WORDWARE GAME DEVELOPER’S LIBRARY

éhaaerx

ader Programming

Hips & Tricks witn

irect 8
o=




ShaderX2: Shader
Programming Tips &
Tricks with DirectX 9

Edited by

Wolfgang F. Engel

Wordware Publishing, Inc.



Library of Congress Cataloging-in-Publication Data

ShaderX? : shader programming tips and tricks with DirectX 9 / edited by
Wolfgang F. Engel.
p. cm.
Includes bibliographical references and index.
ISBN 1-55622-988-7 (paperback, companion CD-ROM)
1. Computer games--Programming. 2. Three-dimensional display systems.
I. Title: ShaderX squared. Il. Engel, Wolfgang F.
QA76.76.C672S48 2003
794.8'16693--dc22 2003018871
CIP

© 2004, Wordware Publishing, Inc.
All Rights Reserved

2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by any means
without permission in writing from Wordware Publishing, Inc.

Printed in the United States of America

ISBN 1-55622-988-7

10987654321
0308

Screen shots used in this book remain the property of their respective companies.

All brand names and product names mentioned in this book are trademarks or service marks of their respective companies.
Any omission or misuse (of any kind) of service marks or trademarks should not be regarded as intent to infringe on the
property of others. The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a
means to distinguish their products.

This book is sold as is, without warranty of any kind, either express or implied, respecting the contents of this book and any
disks or programs that may accompany it, including but not limited to implied warranties for the book’s quality, performance,
merchantability, or fitness for any particular purpose. Neither Wordware Publishing, Inc. nor its dealers or distributors shall be
liable to the purchaser or any other person or entity with respect to any liability, loss, or damage caused or alleged to have been
caused directly or indirectly by this book.

All inquiries for volume purchases of this book should be addressed to Wordware
Publishing, Inc., at the above address. Telephone inquiries may be made by calling:

(972) 423-0090



Contents

Preface
About the Authors
Introduction

Section I—Geometry Manipulation Tricks

Using Vertex Shaders for Geomeiry Compression
Dean Calver

Using Lookup Tables in Vertex Shaders
Carsten Wenzel

Terrain Geomorphing in the Vertex Shader
Daniel Wagner

3D Planets on the GPU
Jesse Laeuchli

Cloth Animation with Pixel and Vertex Shader 3.0
Kristof Beets

Collision Shaders
Tokashi Imagire

Displacement Mapping
Tom Forsyth
Section Il — Rendering Techniques

Rendering Objects as Thick Volumes
Greg James

Screen-aligned Particles with Minimal VertexBuffer Locking
O’dell Hicks

Hemisphere Lighting with Radiosity Maps
Shawn Hargreaves

vii

XiX

13

18

33

40

58

73

87
89

107

113

coe



Contents

Galaxy Textures
Jesse Laeuchli

Turbulent Sun
Jesse Laeuchli

Fragment-level Phong Illlumination
Emil Persson

Specular Bump Mapping on Pre-ps_1_4 Hardware
Matthew Halpin

Voxel Rendering with PS_3 0
Aaron Burton

Simulating Blending Operations on Floating-point Render Targets

Francesco Carucci

Rendering Volumes in a Vertex & Pixel Program by Ray Tracing

Eli Z. Gotilieb

Normal Map Compression
Jakub Klarowicz

Drops of Water and Texture Sprites
Sylvain Lefebvre

Advanced Water Effects
Kurt Pelzer

Efficient Evaluation of Irradiance Environment Maps
Peter-Pike J. Sloan

Practical Precomputed Radiance Transfer
Peter-Pike J. Sloan

Advanced Sky Dome Rendering
Marco Spoerl and Kurt Pelzer

Deferred Shading with Multiple Render Targets
Nicolas Thibieroz

Meshuggah’s Effects Explained
Carsten Wenzel

Layered Car Paint Shader
John Isidoro, Chris Oat, and Natalya Tatarchuk

Motion Blur Using Geometry and Shading Distortion

Natalya Tatarchuk, Chris Brennan, Alex Vlachos, and John Isidoro

123

127

131

149

161

172

185

190

207

226

232

240

251

270

293

299



Simulation of Iridescence and Translucency on Thin Surfaces
Natalya Tatarchuk and Chris Brennan

Floating-point Cube Maps
Arkadiusz Waliszewski

Stereoscopic Rendering in Hardware Using Shaders
Thomas Rued

Hatching, Stroke Styles, and Pointillism
Kevin Buchin and Maike Walther

Layered Fog
Guillaume Werle

Dense Matrix Algebra on the GPU
Addm Moravénszky

Section Ill — Software Shaders and Shader Programming Tips

Sofiware Vertex Shader Processing
Dean P Macri

x86 Shaders-ps_2_0 Shaders in Software
Nicolas Capens

SoftD3D: A Software-only Implementation of
Microsoft’s Direct3D API

Oliver Weichhold

Named Constants in Shader Development
Jeffrey Kiel

Section IV — Image Space

Advanced Image Processing with DirectX 9 Pixel Shaders
Jason L. Mitchell, Marwan Y. Ansari, and Evan Hart

Night Vision: Frame Buffer Post-processing with ps.1.1 Hardware

Guillaume Werle

Non-Photorealistic Post-processing Filters in MotoGP 2
Shawn Hargreaves

Image Effects with DirectX 9 Pixel Shaders
Marwan Y. Ansari

Using Pixel Shaders to Implement a Mosaic Effect Using
Character Glyphs

Roger Descheneaux and Maurice Ribble

Contents

309

319

324

340

348

352

381
383

396

413

432

437
439

465

469

481

519



Contents

Mandelbrot Set Rendering
Emil Persson

Real-Time Depth of Field Simulation
Guennadi Riguer, Natalya Tatarchuk, and John Isidoro

Section V — Shadows

Soft Shadows
Flavien Brebion

Robust Object ID Shadows
Sim Dietrich

Reverse Extruded Shadow Volumes
Renaldas Zioma

Section VI — 3D Engine and Tools Design

vi

Shader Abstraction
Tom Forsyth

Post-Process Fun with Effecis Buffers
Tom Forsyth

Shaders under Control (Codecreatures Engine)
Oliver Hoeller

Shader Integration in the Gamebryo Graphics Engine
Scott Sherman, Dan Amerson, Shaun Kime, and Tim Preston

Vertex Shader Compiler
David Pangerl

Shader Disassembler
Jean-Sebastian Luce

Index

526

529

557
559

580

587

595
597

614

625

631

650

667

675



Preface

After the tremendous success of Direct3D ShaderX: Vertex and Pixel Shader Tips
and Tricks, I planned to do another book with an entirely new set of innovative
ideas, techniques, and algorithms. The call for authors led to many proposals from
nearly 80 people who wanted to contribute to the book. Some of these proposals
featured introductory material and others featured much more advanced themes.
Because of the large amount of material, I decided to split the articles into intro-
ductory pieces that are much longer but explain a lot of groundwork and articles
that assume a certain degree of knowledge. This idea led to two books:

ShaderX?: Introductions & Tutorials with DivectX 9
ShaderX?: Shader Programming Tips & Tricks with DirectX 9

The first book helps the reader get started with shader programming, whereas
the second book (this one) features tips and tricks that an experienced shader
programmer will benefit from.

As with Direct3D ShaderX, Javier Izquierdo Villagran (nurbs1l@jazzfree.com)
prepared the drafts for the cover design of both books with in-game screen shots
from Aquanox 2, which were contributed by Ingo Frick, the technical director of
Massive Development.

A number of people have enthusiastically contributed to both books:

Wessam Bahnassi
Andre Chen
Muhammad Haggag
Kenneth L. Hurley
Eran Kampf

Brian Peltonen
Mark Wang

Additionally, the following ShaderX? authors proofread several articles each:

Dean Calver
Nicolas Capens
Tom Forsyth
Shawn Hargreaves
Jeffrey Kiel

Hun Yen Kwoon
Markus Nuebel
Michal Valient
Oliver Weichhold

vii
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viii

These great people spent a lot of time proofreading articles, proposing improve-
ments, and exchanging e-mails with other authors and myself. Their support was
essential to the book development process, and their work led to the high quality
of the books. Thank you!

Another big thank you goes to the people in the Microsoft Direct3D discus-
sion group (http://DISCUSS.MICROSOFT.COM/archives/DIRECTXDEV.html).
They were very helpful in answering my numerous questions.

As with Direct3D ShaderX, there were some driving spirits who encouraged
me to start this project and hold on through the seven months it took to complete
it:

Dean Calver (Eclipse)

Jason L. Mitchell (ATI Research)
Natasha Tatarchuk (ATI Research)
Nicolas Thibieroz (PowerVR)
Carsten Wenzel (Crytek)

Additionally, I have to thank Thomas Rued from DigitalArts for inviting me to the
Vision Days in Copenhagen, Denmark, and for the great time I had there. I would
like to thank Matthias Wloka and Randima Fernando from nVidia for lunch at GDC
2003. T had a great time.

As usual, the great team at Wordware made the whole project happen: Jim
Hill, Wes Beckwith, Heather Hill, Beth Kohler, and Paula Price took over after I
sent them hundreds of megabytes of data.

There were other numerous people involved in this book project that I have
not mentioned. I would like to thank them here. It was a pleasure working with so
many talented people.

Special thanks goes to my wife, Katja, and our daughter, Anna, who spent a
lot of evenings and weekends during the last seven months without me, and to
my parents, who always helped me to believe in my strength.

— Wolfgang E Engel

PS.: Plans for an upcoming project named ShaderX? are already in progress. Any
comments, proposals, and suggestions are highly welcome (wolf@shaderx.com).
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Introduction

This book is a collection of articles that discuss ways to use vertex and pixel
shaders to implement a variety of effects. The following provides a brief overview
of these articles:

Section I — Geometry Manipulation Tricks

This section starts with a DirectX 9 sequel to Dean Calver’s vertex compression
article in Direct3D ShaderX: Pixel and Vertex Shader Tips and Tricks. Dean shows
a number of ways to reduce vertex throughput by compressing vertex data.
Carsten Wenzel points out how to use lookup tables in vertex shaders to reduce
the workload of the vertex shader hardware. A feature-complete and very hard-
ware-friendly terrain engine is explained in Daniel Wagner’s article, “Terrain
Geomorphing in the Vertex Shader.” The speed of the example program provided
with source is impressive. Creating 3D planets for a space-shooter type of game
can be done entirely on the GPU, which Jesse Laeuchli shows how to do in his
article “3D Planets on the GPU.”

The vs_3_0 vertex shader model has a feature called vertex texturing, which
Kristof Beets uses to create a very realistic-looking cloth animation in his article
“Cloth Animation with Pixel and Vertex Shader 3.0.” In “Collision Shaders,”
Takashi Imagire, who is known for the example programs on his web site
(www.t-pot.com), uses shaders to calculate collisions, something that has never
been shown before. The final article in this section covers using displacement
mapping as a method of geometry compression. The main aim of Tom Forsyth's
article is to allow people to take data from the industry’s current mesh and tex-
ture authoring pipelines, and to derive displacement map data from them.

Section II — Rendering Techniques

The section starts with an article by Greg James that presents a convenient and
flexible technique for rendering ordinary polygon objects of any shape as thick
volumes of light scattering or light absorbing material with ps 1 3. O’dell Hicks
shows in his article, “Screen-aligned Particles with Minimal VertexBuffer
Locking,” how to create screen-aligned particles with a vertex shader, bringing us
one step closer to the goal of having almost everything done by the GPU. “Hemi-
sphere Lighting with Radiosity Maps,” written by Shawn Hargreaves, shows a
lighting model that was designed for fast moving objects in outdoor environments.
Its goals are to tie in the moving objects with their surroundings, to convey a sen-
sation of speed, and to be capable of rendering large numbers of meshes at a good
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frame rate on first-generation shader hardware. The companion movie on the CD
includes jaw-dropping effects.

Jesse Laeuchli has contributed two additional articles. In “Galaxy Textures,”
he uses a procedural model to generate easy-to-vary galaxies that can be imple-
mented almost entirely on hardware using pixel shaders. “Turbulent Sun” demon-
strates how to implement a sun using a 3D noise function. The example program
runs solely on the GPU using shaders. A complete implementation of Phong light-
ing, together with a cube shadow mapping implementation, is shown in Emil
Persson’s article, “Fragment-level Phong Illumination.” Getting a nicely distrib-
uted specular reflection on ps_1 1 hardware is a challenge, but Matthew Halpin
shows a new and very efficient way to achieve this in “Specular Bump Mapping
on Pre-ps_1 4 Hardware.” With the advent of pixel shader 3_0, graphics hardware
has become capable of rendering hardware-accelerated voxels. Aaron Burton’s
article, “Rendering Voxel Objects with PS 3 0,” shows how to implement real
voxels on third-generation graphics hardware. Current DirectX 9 hardware is not
capable of alpha-blending between floating-point render targets, but Francesco
Carucci shows a way to simulate alpha-blending on this hardware in his article,
“Simulating Blending Operations on Floating-point Render Targets.”

Eli Z. Gottlieb’s article, “Rendering Volumes in a Vertex & Pixel Program by
Ray Tracing,” shows how to render volumes by using ray tracing and a volume
texture on ps_2_x hardware. Using bump maps to create bump mapping effects
increases the amount of data necessary in memory. Jakub Klarowicz’s article,
“Normal Map Compression,” shows how to compress bump maps with a common
DXT format. Sylvain Lefebvre discusses how to implement pattern-based proce-
dural textures in “Drops of Water and Texture Sprites.” These kinds of textures
are not procedural in the sense of classic marble or wood textures, but they com-
bine explicit textures (patterns) in order to create a larger texture with the
desired appearance. Kurt Pelzer explains how to implement a realistic water sim-
ulation that is extensively usable in his article “Advanced Water Effects.” If you
ever wondered how this was done in the CodeCreatures engine, don’t look any
further.

Peter-Pike Sloan uses irradiance environment maps to render diffuse objects
in arbitrary lighting environments in “Efficient Evaluation of Irradiance Environ-
ment Maps.” He presents a method that uses spherical harmonics to efficiently
represent an irradiance environment map, which is more efficient to compute and
uses fewer resources than diffuse cube maps. In a second article, “Practical
Precomputed Radiance Transfer,” Peter-Pike Sloan shows how to use precom-
puted radiance transfer to illuminate rigid objects in low-frequency lighting envi-
ronments with global effects like soft shadows and inter-reflections. These results
are achieved by running a lengthy preprocess that computes how light is trans-
ferred from the source environment to exit radiance at a point. Marco Spoerl and
Kurt Pelzer discuss how to render advanced sky domes in “Advanced Sky Dome
Rendering.” This article describes the implementation of a basic vertex color sky
dome, which computes the correct position of both the sun and the moon depend-
ing on time of day, changes its color depending on the position of the sun, renders
a projection of the sun at its correct position, and renders a projection of the moon
at its correct position including the moon’s current phase.
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Nicolas Thibieroz shows how to implement deferred shading in “Deferred
Shading with Multiple Render Targets.” Contrary to traditional rendering algo-
rithms, deferred shading submits the scene geometry only once and stores per-
pixel attributes into local video memory to be used in the subsequent rendering
passes. Carsten Wenzel explains how he created the effects in his Meshuggah
demo in “Meshuggah’s Effects Explained.” It is impressive what he has done on
DirectX 8.1-capable hardware and on the Xbox. John Isidoro, Chris Oat, and
Natalya Tatarchuk explain how they created a two-tone, suspended microflake car
paint shader in “Layered Car Paint Shader.” Motion blur effects as shown in the
Animusic demo Pipe Dream are described in “Motion Blur Using Geometry and
Shading Distortion” by Natalya Tatarchuk, Chris Brennan, Alex Vlachos, and John
Isidoro. “Simulation of Iridescence and Translucency on Thin Surfaces” by
Natalya Tatarchuk and Chris Brennan focuses on simulating the visual effect of
translucency and iridescence of thin surfaces such as butterfly wings.

Arkadiusz Waliszewski describes in “Floating-point Cube Maps” how to use
floating-point cube maps to get a much more visually pleasing cube mapping
effect. Thomas Rued compares three different kinds of stereoscopic rendering and
provides shader implementations for each of them in his article “Stereoscopic
Rendering in Hardware Using Shaders.” The article “Hatching, Stroke Styles, and
Pointillism” by Kevin Buchin and Maike Walther shows how to implement hatch-
ing by combining strokes into a texture. These compositions of strokes can con-
vey the surface form through stroke orientation, the surface material through
stroke arrangement and style, and the effect of light on the surface through stroke
density. Guillaume Werle explains a technique that achieves a realistic-looking
layered fog in “Layered Fog.” It computes the height on a per-vertex basis and
uses the texture coordinate interpolator to get per-pixel precision. Adam
Moravanszky's article, “Dense Matrix Algebra on the GPU,” shows how to use
shaders to solve two common problems in scientific computing: solving systems
of linear equations and linear complementarity problems. Both of these problems
come up in dynamics simulation, which is a field drawing increasing interest from
the game developer community.

Section III — Software Shaders and Shader Programming Tips

Dean Macri’s article, “Software Vertex Shader Processing,” explores optimization
guidelines for writing shaders that will use the software vertex processing pipe-
line. Additionally, the techniques described in this article should also apply to ver-
tex shaders written for graphics hardware. Emulating pixel shaders efficiently on
the CPU might be the first step in writing a software 3D engine with shader sup-
port that runs only on the CPU. In “x86 Shaders-ps_2 0 Shaders in Software,”
Nicolas Capens shows how to create a fast-performing software emulation of
ps_2_0 shaders by using a run-time assembler. Oliver Weichhold has created a
software implementation of the Direct3D pipeline. His article, “SoftD3D: A Soft-
ware-only Implementation of Microsoft’s Direct3D API,” describes how he did it.
Jeffrey Kiel shows a very handy trick for using named constants in shader devel-
opment in “Named Constants in Shader Development.”
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Section IV — Image Space

Jason L. Mitchell, Marwan Y. Ansari, and Evan Hart describe in their article
“Advanced Image Processing with DirectX 9 Pixel Shaders” how to perform color
space conversion using an edge detection filter called the Canny filter, separable
Gaussian and median filters, and a real-time implementation of the Fast Fourier
Transform with ps_2_0 shaders. The article “Night Vision: Frame Buffer Post-
processing with ps.1.1 Hardware” describes how to implement an efficient night
view on ps_1 1 hardware. Guillaume Werle uses a three-step approach to achieve
this, first rendering the scene into a texture, converting this texture to grayscale,
and using the luminance value of each pixel as the index into a gradient texture.
Shawn Hargreaves shows the non-photorealistic post-processing filters he used in
the game MotoGP 2 for ps 1 1 hardware and the Xbox in “Non-Photorealistic
Post-processing Filters in MotoGP 2.”

Marwan Y. Ansari discusses in his article “Image Effects with DirectX 9 Pixel
Shaders” how to achieve transition, distortion, and posterization image effects in
a video shader. Roger Descheneaux and Maurice Ribble show how to achieve a
mosaic-like effect via post-processing in “Using Pixel Shaders to Implement a
Mosaic Effect Using Character Glyphs.” The article “Mandelbrot Set Rendering”
by Emil Persson shows how to implement a Mandelbrot set in a ps_2_0 pixel
shader. Guennadi Riguer, Natalya Tatarchuk, and John Isidoro present two varia-
tions of a two-pass approach for depth of field simulation in their article “Real-
Time Depth of Field Simulation.” In both variations, the scene is rendered in the
first pass with some additional information such as depth, and in the second pass
some filters are run to blur the result from the first pass.

Section V — Shadows

In the article “Soft Shadows” by Flavien Brebion, a soft shadows algorithm that
works as an extension of the shadow volumes algorithm is explained. This is
achieved by using two volumes, the first from the standard point light (inner vol-
ume) and the second from a jittered point light position (outer volume). This sec-
ond volume defines the outer contour of the penumbra. The inner and outer
volumes are next rendered to the shadow map, each in one color component
channel, and then blurred. Sim Dietrich shows in “Robust Object ID Shadows”
how to prevent the depth aliasing problem of shadow maps by using object IDs
instead of storing depth in the light view texture. In his article “Reverse Extruded
Shadow Volumes,” Renaldas Zioma suggests a solution for dealing with shadow-
ing artifacts using stenciled shadow volumes that allow proper self-shadowing
while using occluder geometry.

Section VI — 3D Engine and Tools Design

Tom Forsyth shows in “Shader Abstraction” how to abstract shaders by specify-
ing a description of an ideal shader, but then in code the shader is allowed to
degrade gracefully in quality according to both platform and distance from the
camera. In an additional article, Tom Forsyth discusses how to generalize many of
the common effects in current games into a unified framework, where multiple
effects can be added, tried out, and combined at run time without replicating
shared code, in order to keep speed and memory use optimal when only a few of
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the effects are visible. The article “Shaders under Control (Codecreatures
Engine)” by Oliver Hoeller describes the base architecture used in the Code-
creatures engine. Scott Sherman, Dan Amerson, Shaun Kime, and Tim Preston
describe how they integrated shaders into the Gamebryo Engine. A complete
high-level programming language vertex shader compiler with source is given in
David Panger!’s article “Vertex Shader Compiler.” The final article in this book,
“Shader Disassembler,” by Jean-Sebastian Luce covers the creation of a shader
disassembler that can disassemble all available shader versions in DirectX 9.
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Using Vertex Shaders for
Geometry Compression

Dean Calver

This article is a follow-up to an article I wrote in Direct3D ShaderX: Vertex and
Pixel Shader Tips and Tricks. DirectX 9 has introduced new data types and added
new capabilities to the vertex stream model. This, combined with more complex
and faster vertex shaders, allows us to explore more advanced forms of vertex
and geometry compression.

What’s New in DirectX 9?

Vertex Shaders

In most cases I still use vertex shader version 1.1, as this is executed in hardware
on the greatest number of machines. The new cards do benefit in the extra con-
stant space available. This improves the amount of batching that can occur. Static
branching also makes it easier to use different compression methods on different
models. Vertex shader version 3.0 potentially offers a number of new capabilities,
the most prominent being vertex texturing. This will offer a new range of com-
pression methods but isn’t explored here due to current lack of hardware support.

New Vertex Stream Declaration Format

The vertex stream declaration system from DirectX 8 was completely overhauled
to make it both easier to use and add new capabilities. From a compression point
of view, the most interesting items are the new vertex data types and the extra
control over where each element comes from in the stream (stream offset).

Limitations

When under DirectX 8 drivers (you can check via the DSDDEVCAPS2 STREAM-
OFFSET cap bit), most new capabilities of the DirectX 9 vertex stream declara-
tions can’t be used. Under DirectX 7 drivers, you must stick to FVF-style
declarations. Also, if a declaration’s stream offsets produce overlapping vertex
elements, then even on DirectX 9 drivers, the D3ADDEVCAPS2 VERTEXELE-
MENTSCANSHARESTREAMOFFSET cap bit must be set. Another limitation is
that stream offsets must align on DWORD boundaries (4 bytes).
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* NOTE

The new vertex data types now have cap bits for each new type that DirectX
9 introduced (and UBYTE4 from DirectX 8); you must check these before using
them. If the cap bit for the data type that you want is set, use it; otherwise, you
will have to emulate the functionality via vertex shader code or change the vertex
data to a format that is available on this hardware.

The DirextX 9 documentation states the following about each new
vertex data type: “This type is valid for vertex shader version 2.0 or higher.”
This appears to be a documentation bug; if the cap bit is set, you can use it
with any vertex shader version. There is already hardware that supports this,

even on hardware that doesn’t support vertex shader version 2.0. (ATI
supports some of the new data types on all its vertex shader-capable
hardware.)

New Vertex Data Types

Most of these new types are signed, unsigned, and normalized versions of the
existing DirectX 8 data types, but a few add new capabilities. The following table
lists data types sorted by bits per channel.

Data Type Number of | Bits Per | Bits Per Range in Vertex Cap Bit¢ [ Notes
Channels | Type Channel [ Shader Register

D3DCOLOR 4 32 8 [0,1] N a
UBYTE4 4 32 8 [0,255] Y

UBYTE4N 4 32 8 [0,1] Y

UDEC3 3 32 10 [0,1024] Y b
DEC3N 3 32 10 [-1,1] Y b
SHORT2 2 32 16 [-32768,32767] N

SHORT4 4 64 16 [-32768,32767] N

USHORT2N 2 32 16 [0,1] Y

USHORT4N 4 64 16 [0,1] Y

SHORT2N 2 32 16 [-1,1] Y

SHORT4N 4 64 16 [-1,1] Y

FLOAT16 2 2 32 16 [-6.55e4,6.55e4] Y c
FLOAT16 4 4 64 16 [-6.55e4,6.55e4] Y c
FLOAT1 1 32 32 [-3.48e38, 3.48e38] N d
FLOAT2 2 64 32 [-3.48e38, 3.48e38] N d
FLOAT3 3 96 32 [-3.48e38, 3.48e38] N d
FLOAT4 4 128 32 [-3.48e38, 3.48e38] N d

a) D3DCOLOR also reorders elements as it enters the vertex shader. ARGB becomes RGBA.
b)  The two top bits are unused and are lost without explicit vertex stream programming.
c¢)  floatl6 is an OpenEXR standard, a new standard created by nVidia and PIXAR. Use D3DXFLOAT16

to manipulate (or the library in the OpenEXR SDK).

d) float is an IEEE754 standard, corresponding to C type float.

This is quite a rich set of data types with all data type multiples of 32 bits (this is
the reason for losing the two bits on the DEC3 formats). The cap bits to check are
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under D3DCAPS9.DeclType, the specific bit is D3DTCAPS_datatype, and the
type to use is D3ADDECLTYPE _datatype (where the data type is from the list
above).

Reclaiming Two Bits

When DEC3N or UDEC3 formats are used, we seem to have lost two bits, but
even two bits can be used quite effectively, so we want them back (e.g., if you
have per-vertex branching, you could store the number of bones here). By caus-
ing two different vertex elements to point to the same memory in the vertex
buffer, we can get access to our two bits (this requires the overlapped stream

offset cap bit to be set).

Verlex Stream

A|B (C |D

2 1010 ] 14

Y

D3IDDECLTYPLE UDLC3 D3IDDECLTYPE UBYTE4
Vertex Register Vertex Register
X |B X | (DE&OXDTR)
¥ [« Y| (C&Ox031) | ((DE&OxI00)==8)
7 |'D Z | (B&OXOOF) | ((C&OX3c0)==6)
W1 W | (A<=6) | ((B&D3M)=4)

Figure 1: Data from vertex stream element to vertex register

The vertex stream declaration for a single stream if we stored normals (a com-
mon use) as UDEC3 and wanted to reclaim our two bits is below. The vertex
shader can now bind NORMALO to access the data as UDEC3 and NORMALI as
UBYTEA4.

D3DVERTEXELEMENT?Y decl[] =

// first element, a 'normal' UDEC3 declaration

{ o, // stream number
0, // stream offset in bytes
D3DDECLTYPE_UDEC3, // vertex type for this access

D3DDECLMETHOD_DEFAULT,  // not used so Teave at default
D3DDECLUSAGE_NORMAL, // usage (used to bind in the vertex shader)
0 // usage number (you can have n normals)

1,

// second element, a UBYTE4 that accesses the same memory as the normal above

{ 0, // stream number, same as first element
0, // stream offset, same as first element
D3DDECLTYPE_UBYTE4, // vertex type for this access

D3DDECLMETHOD_DEFAULT, ~ // not used so Teave at default



Using Vertex Shaders for Geometry Compression

D3DDECLUSAGE_NORMAL, // usage (used to bind in the vertex shader)
1 // usage no (so you can have n normals)

bo
D3DDECL_END()

IE;

To get our two bits in a usable form, we need to divide by 2 ™ 6 (64) and then floor
the result. This has the effect of shifting the extraneous data to the right of the
decimal point and only keeping the integer part, which will be our reclaimed two
bits in the range 0 to 3. The floor can be removed if you are going to use the two
bits as a constant address register (the mova instruction rounds to zero).

struct VS_INPUT
{
float4 normal : NORMALO,
floatd enc2Bit : NORMAL1
s

void main( VS_INPUT input )
{

// access normal as usual

float3 normal = input.normal;

// decode our 2 bits (0-3)

float two_bits = floor(input.enc2Bit.w / 64.0);
1

A Better Compression Transform Data Type

The new DEC3N data types allow us to easily design a format with three chan-
nels with 10, 10, and 12 bits precision. This is a useful format for compression
transformed positions. (Compression transform is discussed in my “Vertex
Decompression in a Shader” article in Direct3D ShaderX; briefly, it compresses
positions by solving the eigen-system of the covariant matrix of the mesh posi-
tions and transforming the positions into this basis before quantization. Decom-
pressing a matrix vector multiple in the vertex shader restores the original
position.)

Many natural and man-made objects have a dominant axis (e.g., along the
spine of many animals, etc.). By giving that axis the extra two bits, we are able to
use a 32-bit format for some objects that would have required switching to a
64-hit format (SHORT4). For simplicity in the vertex shader, we arrange the com-
pressor to always make z the longest axis and then append the extra two bits to it
before uncompressing.

struct VS_INPUT
{
floatd position : POSITIONO,
float4 enc2Bit : POSITION1
s

void main( VS_INPUT input )
{
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// get the 10,10,10 portion of the position

float3 cpos = input.position;

// decode our 2 bits (0-3)

float two_bits = floor(input.enc2Bit.w / 64.0);

// factor in the extra bits and convert back into the 0-1 range
cpos.z = (cpos.z + two_bits) * 0.25;

// transform by the inverse compression matrix

float4 pos = mul( float4(cpos,1), InvCompressionTransform );

Displacement Compression

My previous article covered the use of vertex shaders to render displacement
maps. This capability can be extended to a very powerful technique that Tom
Forsyth has termed “displacement compression.” It’s a complete family of tech-
niques that includes patch rendering, displacement mapping, and subdivision sur-
faces that any vertex shader-capable hardware can do and is a powerful form of
geometry compression.

Usually tessellation levels are decided by the CPU, as we currently have no
programmable tessellation hardware, but there are a few fixed-function hardware
tessellation systems that you may be able to use. This is the technique’s major
limitation — to a limited degree, we can remove triangles (by sending the verti-
ces to be clipped), but we cannot add triangles.

By using the vertex shaders as a function evaluator with the vertex stream
bringing in the function parameters, we can render many geometrical surfaces.
For the surfaces we use here, this consists of a barycentric surface function with
an additional displacement scalar, but other surfaces’ parameterizations are
possible.

There are two components that are needed for displacement compression.

m Displacement mapping: A method of retrieving a scalar displacement along
the surface normal. Without it, your displacement compression becomes
standard surface patch evaluation.

B Surface basis: Every displacement compression shader requires a basis sys-
tem that defines the base surface before displacement. The simplest is just
planar, although it could be as complex as a subdivision surface.

Displacement Mapping

There are at least four ways to get the displacement value into the vertex shader.
The more advanced methods require explicit hardware support and are not cov-
ered here. Refer to presentations from Mike Doggett and Tom Forsyth for details
[2]. Also, Tom Forsyth’s article covers actual generation of displacement data in
detail [1].

The technique presented here works on any vertex shader hardware by
treating the displacement map as a 1D vertex stream. It’s a generalization of the
technique that I presented in Direct3D ShaderX, which had an implied planar basis
that with a few minor modification works for any surface basis.
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The displacement value is stored explicitly in a vertex stream. If kept in a
separate stream, it can be accessed via the CPU as a standard displacement map,
or you can choose to pack it with other vertex elements. Packed will usually save
space, but a separate stream can be more convenient, especially for dynamically
updated displacement maps.

As there is only one one channel vertex data type (FLOAT1), you will proba-
ble store your displacement map in another data type that will have spare chan-
nels. For 8-bit displacement map data, UBYTEA4 is the obvious choice. This may
appear to waste a lot of space, but in practice, enough other data has to be pro-
vided so that if space is a concern, it can be reclaimed to store other surface
parameters.

NOTE Unfortunately, DirectX 9 has no GPU-powered way of transferring or
sharing data between render targets and vertex streams. This is purely an API
issue, but it makes GPU-based dynamic displacement maps difficult (if not
impossible) under DirectX 9. Mike Doggett’'s OpenGL uber-buffer render-to-
vertex-array demo shows what GPU modification of vertex data can do.

Pre-Filtering Displacement Maps

One form of filtering that can be used with vertex stream displacement is to store
the displacement value that would occur at the lower tessellation levels with the
usual displacement value. This is similar to mipmapping in that the filter is run
before the actual rendering. As with mipmapping, you can use either point sam-
pling (just select the appropriate displacement value) or linear filtering (select two
displacement values and linearly interpolate). The main difference with mipmap-
ping is that there is no easy way to access the texture derivatives in vertex
shaders, so you will probably have a global blend factor or base it on distance from
the camera.

If you store displacement values in UBYTE4, you could pack three lower lev-
els in the other three channels, which gives you an effective linear mip filter (but
with point min/mag filter).

Surface Basis

The key to displacement compression is reversing the standard relationship
between the vertex stream and the constant registers. A vertex shader for
indexed triangles can only access the data of one vertex at a time, but each vertex
shader can access more than one vertex constant. Thus, if you put mesh data into
constant memory, each vertex shader execution has access to multiple vertices,
etc. We upload vertices or control points to constant memory and feed normalized
barycentric coordinates (aka areal coordinates) and surface indices in via the ver-
tex stream. (For some surface bases we may need other parameters — i.e., subdi-
vision surfaces require surrounding surface indices as well.)

The normalized barycentric coordinates and surface indices uniquely define
where in the mesh (stored in constant memory) the vertex shader is currently
evaluating the surface basis function.
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Points Inside a Triangle

A unique point inside a triangle can be computed via the three vertices defining
the triangle and the barycentric coordinates of this interior point. The three verti-
ces for each triangle are placed into constant memory, and we store two of the
barycentric coordinates in the vertex stream (k can be computed from i and j). A
vertex stream triangle index is used to select which set of three vertices in con-
stant memory makes up the triangle with which we are currently working.

Here we hit a small issue: Some vertices belong to more than one triangle.
We have to duplicate each vertex attached to more than one triangle and give each
one a separate index.

//HLSL code for calculating interior points of a number of triangles.
float3 VertexPos[3 * NUM_BASE_TRIANGLE] ;

void main(float3 vertexStream : POSITIONO)
{
float i = vertexStream.x;
float j = vertexStream.y
float k = 1.0 — i - j;
float baselndex = vertexStream.z * 256; // un-normalize index
float3 pos = i*VertexPos[ (baseIndex*3) + 0] +
j*VertexPos[ (baseIndex*3) + 1] +
k*VertexPos[ (baseIndex*3) + 2 ];
}

N-Patches

N-Patches (Curved PN Patches [3]) are a type of bicubic patch where the control
points are determined from a triangle’s vertex positions and normals. N-Patches
come in two variations, both with cubic interpolated position, but they differ in
whether the normal is interpolated linearly or quadratically. The algorithm calcu-
lates the control points for the patch and then evaluates at each point on the base
triangle.

Effectively, there are two frequencies at which this vertex shader needs exe-
cuting; the control points need calculating only once per patch, whereas the evalu-
ation needs running at every vertex. Some consoles can execute this pattern on
the GPU, but on current PC architectures you can either generate the control
points on the CPU and upload them to vertex constant memory or recalculate the
control points at every vertex. The first uses CPU power per patch, and each
patch uses more constant memory (for linear normal N-Patches, 39 floats versus
18 for vertices), whereas recalculating at every vertex uses a lot of vertex shader
power but allows better batching and has lower CPU overhead.

float3 VertexPos[3 * NUM_BASE_TRIANGLE] ;
float3 VertexNormals[3 * NUM_BASE_TRIANGLE];

// bicubic control points
float3 b300,b030,b003, b210,b120,b021, b201,b102,b012, b11l;
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float3 n200,n020,n002;
void generateControlPointsWithLinearNormals(float baseIndex);
{
float3 v0 = VertexPos[ (baseIndex*3) + 0 1;
float3 vl = VertexPos[ (baseIndex*3) + 1 ];
float3 v2 = VertexPos[ (baseIndex*3) + 2 ];
float3 n0 = VertexNormal [ (baseIndex*3) + 0 ];
float3 nl = VertexNormal [ (baseIndex*3) + 1 ];
float3 n2 = VertexNormal[ (baseIndex*3) + 2 ];
// For the book I'11 do one bicubic patch control point here, for the rest
// see example code on CD/Web or reference ATI's Curved PN Patch paper [3]
float3 edge = vl - v0;
// E - (E.N)N
float3 tangentl = edge;
float tmpf = dot( tangentl, n0 );
tangentl -= n0 * tmpf;
b210 = v0 + (tangentl * rcp3);

void evaluateNPatchLinearNormal (float i, float j, out float3 pos, out float3 norm)

float k =1 -1 - j;
float k2 = k * k;
float k3 = k2 * k;
float i2 = 1 * i;
float i3 = i2 * i;
float j2 = j * j;
float j3 = j2 * j;

// bicubic position

pos = (b300*k3) + (b030*u3) + (b003*v3) +
(b210*3*k2*i) + (b120*3*k*i2) + (b201*3*k2*j) +
(b021*3*i2%j) + (b102*3*k*j2) + (b012*3*i2*j) +
(b111%6*k*i*j) 3

// linear normal
norm = (w * n200) + (i * n020) + (j * n002);

void main(float3 vertexStream : POSITIONO)

float i = vertexStream.x;

float j = vertexStream.y

float baseIndex = vertexStream.z * 256;
float3 pos, norm;

generateControlPointsWithLinearNormals (baseIndex) ;
evaluateNPatchLinearNormal (i, j, pos, norm);
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Making It Fast Using a Linear Basis

Evaluating N-Patches via a vertex shader can be quite expensive. If you are also
using a displacement map, the inherent surface curve usually isn’t very important
anyway. Usually when using displacement compression, we would like a basis that
has a smooth surface normal but relies on the displacement map to handle the
position. A linear basis has all these properties: The surface normal is smooth
between patches (assuming the vertex normals are smooth), but the position
before the displacement is planar. The surface normal is generated from the linear
interpolation of the vertex normals (in a similar manner to how Phong shading
interpolates the lighting normal).

A linear basis only requires the mesh vertex data, and as these can be shared
between patches, it’s usually better to store vertex indices rather than a triangle
index at every interior point. This usually increases the number of vertices that
can be stored in constant memory, which increases performance as more patches
can be evaluated per call at the expense of slightly larger per-vertex data.

//HLSL for a displaced Tinear basis surface with indexed vertices

float MAX_DISPLACEMENT_HEIGHT = 100;  // this is just an example value
float3 VertexPos[NUM_BASE_VERTICES];

float3 VertexNormal [NUM_BASE_VERTICES] ;

float2 VertexUV[NUM_BASE_VERTICES];

struct VS_IN

{
float2 barycentric;
float3 indices;
float displacement;

e

void main( VS_IN input )

{
float i = input.barycentric.x;
float j = input.barycentric.y
float k = 1.0 — i — j;
float 10 = input.indices.x * 256;
float il = input.indices.y * 256;
float 12 = input.indices.z * 256;

float3 pos = i*VertexPos[i0] + j*VertexPos[il] + k*VertexPos[i2];
float3 normal = i* VertexNormal[i0] + j* VertexNormal[il] + k* VertexNormal[i2];
float2 uv = i* VertexUV[i0] + j* VertexUV[il] + k* VertexUV[iZ2];

normal = normalized( normal );
pos = pos + input.displacement * normal * MAX_DISPLACEMENT_HEIGHT;
1

Barycentric coordinates are in the range [0,1] and are the same for each triangle
at a particular subdivision. Indices only require a maximum of 256 values (there
are currently only 256 constants). So a byte per index is enough. For the triangle
indexed version, this is 1 byte + 1 byte displacement and a shared 8 bytes (two
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floats), and for the vertex indexed version it is 3 bytes + 1 byte displacement and
a shared 8 bytes (two floats). A good approach is to place the barycentric
coodinates in one stream and the indices and displacement in another. The
barycentric stream can be reused by all meshes at the same subdivision level.

Lighting Normal

As getting a perturbed lighting normal proves to be difficult, the best option is not
to bother at run time. If the displacement map is fixed, you can just create a nor-
mal map off-line that encodes the lighting normal. Even if you are vertex lighting,
you can feed the normal map values into the vertex shader in the same manner as
the displacement values.

If you really have to derive a sensible lighting normal in the vertex shader, it
is possible with some preprocessing. If we could access the local surface points
around us (perturb i and j by a small amount) and look up the displacement maps
at those points, we could calculate the local post-displaced tangent plane. The
only way of doing this in a vertex stream is by using a process similar to
prefiltering, by storing at every interior point the displacement values around us.
By storing all surrounding displacement values at every interior point, we could
run the surface evaluator (including the displacement) on each perturbed point
and calculate the lighting normal. In practice, only storing a couple of displaced
values (usually left and down) is enough to get a reasonable lighting normal.

Conclusion

Vertex shaders can be used as effective geometry decompressors; with tight
packing of vertex data and techniques like displacement compression, we can
save considerable memory and, more importantly, bandwidth. The cost of using
extra vertex shader instructions is usually not a problem, as in most cases this
isn’t a bottleneck; by using this “spare” vertex throughput to save bandwidth, it
may make things run faster.

Displacement compression requires changes to the tools (these are described
elsewhere [2]) but are an important future technique that you should be thinking
about implementing in the near and long term.
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Using Lookup Tables in
Vertex Shaders

Carsten Wenzel
Crytek

When writing vertex shader code, you almost always want to squeeze out a few
instructions. Maybe you have to do it in order to stay within the instruction limit,
which can easily be reached when doing complex animation and lighting calcula-
tions. Or maybe you simply want to speed up your code to gain some extra frames
per second. Both goals can be achieved by encoding functions and terms in your
vertex shader that consume a lot of instructions (and thus time) to evaluate.
Another potential scenario would be the use of empirical data for certain calcula-
tions. This is where lookup tables can come in handy.

A table lookup can be implemented quite easily using the address register a,
to index an array of constant regiSters ¢upase- -« CiabieBase + tablesize -1 CONtAINIng the
actual table data. Generally, you want to keep the table as small as possible.
Therefore, it is often necessary to interpolate between consecutive table values.
Here’s an example. Say your lookup table stores values of a continuous function
flx) for all integers x in the range [0, 10]. Now it happens that you need to look up
the value for f(3.25). The exact value isn’t stored in the lookup table. To get an
estimated result, we could use the fractional part of the index value as the blend
factor for a linear interpolation, i.e.:

£(3.25) = f[3]+ 0.25-(F[4]- F[3])

Do not forget about the Nyquist theorem! when representing continuous func-
tions via lookup tables, or else you’ll face aliasing. That is, make sure the table is
not too small — which implies that encoding terms and functions by means of
lookup tables is not feasible if the range you're interested in exhibits high fre-
quencies. Also note that the table size directly affects the precision of the interpo-
lated result.

To demonstrate how a table lookup translates into actual shader code, let’s
start with a description of a sample application. Imagine you’d like to write a parti-
cle effect that simulates stars in a galaxy. They are placed in clusters on the x/z
plane with some variation in y and spin around the y axis with the galaxy center
being the pivot point. Rotation speed is based on the squared distance (0 = d* =

The Nyquist theorem describes one of the most important rules of sampling. To fully reproduce a
continuous signal one needs to sample it with a frequency at least twice that of the highest frequency
contained in the original signal. For example, to reproduce a full 20 kHz audio signal it has to be sampled at
least 40,000 times a second.

13
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1.0) to the center. Further assume that the vertex shader version used is 1.1,
which means there are no cosine and sine instructions at your disposal, but you
still want to do the animation entirely on the GPU. The following matrix M,
describes how much a star should be rotated after time seconds:

B time
0.1+1000-d>
¢ =cos(a)
s =sin(a)
c 0 -s O
00 0 O
Mmt:
s 0 ¢ O
00 0 1

This shows the rotation matrix that should be built per vertex on the GPU.

Some of you might say that cosine-sine pairs can be calculated at the same
time using a Taylor-series expansion — such as the code written by Matthias
Wloka, which takes nine instructions and three constant registers to execute. But
you’d also need to determine a to pass it to the cosine-sine evaluation code. Since
we intend to use a lookup table anyway, all these calculations can be baked
together there, thus saving instructions in the vertex shader. Here is how to set
up the lookup table:

const unsigned int TABLE_SIZE(64);
const unsigned int TABLE_BASE(10);

for(unsigned int uil(0); uil < TABLE_SIZE; ++uil)
{
float d2(uil / (float) (TABLE_SIZE —1));
float alpha(time / (0.1f + 1000.0f * d2));
float c(cosf(alpha));
float s(sinf(alpha));

D3DXVECTOR4 vLookup(c, s, 0.0f, 0.0f);
pD3DDev->SetVertexShaderConstant (TABLE_BASE + uil, &vLookup, 1);
}

float fIndexScale((float) (TABLE_SIZE —1));
float fIndexOffset(0.0f);
D3DXVECTOR4 vIndex(fIndexScale, fIndexOffset, 0.0f, 0.0f);

const unsigned int TABLE_INDEX(9);
pD3DDev->SetVertexShaderConstant (TABLE_INDEX, &vIndex, 1);

This way, to look up ¢ and s, we only need to find d?, which is as simple as dotting
the position of a star with itself — the center of the galaxy is at (0, 0, 0). The pre-
vious pseudocode also sets all constants required to properly index the lookup
table, as we see very soon.
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What remains to do is write the vertex shader to animate each particle. The
code will be split into several pieces showing all necessary steps to get the stars
spinning on the GPU. The following part computes the table index.

#define srcPos v0 /] (x5 y, 2, 1)
#define temp0 r0
#define templ rl
#define temp2 r2
#define worldPos r3
#define TABLE_INDEX 9
#define TABLE_BASE 10
vs.1l.1

#ifdef DX9

dcl_position0 srcPos

#endif

// calculate d*2 and table index
dp3 temp0, srcPos, srcPos
mad templ, tempO, c[TABLE_INDEX].x, c[TABLE_INDEX].y

// get fraction of table index
expp temp0.y, templ.y

// set table index for relative addressing of lookup table
#ifdef DX9

add a0.x, templ.y, -tempO.y

#else // DX8

mov a0.x, templ.y

#endif

The first section of the vertex shader determines the table index for the lookup
table. It calculates d? and applies the index scale and offset constant. Why mad can
be used to evaluate the table index in a single instruction and how to set up the
index scale and offset constant for lookup tables covering arbitrary intervals is
shown in the appendix to this article.

When copying the table index to a,, care must be taken. According to the
DirectX 8.1 specs, moving a value into the address register automatically com-
putes the floor of that value — exactly the behavior we are after. Quite the
contrary if you use DirectX 9. Here you have to do the floor calculation yourself
because a value moved into the address register gets rounded to the nearest inte-
ger. This would obviously break the interpolation code due to a possibly incorrect
index in a,.

The following part of the shader calculates the linearly interpolated table
lookup value. It fetches the values for a¢,x and a,x + 1 from the lookup table.
Then it takes the already-computed fraction of the table index to blend between
them.
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// fetch two consecutive values from lookup table
mov templ, c[a0.x + TABLE_BASE]
mov temp2, c[a0.x + TABLE_BASE + 1]

// lerp them using fraction of index
add temp2, temp2, -templ
mad temp2, temp2, tempQ.y, templ

The third section starts off with a trick. Knowing that cos(x)? + sin(x)? = 1, we
can renormalize the linearly interpolated table lookup values to feed the rotation
matrix with proper ones, which is important for rotations. Now we can build the
matrix and transform each particle into world space.

// renormalize cos/sin
dp3 templ.w, temp2, temp2
rsq templ.w, templ.w
mul temp2, temp2, templ.w

// build y rotation matrix

mov temp0, temp2.xzyw // 1st row: cos 0.0 -sin 0.0
mov temp0.z, -temp0.z
mov templ, temp2.yzxw // 3rd row: sin 0.0 cos 0.0

// rotate particle

mov worldPos, srcPos

dp3 worldPos.x, srcPos, tempO
dp3 worldPos.z, srcPos, templ

Once the particle is in world space, you can apply the view-projection matrix as
usual, calculate the point size for the particle, set its color, etc. The following
screen shot shows the result of our efforts.

Figure 1: Screen shot of vertex shader in action
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Appendix

Say you’d like to create a lookup table containing fableSize entries for a function
f(x) in range [x,;,, ¥,.)- The values stored in an array of constant registers ¢,z
«++ CigbleBase + tableSize — 1 look like this:

0 <1 <tableSize

— y xmax —X min
Clabiepases = f[xmm T tableSize —1

To do a lookup you now need to map a value x from [x,;,, X,...] to [fableBase,
tableBase + tableSize —1]:

index = —~—Fmin_. (tableSize —1) + tableBase
x

max — Xmin

This can be decoupled to:

index =—— .(tableSize —1) ——>™"___.(tableSize —1) + tableBase

max xmm max xmm

In the equation above, everything but x is invariant. Taking a closer look reveals
that it can be expressed in terms of a mad:

index = indexScale - x + indexOffset
tableSize —1
X —X

max min

indexOffset = — Hmin -(tableSize —1) + tableBase

indexScale =

max min

Since tableBase can be used as a fixed relative offset when fetching values from
the lookup table (as can be seen in the vertex shader sample code above),
indexOffset can be rewritten as:

indexOffset = o Kmin -(tableSize —1)

max min
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Introduction

Terrain rendering has heretofore been computed by a CPU and rendered by a
combination of CPU and GPU. It is possible to implement a fast terrain renderer
that works optimally with current 3D hardware. This is done by using geo-mip-
mapping, which splits the terrain into a set of smaller meshes called patches.
Each patch is triangulated view-dependently into one single triangle strip. Special
care is taken to avoid gaps and t-vertices between neighboring patches. An arbi-
trary number of textures, which are combined using multiple alpha-blended ren-
dering passes, can be applied to the terrain. Since the terrain’s triangulation
changes over time, vertex normals cannot be used for lighting. Instead, a precal-
culated lightmap is used. In order to reduce popping when a patch switches
between two tessellation levels, geomorphing is implemented. As we point out
later, this splitting of the terrain into small patches allows some very helpful
optimizations.

Why Geomorphing?

18

Terrain rendering has been an active research area for quite a long time. Although
some impressive algorithms have been developed, the game development com-
munity has rarely used these methods because of the high computational
demands. Recently, another reason for not using the classic terrain rendering
approaches such as ROAM [Duc97] or VDPM [Hop98] emerged: Modern GPUs
just don’t like CPU-generated dynamic vertex data. The game developers’ solu-
tion for this problem was to build very low-resolution maps and fine-tuned terrain
layout for visibility optimization. In contrast to indoor levels, terrain visibility is
more difficult to tune, and there are cases where the level designer just wants to
show distant views.

The solution to these problems is to introduce some kind of terrain LOD
(level of detail). The problem with simple LOD methods is that at the moment
that vertices are added or removed, the mesh is changed; this leads to very
noticeable popping effects. The only clean way out of this is to introduce geo-
morphing, which inserts new vertices along an existing edge and later moves that
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vertex to its final position. As a consequence, the terrain mesh is no longer static
but changes (“morphs”) every frame. It is obvious that this morphing has to be
done in hardware in order to achieve high performance.

Previous Work

A lot of work has already been done on rendering terrain meshes. Classic algo-
rithms such as ROAM and VDPM attempt to generate triangulations that opti-
mally adapt to terrain given as a heightmap. This definition of “optimally” was
defined to be as few triangles as possible for a given quality criteria. While this
was a desirable aim some years ago, things have changed.

Today, the absolute number of triangles is not as important. As of 2003,
games that render up to 200,000 triangles per frame have been released, including
games such as Unreal 2. An attractive terrain triangulation takes some 10,000 tri-
angles. This means that it is no longer important if we need 10,000 or 20,000 tri-
angles for the terrain mesh, as long as it is done fast enough. Today “fast” also
implies using as little CPU processing power as possible, since in real-life applica-
tions the CPU usually has more things to do than just drawing terrain (e.g., Al,
physics, voice-over, IP compression, etc.). The other important thing today is to
create the mesh in such a way that the graphics hardware can process it quickly,
which usually means the creation of long triangle strips. Both requirements are
mostly unfulfilled by the classic terrain meshing algorithms.

The work in this article is based on the idea of geo-mipmapping described by
de Boer in [Boe00]. Another piece of work that uses the idea of splitting the ter-
rain into a fixed set of small tiles is [Sno01], although the author does not write
about popping effects or how to efficiently apply materials to the mesh.

Building the Mesh

The terrain mesh is created from an 8-bit heightmap that has to be sized 2~ n+1
*27n+1 (e.g., 17%17, 33%33, 65%65, etc.) in order to create n ™~ 2 * n ™ 2 quads.
The heightmap (see Figure 1a) can be created from real data (e.g., DEM) [Usg86]
or by any program that can export into raw
8-bit heightmap data (e.g., Corel Bryce ’
[Cor01]). The number of vertices of a patch
changes during rendering (see view-depend-
ent tessellation), which forbids using vertex
normals for lighting. Therefore, a lightmap h
(see Figure 1b) is used instead.

In order to create the lightmap, the nor-
mals for each point in the heightmap have to
be calculated first. This can be done by creat-
ing two 3D vectors, each pointing from the
current height value to the neighboring height
positions. Calculating the cross product of Figure Ta: A sample heightmap
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these two vectors gives the current normal
vector, which can be used to calculate a diffuse
lighting value. To get better results, including
static shadows, advanced terrain data editing
software such as Wilbur [Slay95] or Corel
Bryce should be used.

The heightmap is split into 17*17 val-
ues-sized parts called patches. The borders of
neighboring patches overlap by one value
(e.g., value column 16 is shared by patch 0/0
and patch 1/0). Geometry for each patch is
created at run time as a single indexed trian-
gle strip. A patch can create geometry in five
different tessellation levels, ranging from full
geometry (2*¥16*16 triangles) down to a single
flat quad (two triangles; for an illustration see Figure 2). Where needed, degener-
ate triangles are inserted to connect the sub-strips into one large strip [Eva96].

In order to connect two strips, the last vertex of the first strip and the first
vertex of the second strip have to be inserted twice. The result is triangles that
connect the two strips in the form of a line and are therefore invisible (unless ren-
dered in wireframe mode). The advantage of connecting small strips to one larger
strip is that less API calls are needed to draw the patch. Since index vertices are
used and a lot of today’s graphics hardware can recognize and automatically
remove degenerate triangles, the rendering and bandwidth overhead of the
degenerate triangles is very low.

Figure 1b: Corresponding lightmap
created with Wilbur

Figure 2: The same patch tessellated in different levels ranging from full geometry (level 0) to a
single quad (level 4)

Calculating the Tessellation Level of a Patch

Before a frame is rendered, each patch is checked for its necessary tessellation
level. It’s easy to see from Figure 2 that the error of each patch increases as the
number of vertices is reduced. In a preprocessing step, for each level the position
of the vertex with the largest error (the one that has the largest distance to the
corresponding correct position, called “maxerror vertex” later on) is determined
and saved together with the correct position.

When determining the level at which to render, all saved “maxerror vertices”
are projected into the scene and the resulting errors calculated. Finally, the level
with the largest error below an application-defined error boundary is chosen. In
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order to create a specific level’s geometry, only the “necessary” vertices are writ-
ten into the buffers. For example, to create level 0, all vertices are used. Level 1
leaves out every second vertex, reducing the triangle count by a quarter. Level 2
uses only every fourth vertex, and so on.

Connecting Patches

If two neighboring patches with different tessellation levels were simply rendered
one next to the other, gaps would occur (imagine drawing any of the patches in
Figure 2 next to any other). Another problem is t-vertices, which occur when a
vertex is positioned on the edge of another triangle. Because of rounding errors,
that vertex will not be exactly on the edge of the neighboring triangle, and small
gaps that are only a few pixels in size can become visible. Even worse, when mov-
ing the camera, these gaps can emerge and disappear every frame, which leads to
a very annoying flickering effect.

To solve both problems, it is obvious that each patch must know its neigh-
bors’ tessellation levels. To do so, all tessellation levels are calculated first with-
out creating the resulting geometry and then each patch is informed about its
neighbors’ levels. After that, each patch updates its geometry as necessary.
Geometry updating has to be done only if the inner level or any of the neighbors’
levels has changed. To close gaps and prevent t-vertices between patches, a bor-
der of “adapting triangles” is created that connects the differently sized triangles
(see Figure 3). It is obvious that only one of two neighboring patches has to adapt
to the other. As we can see in the section “Geomorphing,” it is necessary for the
patch with the finer tessellation level (having more geometry) to adapt.

Figure 3a: T-vertices at the border of two Figure 3b: T-vertices removed

patches

Figure 3a shows a typical case of where t-vertices occur. In Figure 3b those
“adapting triangles” at the left side of the right patch are created to avoid t-verti-
ces. Although these triangles look like good candidates for being created by using
triangle fans, they are also implemented using strips, since fans cannot be com-
bined into bigger fans, as can be achieved with strips.
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Our terrain has no shading or materials yet. Applying dynamic light by using sur-
face normals would be the easiest way to go but would result in strange effects
when patches switch tessellation levels. The reduction of vertices goes hand in
hand with the loss of an equal number of normals. When a normal is removed, the
resulting diffuse color value is removed too. The user notices such changes very
easily — especially if the removed normal produced a color value that was very
different from its neighboring color values.

The solution to this problem is easy and well known in today’s computer
graphics community. Instead of doing real-time lighting, we can use a precalcu-
lated lightmap, which is by its nature more resistant to vertex removal than
per-vertex lighting. Besides solving our tessellation problem, it provides us with
the possibility to precalculate shadows into the lightmap. The disadvantage of
using lightmaps is that the light’s position is now fixed to the position that was
used during the lightmap’s generation.

In order to apply a lightmap (see Figure 4), we need to add texture coordi-
nates to the vertices. Since only one lightmap is used for the whole terrain, it
simply spans the texture coordinates from (0,0) to (1,1).

Figure 4a: Lit terrain Figure 4b: Same terrain with wireframe overlay

Figure 4c: Terrain with overlaid triangle mesh Figure 4d: Getting close to the ground, the
highly detailed materials become visible.
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Now that the terrain’s mesh is set up and shaded, it’s time to apply some materi-
als. In contrast to the lightmap, we need far more detail for materials such as
grass, mud, or stone to look good. (See Figures 4c and 4d.) The texture won’t be
large enough to cover the complete landscape and look good, regardless of how
high the resolution of a texture might be. For example, if we stretch one texture
of grass over a complete terrain, the grass wouldn’t even be recognizable. One
way to overcome this problem is to repeat material textures.

To achieve this, we scale and wrap the texture so that it is repeated over the
terrain. By setting a texture matrix we can use the same texture coordinates for
the materials as for the lightmap. As we see later, this one set of (never-changing)
texture coordinates, together with some texture matrices, is sufficient for an arbi-
trary number of materials (each one having its own scaling factor and/or rotation)
and even for moving faked cloud shadows (see below).

To combine a material with the lightmap, two texture stages are set up using
modulation (component-wise multiplication). The result is written into the graph-
ics buffer. In order to use more than one material, each material is combined with
a different lightmap containing a different alpha channel. Although this would
allow each material to use different color values for the lightmap too, in practice
this hardly makes any sense. This results in one render pass per material, which
is alpha blended into the frame buffer. As we see later, a lot of fillrate can be saved
if not every patch uses every material — which is the usual case (see the section
titled “Optimizations”). Figure 5 shows how two materials are combined with
lightmaps and then blended using an alpha map. (For better visualization, the
materials’ textures are not repeated in Figure 5.)

Figure 5: Combining two render passes

In the top row of Figure 5, the base material is combined with the base lightmap.
Since there is nothing to be drawn before this pass, no alpha map is needed. In the
bottom row, the second pass is combined with another lightmap. This time there
is an alpha channel (invisible parts are drawn with checkered boxes). The result-
ing image is finally alpha-blended to the first pass (the right image in Figure 5).

It is important to note that this method allows each material pass to use a
free scaling (repeating) factor for the color values, which results in highly detailed
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materials, while the lightmap does not need to be repeated since lighting values
do not need as much detail. Only two texture stages are used at once, which
allows combining an arbitrary number of passes. Most applications will not need
more than three or four materials.

After all materials have been rendered, another pass can be drawn in order to
simulate cloud shadows. Again, we can repeat the shadows in order to get more
detailed-looking shadows. As we are already using a texture matrix to do scaling,
we can animate the clouds easily by applying velocity to the matrix’s translation
values. The effect is that the clouds’ shadows move along the surface, which
makes the whole scene look far more realistic and “alive.”

One problem with geometry management using level of detail is that at some
point vertices will have to be removed or added, which leads to the already-
described “popping” effect. In our case of geo-mipmapping, where the number of
vertices is doubled or halved at each tessellation level change, this popping
becomes very visible. In order to reduce the popping effect, geomorphing is intro-
duced. The aim of geomorphing is to move (morph) vertices softly into their posi-
tion in the next level before that next level is activated. If this is done perfectly, no
popping but only slightly moving vertices are observed by the user. Although this
vertex moving looks a little bit strange if a very low detailed terrain mesh is used,
it is still less annoying to the user than the popping effect.

It can be shown that only vertices with odd indices inside a patch have to
move and that those vertices on even positions can stay fixed because they are
not removed when switching to the next coarser tessellation level. Figure 6a
shows the tessellation of a patch in tessellation level 2 from a top view. Figure 6b
shows the next level of tessellation coarseness (level 3) and that the vertices 1, 2,
and 3 do not have to move since they are still there in the next level. There are
three possible cases in which a vertex has to move:

B Case A: The vertex is on an odd x- and even y-position. Vertex has to move
into the middle position between the next left (1) and the right (2) vertices.

m Case B: The vertex is on an odd x- and odd y-position. Vertex has to move
into the middle position between the next top-left (1) and the bottom-right
(3) vertices.

m Case C: The vertex is on an even x- and odd y-position. Vertex has to move
into the middle position between the next top (2) and the bottom (3) vertices.

Things become much clearer when taking a look at the result of the morphing
process: After the morphing is done, the patch is retessallated using the next tes-
sellation level. In Figure 6b it becomes obvious that the previously existing ver-
tex A had to move into the average middle position between the vertices 1 and 2
in order to be removed without popping.
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Figure 6a: Fine geometry with morphing  Figure 6b: Corresponding coarser
vertices tessellation level. Only odd indexed
vertices were removed.

Optimizations

Although the geometry’s creation is very fast and we are rendering the mesh
using only a small number of long triangle strips (usually about some hundred
strips per frame), there are quite a few optimizations that we can do to increase
the performance on the side of the processor as well as the graphics card.

As described in the section titled “Materials,” we use a multi-pass rendering
approach to apply more than one material to the ground. Generally, most materials
will be used only in small parts of the landscape and be invisible in most others.
The alpha channel of the material’s lightmap defines where which material is visi-
ble. Of course, it’s a waste of GPU bandwidth to render materials on patches that
don’t use that material at all (where the material’s alpha channel is zero in the
corresponding patch’s part).

It’s easy to see that if the part of a material’s alpha channel that covers one
distinct patch is completely set to zero, then this patch does not need to be ren-
dered with that material. Assuming that the materials’ alpha channels won’t
change during run time, we can calculate for each patch which materials will be
visible and which won’t in a preprocessing step. Later at run time, only those
passes are rendered that really contribute to the final image.

Another important optimization is to reduce the number of patches that need
to be rendered at all. This is done in three steps. First, a rectangle that covers the
projection of the viewing frustum onto the ground plane is calculated. All patches
outside that rectangle will surely not be visible. All remaining patches are culled
against the viewing frustum. To do this, we clip the patches’ bounding boxes
against all six sides of the viewing frustum. All remaining patches are guaranteed
to lie at least partially inside the camera’s visible area. Nevertheless, not all of
these remaining patches will necessarily be visible because some of them will
probably be hidden from other patches (e.g., a mountain). To optimize this case,
we can finally use a PVS (Potentially Visible Sets) algorithm to further reduce the
number of patches that need to be rendered.
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PVS [Air91, Tel91] is used to determine, at run time, which patches can be
seen from a given position and which are hidden by other objects (in our case, also
patches). Depending on the type of landscape and the viewer’s position, a lot of
patches can be removed this way. In Figure 7 the camera is placed in a valley and
looks at a hill.

Figure 7a: Final image

Figure 7c: With PVS Figure 7d: View from camera’s position

Figure 7b shows that a lot of triangles are
rendered that do not contribute to the final
image because they are hidden by the front
triangles forming the hill. Figure 7c shows
how PVS can successfully remove most of
those triangles. Figures 7d and 7e show the
same PVS optimized scene, as seen from
the camera’s view and as seen from above.
The nice thing about PVS is that the cost of
processing power is almost zero at run time
because most calculations are done offline
when the terrain is designed.

Figure 7e: Same scene as 7d from a different
viewpoint with same PVS and culling performed
(See Color Plate 1.)
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In order to (pre-) calculate a PVS, the area of interest is divided into smaller
parts. In our case it is obvious that we should use patches for those parts. For
example, a landscape consisting of 16x16 patches requires 16x16 cells on the
ground plane (z=0). To allow the camera to move up and down, it is necessary to
have several layers of such cells. Tests have shown that 32 layers in a range of
three times the height of the landscape are enough for fine-graded PVS usage.

One problem with PVS is the large amount of memory needed to store all the
visibility data. In a landscape with 16x16 patches and 32 layers of PVS data, we
get 8,192 PVS cells. For each cell we have to store the 16x16 patches that are
visible from that cell. This means that we have to store more than two million val-
ues. Fortunately, we only need to store one-bit values (visible/not visible) and can
save the PVS as a bit field, which results in a 256Kbyte data file in this example
case.

Figure 8 shows an example image
from the PVS calculation application
where the camera is located in the cen-
ter of the valley (the black part in the
middle of the green dots (the lighter
dots at the top center)). All red dots
resemble those patches that are not
visible from that location. Determining
whether a patch is visible from a loca-
tion is done by using an LOS (line of
sight) algorithm, which tracks a line
from the viewer’s position to the
patch’s position. If the line does not hit
the landscape on its way to the patch,

this patch is visible from that location.
To optimize memory require-
ments, the renderer distinguishes

Figure 8: PVS from top view. The camera
sits in the valley in the middle of the green
dots.

between patches that are active (currently visible) and those that aren’t. Only
those patches that are currently active are fully resident in memory. The memory
footprint of inactive patches is rather low (about 200 bytes per patch).

Geomorphing in Hardware

Doing geomorphing for a single patch basically means doing vertex tweening
between the current tessellation level and the next finer one. The tessellation
level calculation returns a tessellation factor in the form of a floating-point value,
where the integer part means the current level and the fractional part denotes the
tweening factor (e.g., a factor of 2.46 means that tweening is done between levels
2 and 3 and the tweening factor is 0.46). Tweening between two mesh representa-
tions is a well-known technique in computer graphics and easily allows an imple-
mentation of morphing for one single patch (vertices that should not move simply
have the same position in both representations).
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The problem becomes more difficult if a patch’s neighbors are considered.
Problems start with the shared border vertices, which can only follow one of the
two patches but not both (unless we accept gaps). As a consequence, one patch
has to adapt its border vertices to those of its neighbor. In order to do correct
geomorphing, it is necessary that the finer patch allows the coarser one to dictate
the border vertices’ position. This means that we do not only have to care about
one tweening factor as in the single patch case but have to add four more factors
for the four shared neighbor vertices. Since the vertex shader cannot distinguish
between interior and border vertices, these five factors have to be applied to all
vertices of a patch. So we are doing a tweening between five meshes.

As if this wasn’t already enough, we also have to take special care with the
inner neighbor vertices of the border vertices. Unfortunately, these vertices also
need their own tweening factor in order to allow correct vertex insertion (when
switching to a finer tessellation level). To point out this quite complicated situa-
tion more clearly, we go back to the example of Figure 6b. For example, we state
that the patch’s left border follows its coarser left neighbor. Then the tweening
factor of vertex 1 depends on the left neighbor, whereas the tweening factor of all
interior vertices (such as vertex 2) depend on the patch itself. When the patch
reaches its next finer tessellation level (Figure 6a), the new vertex A is inserted.
Figure 9 shows the range in which vertices 1 and 2 can move and the range in
which vertex A has to be inserted. (Recall that a newly inserted vertex must
always lie in the middle of its preexisting neighbors.) To make it clear why vertex
A needs its own tweening factor, suppose that the vertices 1 and 2 are both at
their bottom position when A is inserted (tweeningL and tweeningl are both 0.0).
Later on when A is removed, the vertices 1 and 2 might lie somewhere else and
A would now probably not lie in the middle between those two if it had the same
tweening factor as vertex 1 or vertex 2. The consequence is that vertex A must
have a tweening factor (tweeningA) that depends on both the factor of vertex 1
(tweeningl. — the factor from the left neighboring patch) and on that of vertex 2
(tweeningl — the factor by which all interior vertices are tweened).

—————————————— l"“‘- tweeningl = 1.0
tweeningl. = Lo—"k 1

removal range

Verlex 1" moving range
Vertex A’ insertion

y .
Iweeningl, = 0.0 | T T fweeningl = 0.0
: Sl S, [ T (weeningA = 0.0

Figure 9: Vertex insertion/removal range
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What we want is the following:

Vertex A should:
B be inserted/removed in the middle between the positions of vertex 1 and
vertex 2

B not pop when the patch switches to another tessellation level

H not pop when the left neighbor switches to another tessellation level

The simple formula tweeningA = (1.0-tweeninglL) * tweeningI does the job.
Each side of a patch has such a tweeningA that results in four additional tessella-
tion levels.

Summing this up, we have nine tessellation levels that must all be combined
every frame for each vertex. What we actually do in order to calculate the final
position of a vertex is the following:

PosFinal = PosBase + tweeningI*dI + tweeningl*dL + tweeningR*dR + tweeningT*dT + ...

Since we only morph in one direction (as there is no reason to morph other than
up/down in a heightmap-generated terrain), this results in nine multiplications
and nine additions just for the geomorphing task (not taking into account any
matrix multiplications for transformation). This would be quite slow in terms of
performance on the CPU. Fortunately, the GPU provides us with an ideal solution.
The vertex shader command dp4 can multiply four values with four other values
and sum the products in just one instruction. This allows us to do all these calcu-
lations in just five instructions, which is only slightly more than a single 4x4
matrix multiplication takes.

The following code snippet shows the vertex data and constants layout that is
pushed onto the graphics card.

;5 Constants specified by the app

5 c0 = (factorSelf, 0.0f, 0.5f, 1.0f)

: c2 = (factorLeft, factorLeft2, factorRight, factorRight2),
5 c3 = (factorBottom, factorBottom2, factorTop, factorTop2)
g cd-c7 = WorldViewProjection Matrix

g c8-cll = Pass 0 Texture Matrix

; Vertex components (as specified in the vertex DECLARATION)

5 v0 = (posX, posZ, texX, texY)

3 vl = (posY, yMoveSelf, 0.0, 1.0)

3 v2 = (yMoveleft, yMovelLeft2, yMoveRight, yMoveRight2)
: v3 = (yMoveBottom, yMoveBottom2, yMoveTop, yMoveTop2)

We see that only four vectors are needed to describe each vertex, including all
tweening. Note that those vectors v0-v3 do not change as long as the patch is not
retessellated; they are therefore good candidates for static vertex buffers.

The following code shows how vertices are tweened and transformed by the
view/projection matrix.
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3

s Vertex transformation

mov r0, v0.xzyy ; build the base vertex
mov r0.w, cO.w set w-component to 1.0

dp4 rl.x, v2, c2 ; calc all left and right neighbor tweening
dp4 rl.y, v3, c3 ; calc all bottom and top neighbor tweening

mad r0.y, vl.y, c0.x, vl.x ; add factorSelf*yMoveSelf

add r0.y, r0.y, rl.x ; add left and right factors
add r0.y, r0.y, rl.y ; add bottom and top factors
mx4 r3, r0, c4 3 matrix transformation

mov oPos, r3

While this code could surely be further optimized, there is no real reason to do so,
since it is already very short for a typical vertex shader.
Finally, there is only texture coordinate transformation.

>

; Texture coordinates

s

; Create tex coords for pass 0 — material (use texture matrix)
dp4 0T0.x, v0.z, c8
dp4 oT0.y, v0.w, c9

; Create tex coords for pass 1 — Tightmap (simple copy, no transformation)
mov oTl.xy, v0.zw

0TO0 is multiplied by the texture matrix to allow scaling, rotation, and movement
of materials and cloud shadows. 0T1 is not transformed, since the texture coordi-
nates for the lightmap do not change and always span (0,0) to (1,1).

Results

The following table shows frame rates achieved on an Athlon-1300 with a stan-
dard GeForce3. The minimum scene uses just one material together with a
lightmap (two textures in one render pass — see Figure 10a). The full scene ren-
ders the same landscape with three materials, plus a cloud shadow layer, plus a
skybox and a large lens flare (seven textures in four render passes for the terrain
— see Figure 10b).

The following are frame rates achieved at different scene setups and LOD
systems:

Static LOD Software Morphing Hardware Morphing

Minimum Scene 587 fps 312 fps 583 fps

Full Scene 231 fps 205 fps 230 fps




31

Terrain Geomorphing in the Vertex Shader

The table shows that geomorphing done using the GPU is almost as fast as doing
no geomorphing at all. In the minimum scene the software morphing method falls
back tremendously since the CPU and the system bus cannot deliver the high
frame rates (recall that software morphing needs to send all vertices over the bus
each frame) achieved by the other methods. Things change when using the full
scene setup. Here the software morphing takes advantage of the fact that the ter-
rain is created and sent to the GPU only once but is used four times per frame for
the four render passes and the skybox and lens flare slow down the frame rate
independently. Notice that the software morphing method uses the same
approach as for hardware morphing. An implementation fundamentally targeted
for software rendering would come off far better.

Py
il
o B pclizlas: | [f

Figure 10a: Terrain with one material layer Figure 10b: Same as 10a but with three
materials (grass, stone, mud) + moving cloud
layer + skybox + lens flare

In this article I've shown how to render a dynamically view-dependent triangu-
lated landscape with geomorphing by taking advantage of today’s graphics hard-
ware. Splitting the mesh into smaller parts allowed us to apply the described
optimizations, which led to achieved high frame rates. Further work could be
done to extend the system to use geometry paging for really large terrains. Other
open topics are the implementation of different render paths for several graphics
cards or using a bump map instead of a lightmap in order to achieve dynamic light-
ing. The new generation of DX9 cards allows the use of up to 16 textures per
pass, which would enable us to draw seven materials plus a cloud shadow layer in
just one pass.
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Rendering planets in a 3D application is a difficult task. Previously, if a program-
mer wanted to include planets, the CPU had to juggle planet rendering and any
other tasks the program might have. Now it is possible to perform almost the
entire task on the GPU using vertex and pixel shaders. Moreover, the procedural
model presented here allows a near infinite number of different planets to be ren-
dered. This article examines rendering planets entirely on the GPU using nVidia’s
Cg. (See [nVidia] for more information about Cg.)

The most important task in rendering planets is to generate the geometry.
This is usually done by first generating a sphere and then deforming the points on
the sphere with some type of fractal. The sphere can be generated using the para-
metric equation:

X=sin(u)*sin(v)
Y=cos(u)*sin(v)
Z=cos(v)

Evaluating this equation on the GPU is fairly simple. It can be done by passing the
u,v values in position.xy and then calling the sincos function. Using the sincos
function (as opposed to separately calling the sin and cos functions) can make the
code cleaner and faster. The code below achieves this.

float fxsin;

float fxcos;

float fysin;

float fycos;

sincos (In.pos.x,fxsin,fxcos);
sincos(In.pos.y,fysin,fycos);
Sphere.x= fxsin* fysin;
Sphere.y= fxcos* fysin;
Sphere.z= fycos;

After the sphere has been generated, it must be deformed to create the planet
geometry. A function is needed that can be called at each point of the sphere,
which will then return a scalar value that can be used to modify the sphere’s
geometry. We can obtain this function by using noise to create a fractal. The
fractal shown here is a hybrid multifractal [Ebert98] and is created by calling 3D
noise several times and then scaling the noise by the product of the frequencies.
This creates a fractal with smooth planes, rounded hills, and tall mountains. See
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[Ebert98] for more types of fractals. Below is the code to implement the
multifractal:

float MultiFractal(float3 pos, float octaves, float offset,float freqchange,float h,
float4 pg[B2])

float result;
float signal;
float weight;
float freg=1;
result=(noise(pos,pg)+offset)*pow(freq,-h);
freq*=freqchange;
weight=result;
pos*=freqchange;
for(int i=0;i<octaves;i++)
{
clamp(weight,0,1); //Clamp used to get rid of a conditional and keep weight
// within [0:1]
signal=(noise(pos,pg)+offset)*pow(freq,-h); //Get noise value and multiply it
freq*=freqchange; //Update frequency each octave.
result+=weight*signal;
weight*=signal;
pos*=freqchange;
i+

}

return result;

}

Note that this code is only usable with a vertex profile because it uses looping to
keep the instruction count down. It would be possible to use the code in a pixel
shader (to generate a planet texture, for example), but then the loop would need
to be unrolled.

It is also possible to use a 2D noise function, but doing so would introduce
artifacts around the poles of the planets by crowding too much detail around them
and too little around the middle. However, using a 2D noise function has the bene-
fit of being faster then a 3D noise function. In the example program, a 3D noise
function is used, specifically Perlin’s noise function [Perlin], which works by tak-
ing the dot product between several vectors and interpolating between the
results. Below is the Cg code used:

float noise(float3 v, float4 pg[B2])

{
v = v + fl0at3(10000.0f, 10000.0f, 10000.0f); // hack to avoid negative numbers

float3 i = frac(v * BR) * B; // index between 0 and B-1
float3 f = frac(v); // fractional position

// Tookup in permutation table
float2 p;

pl0] = pgl i[0]  T.w

p[1] = pgl i[0] + 1 ].w;
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p=p+illl;

float4 b;

b[0] = pg[ p[0] 1.w;
b[1] = pg[ p[1] T.w;
b[2] = pg[ p[0] + 1 J.w;
b[3] = pg[ p[1] + 1 J.w;
b=b+i[2];

// compute dot products between gradients and vectors
floatd r;

r[0] = dot(pg[ b[0] 1.xyz, f );

r[1] = dot(pg[ b[1] ].xyz, f - float3(1.0f, 0.0f, 0.0f));
r[2] = dot(pg[ b[2] ].xyz, f - float3(0.0f, 1.0f, 0.0f));
r[3] = dot(pg[ b[3] ].xyz, f - float3(1.0f, 1.0f, 0.0f));

floatd rl;

r1[0] = dot(pg[ b[0] + 1 J.xyz, f - float3(0.0f, 0.0f, 1.0f));
r1[1] = dot(pg[ b[1] + 1 J.xyz, f - float3(1.0f, 0.0f, 1.0f));
ri[2] = dot(pg[ b[2] + 1 ].xyz, f - float3(0.0f, 1.0f, 1.0f));
r1[3] = dot(pg[ b[3] + 1 ].xyz, f - float3(1.0f, 1.0f, 1.0f));

// interpolate

f = s_curve(f);

r = lerp(r, rl, f[2]);

r = Terp(r.xyyy, r.zwww, f[1]);
return lerp(r.x, r.y, f[0]);

}

Perlin noise works well with vertex profiles but is less suitable for pixel profiles,
where other (albeit lower quality) noise functions can be written that use fewer
texture accesses and require fewer instructions.

By passing the x,y,z coordi-
nates of the sphere to the
multifractal function, it is possi-
ble to create the planet geome-
try. Figure 1 is a screen shot of
the generated geometry.

After the geometry has
been generated, the planet
needs to be textured. This can
be done in a pixel shader by first
creating a one-dimensional tex-
ture containing the various col-
ors that the planet will use. In
the example program, a simple  Figyre 1. Untextured planet geometry
texture containing just a few
shades of green, brown, and white is used, but different textures and textures
containing different colors are also possible. If, for example, a planet resembling
Mars is required, then the texture could be filled with reddish colors. To index
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into the texture, the vertex shader passes the height used to modify the sphere
geometry, scaled to the range [0,1], to the pixel shader. The pixel shader then
uses this to access the texture. However, this leads to a fairly unrealistic color
distribution. In nature, height is not the sole basis for the terrain color. Snow does
uniformly appear on the tops of mountains, and sometimes it falls lower down.
The same applies for grass and other types of terrain. To account for this, noise
can be used to modify the index into the texture. This makes the distribution of
terrain types more random and visually pleasing. Below is the code used to
achieve this:

float height=In.dif.x; //Height passed from vertex shader
float modifyindex=(2*noise(normalize(In.tex1.xyz*10,BaseTexture2)-1)/10; //scale noise
height+=modi fyindex; //modify height.

floatd color=tex1D(BaseTexture, height); //index into buffer.

The noise function used here is a type of value noise. It works by indexing into an
array of random variables, then linearly interpolating the results and smoothing
those results with an ease curve. It uses fewer texture accesses than Perlin noise
and typically requires fewer instructions. However, another noise function may be
substituted for this one without a significant change in the results.

Figure 2a: Planet texture generated using noise  Figure 2b: Planet texture generated using just

height value

half random(float x,float y,float z,samplerlD g)
{

half index=(x*6.6)+(y*7.91)+(z*8.21);
index=index*0.001953125;
index=h1tex1D(g,index) ;

return index;

}
half3 scurve(half3 v)
{
return v * v * (3 - 2 *v);

}



half noise(float3 v,samplerlD g)
{

half3 LatticePoint=floor(v);
half3 fracl=scurve(frac(v));
half4 vi1;
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vl.x = random(LatticePoint.x,LatticePoint.y,LatticePoint.z,g);
vl.y = random(LatticePoint.x + 1, LatticePoint.y,lLatticePoint.z,g);
vl.z = random(LatticePoint.x, LatticePoint.y + 1,LatticePoint.z,g);
vl.w = random(LatticePoint.x + 1, LatticePoint.y + 1,LatticePoint.z,g);

half2 il = lerp(vl.xz , vl.yw , fracl.x);

half a=lerp(il.x , il.y , fracl.y);

vl.x = random(LatticePoint.x,LatticePoint.y,LatticePoint.z+1,g);

vl.y = random(LatticePoint.x + 1, LatticePoint.y,LatticePoint.z+1,g);
vl.z = random(LatticePoint.x, LatticePoint.y + 1,LatticePoint.z+1,g);
vl.w = random(LatticePoint.x + 1, LatticePoint.y + 1,LatticePoint.z+1,g);
il = lerp(vl.xz , vl.yw , fracl.x);

half b=lerp(il.x , il.y , fracl.y);
return lerp(a,b,fracl.z);

}

It is also possible to use this noise function to create a cloud layer for the planet.
To do this, another slightly bigger sphere needs to be drawn around the planet,
and then several octaves of noise need to be summated, each octave with succes-
sively higher frequency and lower amplitude.

color.w=noise(input,BaseTexture)+noise(input*2,BaseTexture)*.5+noise (input*4,BaseTexture)

*,25+noise(input*8,BaseTexture)*.125;
color.w=1-color.w;

This could be improved by draw-
ing several cloud spheres, with
each sphere being slightly larger
than the last. This gives the
clouds a volumetric look.

Oceans can easily be added to
the planet by rendering a
semitransparent sphere with a
radius less than that of the planet
sphere. Then, any land that has a
low enough height value will be
below water level.

The last step in rendering the
planet is lighting it. It is quite

Figure 3: Clouds rendered with five octaves of
noise
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difficult to achieve accurate per-pixel lighting on the planet. To do this, it is neces-
sary to either recompute the sphere normals when the sphere is deformed or
generate tangent space for the planet. Unfortunately, due to the current instruc-
tion count of the program, it is impossible to regenerate the normals. However, it
is easy to generate tangent space for the sphere by taking the partial derivative
with respect to u,v, giving:

ou=cos(u)*sin(v),-sin(u)*sin(v),0
ov=cos(v)*sin(u),cos(v)*cos(u),-sin(v)

It would then be possible to use the amount that the sphere geometry is per-
turbed by to generate normals and would work for lighting the clouds. However,
as we generate the sphere geometry for the planet, the sphere equation changes,
and so it becomes much more difficult to generate the tangent space by taking the
derivative of the parametric sphere equation. The total equation is:

X=sin(u)*sin(v)*Multifractal(sin(u)*sin(v), cos(u)*sin(v), cos(v))+1
Y =cos(u)*sin(v)*Multifractal(sin(u)*sin(v), cos(u)*sin(v), cos(v))+1
Z=cos(v)*Multifractal(sin(u)*sin(v), cos(u)*sin(v), cos(v))+1

Because the partial derivative for this function is difficult to find and the vertex
program is already reaching the maximum instruction limit, the example program
simply uses the sphere normals to generate per-pixel lighting. This means that
the planet lighting is not accurate, as the changes to the geometry of the sphere
are not reflected; however, it does allow some lighting to be performed. This is
done with the following code in the planet pixel shader.

Qut.dif.xyz= color.xyz*dot(normalize(In.texl.xyz), In.tex2);
//Light position in In.tex2, sphere normal in In.texl

Figure 4: Planet with cloud cover, noise texture, ocean,
and per-pixel lighting (See Color Plate 2.)
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Conclusion

This article examined how to generate 3D planets using only the GPU to perform
the required rendering by evaluating the multifractal, value, and Perlin noise func-
tions almost entirely on the graphics card and using these functions to generate
the planet geometry, textures, and atmosphere. This provides a good starting
point for developers seeking to implement planets using the latest hardware and
for further experimentation with 3D planets.
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Cloth Animation with Pixel and
Vertex Shader 3.0

Kristof Beets
PowerVR Technologies

Introduction

In computer graphics, simulating cloth has always been a topic of much research
[UCLO02]. In everyday life we observe cloth behavior without realizing the com-
plexity of the physics involved. The model and shaders introduced in this article
attempt to simulate cloth using a simplified massless spring model, which can be
executed completely by next generation graphics hardware. The spring model is
used to generate the position and normal of a cloth’s control points, which are
then stored into “geometry textures” using an advanced pixel shader 3.0. Finally,
the vertex texturing capabilities of the vertex shader 3.0 model allows us to ren-
der the deformed cloth using the position and normal data stored in these geome-
try textures.

Basic Cloth Model

Before attempting to simulate cloth behavior using shaders, it is important to
understand the underlying cloth model that we will be implementing [Elias01].
Our cloth surface is modeled using a network of nodes linked together by mass-
less springs. A first-level approximation is to connect every node to its four direct
neighbor nodes, thus creating a simple grid; however, this results in an extremely
flexible cloth that fails to retain its area and shape. This can be improved by con-
necting each node to its eight direct neighbor nodes, thus adding diagonal springs
that work against shearing deformations. A final optimization is to add four or
eight more connections to neighbor nodes that are two steps away; these connec-
tions again battle deformation of the original cloth shape and also avoid excessive
bending of the cloth surface. Ultimately, it is possible to connect each node to all
the direct neighbors and those two steps away, resulting in 24 spring connections.
Figure 1 shows a central node with the various spring configurations as described.

40
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Figure 1: The interconnection of cloth springs

Now let’s introduce an actual model for these interconnecting springs. A property
of springs is that they will fight against any force that attempts to compress or
stretch them. This behavior can be translated into the following formula:

DefaultSpringLength — SpringLength

SpringForce = SpringConst
pring pring ) DefaultSpringLength

This formula calculates the relative deformation of the spring. If the spring is
stretched, the relative deformation will be negative and result in a force counter-
acting the stretching. If the spring is compressed, the relative deformation will be
positive and result in a force counteracting the compression (see Figure 2). If the
spring is untouched, the relative deformation is zero and results in no force.
SpringConst translates the relative deformation into an actual force. This constant
can be used to modify the power of the spring: A high number will result in a
strong counteracting force, while a low number will result in a small counteracting
force. It is possible to further modify the spring behavior by changing this for-
mula. For example, we could take the square of the relative deformation, which

7 i
‘/,///»//% 7 f”( X\ ;’ \\ f\\ o
r," \ f."’ \\ l;,: O Mo ds.n=rmatlnn
\v." \,.’I Mo Farce

/ N Al /
EA \ f b f Y /'l
\ g e L
i 4 \ /i
\f,-" \;f Fs \/ Fd

_l,.'l - “Afw{sh

Figure 2: An example of springs with a Deformation Force (Fd) and the
resulting Spring Force (Fs)
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means that the force would behave in a nonlinear way to deformations. Effec-
tively, this is how the cloth material type can be changed.

To translate this force into a movement, we have to dig out Newton’s second law:
Force = Mass x Acceleration

Or, reorganized:

. Force
Acceleration =

ass

Acceleration is the change of velocity over time, and velocity is the rate of change
of the position over time. This can be translated to:

Velocity yyy =Velocity,,,, + Accelerationx At =Velocity,,;, + % y

ass

At

Position gy, = Position,;p, + Velocity gy x At =

Force ;
x At

Position,;;, + Velocity,, , x At +
ass
In summary, the new position (after a period of time) is dependent on the old posi-
tion, existing velocity, the force acting on the object, and the mass of the object.
Our aim is to have a very simple model, so we will ignore velocity and accelera-
tion and just reduce this to:

Position , = Position,, ;, + ForceScaleConst x Force

Basically, we flatten all of the above factors into a single constant. The main prop-

erty that we maintain is that the movement is related to the total force acting

upon the nodes of the cloth. Combining this with our SpringForce equation, we

get:

DefaultSpringLength — SpringLength
DefaultSpringLength

Position ,, = Position,, ;, + Const x

In other words, in this highly simplified model, the change of position is depend-
ent only on the deformation of the spring multiplied by a constant.

To recap, we first chose the basic model for our cloth: A grid of nodes repre-
sents the cloth surface with the nodes interconnected by a network of springs.
The second step was to build a model for these springs that describes how the
node will move under the impact of its neighboring nodes.

Finally, we bring all of this together into one complete model that also takes
into account external factors, such as gravity and collisions with objects; I'll intro-
duce this model using easy-to-understand pseudocode:

Variables

VECTOR ARRAY: ClothOld (0 to X, 0 to Y) (init. with start positions)
VECTOR ARRAY: ClothNew (0 to X, 0 to Y) (target for result of model)

VECTOR: MovementVector
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VECTOR: SpringVector
VECTOR: ForceVector
VECTOR: Gravity (init. to (0, 0, g, 0) where g is gravity)

SCALAR: Length
SCALAR: ForceScaler

CONSTANT SCALAR: NormallLength (undeformed length of spring)
CONSTANT SCALAR: SmallAmount (const translates force to movement)

Functions

CheckConstraints (checks for collision, intersection, etc.)
DisplayCloth (displays the cloth)

Main Processing Loop

For every node (x,y) on the cloth:
MovementVector = Gravity
For each of the 4/8/12/16/... neighboring points
SpringVector = (position of neighbor) - (position of node)
Length = length of SpringVector
NormalLength = undeformed length SpringVector
ForceScaler = (Length - NormallLength) / NormallLength
SpringVector = (SpringVector/Length)
ForceVector = SpringVector * ForceScaler
ForceVector = ForceVector * SmallAmount
MovementVector += ForceVector
End of Toop
ClothNew (x,y) = ClothOld(x,y)+ MovementVector
CheckConstraints (ClothNew (x,y))
End of Toop
DisplayCloth (ClothNew)
Copy all the values in ClothNew to ClothOld (double buffering)

Repeat Main Processing Loop forever

The pseudocode above shows an iterative loop that processes the input to create
updated output positions. These output positions are then fed back into the sys-
tem as input to create the next position and so on. The code uses a vector array to
store the node positions; this array is initialized with the start positions of the
nodes (cloth) before executing the main loop. For each node, the code looks at a
certain number of neighboring nodes and, based on the distance between the cur-
rent node and its neighbors, calculates the corresponding forces. The sum of
these forces is then converted into a translation, which is added to the original
position of the node along with some motion due to a static gravity. The conver-
sion from forces to motion is done using a constant. This constant has to be cho-
sen carefully: If the value is too big, the motion will be too large and the network
will become unstable; if the constant is too small, the model will take forever to
evolve. The new position finally undergoes a constraint check that involves
checking collisions with objects. Specifically, if the new node position is within a
constraining object, the node position has to be updated so the cloth will drape
correctly on top of the object rather than sit inside it.
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Implementation Using Shaders

Now that we have a model to simulate cloth, we can start to convert it to the
world of pixel and vertex shaders so that full hardware acceleration can be used.

The model uses a double-buffered vector array to store the position of each
node; this is implemented using textures. This storage needs to support both
reading and writing, which is possible with textures created with the D3D-
USAGE_RENDERTARGET flag. This position (¥, y;, and z) needs to be stored with suffi-
cient accuracy — at least a 16-bit float per component should be used. This can be
achieved by using either a 64-bit texture format (such as D3DFMT_A16B16G16R16F)
or Multiple Render Targets (MRTs, such as 2 x D3DFMT_G16R16F). Our goal is to
use these values to create the final geometry on screen. If vertex lighting is
required, a normal vector will also be needed for each vertex. This brings the
number of components to six: x, y, z and Nx, Ny, Nz. These can be stored easily
and efficiently in three render targets with format D3DFMT_G16R16F. Because the
texture data contains positions and normals, it effectively contains geometry; for
this reason, these textures are referred to as geometry textures. The size of these
geometry textures matches the number of nodes in our cloth grid (tessellation).
For example, if we want a 32x32 grid of nodes forming the cloth, we need a 32x32
texture. Now that we have decided on our storage format, we can start to use it to
implement our algorithm, which we will split into the following six phases: initial-
ization, depth, cloth, constraint, normal map, and display.

Initialization Phase

The initialization phase is only run once at the start of the program or when we
want to restart the cloth simulation. This phase fills the geometry textures
(MRTs) with their initial
startup values and clears the
buffers. To keep things simple, A A
we restrict our scene to a unit '
cube. The cloth starts at the
top of the cube and falls down
(possibly colliding with objects
causing constraints) until it
reaches a stable position or the
bottom of the cube that is
effectively the floor. This is
illustrated in Figure 3.

The initial values for our
MRT are (x, y, start height of
cloth). Since we are working in 5 ¢
a unit cube, the x and y posi- : it
tions can be generated quite
easily using a trivial vertex and
pixel shader program. All we

Figure 3: The scene containing cloth and objects
within the unit cube
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need to do is render a full-screen quad with texture coordinates interpolating from
0 to 1 along both the x and y-axes. We then store the interpolated texture coordi-
nate for each pixel using the pixel shader, since each interpolated coordinate
matches the position of a node.

Vertex shader code:

vs_3_0

5 Input registers
dc1_position0 vO sPosition in NORMALIZED SCREEN COORDINATES
dc1_texcoord0 v4 ;Texture coordinates = base node position

5 Output registers
dc1_position0 00.xyzw ;sVertex position
dc1_texcoord0 ol.xy ;s Texcoord

;5 (8 contains scaling constants that influence the cloth size

mov r0, vO
mov r0.w, c2l.w
mov 00, r0 ;Output Position

mad rl, v4, c8.x, c8.y ;Scale cloth — change init positions
mov ol.xy, rl; ;Output Texture Coord = node position

Pixel shader code:

ps_3_0

5 Input
dc1_texcoord0 v0.xy ;Tex Coord = node position

;5 Output results
mov r0.rg, v0.xy

mov 0C0, r0 ;Node (X,Y) = interpolated texcoord

mov r0, cl2 ; = (<initial cloth height>, 0.0f, 0.0f, 0.0f)
mov oCl, r0 ;Write Initial Depth

mov r0, cl2.y

mov oC2, r0 ;Init to Zero

At the end of this phase, we have initialized all our buffers and they are ready for
processing by the following phases.

Depth Phase

So far, we have not discussed how to handle constraints. The main aim for this
implementation is to have cloth draping realistically over a collection of objects.
When the objects are simple, it is easy to use a mathematical constraint. For
example, it is quite trivial to detect if the new position of a node is inside a sphere.
However, when working with more complex objects, such as a human body, a tea-
pot, a table, etc., it becomes considerably more difficult to use mathematical
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constraints. To handle cloth draping over complex objects, we use depth maps
(height field). Since we have cloth falling down, we need at least a depth value for
every vertical column within the unit cube. Using the (x, y) position of a node, we
can then do a dependent read within the depth map to detect if a collision has
occurred.

Having only a top depth map does impose some limitations. For example,
cloth might drape over a table, and during this process a tip of the cloth might flap
down and move slightly underneath the table. If this happens, the tip of the cloth
could suddenly be affected by the constraint (i.e., the table surface), and the tip
will be moved instantly to the top of the table surface by the constraint, creating a
cloth loop. Obviously this behavior is incorrect and can cause severe instability
within the node-network. To solve this problem, a range is placed on the con-
straints. Specifically, it only applies the constraint if the depth value of the node is
within a certain range of the constraint depth value. This issue and the solution
are illustrated in Figure 4.

Cloth Mode Cloth Surface

%

Table
Constraint

()
% 7777775

( Cloth Cloth Loop formed by
i Movamant Constraints
_ 7 A
Constraint Range @ H
Ranged
Constraints

Mode outside range
=0 na contraint applied

Figure 4: The cloth loop problem and its solution using ranged constraints

An even better constraint system is to use a “cube” depth map, meaning we cre-
ate a depth map for all the surfaces of our unit cube; this allows us to do true volu-
metric testing. This can be illustrated using a sphere as the constraining object:
The top and bottom depth maps will contain depth values that indicate the start of
the sphere volume (the top depth map contains the depth of the top half of the
sphere) and the end of the sphere volume (the bottom depth map contains the
depth of the bottom half of the sphere). It is quite easy to fetch both of these
depth values and do a comparison, and only if the node is between the top and
bottom constraint points (that is, inside the volume along the z-axis) does it need
to be moved to the value stored within the closest map. The same principle can
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be applied to the other faces of the depth Top Depth Map
cube map. Essentially, we check if a node is
within the volume along each of the x, y, and
z-axes, and only when a test along an axis
indicates the point is inside the volume would
the node position be corrected. This tech-
nique is illustrated in Figure 5.

The resolution of the depth map(s)
should be high enough to avoid jagged arti- 1
facts in the geometry; for static scenes, these
depth map(s) only have to be calculated at the 4
start of the simulation, so there is no reason
not to use a sufficiently high resolution. For
dynamic scenes, the situation is different Figure 5: The usage of a cube depth
because whenever the constraints change map along one axis
(i.e., objects move), the depth map(s) need to
be regenerated, which incurs a fillrate cost.

The following vertex shader code is used with an orthographic projection (as
perspective distortion is unwanted in these depth constraint maps) to store the
world space linear depth into the texture:

oNode Inzice

YYYYY YYYYY

vs_3_0

5 Input registers
dc1_position0 vO ;Position in NORMALIZED SCREEN COORDINATES

;5 Output registers
dc1_position0 00.xyzw ;sVertex position
dc1_texcoord0 ol.x s Texcoord

; C0-3 contains World+View+Proj Matrix
3 C4-7 contains World+View Matrix
5 C9 contains scene scaling and translation values

mdx4 r0, v0, c0 ;Transform by view/projection/world matrix
mov 00, r0 ;Output position
dp4 rl.z, V0, cb sTransform by world+view Z

mov rl , rl.z

sConvert to world space depths rather than camera relative depths:

add r1 , -rl, c9.x

mul vl , rl, c9.y ;Scale to unit cube depth sizes

mov ol.x, rl sMove scaled world depth result into tex coord

The pixel shader simply stores the depth value, created in the vertex shader and
passed on through a texture coordinate field, in the render target.

The current demonstration application implements a single top depth map
with constraint range; a full cube depth map version might be added at a later
stage.
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Cloth Phase

The cloth phase is where the real action occurs. The pixel shader used in this
phase will need to read the node’s position and apply a step of the earlier
described iterative cloth model to generate a new position. To create this shader,
we need to translate our previous pseudocode into pixel and vertex shader code.
Our pseudocode involves operations on the center node position using the posi-
tion of several neighboring nodes as input. These positions need to be fetched
from textures (filled during the initialization phase or during previous cloth
phases), which requires texture coordinates that we will set up in the vertex
shader. The following code sets up 16 2D texture coordinates; this is achieved by
storing two sets of 2D coordinates in a single 4D coordinate register.

vs_3_0

5 Input registers
dc1_position0 v0
dc1_texcoord0 v4

;5 Output registers

dc1_position0  00.xyzw
dc1_texcoordd  ol.xyzw
dcl_texcoordl  02.xyzw
dcl_texcoord2  03.xyzw
dc1_texcoord3  o4.xyzw
dc1_texcoord4d  05.xyzw
dc1_texcoord5 06.xyzw
dcl_texcoordé  o7.xyzw 6 of 8 dual 2D Coords
dcl_texcoord7  08.xyzw 7 of 8 dual 2D Coords
dc1_texcoord8  09.xyzw ; 8 of 8 dual 2D Coords

Vertex position

center texcoord

1 of 8 dual 2D Coords
2 of 8 dual 2D Coords
3 of 8 dual 2D Coords
4 of 8 dual 2D Coords
5 of 8 dual 2D Coords

5 VERTEX POSITION
mov r0, vO

mov r0.w, c2l.w
mov 00, r0

5 MODEL TEXTURE COORDINATES

;5 Copy base XY into both sections to generate two 2D coords per vector

mov ol.xy, v4 ;3 Center position

mov rl, vd.xyxy ; Copy Base into both sections

5 cl0-cl7 contain the delta for each neighbor position - set in code
add r0, rl1, cl0

mov  02.xyzw, r0 3 1 out of 8 dual 2D Coords

add r0, rl, cll

mov  03.xyzw, r0 3 2 out of 8 dual 2D Coords

add r0, rl, cl2

mov o4.xyzw, r0 3 3 out of 8 dual 2D Coords

add r0, rl, cl3

mov  05.xyzw, r0 5 4 out of 8 dual 2D Coords
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add r0, rl, cl4

mov  06.xyzw, rQ 5 5 out of 8 dual 2D Coords
add r0, rl, cl5
mov  07.xyzw, r0 3 6 out of 8 dual 2D Coords
add r0, rl, cl6
mov  08.xyzw, r0 5 7 out of 8 dual 2D Coords
add r0, rl, cl7
mov  09.xyzw, r0 3 8 out of 8 dual 2D Coords

After generating these texture coordinates, we can use them efficiently in our
pixel shader. (Note the following code is written so it is easy to compare with the
pseudocode — it is not performance optimized.)

ps_3_0

5 Samplers

dcl_2d  sO ;Input Textures MRTO (x,y)
dcl_2d sl ;Input Textures MRT1 (Z,Nx)

5 Input registers

dc1_texcoord0 v0.xyzw ;Base Pos

dc1_texcoordl v1.xyzw ;Neighbor Dual Coord Set 1/8
dcl_texcoord2 v2.xyzw ;Neighbor Dual Coord Set 2/8
dcl_texcoord3 v3.xyzw ;Neighbor Dual Coord Set 3/8
dc1_texcoordd v4.xyzw ;Neighbor Dual Coord Set 4/8
dc1_texcoord5 v5.xyzw ;Neighbor Dual Coord Set 5/8
dc1_texcoord6 v6.xyzw ;Neighbor Dual Coord Set 6/8
dcl_texcoord? v7.xyzw ;Neighbor Dual Coord Set 7/8
dc1_texcoord8 v8.xyzw ;Neighbor Dual Coord Set 8/8

; Constants

5 cl..4 Set in code to weight to translate force to translation
5 ¢7..10 Set in code to default spring length constants

defi i0, 4, 1, 1, 0 ;Used for Toop

5 Init Movement vector
mov r0, cO ;Init movement vector with gravity

5 Sample Main Position

tex1d r1, v0.xy, sO ;Main Pos (x,y)
tex1d r2, v0.xy, sl ;Main Pos (z,Nx)
mov rl.z, r2.x

mov rl.w, r2.y ;Main Pos (x,y,z,Nx)

5 Main processing loop for 16 neighbor nodes split up in 4 cases each 4 nodes
; Case A + C : Length of "1.0" and "2.0" for undeformed springs (Axis Springs)
; Case B + D : Length of "1.4" and "2.8" for undeformed springs (Diagonal Springs)

Toop aL, i0 ; for (al=1; al<5; al+=1)
;Case A

tex1d r2, v[al].xy, sO ;Sample Neighbor (X,Y)
tex1d r3, v[al].xy, sl ;Sample Neighbor (Z)
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mov r2.z, r3.x ;Neighbor (X,Y,Z) = R2
add r2, r2, -rl ;Spring Vector = Neighbor - Main
dp3 r3.x, r2, r2 ;Sum of Squares

5 Is it an edge pixel ? - if we clamp to the same value then don't do maths
if_ne r3.x, c0.x
rsq rd.x, r3.x ;RSQ of Sum of Squares = for Normalization
rcp rb.x, rd.x ;RCP of RSQ of Sum of Squares = Length = R5
add r5.x, r5.x, -c7.x ;Create Force scale using default lengths
mul r5.x, r5.x, c7.y 3R5 is Force Scale
mul r2, r2, rd.x ;Normalized Spring Vector
mul r2, r2, r5.x ;r2 is Force Vector
sConvert Force Vector to translation and add it to final movement vector
mad r0, r2, cl, r0
endif

;Case C
tex1d r2, v[al].zw, sO ;Sample neighbor (X,Y)
tex1d r3, v[al].zw, sl ;Sample neighbor (Z)

mov r2.z, r3.x ;Neighbor (X,Y,Z) = R2
add r2, r2, -rl ;Spring Vector = Neighbor - Main
dp3 r3.x, r2, r2 ;Sum of Squares

5 Is it an edge pixel ? - if we clamp to the same value then don't do maths
if_ne r3.x, c0.x
rsq rd.x, r3.x ;RSQ of Sum of Squares = for Normalization
rcp rb.x, r4.x ;RCP of RSQ of Sum of Squares = Length = R5
add r5.x, r5.x, -c9.x ;Create Force scale using default lengths
mul r5.x, r5.x, c9.y ;R5 is Force Scale
mul r2, r2, rd.x ;Normalized Spring Vector
mul r2, r2, r5.x ;r2 is Force Vector
sConvert Force Vector to translation and add it to final movement vector
mad r0, r2, c3, r0
endif

;Case B
tex1d r2, v[al+4].xy, sO ;Sample neighbor (X,Y)
tex1d r3, v[al+4].xy, sl  ;Sample neighbor (Z)

mov r2.z, r3.x ;Neighbor (X,Y,Z) = R2
add r2, r2, -rl ;Spring Vector = Neighbor - Main
dp3 r3.x, r2, r2 ;Sum of Squares

5 Is it an edge pixel ? - if we clamp to the same value then don't do maths
if_ne r3.x, c0.x
rsq rd.x, r3.x sRSQ of Sum of Squares = for Normalization
rcp rb.x, rd.x ;RCP of RSQ of Sum of Squares = Length = R5
add r5.x, r5.x, -c8.x ;Create Force scale using default lengths
mul r5.x, r5.x, c8.y ;R5 is Force Scale
mul r2, r2, rd.x ;Normalized Spring Vector
mul r2, r2, r5.x ;r2 is Force Vector
sConvert Force Vector to translation and add it to final movement vector
mad r0, r2, c2, r0
endif

;Case D



51

Cloth Animation with Pixel and Vertex Shader 3.0

tex1d r2, v[al+4].zw, sO ;Sample neighbor (X,Y)
tex1d r3, v[al+4].zw, sl  ;Sample neighbor (Z)

mov r2.z, r3.x ;Neighbor (X,Y,Z) = R2
add r2, r2, -rl ;Spring Vector = Neighbor - Main
dp3 r3.x, r2, r2 ;Sum of Squares

5 Is it an edge pixel ? - if we clamp to the same value then don't do maths
if_ne r3.x, c0.x
rsq rd.x, r3.x ;RSQ of Sum of Squares = for Normalization
rcp r5.x, r4.x ;RCP of RSQ of Sum of Squares = Length = R5
add r5.x, r5.x, -cl0.x ;Create Force scale using default lengths
mul r5.x, r5.x, cl0.y ;R5 is Force Scale
mul r2, r2, rd.x ;Normalized Spring Vector
mul r2, r2, r5.x ;r2 is Force Vector
sConvert Force Vector to translation and add it to final movement vector
mad r0, r2, c4, r0
endif
endloop

sWrite Out Final Values

add r2, rl, r0

mov r3, r2.z

mov  oC0, r2 5 (X, )
mov oCl, r3 5 (2, X)

The pixel shader code contains three large sections. The first section handles the
initial setup, such as initializing the movement with a fixed gravity factor and
reading the main node position. The second section is the main processing loop,
which contains four subsections. These subsections correspond to different
spring groups, as described in our model (see Figure 1). The code within each
subsection calculates the force created by the spring between the central node
and its neighbors, based on the distance between the nodes and the original
undeformed spring length. This last element is a constant, which is different for
nodes along the diagonal (relative length of V2 and 2 x +/2) and nodes along the
axis (relative length of 1.0f and 2.0f); this is the main difference between the sub-
sections. The final and third section adds the movement vector to the original
node position and writes the result out to the render targets. This shader can be
adapted to use more or fewer neighbor positions; for details, check the shaders
included with the demo application, which support 4, 8, 12, 16, 20, and 24 neigh-
bor nodes.

Performance Considerations

The cloth shader code contains a loop, but while a loop makes the code easy to
understand and read, it might not be optimal for hardware execution. If the hard-
ware supports enough instructions, it might be better to unroll this loop, since hy
unrolling the loop no cycles would be wasted on actually executing the loop
instructions (i.e., the compare and jump operations). However, in most cases a
developer should not have to worry about this, since the driver’s compiler should
automatically handle it according to the capabilities of the host 3D device.
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To handle cloth border cases correctly, where there are fewer neighbor nodes
to consider, the shader contains a conditional dynamic branch (if_ne). By using
branching, it is possible to jump over some instructions that do not need to be
executed. For example, in the above shader the branch stops seven instructions
from being executed in some cases; however, this comes at the overhead of exe-
cuting the conditional branching instruction itself in all cases. Depending on the
cost of the branching instruction (which is hardware dependent), it might be
better to implement a different (cheaper or faster) mechanism to handle the bor-
der cases correctly, such as a cmp or setp instruction.

At first glance, this shader might look very complex and one might expect
poor or non-real-time performance; however, it is important to understand that
this shader is only executed on a very small set of pixels — a 64x64 grid is equiv-
alent to rendering a 64x64 pixel texture and results in a network with 4,096 verti-
ces. A render target of 64x64 pixels (or even 128x128, which results in a network
with 16,384 vertices) is negligible compared to a default 1024x768 screen resolu-
tion. So even though the shader is comple, it is only being applied to a very small
number of pixels, and hence real-time performance is still achieved.

Constraint Phase

During the constraint phase, we check all the new node positions and verify
whether they have collided with an object. If they have, the node has to be moved
so it sits on top of the object. As described before, this will be implemented using
a depth compare using the depth map that we have created during a previous
phase. All we need to do is use the (%, y) position of the node as a texture coordi-
nate to do a dependent texture read into the depth map. We can then compare the
node’s current z position with the depth value stored for that column in the unit
cube, and if the new depth value is smaller (i.e., closer to the floor) than the value
of the depth map, we replace the node’s z value with the depth map’s value. To
avoid instability, we add a safety margin to this compare so that we only constrain
nodes that have a depth value within a certain range of the stored depth value.
This way, if the tip of the tablecloth moves under the table, it is not suddenly
jerked to the top of the table. This can be achieved using the following pixel
shader code:

ps_3_0

;5 Declare inputs

dcl_2d sO 5 XL,Y

dcl_2d sl s Z ,Nx

dcl1_2d s2 5 Ny,Nz

dcl_2d s3 ;5 Depth Map
dc1_texcoord0 v0.rg ;5 Base Tex Coord

def c0, 0.05, 0.0, 0.0, 0.0 ; Controls range of the constraint

tex1d r0, v0, sO ; Fetch (X,Y) of Node
tex1d rl, r0, s3 ; Read Depth Map at (X,Y) = Z Constraint
tex1d r2, v0, sl ;s Fetch (Z,Nx) of Node
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add rd.r, rl.r, -r2.r ; Subtract Cloth and Constraint Z
if_gt rd.r, c0.x Compare with range
mov rl.x, r2.r keep cloth (e.g., cloth tip under table)

else
max r4, rl.r, r2.r ; Constrain cloth to largest value
mov rl.x, r4.x ;5 Update the output

endif

mov oC0, r0 5 output (X, Y)

mov oCl, rl 5 output (Z, Nx)

Different kinds of constraints can be introduced in this phase. We could have
implemented a mathematical constraint, or we could simply use this shader to
lock certain vertices in place (e.g., cloth hanging from two hooks, elastic cloth in a
frame, etc.). The possibilities are endless and easy to implement.

Normal Map Phase

This phase calculates a normal for each node based on the neighboring nodes’
information. This concept alone is probably worth a complete article; the current
implementation creates two vectors (using a cross shape) from the four neighbor-
ing nodes and calculates the cross product to generate the normal. This is a very
basic implementation; while more advanced solutions are possible, which would
probably result in better image quality, they also come with increased sampling
and processing costs. The sampling positions are set up in the vertex shader
(similar to that illustrated in the cloth phase section) and processed as follows by
the pixel shader:

ps_3_0
5 Samplers

dcl_2d so MRTO (X ,Y )
decl_2d sl s MRT1 (Z ,Nx)

5 Inputs

dc1_texcoord0 v0.xy
dc1_texcoordl v1.xy
dcl1_texcoord2 v2.xy
dcl_texcoord3 v3.xy
dc1_texcoord4 v4.xy

Main Node Sample Coord
Right Node Sample Coord
Top Node Sample Coord
Left Node Sample Coord
Bottom Node Sample Coord

texld r0 , v0, sO
tex1d rll, vO, sl
mov oC0, r0

Center Node (X,Y)
Center Node (Z)
Output (X,Y) to MRTO

texld r0, v1, sO
tex1d rl1, vl, sl
mov  r3.xy, r0

mov  r3.z, rl.x

Right Node (X,Y)
Right Node (Z)

Right Node (X,Y,Z)
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tex1d r0, v2, sO Top Node (X,Y)
texld rl, v2, sl ; Top Node (Z)
mov  rd.xy, r0
mov rd.z, rl.x

Top Node (X,Y,Z)

texld r9 , v3, sO
texld r10, v3, sl
mov  r5.xy, r9

mov  r5.z, rl0.x

Left Node (X,Y)
Left Node (Z)

Left Node (X,Y,Z)

texld r9 , v4, sO
tex1d r10, v4, sl
mov  ré.xy, r9

mov  r6.z, rl0.x

Bottom Node (X,Y)
Bottom Node (Z)

Bottom Node (X,Y,Z)

; create vectors for cross product
add r0.xyz, r3.xyz, -r5.xyz
add rl.xyz, rd.xyz, -r6.xyz

;5 cross product and normalization
crs r7.xyz, r0, rl
nm r0, r7.xyz ;5 Vertex Normal

5 Output results to MRT1 and MRT2
mov ril.y, r0.x

mov r9 , r0.y
mov r9.g, r0.z
mov oC1, ril 3 (Z, Nx)
mov 02, r9 5 (Ny,Nz)

Display Phase

The final phase is the display phase, which will render our deformed cloth on the
screen. To achieve this, we need to read every node’s (vertex’s) position and nor-
mal from the texture, rescale from the unit cube space into world space, trans-
form, and display them on screen. All of this is achieved using the following
vertex shader code:

vs_3_0

5 Input Registers
dcl_position0  vO
dc1_texcoord0 V4

;5 Output Registers
dcl_position0  00.xyzw ; Final Vertex Position

dc1_color0 ol ; Diffuse color for Tighting
dc1_texcoord0 02.xy ; Texture Coordinates
5 Samplers

dcl_ad  sO 5 (X,Y)
dlad sl (Z )
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dcl_2d  s2 (Ny,Nz)

def c10, 120.0, 240.0, 100.0, 0.0 ; Scale Factor
def c11, 0.4267,-0.853,0.298,0.0 5 LIGHT
def c12, 0.0, 0.0, 0.0, 1.0 5 Init value

;5 Sample Vertex Textures

tex1dl rl, v4, sO  ; Read Node (X , Y)
tex1dl r2, v4, sl ;5 Read Node (Z , Nx)
tex1dl r3, v4, s2 ;5 Read Node (Ny, Nz)

5 Create XYZ in r4
mov r4.xy, rl 5 Grab XY
mov rd.z, r2.x s Grab Z

5 Create NxNyNz in r5
mov r5.Xx, r2.y 5 Grab Nx
mov r5.yz, r3.xxy 5 Grab Ny, Nx

; Create Final Node/Vertex Position

mov r6, cl2

mad r6.x, r4.x, cl0.y, -cl0.x ;s Rescale [0 -> 1] => [-120 -> 120]
mul r6.y, r4.z, cl0.y Rescale [0 -> 1] => [0 -> 240]
mad r6.z, rd.y, -c10.y, cl0.x s Rescale [0 -> 1] => [-120 -> 120]
mix4 r2, r6, c0 Transformation (cO set in code)
dp3 r4, r4, cll Simple Lighting Model

mov 00, r2
mov ol, rd
mov 02.Xy, V&

Output Position
Output Diffuse Color
Qutput Texture Coordinate

The above vertex shader should be easy to understand, as vertex texturing is the
only exciting new feature used. Vertex texturing is virtually identical to texture
accesses done in the pixel shader. It is, however, essential to understand the
impact of vertex texturing on performance. All texture accesses come with high
latencies, meaning that the period between fetching a value from a texture and
being able to use the result can be quite long. There will be a lot of clock cycles
spent moving the data from external memory into the chip (on a cache miss),
through the cache, through texture filtering calculation, and eventually into the
vertex shader. For this reason, throughput when using vertex texturing can
potentially be quite low; however, it also means that if the shader has instructions
that do not rely on the result of the texture fetch, the texture fetch can be “free,”
since non-dependent instructions can be executed while waiting for the texture
data to arrive. On the other hand, if there are no non-dependent instructions, the
hardware may stall while waiting for the texture data, and valuable processing
power will be lost. Given this potential high per-vertex cost, it is essential to
maximize vertex cache usage (e.g., using D3DX’s Mesh Optimize functions).
The pixel shader used during the display phase applies a simple base texture
with diffuse lighting; this is to maintain acceptable performance on the Direct3D
reference device given the lack of 3D hardware supporting the 3.0 shader model.
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* NOTE Vertex texturing should never be referred to as displacement

mapping, as displacement mapping is only a very small subset of the millions
of possibilities that can be brought to life by the ability to read texture data
from within the vertex shader. The algorithm and the geometry textures
presented here are just one such case: Geometry is stored as a position (and
normal) within a texture, and the massive parallel processing power of the
pixel shader can be used to modify that geometry using complex physics or
simulation models. In this case, a simple physics-based model is
implemented, but other interesting possibilities include fluid dynamics,
metaballs, and chemical simulations.

Overview

Figure 6 shows an overview of the various shaders and buffers as they work
together to bring cloth animation to life:
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Figure 6: Shader interaction overview

The initialization phase writes the default node positions into the MRTS, and the
depth phase writes the results of the depth render to a texture. The main pro-
cessing loop then executes the cloth phase on the node positions, and the result
undergoes the constraint phase. At this point, the cloth phase can start another
iteration followed by another constraint phase. After looping through the cloth and
constraint phases for a certain number of iterations, the normal map phase cre-
ates a new MRT, which contains the position and normal, and these are fed into
the display phase, which creates the final on-screen result.

Color Plate 3 illustrates the contents of the position and normal map MRTs as
well as the final result in wireframe and solid mode.
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Sample Application

A sample application and a movie can be found on the companion CD. Updated
versions are available at www.pvrdev.com and www.shaderx2.com.

Conclusion

This article described a method of bringing real-time cloth simulations to life
using the high performance and flexibility of pixel and vertex shader 3.0. A simple
physics model was introduced together with various methods to apply constraints.
This was then translated into a number of advanced shaders making use of
advanced new functionality only found in the 3.0 shader model, such as dynamic
branching and loops within the pixel shader, and texturing from within the vertex
shader.
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It is well known that GPU power is evolving at a rate far exceeding the expecta-
tions of Moore’s Law for general CPU power growth. However, this does not nec-
essarily mean a simple speedup of the GPU. The GPU processes data at a much
quicker speed than the CPU because of the parallel nature of the vertex and pixel
pipelines. Rendering is a special process that is easy to parallelize. Although gen-
eral-purpose calculations cannot always be carried out by the GPU, if processes
are well suited to parallelization, they can likely be processed at high speeds using
the GPU.

In games, collision detection is one of the most processor-demanding pro-
cesses. Collision detection is a complicated process that tends to be divided into
many calculations because of the difference among many situations and is difficult
to create as a single routine. For collision detection between objects, there is a
“brute-force” algorithm that is simple but has a high processing load. The geome-
try of objects is mapped to a two-dimensional depth texture, and collision detec-
tion is performed for each texel of the texture. Since this method calculates in a
parallel fashion, calculation time is reduced, each texel is processed independ-
ently, parallel processing is possible, and processing can be calculated at a high
speed by the GPU. This article discusses this method of calculation by the GPU.

Calculation by the GPU not only brings about an improvement given its
incredible evolution speed, but it also lessens the load on the CPU, which can
therefore assign more time to other processes (e.g., Al). In some game situations
the CPU is busy, whereas in others the GPU is. The situation may change quickly
depending on the scene. If it is possible to predict which processor carries the
higher load, the calculation can be assigned to the other and the application will
attain more efficient processing. (Of course, in order to be able to always perform
this, the the CPU and GPU must be able to perform identical processing. This will
probably be difficult. Additionally, this process of changing over to the GPU will
only be used for specific scenes.)

As another advantage, if calculating only by the GPU is possible, we do not
have to wait for data to be locked in video memory before the CPU accesses it.
For example, when analyzing a rendering result by the CPU, we have to wait for
the GPU to finish a rendering. Generally, when processing using the CPU and the
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GPU simultaneously, blocking often occurs since the data cannot be used by the
other processor until processing is completed. The performance will improve,
since we no longer have to wait for the other processor to be able to access the
results.

Visibility Test

In performing the collision detection by the GPU, we first consider a simple case:
that of a scene with a wall. Although an object will be rendered when it lies in
front of a wall, it will not be rendered when it is placed behind a wall because it
has not passed the z test. That is, the front or back relationship between objects
can be judged by the number of pixels rendered.

Let’s now consider the case where we transpose this wall to the ground and
set a camera pointing upward from underneath the wall, which we think of as the
earth’s surface. When an object is above the surface, the object is not rendered,
since it is on the other side of the wall. But if the object is moved below the
ground, it is rendered. Since the rendering of the object takes place after the ren-
dering of the surface, it can be deduced that the object collided with the surface.

<

Figure 1: Looking at the object from under the ground and its rendered images

We will now consider a concrete implementation. In order to detect whether the
rendering was carried out, it is easiest to use an asynchronous notification mecha-
nism introduced in DirectX 9. If an asynchronous notification is used, the number
of rendered pixels can simply be measured. When using asynchronous notifica-
tion, the object needed by the application side is a pointer to an IDirect3DQuery9
object.

IDirect3DQuery9* m_pQuery;
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The initialization of the IDirect3DQuery9 object is performed by IDirect3D-
Device9::CreateQuery. In order to count the number of pixels rendered,
D3DQUERYTYPE OCCLUSION is specified as the argument of IDirect3D-
Device9::CreateQuery.

m_pd3dDevice->CreateQuery (D3DQUERYTYPE_OCCLUSION, &m_pQuery);

m_pQuery is used twice, before and after rendering the object. As opposed to
normal rendering, the sub-surface camera must be prepared when preparing to
render for collision detection. In order to prepare this camera, it is necessary to
set a viewpoint on the bottom of the ground and make an observing point directly
above. Since the direction of the camera’s target is along the Y-axis, the up direc-
tion of the camera must be set along the direction of the Z-axis so that it is not
parallel to the direction of the camera’s view.

D3DXVECTOR3 vEye = D3DXVECTOR3(0.0f,-1.0f, 0.0f);
D3DXVECTOR3 vLookatPt = D3DXVECTOR3(0.0f, 0.0f, 0.0f);
D3DXVECTOR3 vUp = D3DXVECTOR3(0.0f, 0.0f, 1.0f);

D3DXMatrixLookAtLH(&mView, &Eye, &vlookatPt, &vlUp);
m_pd3dDevice->SetTransform(D3DTS_VIEW, &mView);

// width height min_z max_z
D3DXMatrixOrtholH(&mProj, 10.0f, 10.0f, -10.0f, 10.0f);
m_pd3dDevice->SetTransform(D3DTS_PROJECTION, &mProj);

In the rendering loop of each frame, the z-buffer that records the geometry of the
ground is generated by rendering the ground first. Since the camera looks at the
underside of the ground, it is extremely important that the culling mode be set to
none or reverse. Otherwise, the rendering will not be performed. Moreover, if it
finishes rendering the ground, it is necessary to restore the original culling mode.

m_pd3dDevice->SetRenderState (D3DRS_CULLMODE, D3DCULL_CW);
Rendering of the ground
m_pd3dDevice->SetRenderState (D3DRS_CULLMODE, D3DCULL_CCW);

Next, the asynchronous notification that measures the written-in number of pixels
is started, and the rendering of the object that detects collision is carried out.
After finishing the rendering, we must stop counting the rendered pixels.

m_pQuery->Issue(D3DISSUE_BEGIN) ;
Rendering of the object
m_pQuery->Issue(D3DISSUE_END) ;

The number of rendered pixels is counted by calling m_pQuery->Issue with the
D3DISSUE BEGIN argument before rendering is performed and passing the
D3DISSUE_END parameter after rendering is complete.

If a rendering is completed, the result of the asynchronous notification is
receivable. The number of rendered pixels can be determined by calling
IDirect3DQuery9::GetData. The argument of IDirect3DQuery9::GetData is a
pointer to a variable of the DWORD type which receives a result and the size of
the variable (sizeof (DWORD)) and a flag specifying the query type. If the function
is successful, S OK is returned as the result. If the rendering is not yet com-
pleted, an error is returned.
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DWORD pixels;
while(S_OK!=(hr=m_pQuery->GetData (&pixels, sizeof(DWORD), D3DGETDATA_FLUSH ))){
if(D3DERR_DEVICELOST == hr) break;
}
if(1000<=pixels){ // Wnen 1000 or fewer pixels are drawn, it is determined that no
// collision has taken place
The response to a collision is performed.

}

Since asynchronous notification does not return an S_OK result until the render-
ing is complete, we must take caution so that it will not fall into an infinite loop. A
method that should be avoided is waiting for rendering to finish while calling
IDirect3DQuery9::GetData in an infinite loop. It is good practice to proceed with-
out blocking the program, even though the function will fail and succeed, and to
check a collision only when it returns S_OK.

The algorithm introduced here is simplified. In order to actually use it, a little
improvement is required. Since the asynchronous notification mechanism does
not immediately return a result, it is better to prepare two or more IDirect3D-
Query9 interfaces, changing the interface every frame and waiting for the result
of a previously called interface.

Also, if the number of the rendered pixels is not zero, it means the object was
rendered. However, simply checking that zero pixels were rendered is often too
strict in collision testing, as the object may have just grazed the other one. In
many cases, the count should be set for more than a designated number of pixels
for a more natural effect.

In the above example where collision detection was performed between
objects and the ground, the camera was placed below the ground and the render-
ing was carried out upward. This method can be extended to collision detection
between objects of more complicated geometry than the ground. For example, in
the case of a convex type object, we can do collision detection using a cube map.
The surface of an object can be mapped with a pixel of a cube map if a camera is
put inside the convex type object and we render the object six times, once for
each direction, with culling reverse. Collision detection of objects is possible by
recording the depth value of the convex type object on the z-buffer first, rendering
another object after that, and counting the number of rendering pixels. We can
decompose non-convex objects into multiple convex objects and apply this cube
map rendering to each of these sub-objects. For convex type objects, since the
same processing can handle any rendering target that encloses the object from
the surroundings, a dual paraboloid map and a sphere map as well as an environ-
mental map can be used for collision detection. Generally, if a one-to-one
correspondence exists between a rendering target and the object surface, it is
possible to use this method in any coordinate space.
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Collision Map

When performing collision detection, after a collision is detected, we want to find
out the area with which the object collided. Although we can find out where an
object currently is by asynchronous notification when objects penetrate, we do
not know the point of collision. Moreover, a collision cannot be detected when an
object moves too quickly and jumps through the area between the ground and
camera. We will now explore more detailed collision detection by examining the
path that the object moved along.

The “path volume” is introduced to detect any collisions with the moving
object. This is an object similar to the well-known “shadow volume.” Just as the
shadow volume is a mesh that includes the object that casts a shadow as well as
the object that is extruded in the direction away from the light, the path volume is
a mesh that includes the object of the present position and the object of the past
position about a certain object.

Since the path volume is determined by the same method used to create
shadow volumes caused by parallel light sources, many different methods exist
for generation [Brennan]. For example, another mesh that embeds degenerate
polygons about all the edges of an original mesh of the object is prepared. The
polygons are degenerate quadrangles and the vertices of such polygons are speci-
fied to be every two vertices of both ends of an edge. The normal vectors of two
faces that share an edge of the original mesh are assigned to the normal vector of
two overlapping vertices, respectively. The path volume is dynamically created at
the time of rendering. The normal vector of every vertex is compared with the
velocity of an object. (Specifically, the dot product of each vector is calculated, and
the sign determines the position, past or present, to which the vertex goes.) The
prepared mesh is drawn in the present position when its direction of movement
equals the direction of the normal vector. If not suitable, it will draw in the past
position. For the portions of the mesh where the dot product of the normal and
velocity vectors changes sign, the edge is filled with a degenerate quadrangle.

Last position

Current position

Figure 2: Meshes shown at the present Figure 3: Path volume
position and at the last position
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There is a simpler method of using the original mesh as is without introducing
additional degenerate polygons. For each vertex, the normal vector of the original
mesh is compared with the direction of movement using the dot product, and the
vertex is rendered in the present position when the dot product is greater than 0.
The past position is rendered when the directions differ by more than 90 degrees
(dot product < 0). Although this method can be processed by half vertex data
compared with the first method, the result is not exact. With this method, the edge
where the move direction and the direction of a normal vector change is not
extended, but the face with normal vectors that gives the value of positive and
negative both about the mark of the dot product of the move direction and direc-
tion of normal vector is extended. Since the original mesh changes shape through
this enlargement, the generated path volume will be smaller than the “correct”
one, although it will still be a subset of it. (See Figure 4.) Therefore, it can be used
only as a simple approximation. However, when actually used in a game, this
method of determining path volume is not a bad idea, as it makes the processing
load lighter.

w
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Last position

Current position

Figure 4: Simple but incomplete path volume

Although the path volume that connects the present position and the past position
was introduced here as a linear path, it can also be created when the movement
lies along a curve. When the movement of an object is as complicated as a para-
bolic movement by free-fall, etc., a path volume by the curved surface surround-
ing the volume that moved can be used. (In fact, a curved surface will be finely
divided using a tessellator unit, etc.)

Next, we explain how to determine the area of collision using a path volume.
This is very similar to the calculation of a shadowed area using a shadow volume.
The rendering target for collision detection will be referred to as a “collision map”
here. First, it is initialized by applying black to the collision map. (Although any
color is sufficient for collision detection, the color black is convenient for special
effects.) Next, a camera is put on the bottom of the ground and turned upward,
and the rendering of the earth’s surface is carried out. It is not necessary to write
anything to a color component at this time. Rather, the purpose is just to write the
depth value of the ground in the z-buffer. The next step is rendering the path vol-
ume. The rendering of the path volume is carried out twice. In the first pass, only
the polygons of the path volume that face the camera are drawn with white (in
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fact, any color is sufficient as long as it is different from the color of the ground).
In the second pass, only the polygons that face the reverse side of the camera are
drawn with the same black color as the ground. In both passes of the path volume
rendering, it is necessary to set the rendering states so that the z-buffer will not
be written in but color components will be (we have to perform the z test still).
Consequently, the area that was drawn by the first pass but not by the second
(i.e., failed the z test) remains white in the collision map. This white area is
exactly the domain where the ground and object contacted. (In Figure 5, for clar-
ity, the ground is seen from across, whereas when actually performing the test, a
camera is set just under the ground and a collision map that corresponds to a
one-to-one relationship with the ground plane is created.)

Figure 5: Rendering the front surface and the back surface and taking the difference between
two images

When using a collision map along with a path volume to determine whether an
object has collided, we need to handle the use of the asynchronous notification a
bit differently. Because the path volume will have rendered pixels without a colli-
sion necessarily occurring, we need to count both the number of rendered pixels
of the front-facing polygons and the number of rendered pixels of the back-facing
polygons and take the difference between the two numbers.

This method of creating a collision map returns the right result only when
rendering the path volume for a convex object. In the case of a concave object, if
the indented portion has become sideways when drawing the front of the path vol-
ume, we have pixels that have been drawn to multiple times. At this time, the
actual area of collision will be overwritten by the front polygon. When dealing
with complicated objects that are not convex, it is necessary to find the difference
between the rendering targets. A stencil buffer is often used for this more exact
method. First, the value of a stencil buffer is filled with 0. When drawing the front
surface of the path volume, the increment of the value of the stencil buffer is car-
ried out; when drawing the back, the decrement of the value of the stencil buffer
is carried out. The area where the back was not drawn by a z test failure but the
front surface was is the area where the final value in the stencil buffer is not 0. (In
some GPUs supporting the features of DirectX 9, such as the Radeon 9700 Pro,
the rendering of the path volume can be completed by one drawing pass using the
function of a two-sided stencil feature.) Since two or more objects can be pro-
cessed repeatedly when a stencil buffer is used (without clearing a stencil buffer),
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there are many merits to using a stencil buffer. The only problem is that it is diffi-
cult to use asynchronous notification for the two-sided stencil buffer.

The created collision map can be used for special effects by the application. In
Figure 6, a special effect that puts “flares” in the collision area is demonstrated.

Figure 6: Using a collision map, we draw “flares” in the areas where bullets
hit the ground.

The collision map is a map that records an instantaneous collision and is updated
with each frame. Since we want to burn all the places where the ground and the
object have collided up until now, the created collision map is rendered to another
map by addition composition. Initially, the accumulated map is completely black. If
the collision maps are drawn one after another, at the end they will become pure
white. That is, everyplace on the ground will blaze up.

Although flaring on this accumulated collision map is a problem completely
different from collision detection, it is still an important visual problem. The
method involves post-processing, which applies an effect in screen space. First,
the accumulated collision map is transformed to coincide with the ground and
then rendered to a screen-aligned texture. This makes the “burning” areas of the
screen become white. Next, we combine this texture via multiplication composi-
tion with a random animated texture that we call “the seed of fire.” This random
animation means a wooden bit burns. However, with simple multiplication, the
areas where the bullet collided with the ground only become bright on and off. In
order to express the way the flame moves upward, a technique using an “afterim-
age” is used [James]. In order to make a flame, two screen-aligned textures are
prepared for accumulation. We take the accumulated texture of one frame ago,
reduce the intensity of its color, shift it upward in space a little, and render it to
another accumulated texture. The current burning texture is drawn by addition
composition as is. If the amount of color reduction is changed, this will affect the
size of the flames. Since a flame slowly disappears when the color is reduced a lit-
tle bit, a flame goes up high. Conversely, if the color is reduced greatly, it will
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quickly fade to 0 and a flame will hardly rise. If the created texture is drawn by
addition composition on the whole screen at the end, the ground will blaze up red.
This technique is a two-dimensional one and has a fault in that it does not account
for areas where the flame should be obscured, such as those beyond a mountain.

Furthermore, in order to give additional realism, still another texture consist-
ing of a blurred version of the accumulated collision map is created; using this, the
ground darkens to represent the scorched areas. When rendering this texture on
the ground, after blurring it in two dimensions, we transform it so that it coin-
cides with the ground, like we did for the burning texture. In order to darken the
area, we use subtractive composition with black.
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Figure 7: Rendering steps

Reflection by the Interaction

If the area of collision between two
objects is known, it is natural to
want to know how to calculate the
interaction between them. Here,
as one example, we consider an
interaction from which a bullet
rebounds from the ground.

If the incident velocity vector
to the ground is set to v;,, and the
normal vector of the ground is n,
the velocity vector v, after
rebounding from the ground is set
to Vo= Vi, —2%(n, vy)n.

Therefore, an object can be reflected if the normal vector of the ground and
the velocity before reflection are known.

(v,"n'n

Figure 8: Vectors for velocity reflection
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Here, the problem is to determine the normal vector in the place where the
bullet reflected. As long as a collision map is used, the place that collided can be
determined only as an area rather than a single point. In order to find the normal,
it is necessary to choose one point that collided by averaging the pixels of the
area (i.e., find the centroid of the collision area). The alternative — averaging
normal vectors over the collision area — can lead to anomalies. Consider the case
where a bullet collides in the center of the sharp mountain. Although the place
where the bullet hit may become level as an average of normal vectors, the sum-
mit of a mountain is not necessarily level. Thus, where a change of the normal
vector in a nearby place is big, when the normal vector in the domain that collided
is averaged, the normal vector that came out may become the value of a normal
vector not existing in the original ground. Therefore, it is more reliable to choose
specific coordinates and calculate the normal vector about the point.

In order to calculate the centroid, it is necessary to prepare two textures
beforehand. One texture, called the coordinate map, is based on the image of the
ground when seen from the bottom. Here, the texture coordinate values are out-
put to the red and green color components of the texels, creating a linear ramp.
Moreover, in the blue component, the value of 0.0f is written in the areas where
the ground does not exist and 1.0f where it does. Another texture is the normal
map, which maps screen coordinates to the texture coordinates. By using texture
coordinates based on screen coordinates, it becomes possible to do a direct lookup
in the normal map texture for the value of a normal vector directly.

In the preceding example, since only the normal vector was used in the colli-
sion response calculations, only the normal map was prepared. Sometimes we
may also want to use the position of the model of the ground, such as when mov-
ing a bullet to the position of the surface of the ground so that it doesn’t sink into
the ground when it contacts. In this case, it is necessary to prepare another tex-
ture, which contains the value of the height or the geometry of the ground, that
maps screen coordinates to the texture coordinates.

When a model without a texture is used (in other words, the model does not
have texture coordinates), a suitable coordinate system should be chosen for the
screen coordinate of a normal map and a height map of the ground, such as a
world coordinate. It derives a normal vector from the place that collided without a

texture coordinate.
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Figure 9: A texture coordinate map looking from below and a normal map
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At each rendering cycle, the texture coordinates of the center of the collision area
are calculated using the collision map and the coordinate map. We compute this
efficiently by using hardware texture bilinear filtering, since we can think of filter-
ing as computing the average of the values contained in a given area. First, we
multiply our collision map texture with the coordinate map texture. However, the
right result will not be obtained if we simply filter the composite texture consist-
ing of the collision and coordinate maps. Since the domain in which we compute
our average is the collision area, not the entire texture, we need to divide by the
relative extent of the collision area.

We prepare a rendering target with a small size, similar to creating a mipmap.
About the prepared rendering target, all texels to which the original texture cor-
responds are filtered — in effect, “averaging” the values contained in their color
components. The blue component of the texture coordinate map is used for deri-
vation of the collision area. Since a 1.0 is written where the ground exists for the
blue component of a texture coordinates map, the blue component of the “aver-
aged” texture represents the area of collision, where 0.0 would mean no collision
area whatsoever and 1.0 would mean that the area of collision covered the entire
ground plane.

When composition is performed together with the average operation, it is
efficient. The final result, the texture coordinates of the centroid of the collision
area, equals the xy (red and green) components of the filtered compound texture
divided by the z (blue) component. Although the whole texture is multiplied by
the constant, the result does not change. Therefore, efficient calculation of aver-
age values over an area can be performed if a sampling point is set as the center
of four texels and the four texels are read by one sampling using a bilinear filter.
Furthermore, the result will be valid even for a 2x2 rendering target. By sampling
the center of the created texture, the average value of a texture can be calculated,
and this can be used as a final result.

7 U U

Adding texture with bi-linear filtering

Figure 10: Multiplying a texture coordinate map and collision map and subsequent
averaging using bilinear filtering

If the normal map is sampled using the texture coordinates determined above, the
normal vector of a point of collision is obtained.

In order to change direction of an object using a normal vector, we have to
pass the derived normal vector to the collision response calculation. For a CPU-
based calculation, we can access this data from the GPU by locking texture mem-
ory and doing a texture read or by using asynchronous notifications as described
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earlier. However, such methods are very slow and cannot be considered practical.
It is hard to imagine that feedback of the data from the GPU to the CPU will
become high speed in the future. Therefore, it is necessary to redesign an applica-
tion so that these calculations normally performed by the CPU may be performed
by the GPU.

The most important thing is memory that saves information. In terms of par-
ticle calculations, the CPU and the GPU are capable of almost the same thing.
However, the memory that each can access directly is different. The CPU
acquires information from the main memory, while the GPU acquires information
from the video memory. We can use a texture as a means to read and write data in
video memory. Thus, in order to replace particle calculation from the CPU to the
GPU, the position and velocity of an object are recorded on a “particle map” tex-
ture. For example, the position of an object is saved in the top row of a texture and
velocity is saved in the second row. When treating two or more objects, each
object’s attributes are arranged horizontally and indexed via the x-coordinate.
Furthermore, the acceleration that acts on each particle is written in the row
under the velocity. This storing of data in a texture is well suited for our purposes,
since the row under each texel of a texture is the time derivative of the value rep-
resented by that texel. Similarly, the row above each texel represents the time
integral of the values. If we denote position, velocity, and acceleration by x, v, and
a, respectively, the operation that compounds by shifting a texture can be written
with the following expression:

X=X+V
v=v-+a

This formula represents the movement of the object over a unit of time, assuming
constant acceleration. Processing, in which a texture is shifted and rendered, con-
sists of only a one-pass rendering about the polygon of the size of the texture,
which can be done very fast.

Particle mdex
0123

Position
Velocity

Acceleration

Figure 11: Particle map

The problem that remains is the calculation of acceleration. The acceleration
value is what allows us to change the movement of an object in the scene.
Although it is 0 at the time of a uniform straight-line motion when it reflects with
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the ground, we need to determine the proper acceleration to change the velocity
to that represented by the reflected vector. The formula to use is 2*(n-v)n, which
yields the expected behavior for reflection. Here, n is the normal vector calcu-
lated using the collision map. The HLSL program for deriving acceleration using a
particle map is as follows.

float4 ReflectPS ( REFLECT_VS_OUTPUT In ) : COLORO
{

float4 acceleration;

float4 coord = tex2D( CoordSamp, In.Tex0 );

float4 velocity = 2.0f*tex2D( VelocitySamp, In.Texl )-1.0f;
float pixels = coord.z;

coord /= pixels;

float4 normal = 2.0f*tex2D( NormalSamp, coord )-1.0f;

if(pixels<0.0000001f) {
acceleration = 0; // no collision occurred
} else {
acceleration = -2.0f*dot (normal.xyz, velocity.xyz) * normal;

}

return 0.5f* acceleration + 0.5f;

}

The mapping of the interval [-1.0 to 1.0] into [0.0 to 1.0] centered on 0.5 is done
for the value of the particle, or normal, map so that we can store them in a tex-
ture. This is unnecessary when using the floating-point format like
D3DFME_A32B32G32R32F which can save a sign to those textures. In addition,
when a particle does not touch the ground or, in other words, when the drawn col-
lision area is O (in this program, since it uses floating-point format, it considers
this to be the case when pixels <0.0000001f, taking calculation error into consid-
eration), since there is no reflection of a particle, it sets acceleration to 0, causing
the motion of the particle to remain unchanged. Although this HLSL program is
considering only the acceleration induced by reflection with the ground, external
forces may exist as well, such as gravity. When calculating an external force, the
additional acceleration contributed by this force should be added to the accelera-
tion of the particle map by rendering using additive composition. Since +0.5 has
already been carried out by reflective calculation with the ground at this time, it is
not necessary to take an additional +0.5 when rendering external force.

When rendering the object, we need access to the particle map texture data
in the vertex shader. In DirectX 9, there are two kinds of methods by which this
can be done: displacement mapping and texture reads introduced by vs_3_0. For
the displacement mapping method, it is necessary to add the D3SDDECLUSAGE _
SAMPLE declaration, which maps the position data contained in the particle map
texture to the vertex declaration.

D3DVERTEXELEMENT9 decl[] =
{
{0, 0, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_POSITION, 0},



71

Collision Shaders

{0, 12, D3DDECLTYPE_FLOAT3, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_NORMAL, 0},

{0,24, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_DEFAULT, D3DDECLUSAGE_TEXCOORD, 0},

{0, 32, D3DDECLTYPE_FLOAT2, D3DDECLMETHOD_LOOKUP, D3DDECLUSAGE_SAMPLE, 0},

D3DDECL_END()
IE;
The texel coordinates of the position map are contained in this newly added
vertex data. For example, if the width of the position map is defined as MAP
WIDTH, the texture coordinates about the i-th object are set to (Y/MAP_WIDTH,
0). Since each instance of an object in a scene may refer to a different position of
the texture, a solution would be to create additional copies of the mesh that differ
in the position map texture index. However, since we can set the source of the
displacement map-related vertex data to be another stream in DirectX, if only the
data of texture coordinates differs about each mesh, we can save memory by
avoiding redundant vertex data.

There can be a maximum of one texture used for displacement mapping that
can be referred to in this manner as a variable from a vertex shader program.
Here, position coordinate is used for this variable to refer to. However, we also
need the velocity of the object for generating and extruding the path volume.
When using the displacement mapping method, it’s not possible to refer to multi-
ple values in the particle map per vertex, and so we need to set the initial velocity
through the CPU.

At the time this sample program was written, the vs_3 0 standard was not
yet supported by existing DirectX hardware. Therefore, only the displacement
mapping technique is demonstrated here. In addition, GPUs supporting floating-
point textures and displacement mapping in hardware did not exist yet. The dis-
placement mapping technique is a provisional one, and in the future, texture reads
in vs_3_0 shaders will be the preferred method.

Conclusion

In this chapter, methods of collision detection and response by the GPU using an
asynchronous notification and collision map were discussed. Both methods
involve checking whether the rendering of the object has been carried out and
judging if it has collided or not.

Since the sample program using this method is included on the companion
CD, I encourage you to play with the source. (These programs have been checked
on GeForce FX 5800 Ultra and Radeon 9700 Pro cards.)

One example that can use this method immediately is recording bullet marks
as a texture in an FPS. As another example, in a race game, accurate depths of
dents due to collisions could be recorded as a texture using a displacement map.

Currently, for an actual game, the GPU is insufficient for general processing,
and the performance of the GPU can be used only for drawing. However, it is
expected that using the GPU for purposes other than rendering, such as collision
detection, will become possible in the future.
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Displacement Mapping

Tom Forsyth

Mucky Foot Productions

Principles

Displacement mapping is essentially a method of geometry compression. A
low-polygon base mesh is tessellated in some way. The vertices created by this
tessellation are then displaced along a vector — usually the normal of the vertex.
The distance that they are displaced is looked up in a 2D map called a displace-
ment map.

The main aim of this article is to allow people to take data from the industry’s
current mesh and texture authoring pipelines and derive displacement map data
from them. There will also be some discussion of rendering techniques on past,
current, and future hardware.

It is worth mentioning that the problems and restrictions inherent in
authoring for displacement maps are the same as those that occur when authoring
for normal maps because they are essentially two different representations of the
same thing. Generating normal maps has recently come into fashion, and there is
plenty of hardware around to support it. If you are going to be generating normal
maps, generating and using displacement map data is a relatively simple enhance-
ment to the tool chain and rendering pipeline. As shown later, there is already
widespread hardware support for at least some form of displacement mapping,
new and faster hardware has been released recently, and there is, no doubt, even
more direct support for displacement maps on the way.

Advantages

Using displacement maps reduces the amount of memory required for a given
mesh level of detail. Bulky vertex data is replaced by a 2D array of displacements
— typically 8 or 16 bits in size, with most attributes such as texture positions,
tangent vectors, and animation weights implicit. This reduces storage require-
ments and the bandwidth needed to send that data to the rendering hardware,
both of which are major limits on today’s platforms. Alternatively, it allows much
higher detail meshes to be stored or rendered in the same amount of memory
space or bandwidth.

Reducing the mesh to a far simpler version (typically around a few hundred
vertices rather than tens of thousands) means operations such as animation and
morphing are cheaper. They can therefore be moved from the GPU back onto the
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CPU, which is a much more general-purpose processor. Because of this, the range
of possible operations is expanded — more complex animations are possible and
different techniques used, such as multi-target morphing (for facial animation),
volume-preservation (for bulging muscles), and cloth simulation. One other
advantage is that the animation algorithms used are no longer tied to the specific
GPU platform or to the lowest-common-denominator of platforms. Indeed, the
animation programmer no longer needs to know the core details of the graphics
platform to experiment with and implement new techniques.

A more abstract advantage is that using displacement maps turns meshes —
tricky 3D entities with complex connectivity — into a few 2D entities. 2D objects
(i.e., textures and images) have been studied extensively, and there are a lot of
existing techniques that can now be applied to meshes. For example:

B Mesh simplification and LOD becomes mipmap generation.

m  Compression can use frequency-based methods such as Fourier transforms
or wavelets.

B Procedural generation of meshes can use existing 2D fractal and
image-compositing methods.

® Morphing becomes a matter of blending 2D images together.

m  End-user customization involves 2D grayscale images rather than complex
meshes.

Using graphics hardware and render-to-texture techniques, many of the above
features can be further accelerated.

Disadvantages

Displacement maps place some restrictions on the meshes that can be authored
and are not applicable everywhere. Highly angular, smooth, or faceted objects do
not have much fine or complex surface detail and are better represented either by
standard polygonal mesh data or some sort of curved surface representation, such
as the Bezier family of curves or subdivision surfaces.

Highly crinkled or fractal data such as trees or plants are not easy to repre-
sent using displacement maps, since there is no good 2D parameterization to use
over their surfaces.

Meshes that overlap closely or have folds in them can be a problem, such as
collars, cuffs, or layers of material like jackets over shirts, or particularly baggy
bits of material. This is because a displacement map can only hold a single height
value. Although this is a problem at first, if artists can author or change the map-
ping of displacement maps, they can map each layer to a different part of the dis-
placement map and duplicate each layer in the low-polygon base mesh.
Automated tools are also easy to modify to do this correctly.

Authoring displacement maps almost always requires specialized tools — it is
very hard to directly author the sort of maps discussed here (large-scale ones that
cover a whole object). However, the amount of work required to write, adapt, or
buy these tools is small compared to the benefits. The recommended tools are
discussed below.
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At first glance, hardware support is slim for displacement mapping. Currently,
only two PC graphics cards support it natively (the Parhelia and members of the
Radeon 9x00 series) and none of the consoles. However, with a bit of thought, dis-
placement mapping methods can be applied to a much wider range of hardware.
On the PC, anything using any sort of vertex shader can use them, including soft-
ware VS pipelines used by many people for animation or bump-mapping on older
cards. On the consoles, the VU units of the PS2 can use displacement maps
directly, and any CPU with a SIMD-style instruction set (such as the
GameCube’s) can efficiently render displacement map data. On the consoles, the
reduction in memory use and memory bandwidth is well worth the extra effort.

Required Source Data

To use displacement mapping in hardware or software, you eventually need the
basic ingredients:

B A low-polygon base mesh

® A “unique” UV texture mapping for the base mesh

B A heightfield displacement map for displacement of vertices
® A normal map for lighting

Typically, displacement maps are lower resolution than normal maps, though they
may demand more precision. Additionally, displacement maps and normal maps
usually share the same mapping, since the same problems must be solved by both
— filtering (especially mipmapping), representation of discontinuities, texel reso-
lution at appropriate places on a mesh, and assigning each texel a unique position
on the mesh.

How you get these basic ingredients is almost entirely up to the art team and
the available tools. They are available from many sources in many combinations.

For reference, all vertex numbers given are for a human figure that would
normally take around 10,000 vertices to represent with a raw mesh with around
40 bones. Typically, there are twice as many triangles as vertices in a mesh.

Low-Polygon Base Mesh

As a guide, this mesh is around 100 vertices for a human figure, depending on the
quality of animation required and the complexity of the clothing. The artists can
directly author this mesh, or it can be derived from higher-polygon meshes by
using a variety of mesh simplification techniques. These may be completely auto-
matic, or they may be semiautomatic with visual checks and tweaks by artists.

There are many methods to automatically reduce meshes in complexity.
Those based on half-edge collapses are popular, especially as they can also be
used to directly author progressive mesh sequences, which are useful for render-
ing continuous levels of detail on older hardware. Other options include using
Delaunay-style parameterization and remeshing and also voxelizing the mesh and
remeshing from appropriately filtered voxel data.



76

Displacement Mapping

Unique Texture Mapping

Displacement and normal maps generally require a mapping over the mesh, which
ensures that each texel is used no more than once. Although not strictly neces-
sary in some specialized cases (for example, when an object has perfect left/right
symmetry), in general the extra flexibility is well worth the effort.

The unique mapping can be authored directly, using a spare mapping channel
in the mesh. Automated generation is possible using the variety of “texture atlas”
methods that exist, including the same Delaunay-style parameterization as the
above remeshing or using the technique in Gu’s “Geometry Images” [1] of a mini-
mal number of cuts to unfold and flatten a mesh onto a square plane.

There are also existing unique mapping solutions in 3D authoring tools, such
as 3ds max’s “flatten” mapping. However, it is important to note that it is not the
high-polygon mesh that needs the unique mapping but the low-polygon version.
Unique-mapping the high-polygon mesh can work in some cases, but it tends to
introduce a lot of unwanted discontinuities, which hinder many of the polygon-
reduction techniques used to produce the low-polygon base mesh. If the mesh
simplification is a plug-in for the authoring package, that can be performed first,
before unique mapping. Alternatively, the mesh can be exported, simplified by
external tools, and reimported for unique mapping. Although clumsy, this does
have the advantage that the artists can tweak the automated unique mapping —
sometimes a useful ability.

The unique mapping can also be used for lightmap generation or procedural
textures, if required.

Heightfield Displacement Map and Normal Map

Displacement maps can be authored directly using grayscale textures and suitable
art tools. However, 8 bits per pixel is generally not sufficient for a high-precision
displacement map, and few if any art packages handle 16-bit grayscales. Even
when they do, since they are designed for visual use rather than heightfield
authoring, the control over the values is relatively coarse, and it is hard for artists
to achieve anything but an approximation of the correct shape. In practice, this
leads to “caricatures” of the object.

A better choice is to author most or all of the data using a high-polygon mesh.
Using the unique mapping above, each texel on the displacement and normal
maps has a single position on the low-polygon base mesh. A ray is cast from that
position along the interpolated low-polygon normal and the intersection found
with the high-polygon mesh. The normal of the high-polygon mesh is written into
the normal map, and the distance along the ray to the point of intersection is writ-
ten into the displacement map. Remember that these distances may be negative
— the ray needs to trace both outward and inward from the low-polygon mesh, as
shown in Figure 1.

When creating the high-polygon mesh, the artists still need to be aware that
they are indirectly authoring a heightfield. Folding or overlaps of geometry will
not be recorded well by a heightfield. In practice, we find it is better to have the
ray-caster report difficult or ambiguous intersection cases and have the artists fix



77

Displacement Mapping

a
w%

—— Tigh-polygon mesh

[ Ow-polvgon mesh
——> Displacements stored in map

Figure 1: A displacement map applies scalar offsets along the
interpolated normals of a base mesh.

the mesh (either the high- or low-polygon ones as appropriate) than to attempt to
make the ray-caster very intelligent. These tricky cases are rare, and this method
highlights them rather than trying to hide them, reducing unwanted surprises.

Normal maps (either object-space or surface-local space) are almost impossi-
ble to author directly but are easily generated from displacement maps or bump
maps. Although a bump map is actually a heightfield and is essentially the same
thing as a displacement map, since absolute scale is far less important when gen-
erating normal maps than when displacing positions, they are routinely generated
by hand.

High-frequency displacement and normal maps are fairly easy to author by
using bump maps. These are used to provide texture to a surface or add small
ridges or creases, such as those between panels of a car body. These are often
applied to medium-polygon meshes to add fine details, rather than to the
low-polygon mesh that is used in displacement mapping. It is easy to apply them
to existing or generated displacement and normal maps, as long as there is
already a unique texture mapping. The high frequency implies small displace-
ments, so the lack of a well-controlled scale for those displacements is not as
much of a problem. Having a crease in clothing twice as large as desired is not a
major problem, unlike having a character’s nose twice as long as it should be.
Note that the mapping of these high-frequency maps is kept flexible on the artist’s
end. They do not need to be uniquely mapped, and it is perfectly acceptable to tile
a small bump map over a larger surface to provide noise and detail. They will be
rendered into the normal and displacement maps by the ray-caster, and it is those
that are uniquely mapped.

Mucky Foot Choices

At Mucky Foot we tend to author medium-polygon meshes (around 3,000 vertices
for humans) with high-frequency bump maps. It is more efficient for the artists to
put small creases and surface texture into a bump map than it is to generate them
with polygonal creases, and it is just as visually effective. It also reduces the
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problem of high-frequency polygon data confusing the ray-caster and causing mul-
tiple intersections.

For some objects, we author the unique mappings directly. Manual unique
mapping is typically used on objects such as people, since they are already
mapped fairly uniquely, except for left/right symmetry. This is easily fixed by
selecting the right half of the part of the object that has been mapped this way
(typically everything below the neck) and adding 1 to either the U or V value of
the texture coordinates. Since these meshes use texture wrap address mode by
default (as opposed to clamp-to-edge), this does not affect the diffuse, specular,
etc., texture maps, but it does create a unique mapping for use by the displace-
ment map. This mapping is then packed (see below) for better texel efficiency.

For other objects, we generate unique mapping automatically using fairly
standard “texture atlas” creation techniques. In some cases, such as buildings,
3ds max’s “flatten” tool mostly does a good enough job and has the benefit that
the artists can directly tweak any problem areas. In other cases, this produces too
many seams (or takes too much time to fix up by hand), and we first reduce the
mesh to the low-polygon base mesh version and then uniquely map the object
using our own texture atlas code.

To produce a low-polygon base mesh, Mucky Foot uses a quadric error met-
ric-based semiautomatic edge-collapse sequence that is visually checked and
manually tweaked where necessary. Fully automated reduction is generally
acceptable down to around 500 vertices, and then manual tweaking can be
required in a few places to reduce to around 100 vertices. The tweaking is gener-
ally required to collapse features that are visually less important, such as the feet,
or prevent collapse of perceptually important features, such as the face, elbows,
knees, and hands. Automation of these (for example, taking bone weights into
account) was attempted with mixed results. It seems generally quicker and better
simply to allow the artists full control by this stage; frequently, the extra “intelli-
gence” of the tool gets in the way. Production of a low-polygon mesh typically
takes around 30 minutes per human mesh, which compares well with the initial
authoring time.

As well as producing the low-polygon base mesh, this process also generates
a view-independent progressive mesh, which is useful when rendering the mesh
on some hardware (see below). The same tool also produces VIPM sequences for
objects that do not use displacement maps — simple or smooth objects such as
coffee mugs, dustbins, chairs, and tables.

The high- or mid-polygon meshes that the artists author are only used
as input to the offline ray-caster; they are not used directly at run time. Because
of this, the limits imposed by the rendering pipeline on polygon counts are almost
totally removed. The new limit on polygon count is simply whatever the artists
have time to author. The limits on connectivity, large or small polygon sizes, and
mesh complexity are also largely removed — as long as a sensible low-polygon
base mesh can be produced. Games are getting bigger and becoming more limited
by what we have the time, talent, and manpower to author, rather than by the
hardware, and this extra flexibility allows the artists to optimize for their time
rather than for the peculiarities of a graphics engine.
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Although we use our own VIPM and texture atlas libraries, it should be noted
that they are fairly standard algorithms, and many of the tools mentioned later
would do just as good a job. We use our own code simply because it was already
written and is now well integrated with our tool chain.

Art Tools

We found a number of tools handy when authoring displacement maps. Many of
these tools have other uses, such as the QEM-based edge collapser which also
generates view-independent progressive mesh data. Some of them already exist
in various forms, and experimenting with these off-the-shelf solutions is a very
good idea. Many produce readily usable data, while others make useful test cases
before committing to writing custom tools.

Displacement Map Previewer

If displacement maps are authored directly, some sort of preview tool is usually
needed. Some 3D packages may have displacement map renderers included, but if
not, it is fairly simple to write a brute-force previewer that simply tessellates the
base mesh to the resolution of the displacement map — one quad per texel.
Although it is a lot of triangles to draw, it is not unreasonable if done on a single
object at a time. A 512x512 map requires half a million triangles to render, which
can be done at acceptable speeds on most decent PC graphics cards.

If displacement maps are extracted from a high-polygon mesh, this previewer
is usually not necessary.

Unique Mapping Checker

When creating unique texture mappings manually, it is easy to accidentally map
two areas of mesh to the same bit of texture. This is easily solved by rendering
the mesh to a texture using the UV mapping as XY coordinates, counting each
time a particular texel is touched. Where a texel is touched more than once, ren-
der an opaque red texel. Otherwise, render a translucent blue texel. When the
mesh is loaded back into a 3D modeling package and the texture applied to it, any
red/opaque texels show where the problem spots are. As there will be red texels
in both places that conflict, it is easy to spot and correct the overlap.

This tool is usually a special mode of the ray-caster, since both rasterize
base-mesh polygons onto a uniquely mapped texture. The difference is that the
ray-caster does a lot more work to decide what data to write to the texels.

Ray-caster

The ray-caster rasterizes base-mesh triangles to the displacement and normal
maps. For each texel, it casts a ray from the texel’s position on the base mesh
(after interpolation by whatever basis is used — linear, N-Patches, subdivision
surface, etc.) along the normal, looking for the best intersection with the
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high-polygon mesh. “Best” is defined by various heuristics. It is usually the near-
est intersection to the base mesh, though if multiple intersections are close
together, this often indicates a high-frequency part of the mesh that folds back on
itself or a mesh “decal” where smaller polygonal details have been added over a
coarser part of the mesh. Usually, the furthest of these bunched intersections is
used. This heuristic will take some tweaking — alternatively, it is often wise to
highlight problem areas so that the artists can manually check and tweak them.

The ray-caster takes the normal of the high-polygon mesh, modifies it by any
applied bump map, and writes it to the normal map.

It takes the distance along the ray from the base mesh to the intersection and
writes that value into the displacement map. Any high-frequency bump map
applied to the high-polygon mesh will also modify the displacement at this stage
as a “detail” displacement map. In theory, a bump map should perturb the high-
polygon mesh and alter where the ray intersects it. However, we have found that
simply adding the bump map height onto the intersection distance produces per-
fectly acceptable results, as long as the bump map has a small displacement scale
and is only used for creases and small bumps, rather than major features.

After the ray-caster has written texel data to the normal and displacement
maps, the maps are usually sent through a dilation filter, which spreads written
values outward to any neighboring unwritten texels. This fills in the gaps between
mapped areas with sensible data and ensures that filtering still brings in sensible
data, especially when mipmapping.

ATT's Normal Mapper [2], nVidia’s Melody, and Crytek’s PolyBump [3] all do
this ray-casting, though at the time of publication all only output normal maps. It
would be simple to modify them to output displacement data as well, and this sup-
port is planned for them. All include a variety of heuristics to decide the “best”
ray intersection to use for various cases.

Unique Mapping Packer

There are two problems in unique mapping. One is to get a unique mapping so
that no texel is used in two places, and the other is to pack the many small areas
of connected triangle “patches” together on the texture in the most efficient way.
The first can be solved by automation, but human intervention is frequently nec-
essary, and it involves some judgment calls. Fortunately, these decisions are usu-
ally easy and quick for humans to make.

The second part — equivalent to the problem of packing odd shapes in a box
— is tedious for humans. But because it involves no perceptive judgment calls, it
is simple to leave a computer crunching away through possible solutions (possibly
overnight) until it finds a good one. To reduce “bleeding” between patches due to
filtering (especially mipmapping), patches must be separated by certain minimum
numbers of texels. After packing, these texels are filled with the value of the
nearest used texel (again so that filtering does not bring in undefined values).

Where unique texturing is generated or tweaked by hand, this automatic
packing allows artists to concentrate on the task of uniquely mapping an object.
They do not have to simultaneously keep all the bits optimally packed — they can
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scatter them all over the UV domain and arrange them for easier mental labeling
(all the parts of one type together, etc.).

A further enhancement is to analyze the frequency of the displacement and
normal map data in each triangle patch and scale them up or down to allocate
more texture space to the areas with the higher frequency data. By packing the
patches together after this scaling, a given size of displacement or normal map
will be spread over the object with more texels applied to detailed areas.

It is important to not completely remove the artist-determined scales.

A maximum grow/shrink factor of two in each UV axis is sufficient to ensure good
use of available space but allows artists to deliberately allocate extra texel space
to areas of high importance, such as the face and hands of people, and reduce per-
ceptually minor parts, such as the undersides of cars, which are very crinkly but
not very visible (unless it’s that sort of game, of course!).

Note that this scaling implies a slightly more complex pipeline. First the
patches are packed together without scaling. This is just to get them all onto a
single map of reasonable size — the packing does not need to be very efficient.
Then the ray-caster is run to produce a first approximation of the displacement
and normal map data. For quick previews, that data is then used directly for
display.

For final artwork, the frequency of the data in each patch is determined, and
the patches are scaled accordingly and repacked — possibly with a more expen-
sive or thorough algorithm. Then the ray-caster is run again with this new opti-
mal mapping, usually with a very high-resolution map. The large map is then
filtered down to the actual size stored on disk. This second pass is typically run on
a batch job overnight, which means it can devote a lot of time to finding near-opti-
mal packing and use really big maps for the ray-casting phase, removing as many
sampling artifacts as possible.

Alternative methods of optimizing texture space for signal frequency are
given by Sander et al. [4].

Mesh Reduction

Mesh reduction is probably the trickiest tool to get right since it usually needs to
have an interactive element to it and it relies on a lot of heuristics.

The most common mesh-reduction techniques are based on incremental
edge or half-edge collapses. This technique produces a progressive mesh [5] as it
works, which can be used for rendering continuous level of detail meshes. Many
heuristics exist to decide the order of edge collapses, most based on the quadric
error metric by Garland and Heckbert [6] or modifications of it by Hoppe [7].

An increasing number of existing tools can be used for this:

The Direct3DX library PMesh interface
Melody tool by nVidia [8]
Galaxy3 source library by Charles Bloom [9]

Source code to my article “Comparison of VIPM Methods” in Game
Programming Gems 2 [12]
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The above all use edge-collapse methods. Alternatively, there are various styles
of remeshing using Delaunay triangulation [10] or voxelizing and remeshing.

Rendering

Once the basic data of a low-polygon mesh, a displacement map, a normal map,
and a mapping for the maps is obtained, the data can be processed for the capabili-
ties of the target hardware. Much of the details are either proprietary (in the case
of consoles) or have been discussed elsewhere (in the case of my “displacement
compression” techniques [11]), so only brief outlines are given here. Fortunately,
this processing rarely requires any human intervention and is fairly simple num-
ber crunching. I address each platform separately.

The techniques for rendering normal maps are fairly standard between most
of these platforms. The exception (as always) is the PlayStation 2, but again these
details are proprietary.

Adaptive Displacement Mapping
m  Matrox Parhelia, future hardware

Make mipmaps of the displacement map and render the low-polygon mesh with
the displacement map. If necessary, feed some distance-related or perceptual
biases into the adaptive tessellator. The hardware does the rest.

Pre-sampled Displacement Mapping
®  ATI Radeon 9700, maybe PlayStation 2, and GameCube

Offline, regularly and uniformly tessellate the base mesh in software and sample
the displacement map at the generated vertices. This produces an array of
n(n+1)/2 displacements for each triangle on the base mesh. These values are
swizzled in a hardware-specified manner into a linear stream fed to the vertex
shader unit. At run time, the vertex shader unit performs this tessellation itself,
reads the values from the displacement stream, and draws the final displaced
vertices.

To perform level of detail transitions, repeat the above process for a variety
of different tessellation amounts (generally the powers of two), giving an effective
“mipmap chain” of displacement streams. This allows discrete LOD transitions,
though with some popping as the mesh switches from one tessellation level to the
next.

To remove the popping, each displacement stream entry holds two displace-
ments rather than one. The first holds the standard displacements, and the sec-
ond holds the upsampled displacements from the lower LOD tessellation. In the
vertex shader (or equivalent), a per-mesh scalar interpolates between the two
sets of displacements. Just using these upsampled values should give a mesh that
is visually identical to the lower LOD version. As an object goes away from the
camera, this allows the high LOD version to smoothly morph into the low LOD
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version and then the low LOD version swaps in with no visual popping but reduc-
ing the triangle and vertex count.

Because this method samples the displacement map in a predictable manner,
you may get some improvement in quality by ray-casting at the required positions
directly rather than going via a displacement map. This also means that a unique
mapping is not required for displacements, since there is no actual 2D displace-
ment map but simply a displacement stream for each triangle of the base mesh.
However, a unique mapping is still required for the normal map.

The Radeon 9500-9800 series are currently the only cards to explicitly sup-
port this method, though it seems possible that the PlayStation 2 and GameCube
could also implement it with a bit of work. As with all things on the PS2, it
depends heavily on the rest of the rendering pipeline being used.

Displacement Compression

m  All PC cards with hardware vertex shader support (nVidia GeForce 3 and
better, ATT Radeon 8500 and better, and others), GameCube, Xbox,
PlayStation 2, software vertex shader pipelines on DX6 or better cards

The base mesh vertices are uploaded to the memory of the vertex unit rather
than in a standard mesh/vertex stream. This may need to be done in multiple sec-
tions because of limited vertex unit memory, with each section drawn before the
next is uploaded.

Tessellation of the mesh is performed offline to whatever degree required,
and the tessellated vertices and/or indices are fed in as a standard mesh. The dif-
ference is that rather than holding a raw vertex position, normal, texture coordi-
nates, etc., each vertex stores only the following data:

B Three indices to three base-mesh vertices
m  Two barycentric coordinates that interpolate between the base-mesh vertices

m A displacement value

This reduces the size of a vertex to 6 bytes (though many systems require pad-
ding of the vertices up to 8 bytes). The vertex unit interpolates position, normal,
texture coordinates, tangent vectors, and so on from the given three base-mesh
vertices and the two barycentric coordinates. The vertex is then displaced along
the interpolated normal.

It is important to realize that this method does not require the hardware to
tessellate the mesh. All tessellation is performed offline, and a fairly standard
mesh renderer is used. The difference is that the vertices are compressed using
the data from the displacement map.

Interpolation can be performed using any basis, but linear and bicubic
are common. Linear interpolation is fine for most objects, though highly animated
objects may benefit from using an N-Patch-style basis because it is relatively
smooth, even under heavy mesh distortion.

As with presampled displacement mapping, there is no actual 2D displace-
ment map (the displacements are held by the vertices themselves), so the dis-
placement for each vertex can be sampled directly using the ray-caster if desired.
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Level of detail transitions can be done using the same trick as with
presampled displacement mapping — storing two displacements per vertex and
lerping between them — or using view-independent progressive meshes. Mucky
Foot currently uses the lerping method on the PlayStation 2; on other platforms
with indexed primitive support, we use “sliding window” VIPM [12].

In some cases, the interpolated texture coordinates (used for the diffuse and
normal maps) are slightly distorted from the desired coordinates. The simple
solution is to add 2 bytes to the vertex format that offset the UV values from the
interpolated ones. This brings the vertex size up to 8 bytes. On the PC, vertices
are required to be multiples of 4 bytes anyway, and on other platforms, the larger
vertices are still a substantial improvement on traditional mesh data. The other
option is to distort the diffuse maps slightly to correct for this effect — this fits in
easily with some pipelines.

It is possible to reformulate this method so that instead of sending base-mesh
vertices to the vertex unit, base-mesh triangles are sent. Each displaced vertex
then only needs a single index to determine which triangle it is on. This reduces
the possible size of vertices down to 4 bytes. However, since there are typically
more triangles then vertices in the base mesh, more information is required to
store a triangle, and vertex unit storage space is typically at a premium, this may
be slower except for highly tessellated objects with simple base meshes.

Start-of-Day Tessellation

m  Slow CPUs with DX5 or earlier graphics cards, software rasterizers, laptops,
PDAs, mobile phones

These devices do not have enough polygon throughput and/or CPU power to use
run-time displacement mapping to any useful extent. However, you can tessellate
and displace the data using software either at installation time or at start of day.
By tessellating according to the CPU speed of the machine and tessellating multi-
ple versions of each mesh, you still gain the advantages of adapting polygon count
to the scene complexity, machine capability, and the size of each mesh on the
screen without having to author them directly.

If the data is delivered on a format with reduced bandwidth or size (for exam-
ple, over a modem or on a multi-game “sampler” disk) you gain the excellent
compression and space savings that come with using displacement and normal
maps.

On really slow hardware, the low-polygon base map is just used directly with
no tessellation at all.

Some software rasterizers may be able to do normal mapping, and some
hardware may be able to use the displacement map data to do emboss bump-map-
ping. Otherwise, it is easy to do a prelighting phase applied to the normal map
with the mesh in its default pose and light coming from ahove to give lights and
shadows in appropriate places. While not strictly correct, it produces images eas-
ily acceptable by the standards of the available hardware but does not cost any
extra authoring time to produce.
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Summary

Displacement mapping reduces memory use and increases mesh detail. Once dis-
placement maps are authored, highly scalable content is easy to generate auto-
matically, allowing an application to use very long view distances, more complex
scenes, a wide variety of platforms, and (to an extent) future-proof itself and the
art assets for future hardware.

The difficulties of authoring displacement maps directly are reduced to a far
more manageable pipeline with a few simple tools and a small amount of artist
training. Previously, greater effort was frequently taken when authoring and
re-authoring different levels of detail for different platforms or to rebalance pro-
cessing load for specific scenes. Almost all of the difficulties with displacement
maps are shared by the generation of normal maps — if generating one, you can
frequently get the other with very little effort.

Despite appearances, there is already wide hardware support for displace-
ment maps — all the current consoles and almost all “gamer” PC hardware.
Newer hardware allows more efficient implementations of displacement mapping,
but any of the methods listed give speed and size advantages over raw mesh
rendering.
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Introduction

This article presents a convenient and flexible technique for rendering ordinary
polygon objects of any shape as thick volumes of light-scattering or light-absorb-
ing material. Vertex and pixel shaders are used in multipass rendering to generate
a measure of object thickness at each pixel. These thicknesses are then used to
produce the colors of the object on screen. For example, we can render a volumet-
ric shaft of light by creating a simple polygonal model of the light shaft. Each
frame, new thickness information for this object is rendered from the current
point of view, and the thicknesses are converted to colors. The result is a true
volumetric rendering of the object suitable for interactive dynamic scenes.

The technique can be implemented on hardware that supports Microsoft’s
pixel shaders version 1.3 or higher and runs at real-time frame rates in complex
scenes. No preprocessing or special treatment of the volume object geometry is
required, making it trivial to animate and distort the volume objects. An efficient
and simple method is given to properly render any volume objects, convex or con-
cave, and handle complex intersection cases where opaque objects of any shape
penetrate the volumes. This article also introduces a new method of dithering to
eliminate the effects of aliased thickness information. The dithering is accom-
plished using texture data, and it does not complicate the rendering or require
additional passes.

This article focuses on rendering based on the thickness visible from the cur-
rent viewpoint. This is suitable for volumes of single-scattering material. In this
case, each bit of light arriving at the viewpoint is the result of only one scattering
interaction within the object, and the total amount of light is a function of the total
thickness. As the visible thickness increases, the number of scatterers or the
chance of scattering increases. The scattering can both add light and attenuate
light as a function of thickness. More sophisticated models of scattering could be
employed but will not be presented here. Hoffman and Preetham have a good
demo and introduction to various types of scattering [Hoffman02].

The appearance of the volume objects is easy to control, and an artist-created
color ramp can be used to map object thickness to color. While the technique
treats objects as volumes of constant density, the color ramp allows us to map
increasing thickness to an exponential ramp, overbright saturated colors, or any
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arbitrary colors. The technique is being used in several upcoming games and has
great promise for bringing practical volumetric effects to interactive real-time
rendering.

The Big Picture

This technique is a significant departure from traditional 3D rendering. It involves
rendering to off-screen textures, rendering depth information as RGBA colors,
using simple vertex shader programs and textures to encode information, and
using alpha blending to add and subtract high-precision encoded depth informa-
tion. Rather than jump into detailed discussion right away let’s begin with an
overview of the complete rendering process, so you can clearly see what’s
involved and how the technique compares to other approaches.

The full implementation of the technique is illustrated in Figure 1. These
steps render any volumetric shape, handle all solid objects intersecting the vol-
umes, dither the thickness information, and handle any camera position in the
scene, whether the camera is inside or outside of the volumes or solid objects.
Rendering proceeds as follows and is covered in greater detail later in the article:

1. Opaque objects are rendered to the ordinary back buffer. See Figure 1a.

2. The view-space depth of opaque objects that might intersect the volume
objects is rendered to a texture that we label O. Depth is encoded as RGBA
colors. See Figure 1b.

3. All volume object back faces are rendered to texture B using additive RGBA
blending to sum the depths. A pixel shader samples O while rendering each
triangle in order to handle intersections. See Figure 1c.

4. All volume object front faces are rendered to texture F while sampling O to
handle intersections. See Figure 1d.

5. Textures B and F are sampled to compute the volume thickness, convert this
to color, and blend the color to the scene rendered in Step 1. See Figure 1e.

One of the advantages of this technique is that the rendering does not have to
change in order to handle various intersection cases and camera positions. No
extra passes or knowledge about the objects is required as long as the depth com-
plexity of the volume objects remains below a certain adjustable limit. A later sec-
tion presents this in greater detail, but the depth complexity limit depends on the
precision of the thickness information. This can be adjusted from frame to frame.
A depth complexity of 16 or 32 volume object faces can be rendered at high preci-
sion with no additional passes.



921

Rendering Obijects as Thick Volumes

lil
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Figure 1: Overview of the rendering steps. Five rendering passes produce correct results
for all cases where volume objects intersect opaque objects and for all camera locations
inside or outside of the objects. One additional pass (not shown) is required for
hardware that does not support pixel shaders 2.0.

Computing Thickness

First, we need a way to get thickness information from ordinary polygon hulls.
Dan Baker presents a technique for this in the Microsoft DirectX 8.1 SDK
VolumeFog example [Baker02]. His approach can be extended in a number of
ways, but the basic approach is to calculate thickness by subtracting the view-
space depth of an object’s front faces from the depth of the back faces. The depths
of an object’s faces are rendered to off-screen render targets, and the thickness is
computed from information in the render targets. At any given pixel, if we sum
the depths of all of an object’s front faces at that pixel and sum the depths of all
back faces, the thickness through the object is the back face sum minus the front
face sum. This is illustrated in Figure 2.

Distance

Figure 2: For a given pixel on screen, the thickness through the object is the sum of the
depths of all front faces at that pixel subtracted from the sum of the depths of all back
faces at that pixel.
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Depth is calculated at each vertex as part of the standard 3D view transform. This
is interpolated for standard Z-buffer rendering, but the Z-buffer information is not
practical to use for this technique. It is too costly in terms of performance, and the
graphics APIs have no flexibility for summing and differencing the Z-buffer infor-
mation. Attempting to manipulate the information on our own would require
decompressing and copying the GPU data across to the CPU for processing. This
would break the parallelism of the two processors, stall the GPU, and burden the
CPU unnecessarily.

Instead, we can use standard RGBA 8-bit color rendering and additive blend-
ing to accomplish the thickness calculations entirely on the GPU. A high-preci-
sion depth value can be split up and encoded across the color channels of an
RGBA-8 color. I'll refer to this as RGB-encoding of the depth information. Stan-
dard blend operations can then sum the encoded values. This allows us to process
and sum, for example, 12-bit or 18-bit depth information using commonplace
RGBA-8 render targets.

The latest generation of consumer GPUs (the GeForce FX and Radeon 9800
series) has introduced support for rendering high-precision color information with
up to 32 bits per color component for a total of 128 bits per RGBA color. Unfortu-
nately, these chips do not support additive blending of these high-precision colors,
so they are not capable of performing the depth sums as efficiently or quickly as
with RGBA-8 additive blending.

RGB-Encoding of Values

A standard RGBA-8 render target can do a fantastic job of storing and accumulat-
ing high-precision scalar (1D) values. The bits of a number can be split across the
8-bit red, green, blue, and alpha color channels using any number of the low bits of
each channel. When the bits of a number are split across the R, G, and B colors, I
call it an RGB-encoded value. A particular case is illustrated in Figure 3, where a
15-bit number is split into three 5-bit color values. The precision at which we can
encode values is given by the number of low bits, L, that we use in each color
channel multiplied by the number of color channels. For example, if we use four
low bits (L=4) from each R, G, and B channel, we can encode 12-bit values (3%4).

It’s important to note that we use only a few of the lowest bits of each color
channel to encode any single value. The remaining high bits are left empty so that
when two or more values are added, the low bits can carry over into the unused
high bits. RGB-encoded values can be added together using standard RGBA blend
operations until all the hits of any color channel are full. At that point, any further
additions will be lost because the bits of one color channel do not carry into the
other channels. The number of high “carry” bits in each color channel is (8-L),
and the number of RGB-encoded values we can add together without error is 2L,
There is a tradeoff between the precision that we can encode and the number of
encoded values that can be added together. For our case of encoding a 15-bit value
(L=5), we have three carry bits, so we can sum at most eight values into any
given RGBA-8 color. Figure 3 includes a table relating precision to the number of
values that can be safely added.



93

Rendering Obijects as Thick Volumes

32768 0 L bits Precision # Adds
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Figure 3: Encoding a 15-bit value using five low bits (L=5) of each 8-bit R, G, and B
color channel. The diagram on the right relates the number of low bits, L, to the
precision of each value and the number of encoded values that can be added into an
RGB-8 color before error occurs due to saturating all of the bits of a particular color
channel.
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Figure 4 illustrates the RGB-encoding applied to a steadily increasing value. The
RGB-encoded value is the sum of the R, G, and B ramps at a point along the axis.
Only two bits per color channel are used to better illustrate the relationship of the
colors, and a scheme is used where blue holds the least significant bits, green
holds the middle significant bits, and red holds the most significant bits. Thus, the
green values go through one cycle each time red increases by one bit, and blue
cycles once for each green increment.
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Figure 4: Encoding 6-bit depth values using two low bits (L=2) of each channel of an
RGB-8 color. Depth varies from 0 to 1 from the near clipping plane to the far clipping
plane and is encoded by adding the blue, green, and red color ramps shown. At a depth
of 1.0, the color is RGB=(3,3,3) out of the full (255, 255, 255) range, and at 0.75, the
color is (3,0,0).

Applying this RGB-encoding of depth to the simple scene in Figure 5a gives the
result shown in Figure 5b. Here, four bits are used from each color channel. The
RGB colors are displayed overbright because in practice the low bit values of each
color would appear mostly black. Red values are too low to be noticeable in Figure
5b, but if the objects extended farther toward the far clip plane, the red values
would become noticeable. In practice, the RGB-encoded depths are rendered to
an off-screen texture render target. This allows us to read back the depths in later
rendering operations, which is important for handling solid objects that intersect
the volumes of fog.
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a. b.

Figure 5: Objects rendered with a) traditional shading and b) RGB-encoded depth
rendering at 12 bits of precision (L=4). The RGB-encoded colors are shown overbright,
as their actual range, in this case from [0, 16] out of [0, 255], would appear mostly
black.

RGB-encoding is easy to achieve using programmable vertex shaders and small
color ramp textures. The encoding can be applied to any per-vertex scalar that we
compute in a vertex shader, but here all we care about is the per-vertex depth.
The vertex shader computes a depth value at each vertex as part of the standard
3D transform from object space to homogenous clip space (HCLIP space), as
shown in the following vertex shader assembly code VS 1:

DP4 r1.x, V_POSITION, c[CV_WORLDVIEWPROJ_O] (VS 1)
DP4 rl.y, V_POSITION, c[CV_WORLDVIEWPROJ_1]

DP4 rl.z, V_POSITION, c[CV_WORLDVIEWPROJ_2]

DP4 rl.w, V_POSITION, c[CV_WORLDVIEWPROJ_3]

MOV oPos, rl

V_POSITION is the input vertex position in object space, and CV_WORLD-
VIEW-PROJ <N> are the elements of the standard 4x4 transform-and-project
matrix used in 3D rendering. The r1.w component is the vertex’s distance to the
camera plane (not the radial distance to the camera and not the distance to the
near clip plane), so it behaves correctly when linearly interpolated in
rasterization. This W component is easily turned into three texture coordinates
that can access small color ramp textures to achieve the encoding of Figure 5. All
we have to do is scale the W component so it varies from 0 to 1 from the near to
far plane and scale that value by the number of times each color ramp repeats.

The color ramp textures are typically small with one texel per color value,
and they are created to match our choice o