. . . o
. . . .
N N1 o o o xNj o o o XM

Figure 5.3 Abstract Model of a Relational Database

shown as Figure 5.3. There are N individuals, or entities, in the table and M attributes.
Each attribute A; has |A]»| possible values, with x; denoting the value of attribute j
for entity i.

To create a relationship between two tables, the attributes that define the
primary key in one table must appear as attributes in another table, where they are
referred to as a foreign key. Whereas the value of a primary key must be unique
for each tuple (row) of its table, a foreign key value can appear multiple times in
a table, so there is a one-to-many relationship between a row in the table with the
primary key and rows in the table with the foreign key. Figure 5.4a provides an
example. In the Department table, the department ID (Did) is the primary key;
each value is unique. This table gives the ID, name, and account number for each
department. The Employee table contains the name, salary code, employee ID, and
phone number of each employee. The Employee table also indicates the depart-
ment to which each employee is assigned by including Did. Did is identified as a
foreign key and provides the relationship between the Employee table and the
Department table.

A view is a virtual table. In essence, a view is the result of a query that returns
selected rows and columns from one or more tables. Figure 5.4b is a view that includes
the employee name, ID, and phone number from the Employee table and the cor-
responding department name from the Department table. The linkage is the Did, so
the view table includes data from each row of the Employee table, with additional
data from the Department table. It is also possible to construct a view from a single
table. For example, one view of the Employee table consists of all rows, with the salary
code column deleted. A view can be qualified to include only some rows and/or some
columns. For example, a view can be defined consisting of all rows in the Employee
table for which the Did = 15.

Views are often used for security purposes. A view can provide restricted access
to a relational database so a user or application only has access to certain rows or
columns.

176 CHAPTER 5 / DATABASE AND DATA CENTER SECURITY

Department Table Employee Table
Did Dname Dacctno Ename | Did | Salarycode | Eid Ephone
human resources 528221 Robin | 15 23 2345 | 6127092485
8 | education 202035 Neil 13 12 5088 | 6127092246
accounts 709257 Jasmine| 4 26 7712 | 6127099348
13 | public relations 755827 Cody | 15 22 9664 | 6127093148
15 | services 223945 Holly 8 23 3054 | 6127092729
P". Robin 8 24 2976 | 6127091945
rimary
key Smith 9 21 4490 | 6127099380
—— ——
Foreign Primary
key key

(a) Two tables in a relational database

Dname Ename | Eid Ephone
human resources | Jasmine | 7712 | 6127099348
education Holly 3054 | 6127092729
education Robin 2976 | 6127091945
accounts Smith 4490 | 6127099380
public relations | Neil 5088 | 6127092246
services Robin 2345 | 6127092485
services Cody 9664 | 6127093148

(b) A view derived from the database

Figure 5.4 Relational Database Example

Structured Query Language

Structured Query Language (SQL) is a standardized language that can be used to
define schema, manipulate, and query data in a relational database. There are several
versions of the ANSI/ISO standard and a variety of different implementations, but

all follow the same basic syntax and semantics.
For example, the two tables in Figure 5.4a are defined as follows:

CREATE TABLE department (
Did INTEGER PRIMARY KEY,
Dname CHAR (30),

Dacctno CHAR (6))

CREATE TABLE employee (
Ename CHAR (30),

Did INTEGER,

SalaryCode INTEGER,

Eid INTEGER PRIMARY KEY,

Ephone CHAR (10),

FOREIGN KEY (Did) REFERENCES department (Did))

5.4 / SQL INJECTION ATTACKS 177

The basic command for retrieving information is the SELECT statement.
Consider this example:

SELECT Ename, Eid, Ephone
FROM Employee
WHERE Did = 15

This query returns the Ename, Eid, and Ephone fields from the Employee table
for all employees assigned to department 15.
The view in Figure 5.4b is created using the following SQL statement:

CREATE VIEW newtable (Dname, Ename, Eid, Ephone)
AS SELECT D.Dname E.Ename, E.Eid, E.Ephone

FROM Department D Employee E

WHERE E.Did = D.Did

The preceding are just a few examples of SQL functionality. SQOL statements
can be used to create tables, insert and delete data in tables, create views, and retrieve
data with query statements.

5.4 SQL INJECTION ATTACKS

The SQL injection (SQLi) attack is one of the most prevalent and dangerous net-
work-based security threats. Consider the following reports:

1. The July 2013 Imperva Web Application Attack Report [IMPE13] surveyed a
cross section of Web application servers in industry and monitored eight differ-
ent types of common attacks. The report found that SQLi attacks ranked first
or second in total number of attack incidents, the number of attack requests
per attack incident, and average number of days per month that an application
experienced at least one attack incident. Imperva observed a single website that
received 94,057 SQL injection attack requests in one day.

2. The Open Web Application Security Project’s 2013 report [OWAS13] on the
10 most critical Web application security risks listed injection attacks, especially
SQLi attacks, as the top risk. This ranking is unchanged from its 2010 report.

3. The Veracode 2016 State of Software Security Report [VERA16] found that per-
centage of applications affected by SQLi attacks is around 35%.

4. The Trustwave 2016 Global Security Report [TRUS16] lists SQLi attacks as
one of the top two intrusion techniques. The report notes that SQLi can pose a
significant threat to sensitive data such as personally identifiable information
(PII) and credit card data, and it can be hard to prevent and relatively easy to
exploit these attacks.

In general terms, an SQLi attack is designed to exploit the nature of Web appli-
cation pages. In contrast to the static webpages of years gone by, most current websites
have dynamic components and content. Many such pages ask for information, such
as location, personal identity information, and credit card information. This dynamic

178 CHAPTER 5 / DATABASE AND DATA CENTER SECURITY

content is usually transferred to and from back-end databases that contain volumes of
information—anything from cardholder data to which type of running shoes is most
purchased. An application server webpage will make SQL queries to databases to
send and receive information critical to making a positive user experience.

In such an environment, an SQLIi attack is designed to send malicious SQL
commands to the database server. The most common attack goal is bulk extraction
of data. Attackers can dump database tables with hundreds of thousands of cus-
tomer records. Depending on the environment, SQL injection can also be exploited
to modify or delete data, execute arbitrary operating system commands, or launch
denial-of-service (DoS) attacks. SQL injection is one of several forms of injection
attacks that we discuss more generally in Chapter 11.2.

A Typical SQLi Attack

SQLi is an attack that exploits a security vulnerability occurring in the database layer
of an application (such as queries). Using SOL injection, the attacker can extract or
manipulate the Web application’s data. The attack is viable when user input is either
incorrectly filtered for string literal escape characters embedded in SQL statements
or user input is not strongly typed, and thereby unexpectedly executed.

Figure 5.5, from [ACUN13], is a typical example of an SQL.i attack. The steps
involved are as follows:

1. Hacker finds a vulnerability in a custom Web application and injects an SQL
command to a database by sending the command to the Web server. The com-
mand is injected into traffic that will be accepted by the firewall.

2. The Web server receives the malicious code and sends it to the Web application
server.

3. The Web application server receives the malicious code from the Web server and
sends it to the database server.

4. The database server executes the malicious code on the database. The database
returns data from credit cards table.

5. The Web application server dynamically generates a page with data including
credit card details from the database.

6. The Web server sends the credit card details to the hacker.

The Injection Technique

The SQLi attack typically works by prematurely terminating a text string and append-
ing a new command. Because the inserted command may have additional strings
appended to it before it is executed, the attacker terminates the injected string with
a comment mark “--”Subsequent text is ignored at execution time.

As a simple example, consider a script that build an SQL query by combining
predefined strings with text entered by a user:

var Shipcity;

ShipCity = Request.form (“ShipCity”):;

var sqgl = “select * from OrdersTable where ShipCity = ' +
ShipCity + “'7;

5.4 / SQL INJECTION ATTACKS 179

Switch l l
Router Wireless
Firewall access point
Web servers
Legend: Web
Data exchanged application
between hacker server
and servers
N Database servers
@ Two-way traffic
between hacker Database |

and Web server

* Credit card data is 8 8

retrieved from
database |

Figure 5.5 Typical SQL Injection Attack

The intention of the script’s designer is that a user will enter the name of a city.
For example, when the script is executed, the user is prompted to enter a city, and if
the user enters Redmond, then the following SQL query is generated:

SELECT * FROM OrdersTable WHERE ShipCity = ‘Redmond’
Suppose, however, the user enters the following:

Boston’; DROP table OrdersTable--

This results in the following SQL query:

SELECT * FROM OrdersTable WHERE ShipCity =
‘Redmond’; DROP table OrdersTable--

The semicolon is an indicator that separates two commands, and the double
dash is an indicator that the remaining text of the current line is a comment and not
to be executed. When the SQL server processes this statement, it will first select all
records in OrdersTable where ShipCity is Redmond.Then, it executes the
DROP request, which deletes the table.

180 CHAPTER 5 / DATABASE AND DATA CENTER SECURITY

SQLi Attack Avenues and Types

We can characterize SQLi attacks in terms of the avenue of attack and the type of
attack [CHAN11, HALF06]. The main avenues of attack are as follows:

* User input: In this case, attackers inject SQOL commands by providing suit-
ably crafted user input. A Web application can read user input in several
ways based on the environment in which the application is deployed. In most
SQLi attacks that target Web applications, user input typically comes from
form submissions that are sent to the Web application via HTTP GET or
POST requests. Web applications are generally able to access the user input
contained in these requests as they would access any other variable in the
environment.

* Server variables: Server variables are a collection of variables that contain
HTTP headers, network protocol headers, and environmental variables. Web
applications use these server variables in a variety of ways, such as logging
usage statistics and identifying browsing trends. If these variables are logged to
a database without sanitization, this could create an SQL injection vulnerability.
Because attackers can forge the values that are placed in HTTP and network
headers, they can exploit this vulnerability by placing data directly into the
headers. When the query to log the server variable is issued to the database, the
attack in the forged header is then triggered.

* Second-order injection: Second-order injection occurs when incomplete pre-
vention mechanisms against SQL injection attacks are in place. In second-order
injection, a malicious user could rely on data already present in the system or
database to trigger an SQL injection attack,so when the attack occurs, the input
that modifies the query to cause an attack does not come from the user, but
from within the system itself.

* Cookies: When a client returns to a Web application, cookies can be used to
restore the client’s state information. Because the client has control over cook-
ies, an attacker could alter cookies such that when the application server builds
an SQL query based on the cookie’s content, the structure and function of the
query is modified.

* Physical user input: SQL injection is possible by supplying user input that con-
structs an attack outside the realm of Web requests. This user-input could take
the form of conventional barcodes, RFID tags, or even paper forms which are
scanned using optical character recognition and passed to a database manage-
ment system.

Attack types can be grouped into three main categories: inband, inferential,
and out-of-band. An inband attack uses the same communication channel for inject-
ing SQL code and retrieving results. The retrieved data are presented directly in the
application webpage. Inband attack types include the following:

* Tautology: This form of attack injects code in one or more condi-
tional statements so they always evaluate to true. For example, consider

5.4 / SQL INJECTION ATTACKS 181

this script, whose intent is to require the user to enter a valid name and

password:
Squery = “SELECT info FROM user WHERE name =
"$_GET[“name”]’ AND pwd = ‘S$_GET[“pwd”]’"”;

Suppose the attacker submits * ' OR 1=1 --" for the name field. The
resulting query would look like this:

SELECT info FROM users WHERE name = ‘' ‘' OR 1=1 -- AND pwpd = ' '

The injected code effectively disables the password check (because of the
comment indicator --) and turns the entire WHERE clause into a tautology.
The database uses the conditional as the basis for evaluating each row and
deciding which ones to return to the application. Because the conditional is a
tautology, the query evaluates to true for each row in the table and returns all
of them.

* End-of-line comment: After injecting code into a particular field, legitimate
code that follows are nullified through usage of end of line comments. An
example would be to add “~ - after inputs so that remaining queries are not
treated as executable code, but comments. The preceding tautology example is
also of this form.

* Piggybacked queries: The attacker adds additional queries beyond the
intended query, piggy-backing the attack on top of a legitimate request. This
technique relies on server configurations that allow several different queries
within a single string of code. The example in the preceding section is of this
form.

With an inferential attack, there is no actual transfer of data, but the attacker
is able to reconstruct the information by sending particular requests and observing
the resulting behavior of the website/database server. Inferential attack types include
the following:

¢ Illegal/logically incorrect queries: This attack lets an attacker gather impor-
tant information about the type and structure of the backend database of a
Web application. The attack is considered a preliminary, information-gathering
step for other attacks. The vulnerability leveraged by this attack is that the
default error page returned by application servers is often overly descriptive.
In fact, the simple fact that an error messages is generated can often reveal
vulnerable/injectable parameters to an attacker.

* Blind SQL injection: Blind SQL injection allows attackers to infer the data
present in a database system even when the system is sufficiently secure to not
display any erroneous information back to the attacker. The attacker asks the
server true/false questions. If the injected statement evaluates to true, the site
continues to function normally. If the statement evaluates to false, although

182 CHAPTER 5 / DATABASE AND DATA CENTER SECURITY

there is no descriptive error message, the page differs significantly from the
normally functioning page.

In an out-of-band attack, data are retrieved using a different channel (e.g., an
e-mail with the results of the query is generated and sent to the tester). This can be
used when there are limitations on information retrieval, but outbound connectivity
from the database server is lax.

SQLi Countermeasures

Because SQLi attacks are so prevalent, damaging, and varied both by attack avenue
and type, a single countermeasure is insufficient. Rather an integrated set of tech-
niques is necessary. In this section, we provide a brief overview of the types of coun-
termeasures that are in use or being researched, using the classification in [SHAR13].
These countermeasures can be classified into three types: defensive coding, detection,
and run-time prevention.

Many SQLi attacks succeed because developers have used insecure coding prac-
tices, as we discuss in Chapter 11. Thus, defensive coding is an effective way to dramati-
cally reduce the threat from SQLi. Examples of defensive coding include the following:

* Manual defensive coding practices: A common vulnerability exploited by SQLi
attacks is insufficient input validation. The straightforward solution for elimi-
nating these vulnerabilities is to apply suitable defensive coding practices. An
example is input type checking, to check that inputs that are supposed to be
numeric contain no characters other than digits. This type of technique can
avoid attacks based on forcing errors in the database management system.
Another type of coding practice is one that performs pattern matching to try
to distinguish normal input from abnormal input.

* Parameterized query insertion: This approach attempts to prevent SQLi by
allowing the application developer to more accurately specify the structure
of an SQL query, and pass the value parameters to it separately such that any
unsanitary user input is not allowed to modify the query structure.

* SQL DOM: SQOL DOM is a set of classes that enables automated data type vali-
dation and escaping [MCCLO05]. This approach uses encapsulation of database
queries to provide a safe and reliable way to access databases. This changes the
query-building process from an unregulated one that uses string concatenation
to a systematic one that uses a type-checked API. Within the API, developers
are able to systematically apply coding best practices such as input filtering and
rigorous type checking of user input.

A variety of detection methods have been developed, including the following:

 Signature-based: This technique attempts to match specific attack patterns.
Such an approach must be constantly updated and may not work against self-
modifying attacks.

° Anomaly-based: This approach attempts to define normal behavior then
detect behavior patterns outside the normal range. A number of approaches

5.5 / DATABASE ACCESS CONTROL 183

have been used. In general terms, there is a training phase, in which the
system learns the range of normal behavior, followed by the actual detec-
tion phase.

e Code analysis: Code analysis techniques involve the use of a test suite to detect
SQLi vulnerabilities. The test suite is designed to generate a wide range of SQLi
attacks and assess the response of the system.

Finally, a number of run-time prevention techniques have been developed as
SQLi countermeasures. These techniques check queries at runtime to see if they
conform to a model of expected queries. Various automated tools are available for
this purpose [CHAN11, SHAR13].

5.5 DATABASE ACCESS CONTROL

Commercial and open-source DBMSs typically provide an access control capabil-
ity for the database. The DBMS operates on the assumption that the computer
system has authenticated each user. As an additional line of defense, the com-
puter system may use the overall access control system described in Chapter 4 to
determine whether a user may have access to the database as a whole. For users
who are authenticated and granted access to the database, a database access con-
trol system provides a specific capability that controls access to portions of the
database.

Commercial and open-source DBMSs provide discretionary or role-based
access control. We defer a discussion of mandatory access control considerations to
Chapter 27 Typically,a DBMS can support a range of administrative policies, includ-
ing the following:

* Centralized administration: A small number of privileged users may grant and
revoke access rights.

° Ownership-based administration: The owner (creator) of a table may grant and
revoke access rights to the table.

* Decentralized administration: In addition to granting and revoking access
rights to a table, the owner of the table may grant and revoke authorization
rights to other users, allowing them to grant and revoke access rights to the
table.

As with any access control system, a database access control system distin-
guishes different access rights, including create, insert, delete, update, read, and write.
Some DBMSs provide considerable control over the granularity of access rights.
Access rights can be to the entire database, to individual tables, or to selected rows
or columns within a table. Access rights can be determined based on the contents
of a table entry. For example, in a personnel database, some users may be limited to
seeing salary information only up to a certain maximum value. And a department
manager may only be allowed to view salary information for employees in his or her
department.

184 CHAPTER 5 / DATABASE AND DATA CENTER SECURITY

SQL-Based Access Definition

SQL provides two commands for managing access rights, GRANT and REVOKE.
For different versions of SQL, the syntax is slightly different. In general terms, the
GRANT command has the following syntax:'

GRANT { privileges | role }

[ON table]

TO {user | role | PUBLIC}
[IDENTIFIED BY password]

[WITH GRANT OPTION]

This command can be used to grant one or more access rights or can be used
to assign a user to a role. For access rights, the command can optionally specify that it
applies only to a specified table. The TO clause specifies the user or role to which the
rights are granted. A PUBLIC value indicates that any user has the specified access rights.
The optional IDENTIFIED BY clause specifies a password that must be used to revoke
the access rights of this GRANT command. The GRANT OPTION indicates that the
grantee can grant this access right to other users, with or without the grant option.

As a simple example, consider the following statement:

GRANT SELECT ON ANY TABLE TO ricflair

This statement enables the user ricflair to query any table in the database.
Different implementations of SQL provide different ranges of access rights. The
following is a typical list:

¢ Select: Grantee may read entire database; individual tables; or specific columns
in a table.

* Insert: Grantee may insert rows in a table; or insert rows with values for specific
columns in a table.

e Update: Semantics is similar to INSERT.

¢ Delete: Grantee may delete rows from a table.

* References: Grantee is allowed to define foreign keys in another table that refer
to the specified columns.

The REVOKE command has the following syntax:

REVOKE {privileges | role }
[ON table]
FROM {user | role | PUBLIC}

I'The following syntax definition conventions are used. Elements separated by a vertical line are alterna-
tives. A list of alternatives is grouped in curly brackets. Square brackets enclose optional elements. That is,
the elements inside the square brackets may or may not be present.

5.5 / DATABASE ACCESS CONTROL 185

Thus, the following statement revokes the access rights of the preceding example:

REVOKE SELECT ON ANY TABLE FROM ricflair

Cascading Authorizations

The grant option enables an access right to cascade through a number of users. We
consider a specific access right and illustrate the cascade phenomenon in Figure 5.6.
The figure indicates that Ann grants the access right to Bob at time ¢ = 10 and to
Chris at time ¢+ = 20. Assume the grant option is always used. Thus, Bob is able to
grant the access right to David at + = 30. Chris redundantly grants the access right
to David at t = 50. Meanwhile, David grants the right to Ellen, who in turn grants it
to Jim; and subsequently David grants the right to Frank.

Just as the granting of privileges cascades from one user to another using the
grant option, the revocation of privileges also cascaded. Thus, if Ann revokes the
access right to Bob and Chris, then the access right is also revoked to David, Ellen,
Jim, and Frank. A complication arises when a user receives the same access right
multiple times, as happens in the case of David. Suppose Bob revokes the privilege
from David. David still has the access right because it was granted by Chris att = 50.
However, David granted the access right to Ellen after receiving the right, with grant
option, from Bob but prior to receiving it from Chris. Most implementations dic-
tate that in this circumstance, the access right to Ellen and therefore Jim is revoked
when Bob revokes the access right to David. This is because at ¢+ = 40, when David
granted the access right to Ellen, David only had the grant option to do this from
Bob. When Bob revokes the right, this causes all subsequent cascaded grants that are
traceable solely to Bob via David to be revoked. Because David granted the access
right to Frank after David was granted the access right with grant option from Chris,
the access right to Frank remains. These effects are shown in the lower portion of
Figure 5.6.

Jim

Figure 5.6 Bob Revokes Privilege from David

186 CHAPTER 5 / DATABASE AND DATA CENTER SECURITY

To generalize, the convention followed by most implementations is as follows.
When user A revokes an access right, any cascaded access right is also revoked, unless
that access right would exist even if the original grant from A had never occurred.
This convention was first proposed in [GRIF76].

Role-Based Access Control

A role-based access control (RBAC) scheme is a natural fit for database access con-
trol. Unlike a file system associated with a single or a few applications, a database
system often supports dozens of applications. In such an environment, an individual
user may use a variety of applications to perform a variety of tasks, each of which
requires its own set of privileges. It would be poor administrative practice to simply
grant users all of the access rights they require for all the tasks they perform. RBAC
provides a means of easing the administrative burden and improving security.

In a discretionary access control environment, we can classify database users
in to three broad categories:

* Application owner: An end user who owns database objects (tables, columns,
and rows) as part of an application. That is, the database objects are generated
by the application or are prepared for use by the application.

° End user other than application owner: An end user who operates on data-
base objects via a particular application but does not own any of the database
objects.

* Administrator: User who has administrative responsibility for part or all of the
database.

We can make some general statements about RBAC concerning these three
types of users. An application has associated with it a number of tasks, with each
task requiring specific access rights to portions of the database. For each task, one
or more roles can be defined that specify the needed access rights. The application
owner may assign roles to end users. Administrators are responsible for more sensi-
tive or general roles, including those having to do with managing physical and logical
database components, such as data files, users, and security mechanisms. The system
needs to be set up to give certain administrators certain privileges. Administrators in
turn can assign users to administrative-related roles.

A database RBAC facility needs to provide the following capabilities:

¢ Create and delete roles.
e Define permissions for a role.

* Assign and cancel assignment of users to roles.

A good example of the use of roles in database security is the RBAC facility
provided by Microsoft SQL Server. SQL Server supports three types of roles: Server
roles, database roles, and user-defined roles. The first two types of roles are referred
to as fixed roles (see Table 5.2); these are preconfigured for a system with specific
access rights. The administrator or user cannot add, delete, or modify fixed roles; it is
only possible to add and remove users as members of a fixed role.

Fixed server roles are defined at the server level and exist independently of
any user database. They are designed to ease the administrative task. These roles

5.5 / DATABASE ACCESS CONTROL 187

Table 5.2 Fixed Roles in Microsoft SQL Server

Role Permissions
Fixed Server Roles
sysadmin Can perform any activity in SQL Server and have complete control over all
database functions
serveradmin Can set server-wide configuration options and shut down the server
setupadmin Can manage linked servers and startup procedures
securityadmin Can manage logins and CREATE DATABASE permissions, also read error
logs and change passwords
processadmin Can manage processes running in SQL Server
Dbcreator Can create, alter, and drop databases
diskadmin Can manage disk files
bulkadmin Can execute BULK INSERT statements
Fixed Database Roles
db_owner Has all permissions in the database

db_accessadmin

Can add or remove user IDs

db_datareader

Can select all data from any user table in the database

db_datawriter

Can modify any data in any user table in the database

db_ddladmin

Can issue all data definition language statements

db_securityadmin

Can manage all permissions, object ownerships, roles and role memberships

db_backupoperator

Can issue DBCC, CHECKPOINT, and BACKUP statements

db_denydatareader

Can deny permission to select data in the database

db_denydatawriter

Can deny permission to change data in the database

have different permissions and are intended to provide the ability to spread the
administrative responsibilities without having to give out complete control. Database
administrators can use these fixed server roles to assign different administrative tasks
to personnel and give them only the rights they absolutely need.

Fixed database roles operate at the level of an individual database. As with
fixed server roles, some of the fixed database roles, such as db_accessadmin and db_
securityadmin, are designed to assist a DBA with delegating administrative respon-
sibilities. Others, such as db_datareader and db_datawriter, are designed to provide
blanket permissions for an end user.

SQL Server allows users to create roles. These user-defined roles can then be
assigned access rights to portions of the database. A user with proper authorization
(typically, a user assigned to the db_securityadmin role) may define a new role and
associate access rights with the role. There are two types of user-defined roles: Stan-
dard and application. For a standard role, an authorized user can assign other users
to the role. An application role is associated with an application rather than with a
group of users and requires a password. The role is activated when an application
executes the appropriate code. A user who has access to the application can use the
application role for database access. Often, database applications enforce their own
security based on the application logic. For example, you can use an application role

https://sanet.st/blogs/polatebooks

188 CHAPTER 5 / DATABASE AND DATA CENTER SECURITY

with its own password to allow the particular user to obtain and modify any data
only during specific hours. Thus, you can realize more complex security management
within the application logic.

5.6 INFERENCE

Inference, as it relates to database security, is the process of performing authorized
queries and deducing unauthorized information from the legitimate responses
received. The inference problem arises when the combination of a number of data
items is more sensitive than the individual items, or when a combination of data items
can be used to infer data of higher sensitivity. Figure 5.7 illustrates the process. The
attacker may make use of nonsensitive data as well as metadata. Metadata refers to
knowledge about correlations or dependencies among data items that can be used to
deduce information not otherwise available to a particular user. The information trans-
fer path by which unauthorized data is obtained is referred to as an inference channel.

In general terms, two inference techniques can be used to derive additional
information: Analyzing functional dependencies between attributes within a table
or across tables, and merging views with the same constraints.

An example of the latter, shown in Figure 5.8, illustrates the inference prob-
lem. Figure 5.8a shows an Inventory table with four columns. Figure 5.8b shows two
views, defined in SQL as follows:

CREATE view V1 AS CREATE view V2 AS
SELECT Availability, Cost SELECT Item, Department
FROM Inventory FROM Inventory
WHERE Department = “hardware” WHERE Department = “hardware”
Non
sensitive Sensitive
data Inference data

\ /

Authorized
access Unauthorized

‘Z% access
A
Metadata ‘a

Figure 5.7 Indirect Information Access via Inference Channel

5.6 / INFERENCE

Item Availability Cost ($) | Department
Shelf support in-store/online 7.99 hardware
Lid support online only 5.49 hardware
Decorative chain in-store/online 104.99 hardware
Cake pan online only 12.99 housewares
Shower/tub cleaner | in-store/online 11.99 housewares
Rolling pin in-store/online 10.99 housewares
(a) Inventory table
Availability Cost ($) Item Department
in-store/online 7.99 Shelf support hardware
online only 5.49 Lid support hardware
in-store/online 104.99 Decorative chain | hardware
(b) Two views
Item Availability Cost ($) | Department
Shelf support in-store/online 7.99 | hardware
Lid support online only 5.49 hardware
Decorative chain | in-store/online 104.99 | hardware

189

(c) Table derived from combining query answers

Figure 5.8 Inference Example

Users of these views are not authorized to access the relationship between Item
and Cost. A user who has access to either or both views cannot infer the relationship
by functional dependencies. That is, there is not a functional relationship between
Item and Cost such that knowing Item and perhaps other information is sufficient to
deduce Cost. However, suppose the two views are created with the access constraint
that Item and Cost cannot be accessed together. A user who knows the structure
of the Inventory table and who knows that the view tables maintain the same row
order as the Inventory table is then able to merge the two views to construct the table
shown in Figure 5.8c. This violates the access control policy that the relationship of
attributes Item and Cost must not be disclosed.

In general terms, there are two approaches to dealing with the threat of disclo-
sure by inference:

* Inference detection during database design: This approach removes an infer-
ence channel by altering the database structure or by changing the access con-
trol regime to prevent inference. Examples include removing data dependencies
by splitting a table into multiple tables or using more fine-grained access control
roles in an RBAC scheme. Techniques in this category often result in unneces-
sarily stricter access controls that reduce availability.

 Inference detection at query time: This approach seeks to eliminate an infer-
ence channel violation during a query or series of queries. If an inference chan-
nel is detected, the query is denied or altered.

190 CHAPTER 5 / DATABASE AND DATA CENTER SECURITY

For either of the preceding approaches, some inference detection algorithm is
needed. This is a difficult problem and the subject of ongoing research. To give some
appreciation of the difficulty, we present an example taken from [LUNTS89]. Consider
a database containing personnel information, including names, addresses, and salaries
of employees. Individually, the name, address, and salary information is available to a
subordinate role, such as Clerk, but the association of names and salaries is restricted
to a superior role, such as Administrator. This is similar to the problem illustrated in
Figure 5.8. One solution to this problem is to construct three tables, which include
the following information:

Employees (Emp#, Name, Address)
Salaries (S#, Salary)
Emp-Salary (Emp#, S#)

where each line consists of the table name followed by a list of column names for that table.
In this case, each employee is assigned a unique employee number (Emp#) and a unique
salary number (S#). The Employees table and the Salaries table are accessible to the Clerk
role, but the Emp-Salary table is only available to the Administrator role. In this structure,
the sensitive relationship between employees and salaries is protected from users assigned
the Clerk role. Now, suppose we want to add a new attribute, employee start date, which
is not sensitive. This could be added to the Salaries table as follows:

Employees (Emp#, Name, Address)
Salaries (S#, Salary, Start-Date)
Emp-Salary (Emp#, S#)

However, an employee’s start date is an easily observable or discoverable attri-
bute of an employee. Thus, a user in the Clerk role should be able to infer (or par-
tially infer) the employee’s name. This would compromise the relationship between
employee and salary. A straightforward way to remove the inference channel is to
add the start-date column to the Employees table rather than to the Salaries table.

The first security problem indicated in this sample, that it was possible to infer the
relationship between employee and salary, can be detected through analysis of the data
structures and security constraints that are available to the DBMS. However, the sec-
ond security problem, in which the start-date column was added to the Salaries table,
cannot be detected using only the information stored in the database. In particular, the
database does not indicate that the employee name can be inferred from the start date.

In the general case of a relational database, inference detection is a complex
and difficult problem. For multilevel secure databases, to be discussed in Chapter 27,
and statistical databases, to be discussed in the next section, progress has been made
in devising specific inference detection techniques.

5.7 DATABASE ENCRYPTION

The database is typically the most valuable information resource for any organi-
zation and is therefore protected by multiple layers of security, including firewalls,
authentication mechanisms, general access control systems, and database access

5.7 / DATABASE ENCRYPTION 191

control systems. In addition, for particularly sensitive data, database encryption is
warranted and often implemented. Encryption becomes the last line of defense in
database security.

There are two disadvantages to database encryption:

* Key management: Authorized users must have access to the decryption key
for the data for which they have access. Because a database is typically acces-
sible to a wide range of users and a number of applications, providing secure
keys to selected parts of the database to authorized users and applications is a
complex task.

¢ Inflexibility: When part or all of the database is encrypted, it becomes more
difficult to perform record searching.

Encryption can be applied to the entire database, at the record level (encrypt
selected records), at the attribute level (encrypt selected columns), or at the level of
the individual field.

A number of approaches have been taken to database encryption. In this
section, we look at a representative approach for a multiuser database.

A DBMS is a complex collection of hardware and software. It requires a large
storage capacity and requires skilled personnel to perform maintenance, disaster
protection, update, and security. For many small and medium-sized organizations, an
attractive solution is to outsource the DBMS and the database to a service provider.
The service provider maintains the database off-site and can provide high availability,
disaster prevention, and efficient access and update. The main concern with such a
solution is the confidentiality of the data.

A straightforward solution to the security problem in this context is to encrypt the
entire database and not provide the encryption/decryption keys to the service provider.
This solution by itself is inflexible. The user has little ability to access individual data
items based on searches or indexing on key parameters, but rather would have to down-
load entire tables from the database, decrypt the tables, and work with the results. To pro-
vide more flexibility, it must be possible to work with the database in its encrypted form.

An example of such an approach, depicted in Figure 5.9, s reported in [DAMIOS5]
and [DAMIO3]. A similar approach is described in [HACIO2]. Four entities are
involved:

* Data owner: An organization that produces data to be made available for con-
trolled release, either within the organization or to external users.

» User: Human entity that presents requests (queries) to the system. The user
could be an employee of the organization who is granted access to the database
via the server, or a user external to the organization who, after authentication,
is granted access.

e Client: Front end that transforms user queries into queries on the encrypted
data stored on the server.

* Server: An organization that receives the encrypted data from a data owner
and makes them available for distribution to clients. The server could in fact be
owned by the data owner but, more typically, is a facility owned and maintained
by an external provider.

192 CHAPTER 5 / DATABASE AND DATA CENTER SECURITY

A metadata
‘ i 1. Original query =~ j============

I
1
1
1
B — 1
1
1
: 1
User 4. ?lalntext i
result 1
1
Y

2. Transformed

Client query
Query
processor executor
3. Encrypted

result

7D
Meta- Encrypt/
caty decrypt Server

Figure 5.9 A Database Encryption Scheme

Let us first examine the simplest possible arrangement based on this scenario.
Suppose each individual item in the database is encrypted separately, all using the
same encryption key. The encrypted database is stored at the server, but the server
does not have the key, so the data are secure at the server. Even if someone were
able to hack into the server’s system, all he or she would have access to is encrypted
data. The client system does have a copy of the encryption key. A user at the client
can retrieve a record from the database with the following sequence:

1. The user issues an SQL query for fields from one or more records with a specific
value of the primary key.

2. The query processor at the client encrypts the primary key, modifies the SQL
query accordingly, and transmits the query to the server.

3. The server processes the query using the encrypted value of the primary key and
returns the appropriate record or records.

4. The query processor decrypts the data and returns the results.

For example, consider this query, which was introduced in Section 5.1, on the
database of Figure 5.4a:

SELECT Ename, Eid, Ephone
FROM Employee
WHERE Did = 15

Assume the encryption key k is used and the encrypted value of the department
id 15 is E(k, 15) = 1000110111001110. Then, the query processor at the client could
transform the preceding query into

5.7 / DATABASE ENCRYPTION 193

SELECT Ename, Eid, Ephone
FROM Employee
WHERE Did = 1000110111001110

This method is certainly straightforward but, as was mentioned, lacks flexibility.
For example, suppose the Employee table contains a salary attribute and the user
wishes to retrieve all records for salaries less than $70K. There is no obvious way to
do this, because the attribute value for salary in each record is encrypted. The set
of encrypted values do not preserve the ordering of values in the original attribute.

To provide more flexibility, the following approach is taken. Each record (row)
of a table in the database is encrypted as a block. Referring to the abstract model
of a relational database in Figure 5.3, each row R; is treated as a contiguous block
B; = (x;1]|x2]| - . . || x;5). Thus, each attribute value in R;, regardless of whether it
is text or numeric, is treated as a sequence of bits, and all of the attribute values
for that row are concatenated together to form a single binary block. The entire
row is encrypted, expressed as E(k, B;) = E(k, (x;]|xz||- . . || xir7)). To assist in data
retrieval, attribute indexes are associated with each table. For some or all of the
attributes an index value is created. For each row R; of the unencrypted database, the
mapping is as follows (see Figure 5.10):

(xilv Xigs v vv s xiM) - [E(k’ Bi)’ Iila Ii29 st IIM]

For each row in the original database, there is one row in the encrypted data-
base. The index values are provided to assist in data retrieval. We can proceed as
follows. For any attribute, the range of attribute values is divided into a set of non-
overlapping partitions that encompass all possible values, and an index value is
assigned to each partition.

Table 5.3 provides an example of this mapping. Suppose employee 1D (eid)
values lie in the range [1, 1000]. We can divide these values into five partitions:
[1,200],[201,400], [401, 600], [601, 800], and [801, 1000]; then assign index values 1,
2,3,4,and 5, respectively. For a text field, we can derive an index from the first letter
of the attribute value. For the attribute ename, let us assign index 1 to values starting
with A or B, index 2 to values starting with C or D, and so on. Similar partitioning
schemes can be used for each of the attributes. Table 5.3b shows the resulting table.
The values in the first column represent the encrypted values for each row. The actual
values depend on the encryption algorithm and the encryption key. The remaining

E(k, By) Iy; o o o Ilj e o o Iy

E(k, Bl) Ii e o o IU e o o IiM

E(k, BN) INl e o o INj o o o INM
B;= (xip Wxp 1 1 i)

Figure 5.10 Encryption Scheme for Database of Figure 5.3

194 CHAPTER 5 / DATABASE AND DATA CENTER SECURITY

Table 5.3 Encrypted Database Example
(a) Employee Table
eid ename salary addr did
23 Tom 70K Maple 45
860 Mary 60K Main 83
320 John 50K River 50
875 Jerry 55K Hopewell 92
(b) Encrypted Employee Table with Indexes
E(k, B) I(eid) I(ename) I(salary) I(addr) I(did)
1100110011001011 . . . 1 10 7 4
0111000111001010.. . . 5 7 2 7 8
1100010010001101 . . . 2 5 1 9 5
0011010011111101 . .. 5 2 4 9

columns show index values for the corresponding attribute values. The mapping func-
tions between attribute values and index values constitute metadata that are stored
at the client and data owner locations but not at the server.

This arrangement provides for more efficient data retrieval. Suppose, for
example, a user requests records for all employees with eid < 300. The query proces-
sor requests all records with /(eid) = 2. These are returned by the server. The query
processor decrypts all rows returned, discards those that do not match the original
query, and returns the requested unencrypted data to the user.

The indexing scheme just described does provide a certain amount of informa-
tion to an attacker, namely a rough relative ordering of rows by a given attribute. To
obscure such information, the ordering of indexes can be randomized. For exam-
ple, the eid values could be partitioned by mapping [1, 200], [201, 400], [401, 600],
[601, 800],and [801,1000] into 2,3, 5, 1, and 4, respectively. Because the metadata are
not stored at the server, an attacker could not gain this information from the server.

Other features may be added to this scheme. To increase the efficiency of access-
ing records by means of the primary key, the system could use the encrypted value of
the primary key attribute values, or a hash value. In either case, the row corresponding
to the primary key value could be retrieved individually. Different portions of the
database could be encrypted with different keys, so users would only have access to
that portion of the database for which they had the decryption key. This latter scheme
could be incorporated into a role-based access control system.

5.8 DATA CENTER SECURITY

A data center is an enterprise facility that houses a large number of servers, storage
devices, and network switches and equipment. The number of servers and storage
devices can run into the tens of thousands in a single facility. Examples of uses for

5.8 / DATA CENTER SECURITY 195

these large data centers include cloud service providers, search engines, large scien-
tific research facilities, and IT facilities for large enterprises. A data center generally
includes redundant or backup power supplies, redundant network connections, envi-
ronmental controls (e.g., air conditioning and fire suppression), and various security
devices. Large data centers are industrial scale operations using as much electricity
as a small town. A data center can occupy one room of a building, one or more floors,
or an entire building.

Data Center Elements

Figure 5.11 illustrates key elements of a large data center configuration. Most of the
equipment in a large data center is in the form of stacks of servers and storage mod-
ules mounted in open racks or closed cabinets, which are usually placed in single rows
forming corridors between them. This allows access to the front and rear of each rack
or cabinet. Typically, the individual modules are equipped with 10-Gbps or 40-Gbps
Ethernet ports to handle the massive traffic to and from these servers. Also typically,
each rack has one or two 10, 40 or 100-Gbps Ethernet switches to interconnect all
the servers and provide connectivity to the rest of the facility. The switches are often

Internet or
enterprise
network

Additional racks

leOOGbE/’\o ° o/

Internet or = ; = ; ’
. outer P outer;
enterprise Firewall Eth Switch Firewall
Eth Switch Eth Switch ’
100GbE
TT—
10GbE
& Eth Switch Eth Switch Eth Switch
40GbE
—= —=F000 =
Server or Server or Server or
storage rack storage rack storage rack

Figure 5.11 Key Data Center Elements

196 CHAPTER 5 / DATABASE AND DATA CENTER SECURITY

mounted in the rack and referred to as top-of-rack (ToR) switches. The term ToR has
become synonymous with server access switch, even if it is not located “top of rack.”
Very large data centers, such as cloud providers, require switches operating at 100
Gbps to support the interconnection of server racks and to provide adequate capac-
ity for connecting off-site through network interface controllers (NICs) on routers
or firewalls.

Key elements not shown in Figure 5.11 are cabling and cross connects, which
we can list as follows:

* Cross connect: A facility enabling the termination of cables, as well as their
interconnection with other cabling or equipment.

° Horizontal cabling: Any cabling that is used to connect a floor’s wiring closet
to wall plates in the work areas to provide local area network (LAN) drops
for connecting servers and other digital equipment to the network. The term
horizontal is used because such cabling is typically run along the ceiling or
floor.

* Backbone cabling: Run between data center rooms or enclosures and the main
cross-connect point of a building.

Data Center Security Considerations

All of the security threats and countermeasures discussed in this text are relevant
in the context of large data centers, and indeed it is in this context that the risks
are most acute. Consider that the data center houses massive amounts of data that
are:

¢ located in a confined physical space.

e interconnected with direct-connect cabling.

¢ accessible through external network connections, so once past the boundary, a
threat is posed to the entire complex.

e typically representative of the greatest single asset of the enterprise.
Thus, data center security is a top priority for any enterprise with a large data
center. Some of the important threats to consider include the following:
e Denial of service
¢ Advanced persistent threats from targeted attacks
 Privacy breaches
e Application exploits such as SQL injection
* Malware
e Physical security threats
Figure 5.12 highlights important aspects of data center security, represented
as a four-layer model. Site security refers primarily to the physical security of the
entire site including the building that houses the data center, as well as the use of

redundant utilities. Physical security of the data center itself includes barriers to
entry, such as a mantrap (a double-door single-person access control space) coupled

5.8 / DATA CENTER SECURITY 197

Data Encryption, Password policy, secure
S it IDs, Data Protection (ISO 27002),
ecurity Data masking, Data retention, etc.
Network Firewa!ls, Anti—viru§, Intrusion
S . detection/prevention,
ecurity authentication, etc.
Physical Surveillance, Mant'raps, Two(three
s it factor authentication, Security
RCLE zones, ISO 27001/27002, etc.
. Setbacks, Redundant utilities
Site !
S . Landscaping, Buffer zones, Crash
ecu"ty barriers, Entry points, etc.

Figure 5.12 Data Center Security Model

with authentication techniques for gaining physical access. Physical security can also
include security personnel, surveillance systems, and other measures which will be
discussed in Chapter 16. Network security is extremely important in a facility in
which such a large collection of assets are concentrated in a single place and acces-
sible by external network connections. Typically, a large data center will employ all
of the network security techniques discussed in this text. Finally, security of the data
itself, as opposed to the systems they reside on, involves techniques discussed in the
remainder of this chapter.

TTA-492

The Telecommunications Industry Association (TIA) standard TIA-492 (Telecom-
munications Infrastructure Standard for Data Centers) specifies the minimum require-
ments for telecommunications infrastructure of data centers. Topics covered include
the following:

e Network architecture

¢ Electrical design

¢ File storage, backup, and archiving

e System redundancy

e Network access control and security

e Database management

* Web hosting

e Application hosting

e Content distribution

¢ Environmental control

* Protection against physical hazards (fire, flood, and windstorm)

* Power management

198 CHAPTER 5 / DATABASE AND DATA CENTER SECURITY

The standard specifies function areas, which helps to define equipment place-
ment based on the standard hierarchical design for regular commercial spaces. This
architecture anticipates growth and helps create an environment where applications
and servers can be added and upgraded with minimal downtime. This standardized
approach supports high availability and a uniform environment for implementing
security measures. TIA-942 specifies that a data center should include the following
functional areas (see Figure 5.13):

* Computer room: Portion of the data center that houses date processing equipment.

¢ Entrance room: One or more entrance rooms house external network access
provider equipment, plus provide the interface between the computer room
equipment and the enterprise cabling systems. Physical separation of the
entrance room from the computer room provides better security.

° Main distribution area: A centrally located area that houses the main cross-
connect as well as core routers and switches for LAN and SAN (storage area
network) infrastructures.

e Horizontal distribution area (HDA): Serves as the distribution point for hori-
zontal cabling and houses cross-connects and active equipment for distributing
cable to the equipment distribution area.

CarrierS == Entrance Room |==— Carriers

(Carrier equipment
Offices, & demarcation)
Operations Center
Support Rooms

Computer
Room

Telecom Room

(Office and operations
center, LAN switches)

m—— Backbone cabling

Horizontal cabling

Figure 5.13 TIA-942 Compliant Data Center Showing Key Functional Areas

199

Data Center Tiers Defined in TIA-942

Tier System Design Availability/Annual Downtime

1 e Susceptible to disruptions from both planned and unplanned
activity
e Single path for power and cooling distribution, no redundant

components

e May or may not have raised floor, UPS, or generator 99.671%/28.8 hours

e Takes 3 months to implement

e Must be shut down completely to perform preventive
maintenance

2 e Less susceptible to disruptions from both planned and
unplanned activity

e Single path for power and cooling distribution, includes
redundant components
0,
e Includes raised floor, UPS, and generator SELT R D
e Takes 3 to 6 months to implement
e Maintenance of power path and other parts of the
infrastructure require a processing shutdown

3 * Enables planned activity without disrupting computer
hardware operation but unplanned events will still cause
disruption

e Multiple power and cooling distribution paths but with only
one path active, includes redundant components 99.982%/1.6 hours

e Takes 15 to 20 months to implement

e Includes raised floor and sufficient capacity and distribution
to carry load on one path while performing maintenance on
the other

4 e Planned activity does not disrupt critical load and data center
can sustain at least one worst-case unplanned event with no

critical load impact

0,
e Multiple active power and cooling distribution paths, includes 99:995%10.4 hours

redundant components

e Takes 15 to 20 months to implement

Equipment distribution area (EDA): The location of equipment cabinets and
racks, with horizontal cables terminating with patch panels.

Zone distribution area (ZDA): An optional interconnection point in the hori-
zontal cabling between the HDA and EDA.The ZDA can act as a consolidation
point for reconfiguration flexibility or for housing freestanding equipment such
as mainframes.

An important part of TIA-942, especially relevant for computer security, is the
concept of tiered reliability. The standard defines four tiers, as shown in Table 5.4.
For each of the four tiers, TIA-942 describes detailed architectural, security, electrical,
mechanical, and telecommunications recommendations such that the higher the tier
is, the higher will be the availability.

200 CHAPTER 5 / DATABASE AND DATA CENTER SECURITY

5.9 KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS

Key Terms
attribute inband attack run-time prevention
blind SQL injection inference Structured Query Language
cascading authorizations inference channel (SQL)
compromise inferential attack SQL injection (SQLi) attack
data center out-of-band attack tautology
data swapping parameterized query insertion | tuple
database partitioning view
database access control piggybacked queries
database encryption primary key
database management system | query language
(DBMS) query set
defensive coding relation
detection relational database
end-of-line comment relational database manage-
foreign key ment system (RDBMS)

Review Questions

5.1 Define the terms database, database management system, and query language.
5.2 What is a relational database and what are its principal ingredients?
5.3 Whatis an SQL injection attack?
5.4 What are the implications of an SQL injection attack?
5.5 List the categories for grouping different types of SQLI attacks.
5.6 Why is RBAC considered fit for database access control?
5.7 State the different levels at which encryption can be applied to a database.
5.8 List and briefly define four data center availability tiers.
Problems
5.1 Consider a simplified database for an organization that includes information of sev-
eral departments (identity, name, manager, number of employees) and of managers
and employees of the respective departments. Suggest a relational database for effi-
ciently managing this information.
5.2 The following table provides information on students of a computer programming
club.
Student-ID Name Skill Level Age
99 Jimmy Beginner 20
36 David Experienced 22
82 Oliver Medium 21
23 Alice Experienced 21

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 201

The primary key is Student-ID. Explain whether or not each of the following rows can

be added to the table.
Student-ID Name Skill Level Age
91 Tom Experienced 22
36 Dave Experienced 21
Bob Beginner 20

5.3 The following table shows a list of cars and their owners that is used by a car service
station.
C_Name Model Company DOP Owner O_Phone O_E-mail
Camaro 2LS Chevrolet 9/9/06 David 2132133 dd@abc.com
Falcon XR6 Ford 2/21/07 Dave 1245513 dv@abc.com
Cruze LT Chevrolet 5/12/12 David 1452321 dd@abc.com
Camaro 2LT Chevrolet 7/6/10 Alice 3253254 al@ab.com
Roadster | Roadster Tesla 1/20/13 Dave 2353253 dv@abc.com
Focus S Ford 4/10/12 Oliver 3251666 ol@abc.com
Model X | Model X Tesla 3/9/14 Bob 7567443 bb@abc.com
a. Describe the problems that are likely to occur when using this table.
b. Break the table into two tables in a way that fixes the problems.
5.4 We wish to create an employee table containing the employee’s ID number, first
name, last name, and department. Write an SQL statement to accomplish this.
5.5 Consider an SQL statement:
SELECT id, forename, surname FROM authors WHERE forename = ‘david’ AND
id = 939
a. What is this statement trying to search from the database?
b. Assume that the firstname and id fields are being gathered from user-supplied
input, and suppose the user responds with:
Firstname: david’; drop table employees - -
id: 939:
What will be the effect?
¢. Now suppose the user responds with:
firstname:”OR9 = 9--
id: 939
What will be the effect?
5.6 Figure 5.14 shows a fragment of code that implements the login functionality for a

database application. The code dynamically builds an SQL query and submits it to a
database.
a. Suppose a user submits login, password, and pin as Mike, Mike@256, and 4242.
Write the SQL query that is generated.
b. If, instead of the previous inputs, the user submits for each of the login, password
and pin fields:
l Or " — l
What is the effect?

http://www.dd@abc.com
http://www.dv@abc.com
http://www.dd@abc.com
http://www.al@ab.com
http://www.dv@abc.com
http://www.ol@abc.com
http://www.bb@abc.com

202 CHAPTER 5 / DATABASE AND DATA CENTER SECURITY

1. String login, password, pin, query

2. login = getParameter (“login”);

3. password = getParameter (“pass”);

3. pin = getParameter (“pin”);

4. Connection conn.createConnection (“MyDataBase”);
5. query = “SELECT accounts FROM users WHERE login='" +
6. login + “'AND pass = ’'” + password +

7. “YAND pin=" + pin;

8. ResultSet result = conn.executeQuery(query) ;

9. if (result!=NULL)

10 displayAccounts (result);

11 else

12 displayAuthFailed() ;

Figure 5.14 Code for Generating an SQL Query

n
~

not know their password. You enter the following in the login field:

> OR EXISTS (SELECT * FROM users WHERE name = ‘Mike’ AND password

LIKE ‘%t%’) —
What is the effect?

n
=2}

grants them to Y, as shown in the following table, with the numerical ent
the time of granting:

The EXISTS operator is used to test for the existence of any record in a subquery.
Suppose you know that a user with the login Mike exists in the user table but you do

Assume A, B, and C grant certain privileges on the employee table to X, who in turn
ries indicating

UserID Table Grantor READ INSERT

DELETE

X Employee A 15 15

Employee 20 —

20

25

X =R

B
Employee X 25 25
C

Employee 30 —

30

At time ¢t = 35, B issues the command REVOKE ALL RIGHTS ON Employee
e conventions

FROM X. Which access rights, if any, of Y must be revoked, using th
defined in Section 5.27

Figure 5.15 shows a sequence of grant operations for a specific access ri

(9]
=)

in Section 5.2, show the resulting diagram of access right dependencies.

Figure 5.15 Cascaded Privileges

ght on a table.
Assume at t = 70, B revokes the access right from C. Using the conventions defined

5.9 / KEY TERMS, REVIEW QUESTIONS, AND PROBLEMS 203

5.10 Figure 5.16 shows an alternative convention for handling revocations of the type illus-
trated in Figure 5.6.

Jim

Figure 5.16 Bob Revokes Privilege from David, Second Version

a. Describe an algorithm for revocation that fits this figure.
b. Compare the relative advantages and disadvantages of this method to the original
method, illustrated in Figure 5.6.

5.11 Consider the parts department of a plumbing contractor. The department maintains
an inventory database that includes parts information (part number, description,
color, size, number in stock, etc.) and information on vendors from whom parts are
obtained (name, address, pending purchase orders, closed purchase orders, etc.). In an
RBAC system, suppose roles are defined for accounts payable clerk, an installation
foreman, and a receiving clerk. For each role, indicate which items should be acces-
sible for read-only and read-write access.

5.12 Imagine you are the database administrator for a military transportation system. You
have a table named cargo in your database that contains information on the various
cargo holds available on each outbound airplane. Each row in the table represents a
single shipment and lists the contents of that shipment and the flight identification
number. Only one shipment per hold is allowed. The flight identification number may
be cross-referenced with other tables to determine the origin, destination, flight time,
and similar data. The cargo table appears as follows:

Flight ID Cargo Hold Contents Classification
1254 A Boots Unclassified
1254 B Guns Unclassified
1254 C Atomic bomb Top Secret
1254 D Butter Unclassified

204 CHAPTER 5 / DATABASE AND DATA CENTER SECURITY

Suppose two roles are defined: Role 1 has full access rights to the cargo table. Role 2
has full access rights only to rows of the table in which the Classification field has the
value Unclassified. Describe a scenario in which a user assigned to role 2 uses one or
more queries to determine that there is a classified shipment on board the aircraft.

Users hulkhogan and undertaker do not have the SELECT access right to the Inven-
tory table and the Item table. These tables were created by and are owned by user
bruno-s. Write the SQL commands that would enable bruno-s to grant SELECT
access to these tables to hulkhogan and undertaker.

14 In the example of Section 5.6 involving the addition of a start-date column to a set
of tables defining employee information, it was stated that a straightforward way to
remove the inference channel is to add the start-date column to the employees table.
Suggest another way.

Consider a database table that includes a salary attribute. Suppose the three queries
sum, count, and max (in that order) are made on the salary attribute, all conditioned
on the same predicate involving other attributes. That is, a specific subset of records
is selected and the three queries are performed on that subset. Suppose the first two
queries are answered, and the third query is denied. Is any information leaked?

W
—
w

n

n
=
9]

CHAPTER

MALICIOUS SOFTWARE

6.1 Types of Malicious Software (Malware)

A Broad Classification of Malware
Attack Kits
Attack Sources

6.2 Advanced Persistent Threat

6.3 Propagation—Infected Content— Viruses

The Nature of Viruses
Macro and Scripting Viruses
Viruses Classification
6.4 Propagation— Vulnerability Exploit— Worms
Target Discovery
Worm Propagation Model
The Morris Worm
A Brief History of Worm Attacks
State of Worm Technology
Mobile Code
Mobile Phone Worms
Client-Side Vulnerabilities and Drive-by-Downloads
Clickjacking
6.5 Propagation—Social Engineering—Spam E-Mail, Trojans
Spam (Unsolicited Bulk) E-Mail
Trojan Horses
Mobile Phone Trojans

6.6 Payload—System Corruption
Data Destruction
Real-World Damage
Logic Bomb
6.7 Payload— Attack Agent—Zombie, Bots
Uses of Bots
Remote Control Facility
6.8 Payload —Information Theft— Keyloggers, Phishing, Spyware

Credential Theft, Keyloggers, and Spyware
Phishing and Identity Theft

Reconnaissance, Espionage, and Data Exfiltration iR

206

Payload — Stealthing— Backdoors, Rootkits
Backdoor
Rootkit
Kernel Mode Rootkits
Virtual Machine and Other External Rootkits

Countermeasures

Malware Countermeasure Approaches

Host-Based Scanners and Signature-Based Anti-Virus
Perimeter Scanning Approaches

Distributed Intelligence Gathering Approaches

Key Terms, Review Questions, and Problems

LEARNING OBJECTIVES
After studying this chapter, you should be able to:

@ Describe three broad mechanisms malware uses to propagate.

@ Understand the basic operation of viruses, worms, and Trojans.

@ Describe four broad categories of malware payloads.

€ Understand the different threats posed by bots, spyware, and rootKkits.
@ Describe some malware countermeasure elements.

Describe three locations for malware detection mechanisms.

Malicious software, or malware, arguably constitutes one of the most significant cat-
egories of threats to computer systems. NIST SP 800-83 (Guide to Malware Incident
Prevention and Handling for Desktops and Laptops, July 2013) defines malware as
“a program that is inserted into a system, usually covertly, with the intent of com-
promising the confidentiality, integrity, or availability of the victim’s data, applica-
tions, or operating system or otherwise annoying or disrupting the victim.” Hence,
we are concerned with the threat malware poses to application programs, to utility
programs such as editors and compilers, and to kernel-level programs. We are also
concerned with its use on compromised or malicious websites and servers, or in espe-
cially crafted spam e-mails or other messages, which aim to trick users into revealing
sensitive personal information.

This chapter examines the wide spectrum of malware threats and counter-
measures. We begin with a survey of various types of malware, and offer a broad
classification based first on the means malware uses to spread or propagate, then
on the variety of actions or payloads used once the malware has reached a target.
Propagation mechanisms include those used by viruses, worms, and Trojans. Payloads
include system corruption, bots, phishing, spyware, and rootkits. The discussion con-
cludes with a review of countermeasure approaches.

6.1 / TYPES OF MALICIOUS SOFTWARE (MALWARE) 207

6.1 TYPES OF MALICIOUS SOFTWARE (MALWARE)

The terminology in this area presents problems because of a lack of universal agree-
ment on all of the terms and because some of the categories overlap. Table 6.1 is a

useful guide to some of the terms in use.

Table 6.1 Terminology for Malicious Software (Malware)

Name

Description

Advanced Persistent

Cybercrime directed at business and political targets, using a wide variety of intru-

Threat (APT) sion technologies and malware, applied persistently and effectively to specific
targets over an extended period, often attributed to state-sponsored organizations.

Adware Advertising that is integrated into software. It can result in pop-up ads or
redirection of a browser to a commercial site.

Attack kit Set of tools for generating new malware automatically using a variety of supplied

propagation and payload mechanisms.

Auto-rooter

Malicious hacker tools used to break into new machines remotely.

Backdoor (trapdoor) Any mechanism that bypasses a normal security check; it may allow unauthorized
access to functionality in a program, or onto a compromised system.
Downloaders Code that installs other items on a machine that is under attack. It is normally

included in the malware code first inserted on to a compromised system to then
import a larger malware package.

Drive-by-download

An attack using code on a compromised website that exploits a browser
vulnerability to attack a client system when the site is viewed.

Exploits Code specific to a single vulnerability or set of vulnerabilities.

Flooders (DoS client) Used to generate a large volume of data to attack networked computer systems,
by carrying out some form of denial-of-service (DoS) attack.

Keyloggers Captures keystrokes on a compromised system.

Logic bomb Code inserted into malware by an intruder. A logic bomb lies dormant until a

predefined condition is met; the code then triggers some payload.

Macro virus

A type of virus that uses macro or scripting code, typically embedded in a
document or document template, and triggered when the document is viewed or
edited, to run and replicate itself into other such documents.

Mobile code Software (e.g., script and macro) that can be shipped unchanged to a heteroge-
neous collection of platforms and execute with identical semantics.
Rootkit Set of hacker tools used after attacker has broken into a computer system and

gained root-level access.

Spammer programs

Used to send large volumes of unwanted e-mail.

Spyware

Software that collects information from a computer and transmits it to another
system by monitoring keystrokes, screen data, and/or network traffic; or by scan-
ning files on the system for sensitive information.

Trojan horse

A computer program that appears to have a useful function, but also has a hidden
and potentially malicious function that evades security mechanisms, sometimes by
exploiting legitimate authorizations of a system entity that invokes it.

Virus

Malware that, when executed, tries to replicate itself into other executable
machine or script code; when it succeeds, the code is said to be infected. When the
infected code is executed, the virus also executes.

(continued)

208 CHAPTER 6 / MALICIOUS SOFTWARE

Table 6.1 Terminology for Malicious Software (Malware) (Continued)
Name Description
Worm A computer program that can run independently and can propagate a complete
working version of itself onto other hosts on a network, by exploiting software
vulnerabilities in the target system, or using captured authorization credentials.
Zombie, bot Program installed on an infected machine that is activated to launch attacks on

other machines.

A Broad Classification of Malware

A number of authors attempt to classify malware, as shown in the survey and proposal
of [HANSO04]. Although a range of aspects can be used, one useful approach classifies
malware into two broad categories, based first on how it spreads or propagates to reach
the desired targets, then on the actions or payloads it performs once a target is reached.

Propagation mechanisms include infection of existing executable or interpreted
content by viruses that is subsequently spread to other systems; exploit of software
vulnerabilities either locally or over a network by worms or drive-by-downloads to
allow the malware to replicate; and social engineering attacks that convince users
to bypass security mechanisms to install Trojans, or to respond to phishing attacks.

Earlier approaches to malware classification distinguished between those that
need a host program, being parasitic code such as viruses, and those that are inde-
pendent, self-contained programs run on the system such as worms, Trojans, and
bots. Another distinction used was between malware that does not replicate, such
as Trojans and spam e-mail, and malware that does, including viruses and worms.

Payload actions performed by malware once it reaches a target system can
include corruption of system or data files; theft of service in order to make the system
a zombie agent of attack as part of a botnet; theft of information from the system,
especially of logins, passwords, or other personal details by keylogging or spyware
programs; and stealthing where the malware hides its presence on the system from
attempts to detect and block it.

While early malware tended to use a single means of propagation to deliver a
single payload, as it evolved, we see a growth of blended malware that incorporates a
range of both propagation mechanisms and payloads that increase its ability to spread,
hide, and perform a range of actions on targets. A blended attack uses multiple meth-
ods of infection or propagation to maximize the speed of contagion and the severity
of the attack. Some malware even support an update mechanism that allows it to
change the range of propagation and payload mechanisms utilized once it is deployed.

In the following sections, we survey these various categories of malware, then
follow with a discussion of appropriate countermeasures.

Attack Kits

Initially, the development and deployment of malware required considerable techni-
cal skill by software authors. This changed with the development of virus-creation
toolkits in the early 1990s, and later of more general attack kits in the 2000s.
These greatly assisted in the development and deployment of malware [FOSS10].
These toolkits, often known as crimeware, now include a variety of propagation
mechanisms and payload modules that even novices can combine, select, and deploy.

6.2 / ADVANCED PERSISTENT THREAT 209

They can also easily be customized with the latest discovered vulnerabilities in order
to exploit the window of opportunity between the publication of a weakness and
the widespread deployment of patches to close it. These kits greatly enlarged the
population of attackers able to deploy malware. Although the malware created with
such toolkits tends to be less sophisticated than that designed from scratch, the sheer
number of new variants that can be generated by attackers using these toolkits
creates a significant problem for those defending systems against them.

The Zeus crimeware toolkit is a prominent example of such an attack kit, which was
used to generate a wide range of very effective, stealthed malware that facilitates a range
of criminal activities, in particular capturing and exploiting banking credentials [BINS10].
The Angler exploit kit, first seen in 2013, was the most active kit seen in 2015, often
distributed via malvertising that exploited Flash vulnerabilities. It is sophisticated and
technically advanced, in both attacks executed and counter-measures deployed to resist
detection. There are a number of other attack kits in active use, though the specific kits
change from year to year as attackers continue to evolve and improve them [SYMA16].

Attack Sources

Another significant malware development over the last couple of decades is the
change from attackers being individuals, often motivated to demonstrate their techni-
cal competence to their peers, to more organized and dangerous attack sources. These
include politically motivated attackers, criminals, and organized crime; organizations
that sell their services to companies and nations, and national government agencies,
as we will discuss in Section 8.1. This has significantly changed the resources available
and motivation behind the rise of malware, and indeed has led to the development of
a large underground economy involving the sale of attack Kkits, access to compromised
hosts, and to stolen information.

6.2 ADVANCED PERSISTENT THREAT

Advanced Persistent Threats (APTs) have risen to prominence in recent years. These
are not a new type of malware, but rather the well-resourced, persistent application of
a wide variety of intrusion technologies and malware to selected targets, usually busi-
ness or political. APTs are typically attributed to state-sponsored organizations, with
some attacks likely from criminal enterprises as well. We will discuss these categories
of intruders further in Section 8.1.

APTs differ from other types of attack by their careful target selection, and
persistent, often stealthy, intrusion efforts over extended periods. A number of
high-profile attacks, including Aurora, RSA, APT1, and Stuxnet, are often cited as
examples. They are named as a result of these characteristics:

* Advanced: Use by the attackers of a wide variety of intrusion technologies
and malware, including the development of custom malware if required. The
individual components may not necessarily be technically advanced, but are
carefully selected to suit the chosen target.

* Persistent: Determined application of the attacks over an extended period against
the chosen target in order to maximize the chance of success. A variety of attacks
may be progressively, and often stealthily, applied until the target is compromised.

210 CHAPTER 6 / MALICIOUS SOFTWARE

* Threats: Threats to the selected targets as a result of the organized, capable, and
well-funded attackers intent to compromise the specifically chosen targets. The
active involvement of people in the process greatly raises the threat level from
that due to automated attacks tools, and also the likelihood of successful attack.

The aim of these attacks varies from theft of intellectual property or security-
and infrastructure- related data to the physical disruption of infrastructure. Techniques
used include social engineering, spear-phishing e-mails, and drive-by-downloads
from selected compromised Web sites likely to be visited by personnel in the target
organization. The intent is to infect the target with sophisticated malware with mul-
tiple propagation mechanisms and payloads. Once they have gained initial access to
systems in the target organization, a further range of attack tools are used to maintain
and extend their access.

As aresult, these attacks are much harder to defend against due to this specific
targeting and persistence. It requires a combination of technical countermeasures,
such as we will discuss later in this chapter, as well as awareness training to assist per-
sonnel to resist such attacks, as we will discuss in Chapter 17 Even with current best-
practice countermeasures, the use of zero-day exploits and new attack approaches
means that some of these attacks are likely to succeed [SYMA16, MAND13]. Thus
multiple layers of defense are needed, with mechanisms to detect, respond, and miti-
gate such attacks. These may include monitoring for malware command and control
traffic, and detection of exfiltration traffic.

PROPAGATION—INFECTED CONTENT—VIRUSES

The first category of malware propagation concerns parasitic software fragments that
attach themselves to some existing executable content. The fragment may be machine
code that infects some existing application, utility, or system program, or even the
code used to boot a computer system. Computer virus infections formed the major-
ity of malware seen in the early personal computer era. The term “computer virus”
is still often used to refer to malware in general, rather than just computer viruses
specifically. More recently, the virus software fragment has been some form of script-
ing code, typically used to support active content within data files such as Microsoft
Word documents, Excel spreadsheets, or Adobe PDF documents.

The Nature of Viruses

A computer virus is a piece of software that can “infect” other programs, or indeed any
type of executable content, by modifying them. The modification includes injecting
the original code with a routine to make copies of the virus code, which can then go
on to infect other content. Computer viruses first appeared in the early 1980s, and the
term itself is attributed to Fred Cohen. Cohen is the author of a groundbreaking book
on the subject [COHE94]. The Brain virus, first seen in 1986, was one of the first to
target MSDOS systems, and resulted in a significant number of infections for this time.

Biological viruses are tiny scraps of genetic code—DNA or RNA —that can take
over the machinery of a living cell and trick it into making thousands of flawless rep-
licas of the original virus. Like its biological counterpart, a computer virus carries in

6.3 / PROPAGATION—INFECTED CONTENT—VIRUSES 211

its instructional code the recipe for making perfect copies of itself. The typical virus
becomes embedded in a program, or carrier of executable content, on a computer. Then,
whenever the infected computer comes into contact with an uninfected piece of code, a
fresh copy of the virus passes into the new location. Thus, the infection can spread from
computer to computer, aided by unsuspecting users, who exchange these programs or
carrier files on disk or USB stick; or who send them to one another over a network.
In a network environment, the ability to access documents, applications, and system
services on other computers provides a perfect culture for the spread of such viral code.

A virus that attaches to an executable program can do anything that the pro-
gram is permitted to do. It executes secretly when the host program is run. Once
the virus code is executing, it can perform any function, such as erasing files and
programs, that is allowed by the privileges of the current user. One reason viruses
dominated the malware scene in earlier years was the lack of user authentication
and access controls on personal computer systems at that time. This enabled a virus
to infect any executable content on the system. The significant quantity of programs
shared on floppy disk also enabled its easy, if somewhat slow, spread. The inclusion
of tighter access controls on modern operating systems significantly hinders the ease
of infection of such traditional, machine executable code, viruses. This resulted in
the development of macro viruses that exploit the active content supported by some
documents types, such as Microsoft Word or Excel files, or Adobe PDF documents.
Such documents are easily modified and shared by users as part of their normal sys-
tem use, and are not protected by the same access controls as programs. Currently,
a viral mode of infection is typically one of several propagation mechanisms used
by contemporary malware, which may also include worm and Trojan capabilities.

[AYCOO06] states that a computer virus has three parts. More generally, many
contemporary types of malware also include one or more variants of each of these
components:

* Infection mechanism: The means by which a virus spreads or propagates,
enabling it to replicate. The mechanism is also referred to as the infection vector.

e Trigger: The event or condition that determines when the payload is activated
or delivered, sometimes known as a logic bomb.

¢ Payload: What the virus does, besides spreading. The payload may involve dam-
age or may involve benign but noticeable activity.

During its lifetime, a typical virus goes through the following four phases:

* Dormant phase: The virus is idle. The virus will eventually be activated by some
event, such as a date, the presence of another program or file, or the capacity of
the disk exceeding some limit. Not all viruses have this stage.

* Propagation phase: The virus places a copy of itself into other programs or into
certain system areas on the disk. The copy may not be identical to the propagat-
ing version; viruses often morph to evade detection. Each infected program will
now contain a clone of the virus, which will itself enter a propagation phase.

 Triggering phase: The virus is activated to perform the function for which it was
intended. As with the dormant phase, the triggering phase can be caused by a
variety of system events, including a count of the number of times that this copy
of the virus has made copies of itself.

212 CHAPTER 6 / MALICIOUS SOFTWARE

* Execution phase: The function is performed. The function may be harmless,
such as a message on the screen, or damaging, such as the destruction of pro-
grams and data files.

Most viruses that infect executable program files carry out their work in a
manner that is specific to a particular operating system and, in some cases, specific
to a particular hardware platform. Thus, they are designed to take advantage of the
details and weaknesses of particular systems. Macro viruses however target specific
document types, which are often supported on a variety of systems.

Once a virus has gained entry to a system by infecting a single program, it isin a
position to potentially infect some or all of the other files on that system with execut-
able content when the infected program executes, depending on the access permis-
sions the infected program has. Thus, viral infection can be completely prevented by
blocking the virus from gaining entry in the first place. Unfortunately, prevention is
extraordinarily difficult because a virus can be part of any program outside a system.
Thus, unless one is content to take an absolutely bare piece of iron and write all one’s
own system and application programs, one is vulnerable. Many forms of infection can
also be blocked by denying normal users the right to modify programs on the system.

Macro and Scripting Viruses

In the mid-1990s, macro or scripting code viruses became by far the most prevalent
type of virus. NISTIR 7298 (Glossary of Key Information Security Terms, May 2013)
defines a macro virus as a virus that attaches itself to documents and uses the macro
programming capabilities of the document’s application to execute and propagate.
Macro viruses infect scripting code used to support active content in a variety of user
document types. Macro viruses are particularly threatening for a number of reasons:

1. A macro virus is platform independent. Many macro viruses infect active con-
tent in commonly used applications, such as macros in Microsoft Word docu-
ments or other Microsoft Office documents, or scripting code in Adobe PDF
documents. Any hardware platform and operating system that supports these
applications can be infected.

2. Macro viruses infect documents, not executable portions of code. Most of the
information introduced onto a computer system is in the form of documents rather
than programs.

3. Macro viruses are easily spread, as the documents they exploit are shared in nor-
mal use. A very common method is by electronic mail, particularly since these
documents can sometimes be opened automatically without prompting the user.

4. Because macro viruses infect user documents rather than system programs, tra-
ditional file system access controls are of limited use in preventing their spread,
since users are expected to modify them.

5. Macro viruses are much easier to write or to modify than traditional execut-
able viruses.

Macro viruses take advantage of support for active content using a scripting or macro
language, embedded in a word processing document or other type of file. Typically,
users employ macros to automate repetitive tasks and thereby save keystrokes. They

6.3 / PROPAGATION—INFECTED CONTENT—VIRUSES 213

are also used to support dynamic content, form validation, and other useful tasks
associated with these documents.

Microsoft Word and Excel documents are common targets due to their wide-
spread use. Successive releases of MS Office products provide increased protection
against macro viruses. For example, Microsoft offers an optional Macro Virus Protec-
tion tool that detects suspicious Word files and alerts the customer to the potential
risk of opening a file with macros. Office 2000 improved macro security by allowing
macros to be digitally signed by their author, and for authors to be listed as trusted.
Users were then warned if a document being opened contained unsigned, or signed
but untrusted, macros, and were advised to disable macros in this case. Various anti-
virus product vendors have also developed tools to detect and remove macro viruses.
As in other types of malware, the arms race continues in the field of macro viruses,
but they no longer are the predominant malware threat.

Another possible host for macro virus—style malware is in Adobe’s PDF docu-
ments. These can support a range of embedded components, including Javascript
and other types of scripting code. Although recent PDF viewers include measures to
warn users when such code is run, the message the user is shown can be manipulated
to trick them into permitting its execution. If this occurs, the code could potentially
act as a virus to infect other PDF documents the user can access on their system.
Alternatively, it can install a Trojan, or act as a worm, as we will discuss later [STEV11].

MAacro Virus Structure Although macro languages may have a similar syntax,
the details depend on the application interpreting the macro, and so will always target
documents for a specific application. For example, a Microsoft Word macro, including
a macro virus, will be different to an Excel macro. Macros can either be saved with
a document, or be saved in a global template or worksheet. Some macros are run
automatically when certain actions occur. In Microsoft Word, for example, macros
can run when Word starts, a document is opened, a new document is created, or when
a document is closed. Macros can perform a wide range of operations, not just only
on the document content, but can read and write files, and call other applications.
As an example of the operation of a macro virus, pseudo-code for the Melissa
macro virus is shown in Figure 6.1. This was a component of the Melissa e-mail worm
that we will describe further in the next section. This code would be introduced onto a
system by opening an infected Word document, most likely sent by e-mail. This macro
code is contained in the Document_Open macro, which is automatically run when
the document is opened. It first disables the Macro menu and some related security
features, making it harder for the user stop or remove its operation. Next it checks to
see if it is being run from an infected document, and if so copies itself into the global
template file. This file is opened with every subsequent document, and the macro virus
run, infecting that document. It then checks to see if it has been run on this system
before, by looking to see if a specific key “Melissa” has been added to the registry. If
that key is absent, and Outlook is the e-mail client, the macro virus then sends a copy
of the current, infected document to each of the first 50 addresses in the current user’s
Address Book. It then creates the “Melissa” registry entry, so this is only done once on
any system. Finally it checks the current time and date for a specific trigger condition,
which if met results in a Simpson quote being inserted into the current document.
Once the macro virus code has finished, the document continues opening and the user

214

CHAPTER 6 / MALICIOUS SOFTWARE

macro Document_Open

disable Macro menu and some macro security features
if called from a user document

copy macro code into Normal template file
cllisie

copy macro code into user document being opened
end if
if registry key “Melissa” not present

if Outlook is email client

for first 50 addresses in address book
send email to that address
with currently infected document attached
end for

end if

create registry key “Melissa”
end if
if minute in hour equals day of month

insert text into document being opened
end if

end macro

Figure 6.1 Melissa Macro Virus Pseudo-code

can then edit as normal. This code illustrates how a macro virus can manipulate both
the document contents, and access other applications on the system. It also shows two
infection mechanisms, the first infecting every subsequent document opened on the
system, the second sending infected documents to other users via e-mail.

More sophisticated macro virus code can use stealth techniques such as encryp-
tion or polymorphism, changing its appearance each time, to avoid scanning detection.

Viruses Classification

There has been a continuous arms race between virus writers and writers of anti-virus
software since viruses first appeared. As effective countermeasures are developed for
existing types of viruses, newer types are developed. There is no simple or universally
agreed- upon classification scheme for viruses. In this section, we follow [AYCOO06]
and classify viruses along two orthogonal axes: the type of target the virus tries to
infect, and the method the virus uses to conceal itself from detection by users and
anti-virus software.
A virus classification by target includes the following categories:

* Boot sector infector: Infects a master boot record or boot record and spreads
when a system is booted from the disk containing the virus.

¢ File infector: Infects files that the operating system or shell consider to be
executable.

6.4 / PROPAGATION—VULNERABILITY EXPLOIT—WORMS 215

* Macro virus: Infects files with macro or scripting code that is interpreted by an
application.

° Multipartite virus: Infects files in multiple ways. Typically, the multipartite virus
is capable of infecting multiple types of files, so virus eradication must deal with
all of the possible sites of infection.

A virus classification by concealment strategy includes the following categories:

* Encrypted virus: A form of virus that uses encryption to obscure it’s content.
A portion of the virus creates a random encryption key and encrypts the remain-
der of the virus. The key is stored with the virus. When an infected program is
invoked, the virus uses the stored random key to decrypt the virus. When the
virus replicates, a different random key is selected. Because the bulk of the
virus is encrypted with a different key for each instance, there is no constant
bit pattern to observe.

¢ Stealth virus: A form of virus explicitly designed to hide itself from detection by
anti-virus software. Thus, the entire virus, not just a payload, is hidden. It may
use code mutation, compression, or rootkit techniques to achieve this.

* Polymorphic virus: A form of virus that creates copies during replication that
are functionally equivalent but have distinctly different bit patterns, in order to
defeat programs that scan for viruses. In this case, the “signature” of the virus
will vary with each copy. To achieve this variation, the virus may randomly insert
superfluous instructions or interchange the order of independent instructions.
A more effective approach is to use encryption. The strategy of the encryption
virus is followed. The portion of the virus that is responsible for generating keys
and performing encryption/decryption is referred to as the mutation engine. The
mutation engine itself is altered with each use.

* Metamorphic virus: As with a polymorphic virus, a metamorphic virus mutates
with every infection. The difference is that a metamorphic virus rewrites itself
completely at each iteration, using multiple transformation techniques, increas-
ing the difficulty of detection. Metamorphic viruses may change their behavior
as well as their appearance.

6.4 PROPAGATION—VULNERABILITY EXPLOIT—WORMS

The next category of malware propagation concerns the exploit of software vulner-
abilities, such as those we will discuss in Chapters 10 and 11, which are commonly
exploited by computer worms, and in hacking attacks on systems. A worm is a pro-
gram that actively seeks out more machines to infect, and then each infected machine
serves as an automated launching pad for attacks on other machines. Worm programs
exploit software vulnerabilities in client or server programs to gain access to each new
system. They can use network connections to spread from system to system. They can
also spread through shared media, such as USB drives or CD and DVD data disks.
E-mail worms can spread in macro or script code included in documents attached to

216 CHAPTER 6 / MALICIOUS SOFTWARE

e-mail or to instant messenger file transfers. Upon activation, the worm may replicate
and propagate again. In addition to propagation, the worm usually carries some form
of payload, such as those we discuss later.

The concept of a computer worm was introduced in John Brunner’s 1975 SF
novel The Shockwave Rider. The first known worm implementation was done in
Xerox Palo Alto Labs in the early 1980s. It was nonmalicious, searching for idle sys-
tems to use to run a computationally intensive task.

To replicate itself, a worm uses some means to access remote systems. These
include the following, most of which are still seen in active use:

¢ Electronic mail or instant messenger facility: A worm e-mails a copy of itself to
other systems, or sends itself as an attachment via an instant message service, so
that its code is run when the e-mail or attachment is received or viewed.

¢ File sharing: A worm either creates a copy of itself or infects other suitable files
as a virus on removable media such as a USB drive; it then executes when the
drive is connected to another system using the autorun mechanism by exploit-
ing some software vulnerability, or when a user opens the infected file on the
target system.

* Remote execution capability: A worm executes a copy of itself on another
system, either by using an explicit remote execution facility or by exploiting a
program flaw in a network service to subvert its operations (as we will discuss
in Chapters 10 and 11).

* Remote file access or transfer capability: A worm uses a remote file access or
transfer service to another system to copy itself from one system to the other,
where users on that system may then execute it.

* Remote login capability: A worm logs onto a remote system as a user and then
uses commands to copy itself from one system to the other, where it then executes.

The new copy of the worm program is then run on the remote system where, in
addition to any payload functions that it performs on that system, it continues to
propagate.

A worm typically uses the same phases as a computer virus: dormant, prop-
agation, triggering, and execution. The propagation phase generally performs the
following functions:

e Search for appropriate access mechanisms on other systems to infect by exam-
ining host tables, address books, buddy lists, trusted peers, and other similar
repositories of remote system access details; by scanning possible target host
addresses; or by searching for suitable removable media devices to use.

e Use the access mechanisms found to transfer a copy of itself to the remote
system, and cause the copy to be run.

The worm may also attempt to determine whether a system has previously been
infected before copying itself to the system. In a multiprogramming system, it can also
disguise its presence by naming itself as a system process or using some other name
that may not be noticed by a system operator. More recent worms can even inject
their code into existing processes on the system, and run using additional threads in
that process, to further disguise their presence.

6.4 / PROPAGATION—VULNERABILITY EXPLOIT—WORMS 217

Target Discovery

The first function in the propagation phase for a network worm is for it to search for
other systems to infect, a process known as scanning or fingerprinting. For such worms,
which exploit software vulnerabilities in remotely accessible network services, it must
identify potential systems running the vulnerable service, and then infect them. Then,
typically, the worm code now installed on the infected machines repeats the same
scanning process, until a large distributed network of infected machines is created.

[MIRKO04] lists the following types of network address scanning strategies that
such a worm can use:

* Random: Each compromised host probes random addresses in the IP address
space, using a different seed. This technique produces a high volume of Internet
traffic, which may cause generalized disruption even before the actual attack
is launched.

e Hit-List: The attacker first compiles a long list of potential vulnerable machines.
This can be a slow process done over a long period to avoid detection that
an attack is underway. Once the list is compiled, the attacker begins infecting
machines on the list. Each infected machine is provided with a portion of the list
to scan. This strategy results in a very short scanning period, which may make
it difficult to detect that infection is taking place.

* Topological: This method uses information contained on an infected victim
machine to find more hosts to scan.

¢ Local subnet: If a host can be infected behind a firewall, that host then looks
for targets in its own local network. The host uses the subnet address structure
to find other hosts that would otherwise be protected by the firewall.

Worm Propagation Model

A well-designed worm can spread rapidly and infect massive numbers of hosts. It is
useful to have a general model for the rate of worm propagation. Computer viruses
and worms exhibit similar self-replication and propagation behavior to biological
viruses. Thus we can look to classic epidemic models for understanding computer
virus and worm propagation behavior. A simplified, classic epidemic model can be
expressed as follows:

dI(t)
dat

= BI(t) S(t)

where

I(t) = number of individuals infected as of time ¢

S(¢) = number of susceptible individuals (susceptible to infection but not yet
infected) at time ¢

B = infection rate
N = size of the population, N = I(¢) + S(¢)

Figure 6.2 shows the dynamics of worm propagation using this model. Propaga-
tion proceeds through three phases. In the initial phase, the number of hosts increases

218 CHAPTER 6 / MALICIOUS SOFTWARE

Slow start phase Fast spread sphase Slow finish phase
—_—a — A~ — A
1.0
08 Fraction of
hosts infected

0.6 —
=
g
g
i3

0.4 —

Fraction of
02 hosts not
infected
0 ;
Time
E—

Figure 6.2 Worm Propagation Model

exponentially. To see that this is so, consider a simplified case in which a worm is
launched from a single host and infects two nearby hosts. Each of these hosts infects
two more hosts, and so on. This results in exponential growth. After a time, infecting
hosts waste some time attacking already infected hosts, which reduces the rate of
infection. During this middle phase, growth is approximately linear, but the rate of
infection is rapid. When most vulnerable computers have been infected, the attack
enters a slow finish phase as the worm seeks out those remaining hosts that are dif-
ficult to identify.

Clearly, the objective in countering a worm is to catch the worm in its slow start
phase, at a time when few hosts have been infected.

Zou et al. [ZOUO05] describe a model for worm propagation based on an analy-
sis of network worm attacks at that time. The speed of propagation and the total
number of hosts infected depend on a number of factors, including the mode of
propagation, the vulnerability or vulnerabilities exploited, and the degree of similar-
ity to preceding attacks. For the latter factor, an attack that is a variation of a recent
previous attack may be countered more effectively than a more novel attack. Zou’s
model agrees closely with Figure 6.2.

The Morris Worm

Arguably, the earliest significant, and hence well-known, worm infection was released
onto the Internet by Robert Morris in 1988 [ORMAO03]. The Morris worm was
designed to spread on UNIX systems and used a number of different techniques for
propagation. When a copy began execution, its first task was to discover other hosts
known to this host that would allow entry from this host. The worm performed this
task by examining a variety of lists and tables, including system tables that declared
which other machines were trusted by this host, users’ mail forwarding files, tables

6.4 / PROPAGATION—VULNERABILITY EXPLOIT—WORMS 219

by which users gave themselves permission for access to remote accounts, and from
a program that reported the status of network connections. For each discovered host,
the worm tried a number of methods for gaining access:

1. It attempted to log on to a remote host as a legitimate user. In this method, the
worm first attempted to crack the local password file then used the discovered
passwords and corresponding user IDs. The assumption was that many users
would use the same password on different systems. To obtain the passwords, the
worm ran a password-cracking program that tried:

a. Each user’s account name and simple permutations of it.
b. A list of 432 built-in passwords that Morris thought to be likely candidates'.
c. All the words in the local system dictionary.

2. It exploited a bug in the UNIX finger protocol, which reports the whereabouts of
a remote user.

3. It exploited a trapdoor in the debug option of the remote process that receives
and sends mail.

If any of these attacks succeeded, the worm achieved communication with the
operating system command interpreter. It then sent this interpreter a short bootstrap
program, issued a command to execute that program, and then logged off. The boot-
strap program then called back the parent program and downloaded the remainder
of the worm. The new worm was then executed.

A Brief History of Worm Attacks

The Melissa e-mail worm that appeared in 1998 was the first of a new generation of
malware that included aspects of virus, worm, and Trojan in one package [CASSO1].
Melissa made use of a Microsoft Word macro embedded in an attachment, as we
described in the previous section. If the recipient opens the e-mail attachment, the
Word macro is activated. Then it:

1. Sends itself to everyone on the mailing list in the user’s e-mail package, propa-
gating as a worm; and

2. Does local damage on the user’s system, including disabling some security tools,
and also copying itself into other documents, propagating as a virus; and

3. If a trigger time was seen, it displayed a Simpson quote as its payload.

In 1999, a more powerful version of this e-mail virus appeared. This version
could be activated merely by opening an e-mail that contains the virus, rather than by
opening an attachment. The virus uses the Visual Basic scripting language supported
by the e-mail package.

Melissa propagates itself as soon as it is activated (either by opening an e-mail
attachment or by opening the e-mail) to all of the e-mail addresses known to the
infected host. As a result, whereas viruses used to take months or years to propa-
gate, this next generation of malware could do so in hours. [CASS01] notes that it

IThe complete list is provided at this book’s website.

220 CHAPTER 6 / MALICIOUS SOFTWARE

took only three days for Melissa to infect over 100,000 computers, compared to the
months it took the Brain virus to infect a few thousand computers a decade before.
This makes it very difficult for anti-virus software to respond to new attacks before
much damage is done.

The Code Red worm first appeared in July 2001. Code Red exploits a security
hole in the Microsoft Internet Information Server (I1IS) to penetrate and spread. It also
disables the system file checker in Windows. The worm probes random IP addresses
to spread to other hosts. During a certain period of time, it only spreads. It then initi-
ates a denial-of-service attack against a government website by flooding the site with
packets from numerous hosts. The worm then suspends activities and reactivates
periodically. In the second wave of attack, Code Red infected nearly 360,000 serv-
ers in 14 hours. In addition to the havoc it caused at the targeted server, Code Red
consumed enormous amounts of Internet capacity, disrupting service [MOORO02].

Code Red II is another distinct variant that first appeared in August 2001,
and also targeted Microsoft IIS. It tried to infect systems on the same subnet as the
infected system. Also, this newer worm installs a backdoor, allowing a hacker to
remotely execute commands on victim computers.

The Nimda worm that appeared in September 2001 also has worm, virus, and
mobile code characteristics. It spread using a variety of distribution methods:

* E-mail: A user on a vulnerable host opens an infected e-mail attachment;
Nimda looks for e-mail addresses on the host then sends copies of itself to
those addresses.

* Windows shares: Nimda scans hosts for unsecured Windows file shares; it can
then use NetBIOSS86 as a transport mechanism to infect files on that host in
the hopes that a user will run an infected file, which will activate Nimda on
that host.

* Web servers: Nimda scans Web servers, looking for known vulnerabilities in
Microsoft IIS. If it finds a vulnerable server, it attempts to transfer a copy of
itself to the server and infects it and its files.

* Web clients: If a vulnerable Web client visits a Web server that has been infected
by Nimda, the client’s workstation will become infected.

* Backdoors: If a workstation was infected by earlier worms, such as “Code Red
I1,” then Nimda will use the backdoor access left by these earlier infections to
access the system.

In early 2003, the SQL Slammer worm appeared. This worm exploited a buffer
overflow vulnerability in Microsoft SQL server. The Slammer was extremely compact
and spread rapidly, infecting 90% of vulnerable hosts within 10 minutes. This rapid
spread caused significant congestion on the Internet.

Late 2003 saw the arrival of the Sobig.F worm, which exploited open proxy
servers to turn infected machines into spam engines. At its peak, Sobig.F reportedly
accounted for one in every 17 messages and produced more than one million copies
of itself within the first 24 hours.

Mydoom is a mass-mailing e-mail worm that appeared in 2004. It followed the
growing trend of installing a backdoor in infected computers, thereby enabling hack-
ers to gain remote access to data such as passwords and credit card numbers. Mydoom

6.4 / PROPAGATION—VULNERABILITY EXPLOIT—WORMS 221

replicated up to 1,000 times per minute and reportedly flooded the Internet with 100
million infected messages in 36 hours.

The Warezov family of worms appeared in 2006 [KIRK06]. When the worm
is launched, it creates several executables in system directories and sets itself to run
every time Windows starts by creating a registry entry. Warezov scans several types
of files for e-mail addresses and sends itself as an e-mail attachment. Some variants
are capable of downloading other malware, such as Trojan horses and adware. Many
variants disable security-related products and/or disable their updating capability.

The Conficker (or Downadup) worm was first detected in November 2008 and
spread quickly to become one of the most widespread infections since SQL Slammer
in 2003 [LAWTO09]. It spread initially by exploiting a Windows buffer overflow vulner-
ability, though later versions could also spread via USB drives and network file shares.
Recently, it still comprised the second most common family of malware observed by
Symantec [SYMA16], even though patches were available from Microsoft to close
the main vulnerabilities it exploits.

In 2010, the Stuxnet worm was detected, though it had been spreading quietly
for some time previously [CHEN11, KUSH13]. Unlike many previous worms, it delib-
erately restricted its rate of spread to reduce its chance of detection. It also targeted
industrial control systems, most likely those associated with the Iranian nuclear pro-
gram, with the likely aim of disrupting the operation of their equipment. It supported
a range of propagation mechanisms, including via USB drives, network file shares,
and using no less than four unknown, zero-day vulnerability exploits. Considerable
debate resulted from the size and complexity of its code, the use of an unprecedented
four zero-day exploits, and the cost and effort apparent in its development. There are
claims that it appears to be the first serious use of a cyberwarfare weapon against
a nation’s physical infrastructure. The researchers who analyzed Stuxnet noted that
while they were expecting to find espionage, they never expected to see malware with
targeted sabotage as its aim. As a result, greater attention is now being directed at the
use of malware as a weapon by a number of nations.

In late 2011, the Duqu worm was discovered, which uses code related to that in
Stuxnet. Its aim is different, being cyber-espionage, though it appears to also target
the Iranian nuclear program. Another prominent, recent, cyber-espionage worm is
the Flame family, which was discovered in 2012 and appears to target Middle-Eastern
countries. Despite the specific target areas for these various worms, their infection
strategies have been so successful that they have been identified on computer systems
in a very large number of countries, including on systems kept physically isolated
from the general Internet. This reinforces the need for significantly improved coun-
termeasures to resist such infections.

In May 2017 the WannaCry ransomware attack spread extremely rapidly over a
period of hours to days, infecting hundreds of thousands of systems belonging to both
public and private organisations in more than 150 countries (US-CERT Alert TA17-
132A) [GOOD17]. It spread as a worm by aggressively scanning both local and random
remote networks, attempting to exploit a vulnerability in the SMB file sharing service on
unpatched Windows systems. This rapid spread was only slowed by the accidental activa-
tion of a “kill-switch” domain by a UK security researcher, whose existence was checked
for in the initial versions of this malware. Once installed on infected systems, it also
encrypted files, demanding a ransom payment to recover them, as we will discuss later.

222 CHAPTER 6 / MALICIOUS SOFTWARE

State of Worm Technology
The state of the art in worm technology includes the following:

° Multiplatform: Newer worms are not limited to Windows machines but can
attack a variety of platforms, especially the popular varieties of UNIX; or
exploit macro or scripting languages supported in popular document types.

* Multi-exploit: New worms penetrate systems in a variety of ways, using exploits
against Web servers, browsers, e-mail, file sharing, and other network-based
applications; or via shared media.

» Ultrafast spreading: Exploit various techniques to optimize the rate of spread
of a worm to maximize its likelihood of locating as many vulnerable machines
as possible in a short time period.

e Polymorphic: To evade detection, skip past filters, and foil real-time analysis,
worms adopt virus polymorphic techniques. Each copy of the worm has new
code generated on the fly using functionally equivalent instructions and encryp-
tion techniques.

* Metamorphic: In addition to changing their appearance, metamorphic worms
have a repertoire of behavior patterns that are unleashed at different stages of
propagation.

e Transport vehicles: Because worms can rapidly compromise a large number
of systems, they are ideal for spreading a wide variety of malicious payloads,
such as distributed denial-of-service bots, rootkits, spam e-mail generators, and
spyware.

e Zero-day exploit: To achieve maximum surprise and distribution, a worm should
exploit an unknown vulnerability that is only discovered by the general network
community when the worm is launched. In 2015, 54 zero-day exploits were
discovered and exploited, significantly more than in previous years [SYMA16].
Many of these were in common computer and mobile software. Some, though,
were in common libraries and development packages, and some in industrial
control systems. This indicates the range of systems being targeted.

Mobile Code

NIST SP 800-28 (Guidelines on Active Content and Mobile Code, March 2008) defines
mobile code as programs (e.g., script, macro, or other portable instruction) that can
be shipped unchanged to a heterogeneous collection of platforms and executed with
identical semantics.

Mobile code is transmitted from a remote system to a local system then executed
on the local system without the user’s explicit instruction. Mobile code often acts as a
mechanism for a virus, worm, or Trojan horse to be transmitted to the user’s worksta-
tion. In other cases, mobile code takes advantage of vulnerabilities to perform its own
exploits, such as unauthorized data access or root compromise. Popular vehicles for
mobile code include Java applets, ActiveX, JavaScript,and VBScript. The most common
methods of using mobile code for malicious operations on local system are cross-site
scripting, interactive and dynamic websites, e-mail attachments, and downloads from
untrusted sites or of untrusted software.

6.4 / PROPAGATION—VULNERABILITY EXPLOIT—WORMS 223

Mobile Phone Worms

Worms first appeared on mobile phones with the discovery of the Cabir worm in
2004, then Lasco and CommWarrior in 2005. These worms communicate through
Bluetooth wireless connections or via the multimedia messaging service (MMS).
The target is the smartphone, which is a mobile phone that permits users to install
software applications from sources other than the cellular network operator. All these
early mobile worms targeted mobile phones using the Symbian operating system.
More recent malware targets Android and iPhone systems. Mobile phone malware
can completely disable the phone, delete data on the phone, or force the device to
send costly messages to premium-priced numbers.

The CommWarrior worm replicates by means of Bluetooth to other phones
in the receiving area. It also sends itself as an MMS file to numbers in the phone’s
address book and in automatic replies to incoming text messages and MMS messages.
In addition, it copies itself to the removable memory card and inserts itself into the
program installation files on the phone.

Although these examples demonstrate that mobile phone worms are possible,
the vast majority of mobile phone malware observed use trojan apps to install them-
selves [SYMA16].

Client-Side Vulnerabilities and Drive-by-Downloads

Another approach to exploiting software vulnerabilities involves the exploit of bugs
in user applications to install malware. A common technique exploits browser and
plugin vulnerabilities so when the user views a webpage controlled by the attacker,
it contains code that exploits the bug to download and install malware on the system
without the user’s knowledge or consent. This is known as a drive-by-download and
is a common exploit in recent attack kits. Multiple vulnerabilities in the Adobe Flash
Player and Oracle Java plugins have been exploited by attackers over many years, to
the point where many browsers are now removing support for them. In most cases, this
malware does not actively propagate as a worm does, but rather waits for unsuspecting
users to visit the malicious webpage in order to spread to their systems [SYMA16].

In general, drive-by-download attacks are aimed at anyone who visits a compro-
mised site and is vulnerable to the exploits used. Watering-hole attacks are a variant
of this used in highly targeted attacks. The attacker researches their intended victims
to identify websites they are likely to visit, then scans these sites to identify those
with vulnerabilities that allow their compromise with a drive-by-download attack.
They then wait for one of their intended victims to visit one of the compromised sites.
Their attack code may even be written so that it will only infect systems belonging to
the target organization, and take no action for other visitors to the site. This greatly
increases the likelihood of the site compromise remaining undetected.

Malvertising is another technique used to place malware on websites without
actually compromising them. The attacker pays for advertisements that are highly
likely to be placed on their intended target websites, and which incorporate malware
in them. Using these malicious adds, attackers can infect visitors to sites displaying
them. Again, the malware code may be dynamically generated to either reduce the
chance of detection, or to only infect specific systems. Malvertising has grown rapidly
in recent years, as they are easy to place on desired websites with few questions asked,

224 CHAPTER 6 / MALICIOUS SOFTWARE

and are hard to track. Attackers have placed these ads for as little as a few hours,
when they expect their intended victims could be browsing the targeted websites,
greatly reducing their visibility [SYMA16].

Other malware may target common PDF viewers to also download and install
malware without the user’s consent when they view a malicious PDF document
[STEV11]. Such documents may be spread by spam e-mail, or be part of a targeted
phishing attack, as we will discuss in the next section.

Clickjacking

Clickjacking, also known as a user-interface (UI) redress attack,is a vulnerability used
by an attacker to collect an infected user’s clicks. The attacker can force the user
to do a variety of things from adjusting the user’s computer settings to unwittingly
sending the user to websites that might have malicious code. Also, by taking advan-
tage of Adobe Flash or JavaScript, an attacker could even place a button under or
over a legitimate button, making it difficult for users to detect. A typical attack uses
multiple transparent or opaque layers to trick a user into clicking on a button or link
on another page when they were intending to click on the top level page. Thus, the
attacker is hijacking clicks meant for one page and routing them to another page,
most likely owned by another application, domain, or both.

Using a similar technique, keystrokes can also be hijacked. With a carefully
crafted combination of stylesheets, iframes, and text boxes, a user can be led to believe
they are typing in the password to their e-mail or bank account, but are instead typing
into an invisible frame controlled by the attacker.

There is a wide variety of techniques for accomplishing a clickjacking attack,
and new techniques are developed as defenses to older techniques are put in place.
[NTEM11] and [STON10] are useful discussions.

6.5 PROPAGATION—SOCIAL ENGINEERING—SPAM E-MAIL,
TROJANS

The final category of malware propagation we consider involves social engineering,
“tricking” users to assist in the compromise of their own systems or personal informa-
tion. This can occur when a user views and responds to some SPAM e-mail, or permits
the installation and execution of some Trojan horse program or scripting code.

Spam (Unsolicited Bulk) E-Mail

With the explosive growth of the Internet over the last few decades, the widespread
use of e-mail, and the extremely low cost required to send large volumes of e-mail, has
come the rise of unsolicited bulk e-mail, commonly known as spam. [SYMA16] notes
that more than half of inbound business e-mail traffic is still spam, despite a gradual
decline in recent years. This imposes significant costs on both the network infrastruc-
ture needed to relay this traffic, and on users who need to filter their legitimate e-mails
out of this flood. In response to this explosive growth, there has been the equally rapid
growth of the anti-spam industry that provides products to detect and filter spam
e-mails. This has led to an arms race between the spammers devising techniques to
sneak their content through, and with the defenders, efforts to block them [KREI09].

6.5 / PROPAGATION—SOCIAL ENGINEERING—SPAM E-MAIL, TROJANS 225

However, the spam problem continues, as spammers exploit other means of
reaching their victims. This includes the use of social media, reflecting the rapid growth
in the use of these networks. For example, [SYMA16] described a successful weight-
loss spam campaign that exploited hundreds of thousands of fake Twitter accounts,
mutually supporting and reinforcing each other, to increase their credibility and likeli-
hood of users following them, and then falling for the scam. Social network scams often
rely on victims sharing the scam, or on fake offers with incentives, to assist their spread.

While some spam e-mail is sent from legitimate mail servers using stolen user
credentials, most recent spam is sent by botnets using compromised user systems,
as we will discuss in Section 6.6. A significant portion of spam e-mail content is just
advertising, trying to convince the recipient to purchase some product online, such
as pharmaceuticals, or used in scams, such as stock, romance or fake trader scams, or
money mule job ads. But spam is also a significant carrier of malware. The e-mail may
have an attached document, which, if opened, may exploit a software vulnerability
to install malware on the user’s system, as we discussed in the previous section. Or, it
may have an attached Trojan horse program or scripting code that, if run, also installs
malware on the user’s system. Some Trojans avoid the need for user agreement by
exploiting a software vulnerability in order to install themselves, as we will discuss
next. Finally the spam may be used in a phishing attack, typically directing the user
either to a fake website that mirrors some legitimate service, such as an online bank-
ing site, where it attempts to capture the user’s login and password details; or to com-
plete some form with sufficient personal details to allow the attacker to impersonate
the user in an identity theft. In recent years, the evolving criminal marketplace makes
phishing campaigns easier by selling packages to scammers that largely automate the
process of running the scam [SYMA16]. All of these uses make spam e-mails a sig-
nificant security concern. However, in many cases, it requires the user’s active choice
to view the e-mail and any attached document, or to permit the installation of some
program, in order for the compromise to occur. Hence the importance of providing
appropriate security awareness training to users, so they are better able to recognize
and respond appropriately to such e-mails, as we will discuss in Chapter 17

Trojan Horses

A Trojan horse? is a useful, or apparently useful, program or utility containing hidden
code that, when invoked, performs some unwanted or harmful function.

Trojan horse programs can be used to accomplish functions indirectly that the
attacker could not accomplish directly. For example, to gain access to sensitive, per-
sonal information stored in the files of a user, an attacker could create a Trojan
horse program that, when executed, scans the user’s files for the desired sensitive
information and sends a copy of it to the attacker via a webform or e-mail or text
message. The author could then entice users to run the program by incorporating it
into a game or useful utility program, and making it available via a known software

2In Greek mythology, the Trojan horse was used by the Greeks during their siege of Troy. Epeios con-
structed a giant hollow wooden horse in which 30 of the most valiant Greek heroes concealed themselves.
The rest of the Greeks burned their encampment and pretended to sail away but actually hid nearby.
The Trojans, convinced the horse was a gift and the siege over, dragged the horse into the city. That night,
the Greeks emerged from the horse and opened the city gates to the Greek army. A bloodbath ensued,
resulting in the destruction of Troy and the death or enslavement of all its citizens.

226 CHAPTER 6 / MALICIOUS SOFTWARE

distribution site or app store. This approach has been used recently with utilities that
“claim” to be the latest anti-virus scanner, or security update, for systems, but which
are actually malicious Trojans, often carrying payloads such as spyware that searches
for banking credentials. Hence, users need to take precautions to validate the source
of any software they install.

Trojan horses fit into one of three models:

¢ Continuing to perform the function of the original program and additionally
performing a separate malicious activity.

e Continuing to perform the function of the original program but modifying the
function to perform malicious activity (e.g., a Trojan horse version of a login
program that collects passwords) or to disguise other malicious activity (e.g., a
Trojan horse version of a process listing program that does not display certain
processes that are malicious).

¢ Performing a malicious function that completely replaces the function of the
original program.

Some Trojans avoid the requirement for user assistance by exploiting some software
vulnerability to enable their automatic installation and execution. In this, they share
some features of a worm, but unlike it, they do not replicate. A prominent example
of such an attack was the Hydraq Trojan used in Operation Aurora in 2009 and early
2010. This exploited a vulnerability in Internet Explorer to install itself, and targeted
several high-profile companies. It was typically distributed using either spam e-mail or
via a compromised website using a “watering-hole” attack. Tech Support Scams are a
growing social engineering concern. These involve call centers calling users about non-
existent problems on their computer systems. If the users respond, the attackers try to
sell them bogus tech support or ask them to install Trojan malware or other unwanted
applications on their systems, all while claiming this will fix their problem [SYMA16].

Mobile Phone Trojans

Mobile phone Trojans also first appeared in 2004 with the discovery of Skuller. As
with mobile worms, the target is the smartphone, and the early mobile Trojans tar-
geted Symbian phones. More recently, a significant number of Trojans have been
detected that target Android phones and Apple iPhones. These Trojans are usually
distributed via one or more of the app marketplaces for the target phone O/S.

The rapid growth in smartphone sales and use, which increasingly contain valu-
able personal information, make them an attractive target for criminals and other
attackers. Given five in six new phones run Android, they are a key target [SYMA16].
The number of vulnerabilities discovered in, and malware families targeting these
phones, have both increased steadily in recent years. Recent examples include a
phishing Trojan that tricks the user into entering their banking details, and ransom-
ware that mimics Google’s design style to appear more legitimate and intimidating.

The tighter controls that Apple impose on their app store, mean that many
iPhone Trojans target “jail-broken” phones, and are distributed via unofficial sites.
However a number of versions of the iPhone O/S contained some form of graphic
or PDF vulnerability. Indeed these vulnerabilities were the main means used to “jail-
break” the phones. But they also provided a path that malware could use to target
the phones. While Apple has fixed a number of these vulnerabilities, new variants

6.6 / PAYLOAD—SYSTEM CORRUPTION 227

continued to be discovered. This is yet another illustration of just how difficult it is, for
even well- resourced organizations, to write secure software within a complex system,
such as an operating system. We will return to this topic in Chapters 10 and 11. More
recently in 2015, XcodeGhost malware was discovered in a number of legitimate
Apple Store apps. The apps were not intentionally designed to be malicious, but their
developers used a compromised Xcode development system that covertly installed
the malware as the apps were created [SYMA16]. This is one of several examples
of attackers exploiting the development or enterprise provisioning infrastructure to
assist malware distribution.

6.6 PAYLOAD—SYSTEM CORRUPTION

Once malware is active on the target system, the next concern is what actions it
will take on this system. That is, what payload does it carry? Some malware has a
nonexistent or nonfunctional payload. Its only purpose, either deliberate or due to
accidental early release, is to spread. More commonly, it carries one or more payloads
that perform covert actions for the attacker.

An early payload seen in a number of viruses and worms resulted in data destruc-
tion on the infected system when certain trigger conditions were met [WEAVO03]. A
related payload is one that displays unwanted messages or content on the user’s system
when triggered. More seriously, another variant attempts to inflict real-world dam-
age on the system. All of these actions target the integrity of the computer system’s
software or hardware, or of the user’s data. These changes may not occur immediately,
but only when specific trigger conditions are met that satisfy their logic-bomb code.

Data Destruction and Ransomware

The Chernobyl virus is an early example of a destructive parasitic memory-resident
Windows-95 and 98 virus, which was first seen in 1998. It infects executable files
when they are opened. And when a trigger date is reached, the virus deletes data on
the infected system by overwriting the first megabyte of the hard drive with zeroes,
resulting in massive corruption of the entire file system. This first occurred on April
26,1999, when estimates suggest more than one million computers were affected.

Similarly, the Klez mass-mailing worm is an early example of a destructive
worm infecting Windows-95 to XP systems, and was first seen in October 2001. It
spreads by e-mailing copies of itself to addresses found in the address book and in
files on the system. It can stop and delete some anti-virus programs running on the
system. On trigger dates, being the 13th of several months each year, it causes files
on the local hard drive to become empty.

As an alternative to just destroying data, some malware encrypts the user’s
data, and demands payment in order to access the key needed to recover this infor-
mation. This is known as ransomware. The PC Cyborg Trojan seen in 1989 was an
early example of this. However, around mid-2006, a number of worms and Trojans
appeared, such as the Gpcode Trojan, that used public-key cryptography with increas-
ingly larger key sizes to encrypt data. The user needed to pay a ransom, or to make
a purchase from certain sites, in order to receive the key to decrypt this data. While
earlier instances used weaker cryptography that could be cracked without paying the

228 CHAPTER 6 / MALICIOUS SOFTWARE

ransom, the later versions using public-key cryptography with large key sizes could
not be broken this way. [SYMA16, VERI16] note that ransomware is a growing chal-
lenge, comprising one of the most common types of malware installed on systems,
and is often spread via “drive-by-downloads” or via SPAM e-mails.

The WannaCry ransomware, that we mentioned earlier in our discussion of
Worms, infected a large number of systems in many countries in May 2017 When
installed on infected systems, it encrypted a large number of files matching a list of
particular file types, and then demanded a ransom payment in Bitcoins to recover
them. Once this had occurred, recovery of this information was generally only possible
if the organization had good backups, and an appropriate incident response and disas-
ter recovery plan, as we will discuss in Chapter 17 The WannaCry ransomware attack
generated a significant amount of media attention, in part due to the large number of
affected organizations, and the significant costs they incurred in recovering from it. The
targets for these attacks have widened beyond personal computer systems to include
mobile devices and Linux servers. And tactics such as threatening to publish sensi-
tive personal information, or to permanently destroy the encryption key after a short
period of time, are sometimes used to increase the pressure on the victim to pay up.

Real-World Damage

A further variant of system corruption payloads aims to cause damage to physi-
cal equipment. The infected system is clearly the device most easily targeted. The
Chernobyl virus ment