

ShaderX2: Shader
Programming Tips &
Tricks with DirectX 9

Edited by

Wolfgang F. Engel

Wordware Publishing, Inc.

Library of Congress Cataloging-in-Publication Data

ShaderX
2

: shader programming tips and tricks with DirectX 9 / edited by
Wolfgang F. Engel.

p. cm.
Includes bibliographical references and index.
ISBN 1-55622-988-7 (paperback, companion CD-ROM)
1. Computer games--Programming. 2. Three-dimensional display systems.
I. Title: ShaderX squared. II. Engel, Wolfgang F.
QA76.76.C672S48 2003
794.8'16693--dc22 2003018871

CIP

© 2004, Wordware Publishing, Inc.

All Rights Reserved

2320 Los Rios Boulevard
Plano, Texas 75074

No part of this book may be reproduced in any form or by any means
without permission in writing from Wordware Publishing, Inc.

Printed in the United States of America

ISBN 1-55622-988-7

10 9 8 7 6 5 4 3 2 1
0308

Crystal Reports is a registered trademark of Crystal Decisions, Inc. in the United States and/or other countries.
Names of Crystal Decisions products referenced herein are trademarks or registered trademarks of Crystal Decisions or its
Screen shots used in this book remain the property of their respective companies.
All brand names and product names mentioned in this book are trademarks or service marks of their respective companies.
Any omission or misuse (of any kind) of service marks or trademarks should not be regarded as intent to infringe on the
property of others. The publisher recognizes and respects all marks used by companies, manufacturers, and developers as a
means to distinguish their products.
This book is sold as is, without warranty of any kind, either express or implied, respecting the contents of this book and any
disks or programs that may accompany it, including but not limited to implied warranties for the book’s quality, performance,
merchantability, or fitness for any particular purpose. Neither Wordware Publishing, Inc. nor its dealers or distributors shall be
liable to the purchaser or any other person or entity with respect to any liability, loss, or damage caused or alleged to have been
caused directly or indirectly by this book.

All inquiries for volume purchases of this book should be addressed to Wordware
Publishing, Inc., at the above address. Telephone inquiries may be made by calling:

(972) 423-0090

Contents

Preface vii
About the Authors ix
Introduction xix

Section I—Geometry Manipulation Tricks 1

Using Vertex Shaders for Geometry Compression 3

Dean Calver

Using Lookup Tables in Vertex Shaders 13

Carsten Wenzel

Terrain Geomorphing in the Vertex Shader 18

Daniel Wagner

3D Planets on the GPU 33

Jesse Laeuchli

Cloth Animation with Pixel and Vertex Shader 3.0 40

Kristof Beets

Collision Shaders 58

Takashi Imagire

Displacement Mapping 73

Tom Forsyth

Section II — Rendering Techniques 87

Rendering Objects as Thick Volumes 89

Greg James

Screen-aligned Particles with Minimal VertexBuffer Locking 107

O’dell Hicks

Hemisphere Lighting with Radiosity Maps 113

Shawn Hargreaves

iii

Galaxy Textures 123

Jesse Laeuchli

Turbulent Sun 127

Jesse Laeuchli

Fragment-level Phong Illumination 131

Emil Persson

Specular Bump Mapping on Pre-ps_1_4 Hardware 149

Matthew Halpin

Voxel Rendering with PS_3_0 161

Aaron Burton

Simulating Blending Operations on Floating-point Render Targets 172

Francesco Carucci

Rendering Volumes in a Vertex & Pixel Program by Ray Tracing 177

Eli Z. Gottlieb

Normal Map Compression 185

Jakub Klarowicz

Drops of Water and Texture Sprites 190

Sylvain Lefebvre

Advanced Water Effects 207

Kurt Pelzer

Efficient Evaluation of Irradiance Environment Maps 226

Peter-Pike J. Sloan

Practical Precomputed Radiance Transfer 232

Peter-Pike J. Sloan

Advanced Sky Dome Rendering 240

Marco Spoerl and Kurt Pelzer

Deferred Shading with Multiple Render Targets 251

Nicolas Thibieroz

Meshuggah’s Effects Explained 270

Carsten Wenzel

Layered Car Paint Shader 293

John Isidoro, Chris Oat, and Natalya Tatarchuk

Motion Blur Using Geometry and Shading Distortion 299

Natalya Tatarchuk, Chris Brennan, Alex Vlachos, and John Isidoro

Contents

iv

Simulation of Iridescence and Translucency on Thin Surfaces 309

Natalya Tatarchuk and Chris Brennan

Floating-point Cube Maps 319

Arkadiusz Waliszewski

Stereoscopic Rendering in Hardware Using Shaders 324

Thomas Rued

Hatching, Stroke Styles, and Pointillism 340

Kevin Buchin and Maike Walther

Layered Fog 348

Guillaume Werle

Dense Matrix Algebra on the GPU 352

Ádám Moravánszky

Section III — Software Shaders and Shader Programming Tips 381

Software Vertex Shader Processing 383

Dean P. Macri

x86 Shaders–ps_2_0 Shaders in Software 396

Nicolas Capens

SoftD3D: A Software-only Implementation of
Microsoft’s Direct3D API 413

Oliver Weichhold

Named Constants in Shader Development 432
Jeffrey Kiel

Section IV — Image Space 437

Advanced Image Processing with DirectX 9 Pixel Shaders 439

Jason L. Mitchell, Marwan Y. Ansari, and Evan Hart

Night Vision: Frame Buffer Post-processing with ps.1.1 Hardware 465

Guillaume Werle

Non-Photorealistic Post-processing Filters in MotoGP 2 469

Shawn Hargreaves

Image Effects with DirectX 9 Pixel Shaders 481

Marwan Y. Ansari

Using Pixel Shaders to Implement a Mosaic Effect Using
Character Glyphs 519

Roger Descheneaux and Maurice Ribble

Contents

v

Mandelbrot Set Rendering 526

Emil Persson

Real-Time Depth of Field Simulation 529

Guennadi Riguer, Natalya Tatarchuk, and John Isidoro

Section V — Shadows 557

Soft Shadows 559

Flavien Brebion

Robust Object ID Shadows 580

Sim Dietrich

Reverse Extruded Shadow Volumes 587

Renaldas Zioma

Section VI — 3D Engine and Tools Design 595

Shader Abstraction 597

Tom Forsyth

Post-Process Fun with Effects Buffers 614

Tom Forsyth

Shaders under Control (Codecreatures Engine) 625

Oliver Hoeller

Shader Integration in the Gamebryo Graphics Engine 631

Scott Sherman, Dan Amerson, Shaun Kime, and Tim Preston

Vertex Shader Compiler 650

David Pangerl

Shader Disassembler 667
Jean-Sebastian Luce

Index 675

Contents

vi

Preface

After the tremendous success of Direct3D ShaderX: Vertex and Pixel Shader Tips

and Tricks, I planned to do another book with an entirely new set of innovative
ideas, techniques, and algorithms. The call for authors led to many proposals from
nearly 80 people who wanted to contribute to the book. Some of these proposals
featured introductory material and others featured much more advanced themes.
Because of the large amount of material, I decided to split the articles into intro-
ductory pieces that are much longer but explain a lot of groundwork and articles
that assume a certain degree of knowledge. This idea led to two books:

ShaderX2: Introductions & Tutorials with DirectX 9

ShaderX2: Shader Programming Tips & Tricks with DirectX 9

The first book helps the reader get started with shader programming, whereas
the second book (this one) features tips and tricks that an experienced shader
programmer will benefit from.

As with Direct3D ShaderX, Javier Izquierdo Villagrán (nurbs1@jazzfree.com)
prepared the drafts for the cover design of both books with in-game screen shots
from Aquanox 2, which were contributed by Ingo Frick, the technical director of
Massive Development.

A number of people have enthusiastically contributed to both books:

Wessam Bahnassi
Andre Chen
Muhammad Haggag
Kenneth L. Hurley
Eran Kampf
Brian Peltonen
Mark Wang

Additionally, the following ShaderX2 authors proofread several articles each:

Dean Calver
Nicolas Capens
Tom Forsyth
Shawn Hargreaves
Jeffrey Kiel
Hun Yen Kwoon
Markus Nuebel
Michal Valient
Oliver Weichhold

vii

These great people spent a lot of time proofreading articles, proposing improve-
ments, and exchanging e-mails with other authors and myself. Their support was
essential to the book development process, and their work led to the high quality
of the books. Thank you!

Another big thank you goes to the people in the Microsoft Direct3D discus-
sion group (http://DISCUSS.MICROSOFT.COM/archives/DIRECTXDEV.html).
They were very helpful in answering my numerous questions.

As with Direct3D ShaderX, there were some driving spirits who encouraged
me to start this project and hold on through the seven months it took to complete
it:

Dean Calver (Eclipse)
Jason L. Mitchell (ATI Research)
Natasha Tatarchuk (ATI Research)
Nicolas Thibieroz (PowerVR)
Carsten Wenzel (Crytek)

Additionally, I have to thank Thomas Rued from DigitalArts for inviting me to the
Vision Days in Copenhagen, Denmark, and for the great time I had there. I would
like to thank Matthias Wloka and Randima Fernando from nVidia for lunch at GDC
2003. I had a great time.

As usual, the great team at Wordware made the whole project happen: Jim
Hill, Wes Beckwith, Heather Hill, Beth Kohler, and Paula Price took over after I
sent them hundreds of megabytes of data.

There were other numerous people involved in this book project that I have
not mentioned. I would like to thank them here. It was a pleasure working with so
many talented people.

Special thanks goes to my wife, Katja, and our daughter, Anna, who spent a
lot of evenings and weekends during the last seven months without me, and to
my parents, who always helped me to believe in my strength.

— Wolfgang F. Engel

P.S.: Plans for an upcoming project named ShaderX3 are already in progress. Any
comments, proposals, and suggestions are highly welcome (wolf@shaderx.com).

Preface

viii

About the Authors

Dan Amerson
Dan graduated from North Carolina State University in 2001 with a bachelor’s
degree in computer science. During his undergraduate studies, he focused on arti-
ficial intelligence research for automated camera control and positioning. After
graduation, Dan joined NDL in late 2001 to work on the NetImmerse and Game-
bryo engines. He works primarily on console rendering technologies and most
recently served as lead programmer for the Gamebryo shader demo Eturnum.

Marwan Y. Ansari (mansari@ati.com)
Marwan is a member of the 3D Application Research Group at ATI Research. He
received a master’s degree in computer science from the University of Illinois at
Chicago and a bachelor of science degree in computer science and mathematics
from DePaul University. Prior to moving to ATI’s 3D Application Research Group,
he worked on OpenGL drivers for Number Nine Visual Technology before joining
ATI’s Digital TV group. In addition to his image space contributions to ShaderX2,
Marwan has also contributed to Game Programming Gems 4 and spoken about
real-time video processing using shaders at the Game Developers Conference.

Kristof Beets (kristof.beets@powervr.com)
Kristof took his first steps in the 3D world by running a technical 3D fan site, cov-
ering topics such as the differences between traditional and tile-based rendering
technologies. This influenced his electrical engineering studies in such a way that
he wrote his thesis about wavelet compression for textures in Direct3D, a paper
that won the Belgian Barco Prize. He continued his studies, obtaining a master’s
degree in artificial intelligence, while working as a technical editor for Beyond3D
and writing various technical articles about 3D hardware, effects, and technology.
As a freelance writer he wrote the “FSAA Explained” document for 3Dfx Interac-
tive to explain the differences between various types of full-screen anti-aliasing.
This document resulted in a full-time job offer at 3Dfx. Currently he is working as
a developer relations engineer for PowerVR Technologies, which includes
research into new graphical algorithms and techniques.

Flavien Brebion (f.brebion@vrcontext.com)
Flavien has had a passion for video games since he got an Amstrad CPC at the age
of 12. He still remembers typing in hundred-page listings just to see a small sprite
appear on-screen. He studied computing science at the University of Nantes,
France, where he graduated with both bachelor’s and master’s degrees in 2000.
He has also done a lot of research and developed many small games and rendering
engines on his own. Currently he works at VRcontext, a virtual reality company

ix

in Brussels, where he develops software designed to display industrial models
made up of millions of triangles. He works on amateur games and graphical
demos in his spare time, trying to get the most out of the new, powerful video
cards. His web site is http://www.fl-tw.com/opengl/SoftShadows/.

Chris Brennan (cbrennan@ati.com)
Chris graduated with bachelor’s degrees in computer science and electrical engi-
neering from Worcester Polytechnic Institute in 1997 and joined Digital Equip-
ment Corp.’s Workstation Graphics group doing hardware design and verification.
When Digital died, Chris joined ATI as a 3D ASIC designer for the Radeon line of
graphics chips and then moved over to the 3D Application Research Group where
he tries to get those chips to do things that were not originally thought possible.

Kevin Buchin
Kevin received his master’s degree from Hasso Plattner Institute for Software
Engineering in Potsdam, Germany, in 2003. He wrote his thesis on real-time
non-photorealistic terrain rendering. He has studied math, logic, and computer
science in Muenster, Germany, and Leeds, England, and is involved in the 3D
rendering engine VRS (www.vrs3d.org) and the 3D-map software system
LandExplorer (www.landex.de).

Aaron Burton (aaron.burton@powervr.com)
Aaron has been a developer relations engineer at PowerVR Technologies since he
received his Honours degree in information systems engineering in 1998. His
first computer was a VIC 20, though his fascination for 3D graphics began with
the Atari ST. At PowerVR he has been able to indulge this interest by developing
a variety of demos, benchmarks, and debug/performance tools, and supporting
developers in creating faster and better games. When he’s not climbing, he
spends his spare time working on ray-tracing and real-time 3D demos.

Dean Calver
Games are fun! Dean figured that out at age 2 and has spent the ensuing years
working on how to make better games. For the last seven years, people have even
paid him to do it. Having no real preference for console or PC has meant a mixed
career switching between them for every project. Professionally, he has worked
on a war game, racing games, an X-COM style game, arcade classic updates and
the port of Silent Hill 2 to the PC. He is currently working on an Xbox RPG called
Sudeki at Climax Solent.

Nicolas Capens (sw-shader.sourceforge.net)
Nicolas is a master’s student in civil engineering in computer science in Ghent,
Belgium. He became interested in graphics programming after discovering some
Quake mods, and he quickly learned C++ and x86 assembly by himself. His main
interest is software rendering and optimization. For more than two years he has
been developing his own software renderer in his spare time. He is currently
focusing on implementing shader emulation using the MMX and SSE instruction
sets and dynamic code generation.

Francesco Carucci
Francesco has been a professional game programmer for three years and

About the Authors

x

currently works on Black&White 2 for Lionhead Studios. He studied graphics
programming-related subjects at university for five years before that. His passion
for video games and 3D graphics help him spend many sleepless nights after long
days of writing shader code.

Roger Descheneaux
Roger has been working on 3D graphics since the late 1980s, and he has a vaguely
uncomfortable feeling that he should somehow be better at it by now. In 1991 he
graduated to working on 3D graphics device drivers for IBM. The first driver he
worked on was for a five-card graphics solution that sold for $30,000 and couldn’t
do texture mapping. The graphics hardware is slightly faster and somewhat
cheaper these days. He currently works on OpenGL device drivers for ATI
Research in Marlborough, Massachusetts, for graphics chips that can definitely
do texture mapping.

Sim Dietrich
Sim manages the U.S. Technical Developer Relations team at nVidia Corporation.
Sim has written chapters for Game Programming Gems 1 and 2 and served as edi-
tor of the Graphics Display section of Gems 2. He was a key contributor to the
CgFX effort, bringing real-time shaders to Max, Maya, and SoftImage for the first
time. Sim’s interests include new shadow techniques and improving graphics
workflow through efforts like Cg and CgFX.

Wolfgang F. Engel (wolfgang.engel@shaderx.com)
Wolfgang is the editor of ShaderX2: Introductions & Tutorials with DirectX 9, the
editor and a co-author of Direct3D ShaderX: Vertex and Pixel Shader Tips and

Tricks, the author of Beginning Direct3D Game Programming, and a co-author of
OS/2 in Team, for which he contributed the introductory chapters on OpenGL and
DIVE. He spoke at GDC 2003 and at Vision Days 2003 in Copenhagen, Denmark.
He has published articles in German journals and on www.gamedev.net,
www.gamasutra.com, and his own web site, www.direct3d.net. During his career
in the game industry he built up two small game development units.

Tom Forsyth (tomf@muckyfoot.com)
Tom has been obsessed by 3D graphics since seeing Elite on his ZX Spectrum.
Since then he has always tried to make hardware beg for mercy. Tom has written
triangle-drawing routines on the Spectrum, Sinclair QL, Atari ST, Sega 32X, Sat-
urn, Dreamcast, PC, GamePark32, and Xbox, and he’s getting quite good at them
now. Tom’s coding past includes writing curved-surface stuff for Sega and graph-
ics drivers for 3Dlabs. Currently he works in Guildford, England, at Mucky Foot
Productions, where past projects include Urban Chaos, StarTopia, and Blade2.

Eli Z. Gottlieb
Eli is a self-taught programmer attending ninth grade at Bethlehem Central High
School in Delmar, New York.

Matthew Halpin
Matthew started programming before he was 10 and has continued to hold an
interest in the areas of graphics and physics. Starting with 2D vector and sprite
rendering, he quickly moved onto software 3D rendering and later 3D hardware

About the Authors

xi

accelerated rendering combined with rigid body and particle physics systems. He
has been working in the games industry since receiving a BA in computer science
from Cambridge University.

Shawn Hargreaves
After finishing a degree in music, Shawn has been writing games for the last six
years, most recently as lead programmer on Climax’s MotoGP bike racing game.
Having started out coding 2D graphics by hand in DOS (where he created the
popular Allegro library (http://www.talula.demon.co.uk/allegro/index.html) and
then spending time on the N64 and PS2, he is still in awe of the sorts of things
that are possible with programmable shaders on Xbox and modern PC cards.

Evan Hart
Evan is a software engineer with ATI’s Application Research Group where he
works on technology evangelism and adoption. He is a graduate of Ohio State
University.

O’dell Hicks
O’dell has been a professional game programmer since 1998 and a hobbyist sev-
eral years longer than that. He has done work on both the PC and Xbox. One day
he hopes to finish a game that he is working on by himself in his spare time. His
web site can be found at http://odellworld.com/.

Oliver Hoeller
Oliver currently works as senior engine programmer at Piranha Bytes, which
developed the RPGs Gothic I and II. He started programming at age 10 on his
Commodore VIC20, working his way through 6502(VIC20), 6510(C64), and
68000(Amiga) Assembler. His first game project was with 15, a jump and run
game named Platou (Kingsoft, C64). He was an active member of the German
demo scene in the ’80s and early ’90s. After a detour — during which he devel-
oped music software, created a security program, and worked as a consultant for
web services — Oliver returned to his roots and developed his first 3D engine
(Warrior Engine, 1995-98). He was lead programmer and director of development
at H2Labs/Codecult and was responsible for development of the Codecreatures
game system.

Takashi Imagire
Takashi has been a professional game programmer for five years, mainly working
with the PlayStation and PlayStation2. Currently, he is programming real-time 3D
graphics in his spare time, while focusing on the newest shader technology. A
number of articles and demos on shader programming can be found on his web
site at http://www.t-pot.com/. His goal is to publish his demos immediately after
the release of new shader technology.

John Isidoro
John is a member of the 3D Application Research Group at ATI Technologies and
a graduate student at Boston University. His research interests are in the areas of
real-time graphics, image-based rendering, and machine vision.

Greg James
Greg is a software engineer with nVidia’s technical developer relations group

About the Authors

xii

where he develops tools and demos for real-time 3D graphics. Prior to this, he
worked for a small game company and as a research assistant in a high-energy
physics laboratory. He is very glad to have avoided graduate school, and even hap-
pier to be working in computer graphics, which he picked up as a hobby after his
father brought home a strange beige Amiga 1000.

Jeffrey Kiel
Jeff started his work in graphics as an undergrad at the University of North
Carolina doing volume rendering research. After a stint in the corporate world, he
moved on to work at Interactive Magic as a lead programmer on Destiny (one of
the first 3D strategy games), iF18, and WarBirds. Then he joined Sinister Games
to work on Shadow Company (3D squad-based strategy game) and the Dukes of
Hazzard I and II on PS1. Jeff returned to his passion for graphics by joining nVidia,
where he has worked on a couple of 3D engines, incorporating shader technology
into real-world applications. His shader experience covers standard transform/
lighting/shading, special effects, mesh animation, and particle systems.

Shaun Kime
Shaun is a software engineer at NDL where he is the lead developer on the 3ds
max tools pipeline. Prior to working at NDL, he worked on the Mimesis project at
North Carolina State University doing research on integrating narrative planning
into virtual worlds. When he isn’t at work, he can be found reviewing local pubs at
http://www.drinktheworld.com.

Jakub Klarowicz
Jakub is an engine programmer at Techland where he works on all low-level
aspects of game engine development. His biggest interest is, of course, real-time
3D graphics. He received an MS in computer science from Wroclaw University of
Technology in 2001, and has been programming computers since he was 10. Jakub
always wanted to push hardware to its limits so he started learning assembler
while his friends were still playing games. In his work with 3D graphics, Jakub has
gone all the way from software rendering to shader programming. He has been
playing with hardware-accelerated rendering for five years, using Glide, OpenGL,
and Direct3D. For the last three years he has worked with 3D graphics
professionally.

Jesse Laeuchli
Jesse is a self-taught programmer who now makes his home in Budapest, Hun-
gary. As the child of a Foreign Service officer, he has lived in such places as China,
Taiwan, Africa, and Saudi Arabia. He has written for several computer magazines,
books, and web sites, and is also an avid epee fencer. His web site is
www.laeuchli.com/jesse/.

Sylvain Lefebvre
Sylvain is a Ph.D. student in the iMAGIS team at the French National Institute
for Research in Computer Science, working on the rendering of natural scenes.
He is also interested in many aspects of game programming and real-time graph-
ics. He is currently focusing on developing new approaches with vertex and pixel
shaders to handle the complexity of natural scenes. His home page is at
http://www.aracknea.net.

About the Authors

xiii

Jean-Sebastian Luce
Jean-Sebastian has been a professional game programmer specializing in com-
puter graphics for three years in the Nadeo studio where he worked on the games
Virtual Skipper 1 and 2. He is currently working on improving their graphic
engine quality by using more complex shaders for the recent games TrackMania
and Virtual Skipper3. He has also studied applied mathematics, computer science,
and image synthesis in a French National Institute (ENSIMAG).

Dean Macri
Dean is a software engineer with Intel Corporation where he works with software
developers in optimizing the processor-specific aspects of their titles. He wrote
his first graphics application, a line and circle drawing program, in TMS9900
assembly language in 1984 on a Texas Instruments 99/4A. Since then he’s been
hooked on graphics and programming, majoring in computer science as both an
undergraduate and a graduate student. Starting in 1992, he spent five years devel-
oping high-speed assembly routines for 2D graphics transition effects at a multi-
media kiosk development company. In 1998 he joined Intel where he continues to
evangelize the benefits of new processors and technologies to software develop-
ers and provide their feedback to the processor architects.

Jason L. Mitchell (JasonM@ati.com)
Jason is the team lead of the 3D Application Research Group at ATI Research,
makers of the Radeon family of graphics processors. Jason has worked with
Microsoft on the Microsoft campus in Redmond for several years to define key
new Direct3D features. Prior to working at ATI, Jason did work in human eye
tracking for human interface applications at the University of Cincinnati, where he
received his master’s degree in electrical engineering in 1996. He received a
bachelor’s degree in computer engineering from Case Western Reserve Univer-
sity in 1994. In addition to this book’s article on advanced image processing, Jason
wrote about HLSL programming in ShaderX2: Shader Programming Tips & Tricks

with DirectX 9, and has written for the Game Programming Gems books, Game

Developer magazine, Gamasutra.com, and academic publications on graphics and
image processing. He regularly presents at graphics and game development con-
ferences around the world. His home page can be found at http://www.pixel-
maven.com/jason/.

Ádám Moravánszky
Ádám is a recent graduate of the Swiss Federal Institute of Technology. After fin-
ishing his thesis in the field of real-time 3D graphics, he co-founded NovodeX
(www.novodex.com), a company providing game physics middleware, where he is
the chief software architect.

Christopher Oat
Christopher is a software engineer in the 3D Application Research Group at ATI,
where he explores novel rendering techniques for real-time 3D graphics applica-
tions. His focus is on pixel and vertex shader development for current and future
graphics platforms. Christopher has contributed as an original member of the
RenderMonkey development team and as a shader programmer for ATI’s demos
and screen savers. He has been published in Game Programming Gems 3 (Charles

About the Authors

xiv

River Media, 2002) and Direct3D ShaderX: Vertex and Pixel Shader Tips and Tricks

(Wordware, 2002). Christopher is a graduate of Boston University.

David Pangerl
David’s addiction to computers and games started early in his life, and the vision
to create virtual worlds continues to be a strong force in his life. He has been
involved in the production of several games, including Crash, Casanova, Hitch-
cock, Hannibal, and most recently Mistmare. His main interests are computer
graphics, artificial intelligence, and compilers.

Kurt Pelzer
As a senior programmer at Codecult, Kurt developed several real-time simula-
tions and technology demos built on CC’s high-end 3D engine Codecreatures
(e.g., a launch demo for nVidia’s GeForce4 Ti generation and the well-known
Codecreatures-Benchmark-Pro). He designed the innovative fx systems of
Codecreatures and was involved in creating a simulation of the Shanghai
TRANSRAPID track for SIEMENS AG. Kurt also worked on Piranha Bytes’ PC
game Gothic and the top-selling Gothic II—which were named RPG of the Year in
Germany in 2001 and 2002. In prehistoric times Kurt started programming on
C64 and Atari’s ST; later on he studied mathematics, always focusing on com-
puter graphics. When he’s not scribbling down equations or reading the book of
seven seals, Kurt works at Piranha Bytes to guarantee a high level of visual qual-
ity for the company’s future products.

Emil Persson
Emil recently graduated from Luleå University of Technology in Northern Swe-
den after studying computer science and engineering. Over the years Emil has
gathered experience from early software rendering attempts to advanced tech-
niques in the Glide, OpenGL, and Direct3D APIs. His web site at http://esprit.
campus.luth.se/~humus/ focuses on real-time 3D graphics. In the future you’ll
probably find Emil working as a game developer working on the next generation
of game engines.

Tim Preston
Tim is a software engineer working on the Direct3D sections of the Gamebryo
game engine at NDL. He graduated from Princeton University in 1997 with a
degree in chemistry and a desire to do pretty much anything but chemistry. He
went to the University of North Carolina for a master’s in computer science,
where he did a lot of molecular modeling work that led to an interest in 3D graph-
ics. When he graduated in 1999, the game industry was a good match for his expe-
rience and his goal of not doing anything too important.

Maurice Ribble
Maurice graduated in 2001 from the Milwaukee School of Engineering with a
bachelor’s degree in computer engineering. During his junior year he had the
opportunity to take part in a summer internship at Los Alamos National Labs. He
was somewhat disappointed that other people worked on million-dollar work-
stations while he worked on consumer-level hardware, but after writing an appli-
cation that performed lighting calculations for volume textures on first-generation
consumer fragment shader hardware, he realized that consumer-level hardware

About the Authors

xv

was in for exciting changes, and he wanted to be part of the action. He currently
works on the OpenGL device driver team at ATI Research.

Guennadi Riguer
Guennadi is a software developer at ATI Technologies, where he is helping game
engine developers to adopt new graphics technologies. Guennadi holds a degree
in computer science from York University and previously studied at Belorussian
State University of Computing and Electronics. He began programming in the
mid-80s and worked on a wide variety of software development projects prior to
joining ATI.

Thomas Rued (rued@digitalarts.dk)
Thomas started his programming career at the local mall in 1983, doing small
graphics programs in BASIC until an angry salesperson turned the computer off
and he had to start all over. Later he programmed multimedia programs for
InterVision in assembler and Pascal. Then he decided that education was in order
and earned a degree in computer science. He moved on to Interactive Vision for
several years, where he was a senior software engineer and worked on 3D appli-
cations plus the in-house frameworks for game development using C++ and
DirectX. Currently Thomas works at Digital Arts (www.digitalarts.dk) where he
focuses on high-end 3D visualization stuff in real time using modern 3D hardware.
In his spare time he is the co-coordinator of the Danish IGDA chapter.

Scott Sherman
Scott is a software engineer at NDL where he is the lead on the Xbox version of
their graphics engine. After receiving degrees in physics and electrical engineer-
ing, a short stint in the hardware side of the computer industry led to doing on-air
statistics and scoring systems programming for sporting event broadcasts. Once
the excitement of live television wore off, he moved over to the field of game pro-
gramming, and is currently focused on real-time 3D graphics.

Peter-Pike Sloan
Peter-Pike currently works on D3DX at Microsoft. Prior to that he worked in the
Microsoft Research Graphics Group, the Scientific Computing and Imaging group
at the University of Utah, PTC, and Evans & Sutherland. His primary research
interests revolve around interactive graphics techniques. Most of his publications
are available at http://research.microsoft.com/~ppsloan.

Marco Spoerl (http://www.marcospoerl.com)
Like just about everyone else, Marco started programming way back on a C64.
After buying a PC just so he could play Doom, he learned about computer graph-
ics. He started his professional career as an engine programmer at Codecult Soft-
ware, working on the Codecreatures Game Development System and the
Codecreatures Benchmark Pro. After receiving his diploma in computer science,
and a short walk on the wild side as a freelance software developer, he’s now
working in the training and simulation department at Munich-based Krauss-
Maffei Wegmann.

Natalya Tatarchuk (Natasha@ati.com)
Natalya is a software engineer working in the 3D Application Research Group at

About the Authors

xvi

ATI Research, where she is the programming lead for the RenderMonkey IDE
project. She has worked in the graphics industry for more than six years, working
on 3D modeling applications and scientific visualization prior to joining ATI.
Natalya graduated from Boston University with a bachelor’s degree in computer
science, a bachelor’s degree in mathematics, and a minor in visual arts.

Nicolas Thibieroz (nicolas.thibieroz@powervr.com)
Like many kids of his generation, Nicolas discovered video games on the Atari
VCS 2600. He quickly became fascinated by the mechanics behind those games,
and started programming on C64 and Amstrad CPC before moving on to the PC
world. Nicolas realized the potential of real-time 3D graphics while playing Ultima
Underworld. This game inspired him in such a way that both his school placement
and final year project were based on 3D computer graphics. After obtaining a
bachelor’s degree in electronic engineering in 1996, he joined PowerVR Technol-
ogies where he is now responsible for developer relations. His duties include sup-
porting game developers, writing test programs and demos, and generally keeping
up to date with the latest 3D technology.

Alex Vlachos (http://alex.vlachos.com)
Alex is a staff engineer in the 3D Application Research Group at ATI, where he
has worked since 1998 focusing on 3D engine development as the lead program-
mer for ATI’s Demo Team. He developed N-Patches (a curved surface represen-
tation introduced in Microsoft’s DirectX 8), also known as PN Triangles, and
TRUFORM. He has published in Game Programming Gems 1, 2, and 3, ACM
Symposium on Interactive 3D Graphics (I3DG), and Direct3D ShaderX: Vertex and

Pixel Shader Tips and Tricks. He has presented at Microsoft Meltdown Seattle and
UK, I3DG, GDC, and GDC Europe. Alex is a graduate of Boston University.

Daniel Wagner (daniel@ims.tuwien.ac.at)
Daniel has been fascinated by programming computer graphics since he got his
first PC in 1991. In 1995 he developed the software SimLinz for the Ars
Electronica Center (museum of the future) in Linz, Austria. During his study he
worked for Reality2, a company that created virtual reality software. After finish-
ing his master’s thesis, “EndoView: A System for Fast Virtual Endoscopic Ren-
dering and Registration” in summer 2001, he worked as a lead developer for
BinaryBee, a company developing arcade-style web games. Daniel is currently
working on his Ph.D. thesis on augmented reality at the Interactive Media Sys-
tems Group at the Vienna University of Technology.

Arkadiusz Waliszewski
Arkadiusz holds a master’s degree in computer science from Poznan University of
Technology and is currently a software engineer in Poland. He started his adven-
ture with computer graphics when he got his first computer (Atari 65XE) and has
become addicted. Beside real-time computer graphics, he is also interested in
object-oriented programming and design. He likes good movies, dry wine, and big
fluffy carpet slippers.

Maike Walther
Maike’s research interests lie in computational and cognitive aspects of computer
depiction. She has studied mathematics, logic, computer science, and psychology

About the Authors

xvii

at the universities of Muenster, Germany, and Leeds, England. Maike graduated
in 2003 from the Hasso Plattner Institute in Potsdam, Germany after writing her
master’s thesis on computer graphics and algorithms for real-time non-photo-
realistic rendering of 3D city models. She is currently developing for the Virtual
Rendering System (www.vrs3d.org).

Oliver Weichhold
Oliver has been a programmer and developer on a number of projects, including a
software implementation of the Direct3D pipeline.

Carsten Wenzel (carsten@crytek.de)
Carsten has been passionate about computer graphics ever since he got a hold of
intros and demos for Amiga and PC. Although he’s never really been active in the
demo scene, it’s always been a big inspiration for him. As a 3D programmer at
Totally Games, he developed many of the pixel and vertex shaders used for spe-
cial effects in an Xbox game. At that time he also wrote a tech demo for nVidia’s
GeForce3. His latest demo, Meshuggah, was released in spring 2002, and he
received his master’s degree in computer science in December 2002. He cur-
rently works at Crytek.

Guillaume Werle (guille@free.fr)
Guillaume is a 26-year-old graphic engineer at Montecristo (www.montecristo-
games.com). He joined the R&D department team last year where he is working
on the next-generation 3D engine. In the game industry since 1998, he has done
two PlayStation games for Infogrames and one PC game for Montecristo. Despite
the little spare time he has, he is still an active demoscener (http://cocoon.planet-
d.net). His last demo, Raw Confessions, was nominated for the Demoscene
Awards (http://awards.scene.org/) in the “Best Demo” category and won the
“Best Graphics” award.

Renaldas Zioma
Renald Zioma has been driven (mad) by computer graphics since he saw ZX
Spectrum. After learning assembly and writing a Tetris clone for his ZX, he
switched to PCs, finished school, wrote a couple of small non-commercial games,
gained experience with object-oriented programming and design while working at
a software development company, and received a bachelor’s degree in computer
science from Kaunas University of Technology. He has been working as a profes-
sional game programmer for the last two years. Recently he finished a demo of a
3D fighting game based on real-time motion recognition for Interamotion, LLC. In
his spare time, he programs demos and games and organizes small demo/game
scene related events in Lithuania.

About the Authors

xviii

Introduction

This book is a collection of articles that discuss ways to use vertex and pixel
shaders to implement a variety of effects. The following provides a brief overview
of these articles:

Section I — Geometry Manipulation Tricks

This section starts with a DirectX 9 sequel to Dean Calver’s vertex compression
article in Direct3D ShaderX: Pixel and Vertex Shader Tips and Tricks. Dean shows
a number of ways to reduce vertex throughput by compressing vertex data.
Carsten Wenzel points out how to use lookup tables in vertex shaders to reduce
the workload of the vertex shader hardware. A feature-complete and very hard-
ware-friendly terrain engine is explained in Daniel Wagner’s article, “Terrain
Geomorphing in the Vertex Shader.” The speed of the example program provided
with source is impressive. Creating 3D planets for a space-shooter type of game
can be done entirely on the GPU, which Jesse Laeuchli shows how to do in his
article “3D Planets on the GPU.”

The vs_3_0 vertex shader model has a feature called vertex texturing, which
Kristof Beets uses to create a very realistic-looking cloth animation in his article
“Cloth Animation with Pixel and Vertex Shader 3.0.” In “Collision Shaders,”
Takashi Imagire, who is known for the example programs on his web site
(www.t-pot.com), uses shaders to calculate collisions, something that has never
been shown before. The final article in this section covers using displacement
mapping as a method of geometry compression. The main aim of Tom Forsyth’s
article is to allow people to take data from the industry’s current mesh and tex-
ture authoring pipelines, and to derive displacement map data from them.

Section II — Rendering Techniques

The section starts with an article by Greg James that presents a convenient and
flexible technique for rendering ordinary polygon objects of any shape as thick
volumes of light scattering or light absorbing material with ps_1_3. O’dell Hicks
shows in his article, “Screen-aligned Particles with Minimal VertexBuffer
Locking,” how to create screen-aligned particles with a vertex shader, bringing us
one step closer to the goal of having almost everything done by the GPU. “Hemi-
sphere Lighting with Radiosity Maps,” written by Shawn Hargreaves, shows a
lighting model that was designed for fast moving objects in outdoor environments.
Its goals are to tie in the moving objects with their surroundings, to convey a sen-
sation of speed, and to be capable of rendering large numbers of meshes at a good

xix

frame rate on first-generation shader hardware. The companion movie on the CD
includes jaw-dropping effects.

Jesse Laeuchli has contributed two additional articles. In “Galaxy Textures,”
he uses a procedural model to generate easy-to-vary galaxies that can be imple-
mented almost entirely on hardware using pixel shaders. “Turbulent Sun” demon-
strates how to implement a sun using a 3D noise function. The example program
runs solely on the GPU using shaders. A complete implementation of Phong light-
ing, together with a cube shadow mapping implementation, is shown in Emil
Persson’s article, “Fragment-level Phong Illumination.” Getting a nicely distrib-
uted specular reflection on ps_1_1 hardware is a challenge, but Matthew Halpin
shows a new and very efficient way to achieve this in “Specular Bump Mapping
on Pre-ps_1_4 Hardware.” With the advent of pixel shader 3_0, graphics hardware
has become capable of rendering hardware-accelerated voxels. Aaron Burton’s
article, “Rendering Voxel Objects with PS_3_0,” shows how to implement real
voxels on third-generation graphics hardware. Current DirectX 9 hardware is not
capable of alpha-blending between floating-point render targets, but Francesco
Carucci shows a way to simulate alpha-blending on this hardware in his article,
“Simulating Blending Operations on Floating-point Render Targets.”

Eli Z. Gottlieb’s article, “Rendering Volumes in a Vertex & Pixel Program by
Ray Tracing,” shows how to render volumes by using ray tracing and a volume
texture on ps_2_x hardware. Using bump maps to create bump mapping effects
increases the amount of data necessary in memory. Jakub Klarowicz’s article,
“Normal Map Compression,” shows how to compress bump maps with a common
DXT format. Sylvain Lefebvre discusses how to implement pattern-based proce-
dural textures in “Drops of Water and Texture Sprites.” These kinds of textures
are not procedural in the sense of classic marble or wood textures, but they com-
bine explicit textures (patterns) in order to create a larger texture with the
desired appearance. Kurt Pelzer explains how to implement a realistic water sim-
ulation that is extensively usable in his article “Advanced Water Effects.” If you
ever wondered how this was done in the CodeCreatures engine, don’t look any
further.

Peter-Pike Sloan uses irradiance environment maps to render diffuse objects
in arbitrary lighting environments in “Efficient Evaluation of Irradiance Environ-
ment Maps.” He presents a method that uses spherical harmonics to efficiently
represent an irradiance environment map, which is more efficient to compute and
uses fewer resources than diffuse cube maps. In a second article, “Practical
Precomputed Radiance Transfer,” Peter-Pike Sloan shows how to use precom-
puted radiance transfer to illuminate rigid objects in low-frequency lighting envi-
ronments with global effects like soft shadows and inter-reflections. These results
are achieved by running a lengthy preprocess that computes how light is trans-
ferred from the source environment to exit radiance at a point. Marco Spoerl and
Kurt Pelzer discuss how to render advanced sky domes in “Advanced Sky Dome
Rendering.” This article describes the implementation of a basic vertex color sky
dome, which computes the correct position of both the sun and the moon depend-
ing on time of day, changes its color depending on the position of the sun, renders
a projection of the sun at its correct position, and renders a projection of the moon
at its correct position including the moon’s current phase.

Introduction

xx

Nicolas Thibieroz shows how to implement deferred shading in “Deferred
Shading with Multiple Render Targets.” Contrary to traditional rendering algo-
rithms, deferred shading submits the scene geometry only once and stores per-
pixel attributes into local video memory to be used in the subsequent rendering
passes. Carsten Wenzel explains how he created the effects in his Meshuggah
demo in “Meshuggah’s Effects Explained.” It is impressive what he has done on
DirectX 8.1-capable hardware and on the Xbox. John Isidoro, Chris Oat, and
Natalya Tatarchuk explain how they created a two-tone, suspended microflake car
paint shader in “Layered Car Paint Shader.” Motion blur effects as shown in the
Animusic demo Pipe Dream are described in “Motion Blur Using Geometry and
Shading Distortion” by Natalya Tatarchuk, Chris Brennan, Alex Vlachos, and John
Isidoro. “Simulation of Iridescence and Translucency on Thin Surfaces” by
Natalya Tatarchuk and Chris Brennan focuses on simulating the visual effect of
translucency and iridescence of thin surfaces such as butterfly wings.

Arkadiusz Waliszewski describes in “Floating-point Cube Maps” how to use
floating-point cube maps to get a much more visually pleasing cube mapping
effect. Thomas Rued compares three different kinds of stereoscopic rendering and
provides shader implementations for each of them in his article “Stereoscopic
Rendering in Hardware Using Shaders.” The article “Hatching, Stroke Styles, and
Pointillism” by Kevin Buchin and Maike Walther shows how to implement hatch-
ing by combining strokes into a texture. These compositions of strokes can con-
vey the surface form through stroke orientation, the surface material through
stroke arrangement and style, and the effect of light on the surface through stroke
density. Guillaume Werle explains a technique that achieves a realistic-looking
layered fog in “Layered Fog.” It computes the height on a per-vertex basis and
uses the texture coordinate interpolator to get per-pixel precision. Ádám
Moravánszky’s article, “Dense Matrix Algebra on the GPU,” shows how to use
shaders to solve two common problems in scientific computing: solving systems
of linear equations and linear complementarity problems. Both of these problems
come up in dynamics simulation, which is a field drawing increasing interest from
the game developer community.

Section III — Software Shaders and Shader Programming Tips

Dean Macri’s article, “Software Vertex Shader Processing,” explores optimization
guidelines for writing shaders that will use the software vertex processing pipe-
line. Additionally, the techniques described in this article should also apply to ver-
tex shaders written for graphics hardware. Emulating pixel shaders efficiently on
the CPU might be the first step in writing a software 3D engine with shader sup-
port that runs only on the CPU. In “x86 Shaders-ps_2_0 Shaders in Software,”
Nicolas Capens shows how to create a fast-performing software emulation of
ps_2_0 shaders by using a run-time assembler. Oliver Weichhold has created a
software implementation of the Direct3D pipeline. His article, “SoftD3D: A Soft-
ware-only Implementation of Microsoft’s Direct3D API,” describes how he did it.
Jeffrey Kiel shows a very handy trick for using named constants in shader devel-
opment in “Named Constants in Shader Development.”

Introduction

xxi

Section IV — Image Space

Jason L. Mitchell, Marwan Y. Ansari, and Evan Hart describe in their article
“Advanced Image Processing with DirectX 9 Pixel Shaders” how to perform color
space conversion using an edge detection filter called the Canny filter, separable
Gaussian and median filters, and a real-time implementation of the Fast Fourier
Transform with ps_2_0 shaders. The article “Night Vision: Frame Buffer Post-
processing with ps.1.1 Hardware” describes how to implement an efficient night
view on ps_1_1 hardware. Guillaume Werle uses a three-step approach to achieve
this, first rendering the scene into a texture, converting this texture to grayscale,
and using the luminance value of each pixel as the index into a gradient texture.
Shawn Hargreaves shows the non-photorealistic post-processing filters he used in
the game MotoGP 2 for ps_1_1 hardware and the Xbox in “Non-Photorealistic
Post-processing Filters in MotoGP 2.”

Marwan Y. Ansari discusses in his article “Image Effects with DirectX 9 Pixel
Shaders” how to achieve transition, distortion, and posterization image effects in
a video shader. Roger Descheneaux and Maurice Ribble show how to achieve a
mosaic-like effect via post-processing in “Using Pixel Shaders to Implement a
Mosaic Effect Using Character Glyphs.” The article “Mandelbrot Set Rendering”
by Emil Persson shows how to implement a Mandelbrot set in a ps_2_0 pixel
shader. Guennadi Riguer, Natalya Tatarchuk, and John Isidoro present two varia-
tions of a two-pass approach for depth of field simulation in their article “Real-
Time Depth of Field Simulation.” In both variations, the scene is rendered in the
first pass with some additional information such as depth, and in the second pass
some filters are run to blur the result from the first pass.

Section V — Shadows

In the article “Soft Shadows” by Flavien Brebion, a soft shadows algorithm that
works as an extension of the shadow volumes algorithm is explained. This is
achieved by using two volumes, the first from the standard point light (inner vol-
ume) and the second from a jittered point light position (outer volume). This sec-
ond volume defines the outer contour of the penumbra. The inner and outer
volumes are next rendered to the shadow map, each in one color component
channel, and then blurred. Sim Dietrich shows in “Robust Object ID Shadows”
how to prevent the depth aliasing problem of shadow maps by using object IDs
instead of storing depth in the light view texture. In his article “Reverse Extruded
Shadow Volumes,” Renaldas Zioma suggests a solution for dealing with shadow-
ing artifacts using stenciled shadow volumes that allow proper self-shadowing
while using occluder geometry.

Section VI — 3D Engine and Tools Design

Tom Forsyth shows in “Shader Abstraction” how to abstract shaders by specify-
ing a description of an ideal shader, but then in code the shader is allowed to
degrade gracefully in quality according to both platform and distance from the
camera. In an additional article, Tom Forsyth discusses how to generalize many of
the common effects in current games into a unified framework, where multiple
effects can be added, tried out, and combined at run time without replicating
shared code, in order to keep speed and memory use optimal when only a few of

Introduction

xxii

the effects are visible. The article “Shaders under Control (Codecreatures
Engine)” by Oliver Hoeller describes the base architecture used in the Code-
creatures engine. Scott Sherman, Dan Amerson, Shaun Kime, and Tim Preston
describe how they integrated shaders into the Gamebryo Engine. A complete
high-level programming language vertex shader compiler with source is given in
David Pangerl’s article “Vertex Shader Compiler.” The final article in this book,
“Shader Disassembler,” by Jean-Sebastian Luce covers the creation of a shader
disassembler that can disassemble all available shader versions in DirectX 9.

Introduction

xxiii

Section ISection I

Geometry Manipulation
Tricks

1

Using Vertex Shaders for Geometry Compression

by Dean Calver

Using Lookup Tables in Vertex Shaders

by Carsten Wenzel

Terrain Geomorphing in the Vertex Shader

by Daniel Wagner

3D Planets on the GPU

by Jesse Laeuchli

Cloth Animation with Pixel and Vertex Shader 3.0

by Kristof Beets

Collision Shaders

by Takashi Imagire

Displacement Mapping

by Tom Forsyth

Using Vertex Shaders for
Geometry Compression

Dean Calver

This article is a follow-up to an article I wrote in Direct3D ShaderX: Vertex and

Pixel Shader Tips and Tricks. DirectX 9 has introduced new data types and added
new capabilities to the vertex stream model. This, combined with more complex
and faster vertex shaders, allows us to explore more advanced forms of vertex
and geometry compression.

What’s New in DirectX 9?

Vertex Shaders

In most cases I still use vertex shader version 1.1, as this is executed in hardware
on the greatest number of machines. The new cards do benefit in the extra con-
stant space available. This improves the amount of batching that can occur. Static
branching also makes it easier to use different compression methods on different
models. Vertex shader version 3.0 potentially offers a number of new capabilities,
the most prominent being vertex texturing. This will offer a new range of com-
pression methods but isn’t explored here due to current lack of hardware support.

New Vertex Stream Declaration Format

The vertex stream declaration system from DirectX 8 was completely overhauled
to make it both easier to use and add new capabilities. From a compression point
of view, the most interesting items are the new vertex data types and the extra
control over where each element comes from in the stream (stream offset).

Limitations

When under DirectX 8 drivers (you can check via the D3DDEVCAPS2_STREAM-
OFFSET cap bit), most new capabilities of the DirectX 9 vertex stream declara-
tions can’t be used. Under DirectX 7 drivers, you must stick to FVF-style
declarations. Also, if a declaration’s stream offsets produce overlapping vertex
elements, then even on DirectX 9 drivers, the D3DDEVCAPS2_VERTEXELE-
MENTSCANSHARESTREAMOFFSET cap bit must be set. Another limitation is
that stream offsets must align on DWORD boundaries (4 bytes).

3

The new vertex data types now have cap bits for each new type that DirectX
9 introduced (and UBYTE4 from DirectX 8); you must check these before using
them. If the cap bit for the data type that you want is set, use it; otherwise, you
will have to emulate the functionality via vertex shader code or change the vertex
data to a format that is available on this hardware.

NOTE The DirextX 9 documentation states the following about each new
vertex data type: “This type is valid for vertex shader version 2.0 or higher.”
This appears to be a documentation bug; if the cap bit is set, you can use it
with any vertex shader version. There is already hardware that supports this,
even on hardware that doesn’t support vertex shader version 2.0. (ATI
supports some of the new data types on all its vertex shader-capable
hardware.)

New Vertex Data Types

Most of these new types are signed, unsigned, and normalized versions of the
existing DirectX 8 data types, but a few add new capabilities. The following table
lists data types sorted by bits per channel.

Data Type Number of

Channels

Bits Per

Type

Bits Per

Channel

Range in Vertex

Shader Register

Cap Bit? Notes

D3DCOLOR 4 32 8 [0,1] N a

UBYTE4 4 32 8 [0,255] Y

UBYTE4N 4 32 8 [0,1] Y

UDEC3 3 32 10 [0,1024] Y b

DEC3N 3 32 10 [–1,1] Y b

SHORT2 2 32 16 [–32768,32767] N

SHORT4 4 64 16 [–32768,32767] N

USHORT2N 2 32 16 [0,1] Y

USHORT4N 4 64 16 [0,1] Y

SHORT2N 2 32 16 [–1,1] Y

SHORT4N 4 64 16 [–1,1] Y

FLOAT16_2 2 32 16 [–6.55e4,6.55e4] Y c

FLOAT16_4 4 64 16 [–6.55e4,6.55e4] Y c

FLOAT1 1 32 32 [–3.48e38, 3.48e38] N d

FLOAT2 2 64 32 [–3.48e38, 3.48e38] N d

FLOAT3 3 96 32 [–3.48e38, 3.48e38] N d

FLOAT4 4 128 32 [–3.48e38, 3.48e38] N d

a) D3DCOLOR also reorders elements as it enters the vertex shader. ARGB becomes RGBA.

b) The two top bits are unused and are lost without explicit vertex stream programming.

c) float16 is an OpenEXR standard, a new standard created by nVidia and PIXAR. Use D3DXFLOAT16
to manipulate (or the library in the OpenEXR SDK).

d) float is an IEEE754 standard, corresponding to C type float.

This is quite a rich set of data types with all data type multiples of 32 bits (this is
the reason for losing the two bits on the DEC3 formats). The cap bits to check are

4
Using Vertex Shaders for Geometry Compression

Section I — Geometry Manipulation Tricks

under D3DCAPS9.DeclType, the specific bit is D3DTCAPS_datatype, and the
type to use is D3DDECLTYPE_datatype (where the data type is from the list
above).

Reclaiming Two Bits

When DEC3N or UDEC3 formats are used, we seem to have lost two bits, but
even two bits can be used quite effectively, so we want them back (e.g., if you
have per-vertex branching, you could store the number of bones here). By caus-
ing two different vertex elements to point to the same memory in the vertex
buffer, we can get access to our two bits (this requires the overlapped stream
offset cap bit to be set).

The vertex stream declaration for a single stream if we stored normals (a com-
mon use) as UDEC3 and wanted to reclaim our two bits is below. The vertex
shader can now bind NORMAL0 to access the data as UDEC3 and NORMAL1 as
UBYTE4.

D3DVERTEXELEMENT9 decl[] =

{

// first element, a ‘normal’ UDEC3 declaration

{ 0, // stream number

0, // stream offset in bytes

D3DDECLTYPE UDEC3, // vertex type for this access

D3DDECLMETHOD DEFAULT, // not used so leave at default

D3DDECLUSAGE NORMAL, // usage (used to bind in the vertex shader)

0 // usage number (you can have n normals)

},

// second element, a UBYTE4 that accesses the same memory as the normal above

{ 0, // stream number, same as first element

0, // stream offset, same as first element

D3DDECLTYPE UBYTE4, // vertex type for this access

D3DDECLMETHOD DEFAULT, // not used so leave at default

Using Vertex Shaders for Geometry Compression
5

Section I — Geometry Manipulation Tricks

Figure 1: Data from vertex stream element to vertex register

D3DDECLUSAGE NORMAL, // usage (used to bind in the vertex shader)

1 // usage no (so you can have n normals)

},

D3DDECL END()

};

To get our two bits in a usable form, we need to divide by 2^6 (64) and then floor
the result. This has the effect of shifting the extraneous data to the right of the
decimal point and only keeping the integer part, which will be our reclaimed two
bits in the range 0 to 3. The floor can be removed if you are going to use the two
bits as a constant address register (the mova instruction rounds to zero).

struct VS INPUT

{

float4 normal : NORMAL0,

float4 enc2Bit : NORMAL1

};

void main(VS INPUT input)

{

// access normal as usual

float3 normal = input.normal;

// decode our 2 bits (0-3)

float two bits = floor(input.enc2Bit.w / 64.0);

}

A Better Compression Transform Data Type

The new DEC3N data types allow us to easily design a format with three chan-
nels with 10, 10, and 12 bits precision. This is a useful format for compression
transformed positions. (Compression transform is discussed in my “Vertex
Decompression in a Shader” article in Direct3D ShaderX; briefly, it compresses
positions by solving the eigen-system of the covariant matrix of the mesh posi-
tions and transforming the positions into this basis before quantization. Decom-
pressing a matrix vector multiple in the vertex shader restores the original
position.)

Many natural and man-made objects have a dominant axis (e.g., along the
spine of many animals, etc.). By giving that axis the extra two bits, we are able to
use a 32-bit format for some objects that would have required switching to a
64-bit format (SHORT4). For simplicity in the vertex shader, we arrange the com-
pressor to always make z the longest axis and then append the extra two bits to it
before uncompressing.

struct VS INPUT

{

float4 position : POSITION0,

float4 enc2Bit : POSITION1

};

void main(VS INPUT input)

{

6
Using Vertex Shaders for Geometry Compression

Section I — Geometry Manipulation Tricks

// get the 10,10,10 portion of the position

float3 cpos = input.position;

// decode our 2 bits (0-3)

float two bits = floor(input.enc2Bit.w / 64.0);

// factor in the extra bits and convert back into the 0-1 range

cpos.z = (cpos.z + two bits) * 0.25;

// transform by the inverse compression matrix

float4 pos = mul(float4(cpos,1), InvCompressionTransform);

}

Displacement Compression

My previous article covered the use of vertex shaders to render displacement
maps. This capability can be extended to a very powerful technique that Tom
Forsyth has termed “displacement compression.” It’s a complete family of tech-
niques that includes patch rendering, displacement mapping, and subdivision sur-
faces that any vertex shader-capable hardware can do and is a powerful form of
geometry compression.

Usually tessellation levels are decided by the CPU, as we currently have no
programmable tessellation hardware, but there are a few fixed-function hardware
tessellation systems that you may be able to use. This is the technique’s major
limitation — to a limited degree, we can remove triangles (by sending the verti-
ces to be clipped), but we cannot add triangles.

By using the vertex shaders as a function evaluator with the vertex stream
bringing in the function parameters, we can render many geometrical surfaces.
For the surfaces we use here, this consists of a barycentric surface function with
an additional displacement scalar, but other surfaces’ parameterizations are
possible.

There are two components that are needed for displacement compression.
� Displacement mapping: A method of retrieving a scalar displacement along

the surface normal. Without it, your displacement compression becomes
standard surface patch evaluation.

� Surface basis: Every displacement compression shader requires a basis sys-
tem that defines the base surface before displacement. The simplest is just
planar, although it could be as complex as a subdivision surface.

Displacement Mapping

There are at least four ways to get the displacement value into the vertex shader.
The more advanced methods require explicit hardware support and are not cov-
ered here. Refer to presentations from Mike Doggett and Tom Forsyth for details
[2]. Also, Tom Forsyth’s article covers actual generation of displacement data in
detail [1].

The technique presented here works on any vertex shader hardware by
treating the displacement map as a 1D vertex stream. It’s a generalization of the
technique that I presented in Direct3D ShaderX, which had an implied planar basis
that with a few minor modification works for any surface basis.

Using Vertex Shaders for Geometry Compression
7

Section I — Geometry Manipulation Tricks

The displacement value is stored explicitly in a vertex stream. If kept in a
separate stream, it can be accessed via the CPU as a standard displacement map,
or you can choose to pack it with other vertex elements. Packed will usually save
space, but a separate stream can be more convenient, especially for dynamically
updated displacement maps.

As there is only one one channel vertex data type (FLOAT1), you will proba-
ble store your displacement map in another data type that will have spare chan-
nels. For 8-bit displacement map data, UBYTE4 is the obvious choice. This may
appear to waste a lot of space, but in practice, enough other data has to be pro-
vided so that if space is a concern, it can be reclaimed to store other surface
parameters.

NOTE Unfortunately, DirectX 9 has no GPU-powered way of transferring or
sharing data between render targets and vertex streams. This is purely an API
issue, but it makes GPU-based dynamic displacement maps difficult (if not
impossible) under DirectX 9. Mike Doggett’s OpenGL uber-buffer render-to-
vertex-array demo shows what GPU modification of vertex data can do.

Pre-Filtering Displacement Maps

One form of filtering that can be used with vertex stream displacement is to store
the displacement value that would occur at the lower tessellation levels with the
usual displacement value. This is similar to mipmapping in that the filter is run
before the actual rendering. As with mipmapping, you can use either point sam-
pling (just select the appropriate displacement value) or linear filtering (select two
displacement values and linearly interpolate). The main difference with mipmap-
ping is that there is no easy way to access the texture derivatives in vertex
shaders, so you will probably have a global blend factor or base it on distance from
the camera.

If you store displacement values in UBYTE4, you could pack three lower lev-
els in the other three channels, which gives you an effective linear mip filter (but
with point min/mag filter).

Surface Basis

The key to displacement compression is reversing the standard relationship
between the vertex stream and the constant registers. A vertex shader for
indexed triangles can only access the data of one vertex at a time, but each vertex
shader can access more than one vertex constant. Thus, if you put mesh data into
constant memory, each vertex shader execution has access to multiple vertices,
etc. We upload vertices or control points to constant memory and feed normalized
barycentric coordinates (aka areal coordinates) and surface indices in via the ver-
tex stream. (For some surface bases we may need other parameters — i.e., subdi-
vision surfaces require surrounding surface indices as well.)

The normalized barycentric coordinates and surface indices uniquely define
where in the mesh (stored in constant memory) the vertex shader is currently
evaluating the surface basis function.

8
Using Vertex Shaders for Geometry Compression

Section I — Geometry Manipulation Tricks

Points Inside a Triangle

A unique point inside a triangle can be computed via the three vertices defining
the triangle and the barycentric coordinates of this interior point. The three verti-
ces for each triangle are placed into constant memory, and we store two of the
barycentric coordinates in the vertex stream (k can be computed from i and j). A
vertex stream triangle index is used to select which set of three vertices in con-
stant memory makes up the triangle with which we are currently working.

Here we hit a small issue: Some vertices belong to more than one triangle.
We have to duplicate each vertex attached to more than one triangle and give each
one a separate index.

//HLSL code for calculating interior points of a number of triangles.

float3 VertexPos[3 * NUM BASE TRIANGLE];

void main(float3 vertexStream : POSITION0)

{

float i = vertexStream.x;

float j = vertexStream.y

float k = 1.0 – i – j;

float baseIndex = vertexStream.z * 256; // un-normalize index

float3 pos = i*VertexPos[(baseIndex*3) + 0] +

j*VertexPos[(baseIndex*3) + 1] +

k*VertexPos[(baseIndex*3) + 2];

}

N-Patches

N-Patches (Curved PN Patches [3]) are a type of bicubic patch where the control
points are determined from a triangle’s vertex positions and normals. N-Patches
come in two variations, both with cubic interpolated position, but they differ in
whether the normal is interpolated linearly or quadratically. The algorithm calcu-
lates the control points for the patch and then evaluates at each point on the base
triangle.

Effectively, there are two frequencies at which this vertex shader needs exe-
cuting; the control points need calculating only once per patch, whereas the evalu-
ation needs running at every vertex. Some consoles can execute this pattern on
the GPU, but on current PC architectures you can either generate the control
points on the CPU and upload them to vertex constant memory or recalculate the
control points at every vertex. The first uses CPU power per patch, and each
patch uses more constant memory (for linear normal N-Patches, 39 floats versus
18 for vertices), whereas recalculating at every vertex uses a lot of vertex shader
power but allows better batching and has lower CPU overhead.

float3 VertexPos[3 * NUM BASE TRIANGLE];

float3 VertexNormals[3 * NUM BASE TRIANGLE];

// bicubic control points

float3 b300,b030,b003, b210,b120,b021, b201,b102,b012, b111;

Using Vertex Shaders for Geometry Compression
9

Section I — Geometry Manipulation Tricks

float3 n200,n020,n002;

void generateControlPointsWithLinearNormals(float baseIndex);

{

float3 v0 = VertexPos[(baseIndex*3) + 0];

float3 v1 = VertexPos[(baseIndex*3) + 1];

float3 v2 = VertexPos[(baseIndex*3) + 2];

float3 n0 = VertexNormal [(baseIndex*3) + 0];

float3 n1 = VertexNormal [(baseIndex*3) + 1];

float3 n2 = VertexNormal[(baseIndex*3) + 2];

// For the book I’ll do one bicubic patch control point here, for the rest

// see example code on CD/Web or reference ATI’s Curved PN Patch paper [3]

float3 edge = v1 - v0;

// E - (E.N)N

float3 tangent1 = edge;

float tmpf = dot(tangent1, n0);

tangent1 -= n0 * tmpf;

b210 = v0 + (tangent1 * rcp3);

}

void evaluateNPatchLinearNormal(float i, float j, out float3 pos, out float3 norm)

{

float k = 1 - i - j;

float k2 = k * k;

float k3 = k2 * k;

float i2 = i * i;

float i3 = i2 * i;

float j2 = j * j;

float j3 = j2 * j;

// bicubic position

pos = (b300*k3) + (b030*u3) + (b003*v3) +

(b210*3*k2*i) + (b120*3*k*i2) + (b201*3*k2*j) +

(b021*3*i2*j) + (b102*3*k*j2) + (b012*3*i2*j) +

(b111*6*k*i*j);

// linear normal

norm = (w * n200) + (i * n020) + (j * n002);

}

void main(float3 vertexStream : POSITION0)

{

float i = vertexStream.x;

float j = vertexStream.y

float baseIndex = vertexStream.z * 256;

float3 pos, norm;

generateControlPointsWithLinearNormals(baseIndex);

evaluateNPatchLinearNormal(i, j, pos, norm);

}

10
Using Vertex Shaders for Geometry Compression

Section I — Geometry Manipulation Tricks

Making It Fast Using a Linear Basis

Evaluating N-Patches via a vertex shader can be quite expensive. If you are also
using a displacement map, the inherent surface curve usually isn’t very important
anyway. Usually when using displacement compression, we would like a basis that
has a smooth surface normal but relies on the displacement map to handle the
position. A linear basis has all these properties: The surface normal is smooth
between patches (assuming the vertex normals are smooth), but the position
before the displacement is planar. The surface normal is generated from the linear
interpolation of the vertex normals (in a similar manner to how Phong shading
interpolates the lighting normal).

A linear basis only requires the mesh vertex data, and as these can be shared
between patches, it’s usually better to store vertex indices rather than a triangle
index at every interior point. This usually increases the number of vertices that
can be stored in constant memory, which increases performance as more patches
can be evaluated per call at the expense of slightly larger per-vertex data.

//HLSL for a displaced linear basis surface with indexed vertices

float MAX DISPLACEMENT HEIGHT = 100; // this is just an example value

float3 VertexPos[NUM BASE VERTICES];

float3 VertexNormal[NUM BASE VERTICES];

float2 VertexUV[NUM BASE VERTICES];

struct VS IN

{

float2 barycentric;

float3 indices;

float displacement;

};

void main(VS IN input)

{

float i = input.barycentric.x;

float j = input.barycentric.y

float k = 1.0 – i – j;

float i0 = input.indices.x * 256;

float i1 = input.indices.y * 256;

float i2 = input.indices.z * 256;

float3 pos = i*VertexPos[i0] + j*VertexPos[i1] + k*VertexPos[i2];

float3 normal = i* VertexNormal[i0] + j* VertexNormal[i1] + k* VertexNormal[i2];

float2 uv = i* VertexUV[i0] + j* VertexUV[i1] + k* VertexUV[i2];

normal = normalized(normal);

pos = pos + input.displacement * normal * MAX DISPLACEMENT HEIGHT;

}

Barycentric coordinates are in the range [0,1] and are the same for each triangle
at a particular subdivision. Indices only require a maximum of 256 values (there
are currently only 256 constants). So a byte per index is enough. For the triangle
indexed version, this is 1 byte + 1 byte displacement and a shared 8 bytes (two

Using Vertex Shaders for Geometry Compression
11

Section I — Geometry Manipulation Tricks

floats), and for the vertex indexed version it is 3 bytes + 1 byte displacement and
a shared 8 bytes (two floats). A good approach is to place the barycentric
coodinates in one stream and the indices and displacement in another. The
barycentric stream can be reused by all meshes at the same subdivision level.

Lighting Normal

As getting a perturbed lighting normal proves to be difficult, the best option is not
to bother at run time. If the displacement map is fixed, you can just create a nor-
mal map off-line that encodes the lighting normal. Even if you are vertex lighting,
you can feed the normal map values into the vertex shader in the same manner as
the displacement values.

If you really have to derive a sensible lighting normal in the vertex shader, it
is possible with some preprocessing. If we could access the local surface points
around us (perturb i and j by a small amount) and look up the displacement maps
at those points, we could calculate the local post-displaced tangent plane. The
only way of doing this in a vertex stream is by using a process similar to
prefiltering, by storing at every interior point the displacement values around us.
By storing all surrounding displacement values at every interior point, we could
run the surface evaluator (including the displacement) on each perturbed point
and calculate the lighting normal. In practice, only storing a couple of displaced
values (usually left and down) is enough to get a reasonable lighting normal.

Conclusion

Vertex shaders can be used as effective geometry decompressors; with tight
packing of vertex data and techniques like displacement compression, we can
save considerable memory and, more importantly, bandwidth. The cost of using
extra vertex shader instructions is usually not a problem, as in most cases this
isn’t a bottleneck; by using this “spare” vertex throughput to save bandwidth, it
may make things run faster.

Displacement compression requires changes to the tools (these are described
elsewhere [2]) but are an important future technique that you should be thinking
about implementing in the near and long term.

References

[1] Forsyth, Tom, “Displacement Mapping,” Shader X2: Shader Programming Tips

& Tricks with DirectX 9, Wolfgang Engel, ed., Wordware Publishing, Inc., 2004, pp.
73-86.

[2] Doggett, Mike and Tom Forsyth, “Displacement Mapping,” GDC 2003.

[3] Vlachos, A., J. Peters, C. Boyd, and J. Mitchell, “Curved PN Triangles,”
http://www.ati.com/developer/CurvedPNTriangles.pdf.

12
Using Vertex Shaders for Geometry Compression

Section I — Geometry Manipulation Tricks

Using Lookup Tables in
Vertex Shaders

Carsten Wenzel

When writing vertex shader code, you almost always want to squeeze out a few
instructions. Maybe you have to do it in order to stay within the instruction limit,
which can easily be reached when doing complex animation and lighting calcula-
tions. Or maybe you simply want to speed up your code to gain some extra frames
per second. Both goals can be achieved by encoding functions and terms in your
vertex shader that consume a lot of instructions (and thus time) to evaluate.
Another potential scenario would be the use of empirical data for certain calcula-
tions. This is where lookup tables can come in handy.

A table lookup can be implemented quite easily using the address register a0

to index an array of constant registers ctableBase . . . ctableBase + tableSize – 1 containing the
actual table data. Generally, you want to keep the table as small as possible.
Therefore, it is often necessary to interpolate between consecutive table values.
Here’s an example. Say your lookup table stores values of a continuous function
f(x) for all integers x in the range [0, 10]. Now it happens that you need to look up
the value for f(3.25). The exact value isn’t stored in the lookup table. To get an
estimated result, we could use the fractional part of the index value as the blend
factor for a linear interpolation, i.e.:

f f f f(.) [] . ([] [])3 25 3 0 25 4 3� � � �

Do not forget about the Nyquist theorem1 when representing continuous func-
tions via lookup tables, or else you’ll face aliasing. That is, make sure the table is
not too small — which implies that encoding terms and functions by means of
lookup tables is not feasible if the range you’re interested in exhibits high fre-
quencies. Also note that the table size directly affects the precision of the interpo-
lated result.

To demonstrate how a table lookup translates into actual shader code, let’s
start with a description of a sample application. Imagine you’d like to write a parti-
cle effect that simulates stars in a galaxy. They are placed in clusters on the x/z
plane with some variation in y and spin around the y axis with the galaxy center
being the pivot point. Rotation speed is based on the squared distance (0 = d2 =

13

1 The Nyquist theorem describes one of the most important rules of sampling. To fully reproduce a
continuous signal one needs to sample it with a frequency at least twice that of the highest frequency
contained in the original signal. For example, to reproduce a full 20 kHz audio signal it has to be sampled at
least 40,000 times a second.

1.0) to the center. Further assume that the vertex shader version used is 1.1,
which means there are no cosine and sine instructions at your disposal, but you
still want to do the animation entirely on the GPU. The following matrix Mrot

describes how much a star should be rotated after time seconds:

a
time

d
c a

s a

M

c s

s c
rot

�
� �

�

�

�

�

0 1 1000

0 0

0 0 0 0

0

2.
cos()
sin()

0

0 0 0 1

�

�

�
�
�
�
�

�

	

This shows the rotation matrix that should be built per vertex on the GPU.
Some of you might say that cosine-sine pairs can be calculated at the same

time using a Taylor-series expansion — such as the code written by Matthias
Wloka, which takes nine instructions and three constant registers to execute. But
you’d also need to determine a to pass it to the cosine-sine evaluation code. Since
we intend to use a lookup table anyway, all these calculations can be baked
together there, thus saving instructions in the vertex shader. Here is how to set
up the lookup table:

const unsigned int TABLE SIZE(64);

const unsigned int TABLE BASE(10);

for(unsigned int uiI(0); uiI < TABLE SIZE; ++uiI)

{

float d2(uiI / (float) (TABLE SIZE – 1));

float alpha(time / (0.1f + 1000.0f * d2));

float c(cosf(alpha));

float s(sinf(alpha));

D3DXVECTOR4 vLookup(c, s, 0.0f, 0.0f);

pD3DDev->SetVertexShaderConstant(TABLE BASE + uiI, &vLookup, 1);

}

float fIndexScale((float) (TABLE SIZE – 1));

float fIndexOffset(0.0f);

D3DXVECTOR4 vIndex(fIndexScale, fIndexOffset, 0.0f, 0.0f);

const unsigned int TABLE INDEX(9);

pD3DDev->SetVertexShaderConstant(TABLE INDEX, &vIndex, 1);

This way, to look up c and s, we only need to find d2, which is as simple as dotting
the position of a star with itself — the center of the galaxy is at (0, 0, 0). The pre-
vious pseudocode also sets all constants required to properly index the lookup
table, as we see very soon.

14
Using Lookup Tables in Vertex Shaders

Section I — Geometry Manipulation Tricks

What remains to do is write the vertex shader to animate each particle. The
code will be split into several pieces showing all necessary steps to get the stars
spinning on the GPU. The following part computes the table index.

#define srcPos v0 // (x, y, z, 1)

#define temp0 r0

#define temp1 r1

#define temp2 r2

#define worldPos r3

#define TABLE INDEX 9

#define TABLE BASE 10

vs.1.1

#ifdef DX9

dcl position0 srcPos

#endif

// calculate d^2 and table index

dp3 temp0, srcPos, srcPos

mad temp1, temp0, c[TABLE INDEX].x, c[TABLE INDEX].y

// get fraction of table index

expp temp0.y, temp1.y

// set table index for relative addressing of lookup table

#ifdef DX9

add a0.x, temp1.y, -temp0.y

#else // DX8

mov a0.x, temp1.y

#endif

The first section of the vertex shader determines the table index for the lookup
table. It calculates d2 and applies the index scale and offset constant. Why mad can
be used to evaluate the table index in a single instruction and how to set up the
index scale and offset constant for lookup tables covering arbitrary intervals is
shown in the appendix to this article.

When copying the table index to a0, care must be taken. According to the
DirectX 8.1 specs, moving a value into the address register automatically com-
putes the floor of that value — exactly the behavior we are after. Quite the
contrary if you use DirectX 9. Here you have to do the floor calculation yourself
because a value moved into the address register gets rounded to the nearest inte-
ger. This would obviously break the interpolation code due to a possibly incorrect
index in a0.

The following part of the shader calculates the linearly interpolated table
lookup value. It fetches the values for a0.x and a0.x + 1 from the lookup table.
Then it takes the already-computed fraction of the table index to blend between
them.

Using Lookup Tables in Vertex Shaders
15

Section I — Geometry Manipulation Tricks

// fetch two consecutive values from lookup table

mov temp1, c[a0.x + TABLE BASE]

mov temp2, c[a0.x + TABLE BASE + 1]

// lerp them using fraction of index

add temp2, temp2, -temp1

mad temp2, temp2, temp0.y, temp1

The third section starts off with a trick. Knowing that cos(x)2 + sin(x)2 = 1, we
can renormalize the linearly interpolated table lookup values to feed the rotation
matrix with proper ones, which is important for rotations. Now we can build the
matrix and transform each particle into world space.

// renormalize cos/sin

dp3 temp1.w, temp2, temp2

rsq temp1.w, temp1.w

mul temp2, temp2, temp1.w

// build y rotation matrix

mov temp0, temp2.xzyw // 1st row: cos 0.0 -sin 0.0

mov temp0.z, -temp0.z

mov temp1, temp2.yzxw // 3rd row: sin 0.0 cos 0.0

// rotate particle

mov worldPos, srcPos

dp3 worldPos.x, srcPos, temp0

dp3 worldPos.z, srcPos, temp1

Once the particle is in world space, you can apply the view-projection matrix as
usual, calculate the point size for the particle, set its color, etc. The following
screen shot shows the result of our efforts.

16
Using Lookup Tables in Vertex Shaders

Section I — Geometry Manipulation Tricks

Figure 1: Screen shot of vertex shader in action

Appendix

Say you’d like to create a lookup table containing tableSize entries for a function
f(x) in range [xmin, xmax]. The values stored in an array of constant registers ctableBase

. . . ctableBase + tableSize – 1 look like this:

0 � �

� � �
�

�

i tableSize

c f x i
x x

tableSi
tableBase i min

max min

ze �

�

�
�

�

	

1

To do a lookup you now need to map a value x from [xmin, xmax] to [tableBase,
tableBase + tableSize – 1]:

index
x x

x x
tableSize tableBase�

�

�
� � �min

max min

()1

This can be decoupled to:

index
x

x x
tableSize

x

x x
tabl�

�
� � �

�
�

max min

min

max min

() (1 eSize tableBase� �1)

In the equation above, everything but x is invariant. Taking a closer look reveals
that it can be expressed in terms of a mad:

index indexScale x indexOffset

indexScale
tableSize

� � �

�
�

�

� �
�

� �

1

1

x x

indexOffset
x

x x
tableSize

max min

min

max min

() � tableBase

Since tableBase can be used as a fixed relative offset when fetching values from
the lookup table (as can be seen in the vertex shader sample code above),
indexOffset can be rewritten as:

indexOffset
x

x x
tableSize� �

�
� �min

max min

()1

Using Lookup Tables in Vertex Shaders
17

Section I — Geometry Manipulation Tricks

Terrain Geomorphing in the
Vertex Shader

Daniel Wagner

Introduction

Terrain rendering has heretofore been computed by a CPU and rendered by a
combination of CPU and GPU. It is possible to implement a fast terrain renderer
that works optimally with current 3D hardware. This is done by using geo-mip-
mapping, which splits the terrain into a set of smaller meshes called patches.
Each patch is triangulated view-dependently into one single triangle strip. Special
care is taken to avoid gaps and t-vertices between neighboring patches. An arbi-
trary number of textures, which are combined using multiple alpha-blended ren-
dering passes, can be applied to the terrain. Since the terrain’s triangulation
changes over time, vertex normals cannot be used for lighting. Instead, a precal-
culated lightmap is used. In order to reduce popping when a patch switches
between two tessellation levels, geomorphing is implemented. As we point out
later, this splitting of the terrain into small patches allows some very helpful
optimizations.

Why Geomorphing?

Terrain rendering has been an active research area for quite a long time. Although
some impressive algorithms have been developed, the game development com-
munity has rarely used these methods because of the high computational
demands. Recently, another reason for not using the classic terrain rendering
approaches such as ROAM [Duc97] or VDPM [Hop98] emerged: Modern GPUs
just don’t like CPU-generated dynamic vertex data. The game developers’ solu-
tion for this problem was to build very low-resolution maps and fine-tuned terrain
layout for visibility optimization. In contrast to indoor levels, terrain visibility is
more difficult to tune, and there are cases where the level designer just wants to
show distant views.

The solution to these problems is to introduce some kind of terrain LOD
(level of detail). The problem with simple LOD methods is that at the moment
that vertices are added or removed, the mesh is changed; this leads to very
noticeable popping effects. The only clean way out of this is to introduce geo-
morphing, which inserts new vertices along an existing edge and later moves that

18

vertex to its final position. As a consequence, the terrain mesh is no longer static
but changes (“morphs”) every frame. It is obvious that this morphing has to be
done in hardware in order to achieve high performance.

Previous Work

A lot of work has already been done on rendering terrain meshes. Classic algo-
rithms such as ROAM and VDPM attempt to generate triangulations that opti-
mally adapt to terrain given as a heightmap. This definition of “optimally” was
defined to be as few triangles as possible for a given quality criteria. While this
was a desirable aim some years ago, things have changed.

Today, the absolute number of triangles is not as important. As of 2003,
games that render up to 200,000 triangles per frame have been released, including
games such as Unreal 2. An attractive terrain triangulation takes some 10,000 tri-
angles. This means that it is no longer important if we need 10,000 or 20,000 tri-
angles for the terrain mesh, as long as it is done fast enough. Today “fast” also
implies using as little CPU processing power as possible, since in real-life applica-
tions the CPU usually has more things to do than just drawing terrain (e.g., AI,
physics, voice-over, IP compression, etc.). The other important thing today is to
create the mesh in such a way that the graphics hardware can process it quickly,
which usually means the creation of long triangle strips. Both requirements are
mostly unfulfilled by the classic terrain meshing algorithms.

The work in this article is based on the idea of geo-mipmapping described by
de Boer in [Boe00]. Another piece of work that uses the idea of splitting the ter-
rain into a fixed set of small tiles is [Sno01], although the author does not write
about popping effects or how to efficiently apply materials to the mesh.

Building the Mesh

The terrain mesh is created from an 8-bit heightmap that has to be sized 2^n+1
* 2^n+1 (e.g., 17*17, 33*33, 65*65, etc.) in order to create n^2 * n^2 quads.
The heightmap (see Figure 1a) can be created from real data (e.g., DEM) [Usg86]
or by any program that can export into raw
8-bit heightmap data (e.g., Corel Bryce
[Cor01]). The number of vertices of a patch
changes during rendering (see view-depend-
ent tessellation), which forbids using vertex
normals for lighting. Therefore, a lightmap
(see Figure 1b) is used instead.

In order to create the lightmap, the nor-
mals for each point in the heightmap have to
be calculated first. This can be done by creat-
ing two 3D vectors, each pointing from the
current height value to the neighboring height
positions. Calculating the cross product of

Terrain Geomorphing in the Vertex Shader
19

Section I — Geometry Manipulation Tricks

Figure 1a: A sample heightmap

these two vectors gives the current normal
vector, which can be used to calculate a diffuse
lighting value. To get better results, including
static shadows, advanced terrain data editing
software such as Wilbur [Slay95] or Corel
Bryce should be used.

The heightmap is split into 17*17 val-
ues-sized parts called patches. The borders of
neighboring patches overlap by one value
(e.g., value column 16 is shared by patch 0/0
and patch 1/0). Geometry for each patch is
created at run time as a single indexed trian-
gle strip. A patch can create geometry in five
different tessellation levels, ranging from full
geometry (2*16*16 triangles) down to a single
flat quad (two triangles; for an illustration see Figure 2). Where needed, degener-
ate triangles are inserted to connect the sub-strips into one large strip [Eva96].

In order to connect two strips, the last vertex of the first strip and the first
vertex of the second strip have to be inserted twice. The result is triangles that
connect the two strips in the form of a line and are therefore invisible (unless ren-
dered in wireframe mode). The advantage of connecting small strips to one larger
strip is that less API calls are needed to draw the patch. Since index vertices are
used and a lot of today’s graphics hardware can recognize and automatically
remove degenerate triangles, the rendering and bandwidth overhead of the
degenerate triangles is very low.

Calculating the Tessellation Level of a Patch

Before a frame is rendered, each patch is checked for its necessary tessellation
level. It’s easy to see from Figure 2 that the error of each patch increases as the
number of vertices is reduced. In a preprocessing step, for each level the position
of the vertex with the largest error (the one that has the largest distance to the
corresponding correct position, called “maxerror vertex” later on) is determined
and saved together with the correct position.

When determining the level at which to render, all saved “maxerror vertices”
are projected into the scene and the resulting errors calculated. Finally, the level
with the largest error below an application-defined error boundary is chosen. In

20
Terrain Geomorphing in the Vertex Shader

Section I — Geometry Manipulation Tricks

Figure 1b: Corresponding lightmap
created with Wilbur

Figure 2: The same patch tessellated in different levels ranging from full geometry (level 0) to a
single quad (level 4)

order to create a specific level’s geometry, only the “necessary” vertices are writ-
ten into the buffers. For example, to create level 0, all vertices are used. Level 1
leaves out every second vertex, reducing the triangle count by a quarter. Level 2
uses only every fourth vertex, and so on.

Connecting Patches

If two neighboring patches with different tessellation levels were simply rendered
one next to the other, gaps would occur (imagine drawing any of the patches in
Figure 2 next to any other). Another problem is t-vertices, which occur when a
vertex is positioned on the edge of another triangle. Because of rounding errors,
that vertex will not be exactly on the edge of the neighboring triangle, and small
gaps that are only a few pixels in size can become visible. Even worse, when mov-
ing the camera, these gaps can emerge and disappear every frame, which leads to
a very annoying flickering effect.

To solve both problems, it is obvious that each patch must know its neigh-
bors’ tessellation levels. To do so, all tessellation levels are calculated first with-
out creating the resulting geometry and then each patch is informed about its
neighbors’ levels. After that, each patch updates its geometry as necessary.
Geometry updating has to be done only if the inner level or any of the neighbors’
levels has changed. To close gaps and prevent t-vertices between patches, a bor-
der of “adapting triangles” is created that connects the differently sized triangles
(see Figure 3). It is obvious that only one of two neighboring patches has to adapt
to the other. As we can see in the section “Geomorphing,” it is necessary for the
patch with the finer tessellation level (having more geometry) to adapt.

Figure 3a shows a typical case of where t-vertices occur. In Figure 3b those
“adapting triangles” at the left side of the right patch are created to avoid t-verti-
ces. Although these triangles look like good candidates for being created by using
triangle fans, they are also implemented using strips, since fans cannot be com-
bined into bigger fans, as can be achieved with strips.

Terrain Geomorphing in the Vertex Shader
21

Section I — Geometry Manipulation Tricks

Figure 3a: T-vertices at the border of two
patches

Figure 3b: T-vertices removed

Materials

Our terrain has no shading or materials yet. Applying dynamic light by using sur-
face normals would be the easiest way to go but would result in strange effects
when patches switch tessellation levels. The reduction of vertices goes hand in
hand with the loss of an equal number of normals. When a normal is removed, the
resulting diffuse color value is removed too. The user notices such changes very
easily — especially if the removed normal produced a color value that was very
different from its neighboring color values.

The solution to this problem is easy and well known in today’s computer
graphics community. Instead of doing real-time lighting, we can use a precalcu-
lated lightmap, which is by its nature more resistant to vertex removal than
per-vertex lighting. Besides solving our tessellation problem, it provides us with
the possibility to precalculate shadows into the lightmap. The disadvantage of
using lightmaps is that the light’s position is now fixed to the position that was
used during the lightmap’s generation.

In order to apply a lightmap (see Figure 4), we need to add texture coordi-
nates to the vertices. Since only one lightmap is used for the whole terrain, it
simply spans the texture coordinates from (0,0) to (1,1).

22
Terrain Geomorphing in the Vertex Shader

Section I — Geometry Manipulation Tricks

Figure 4a: Lit terrain Figure 4b: Same terrain with wireframe overlay

Figure 4c: Terrain with overlaid triangle mesh Figure 4d: Getting close to the ground, the
highly detailed materials become visible.

Now that the terrain’s mesh is set up and shaded, it’s time to apply some materi-
als. In contrast to the lightmap, we need far more detail for materials such as
grass, mud, or stone to look good. (See Figures 4c and 4d.) The texture won’t be
large enough to cover the complete landscape and look good, regardless of how
high the resolution of a texture might be. For example, if we stretch one texture
of grass over a complete terrain, the grass wouldn’t even be recognizable. One
way to overcome this problem is to repeat material textures.

To achieve this, we scale and wrap the texture so that it is repeated over the
terrain. By setting a texture matrix we can use the same texture coordinates for
the materials as for the lightmap. As we see later, this one set of (never-changing)
texture coordinates, together with some texture matrices, is sufficient for an arbi-
trary number of materials (each one having its own scaling factor and/or rotation)
and even for moving faked cloud shadows (see below).

To combine a material with the lightmap, two texture stages are set up using
modulation (component-wise multiplication). The result is written into the graph-
ics buffer. In order to use more than one material, each material is combined with
a different lightmap containing a different alpha channel. Although this would
allow each material to use different color values for the lightmap too, in practice
this hardly makes any sense. This results in one render pass per material, which
is alpha blended into the frame buffer. As we see later, a lot of fillrate can be saved
if not every patch uses every material — which is the usual case (see the section
titled “Optimizations”). Figure 5 shows how two materials are combined with
lightmaps and then blended using an alpha map. (For better visualization, the
materials’ textures are not repeated in Figure 5.)

In the top row of Figure 5, the base material is combined with the base lightmap.
Since there is nothing to be drawn before this pass, no alpha map is needed. In the
bottom row, the second pass is combined with another lightmap. This time there
is an alpha channel (invisible parts are drawn with checkered boxes). The result-
ing image is finally alpha-blended to the first pass (the right image in Figure 5).

It is important to note that this method allows each material pass to use a
free scaling (repeating) factor for the color values, which results in highly detailed

Terrain Geomorphing in the Vertex Shader
23

Section I — Geometry Manipulation Tricks

Figure 5: Combining two render passes

materials, while the lightmap does not need to be repeated since lighting values
do not need as much detail. Only two texture stages are used at once, which
allows combining an arbitrary number of passes. Most applications will not need
more than three or four materials.

After all materials have been rendered, another pass can be drawn in order to
simulate cloud shadows. Again, we can repeat the shadows in order to get more
detailed-looking shadows. As we are already using a texture matrix to do scaling,
we can animate the clouds easily by applying velocity to the matrix’s translation
values. The effect is that the clouds’ shadows move along the surface, which
makes the whole scene look far more realistic and “alive.”

Geomorphing

One problem with geometry management using level of detail is that at some
point vertices will have to be removed or added, which leads to the already-
described “popping” effect. In our case of geo-mipmapping, where the number of
vertices is doubled or halved at each tessellation level change, this popping
becomes very visible. In order to reduce the popping effect, geomorphing is intro-
duced. The aim of geomorphing is to move (morph) vertices softly into their posi-
tion in the next level before that next level is activated. If this is done perfectly, no
popping but only slightly moving vertices are observed by the user. Although this
vertex moving looks a little bit strange if a very low detailed terrain mesh is used,
it is still less annoying to the user than the popping effect.

It can be shown that only vertices with odd indices inside a patch have to
move and that those vertices on even positions can stay fixed because they are
not removed when switching to the next coarser tessellation level. Figure 6a
shows the tessellation of a patch in tessellation level 2 from a top view. Figure 6b
shows the next level of tessellation coarseness (level 3) and that the vertices 1, 2,
and 3 do not have to move since they are still there in the next level. There are
three possible cases in which a vertex has to move:
� Case A: The vertex is on an odd x- and even y-position. Vertex has to move

into the middle position between the next left (1) and the right (2) vertices.
� Case B: The vertex is on an odd x- and odd y-position. Vertex has to move

into the middle position between the next top-left (1) and the bottom-right
(3) vertices.

� Case C: The vertex is on an even x- and odd y-position. Vertex has to move
into the middle position between the next top (2) and the bottom (3) vertices.

Things become much clearer when taking a look at the result of the morphing
process: After the morphing is done, the patch is retessallated using the next tes-
sellation level. In Figure 6b it becomes obvious that the previously existing ver-
tex A had to move into the average middle position between the vertices 1 and 2
in order to be removed without popping.

24
Terrain Geomorphing in the Vertex Shader

Section I — Geometry Manipulation Tricks

Optimizations

Although the geometry’s creation is very fast and we are rendering the mesh
using only a small number of long triangle strips (usually about some hundred
strips per frame), there are quite a few optimizations that we can do to increase
the performance on the side of the processor as well as the graphics card.

As described in the section titled “Materials,” we use a multi-pass rendering
approach to apply more than one material to the ground. Generally, most materials
will be used only in small parts of the landscape and be invisible in most others.
The alpha channel of the material’s lightmap defines where which material is visi-
ble. Of course, it’s a waste of GPU bandwidth to render materials on patches that
don’t use that material at all (where the material’s alpha channel is zero in the
corresponding patch’s part).

It’s easy to see that if the part of a material’s alpha channel that covers one
distinct patch is completely set to zero, then this patch does not need to be ren-
dered with that material. Assuming that the materials’ alpha channels won’t
change during run time, we can calculate for each patch which materials will be
visible and which won’t in a preprocessing step. Later at run time, only those
passes are rendered that really contribute to the final image.

Another important optimization is to reduce the number of patches that need
to be rendered at all. This is done in three steps. First, a rectangle that covers the
projection of the viewing frustum onto the ground plane is calculated. All patches
outside that rectangle will surely not be visible. All remaining patches are culled
against the viewing frustum. To do this, we clip the patches’ bounding boxes
against all six sides of the viewing frustum. All remaining patches are guaranteed
to lie at least partially inside the camera’s visible area. Nevertheless, not all of
these remaining patches will necessarily be visible because some of them will
probably be hidden from other patches (e.g., a mountain). To optimize this case,
we can finally use a PVS (Potentially Visible Sets) algorithm to further reduce the
number of patches that need to be rendered.

Terrain Geomorphing in the Vertex Shader
25

Section I — Geometry Manipulation Tricks

Figure 6a: Fine geometry with morphing
vertices

Figure 6b: Corresponding coarser
tessellation level. Only odd indexed
vertices were removed.

PVS [Air91, Tel91] is used to determine, at run time, which patches can be
seen from a given position and which are hidden by other objects (in our case, also
patches). Depending on the type of landscape and the viewer’s position, a lot of
patches can be removed this way. In Figure 7 the camera is placed in a valley and
looks at a hill.

Figure 7b shows that a lot of triangles are
rendered that do not contribute to the final
image because they are hidden by the front
triangles forming the hill. Figure 7c shows
how PVS can successfully remove most of
those triangles. Figures 7d and 7e show the
same PVS optimized scene, as seen from
the camera’s view and as seen from above.
The nice thing about PVS is that the cost of
processing power is almost zero at run time
because most calculations are done offline
when the terrain is designed.

26
Terrain Geomorphing in the Vertex Shader

Section I — Geometry Manipulation Tricks

Figure 7a: Final image Figure 7b: Without PVS

Figure 7c: With PVS Figure 7d: View from camera’s position

Figure 7e: Same scene as 7d from a different
viewpoint with same PVS and culling performed
(See Color Plate 1.)

In order to (pre-) calculate a PVS, the area of interest is divided into smaller
parts. In our case it is obvious that we should use patches for those parts. For
example, a landscape consisting of 16x16 patches requires 16x16 cells on the
ground plane (z=0). To allow the camera to move up and down, it is necessary to
have several layers of such cells. Tests have shown that 32 layers in a range of
three times the height of the landscape are enough for fine-graded PVS usage.

One problem with PVS is the large amount of memory needed to store all the
visibility data. In a landscape with 16x16 patches and 32 layers of PVS data, we
get 8,192 PVS cells. For each cell we have to store the 16x16 patches that are
visible from that cell. This means that we have to store more than two million val-
ues. Fortunately, we only need to store one-bit values (visible/not visible) and can
save the PVS as a bit field, which results in a 256Kbyte data file in this example
case.

Figure 8 shows an example image
from the PVS calculation application
where the camera is located in the cen-
ter of the valley (the black part in the
middle of the green dots (the lighter
dots at the top center)). All red dots
resemble those patches that are not
visible from that location. Determining
whether a patch is visible from a loca-
tion is done by using an LOS (line of
sight) algorithm, which tracks a line
from the viewer’s position to the
patch’s position. If the line does not hit
the landscape on its way to the patch,
this patch is visible from that location.

To optimize memory require-
ments, the renderer distinguishes
between patches that are active (currently visible) and those that aren’t. Only
those patches that are currently active are fully resident in memory. The memory
footprint of inactive patches is rather low (about 200 bytes per patch).

Geomorphing in Hardware

Doing geomorphing for a single patch basically means doing vertex tweening
between the current tessellation level and the next finer one. The tessellation
level calculation returns a tessellation factor in the form of a floating-point value,
where the integer part means the current level and the fractional part denotes the
tweening factor (e.g., a factor of 2.46 means that tweening is done between levels
2 and 3 and the tweening factor is 0.46). Tweening between two mesh representa-
tions is a well-known technique in computer graphics and easily allows an imple-
mentation of morphing for one single patch (vertices that should not move simply
have the same position in both representations).

Terrain Geomorphing in the Vertex Shader
27

Section I — Geometry Manipulation Tricks

Figure 8: PVS from top view. The camera
sits in the valley in the middle of the green
dots.

The problem becomes more difficult if a patch’s neighbors are considered.
Problems start with the shared border vertices, which can only follow one of the
two patches but not both (unless we accept gaps). As a consequence, one patch
has to adapt its border vertices to those of its neighbor. In order to do correct
geomorphing, it is necessary that the finer patch allows the coarser one to dictate
the border vertices’ position. This means that we do not only have to care about
one tweening factor as in the single patch case but have to add four more factors
for the four shared neighbor vertices. Since the vertex shader cannot distinguish
between interior and border vertices, these five factors have to be applied to all
vertices of a patch. So we are doing a tweening between five meshes.

As if this wasn’t already enough, we also have to take special care with the
inner neighbor vertices of the border vertices. Unfortunately, these vertices also
need their own tweening factor in order to allow correct vertex insertion (when
switching to a finer tessellation level). To point out this quite complicated situa-
tion more clearly, we go back to the example of Figure 6b. For example, we state
that the patch’s left border follows its coarser left neighbor. Then the tweening
factor of vertex 1 depends on the left neighbor, whereas the tweening factor of all
interior vertices (such as vertex 2) depend on the patch itself. When the patch
reaches its next finer tessellation level (Figure 6a), the new vertex A is inserted.
Figure 9 shows the range in which vertices 1 and 2 can move and the range in
which vertex A has to be inserted. (Recall that a newly inserted vertex must
always lie in the middle of its preexisting neighbors.) To make it clear why vertex
A needs its own tweening factor, suppose that the vertices 1 and 2 are both at
their bottom position when A is inserted (tweeningL and tweeningI are both 0.0).
Later on when A is removed, the vertices 1 and 2 might lie somewhere else and
A would now probably not lie in the middle between those two if it had the same
tweening factor as vertex 1 or vertex 2. The consequence is that vertex A must
have a tweening factor (tweeningA) that depends on both the factor of vertex 1
(tweeningL — the factor from the left neighboring patch) and on that of vertex 2
(tweeningI — the factor by which all interior vertices are tweened).

28
Terrain Geomorphing in the Vertex Shader

Section I — Geometry Manipulation Tricks

Figure 9: Vertex insertion/removal range

What we want is the following:

Vertex A should:
� be inserted/removed in the middle between the positions of vertex 1 and

vertex 2
� not pop when the patch switches to another tessellation level
� not pop when the left neighbor switches to another tessellation level

The simple formula tweeningA = (1.0-tweeningL) * tweeningI does the job.
Each side of a patch has such a tweeningA that results in four additional tessella-
tion levels.

Summing this up, we have nine tessellation levels that must all be combined
every frame for each vertex. What we actually do in order to calculate the final
position of a vertex is the following:

PosFinal = PosBase + tweeningI*dI + tweeningL*dL + tweeningR*dR + tweeningT*dT + ...

Since we only morph in one direction (as there is no reason to morph other than
up/down in a heightmap-generated terrain), this results in nine multiplications
and nine additions just for the geomorphing task (not taking into account any
matrix multiplications for transformation). This would be quite slow in terms of
performance on the CPU. Fortunately, the GPU provides us with an ideal solution.
The vertex shader command dp4 can multiply four values with four other values
and sum the products in just one instruction. This allows us to do all these calcu-
lations in just five instructions, which is only slightly more than a single 4x4
matrix multiplication takes.

The following code snippet shows the vertex data and constants layout that is
pushed onto the graphics card.

; Constants specified by the app

;

; c0 = (factorSelf, 0.0f, 0.5f, 1.0f)

; c2 = (factorLeft, factorLeft2, factorRight, factorRight2),

; c3 = (factorBottom, factorBottom2, factorTop, factorTop2)

;

; c4-c7 = WorldViewProjection Matrix

; c8-c11 = Pass 0 Texture Matrix

;

;

; Vertex components (as specified in the vertex DECLARATION)

;

; v0 = (posX, posZ, texX, texY)

; v1 = (posY, yMoveSelf, 0.0, 1.0)

; v2 = (yMoveLeft, yMoveLeft2, yMoveRight, yMoveRight2)

; v3 = (yMoveBottom, yMoveBottom2, yMoveTop, yMoveTop2)

We see that only four vectors are needed to describe each vertex, including all
tweening. Note that those vectors v0-v3 do not change as long as the patch is not
retessellated; they are therefore good candidates for static vertex buffers.

The following code shows how vertices are tweened and transformed by the
view/projection matrix.

Terrain Geomorphing in the Vertex Shader
29

Section I — Geometry Manipulation Tricks

;---

; Vertex transformation

;---

mov r0, v0.xzyy ; build the base vertex

mov r0.w, c0.w ; set w-component to 1.0

dp4 r1.x, v2, c2 ; calc all left and right neighbor tweening

dp4 r1.y, v3, c3 ; calc all bottom and top neighbor tweening

mad r0.y, v1.y, c0.x, v1.x ; add factorSelf*yMoveSelf

add r0.y, r0.y, r1.x ; add left and right factors

add r0.y, r0.y, r1.y ; add bottom and top factors

m4x4 r3, r0, c4 ; matrix transformation

mov oPos, r3

While this code could surely be further optimized, there is no real reason to do so,
since it is already very short for a typical vertex shader.

Finally, there is only texture coordinate transformation.

;---

; Texture coordinates

;---

; Create tex coords for pass 0 – material (use texture matrix)

dp4 oT0.x, v0.z, c8

dp4 oT0.y, v0.w, c9

; Create tex coords for pass 1 – lightmap (simple copy, no transformation)

mov oT1.xy, v0.zw

oT0 is multiplied by the texture matrix to allow scaling, rotation, and movement
of materials and cloud shadows. oT1 is not transformed, since the texture coordi-
nates for the lightmap do not change and always span (0,0) to (1,1).

Results

The following table shows frame rates achieved on an Athlon-1300 with a stan-
dard GeForce3. The minimum scene uses just one material together with a
lightmap (two textures in one render pass — see Figure 10a). The full scene ren-
ders the same landscape with three materials, plus a cloud shadow layer, plus a
skybox and a large lens flare (seven textures in four render passes for the terrain
— see Figure 10b).

The following are frame rates achieved at different scene setups and LOD
systems:

Static LOD Software Morphing Hardware Morphing

Minimum Scene 587 fps 312 fps 583 fps

Full Scene 231 fps 205 fps 230 fps

30
Terrain Geomorphing in the Vertex Shader

Section I — Geometry Manipulation Tricks

The table shows that geomorphing done using the GPU is almost as fast as doing
no geomorphing at all. In the minimum scene the software morphing method falls
back tremendously since the CPU and the system bus cannot deliver the high
frame rates (recall that software morphing needs to send all vertices over the bus
each frame) achieved by the other methods. Things change when using the full
scene setup. Here the software morphing takes advantage of the fact that the ter-
rain is created and sent to the GPU only once but is used four times per frame for
the four render passes and the skybox and lens flare slow down the frame rate
independently. Notice that the software morphing method uses the same
approach as for hardware morphing. An implementation fundamentally targeted
for software rendering would come off far better.

In this article I’ve shown how to render a dynamically view-dependent triangu-
lated landscape with geomorphing by taking advantage of today’s graphics hard-
ware. Splitting the mesh into smaller parts allowed us to apply the described
optimizations, which led to achieved high frame rates. Further work could be
done to extend the system to use geometry paging for really large terrains. Other
open topics are the implementation of different render paths for several graphics
cards or using a bump map instead of a lightmap in order to achieve dynamic light-
ing. The new generation of DX9 cards allows the use of up to 16 textures per
pass, which would enable us to draw seven materials plus a cloud shadow layer in
just one pass.

References

[Air91] Airey, John, “Increasing Update Rates in the Building Walkthrough Sys-
tem with Automatic Model-Space Subdivision and Potentially Visible Set Calcula-
tions,” Ph.D. thesis, University of North Carolina, Chapel Hill, 1991.

[Boe00] de Boer, Willem H., “Fast Terrain Rendering Using Geometrical
MipMapping,” E-mersion Project, October 2000, http://www.connectii.net/
emersion.

Terrain Geomorphing in the Vertex Shader
31

Section I — Geometry Manipulation Tricks

Figure 10a: Terrain with one material layer Figure 10b: Same as 10a but with three
materials (grass, stone, mud) + moving cloud
layer + skybox + lens flare

[Cor01] Corel Bryce by Corel Corporation, http://www.corel.com.

[Duc97] Duchaineau, M., M. Wolinski, D. Sigeti, M. Miller, C. Aldrich, and
M. Mineev-Weinstein, “ROAMing Terrain: Real-time Optimally Adapting
Meshes,” IEEE Visualization, Oct. 1997, pp. 81-88, http://www.llnl.gov/
graphics/ROAM.

[Eva96] Evans, Francine, Steven Skiena, and Amitabh Varshney, “Optimizing
triangle strips for fast rendering,” 1996, pp. 319-326, http://www.cs.sunysb.edu/
evans/stripe.html.

[Hop98] Hoppe, H., “Smooth View-Dependent Level-of-Detail Control and its
Application to Terrain Rendering,” IEEE Visualization, Oct. 1998, pp. 35-42,
http://www.research.microsoft.com/~hoppe.

[Slay95] Slayton, Joseph R., Wilbur, the latest version can be retrieved at
http://www.ridgenet.net/~jslayton/software.html.

[Sno01] Snook, Greg, “Simplified Terrain Using Interlocking Tiles,” Game Pro-

gramming Gems 2, Charles River Media, 2001, pp. 377-383.

[Tel91] Teller, Seth J. and Carlo H. Sequin, “Visibility preprocessing for interac-
tive walkthroughs,” Computer Graphics (Proceedings of SIGGRAPH ’91), July
1991, 25(4):61-69.

[Usg86] U.S. Geological Survey (USGS), “Data Users Guide 5 — Digital Eleva-
tion Models,” Earth Science Information Center (ESIC), U.S. Geological Survey,
507 National Center, Reston, VA, 1986.

32
Terrain Geomorphing in the Vertex Shader

Section I — Geometry Manipulation Tricks

3D Planets on the GPU

Jesse Laeuchli

Rendering planets in a 3D application is a difficult task. Previously, if a program-
mer wanted to include planets, the CPU had to juggle planet rendering and any
other tasks the program might have. Now it is possible to perform almost the
entire task on the GPU using vertex and pixel shaders. Moreover, the procedural
model presented here allows a near infinite number of different planets to be ren-
dered. This article examines rendering planets entirely on the GPU using nVidia’s
Cg. (See [nVidia] for more information about Cg.)

The most important task in rendering planets is to generate the geometry.
This is usually done by first generating a sphere and then deforming the points on
the sphere with some type of fractal. The sphere can be generated using the para-
metric equation:

X=sin(u)*sin(v)
Y=cos(u)*sin(v)
Z=cos(v)

Evaluating this equation on the GPU is fairly simple. It can be done by passing the
u,v values in position.xy and then calling the sincos function. Using the sincos
function (as opposed to separately calling the sin and cos functions) can make the
code cleaner and faster. The code below achieves this.

float fxsin;

float fxcos;

float fysin;

float fycos;

sincos(In.pos.x,fxsin,fxcos);

sincos(In.pos.y,fysin,fycos);

Sphere.x= fxsin* fysin;

Sphere.y= fxcos* fysin;

Sphere.z= fycos;

After the sphere has been generated, it must be deformed to create the planet
geometry. A function is needed that can be called at each point of the sphere,
which will then return a scalar value that can be used to modify the sphere’s
geometry. We can obtain this function by using noise to create a fractal. The
fractal shown here is a hybrid multifractal [Ebert98] and is created by calling 3D
noise several times and then scaling the noise by the product of the frequencies.
This creates a fractal with smooth planes, rounded hills, and tall mountains. See

33

[Ebert98] for more types of fractals. Below is the code to implement the
multifractal:

float MultiFractal(float3 pos, float octaves, float offset,float freqchange,float h,

float4 pg[B2])

{

float result;

float signal;

float weight;

float freq=1;

result=(noise(pos,pg)+offset)*pow(freq,-h);

freq*=freqchange;

weight=result;

pos*=freqchange;

for(int i=0;i<octaves;i++)

{

clamp(weight,0,1); //Clamp used to get rid of a conditional and keep weight

// within [0:1]

signal=(noise(pos,pg)+offset)*pow(freq,-h); //Get noise value and multiply it

freq*=freqchange; //Update frequency each octave.

result+=weight*signal;

weight*=signal;

pos*=freqchange;

i++;

}

return result;

}

Note that this code is only usable with a vertex profile because it uses looping to
keep the instruction count down. It would be possible to use the code in a pixel
shader (to generate a planet texture, for example), but then the loop would need
to be unrolled.

It is also possible to use a 2D noise function, but doing so would introduce
artifacts around the poles of the planets by crowding too much detail around them
and too little around the middle. However, using a 2D noise function has the bene-
fit of being faster then a 3D noise function. In the example program, a 3D noise
function is used, specifically Perlin’s noise function [Perlin], which works by tak-
ing the dot product between several vectors and interpolating between the
results. Below is the Cg code used:

float noise(float3 v, float4 pg[B2])

{

v = v + float3(10000.0f, 10000.0f, 10000.0f); // hack to avoid negative numbers

float3 i = frac(v * BR) * B; // index between 0 and B-1

float3 f = frac(v); // fractional position

// lookup in permutation table

float2 p;

p[0] = pg[i[0]].w;

p[1] = pg[i[0] + 1].w;

34
3D Planets on the GPU

Section I — Geometry Manipulation Tricks

p = p + i[1];

float4 b;

b[0] = pg[p[0]].w;

b[1] = pg[p[1]].w;

b[2] = pg[p[0] + 1].w;

b[3] = pg[p[1] + 1].w;

b = b + i[2];

// compute dot products between gradients and vectors

float4 r;

r[0] = dot(pg[b[0]].xyz, f);

r[1] = dot(pg[b[1]].xyz, f - float3(1.0f, 0.0f, 0.0f));

r[2] = dot(pg[b[2]].xyz, f - float3(0.0f, 1.0f, 0.0f));

r[3] = dot(pg[b[3]].xyz, f - float3(1.0f, 1.0f, 0.0f));

float4 r1;

r1[0] = dot(pg[b[0] + 1].xyz, f - float3(0.0f, 0.0f, 1.0f));

r1[1] = dot(pg[b[1] + 1].xyz, f - float3(1.0f, 0.0f, 1.0f));

r1[2] = dot(pg[b[2] + 1].xyz, f - float3(0.0f, 1.0f, 1.0f));

r1[3] = dot(pg[b[3] + 1].xyz, f - float3(1.0f, 1.0f, 1.0f));

// interpolate

f = s curve(f);

r = lerp(r, r1, f[2]);

r = lerp(r.xyyy, r.zwww, f[1]);

return lerp(r.x, r.y, f[0]);

}

Perlin noise works well with vertex profiles but is less suitable for pixel profiles,
where other (albeit lower quality) noise functions can be written that use fewer
texture accesses and require fewer instructions.

By passing the x,y,z coordi-
nates of the sphere to the
multifractal function, it is possi-
ble to create the planet geome-
try. Figure 1 is a screen shot of
the generated geometry.

After the geometry has
been generated, the planet
needs to be textured. This can
be done in a pixel shader by first
creating a one-dimensional tex-
ture containing the various col-
ors that the planet will use. In
the example program, a simple
texture containing just a few
shades of green, brown, and white is used, but different textures and textures
containing different colors are also possible. If, for example, a planet resembling
Mars is required, then the texture could be filled with reddish colors. To index

3D Planets on the GPU
35

Section I — Geometry Manipulation Tricks

Figure 1: Untextured planet geometry

into the texture, the vertex shader passes the height used to modify the sphere
geometry, scaled to the range [0,1], to the pixel shader. The pixel shader then
uses this to access the texture. However, this leads to a fairly unrealistic color
distribution. In nature, height is not the sole basis for the terrain color. Snow does
uniformly appear on the tops of mountains, and sometimes it falls lower down.
The same applies for grass and other types of terrain. To account for this, noise
can be used to modify the index into the texture. This makes the distribution of
terrain types more random and visually pleasing. Below is the code used to
achieve this:

float height=In.dif.x; //Height passed from vertex shader

float modifyindex=(2*noise(normalize(In.tex1.xyz*10,BaseTexture2)-1)/10; //scale noise

height+=modifyindex; //modify height.

float4 color=tex1D(BaseTexture, height); //index into buffer.

The noise function used here is a type of value noise. It works by indexing into an
array of random variables, then linearly interpolating the results and smoothing
those results with an ease curve. It uses fewer texture accesses than Perlin noise
and typically requires fewer instructions. However, another noise function may be
substituted for this one without a significant change in the results.

half random(float x,float y,float z,sampler1D g)

{

half index=(x*6.6)+(y*7.91)+(z*8.21);

index=index*0.001953125;

index=h1tex1D(g,index);

return index;

}

half3 scurve(half3 v)

{

return v * v * (3 - 2 * v);

}

36
3D Planets on the GPU

Section I — Geometry Manipulation Tricks

Figure 2a: Planet texture generated using noise Figure 2b: Planet texture generated using just
height value

half noise(float3 v,sampler1D g)

{

half3 LatticePoint=floor(v);

half3 frac1=scurve(frac(v));

half4 v1;

v1.x = random(LatticePoint.x,LatticePoint.y,LatticePoint.z,g);

v1.y = random(LatticePoint.x + 1, LatticePoint.y,LatticePoint.z,g);

v1.z = random(LatticePoint.x, LatticePoint.y + 1,LatticePoint.z,g);

v1.w = random(LatticePoint.x + 1, LatticePoint.y + 1,LatticePoint.z,g);

half2 i1 = lerp(v1.xz , v1.yw , frac1.x);

half a=lerp(i1.x , i1.y , frac1.y);

v1.x = random(LatticePoint.x,LatticePoint.y,LatticePoint.z+1,g);

v1.y = random(LatticePoint.x + 1, LatticePoint.y,LatticePoint.z+1,g);

v1.z = random(LatticePoint.x, LatticePoint.y + 1,LatticePoint.z+1,g);

v1.w = random(LatticePoint.x + 1, LatticePoint.y + 1,LatticePoint.z+1,g);

i1 = lerp(v1.xz , v1.yw , frac1.x);

half b=lerp(i1.x , i1.y , frac1.y);

return lerp(a,b,frac1.z);

}

It is also possible to use this noise function to create a cloud layer for the planet.
To do this, another slightly bigger sphere needs to be drawn around the planet,
and then several octaves of noise need to be summated, each octave with succes-
sively higher frequency and lower amplitude.

color.w=noise(input,BaseTexture)+noise(input*2,BaseTexture)*.5+noise(input*4,BaseTexture)

*.25+noise(input*8,BaseTexture)*.125;

color.w=1-color.w;

This could be improved by draw-
ing several cloud spheres, with
each sphere being slightly larger
than the last. This gives the
clouds a volumetric look.

Oceans can easily be added to
the planet by rendering a
semitransparent sphere with a
radius less than that of the planet
sphere. Then, any land that has a
low enough height value will be
below water level.

The last step in rendering the
planet is lighting it. It is quite

3D Planets on the GPU
37

Section I — Geometry Manipulation Tricks

Figure 3: Clouds rendered with five octaves of
noise

difficult to achieve accurate per-pixel lighting on the planet. To do this, it is neces-
sary to either recompute the sphere normals when the sphere is deformed or
generate tangent space for the planet. Unfortunately, due to the current instruc-
tion count of the program, it is impossible to regenerate the normals. However, it
is easy to generate tangent space for the sphere by taking the partial derivative
with respect to u,v, giving:

u=cos(u)*sin(v),–sin(u)*sin(v),0

v=cos(v)*sin(u),cos(v)*cos(u),–sin(v)

It would then be possible to use the amount that the sphere geometry is per-
turbed by to generate normals and would work for lighting the clouds. However,
as we generate the sphere geometry for the planet, the sphere equation changes,
and so it becomes much more difficult to generate the tangent space by taking the
derivative of the parametric sphere equation. The total equation is:

X=sin(u)*sin(v)*Multifractal(sin(u)*sin(v), cos(u)*sin(v), cos(v))+1
Y=cos(u)*sin(v)*Multifractal(sin(u)*sin(v), cos(u)*sin(v), cos(v))+1
Z=cos(v)*Multifractal(sin(u)*sin(v), cos(u)*sin(v), cos(v))+1

Because the partial derivative for this function is difficult to find and the vertex
program is already reaching the maximum instruction limit, the example program
simply uses the sphere normals to generate per-pixel lighting. This means that
the planet lighting is not accurate, as the changes to the geometry of the sphere
are not reflected; however, it does allow some lighting to be performed. This is
done with the following code in the planet pixel shader.

Out.dif.xyz= color.xyz*dot(normalize(In.tex1.xyz), In.tex2);

//Light position in In.tex2, sphere normal in In.tex1

38
3D Planets on the GPU

Section I — Geometry Manipulation Tricks

Figure 4: Planet with cloud cover, noise texture, ocean,
and per-pixel lighting (See Color Plate 2.)

Conclusion

This article examined how to generate 3D planets using only the GPU to perform
the required rendering by evaluating the multifractal, value, and Perlin noise func-
tions almost entirely on the graphics card and using these functions to generate
the planet geometry, textures, and atmosphere. This provides a good starting
point for developers seeking to implement planets using the latest hardware and
for further experimentation with 3D planets.

References

[Ebert98] Ebert, David S., et al., Texturing and Modeling: A Procedural Approach

(Second Edition), San Diego: Academic Press, 1998.

[nVidia] Cg Language information available online at http://www.cgshaders.org
and http://developer.nvidia.com/view.asp?IO=cg_about.

[Perlin] Perlin, Ken, “Improved Noise reference implementation,”
http://mrl.nyu.edu/~perlin/noise/.

3D Planets on the GPU
39

Section I — Geometry Manipulation Tricks

Cloth Animation with Pixel and
Vertex Shader 3.0

Kristof Beets

Introduction

In computer graphics, simulating cloth has always been a topic of much research
[UCL02]. In everyday life we observe cloth behavior without realizing the com-
plexity of the physics involved. The model and shaders introduced in this article
attempt to simulate cloth using a simplified massless spring model, which can be
executed completely by next generation graphics hardware. The spring model is
used to generate the position and normal of a cloth’s control points, which are
then stored into “geometry textures” using an advanced pixel shader 3.0. Finally,
the vertex texturing capabilities of the vertex shader 3.0 model allows us to ren-
der the deformed cloth using the position and normal data stored in these geome-
try textures.

Basic Cloth Model

Before attempting to simulate cloth behavior using shaders, it is important to
understand the underlying cloth model that we will be implementing [Elias01].
Our cloth surface is modeled using a network of nodes linked together by mass-
less springs. A first-level approximation is to connect every node to its four direct
neighbor nodes, thus creating a simple grid; however, this results in an extremely
flexible cloth that fails to retain its area and shape. This can be improved by con-
necting each node to its eight direct neighbor nodes, thus adding diagonal springs
that work against shearing deformations. A final optimization is to add four or
eight more connections to neighbor nodes that are two steps away; these connec-
tions again battle deformation of the original cloth shape and also avoid excessive
bending of the cloth surface. Ultimately, it is possible to connect each node to all
the direct neighbors and those two steps away, resulting in 24 spring connections.
Figure 1 shows a central node with the various spring configurations as described.

40

Now let’s introduce an actual model for these interconnecting springs. A property
of springs is that they will fight against any force that attempts to compress or
stretch them. This behavior can be translated into the following formula:

SpringForce SpringConst
DefaultSpringLength Spring

� �
� Length

DefaultSpringLength

This formula calculates the relative deformation of the spring. If the spring is
stretched, the relative deformation will be negative and result in a force counter-
acting the stretching. If the spring is compressed, the relative deformation will be
positive and result in a force counteracting the compression (see Figure 2). If the
spring is untouched, the relative deformation is zero and results in no force.
SpringConst translates the relative deformation into an actual force. This constant
can be used to modify the power of the spring: A high number will result in a
strong counteracting force, while a low number will result in a small counteracting
force. It is possible to further modify the spring behavior by changing this for-
mula. For example, we could take the square of the relative deformation, which

Cloth Animation with Pixel and Vertex Shader 3.0
41

Section I — Geometry Manipulation Tricks

Figure 1: The interconnection of cloth springs

Figure 2: An example of springs with a Deformation Force (Fd) and the
resulting Spring Force (Fs)

means that the force would behave in a nonlinear way to deformations. Effec-
tively, this is how the cloth material type can be changed.

To translate this force into a movement, we have to dig out Newton’s second law:

Force Mass Acceleration� �

Or, reorganized:

Acceleration
Force

Mass
�

Acceleration is the change of velocity over time, and velocity is the rate of change
of the position over time. This can be translated to:

Velocity Velocity Acceleration t VelocityNEW OLD OL� � � �� D

Force

Mass
t� � �

Position Position Velocity t

Position

NEW OLD NEW

OLD

� � � ��

� � � �Velocity t
Force

Mass
tOLD � � 2

In summary, the new position (after a period of time) is dependent on the old posi-
tion, existing velocity, the force acting on the object, and the mass of the object.
Our aim is to have a very simple model, so we will ignore velocity and accelera-
tion and just reduce this to:

Position Position ForceScaleConst ForceNEW OLD� � �

Basically, we flatten all of the above factors into a single constant. The main prop-
erty that we maintain is that the movement is related to the total force acting
upon the nodes of the cloth. Combining this with our SpringForce equation, we
get:

Position Position Const
DefaultSpringLength

NEW OLD� � �
� SpringLength

DefaultSpringLength

In other words, in this highly simplified model, the change of position is depend-
ent only on the deformation of the spring multiplied by a constant.

To recap, we first chose the basic model for our cloth: A grid of nodes repre-
sents the cloth surface with the nodes interconnected by a network of springs.
The second step was to build a model for these springs that describes how the
node will move under the impact of its neighboring nodes.

Finally, we bring all of this together into one complete model that also takes
into account external factors, such as gravity and collisions with objects; I’ll intro-
duce this model using easy-to-understand pseudocode:

Variables

VECTOR ARRAY: ClothOld (0 to X, 0 to Y) (init. with start positions)
VECTOR ARRAY: ClothNew (0 to X, 0 to Y) (target for result of model)

VECTOR: MovementVector

42
Cloth Animation with Pixel and Vertex Shader 3.0

Section I — Geometry Manipulation Tricks

VECTOR: SpringVector
VECTOR: ForceVector
VECTOR: Gravity (init. to (0, 0, g, 0) where g is gravity)

SCALAR: Length
SCALAR: ForceScaler

CONSTANT SCALAR: NormalLength (undeformed length of spring)
CONSTANT SCALAR: SmallAmount (const translates force to movement)

Functions

CheckConstraints (checks for collision, intersection, etc.)
DisplayCloth (displays the cloth)

Main Processing Loop

For every node (x,y) on the cloth:
MovementVector = Gravity
For each of the 4/8/12/16/... neighboring points

SpringVector = (position of neighbor) - (position of node)
Length = length of SpringVector
NormalLength = undeformed length SpringVector
ForceScaler = (Length - NormalLength) / NormalLength
SpringVector = (SpringVector/Length)
ForceVector = SpringVector * ForceScaler
ForceVector = ForceVector * SmallAmount
MovementVector += ForceVector

End of loop
ClothNew (x,y) = ClothOld(x,y)+ MovementVector
CheckConstraints (ClothNew (x,y))

End of loop
DisplayCloth (ClothNew)
Copy all the values in ClothNew to ClothOld (double buffering)

Repeat Main Processing Loop forever

The pseudocode above shows an iterative loop that processes the input to create
updated output positions. These output positions are then fed back into the sys-
tem as input to create the next position and so on. The code uses a vector array to
store the node positions; this array is initialized with the start positions of the
nodes (cloth) before executing the main loop. For each node, the code looks at a
certain number of neighboring nodes and, based on the distance between the cur-
rent node and its neighbors, calculates the corresponding forces. The sum of
these forces is then converted into a translation, which is added to the original
position of the node along with some motion due to a static gravity. The conver-
sion from forces to motion is done using a constant. This constant has to be cho-
sen carefully: If the value is too big, the motion will be too large and the network
will become unstable; if the constant is too small, the model will take forever to
evolve. The new position finally undergoes a constraint check that involves
checking collisions with objects. Specifically, if the new node position is within a
constraining object, the node position has to be updated so the cloth will drape
correctly on top of the object rather than sit inside it.

Cloth Animation with Pixel and Vertex Shader 3.0
43

Section I — Geometry Manipulation Tricks

Implementation Using Shaders

Now that we have a model to simulate cloth, we can start to convert it to the
world of pixel and vertex shaders so that full hardware acceleration can be used.

The model uses a double-buffered vector array to store the position of each
node; this is implemented using textures. This storage needs to support both
reading and writing, which is possible with textures created with the D3D-

USAGE_RENDERTARGET flag. This position (x, y, and z) needs to be stored with suffi-
cient accuracy — at least a 16-bit float per component should be used. This can be
achieved by using either a 64-bit texture format (such as D3DFMT_A16B16G16R16F)
or Multiple Render Targets (MRTs, such as 2 x D3DFMT_G16R16F). Our goal is to
use these values to create the final geometry on screen. If vertex lighting is
required, a normal vector will also be needed for each vertex. This brings the
number of components to six: x, y, z and Nx, Ny, Nz. These can be stored easily
and efficiently in three render targets with format D3DFMT_G16R16F. Because the
texture data contains positions and normals, it effectively contains geometry; for
this reason, these textures are referred to as geometry textures. The size of these
geometry textures matches the number of nodes in our cloth grid (tessellation).
For example, if we want a 32x32 grid of nodes forming the cloth, we need a 32x32
texture. Now that we have decided on our storage format, we can start to use it to
implement our algorithm, which we will split into the following six phases: initial-
ization, depth, cloth, constraint, normal map, and display.

Initialization Phase

The initialization phase is only run once at the start of the program or when we
want to restart the cloth simulation. This phase fills the geometry textures
(MRTs) with their initial
startup values and clears the
buffers. To keep things simple,
we restrict our scene to a unit
cube. The cloth starts at the
top of the cube and falls down
(possibly colliding with objects
causing constraints) until it
reaches a stable position or the
bottom of the cube that is
effectively the floor. This is
illustrated in Figure 3.

The initial values for our
MRT are (x, y, start height of
cloth). Since we are working in
a unit cube, the x and y posi-
tions can be generated quite
easily using a trivial vertex and
pixel shader program. All we

44
Cloth Animation with Pixel and Vertex Shader 3.0

Section I — Geometry Manipulation Tricks

Figure 3: The scene containing cloth and objects
within the unit cube

need to do is render a full-screen quad with texture coordinates interpolating from
0 to 1 along both the x and y-axes. We then store the interpolated texture coordi-
nate for each pixel using the pixel shader, since each interpolated coordinate
matches the position of a node.

Vertex shader code:

vs 3 0

; Input registers

dcl position0 v0 ;Position in NORMALIZED SCREEN COORDINATES

dcl texcoord0 v4 ;Texture coordinates = base node position

; Output registers

dcl position0 o0.xyzw ;Vertex position

dcl texcoord0 o1.xy ;Texcoord

; C8 contains scaling constants that influence the cloth size

mov r0, v0

mov r0.w, c21.w

mov o0, r0 ;Output Position

mad r1, v4, c8.x, c8.y ;Scale cloth – change init positions

mov o1.xy, r1; ;Output Texture Coord = node position

Pixel shader code:

ps 3 0

; Input

dcl texcoord0 v0.xy ;Tex Coord = node position

; Output results

mov r0.rg, v0.xy

mov oC0, r0 ;Node (X,Y) = interpolated texcoord

mov r0, c12 ; = (<initial cloth height>, 0.0f, 0.0f, 0.0f)

mov oC1, r0 ;Write Initial Depth

mov r0, c12.y

mov oC2, r0 ;Init to Zero

At the end of this phase, we have initialized all our buffers and they are ready for
processing by the following phases.

Depth Phase

So far, we have not discussed how to handle constraints. The main aim for this
implementation is to have cloth draping realistically over a collection of objects.
When the objects are simple, it is easy to use a mathematical constraint. For
example, it is quite trivial to detect if the new position of a node is inside a sphere.
However, when working with more complex objects, such as a human body, a tea-
pot, a table, etc., it becomes considerably more difficult to use mathematical

Cloth Animation with Pixel and Vertex Shader 3.0
45

Section I — Geometry Manipulation Tricks

constraints. To handle cloth draping over complex objects, we use depth maps
(height field). Since we have cloth falling down, we need at least a depth value for
every vertical column within the unit cube. Using the (x, y) position of a node, we
can then do a dependent read within the depth map to detect if a collision has
occurred.

Having only a top depth map does impose some limitations. For example,
cloth might drape over a table, and during this process a tip of the cloth might flap
down and move slightly underneath the table. If this happens, the tip of the cloth
could suddenly be affected by the constraint (i.e., the table surface), and the tip
will be moved instantly to the top of the table surface by the constraint, creating a
cloth loop. Obviously this behavior is incorrect and can cause severe instability
within the node-network. To solve this problem, a range is placed on the con-
straints. Specifically, it only applies the constraint if the depth value of the node is
within a certain range of the constraint depth value. This issue and the solution
are illustrated in Figure 4.

An even better constraint system is to use a “cube” depth map, meaning we cre-
ate a depth map for all the surfaces of our unit cube; this allows us to do true volu-
metric testing. This can be illustrated using a sphere as the constraining object:
The top and bottom depth maps will contain depth values that indicate the start of
the sphere volume (the top depth map contains the depth of the top half of the
sphere) and the end of the sphere volume (the bottom depth map contains the
depth of the bottom half of the sphere). It is quite easy to fetch both of these
depth values and do a comparison, and only if the node is between the top and
bottom constraint points (that is, inside the volume along the z-axis) does it need
to be moved to the value stored within the closest map. The same principle can

46
Cloth Animation with Pixel and Vertex Shader 3.0

Section I — Geometry Manipulation Tricks

Figure 4: The cloth loop problem and its solution using ranged constraints

be applied to the other faces of the depth
cube map. Essentially, we check if a node is
within the volume along each of the x, y, and
z-axes, and only when a test along an axis
indicates the point is inside the volume would
the node position be corrected. This tech-
nique is illustrated in Figure 5.

The resolution of the depth map(s)
should be high enough to avoid jagged arti-
facts in the geometry; for static scenes, these
depth map(s) only have to be calculated at the
start of the simulation, so there is no reason
not to use a sufficiently high resolution. For
dynamic scenes, the situation is different
because whenever the constraints change
(i.e., objects move), the depth map(s) need to
be regenerated, which incurs a fillrate cost.

The following vertex shader code is used with an orthographic projection (as
perspective distortion is unwanted in these depth constraint maps) to store the
world space linear depth into the texture:

vs 3 0

; Input registers

dcl position0 v0 ;Position in NORMALIZED SCREEN COORDINATES

; Output registers

dcl position0 o0.xyzw ;Vertex position

dcl texcoord0 o1.x ;Texcoord

; C0-3 contains World+View+Proj Matrix

; C4-7 contains World+View Matrix

; C9 contains scene scaling and translation values

m4x4 r0, v0, c0 ;Transform by view/projection/world matrix

mov o0, r0 ;Output position

dp4 r1.z, v0, c6 ;Transform by world+view Z

mov r1 , r1.z

;Convert to world space depths rather than camera relative depths:

add r1 , -r1, c9.x

mul r1 , r1, c9.y ;Scale to unit cube depth sizes

mov o1.x, r1 ;Move scaled world depth result into tex coord

The pixel shader simply stores the depth value, created in the vertex shader and
passed on through a texture coordinate field, in the render target.

The current demonstration application implements a single top depth map
with constraint range; a full cube depth map version might be added at a later
stage.

Cloth Animation with Pixel and Vertex Shader 3.0
47

Section I — Geometry Manipulation Tricks

Figure 5: The usage of a cube depth
map along one axis

Cloth Phase

The cloth phase is where the real action occurs. The pixel shader used in this
phase will need to read the node’s position and apply a step of the earlier
described iterative cloth model to generate a new position. To create this shader,
we need to translate our previous pseudocode into pixel and vertex shader code.
Our pseudocode involves operations on the center node position using the posi-
tion of several neighboring nodes as input. These positions need to be fetched
from textures (filled during the initialization phase or during previous cloth
phases), which requires texture coordinates that we will set up in the vertex
shader. The following code sets up 16 2D texture coordinates; this is achieved by
storing two sets of 2D coordinates in a single 4D coordinate register.

vs 3 0

; Input registers

dcl position0 v0

dcl texcoord0 v4

; Output registers

dcl position0 o0.xyzw ; Vertex position

dcl texcoord0 o1.xyzw ; center texcoord

dcl texcoord1 o2.xyzw ; 1 of 8 dual 2D Coords

dcl texcoord2 o3.xyzw ; 2 of 8 dual 2D Coords

dcl texcoord3 o4.xyzw ; 3 of 8 dual 2D Coords

dcl texcoord4 o5.xyzw ; 4 of 8 dual 2D Coords

dcl texcoord5 o6.xyzw ; 5 of 8 dual 2D Coords

dcl texcoord6 o7.xyzw ; 6 of 8 dual 2D Coords

dcl texcoord7 o8.xyzw ; 7 of 8 dual 2D Coords

dcl texcoord8 o9.xyzw ; 8 of 8 dual 2D Coords

; VERTEX POSITION

; ---------------

mov r0, v0

mov r0.w, c21.w

mov o0, r0

; MODEL TEXTURE COORDINATES

; -------------------------

; Copy base XY into both sections to generate two 2D coords per vector

mov o1.xy, v4 ; Center position

mov r1, v4.xyxy ; Copy Base into both sections

; c10-c17 contain the delta for each neighbor position - set in code

add r0, r1, c10

mov o2.xyzw, r0 ; 1 out of 8 dual 2D Coords

add r0, r1, c11

mov o3.xyzw, r0 ; 2 out of 8 dual 2D Coords

add r0, r1, c12

mov o4.xyzw, r0 ; 3 out of 8 dual 2D Coords

add r0, r1, c13

mov o5.xyzw, r0 ; 4 out of 8 dual 2D Coords

48
Cloth Animation with Pixel and Vertex Shader 3.0

Section I — Geometry Manipulation Tricks

add r0, r1, c14

mov o6.xyzw, r0 ; 5 out of 8 dual 2D Coords

add r0, r1, c15

mov o7.xyzw, r0 ; 6 out of 8 dual 2D Coords

add r0, r1, c16

mov o8.xyzw, r0 ; 7 out of 8 dual 2D Coords

add r0, r1, c17

mov o9.xyzw, r0 ; 8 out of 8 dual 2D Coords

After generating these texture coordinates, we can use them efficiently in our
pixel shader. (Note the following code is written so it is easy to compare with the
pseudocode — it is not performance optimized.)

ps 3 0

; Samplers

dcl 2d s0 ;Input Textures MRT0 (x,y)

dcl 2d s1 ;Input Textures MRT1 (Z,Nx)

; Input registers

dcl texcoord0 v0.xyzw ;Base Pos

dcl texcoord1 v1.xyzw ;Neighbor Dual Coord Set 1/8

dcl texcoord2 v2.xyzw ;Neighbor Dual Coord Set 2/8

dcl texcoord3 v3.xyzw ;Neighbor Dual Coord Set 3/8

dcl texcoord4 v4.xyzw ;Neighbor Dual Coord Set 4/8

dcl texcoord5 v5.xyzw ;Neighbor Dual Coord Set 5/8

dcl texcoord6 v6.xyzw ;Neighbor Dual Coord Set 6/8

dcl texcoord7 v7.xyzw ;Neighbor Dual Coord Set 7/8

dcl texcoord8 v8.xyzw ;Neighbor Dual Coord Set 8/8

; Constants

; c1..4 Set in code to weight to translate force to translation

; c7..10 Set in code to default spring length constants

defi i0, 4, 1, 1, 0 ;Used for loop

; Init Movement vector

mov r0, c0 ;Init movement vector with gravity

; Sample Main Position

texld r1, v0.xy, s0 ;Main Pos (x,y)

texld r2, v0.xy, s1 ;Main Pos (z,Nx)

mov r1.z, r2.x

mov r1.w, r2.y ;Main Pos (x,y,z,Nx)

; Main processing loop for 16 neighbor nodes split up in 4 cases each 4 nodes

; Case A + C : Length of "1.0" and "2.0" for undeformed springs (Axis Springs)

; Case B + D : Length of "1.4" and "2.8" for undeformed springs (Diagonal Springs)

loop aL, i0 ; for (aL=1; aL<5; aL+=1)

;Case A

texld r2, v[aL].xy, s0 ;Sample Neighbor (X,Y)

texld r3, v[aL].xy, s1 ;Sample Neighbor (Z)

Cloth Animation with Pixel and Vertex Shader 3.0
49

Section I — Geometry Manipulation Tricks

mov r2.z, r3.x ;Neighbor (X,Y,Z) = R2

add r2, r2, -r1 ;Spring Vector = Neighbor - Main

dp3 r3.x, r2, r2 ;Sum of Squares

; Is it an edge pixel ? - if we clamp to the same value then don't do maths

if ne r3.x, c0.x

rsq r4.x, r3.x ;RSQ of Sum of Squares = for Normalization

rcp r5.x, r4.x ;RCP of RSQ of Sum of Squares = Length = R5

add r5.x, r5.x, -c7.x ;Create Force scale using default lengths

mul r5.x, r5.x, c7.y ;R5 is Force Scale

mul r2, r2, r4.x ;Normalized Spring Vector

mul r2, r2, r5.x ;r2 is Force Vector

;Convert Force Vector to translation and add it to final movement vector

mad r0, r2, c1, r0

endif

;Case C

texld r2, v[aL].zw, s0 ;Sample neighbor (X,Y)

texld r3, v[aL].zw, s1 ;Sample neighbor (Z)

mov r2.z, r3.x ;Neighbor (X,Y,Z) = R2

add r2, r2, -r1 ;Spring Vector = Neighbor - Main

dp3 r3.x, r2, r2 ;Sum of Squares

; Is it an edge pixel ? - if we clamp to the same value then don't do maths

if ne r3.x, c0.x

rsq r4.x, r3.x ;RSQ of Sum of Squares = for Normalization

rcp r5.x, r4.x ;RCP of RSQ of Sum of Squares = Length = R5

add r5.x, r5.x, -c9.x ;Create Force scale using default lengths

mul r5.x, r5.x, c9.y ;R5 is Force Scale

mul r2, r2, r4.x ;Normalized Spring Vector

mul r2, r2, r5.x ;r2 is Force Vector

;Convert Force Vector to translation and add it to final movement vector

mad r0, r2, c3, r0

endif

;Case B

texld r2, v[aL+4].xy, s0 ;Sample neighbor (X,Y)

texld r3, v[aL+4].xy, s1 ;Sample neighbor (Z)

mov r2.z, r3.x ;Neighbor (X,Y,Z) = R2

add r2, r2, -r1 ;Spring Vector = Neighbor - Main

dp3 r3.x, r2, r2 ;Sum of Squares

; Is it an edge pixel ? - if we clamp to the same value then don't do maths

if ne r3.x, c0.x

rsq r4.x, r3.x ;RSQ of Sum of Squares = for Normalization

rcp r5.x, r4.x ;RCP of RSQ of Sum of Squares = Length = R5

add r5.x, r5.x, -c8.x ;Create Force scale using default lengths

mul r5.x, r5.x, c8.y ;R5 is Force Scale

mul r2, r2, r4.x ;Normalized Spring Vector

mul r2, r2, r5.x ;r2 is Force Vector

;Convert Force Vector to translation and add it to final movement vector

mad r0, r2, c2, r0

endif

;Case D

50
Cloth Animation with Pixel and Vertex Shader 3.0

Section I — Geometry Manipulation Tricks

texld r2, v[aL+4].zw, s0 ;Sample neighbor (X,Y)

texld r3, v[aL+4].zw, s1 ;Sample neighbor (Z)

mov r2.z, r3.x ;Neighbor (X,Y,Z) = R2

add r2, r2, -r1 ;Spring Vector = Neighbor - Main

dp3 r3.x, r2, r2 ;Sum of Squares

; Is it an edge pixel ? - if we clamp to the same value then don't do maths

if ne r3.x, c0.x

rsq r4.x, r3.x ;RSQ of Sum of Squares = for Normalization

rcp r5.x, r4.x ;RCP of RSQ of Sum of Squares = Length = R5

add r5.x, r5.x, -c10.x ;Create Force scale using default lengths

mul r5.x, r5.x, c10.y ;R5 is Force Scale

mul r2, r2, r4.x ;Normalized Spring Vector

mul r2, r2, r5.x ;r2 is Force Vector

;Convert Force Vector to translation and add it to final movement vector

mad r0, r2, c4, r0

endif

endloop

;Write Out Final Values

add r2, r1, r0

mov r3, r2.z

mov oC0, r2 ; (X, Y)

mov oC1, r3 ; (Z, X)

The pixel shader code contains three large sections. The first section handles the
initial setup, such as initializing the movement with a fixed gravity factor and
reading the main node position. The second section is the main processing loop,
which contains four subsections. These subsections correspond to different
spring groups, as described in our model (see Figure 1). The code within each
subsection calculates the force created by the spring between the central node
and its neighbors, based on the distance between the nodes and the original
undeformed spring length. This last element is a constant, which is different for
nodes along the diagonal (relative length of 2 and 2 2�) and nodes along the
axis (relative length of 1.0f and 2.0f); this is the main difference between the sub-
sections. The final and third section adds the movement vector to the original
node position and writes the result out to the render targets. This shader can be
adapted to use more or fewer neighbor positions; for details, check the shaders
included with the demo application, which support 4, 8, 12, 16, 20, and 24 neigh-
bor nodes.

Performance Considerations

The cloth shader code contains a loop, but while a loop makes the code easy to
understand and read, it might not be optimal for hardware execution. If the hard-
ware supports enough instructions, it might be better to unroll this loop, since by
unrolling the loop no cycles would be wasted on actually executing the loop
instructions (i.e., the compare and jump operations). However, in most cases a
developer should not have to worry about this, since the driver’s compiler should
automatically handle it according to the capabilities of the host 3D device.

Cloth Animation with Pixel and Vertex Shader 3.0
51

Section I — Geometry Manipulation Tricks

To handle cloth border cases correctly, where there are fewer neighbor nodes
to consider, the shader contains a conditional dynamic branch (if_ne). By using
branching, it is possible to jump over some instructions that do not need to be
executed. For example, in the above shader the branch stops seven instructions
from being executed in some cases; however, this comes at the overhead of exe-
cuting the conditional branching instruction itself in all cases. Depending on the
cost of the branching instruction (which is hardware dependent), it might be
better to implement a different (cheaper or faster) mechanism to handle the bor-
der cases correctly, such as a cmp or setp instruction.

At first glance, this shader might look very complex and one might expect
poor or non-real-time performance; however, it is important to understand that
this shader is only executed on a very small set of pixels — a 64x64 grid is equiv-
alent to rendering a 64x64 pixel texture and results in a network with 4,096 verti-
ces. A render target of 64x64 pixels (or even 128x128, which results in a network
with 16,384 vertices) is negligible compared to a default 1024x768 screen resolu-
tion. So even though the shader is complex, it is only being applied to a very small
number of pixels, and hence real-time performance is still achieved.

Constraint Phase

During the constraint phase, we check all the new node positions and verify
whether they have collided with an object. If they have, the node has to be moved
so it sits on top of the object. As described before, this will be implemented using
a depth compare using the depth map that we have created during a previous
phase. All we need to do is use the (x, y) position of the node as a texture coordi-
nate to do a dependent texture read into the depth map. We can then compare the
node’s current z position with the depth value stored for that column in the unit
cube, and if the new depth value is smaller (i.e., closer to the floor) than the value
of the depth map, we replace the node’s z value with the depth map’s value. To
avoid instability, we add a safety margin to this compare so that we only constrain
nodes that have a depth value within a certain range of the stored depth value.
This way, if the tip of the tablecloth moves under the table, it is not suddenly
jerked to the top of the table. This can be achieved using the following pixel
shader code:

ps 3 0

; Declare inputs

dcl 2d s0 ; X ,Y

dcl 2d s1 ; Z ,Nx

dcl 2d s2 ; Ny,Nz

dcl 2d s3 ; Depth Map

dcl texcoord0 v0.rg ; Base Tex Coord

def c0, 0.05, 0.0, 0.0, 0.0 ; Controls range of the constraint

texld r0, v0, s0 ; Fetch (X,Y) of Node

texld r1, r0, s3 ; Read Depth Map at (X,Y) = Z Constraint

texld r2, v0, s1 ; Fetch (Z,Nx) of Node

52
Cloth Animation with Pixel and Vertex Shader 3.0

Section I — Geometry Manipulation Tricks

add r4.r, r1.r, -r2.r ; Subtract Cloth and Constraint Z

if gt r4.r, c0.x ; Compare with range

mov r1.x, r2.r ; keep cloth (e.g., cloth tip under table)

else

max r4, r1.r, r2.r ; Constrain cloth to largest value

mov r1.x, r4.x ; Update the output

endif

mov oC0, r0 ; output (X, Y)

mov oC1, r1 ; output (Z, Nx)

Different kinds of constraints can be introduced in this phase. We could have
implemented a mathematical constraint, or we could simply use this shader to
lock certain vertices in place (e.g., cloth hanging from two hooks, elastic cloth in a
frame, etc.). The possibilities are endless and easy to implement.

Normal Map Phase

This phase calculates a normal for each node based on the neighboring nodes’
information. This concept alone is probably worth a complete article; the current
implementation creates two vectors (using a cross shape) from the four neighbor-
ing nodes and calculates the cross product to generate the normal. This is a very
basic implementation; while more advanced solutions are possible, which would
probably result in better image quality, they also come with increased sampling
and processing costs. The sampling positions are set up in the vertex shader
(similar to that illustrated in the cloth phase section) and processed as follows by
the pixel shader:

ps 3 0

; Samplers

dcl 2d s0 ; MRT0 (X ,Y)

dcl 2d s1 ; MRT1 (Z ,Nx)

; Inputs

dcl texcoord0 v0.xy ; Main Node Sample Coord

dcl texcoord1 v1.xy ; Right Node Sample Coord

dcl texcoord2 v2.xy ; Top Node Sample Coord

dcl texcoord3 v3.xy ; Left Node Sample Coord

dcl texcoord4 v4.xy ; Bottom Node Sample Coord

texld r0 , v0, s0 ; Center Node (X,Y)

texld r11, v0, s1 ; Center Node (Z)

mov oC0, r0 ; Output (X,Y) to MRT0

texld r0, v1, s0 ; Right Node (X,Y)

texld r1, v1, s1 ; Right Node (Z)

mov r3.xy, r0

mov r3.z, r1.x ; Right Node (X,Y,Z)

Cloth Animation with Pixel and Vertex Shader 3.0
53

Section I — Geometry Manipulation Tricks

texld r0, v2, s0 ; Top Node (X,Y)

texld r1, v2, s1 ; Top Node (Z)

mov r4.xy, r0

mov r4.z, r1.x ; Top Node (X,Y,Z)

texld r9 , v3, s0 ; Left Node (X,Y)

texld r10, v3, s1 ; Left Node (Z)

mov r5.xy, r9

mov r5.z, r10.x ; Left Node (X,Y,Z)

texld r9 , v4, s0 ; Bottom Node (X,Y)

texld r10, v4, s1 ; Bottom Node (Z)

mov r6.xy, r9

mov r6.z, r10.x ; Bottom Node (X,Y,Z)

; create vectors for cross product

add r0.xyz, r3.xyz, -r5.xyz

add r1.xyz, r4.xyz, -r6.xyz

; cross product and normalization

crs r7.xyz, r0, r1

nrm r0, r7.xyz ; Vertex Normal

; Output results to MRT1 and MRT2

mov r11.y, r0.x

mov r9 , r0.y

mov r9.g, r0.z

mov oC1, r11 ; (Z, Nx)

mov oC2, r9 ; (Ny,Nz)

Display Phase

The final phase is the display phase, which will render our deformed cloth on the
screen. To achieve this, we need to read every node’s (vertex’s) position and nor-
mal from the texture, rescale from the unit cube space into world space, trans-
form, and display them on screen. All of this is achieved using the following
vertex shader code:

vs 3 0

; Input Registers

dcl position0 v0

dcl texcoord0 v4

; Output Registers

dcl position0 o0.xyzw ; Final Vertex Position

dcl color0 o1 ; Diffuse color for lighting

dcl texcoord0 o2.xy ; Texture Coordinates

; Samplers

dcl 2d s0 ; (X ,Y)

dcl 2d s1 ; (Z ,Nx)

54
Cloth Animation with Pixel and Vertex Shader 3.0

Section I — Geometry Manipulation Tricks

dcl 2d s2 ; (Ny,Nz)

def c10, 120.0, 240.0, 100.0, 0.0 ; Scale Factor

def c11, 0.4267,-0.853,0.298,0.0 ; LIGHT

def c12, 0.0, 0.0, 0.0, 1.0 ; Init value

; Sample Vertex Textures

texldl r1, v4, s0 ; Read Node (X , Y)

texldl r2, v4, s1 ; Read Node (Z , Nx)

texldl r3, v4, s2 ; Read Node (Ny, Nz)

; Create XYZ in r4

mov r4.xy, r1 ; Grab XY

mov r4.z, r2.x ; Grab Z

; Create NxNyNz in r5

mov r5.x, r2.y ; Grab Nx

mov r5.yz, r3.xxy ; Grab Ny, Nx

; Create Final Node/Vertex Position

mov r6, c12

mad r6.x, r4.x, c10.y, -c10.x ; Rescale [0 -> 1] => [-120 -> 120]

mul r6.y, r4.z, c10.y ; Rescale [0 -> 1] => [0 -> 240]

mad r6.z, r4.y, -c10.y, c10.x ; Rescale [0 -> 1] => [-120 -> 120]

m4x4 r2, r6, c0 ; Transformation (c0 set in code)

dp3 r4, r4, c11 ; Simple Lighting Model

mov o0, r2 ; Output Position

mov o1, r4 ; Output Diffuse Color

mov o2.xy, v4 ; Output Texture Coordinate

The above vertex shader should be easy to understand, as vertex texturing is the
only exciting new feature used. Vertex texturing is virtually identical to texture
accesses done in the pixel shader. It is, however, essential to understand the
impact of vertex texturing on performance. All texture accesses come with high
latencies, meaning that the period between fetching a value from a texture and
being able to use the result can be quite long. There will be a lot of clock cycles
spent moving the data from external memory into the chip (on a cache miss),
through the cache, through texture filtering calculation, and eventually into the
vertex shader. For this reason, throughput when using vertex texturing can
potentially be quite low; however, it also means that if the shader has instructions
that do not rely on the result of the texture fetch, the texture fetch can be “free,”
since non-dependent instructions can be executed while waiting for the texture
data to arrive. On the other hand, if there are no non-dependent instructions, the
hardware may stall while waiting for the texture data, and valuable processing
power will be lost. Given this potential high per-vertex cost, it is essential to
maximize vertex cache usage (e.g., using D3DX’s Mesh Optimize functions).

The pixel shader used during the display phase applies a simple base texture
with diffuse lighting; this is to maintain acceptable performance on the Direct3D
reference device given the lack of 3D hardware supporting the 3.0 shader model.

Cloth Animation with Pixel and Vertex Shader 3.0
55

Section I — Geometry Manipulation Tricks

NOTE Vertex texturing should never be referred to as displacement
mapping, as displacement mapping is only a very small subset of the millions
of possibilities that can be brought to life by the ability to read texture data
from within the vertex shader. The algorithm and the geometry textures
presented here are just one such case: Geometry is stored as a position (and
normal) within a texture, and the massive parallel processing power of the
pixel shader can be used to modify that geometry using complex physics or
simulation models. In this case, a simple physics-based model is
implemented, but other interesting possibilities include fluid dynamics,
metaballs, and chemical simulations.

Overview

Figure 6 shows an overview of the various shaders and buffers as they work
together to bring cloth animation to life:

The initialization phase writes the default node positions into the MRTs, and the
depth phase writes the results of the depth render to a texture. The main pro-
cessing loop then executes the cloth phase on the node positions, and the result
undergoes the constraint phase. At this point, the cloth phase can start another
iteration followed by another constraint phase. After looping through the cloth and
constraint phases for a certain number of iterations, the normal map phase cre-
ates a new MRT, which contains the position and normal, and these are fed into
the display phase, which creates the final on-screen result.

Color Plate 3 illustrates the contents of the position and normal map MRTs as
well as the final result in wireframe and solid mode.

56
Cloth Animation with Pixel and Vertex Shader 3.0

Section I — Geometry Manipulation Tricks

Figure 6: Shader interaction overview

Sample Application

A sample application and a movie can be found on the companion CD. Updated
versions are available at www.pvrdev.com and www.shaderx2.com.

Conclusion

This article described a method of bringing real-time cloth simulations to life
using the high performance and flexibility of pixel and vertex shader 3.0. A simple
physics model was introduced together with various methods to apply constraints.
This was then translated into a number of advanced shaders making use of
advanced new functionality only found in the 3.0 shader model, such as dynamic
branching and loops within the pixel shader, and texturing from within the vertex
shader.

References

[Elias01] http://freespace.virgin.net/hugo.elias/models/m_cloth.htm.

[UCL02] http://www.cs.ucl.ac.uk/research/vr/Projects/3DCentre/cloth_simula-
tion_links.htm.

Cloth Animation with Pixel and Vertex Shader 3.0
57

Section I — Geometry Manipulation Tricks

Collision Shaders

Takashi Imagire

Introduction

It is well known that GPU power is evolving at a rate far exceeding the expecta-
tions of Moore’s Law for general CPU power growth. However, this does not nec-
essarily mean a simple speedup of the GPU. The GPU processes data at a much
quicker speed than the CPU because of the parallel nature of the vertex and pixel
pipelines. Rendering is a special process that is easy to parallelize. Although gen-
eral-purpose calculations cannot always be carried out by the GPU, if processes
are well suited to parallelization, they can likely be processed at high speeds using
the GPU.

In games, collision detection is one of the most processor-demanding pro-
cesses. Collision detection is a complicated process that tends to be divided into
many calculations because of the difference among many situations and is difficult
to create as a single routine. For collision detection between objects, there is a
“brute-force” algorithm that is simple but has a high processing load. The geome-
try of objects is mapped to a two-dimensional depth texture, and collision detec-
tion is performed for each texel of the texture. Since this method calculates in a
parallel fashion, calculation time is reduced, each texel is processed independ-
ently, parallel processing is possible, and processing can be calculated at a high
speed by the GPU. This article discusses this method of calculation by the GPU.

Calculation by the GPU not only brings about an improvement given its
incredible evolution speed, but it also lessens the load on the CPU, which can
therefore assign more time to other processes (e.g., AI). In some game situations
the CPU is busy, whereas in others the GPU is. The situation may change quickly
depending on the scene. If it is possible to predict which processor carries the
higher load, the calculation can be assigned to the other and the application will
attain more efficient processing. (Of course, in order to be able to always perform
this, the the CPU and GPU must be able to perform identical processing. This will
probably be difficult. Additionally, this process of changing over to the GPU will
only be used for specific scenes.)

As another advantage, if calculating only by the GPU is possible, we do not
have to wait for data to be locked in video memory before the CPU accesses it.
For example, when analyzing a rendering result by the CPU, we have to wait for
the GPU to finish a rendering. Generally, when processing using the CPU and the

58

GPU simultaneously, blocking often occurs since the data cannot be used by the
other processor until processing is completed. The performance will improve,
since we no longer have to wait for the other processor to be able to access the
results.

Visibility Test

In performing the collision detection by the GPU, we first consider a simple case:
that of a scene with a wall. Although an object will be rendered when it lies in
front of a wall, it will not be rendered when it is placed behind a wall because it
has not passed the z test. That is, the front or back relationship between objects
can be judged by the number of pixels rendered.

Let’s now consider the case where we transpose this wall to the ground and
set a camera pointing upward from underneath the wall, which we think of as the
earth’s surface. When an object is above the surface, the object is not rendered,
since it is on the other side of the wall. But if the object is moved below the
ground, it is rendered. Since the rendering of the object takes place after the ren-
dering of the surface, it can be deduced that the object collided with the surface.

We will now consider a concrete implementation. In order to detect whether the
rendering was carried out, it is easiest to use an asynchronous notification mecha-
nism introduced in DirectX 9. If an asynchronous notification is used, the number
of rendered pixels can simply be measured. When using asynchronous notifica-
tion, the object needed by the application side is a pointer to an IDirect3DQuery9
object.

IDirect3DQuery9* m pQuery;

Collision Shaders
59

Section I — Geometry Manipulation Tricks

Figure 1: Looking at the object from under the ground and its rendered images

The initialization of the IDirect3DQuery9 object is performed by IDirect3D-
Device9::CreateQuery. In order to count the number of pixels rendered,
D3DQUERYTYPE_OCCLUSION is specified as the argument of IDirect3D-
Device9::CreateQuery.

m pd3dDevice->CreateQuery(D3DQUERYTYPE OCCLUSION, &m pQuery);

m_pQuery is used twice, before and after rendering the object. As opposed to
normal rendering, the sub-surface camera must be prepared when preparing to
render for collision detection. In order to prepare this camera, it is necessary to
set a viewpoint on the bottom of the ground and make an observing point directly
above. Since the direction of the camera’s target is along the Y-axis, the up direc-
tion of the camera must be set along the direction of the Z-axis so that it is not
parallel to the direction of the camera’s view.

D3DXVECTOR3 vEye = D3DXVECTOR3(0.0f,-1.0f, 0.0f);

D3DXVECTOR3 vLookatPt = D3DXVECTOR3(0.0f, 0.0f, 0.0f);

D3DXVECTOR3 vUp = D3DXVECTOR3(0.0f, 0.0f, 1.0f);

D3DXMatrixLookAtLH(&mView, &vEye, &vLookatPt, &vUp);

m pd3dDevice->SetTransform(D3DTS VIEW, &mView);

// width height min z max z

D3DXMatrixOrthoLH(&mProj, 10.0f, 10.0f, -10.0f, 10.0f);

m pd3dDevice->SetTransform(D3DTS PROJECTION, &mProj);

In the rendering loop of each frame, the z-buffer that records the geometry of the
ground is generated by rendering the ground first. Since the camera looks at the
underside of the ground, it is extremely important that the culling mode be set to
none or reverse. Otherwise, the rendering will not be performed. Moreover, if it
finishes rendering the ground, it is necessary to restore the original culling mode.

m pd3dDevice->SetRenderState(D3DRS CULLMODE, D3DCULL CW);

Rendering of the ground

m pd3dDevice->SetRenderState(D3DRS CULLMODE, D3DCULL CCW);

Next, the asynchronous notification that measures the written-in number of pixels
is started, and the rendering of the object that detects collision is carried out.
After finishing the rendering, we must stop counting the rendered pixels.

m pQuery->Issue(D3DISSUE BEGIN);

Rendering of the object

m pQuery->Issue(D3DISSUE END);

The number of rendered pixels is counted by calling m_pQuery->Issue with the
D3DISSUE_BEGIN argument before rendering is performed and passing the
D3DISSUE_END parameter after rendering is complete.

If a rendering is completed, the result of the asynchronous notification is
receivable. The number of rendered pixels can be determined by calling
IDirect3DQuery9::GetData. The argument of IDirect3DQuery9::GetData is a
pointer to a variable of the DWORD type which receives a result and the size of
the variable (sizeof (DWORD)) and a flag specifying the query type. If the function
is successful, S_OK is returned as the result. If the rendering is not yet com-
pleted, an error is returned.

60
Collision Shaders

Section I — Geometry Manipulation Tricks

DWORD pixels;

while(S OK!=(hr=m pQuery->GetData(&pixels, sizeof(DWORD), D3DGETDATA FLUSH))){

if(D3DERR DEVICELOST == hr) break;

}

if(1000<=pixels){ // When 1000 or fewer pixels are drawn, it is determined that no

// collision has taken place

The response to a collision is performed.

}

Since asynchronous notification does not return an S_OK result until the render-
ing is complete, we must take caution so that it will not fall into an infinite loop. A
method that should be avoided is waiting for rendering to finish while calling
IDirect3DQuery9::GetData in an infinite loop. It is good practice to proceed with-
out blocking the program, even though the function will fail and succeed, and to
check a collision only when it returns S_OK.

The algorithm introduced here is simplified. In order to actually use it, a little
improvement is required. Since the asynchronous notification mechanism does
not immediately return a result, it is better to prepare two or more IDirect3D-
Query9 interfaces, changing the interface every frame and waiting for the result
of a previously called interface.

Also, if the number of the rendered pixels is not zero, it means the object was
rendered. However, simply checking that zero pixels were rendered is often too
strict in collision testing, as the object may have just grazed the other one. In
many cases, the count should be set for more than a designated number of pixels
for a more natural effect.

In the above example where collision detection was performed between
objects and the ground, the camera was placed below the ground and the render-
ing was carried out upward. This method can be extended to collision detection
between objects of more complicated geometry than the ground. For example, in
the case of a convex type object, we can do collision detection using a cube map.
The surface of an object can be mapped with a pixel of a cube map if a camera is
put inside the convex type object and we render the object six times, once for
each direction, with culling reverse. Collision detection of objects is possible by
recording the depth value of the convex type object on the z-buffer first, rendering
another object after that, and counting the number of rendering pixels. We can
decompose non-convex objects into multiple convex objects and apply this cube
map rendering to each of these sub-objects. For convex type objects, since the
same processing can handle any rendering target that encloses the object from
the surroundings, a dual paraboloid map and a sphere map as well as an environ-
mental map can be used for collision detection. Generally, if a one-to-one
correspondence exists between a rendering target and the object surface, it is
possible to use this method in any coordinate space.

Collision Shaders
61

Section I — Geometry Manipulation Tricks

Collision Map

When performing collision detection, after a collision is detected, we want to find
out the area with which the object collided. Although we can find out where an
object currently is by asynchronous notification when objects penetrate, we do
not know the point of collision. Moreover, a collision cannot be detected when an
object moves too quickly and jumps through the area between the ground and
camera. We will now explore more detailed collision detection by examining the
path that the object moved along.

The “path volume” is introduced to detect any collisions with the moving
object. This is an object similar to the well-known “shadow volume.” Just as the
shadow volume is a mesh that includes the object that casts a shadow as well as
the object that is extruded in the direction away from the light, the path volume is
a mesh that includes the object of the present position and the object of the past
position about a certain object.

Since the path volume is determined by the same method used to create
shadow volumes caused by parallel light sources, many different methods exist
for generation [Brennan]. For example, another mesh that embeds degenerate
polygons about all the edges of an original mesh of the object is prepared. The
polygons are degenerate quadrangles and the vertices of such polygons are speci-
fied to be every two vertices of both ends of an edge. The normal vectors of two
faces that share an edge of the original mesh are assigned to the normal vector of
two overlapping vertices, respectively. The path volume is dynamically created at
the time of rendering. The normal vector of every vertex is compared with the
velocity of an object. (Specifically, the dot product of each vector is calculated, and
the sign determines the position, past or present, to which the vertex goes.) The
prepared mesh is drawn in the present position when its direction of movement
equals the direction of the normal vector. If not suitable, it will draw in the past
position. For the portions of the mesh where the dot product of the normal and
velocity vectors changes sign, the edge is filled with a degenerate quadrangle.

62
Collision Shaders

Section I — Geometry Manipulation Tricks

Figure 2: Meshes shown at the present
position and at the last position

Figure 3: Path volume

There is a simpler method of using the original mesh as is without introducing
additional degenerate polygons. For each vertex, the normal vector of the original
mesh is compared with the direction of movement using the dot product, and the
vertex is rendered in the present position when the dot product is greater than 0.
The past position is rendered when the directions differ by more than 90 degrees
(dot product < 0). Although this method can be processed by half vertex data
compared with the first method, the result is not exact. With this method, the edge

where the move direction and the direction of a normal vector change is not
extended, but the face with normal vectors that gives the value of positive and
negative both about the mark of the dot product of the move direction and direc-
tion of normal vector is extended. Since the original mesh changes shape through
this enlargement, the generated path volume will be smaller than the “correct”
one, although it will still be a subset of it. (See Figure 4.) Therefore, it can be used
only as a simple approximation. However, when actually used in a game, this
method of determining path volume is not a bad idea, as it makes the processing
load lighter.

Although the path volume that connects the present position and the past position
was introduced here as a linear path, it can also be created when the movement
lies along a curve. When the movement of an object is as complicated as a para-
bolic movement by free-fall, etc., a path volume by the curved surface surround-
ing the volume that moved can be used. (In fact, a curved surface will be finely
divided using a tessellator unit, etc.)

Next, we explain how to determine the area of collision using a path volume.
This is very similar to the calculation of a shadowed area using a shadow volume.
The rendering target for collision detection will be referred to as a “collision map”
here. First, it is initialized by applying black to the collision map. (Although any
color is sufficient for collision detection, the color black is convenient for special
effects.) Next, a camera is put on the bottom of the ground and turned upward,
and the rendering of the earth’s surface is carried out. It is not necessary to write
anything to a color component at this time. Rather, the purpose is just to write the
depth value of the ground in the z-buffer. The next step is rendering the path vol-
ume. The rendering of the path volume is carried out twice. In the first pass, only
the polygons of the path volume that face the camera are drawn with white (in

Collision Shaders
63

Section I — Geometry Manipulation Tricks

Figure 4: Simple but incomplete path volume

fact, any color is sufficient as long as it is different from the color of the ground).
In the second pass, only the polygons that face the reverse side of the camera are
drawn with the same black color as the ground. In both passes of the path volume
rendering, it is necessary to set the rendering states so that the z-buffer will not

be written in but color components will be (we have to perform the z test still).
Consequently, the area that was drawn by the first pass but not by the second
(i.e., failed the z test) remains white in the collision map. This white area is
exactly the domain where the ground and object contacted. (In Figure 5, for clar-
ity, the ground is seen from across, whereas when actually performing the test, a
camera is set just under the ground and a collision map that corresponds to a
one-to-one relationship with the ground plane is created.)

When using a collision map along with a path volume to determine whether an
object has collided, we need to handle the use of the asynchronous notification a
bit differently. Because the path volume will have rendered pixels without a colli-
sion necessarily occurring, we need to count both the number of rendered pixels
of the front-facing polygons and the number of rendered pixels of the back-facing
polygons and take the difference between the two numbers.

This method of creating a collision map returns the right result only when
rendering the path volume for a convex object. In the case of a concave object, if
the indented portion has become sideways when drawing the front of the path vol-
ume, we have pixels that have been drawn to multiple times. At this time, the
actual area of collision will be overwritten by the front polygon. When dealing
with complicated objects that are not convex, it is necessary to find the difference
between the rendering targets. A stencil buffer is often used for this more exact
method. First, the value of a stencil buffer is filled with 0. When drawing the front
surface of the path volume, the increment of the value of the stencil buffer is car-
ried out; when drawing the back, the decrement of the value of the stencil buffer
is carried out. The area where the back was not drawn by a z test failure but the
front surface was is the area where the final value in the stencil buffer is not 0. (In
some GPUs supporting the features of DirectX 9, such as the Radeon 9700 Pro,
the rendering of the path volume can be completed by one drawing pass using the
function of a two-sided stencil feature.) Since two or more objects can be pro-
cessed repeatedly when a stencil buffer is used (without clearing a stencil buffer),

64
Collision Shaders

Section I — Geometry Manipulation Tricks

Figure 5: Rendering the front surface and the back surface and taking the difference between
two images

there are many merits to using a stencil buffer. The only problem is that it is diffi-
cult to use asynchronous notification for the two-sided stencil buffer.

The created collision map can be used for special effects by the application. In
Figure 6, a special effect that puts “flares” in the collision area is demonstrated.

The collision map is a map that records an instantaneous collision and is updated
with each frame. Since we want to burn all the places where the ground and the
object have collided up until now, the created collision map is rendered to another
map by addition composition. Initially, the accumulated map is completely black. If
the collision maps are drawn one after another, at the end they will become pure
white. That is, everyplace on the ground will blaze up.

Although flaring on this accumulated collision map is a problem completely
different from collision detection, it is still an important visual problem. The
method involves post-processing, which applies an effect in screen space. First,
the accumulated collision map is transformed to coincide with the ground and
then rendered to a screen-aligned texture. This makes the “burning” areas of the
screen become white. Next, we combine this texture via multiplication composi-
tion with a random animated texture that we call “the seed of fire.” This random
animation means a wooden bit burns. However, with simple multiplication, the
areas where the bullet collided with the ground only become bright on and off. In
order to express the way the flame moves upward, a technique using an “afterim-
age” is used [James]. In order to make a flame, two screen-aligned textures are
prepared for accumulation. We take the accumulated texture of one frame ago,
reduce the intensity of its color, shift it upward in space a little, and render it to
another accumulated texture. The current burning texture is drawn by addition
composition as is. If the amount of color reduction is changed, this will affect the
size of the flames. Since a flame slowly disappears when the color is reduced a lit-
tle bit, a flame goes up high. Conversely, if the color is reduced greatly, it will

Collision Shaders
65

Section I — Geometry Manipulation Tricks

Figure 6: Using a collision map, we draw “flares” in the areas where bullets
hit the ground.

quickly fade to 0 and a flame will hardly rise. If the created texture is drawn by
addition composition on the whole screen at the end, the ground will blaze up red.
This technique is a two-dimensional one and has a fault in that it does not account
for areas where the flame should be obscured, such as those beyond a mountain.

Furthermore, in order to give additional realism, still another texture consist-
ing of a blurred version of the accumulated collision map is created; using this, the
ground darkens to represent the scorched areas. When rendering this texture on
the ground, after blurring it in two dimensions, we transform it so that it coin-
cides with the ground, like we did for the burning texture. In order to darken the
area, we use subtractive composition with black.

Reflection by the Interaction

If the area of collision between two
objects is known, it is natural to
want to know how to calculate the
interaction between them. Here,
as one example, we consider an
interaction from which a bullet
rebounds from the ground.

If the incident velocity vector
to the ground is set to vin, and the
normal vector of the ground is n,
the velocity vector vout after
rebounding from the ground is set
to vout= vin –2*(n, vin)n.

Therefore, an object can be reflected if the normal vector of the ground and
the velocity before reflection are known.

66
Collision Shaders

Section I — Geometry Manipulation Tricks

Figure 7: Rendering steps

Figure 8: Vectors for velocity reflection

Here, the problem is to determine the normal vector in the place where the
bullet reflected. As long as a collision map is used, the place that collided can be
determined only as an area rather than a single point. In order to find the normal,
it is necessary to choose one point that collided by averaging the pixels of the
area (i.e., find the centroid of the collision area). The alternative — averaging
normal vectors over the collision area — can lead to anomalies. Consider the case
where a bullet collides in the center of the sharp mountain. Although the place
where the bullet hit may become level as an average of normal vectors, the sum-
mit of a mountain is not necessarily level. Thus, where a change of the normal
vector in a nearby place is big, when the normal vector in the domain that collided
is averaged, the normal vector that came out may become the value of a normal
vector not existing in the original ground. Therefore, it is more reliable to choose
specific coordinates and calculate the normal vector about the point.

In order to calculate the centroid, it is necessary to prepare two textures
beforehand. One texture, called the coordinate map, is based on the image of the
ground when seen from the bottom. Here, the texture coordinate values are out-
put to the red and green color components of the texels, creating a linear ramp.
Moreover, in the blue component, the value of 0.0f is written in the areas where
the ground does not exist and 1.0f where it does. Another texture is the normal
map, which maps screen coordinates to the texture coordinates. By using texture
coordinates based on screen coordinates, it becomes possible to do a direct lookup
in the normal map texture for the value of a normal vector directly.

In the preceding example, since only the normal vector was used in the colli-
sion response calculations, only the normal map was prepared. Sometimes we
may also want to use the position of the model of the ground, such as when mov-
ing a bullet to the position of the surface of the ground so that it doesn’t sink into
the ground when it contacts. In this case, it is necessary to prepare another tex-
ture, which contains the value of the height or the geometry of the ground, that
maps screen coordinates to the texture coordinates.

When a model without a texture is used (in other words, the model does not
have texture coordinates), a suitable coordinate system should be chosen for the
screen coordinate of a normal map and a height map of the ground, such as a
world coordinate. It derives a normal vector from the place that collided without a
texture coordinate.

Collision Shaders
67

Section I — Geometry Manipulation Tricks

Figure 9: A texture coordinate map looking from below and a normal map

At each rendering cycle, the texture coordinates of the center of the collision area
are calculated using the collision map and the coordinate map. We compute this
efficiently by using hardware texture bilinear filtering, since we can think of filter-
ing as computing the average of the values contained in a given area. First, we
multiply our collision map texture with the coordinate map texture. However, the
right result will not be obtained if we simply filter the composite texture consist-
ing of the collision and coordinate maps. Since the domain in which we compute
our average is the collision area, not the entire texture, we need to divide by the
relative extent of the collision area.

We prepare a rendering target with a small size, similar to creating a mipmap.
About the prepared rendering target, all texels to which the original texture cor-
responds are filtered — in effect, “averaging” the values contained in their color
components. The blue component of the texture coordinate map is used for deri-
vation of the collision area. Since a 1.0 is written where the ground exists for the
blue component of a texture coordinates map, the blue component of the “aver-
aged” texture represents the area of collision, where 0.0 would mean no collision
area whatsoever and 1.0 would mean that the area of collision covered the entire
ground plane.

When composition is performed together with the average operation, it is
efficient. The final result, the texture coordinates of the centroid of the collision
area, equals the xy (red and green) components of the filtered compound texture
divided by the z (blue) component. Although the whole texture is multiplied by
the constant, the result does not change. Therefore, efficient calculation of aver-
age values over an area can be performed if a sampling point is set as the center
of four texels and the four texels are read by one sampling using a bilinear filter.
Furthermore, the result will be valid even for a 2x2 rendering target. By sampling
the center of the created texture, the average value of a texture can be calculated,
and this can be used as a final result.

If the normal map is sampled using the texture coordinates determined above, the
normal vector of a point of collision is obtained.

In order to change direction of an object using a normal vector, we have to
pass the derived normal vector to the collision response calculation. For a CPU-
based calculation, we can access this data from the GPU by locking texture mem-
ory and doing a texture read or by using asynchronous notifications as described

68
Collision Shaders

Section I — Geometry Manipulation Tricks

Figure 10: Multiplying a texture coordinate map and collision map and subsequent
averaging using bilinear filtering

earlier. However, such methods are very slow and cannot be considered practical.
It is hard to imagine that feedback of the data from the GPU to the CPU will
become high speed in the future. Therefore, it is necessary to redesign an applica-
tion so that these calculations normally performed by the CPU may be performed
by the GPU.

The most important thing is memory that saves information. In terms of par-
ticle calculations, the CPU and the GPU are capable of almost the same thing.
However, the memory that each can access directly is different. The CPU
acquires information from the main memory, while the GPU acquires information
from the video memory. We can use a texture as a means to read and write data in
video memory. Thus, in order to replace particle calculation from the CPU to the
GPU, the position and velocity of an object are recorded on a “particle map” tex-
ture. For example, the position of an object is saved in the top row of a texture and
velocity is saved in the second row. When treating two or more objects, each
object’s attributes are arranged horizontally and indexed via the x-coordinate.
Furthermore, the acceleration that acts on each particle is written in the row
under the velocity. This storing of data in a texture is well suited for our purposes,
since the row under each texel of a texture is the time derivative of the value rep-
resented by that texel. Similarly, the row above each texel represents the time
integral of the values. If we denote position, velocity, and acceleration by x, v, and
a, respectively, the operation that compounds by shifting a texture can be written
with the following expression:

x = x + v
v = v + a

This formula represents the movement of the object over a unit of time, assuming
constant acceleration. Processing, in which a texture is shifted and rendered, con-
sists of only a one-pass rendering about the polygon of the size of the texture,
which can be done very fast.

The problem that remains is the calculation of acceleration. The acceleration
value is what allows us to change the movement of an object in the scene.
Although it is 0 at the time of a uniform straight-line motion when it reflects with

Collision Shaders
69

Section I — Geometry Manipulation Tricks

Figure 11: Particle map

the ground, we need to determine the proper acceleration to change the velocity
to that represented by the reflected vector. The formula to use is 2*(n·v)n, which
yields the expected behavior for reflection. Here, n is the normal vector calcu-
lated using the collision map. The HLSL program for deriving acceleration using a
particle map is as follows.

float4 ReflectPS (REFLECT VS OUTPUT In) : COLOR0

{

float4 acceleration;

float4 coord = tex2D(CoordSamp, In.Tex0);

float4 velocity = 2.0f*tex2D(VelocitySamp, In.Tex1)-1.0f;

float pixels = coord.z;

coord /= pixels;

float4 normal = 2.0f*tex2D(NormalSamp, coord)-1.0f;

if(pixels<0.0000001f) {

acceleration = 0; // no collision occurred

} else {

acceleration = -2.0f*dot(normal.xyz, velocity.xyz) * normal;

}

return 0.5f* acceleration + 0.5f;

}

The mapping of the interval [–1.0 to 1.0] into [0.0 to 1.0] centered on 0.5 is done
for the value of the particle, or normal, map so that we can store them in a tex-
ture. This is unnecessary when using the floating-point format like
D3DFME_A32B32G32R32F, which can save a sign to those textures. In addition,
when a particle does not touch the ground or, in other words, when the drawn col-
lision area is 0 (in this program, since it uses floating-point format, it considers
this to be the case when pixels<0.0000001f, taking calculation error into consid-
eration), since there is no reflection of a particle, it sets acceleration to 0, causing
the motion of the particle to remain unchanged. Although this HLSL program is
considering only the acceleration induced by reflection with the ground, external
forces may exist as well, such as gravity. When calculating an external force, the
additional acceleration contributed by this force should be added to the accelera-
tion of the particle map by rendering using additive composition. Since +0.5 has
already been carried out by reflective calculation with the ground at this time, it is
not necessary to take an additional +0.5 when rendering external force.

When rendering the object, we need access to the particle map texture data
in the vertex shader. In DirectX 9, there are two kinds of methods by which this
can be done: displacement mapping and texture reads introduced by vs_3_0. For
the displacement mapping method, it is necessary to add the D3DDECLUSAGE_
SAMPLE declaration, which maps the position data contained in the particle map
texture to the vertex declaration.

D3DVERTEXELEMENT9 decl[] =

{

{0, 0, D3DDECLTYPE FLOAT3, D3DDECLMETHOD DEFAULT, D3DDECLUSAGE POSITION, 0},

70
Collision Shaders

Section I — Geometry Manipulation Tricks

{0, 12, D3DDECLTYPE FLOAT3, D3DDECLMETHOD DEFAULT, D3DDECLUSAGE NORMAL, 0},

{0,24, D3DDECLTYPE FLOAT2, D3DDECLMETHOD DEFAULT, D3DDECLUSAGE TEXCOORD, 0},

{0, 32, D3DDECLTYPE FLOAT2, D3DDECLMETHOD LOOKUP, D3DDECLUSAGE SAMPLE, 0},

D3DDECL END()

};

The texel coordinates of the position map are contained in this newly added
vertex data. For example, if the width of the position map is defined as MAP_
WIDTH, the texture coordinates about the i-th object are set to (i/MAP_WIDTH,
0). Since each instance of an object in a scene may refer to a different position of
the texture, a solution would be to create additional copies of the mesh that differ
in the position map texture index. However, since we can set the source of the
displacement map-related vertex data to be another stream in DirectX, if only the
data of texture coordinates differs about each mesh, we can save memory by
avoiding redundant vertex data.

There can be a maximum of one texture used for displacement mapping that
can be referred to in this manner as a variable from a vertex shader program.
Here, position coordinate is used for this variable to refer to. However, we also
need the velocity of the object for generating and extruding the path volume.
When using the displacement mapping method, it’s not possible to refer to multi-
ple values in the particle map per vertex, and so we need to set the initial velocity
through the CPU.

At the time this sample program was written, the vs_3_0 standard was not
yet supported by existing DirectX hardware. Therefore, only the displacement
mapping technique is demonstrated here. In addition, GPUs supporting floating-
point textures and displacement mapping in hardware did not exist yet. The dis-
placement mapping technique is a provisional one, and in the future, texture reads
in vs_3_0 shaders will be the preferred method.

Conclusion

In this chapter, methods of collision detection and response by the GPU using an
asynchronous notification and collision map were discussed. Both methods
involve checking whether the rendering of the object has been carried out and
judging if it has collided or not.

Since the sample program using this method is included on the companion
CD, I encourage you to play with the source. (These programs have been checked
on GeForce FX 5800 Ultra and Radeon 9700 Pro cards.)

One example that can use this method immediately is recording bullet marks
as a texture in an FPS. As another example, in a race game, accurate depths of
dents due to collisions could be recorded as a texture using a displacement map.

Currently, for an actual game, the GPU is insufficient for general processing,
and the performance of the GPU can be used only for drawing. However, it is
expected that using the GPU for purposes other than rendering, such as collision
detection, will become possible in the future.

Collision Shaders
71

Section I — Geometry Manipulation Tricks

References

[Brennan] Brennan, Chris, “Shadow Volume Extrusion Using a Vertex Shader,”
Direct3D ShaderX: Vertex and Pixel Shader Tips and Tricks, Wolfgang Engel, ed.,
Wordware Publishing, Inc., 2002, pp. 188-194.

[James] James, Greg, “Operations for Hardware-Accelerated Procedural Texture
Animation,” Game Programming Gems 2, Charles River Media, Inc., 2001, pp.
497-509.

72
Collision Shaders

Section I — Geometry Manipulation Tricks

Displacement Mapping

Tom Forsyth

Principles

Displacement mapping is essentially a method of geometry compression. A
low-polygon base mesh is tessellated in some way. The vertices created by this
tessellation are then displaced along a vector — usually the normal of the vertex.
The distance that they are displaced is looked up in a 2D map called a displace-
ment map.

The main aim of this article is to allow people to take data from the industry’s
current mesh and texture authoring pipelines and derive displacement map data
from them. There will also be some discussion of rendering techniques on past,
current, and future hardware.

It is worth mentioning that the problems and restrictions inherent in
authoring for displacement maps are the same as those that occur when authoring
for normal maps because they are essentially two different representations of the
same thing. Generating normal maps has recently come into fashion, and there is
plenty of hardware around to support it. If you are going to be generating normal
maps, generating and using displacement map data is a relatively simple enhance-
ment to the tool chain and rendering pipeline. As shown later, there is already
widespread hardware support for at least some form of displacement mapping,
new and faster hardware has been released recently, and there is, no doubt, even
more direct support for displacement maps on the way.

Advantages

Using displacement maps reduces the amount of memory required for a given
mesh level of detail. Bulky vertex data is replaced by a 2D array of displacements
— typically 8 or 16 bits in size, with most attributes such as texture positions,
tangent vectors, and animation weights implicit. This reduces storage require-
ments and the bandwidth needed to send that data to the rendering hardware,
both of which are major limits on today’s platforms. Alternatively, it allows much
higher detail meshes to be stored or rendered in the same amount of memory
space or bandwidth.

Reducing the mesh to a far simpler version (typically around a few hundred
vertices rather than tens of thousands) means operations such as animation and
morphing are cheaper. They can therefore be moved from the GPU back onto the

73

CPU, which is a much more general-purpose processor. Because of this, the range
of possible operations is expanded — more complex animations are possible and
different techniques used, such as multi-target morphing (for facial animation),
volume-preservation (for bulging muscles), and cloth simulation. One other
advantage is that the animation algorithms used are no longer tied to the specific
GPU platform or to the lowest-common-denominator of platforms. Indeed, the
animation programmer no longer needs to know the core details of the graphics
platform to experiment with and implement new techniques.

A more abstract advantage is that using displacement maps turns meshes —
tricky 3D entities with complex connectivity — into a few 2D entities. 2D objects
(i.e., textures and images) have been studied extensively, and there are a lot of
existing techniques that can now be applied to meshes. For example:
� Mesh simplification and LOD becomes mipmap generation.
� Compression can use frequency-based methods such as Fourier transforms

or wavelets.
� Procedural generation of meshes can use existing 2D fractal and

image-compositing methods.
� Morphing becomes a matter of blending 2D images together.
� End-user customization involves 2D grayscale images rather than complex

meshes.

Using graphics hardware and render-to-texture techniques, many of the above
features can be further accelerated.

Disadvantages

Displacement maps place some restrictions on the meshes that can be authored
and are not applicable everywhere. Highly angular, smooth, or faceted objects do
not have much fine or complex surface detail and are better represented either by
standard polygonal mesh data or some sort of curved surface representation, such
as the Bezier family of curves or subdivision surfaces.

Highly crinkled or fractal data such as trees or plants are not easy to repre-
sent using displacement maps, since there is no good 2D parameterization to use
over their surfaces.

Meshes that overlap closely or have folds in them can be a problem, such as
collars, cuffs, or layers of material like jackets over shirts, or particularly baggy
bits of material. This is because a displacement map can only hold a single height
value. Although this is a problem at first, if artists can author or change the map-
ping of displacement maps, they can map each layer to a different part of the dis-
placement map and duplicate each layer in the low-polygon base mesh.
Automated tools are also easy to modify to do this correctly.

Authoring displacement maps almost always requires specialized tools — it is
very hard to directly author the sort of maps discussed here (large-scale ones that
cover a whole object). However, the amount of work required to write, adapt, or
buy these tools is small compared to the benefits. The recommended tools are
discussed below.

74
Displacement Mapping

Section I — Geometry Manipulation Tricks

At first glance, hardware support is slim for displacement mapping. Currently,
only two PC graphics cards support it natively (the Parhelia and members of the
Radeon 9x00 series) and none of the consoles. However, with a bit of thought, dis-
placement mapping methods can be applied to a much wider range of hardware.
On the PC, anything using any sort of vertex shader can use them, including soft-
ware VS pipelines used by many people for animation or bump-mapping on older
cards. On the consoles, the VU units of the PS2 can use displacement maps
directly, and any CPU with a SIMD-style instruction set (such as the
GameCube’s) can efficiently render displacement map data. On the consoles, the
reduction in memory use and memory bandwidth is well worth the extra effort.

Required Source Data

To use displacement mapping in hardware or software, you eventually need the
basic ingredients:
� A low-polygon base mesh
� A “unique” UV texture mapping for the base mesh
� A heightfield displacement map for displacement of vertices
� A normal map for lighting

Typically, displacement maps are lower resolution than normal maps, though they
may demand more precision. Additionally, displacement maps and normal maps
usually share the same mapping, since the same problems must be solved by both
— filtering (especially mipmapping), representation of discontinuities, texel reso-
lution at appropriate places on a mesh, and assigning each texel a unique position
on the mesh.

How you get these basic ingredients is almost entirely up to the art team and
the available tools. They are available from many sources in many combinations.

For reference, all vertex numbers given are for a human figure that would
normally take around 10,000 vertices to represent with a raw mesh with around
40 bones. Typically, there are twice as many triangles as vertices in a mesh.

Low-Polygon Base Mesh

As a guide, this mesh is around 100 vertices for a human figure, depending on the
quality of animation required and the complexity of the clothing. The artists can
directly author this mesh, or it can be derived from higher-polygon meshes by
using a variety of mesh simplification techniques. These may be completely auto-
matic, or they may be semiautomatic with visual checks and tweaks by artists.

There are many methods to automatically reduce meshes in complexity.
Those based on half-edge collapses are popular, especially as they can also be
used to directly author progressive mesh sequences, which are useful for render-
ing continuous levels of detail on older hardware. Other options include using
Delaunay-style parameterization and remeshing and also voxelizing the mesh and
remeshing from appropriately filtered voxel data.

Displacement Mapping
75

Section I — Geometry Manipulation Tricks

Unique Texture Mapping

Displacement and normal maps generally require a mapping over the mesh, which
ensures that each texel is used no more than once. Although not strictly neces-
sary in some specialized cases (for example, when an object has perfect left/right
symmetry), in general the extra flexibility is well worth the effort.

The unique mapping can be authored directly, using a spare mapping channel
in the mesh. Automated generation is possible using the variety of “texture atlas”
methods that exist, including the same Delaunay-style parameterization as the
above remeshing or using the technique in Gu’s “Geometry Images” [1] of a mini-
mal number of cuts to unfold and flatten a mesh onto a square plane.

There are also existing unique mapping solutions in 3D authoring tools, such
as 3ds max’s “flatten” mapping. However, it is important to note that it is not the
high-polygon mesh that needs the unique mapping but the low-polygon version.
Unique-mapping the high-polygon mesh can work in some cases, but it tends to
introduce a lot of unwanted discontinuities, which hinder many of the polygon-
reduction techniques used to produce the low-polygon base mesh. If the mesh
simplification is a plug-in for the authoring package, that can be performed first,
before unique mapping. Alternatively, the mesh can be exported, simplified by
external tools, and reimported for unique mapping. Although clumsy, this does
have the advantage that the artists can tweak the automated unique mapping —
sometimes a useful ability.

The unique mapping can also be used for lightmap generation or procedural
textures, if required.

Heightfield Displacement Map and Normal Map

Displacement maps can be authored directly using grayscale textures and suitable
art tools. However, 8 bits per pixel is generally not sufficient for a high-precision
displacement map, and few if any art packages handle 16-bit grayscales. Even
when they do, since they are designed for visual use rather than heightfield
authoring, the control over the values is relatively coarse, and it is hard for artists
to achieve anything but an approximation of the correct shape. In practice, this
leads to “caricatures” of the object.

A better choice is to author most or all of the data using a high-polygon mesh.
Using the unique mapping above, each texel on the displacement and normal
maps has a single position on the low-polygon base mesh. A ray is cast from that
position along the interpolated low-polygon normal and the intersection found
with the high-polygon mesh. The normal of the high-polygon mesh is written into
the normal map, and the distance along the ray to the point of intersection is writ-
ten into the displacement map. Remember that these distances may be negative
— the ray needs to trace both outward and inward from the low-polygon mesh, as
shown in Figure 1.

When creating the high-polygon mesh, the artists still need to be aware that
they are indirectly authoring a heightfield. Folding or overlaps of geometry will
not be recorded well by a heightfield. In practice, we find it is better to have the
ray-caster report difficult or ambiguous intersection cases and have the artists fix

76
Displacement Mapping

Section I — Geometry Manipulation Tricks

the mesh (either the high- or low-polygon ones as appropriate) than to attempt to
make the ray-caster very intelligent. These tricky cases are rare, and this method
highlights them rather than trying to hide them, reducing unwanted surprises.

Normal maps (either object-space or surface-local space) are almost impossi-
ble to author directly but are easily generated from displacement maps or bump
maps. Although a bump map is actually a heightfield and is essentially the same
thing as a displacement map, since absolute scale is far less important when gen-
erating normal maps than when displacing positions, they are routinely generated
by hand.

High-frequency displacement and normal maps are fairly easy to author by
using bump maps. These are used to provide texture to a surface or add small
ridges or creases, such as those between panels of a car body. These are often
applied to medium-polygon meshes to add fine details, rather than to the
low-polygon mesh that is used in displacement mapping. It is easy to apply them
to existing or generated displacement and normal maps, as long as there is
already a unique texture mapping. The high frequency implies small displace-
ments, so the lack of a well-controlled scale for those displacements is not as
much of a problem. Having a crease in clothing twice as large as desired is not a
major problem, unlike having a character’s nose twice as long as it should be.
Note that the mapping of these high-frequency maps is kept flexible on the artist’s
end. They do not need to be uniquely mapped, and it is perfectly acceptable to tile
a small bump map over a larger surface to provide noise and detail. They will be
rendered into the normal and displacement maps by the ray-caster, and it is those
that are uniquely mapped.

Mucky Foot Choices

At Mucky Foot we tend to author medium-polygon meshes (around 3,000 vertices
for humans) with high-frequency bump maps. It is more efficient for the artists to
put small creases and surface texture into a bump map than it is to generate them
with polygonal creases, and it is just as visually effective. It also reduces the

Displacement Mapping
77

Section I — Geometry Manipulation Tricks

Figure 1: A displacement map applies scalar offsets along the
interpolated normals of a base mesh.

problem of high-frequency polygon data confusing the ray-caster and causing mul-
tiple intersections.

For some objects, we author the unique mappings directly. Manual unique
mapping is typically used on objects such as people, since they are already
mapped fairly uniquely, except for left/right symmetry. This is easily fixed by
selecting the right half of the part of the object that has been mapped this way
(typically everything below the neck) and adding 1 to either the U or V value of
the texture coordinates. Since these meshes use texture wrap address mode by
default (as opposed to clamp-to-edge), this does not affect the diffuse, specular,
etc., texture maps, but it does create a unique mapping for use by the displace-
ment map. This mapping is then packed (see below) for better texel efficiency.

For other objects, we generate unique mapping automatically using fairly
standard “texture atlas” creation techniques. In some cases, such as buildings,
3ds max’s “flatten” tool mostly does a good enough job and has the benefit that
the artists can directly tweak any problem areas. In other cases, this produces too
many seams (or takes too much time to fix up by hand), and we first reduce the
mesh to the low-polygon base mesh version and then uniquely map the object
using our own texture atlas code.

To produce a low-polygon base mesh, Mucky Foot uses a quadric error met-
ric-based semiautomatic edge-collapse sequence that is visually checked and
manually tweaked where necessary. Fully automated reduction is generally
acceptable down to around 500 vertices, and then manual tweaking can be
required in a few places to reduce to around 100 vertices. The tweaking is gener-
ally required to collapse features that are visually less important, such as the feet,
or prevent collapse of perceptually important features, such as the face, elbows,
knees, and hands. Automation of these (for example, taking bone weights into
account) was attempted with mixed results. It seems generally quicker and better
simply to allow the artists full control by this stage; frequently, the extra “intelli-
gence” of the tool gets in the way. Production of a low-polygon mesh typically
takes around 30 minutes per human mesh, which compares well with the initial
authoring time.

As well as producing the low-polygon base mesh, this process also generates
a view-independent progressive mesh, which is useful when rendering the mesh
on some hardware (see below). The same tool also produces VIPM sequences for
objects that do not use displacement maps — simple or smooth objects such as
coffee mugs, dustbins, chairs, and tables.

The high- or mid-polygon meshes that the artists author are only used
as input to the offline ray-caster; they are not used directly at run time. Because
of this, the limits imposed by the rendering pipeline on polygon counts are almost
totally removed. The new limit on polygon count is simply whatever the artists
have time to author. The limits on connectivity, large or small polygon sizes, and
mesh complexity are also largely removed — as long as a sensible low-polygon
base mesh can be produced. Games are getting bigger and becoming more limited
by what we have the time, talent, and manpower to author, rather than by the
hardware, and this extra flexibility allows the artists to optimize for their time
rather than for the peculiarities of a graphics engine.

78
Displacement Mapping

Section I — Geometry Manipulation Tricks

Although we use our own VIPM and texture atlas libraries, it should be noted
that they are fairly standard algorithms, and many of the tools mentioned later
would do just as good a job. We use our own code simply because it was already
written and is now well integrated with our tool chain.

Art Tools

We found a number of tools handy when authoring displacement maps. Many of
these tools have other uses, such as the QEM-based edge collapser which also
generates view-independent progressive mesh data. Some of them already exist
in various forms, and experimenting with these off-the-shelf solutions is a very
good idea. Many produce readily usable data, while others make useful test cases
before committing to writing custom tools.

Displacement Map Previewer

If displacement maps are authored directly, some sort of preview tool is usually
needed. Some 3D packages may have displacement map renderers included, but if
not, it is fairly simple to write a brute-force previewer that simply tessellates the
base mesh to the resolution of the displacement map — one quad per texel.
Although it is a lot of triangles to draw, it is not unreasonable if done on a single
object at a time. A 512x512 map requires half a million triangles to render, which
can be done at acceptable speeds on most decent PC graphics cards.

If displacement maps are extracted from a high-polygon mesh, this previewer
is usually not necessary.

Unique Mapping Checker

When creating unique texture mappings manually, it is easy to accidentally map
two areas of mesh to the same bit of texture. This is easily solved by rendering
the mesh to a texture using the UV mapping as XY coordinates, counting each
time a particular texel is touched. Where a texel is touched more than once, ren-
der an opaque red texel. Otherwise, render a translucent blue texel. When the
mesh is loaded back into a 3D modeling package and the texture applied to it, any
red/opaque texels show where the problem spots are. As there will be red texels
in both places that conflict, it is easy to spot and correct the overlap.

This tool is usually a special mode of the ray-caster, since both rasterize
base-mesh polygons onto a uniquely mapped texture. The difference is that the
ray-caster does a lot more work to decide what data to write to the texels.

Ray-caster

The ray-caster rasterizes base-mesh triangles to the displacement and normal
maps. For each texel, it casts a ray from the texel’s position on the base mesh
(after interpolation by whatever basis is used — linear, N-Patches, subdivision
surface, etc.) along the normal, looking for the best intersection with the

Displacement Mapping
79

Section I — Geometry Manipulation Tricks

high-polygon mesh. “Best” is defined by various heuristics. It is usually the near-
est intersection to the base mesh, though if multiple intersections are close
together, this often indicates a high-frequency part of the mesh that folds back on
itself or a mesh “decal” where smaller polygonal details have been added over a
coarser part of the mesh. Usually, the furthest of these bunched intersections is
used. This heuristic will take some tweaking — alternatively, it is often wise to
highlight problem areas so that the artists can manually check and tweak them.

The ray-caster takes the normal of the high-polygon mesh, modifies it by any
applied bump map, and writes it to the normal map.

It takes the distance along the ray from the base mesh to the intersection and
writes that value into the displacement map. Any high-frequency bump map
applied to the high-polygon mesh will also modify the displacement at this stage
as a “detail” displacement map. In theory, a bump map should perturb the high-
polygon mesh and alter where the ray intersects it. However, we have found that
simply adding the bump map height onto the intersection distance produces per-
fectly acceptable results, as long as the bump map has a small displacement scale
and is only used for creases and small bumps, rather than major features.

After the ray-caster has written texel data to the normal and displacement
maps, the maps are usually sent through a dilation filter, which spreads written
values outward to any neighboring unwritten texels. This fills in the gaps between
mapped areas with sensible data and ensures that filtering still brings in sensible
data, especially when mipmapping.

ATI’s Normal Mapper [2], nVidia’s Melody, and Crytek’s PolyBump [3] all do
this ray-casting, though at the time of publication all only output normal maps. It
would be simple to modify them to output displacement data as well, and this sup-
port is planned for them. All include a variety of heuristics to decide the “best”
ray intersection to use for various cases.

Unique Mapping Packer

There are two problems in unique mapping. One is to get a unique mapping so
that no texel is used in two places, and the other is to pack the many small areas
of connected triangle “patches” together on the texture in the most efficient way.
The first can be solved by automation, but human intervention is frequently nec-
essary, and it involves some judgment calls. Fortunately, these decisions are usu-
ally easy and quick for humans to make.

The second part — equivalent to the problem of packing odd shapes in a box
— is tedious for humans. But because it involves no perceptive judgment calls, it
is simple to leave a computer crunching away through possible solutions (possibly
overnight) until it finds a good one. To reduce “bleeding” between patches due to
filtering (especially mipmapping), patches must be separated by certain minimum
numbers of texels. After packing, these texels are filled with the value of the
nearest used texel (again so that filtering does not bring in undefined values).

Where unique texturing is generated or tweaked by hand, this automatic
packing allows artists to concentrate on the task of uniquely mapping an object.
They do not have to simultaneously keep all the bits optimally packed — they can

80
Displacement Mapping

Section I — Geometry Manipulation Tricks

scatter them all over the UV domain and arrange them for easier mental labeling
(all the parts of one type together, etc.).

A further enhancement is to analyze the frequency of the displacement and
normal map data in each triangle patch and scale them up or down to allocate
more texture space to the areas with the higher frequency data. By packing the
patches together after this scaling, a given size of displacement or normal map
will be spread over the object with more texels applied to detailed areas.

It is important to not completely remove the artist-determined scales.
A maximum grow/shrink factor of two in each UV axis is sufficient to ensure good
use of available space but allows artists to deliberately allocate extra texel space
to areas of high importance, such as the face and hands of people, and reduce per-
ceptually minor parts, such as the undersides of cars, which are very crinkly but
not very visible (unless it’s that sort of game, of course!).

Note that this scaling implies a slightly more complex pipeline. First the
patches are packed together without scaling. This is just to get them all onto a
single map of reasonable size — the packing does not need to be very efficient.
Then the ray-caster is run to produce a first approximation of the displacement
and normal map data. For quick previews, that data is then used directly for
display.

For final artwork, the frequency of the data in each patch is determined, and
the patches are scaled accordingly and repacked — possibly with a more expen-
sive or thorough algorithm. Then the ray-caster is run again with this new opti-
mal mapping, usually with a very high-resolution map. The large map is then
filtered down to the actual size stored on disk. This second pass is typically run on
a batch job overnight, which means it can devote a lot of time to finding near-opti-
mal packing and use really big maps for the ray-casting phase, removing as many
sampling artifacts as possible.

Alternative methods of optimizing texture space for signal frequency are
given by Sander et al. [4].

Mesh Reduction

Mesh reduction is probably the trickiest tool to get right since it usually needs to
have an interactive element to it and it relies on a lot of heuristics.

The most common mesh-reduction techniques are based on incremental
edge or half-edge collapses. This technique produces a progressive mesh [5] as it
works, which can be used for rendering continuous level of detail meshes. Many
heuristics exist to decide the order of edge collapses, most based on the quadric
error metric by Garland and Heckbert [6] or modifications of it by Hoppe [7].

An increasing number of existing tools can be used for this:
� The Direct3DX library PMesh interface
� Melody tool by nVidia [8]
� Galaxy3 source library by Charles Bloom [9]
� Source code to my article “Comparison of VIPM Methods” in Game

Programming Gems 2 [12]

Displacement Mapping
81

Section I — Geometry Manipulation Tricks

The above all use edge-collapse methods. Alternatively, there are various styles
of remeshing using Delaunay triangulation [10] or voxelizing and remeshing.

Rendering

Once the basic data of a low-polygon mesh, a displacement map, a normal map,
and a mapping for the maps is obtained, the data can be processed for the capabili-
ties of the target hardware. Much of the details are either proprietary (in the case
of consoles) or have been discussed elsewhere (in the case of my “displacement
compression” techniques [11]), so only brief outlines are given here. Fortunately,
this processing rarely requires any human intervention and is fairly simple num-
ber crunching. I address each platform separately.

The techniques for rendering normal maps are fairly standard between most
of these platforms. The exception (as always) is the PlayStation 2, but again these
details are proprietary.

Adaptive Displacement Mapping
� Matrox Parhelia, future hardware

Make mipmaps of the displacement map and render the low-polygon mesh with
the displacement map. If necessary, feed some distance-related or perceptual
biases into the adaptive tessellator. The hardware does the rest.

Pre-sampled Displacement Mapping
� ATI Radeon 9700, maybe PlayStation 2, and GameCube

Offline, regularly and uniformly tessellate the base mesh in software and sample
the displacement map at the generated vertices. This produces an array of
n(n+1)/2 displacements for each triangle on the base mesh. These values are
swizzled in a hardware-specified manner into a linear stream fed to the vertex
shader unit. At run time, the vertex shader unit performs this tessellation itself,
reads the values from the displacement stream, and draws the final displaced
vertices.

To perform level of detail transitions, repeat the above process for a variety
of different tessellation amounts (generally the powers of two), giving an effective
“mipmap chain” of displacement streams. This allows discrete LOD transitions,
though with some popping as the mesh switches from one tessellation level to the
next.

To remove the popping, each displacement stream entry holds two displace-
ments rather than one. The first holds the standard displacements, and the sec-
ond holds the upsampled displacements from the lower LOD tessellation. In the
vertex shader (or equivalent), a per-mesh scalar interpolates between the two
sets of displacements. Just using these upsampled values should give a mesh that
is visually identical to the lower LOD version. As an object goes away from the
camera, this allows the high LOD version to smoothly morph into the low LOD

82
Displacement Mapping

Section I — Geometry Manipulation Tricks

version and then the low LOD version swaps in with no visual popping but reduc-
ing the triangle and vertex count.

Because this method samples the displacement map in a predictable manner,
you may get some improvement in quality by ray-casting at the required positions
directly rather than going via a displacement map. This also means that a unique
mapping is not required for displacements, since there is no actual 2D displace-
ment map but simply a displacement stream for each triangle of the base mesh.
However, a unique mapping is still required for the normal map.

The Radeon 9500-9800 series are currently the only cards to explicitly sup-
port this method, though it seems possible that the PlayStation 2 and GameCube
could also implement it with a bit of work. As with all things on the PS2, it
depends heavily on the rest of the rendering pipeline being used.

Displacement Compression
� All PC cards with hardware vertex shader support (nVidia GeForce 3 and

better, ATI Radeon 8500 and better, and others), GameCube, Xbox,
PlayStation 2, software vertex shader pipelines on DX6 or better cards

The base mesh vertices are uploaded to the memory of the vertex unit rather
than in a standard mesh/vertex stream. This may need to be done in multiple sec-
tions because of limited vertex unit memory, with each section drawn before the
next is uploaded.

Tessellation of the mesh is performed offline to whatever degree required,
and the tessellated vertices and/or indices are fed in as a standard mesh. The dif-
ference is that rather than holding a raw vertex position, normal, texture coordi-
nates, etc., each vertex stores only the following data:
� Three indices to three base-mesh vertices
� Two barycentric coordinates that interpolate between the base-mesh vertices
� A displacement value

This reduces the size of a vertex to 6 bytes (though many systems require pad-
ding of the vertices up to 8 bytes). The vertex unit interpolates position, normal,
texture coordinates, tangent vectors, and so on from the given three base-mesh
vertices and the two barycentric coordinates. The vertex is then displaced along
the interpolated normal.

It is important to realize that this method does not require the hardware to
tessellate the mesh. All tessellation is performed offline, and a fairly standard
mesh renderer is used. The difference is that the vertices are compressed using
the data from the displacement map.

Interpolation can be performed using any basis, but linear and bicubic
are common. Linear interpolation is fine for most objects, though highly animated
objects may benefit from using an N-Patch-style basis because it is relatively
smooth, even under heavy mesh distortion.

As with presampled displacement mapping, there is no actual 2D displace-
ment map (the displacements are held by the vertices themselves), so the dis-
placement for each vertex can be sampled directly using the ray-caster if desired.

Displacement Mapping
83

Section I — Geometry Manipulation Tricks

Level of detail transitions can be done using the same trick as with
presampled displacement mapping — storing two displacements per vertex and
lerping between them — or using view-independent progressive meshes. Mucky
Foot currently uses the lerping method on the PlayStation 2; on other platforms
with indexed primitive support, we use “sliding window” VIPM [12].

In some cases, the interpolated texture coordinates (used for the diffuse and
normal maps) are slightly distorted from the desired coordinates. The simple
solution is to add 2 bytes to the vertex format that offset the UV values from the
interpolated ones. This brings the vertex size up to 8 bytes. On the PC, vertices
are required to be multiples of 4 bytes anyway, and on other platforms, the larger
vertices are still a substantial improvement on traditional mesh data. The other
option is to distort the diffuse maps slightly to correct for this effect — this fits in
easily with some pipelines.

It is possible to reformulate this method so that instead of sending base-mesh
vertices to the vertex unit, base-mesh triangles are sent. Each displaced vertex
then only needs a single index to determine which triangle it is on. This reduces
the possible size of vertices down to 4 bytes. However, since there are typically
more triangles then vertices in the base mesh, more information is required to
store a triangle, and vertex unit storage space is typically at a premium, this may
be slower except for highly tessellated objects with simple base meshes.

Start-of-Day Tessellation
� Slow CPUs with DX5 or earlier graphics cards, software rasterizers, laptops,

PDAs, mobile phones

These devices do not have enough polygon throughput and/or CPU power to use
run-time displacement mapping to any useful extent. However, you can tessellate
and displace the data using software either at installation time or at start of day.
By tessellating according to the CPU speed of the machine and tessellating multi-
ple versions of each mesh, you still gain the advantages of adapting polygon count
to the scene complexity, machine capability, and the size of each mesh on the
screen without having to author them directly.

If the data is delivered on a format with reduced bandwidth or size (for exam-
ple, over a modem or on a multi-game “sampler” disk) you gain the excellent
compression and space savings that come with using displacement and normal
maps.

On really slow hardware, the low-polygon base map is just used directly with
no tessellation at all.

Some software rasterizers may be able to do normal mapping, and some
hardware may be able to use the displacement map data to do emboss bump-map-
ping. Otherwise, it is easy to do a prelighting phase applied to the normal map
with the mesh in its default pose and light coming from above to give lights and
shadows in appropriate places. While not strictly correct, it produces images eas-
ily acceptable by the standards of the available hardware but does not cost any
extra authoring time to produce.

84
Displacement Mapping

Section I — Geometry Manipulation Tricks

Summary

Displacement mapping reduces memory use and increases mesh detail. Once dis-
placement maps are authored, highly scalable content is easy to generate auto-
matically, allowing an application to use very long view distances, more complex
scenes, a wide variety of platforms, and (to an extent) future-proof itself and the
art assets for future hardware.

The difficulties of authoring displacement maps directly are reduced to a far
more manageable pipeline with a few simple tools and a small amount of artist
training. Previously, greater effort was frequently taken when authoring and
re-authoring different levels of detail for different platforms or to rebalance pro-
cessing load for specific scenes. Almost all of the difficulties with displacement
maps are shared by the generation of normal maps — if generating one, you can
frequently get the other with very little effort.

Despite appearances, there is already wide hardware support for displace-
ment maps — all the current consoles and almost all “gamer” PC hardware.
Newer hardware allows more efficient implementations of displacement mapping,
but any of the methods listed give speed and size advantages over raw mesh
rendering.

References

[1] Gu, X., S. Gortler, and H. Hoppe, “Geometry Images,” ACM SIGGRAPH ’02,
pp. 355-361.

[2] ATI Normal Mapper tool, available from http://mirror.ati.com/devel-
oper/index.html.

[3] Crytek PolyBump package, http://www.crytek.com/.

[4] Sander, P., S. Gortler, J. Snyder, and H. Hoppe, “Signal-specialized
parametrization,” Eurographics Workshop on Rendering 2002,
http://research.microsoft.com/~hoppe/.

[5] Hoppe, H., “Progressive meshes,” ACM SIGGRAPH ’96, pp. 99-108.

[6] Garland, M. and P. Heckbert, “Surface simplification using quadric error met-
rics,” SIGGRAPH ’97 Proceedings, Aug. 1997.

[7] Hoppe, H., “New quadric metric for simplifying meshes with appearance
attributes,” IEEE Visualization 1999, October 1999, pp. 59-66.

[8] Melody tool by nVidia, www.nvidia.com.

[9] Galaxy3 source library by Charles Bloom, http://www.cbloom.com/3d/
galaxy3/.

[10] Eck, M., T. DeRose, T. Duchamp, H. Hoppe, M. Lounsbery, and W. Stuetzle,
“Multiresolution analysis of arbitrary meshes,” Computer Graphics, 1995.

Displacement Mapping
85

Section I — Geometry Manipulation Tricks

[11] Forsyth, T., “Where Have All the Bumpmaps Gone” (Meltdown 2000) and
“Highly Scalable Character Rendering” (Meltdown 2001), available at
http://www.tomforsyth.pwp.blueyonder.co.uk/.

[12] Forsyth, T., “Comparison of VIPM Methods,” Game Programming Gems 2,
Charles River Media, 2001.

86
Displacement Mapping

Section I — Geometry Manipulation Tricks

Section IISection II

Rendering Techniques

87

Rendering Objects as Thick
Volumes

by Greg James

Screen-aligned Particles
with Minimal VertexBuffer
Locking

by O’dell Hicks

Hemisphere Lighting with
Radiosity Maps

by Shawn Hargreaves

Galaxy Textures

by Jesse Laeuchli

Turbulent Sun

by Jesse Laeuchli

Fragment-level Phong
Illumination

by Emil Persson

Specular Bump Mapping on
Pre-ps_1_4 Hardware

by Matthew Halpin

Voxel Rendering with PS_3_0

by Aaron Burton

Simulating Blending
Operations on Floating-point
Render Targets

by Francesco Carucci

Rendering Volumes in a Vertex
& Pixel Program by Ray
Tracing

by Eli Z. Gottlieb

Normal Map Compression

by Jakub Klarowicz

Drops of Water and Texture
Sprites

by Sylvain Lefebvre

Advanced Water Effects

by Kurt Pelzer

Efficient Evaluation of Irradiance
Environment Maps

by Peter-Pike J. Sloan

Practical Precomputed Radiance
Transfer

by Peter-Pike J. Sloan

Advanced Sky Dome Rendering

by Marco Spoerl and Kurt Pelzer

Deferred Shading with Multiple
Render Targets

by Nicolas Thibieroz

Meshuggah’s Effects Explained

by Carsten Wenzel

Layered Car Paint Shader

by John Isidoro, Chris Oat, and

Natalya Tatarchuk

Motion Blur Using Geometry
and Shading Distortion

by Natalya Tatarchuk, Chris

Brennan, Alex Vlachos, and John

Isidoro

Simulation of Iridescence and
Translucency on Thin Surfaces

by Natalya Tatarchuk and Chris

Brennan

Floating-point Cube Maps

by Arkadiusz Waliszewski

Stereoscopic Rendering in
Hardware Using Shaders

by Thomas Rued

Hatching, Stroke Styles, and
Pointillism

by Kevin Buchin and Maike

Walther

Layered Fog

by Guillaume Werle

Dense Matrix Algebra
on the GPU

by Ádám Moravánszky

Rendering Objects as
Thick Volumes

Greg James

Introduction

This article presents a convenient and flexible technique for rendering ordinary
polygon objects of any shape as thick volumes of light-scattering or light-absorb-
ing material. Vertex and pixel shaders are used in multipass rendering to generate
a measure of object thickness at each pixel. These thicknesses are then used to
produce the colors of the object on screen. For example, we can render a volumet-
ric shaft of light by creating a simple polygonal model of the light shaft. Each
frame, new thickness information for this object is rendered from the current
point of view, and the thicknesses are converted to colors. The result is a true
volumetric rendering of the object suitable for interactive dynamic scenes.

The technique can be implemented on hardware that supports Microsoft’s
pixel shaders version 1.3 or higher and runs at real-time frame rates in complex
scenes. No preprocessing or special treatment of the volume object geometry is
required, making it trivial to animate and distort the volume objects. An efficient
and simple method is given to properly render any volume objects, convex or con-
cave, and handle complex intersection cases where opaque objects of any shape
penetrate the volumes. This article also introduces a new method of dithering to
eliminate the effects of aliased thickness information. The dithering is accom-
plished using texture data, and it does not complicate the rendering or require
additional passes.

This article focuses on rendering based on the thickness visible from the cur-
rent viewpoint. This is suitable for volumes of single-scattering material. In this
case, each bit of light arriving at the viewpoint is the result of only one scattering
interaction within the object, and the total amount of light is a function of the total
thickness. As the visible thickness increases, the number of scatterers or the
chance of scattering increases. The scattering can both add light and attenuate
light as a function of thickness. More sophisticated models of scattering could be
employed but will not be presented here. Hoffman and Preetham have a good
demo and introduction to various types of scattering [Hoffman02].

The appearance of the volume objects is easy to control, and an artist-created
color ramp can be used to map object thickness to color. While the technique
treats objects as volumes of constant density, the color ramp allows us to map
increasing thickness to an exponential ramp, overbright saturated colors, or any

89

arbitrary colors. The technique is being used in several upcoming games and has
great promise for bringing practical volumetric effects to interactive real-time
rendering.

The Big Picture

This technique is a significant departure from traditional 3D rendering. It involves
rendering to off-screen textures, rendering depth information as RGBA colors,
using simple vertex shader programs and textures to encode information, and
using alpha blending to add and subtract high-precision encoded depth informa-
tion. Rather than jump into detailed discussion right away let’s begin with an
overview of the complete rendering process, so you can clearly see what’s
involved and how the technique compares to other approaches.

The full implementation of the technique is illustrated in Figure 1. These
steps render any volumetric shape, handle all solid objects intersecting the vol-
umes, dither the thickness information, and handle any camera position in the
scene, whether the camera is inside or outside of the volumes or solid objects.
Rendering proceeds as follows and is covered in greater detail later in the article:

1. Opaque objects are rendered to the ordinary back buffer. See Figure 1a.

2. The view-space depth of opaque objects that might intersect the volume
objects is rendered to a texture that we label O. Depth is encoded as RGBA
colors. See Figure 1b.

3. All volume object back faces are rendered to texture B using additive RGBA
blending to sum the depths. A pixel shader samples O while rendering each
triangle in order to handle intersections. See Figure 1c.

4. All volume object front faces are rendered to texture F while sampling O to
handle intersections. See Figure 1d.

5. Textures B and F are sampled to compute the volume thickness, convert this
to color, and blend the color to the scene rendered in Step 1. See Figure 1e.

One of the advantages of this technique is that the rendering does not have to
change in order to handle various intersection cases and camera positions. No
extra passes or knowledge about the objects is required as long as the depth com-
plexity of the volume objects remains below a certain adjustable limit. A later sec-
tion presents this in greater detail, but the depth complexity limit depends on the
precision of the thickness information. This can be adjusted from frame to frame.
A depth complexity of 16 or 32 volume object faces can be rendered at high preci-
sion with no additional passes.

90
Rendering Objects as Thick Volumes

Section II — Rendering Techniques

Computing Thickness

First, we need a way to get thickness information from ordinary polygon hulls.
Dan Baker presents a technique for this in the Microsoft DirectX 8.1 SDK
VolumeFog example [Baker02]. His approach can be extended in a number of
ways, but the basic approach is to calculate thickness by subtracting the view-
space depth of an object’s front faces from the depth of the back faces. The depths
of an object’s faces are rendered to off-screen render targets, and the thickness is
computed from information in the render targets. At any given pixel, if we sum
the depths of all of an object’s front faces at that pixel and sum the depths of all
back faces, the thickness through the object is the back face sum minus the front
face sum. This is illustrated in Figure 2.

Rendering Objects as Thick Volumes
91

Section II — Rendering Techniques

Figure 1: Overview of the rendering steps. Five rendering passes produce correct results
for all cases where volume objects intersect opaque objects and for all camera locations
inside or outside of the objects. One additional pass (not shown) is required for
hardware that does not support pixel shaders 2.0.

Figure 2: For a given pixel on screen, the thickness through the object is the sum of the
depths of all front faces at that pixel subtracted from the sum of the depths of all back
faces at that pixel.

Depth is calculated at each vertex as part of the standard 3D view transform. This
is interpolated for standard Z-buffer rendering, but the Z-buffer information is not
practical to use for this technique. It is too costly in terms of performance, and the
graphics APIs have no flexibility for summing and differencing the Z-buffer infor-
mation. Attempting to manipulate the information on our own would require
decompressing and copying the GPU data across to the CPU for processing. This
would break the parallelism of the two processors, stall the GPU, and burden the
CPU unnecessarily.

Instead, we can use standard RGBA 8-bit color rendering and additive blend-
ing to accomplish the thickness calculations entirely on the GPU. A high-preci-
sion depth value can be split up and encoded across the color channels of an
RGBA-8 color. I’ll refer to this as RGB-encoding of the depth information. Stan-
dard blend operations can then sum the encoded values. This allows us to process
and sum, for example, 12-bit or 18-bit depth information using commonplace
RGBA-8 render targets.

The latest generation of consumer GPUs (the GeForce FX and Radeon 9800
series) has introduced support for rendering high-precision color information with
up to 32 bits per color component for a total of 128 bits per RGBA color. Unfortu-
nately, these chips do not support additive blending of these high-precision colors,
so they are not capable of performing the depth sums as efficiently or quickly as
with RGBA-8 additive blending.

RGB-Encoding of Values

A standard RGBA-8 render target can do a fantastic job of storing and accumulat-
ing high-precision scalar (1D) values. The bits of a number can be split across the
8-bit red, green, blue, and alpha color channels using any number of the low bits of
each channel. When the bits of a number are split across the R, G, and B colors, I
call it an RGB-encoded value. A particular case is illustrated in Figure 3, where a
15-bit number is split into three 5-bit color values. The precision at which we can
encode values is given by the number of low bits, L, that we use in each color
channel multiplied by the number of color channels. For example, if we use four
low bits (L=4) from each R, G, and B channel, we can encode 12-bit values (3*4).

It’s important to note that we use only a few of the lowest bits of each color
channel to encode any single value. The remaining high bits are left empty so that
when two or more values are added, the low bits can carry over into the unused
high bits. RGB-encoded values can be added together using standard RGBA blend
operations until all the bits of any color channel are full. At that point, any further
additions will be lost because the bits of one color channel do not carry into the
other channels. The number of high “carry” bits in each color channel is (8-L),
and the number of RGB-encoded values we can add together without error is 28-L.
There is a tradeoff between the precision that we can encode and the number of
encoded values that can be added together. For our case of encoding a 15-bit value
(L=5), we have three carry bits, so we can sum at most eight values into any
given RGBA-8 color. Figure 3 includes a table relating precision to the number of
values that can be safely added.

92
Rendering Objects as Thick Volumes

Section II — Rendering Techniques

Figure 4 illustrates the RGB-encoding applied to a steadily increasing value. The
RGB-encoded value is the sum of the R, G, and B ramps at a point along the axis.
Only two bits per color channel are used to better illustrate the relationship of the
colors, and a scheme is used where blue holds the least significant bits, green
holds the middle significant bits, and red holds the most significant bits. Thus, the
green values go through one cycle each time red increases by one bit, and blue
cycles once for each green increment.

Applying this RGB-encoding of depth to the simple scene in Figure 5a gives the
result shown in Figure 5b. Here, four bits are used from each color channel. The
RGB colors are displayed overbright because in practice the low bit values of each
color would appear mostly black. Red values are too low to be noticeable in Figure
5b, but if the objects extended farther toward the far clip plane, the red values
would become noticeable. In practice, the RGB-encoded depths are rendered to
an off-screen texture render target. This allows us to read back the depths in later
rendering operations, which is important for handling solid objects that intersect
the volumes of fog.

Rendering Objects as Thick Volumes
93

Section II — Rendering Techniques

Figure 3: Encoding a 15-bit value using five low bits (L=5) of each 8-bit R, G, and B
color channel. The diagram on the right relates the number of low bits, L, to the
precision of each value and the number of encoded values that can be added into an
RGB-8 color before error occurs due to saturating all of the bits of a particular color
channel.

Figure 4: Encoding 6-bit depth values using two low bits (L=2) of each channel of an
RGB-8 color. Depth varies from 0 to 1 from the near clipping plane to the far clipping
plane and is encoded by adding the blue, green, and red color ramps shown. At a depth
of 1.0, the color is RGB=(3,3,3) out of the full (255, 255, 255) range, and at 0.75, the
color is (3,0,0).

RGB-encoding is easy to achieve using programmable vertex shaders and small
color ramp textures. The encoding can be applied to any per-vertex scalar that we
compute in a vertex shader, but here all we care about is the per-vertex depth.
The vertex shader computes a depth value at each vertex as part of the standard
3D transform from object space to homogenous clip space (HCLIP space), as
shown in the following vertex shader assembly code VS 1:

DP4 r1.x, V POSITION, c[CV WORLDVIEWPROJ 0]

DP4 r1.y, V POSITION, c[CV WORLDVIEWPROJ 1]

DP4 r1.z, V POSITION, c[CV WORLDVIEWPROJ 2]

DP4 r1.w, V POSITION, c[CV WORLDVIEWPROJ 3]

MOV oPos, r1

V_POSITION is the input vertex position in object space, and CV_WORLD-
VIEW-PROJ_<N> are the elements of the standard 4x4 transform-and-project
matrix used in 3D rendering. The r1.w component is the vertex’s distance to the
camera plane (not the radial distance to the camera and not the distance to the
near clip plane), so it behaves correctly when linearly interpolated in
rasterization. This W component is easily turned into three texture coordinates
that can access small color ramp textures to achieve the encoding of Figure 5. All
we have to do is scale the W component so it varies from 0 to 1 from the near to
far plane and scale that value by the number of times each color ramp repeats.

The color ramp textures are typically small with one texel per color value,
and they are created to match our choice of the number of low bits, L, that we are
using from each channel. The color value at each texel of the color ramps is sim-
ply an integer, L-bits in size, corresponding to the texel location. For example, if
we choose a 12-bit encoding, then L=4 bits from each color channel, so we use R,
G, and B ramps 16 texels long (16 being 2L), with values ranging from 0 to 15 over
the 16 texels. The lowest coordinate texel, which is at (0,0), has the value 0 out of
255, the second texel has the value 1 of 255, the eighth is 7, etc.

Texture repeating or wrapping is enabled so that one color ramp can repeat
many times over the range of depths. The texture coordinate for the red texture
ramp is the W depth scaled to [0,1] from the near to far clip plane. (The range
notation [n,m] denotes all numbers from n to m, inclusive of the limit values n and

94
Rendering Objects as Thick Volumes

Section II — Rendering Techniques

Figure 5: Objects rendered with a) traditional shading and b) RGB-encoded depth
rendering at 12 bits of precision (L=4). The RGB-encoded colors are shown overbright,
as their actual range, in this case from [0, 16] out of [0, 255], would appear mostly
black.

m.) The coordinate for green is this same coordinate multiplied by the number of
values in the red color ramp, which is 2L, so that the green color ramp repeats 2L

times, or once for each bit increment of the red color. The texture coordinate for
the blue color ramp is the red coordinate scaled by 2L * 2L, or 22L, so that the blue
ramp repeats once for each increment of the green color ramp. For the case of
Figure 5, where L=2, the texture coordinate for green ranges from 0 to 4, and the
blue coordinate spans [0,16]. These texture coordinates are calculated and output
by the vertex code fragment listed in VS 2, where “near” and “far” denote the dis-
tances to the near and far clip planes.

// CV RAMPSCALE = (1.0, 2^L, 2^(2L), 0)

// CV NEARFAR = (1/(far-near), -near/(far-near), 0, 0)

// Scale r1.w to [0,1] from near to far clip planes

MAD r1.w, r1.w, c[CV NEARFAR].x, c[CV NEARFAR].y

// oT0 = ([0,1], [0,2^L], 0, 0) + (0, 0, 1, 1)

MAD oT0.xyzw, r1.w, c[CV RAMPSCALE].xyww, c[CV RAMPSCALE].wwxx

// oT0 = ([0,2^(2L)], 0, 1, 1)

MAD oT1, r1.w, c[CV RAMPSCALE].zwww, c[CV RAMPSCALE].wwxx

Three separate color ramp textures could be used, but it is better to combine the
red and green ramps into a single texture, where red is accessed with the X coor-
dinate and green is accessed with the Y coordinate. This saves a texture fetch and
math operation in the pixel shader that fetches the color ramps. The blue ramp is
not merged with red and green because that would entail using a 3D volume tex-
ture. For simple color ramps, such a texture is wasteful. As we see later, the blue
bits are special, and we can use a larger 2D dithered color ramp to dither the least
significant bit of depth information. To form the RGB-encoded depth value and
output it to a texture render target, we use the following pixel shader code, PS 1,
which adds the red-green color from T0 to the blue color from T1:

ps.1.1

TEX t0 // read red+green texture ramp

TEX t1 // read blue texture ramp

ADD r0, t0, t1 // output RGB-encoded value

These simple shader fragments and the small RGB ramp textures are all we need
to render functions of depth and distance for any object. Vertex positions can be
animated in software or in a vertex shader, and the depth-encoding behaves cor-
rectly in all cases. In practice, more operations are added to these shaders to com-
pare depth-encoded objects to previously rendered RGB-encoded values, but
there’s more about that later.

Decoding RGB-encoded Values

There are several advantages to this scheme of encoding high-precision values.
Unlike exponentiation (RGBE) or multiplicative (RGBM) encoding, RGB-encoded
values can be added by simply adding each color channel. An offset can be added
to each color channel in order to store negative values in a biased state, and
decoding the values can be done in a single dot product operation. Hardware that

Rendering Objects as Thick Volumes
95

Section II — Rendering Techniques

supports Microsoft’s D3D8 pixel shaders version 1.1. or higher can perform the
decode in one shader instruction.

The RGB-encoding scheme spreads the bits into each color channel by divid-
ing the middle and high bit ranges by a scale factor or shifting the bits down to
begin from zero. Decoding the values is simply a matter of multiplying each color
channel by that same scale factor (shifting the bits back up to their original val-
ues) and adding the shifted values together. This is accomplished by a single dot
product, as illustrated in equation 1.1, where VDecoded is the decoded value, T0 is
the RGB-encoded value, C is a constant vector of scale values for each channel,
and scale is an arbitrary scale factor that can be used as a convenient control to
adjust the output to some meaningful or more pleasant visual range.

(C.x,C.y,C.z) scale * (1.0,1/2 ,1/2)
V C.x * T

L 2L

Decoded

�

� 0. red C, y * T0.green C.z* T0.blue
V C DOT T0Decoded

� �

�

The multipliers, C, for each channel depend on the number of bits, L, we chose
from each channel to encode the values. Typically, four or five bits are used from
each channel, so the values 1/2L and 1/22L may be small. For example, with L=5
we have C = (1, 1/32, 1/1024). Since the values may be small, the dot product
must be executed at high precision in the pixel shader.

Pixel shader versions 1.1 to 1.4 have two classes of operations: texture
addressing operations and arithmetic operations. Arithmetic operations can be
executed at 9-bit precision per color component. This is not sufficient to hold
small-scale values like 1/1024, so we should use the texture addressing opera-
tions, which must be performed at floating-point precision. If we’re working with
pixel shaders 2.0 and higher, all operations are executed at floating-point preci-
sion, so the ps.2.0 arithmetic operations can be used. Shader program fragments
to perform the decode for ps.1.3 and ps.2.0 are shown in listings PS 2 and PS 3. In
these shaders, a dot-product operation generates a texture coordinate, which we
use to access a color ramp texture. This maps the RGB-encoded values (depth,
thickness, etc.) to any colors we like, and it provides a convenient way for artists
to control the look of the volume objects.

// vertex shader pseudocode to set up values

// for the pixel shader below

vs.1.1

MOV oT0, SCREEN COORDS // map texture to the screen

MOV oT1, scale * (1, 2^(-L), 2^(-2L))

ps.1.3

TEX t0 // read RGB-encoded value

TEXDP3 t1, t0 // decode and output color from t1 texture

MOV r0, t1 // output the color value

ps.2.0

// c0 = scale * (1, 2^(-L), 2^(-2L))

dcl t0.xyzw

dcl 2d s0 // A texture with RGB-encoded values

dcl 2d s1 // A color ramp mapping value to color

96
Rendering Objects as Thick Volumes

Section II — Rendering Techniques

TEXLD r0, t0, s0 // read the RGB-encoded value

DP3 SAT r0, r0, c0 // decode the RGB-encoded value

TEXLD r0, r0, s1 // convert value to color

MOV oC0, r0 // output the color

These shader fragments work for RGB-encoded values with both positive and
negative values in the color channels. They also work for RGB-encoded values
that result from adding or subtracting two or more encoded values. As you’ll see
in the next section, two sums of RGB-encoded values are easily subtracted and
decoded. The result of decode(A) – decode(B) is identical to the result of
decode(A – B), which is very convenient! At each pixel we can easily calculate the
front face and back face depth sums, subtract them to get an RGB-encoded thick-
ness value, and convert this into a color for the volume object.

Rendering Thick Volumes

With Nothing Intersecting the Volumes

Applying RGB encoding to the method of computing an object’s thickness gives
us a way to render ordinary polygonal objects as thick volumes of material. This
section gives a step-by-step discussion of the rendering for volumes in free space
where no opaque objects intersect the volumes. A few issues related to each step
are also presented, and I focus on the ps.2.0 implementation. The ps.1.3 imple-
mentation is almost identical, and information about the differences is included in
the demo source code. Situations where objects intersect the volumes are far
more common; these are covered in the next section.

To render volumes in free space, two off-screen texture render targets are
needed. These render targets could be a lower resolution than the ordinary back
buffer, but if the rendered volumes have high-contrast edges, the render targets
should match the back buffer size to reduce aliasing. These color render targets
may or may not need an associated depth buffer. It depends on whether or not the
solid objects in the scene can occlude the volumes, and it depends on the geome-
try used to render the final volume object color into the back buffer. A simple
approach that handles occlusion is to use a depth buffer and render the final color
with a large quad covering the entire screen. In that case, rendering proceeds as
follows:

1. Render the scene to the color and depth buffers as you normally would with
no volumetric objects.

2. Switch to an off-screen texture render target, which I call the “back faces”
target. In Direct3D, the depth buffer can be shared between the back buffer
and the texture render target if they are the same size and multisample type.
Otherwise, the depth of occluders in the scene needs to be rendered again
into a separate depth buffer that matches the texture render target. Clear the
render target to black, set the cull mode to render volume object back faces,
set the depth test to less-equal, and disable depth writes. Render the RGB-
encoded depth of all back faces of the volume objects with additive blending

Rendering Objects as Thick Volumes
97

Section II — Rendering Techniques

to the color target. Where several back faces overlap, the encoded depths will
be added to form a sum of all back face depths at each pixel. The result will
be similar to Figure 1c, where colors are shown overbright to better illustrate
their values.

3. Switch the color render target to the other off-screen render target, which I
call the “front faces” target. Clear it to black and render the RGB-encoded
depth of all volume object front faces to create the front face depth sum. The
result will be similar to Figure 1d.

4. If using hardware that supports pixel shaders 2.0, switch to the ordinary color
and depth back buffers from step 1. Disable depth testing. Render a single
quad covering the entire back buffer with the pixel shader listed in PS 4. This
shader builds on the shader from listing PS 3. It samples the depth sums in
the “back faces” texture, samples the “front faces” texture, computes the
object thickness, and converts the thickness to the volume object color. It
converts the thickness to a color value using an arbitrary color ramp texture
bound to the D3D S2 sampler. The color ramp can be created by an artist or
computed from a mathematical model of light scattering. For hardware that
supports only pixel shaders 1.3, an extra pass and texture render target are
needed to compute the RGB-encoded thickness value and supply this to the
shader PS 2 listed above.

ps.2.0

// c0 = scale * (1, 2^(-L), 2^(-2L))

dcl v0.xyzw

dcl t0.xyzw

dcl 2d s0 // back face depth sum

dcl 2d s1 // front face depth sum

dcl 2d s2 // color ramp

TEXLD r0, t0, s0 // back face depth sum

TEXLD r1, t0, s1 // front face depth sum

ADD r0, r0, -r1 // RGB-encoded thickness = back – front

DP3 SAT r0, r0, c0 // decode to floating-point coordinate

TEXLD r0, r0, s2 // convert thickness to fog color

MOV oC0, r0

An alternate approach is to use the volume object geometry instead of a full-
screen quad to drive the computation of volume object color and rendering to the
back buffer. The choice depends on the coverage and complexity of the volume
objects, and you can switch between methods, depending on the viewpoint and
performance. This geometry provides the appropriate pixel coverage on screen. It
creates pixels over an area so the pixel shader receives input and can perform the
computations. If we use a simple full-screen quad, we waste fill rate rendering
pixels where there is no volume thickness. If we use the volume objects them-
selves, we might reduce the fill rate by drawing pixels only where the volumes
are, but we could spend more time transforming vertices or passing over pixels
more than once where the depth complexity of the volume objects is greater than
one. Since alpha blending is used to blend the volume’s color into the scene, the

98
Rendering Objects as Thick Volumes

Section II — Rendering Techniques

depth complexity is important. If we use the volume object geometry, we need to
enable a stencil or destination alpha test to avoid blending the volume color more
than once at each pixel where the depth complexity might be greater than one.

If we use the volume objects to drive the processing, we need a shader that
projects the front and back face depth sum textures from steps 2 and 3 onto the
volume object geometry so that the pixel shader receives the correct values for
each point on screen. This is simply a matter of turning the screen-space position
into a texture coordinate from [0,1] across the full screen. A Direct3D vertex
shader code fragment for this is listed in VS 3. This code is also used in handling
solid objects that may intersect the volumes, since it can project rendered texture
information at each pixel onto the same pixels as they are rendered again, regard-
less of the shape of the geometry. The code is useful in many multipass
approaches, so it’s good to keep in mind for other effects.

vs.1.1

// Transform position to clip space and output it

DP4 r1.x, V POSITION, c[CV WORLDVIEWPROJ 0]

DP4 r1.y, V POSITION, c[CV WORLDVIEWPROJ 1]

DP4 r1.z, V POSITION, c[CV WORLDVIEWPROJ 2]

DP4 r1.w, V POSITION, c[CV WORLDVIEWPROJ 3]

MOV oPos, r1

// Convert geometry screen position to a texture coordinate,

// so we can project previously rendered textures to the same

// pixels on screen for any geometry.

// CV CONSTS 1 = (0.0, 0.5, 1.0, 2.0)

MUL r1.xy, r1.xy, c[CV CONSTS 1].yyyy

// Add w/2 to x,y to shift from (x/w,y/w) in the

// range [-1/2,1/2] to (x/w,y/w) in the range [0,1]

MAD r1.xy, r1.wwww, c[CV CONSTS 1].yyyy, r1.xy

// Invert y coordinate by setting y = 1-y

// Remember, w!=1 so 1.0 really equals 1*w

// and we compute y = 1*w - y

ADD r1.y, r1.w, -r1.y

// Add half-texel offset to sample from texel centers

// not texel corners (a D3D convention)

// Multiply by w because w != 1

MAD r1.xy, r1.wwww, c[CV HALF TEXEL SIZE], r1.xy

// output to tex coord t0

MOV oT0, r1

The steps above work for any camera position in the scene. The camera can move
through the volume objects and the rendering remains correct, with a volume
thickness contribution from only the part of the volume in front of the near clip
plane. This is a consequence of choosing our RGB depth-encoding to start from 0
at the near clip plane. Without this, the volume object’s polygons would have to
be clamped or capped at the near plane so their depth values are not clipped away.

These steps require the volume objects to be closed hulls. There can be no
back face without a corresponding front face, and vice versa. The depth complex-
ity of the volume objects must also be kept below the limit for adding the RGB-
encoded values together. The front and back faces are summed to separate render

Rendering Objects as Thick Volumes
99

Section II — Rendering Techniques

targets, so the depth complexity limit is for only the number of back or front
faces, not for the total of front and back faces. In practice, using 12-bit encoding
(L=4) allows 16 front and back faces (see the table in Figure 3), which is more
than enough for interesting scenes. The approach also sums the thicknesses of
overlapping volumes, so where two volumes intersect, the thickness will be
greater. Everitt’s technique of depth peeling [Everitt02] could be applied to elimi-
nate the overlapping areas, but this would require several more passes and might
be too costly in terms of performance.

Handling Solids Intersecting the Volumes

Often, we want opaque objects to pass through the volume objects, or we want to
place the volumes in a scene without having to worry about their polygons being
clipped away by solid objects. Handling the areas where solid objects intersect the
volumes is key to making the technique easy to use. Fortunately, even complex
intersection cases are easy to handle using one additional render target texture
and a comparison of RGB-encoded values in the pixel shader.

If an opaque object cuts through a volume object’s hull, we have to use the
depth to the opaque object instead of the depth to the volume object faces that are
occluded by the opaque object. This ensures that we get thickness contributions
for only the part of the volume that is visible in front of the opaque object. This
can be accomplished by doing a comparison of depth values in the pixel shader as
each face of the volume objects are rendered. The pixel shader that created the
RGB-encoded depth value (as in listing PS 1) can also sample a texture containing
the solid object depth. This texture holds the RGB-encoded depth of the solid
object closest to the near plane. The pixel shader compares the RGB-encoded
depth of the volume object pixel being rendering to the encoded depth of the
nearest solid object and outputs whichever value is the lesser depth. This allows
both the back faces and front faces of volume objects to be occluded by the solid
objects. It is an efficient way to handle any and all solids that might penetrate the
volumes, and it handles complex volumes of any shape or depth complexity.
Where a volume object face goes inside or behind a solid object, its depth contri-
bution becomes the depth of the solid object. The volume object is effectively
clamped to always begin from the solid object, and the varying depth complexity
of concave or folded volume objects is handled correctly in all cases. This is illus-
trated in Figure 6 (on the next page).

To implement this approach, first render a texture to hold the RGB-encoded
depth of the nearest part of any opaque objects that may penetrate or occlude the
volume objects. There is no need to render all the opaque objects in the scene to
this texture, and the regions of intersection do not have to be computed. Next,
render the volume object faces according to steps 2 and 3 from the previous sec-
tion, but in the pixel shader, sample the solid object depth texture, perform the
depth comparison, and output the lesser depth. The depth is either the opaque
object depth read from the texture or the depth of the volume object face at that
pixel. Shaders to perform this on ps.1.3 and ps.2.0 hardware are shown in listings
PS 5 and PS 6.

100
Rendering Objects as Thick Volumes

Section II — Rendering Techniques

The depth comparison barely fits within the limits of a ps.1.3 shader. Unfortu-
nately, Direct3D API restrictions require an additional instruction slot for the
CMP instruction on ps.1.1 hardware, so this comparison can’t be expressed in a
ps.1.1 shader. Also note that the ps.1.3 shader can’t decode the RGB-encoded val-
ues to a high-precision scalar, so it relies on comparing each R, G, and B channel
separately. It scales and clamps each R, G, and B difference to [–1,1]. The ps.1.3
comparison will not work for RGB-encoded values where the high carry bits are
used, but this doesn’t present a problem. Additional comments are provided in the
demo’s shader source code. Since the ps.2.0 shader operates at floating-point pre-
cision, it is simpler and can handle values where the carry bits are on.

ps.1.3

// RGB-encoded depth comparison.

// Outputs the lesser RGB-encoded value

// Requires saturation to [-1,1] range

// Weight for each of the RGB channels

DEF c7, 1.0, 0.66, 0.31, -0.66

// CMP uses >= 0.0, so use this small bias to get a

// "less than zero" comparison

DEF c6, -0.01, -0.01, -0.01, -0.01

TEX t0 // red+green ramp texture

TEX t1 // blue ramp texture

TEX t3 // depth of solid objects

ADD t2, t0, t1 // Add R + G + B to make depth value

// Difference between pixel depth and solid object depth

// Use *4 to increase the contrast. The goal is to saturate

Rendering Objects as Thick Volumes
101

Section II — Rendering Techniques

Figure 6: Handling opaque objects intersecting the volume objects. The volume
geometry is shown with a dotted line. A pixel shader compares the volume object depth
to the solid object depth read from a texture and outputs the lesser depth value. This
results in depth information being taken from the geometry shown with solid lines. The
depth comparison clamps the occluded volume object pixels to the nearest solid object
depth, effectively limiting the volume object thickness to the proper amount for all
intersection cases.

// each R,G,B channel of the signed number the values

// -1, 0, or +1.

ADD x4 r1, -t3, t2 // diff * 4

ADD x4 r1, r1, r1 // diff * 32

ADD x4 r1, r1, r1 // diff * 256

// DP3 the saturated difference with the c7 weights.

// The result is positive, negative, or zero depending on the

// difference between the high precision values that t3 and t2

// represent

DP3 x4 r1, r1, c7

// Subtract a small value from r1

ADD r1, r1, c6

// Compare r1 decision value to 0. If r1 is positive,

// output t3, otherwise output t2

CMP r0, r1, t3, t2

ps.2.0

// Comparison of RGB-encoded depths

// Outputs the lesser RGB-encoded value

// c0 = scale * (1, 2^(-L), 2^(-2L))

dcl t0.xyzw

dcl t1.xyzw

dcl t3.xyzw

dcl 2d s0 // red+green ramp texture for depth encode

dcl 2d s1 // blue ramp texture for depth encode

dcl 2d s3 // RGB-encoded depth value of nearest solid

TEXLD r0, t0, s0 // red+green part of depth encoding

TEXLD r1, t1, s1 // blue part of depth encoding

ADD r0, r0, r1 // Depth of volume object’s pixel

TEXLDP r1, t3, s3 // RGB-encoded depth from texture at s2

// RGB-encoded difference

ADD r2, r0, -r1

// Decode to positive or negative value

DP4 r2, r2, CPN RGB TEXADDR WEIGHTS

// Choose the lesser value: r2 >= 0 ? r1 : r0

CMP r3, r2.xxxx, r1, r0

MOV oC0, r3

Dithering the Low Bit

In this technique, depth is represented by discrete values, so aliasing can appear
in the thickness values. This aliasing is always present. Even at high precision, it
can be noticeable, especially if thin objects have their thickness multiplied by a
large scale factor in order to generate some visible contribution. Depth aliasing
appears as sharp transitions between light and dark in the color of the rendered
volume, and its shown in Figures 7a and 7b. Luckily, there is a painless way to
dither the lowest bit of depth information, which breaks the sharp bands into dith-
ered transitions that appear smooth. The results are shown in Figures 7c and 7d.

102
Rendering Objects as Thick Volumes

Section II — Rendering Techniques

The dithering is very easy to implement. The lowest bit of depth, held in the blue
color channel, is read from a small color ramp texture, as described above. To
dither the depth information, all we have to do is dither the color ramp texture!
As long as the texture coordinate used to access the color ramp is not aliased, this
approach works very well. The texture coordinate is a high-precision float-
ing-point value with more precision than the 12 or 15 bits of depth precision typi-
cally used. The demo source code has a few functions to create dithered color
ramps. To access the dither pattern, a 2D texture coordinate is used instead of the
1D coordinate oT1 (.x only) of listing VS 2. The dither pattern varies in the sec-
ond (.y) coordinate direction, so the Y coordinate can vary randomly to create
gradual dithered transitions. There is some subtlety involved in wrapping the
dither pattern in the X direction from one end of the texture to the other so that
dithering continues where the color ramp repeats. This involves using the alpha
channel of the blue ramp to hold a value that represents a negative increment to
the next highest (green) bit.

The dithered depth information can be used to create interesting noise
effects in the volume rendering. As the depth precision is lowered, the dithered
thickness becomes progressively noisier. At just a few bits of depth precision,
the volume shape and thickness remain recognizable, and the rendering appears
as though it were coming from a noisy video source. An example is shown in
Figure 8.

Rendering Objects as Thick Volumes
103

Section II — Rendering Techniques

Figure 7: Artifacts of depth aliasing in severe cases are shown in a and b. Low depth
precision is used to accentuate the effects. Dithering the depth information breaks the
artifacts into gradual noisy transitions, which appear smooth, as shown in c and d.

Negative Thicknesses

Objects can be treated as contributing negative thickness to the volume render-
ing. This could be used to render shafts of shadow cutting through a volume or
modulate the thickness of objects. It is accomplished by simply reversing the
front and back faces for negative objects. To render an object as subtracting from
the total thickness, its front-facing triangles are rendered to the “back faces”
depth sum texture, and the back-facing triangles are rendered to the “front faces”
depth texture. This approach is not robust and works correctly only if the nega-
tive objects lie entirely within a positive thickness. If two negative volumes over-
lap or if a negative volume extends outside of a positive volume, they will still
subtract from the total thickness. This would create areas of over-subtraction,
where the total thickness ends up being too thin. For some situations, the effects
of this are not problematic, but to properly handle such cases, Everitt’s technique
of depth peeling [Everitt02] could be used. This requires several more rendering
passes and would have a substantial impact on frame rate.

Additional Thoughts

For slower hardware, you may want to use a single texture for both the front faces
and back faces depth sums. This texture would begin from a mid-range value,
such as RGB=(128,128,128). The back face depths are added to this, and the front
face depths are subtracted using subtractive frame buffer blending. The advantage
is that one less non-power-of-2 texture needs to be read. The disadvantage is that

104
Rendering Objects as Thick Volumes

Section II — Rendering Techniques

Figure 8: A curious volume noise effect is produced by an object spanning only three
bits of depth precision. The depth-aliased rendering is shown in a, where only a few
bit-increments of thickness occur. Dithering the least significant bit of depth during depth
encoding gives the result in b, which is a close but noisy match to the actual volume.

the depth complexity that can be handled in a single pass for a given choice of
RGB-encoding precision is half of what it is when two separate render target tex-
tures are used.

The method of RGB-encoding can be extended to higher precision and depth
complexity by spreading the bits across multiple render targets. For example, you
could use two RGBA-8 surfaces to encode 64-bit values. Older hardware will run
out of precision in the texture coordinate interpolation used to read the color
ramp textures, but newer hardware can calculate the color ramp values in the
pixel shader itself.

The method of rendering RGB-encoded depths to a texture and projecting
these back onto objects can be used to implement shadow mapping. Depths can
be rendered from the point of view of a light, and any number of passes can be
used to implement complex and customizable filtering of the shadow map compar-
isons. This could provide high-quality hardware-accelerated shadow mapping for
near-real-time applications.

Going a step further, the thickness through an object to a light source can be
computed and used to render translucent materials like jade or approximate the
appearance of sub-surface scattering. It is also possible to render shadows from
semitransparent objects, where the shadow darkness depends on the thickness
through objects.

Conclusion

Programmable shaders and a few render-to-texture passes are all that is needed
to render ordinary polygon objects as thick volumes of light-scattering material.
This article presented an efficient and direct means to render and accumulate
high-precision values using 8-bit-per-component render targets, handle objects
intersecting and occluding any volume object shape, and eliminate aliasing arti-
facts. The approach works for any viewpoint in the scene, and it is trivial to ani-
mate the volume geometry. The technique can be used on the large installed base
of Direct3D8 ps.1.3 hardware. When hardware supports additive blending to float-
ing-point render targets, the method of RGB-encoding can be abandoned to sim-
plify the implementation.

Using thickness to determine the appearance of objects offers exciting new
possibilities for real-time interactive rendering. Scenes can be filled with dynamic
wisps of fog, clouds, and truly volumetric beams of light that are easily created
and controlled. Intuitive controls and color ramps govern the appearance of the
volume objects, though more sophisticated treatments of scattering could also be
employed.

Rendering Objects as Thick Volumes
105

Section II — Rendering Techniques

Example Code

Example code and additional images for this technique and others are available
from nVidia’s developer web site:

http://developer.nvidia.com
http://developer.nvidia.com/view.asp?IO=FogPolygonVolumes

References

[Baker02] Baker, Dan, VolumeFog D3D example, Microsoft D3D8.1 and D3D9
SDKs, http://www.microsoft.com.

[Everitt02] Everitt, Cass, “Order Independent Transparency,” http://devel-
oper.nvidia.com/view.asp?IO=order_independent_transparency.

[Hoffman02] Hoffman, Naty and Kenny Mitchell, “Photorealistic Real-Time Out-
door Light Scattering,” Game Developer magazine, CMP Media, Inc., Vol. 9 #8,
August 2002, pp. 32-38.

106
Rendering Objects as Thick Volumes

Section II — Rendering Techniques

Screen-aligned Particles
with Minimal VertexBuffer Locking

O’dell Hicks

Terminology

A particle is the smallest component of a particle system, or group of common par-
ticles. A spark in a spark shower, a snowflake in a blizzard, and a puff of smoke
from a campfire are examples of particles. The puff of smoke is a good example of
a particle being the smallest component. In real life, smoke consists of micro-
scopic particles floating in the air. Unless you are doing an extremely complex
simulation of smoke, this is obviously too small, so we need to make a reasonable
approximation. A single, wispy puff often works as the smallest element. In this
article, particles are treated as screen-aligned planar geometry (in our case, quads
composed of two triangles), but they can also be geometrically complex objects.

A particle system is basically a common behavior pattern for particles. In gen-
eral, it will define texture, color, size, motion, and other attributes. A particle sys-
tem binds particles into functionality, such as campfire smoke or a blizzard.

A particle emitter is an object that initializes new particles (or recycles old
ones that have gone through their life cycle), usually with physical data from the
emitter. For example, a particle emitter attached to the tail of a missile would pass
along the current position and direction of the missile for a more realistic emitting
of smoke.

Aligning to the Screen

Screen-aligned particles, or billboards, always face the viewport in the same way
so that a different perspective of them is never seen, regardless of view orienta-
tion. This gives the illusion of the particles having a three-dimensional volume. A
circle appears to be a sphere (solid of revolution), and a 2D image of smoke
becomes a 3D cloud. At this point, you may be thinking that a solution already
exists in recent video cards — point sprites. While they can be useful in limited
examples from hardware vendors, at the time of publication, they leave something
to be desired. The biggest issue, in my opinion, is that the largest they can be is
64x64 pixels in screen space. Imagine playing a game in a resolution of 1280x1024
pixels. In the distance, smoke from the campfire will look good, but, as you get
close, the smoke will begin to look weird. When near enough to walk through the

107

smoke, it will appear as odd-looking, sparse puffs. Another limitation is that parti-
cles can’t be rotated about the view’s forward axis.

So, how do we go about manually aligning our billboards? The answer lies in
the view transformation matrix.

As Figure 1 shows, the orientation vectors of the view transform can be directly
retrieved from the matrix.

NOTE You may wish to reference a general-purpose 3D text to better
understand why we can use these components of the view matrix directly. Such
an explanation is beyond the scope of this book.

Of interest are the Right and Up vectors, the first three components of the first
and second column, respectively. Screen-alignment is a two-axis operation not
requiring the forward vector, as it would only affect the distance from the camera
and not alignment.

NOTE This applies to row-major matrices as used by Direct3D. Other
graphics APIs may use column-major matrices, so the orientation extraction
must be changed accordingly.

108
Screen-aligned Particles with Minimal VertexBuffer Locking

Section II — Rendering Techniques

Figure 1: The orientation vectors of the view transformation matrix

Figure 2: Billboard drawn normally

If each of the four billboard vertices (in world space) were offset from the center
of the billboard along the Up and Right axes, they would form a square, as shown
in Figures 3 and 4.

The unused forward vector can be used for a test, just to prove alignment. If the
normal of the plane formed by the four projected vertices were calculated, the dot
product of it and the forward vector would show that they are parallel for any view
orientation.

The Particle Vertex Shader

Unless your particles are static and the camera never moves, this alignment will
have to be recalculated every frame. Particles are generally very active, thus vari-
ous attributes such as color and size are also likely to change. Before vertex
shaders, all of this required locking the vertex buffer and modifying vertices for
every frame. But with a bit of planning and special use of vertex data, we can
greatly reduce the amount of locking. Very complex particle systems will require
locking more often, but many effects can simply be driven by a time set in a

Screen-aligned Particles with Minimal VertexBuffer Locking
109

Section II — Rendering Techniques

Figure 3: Billboard drawn aligned to the viewport

Figure 4: Four vertices of a billboard projected
along the view’s Up and Right vectors

vertex shader constant. For now, we focus on the alignment. The following is a
simple vertex structure for a particle:

struct ParticleVertex

{

float x, y, z; // vertex position

unsigned int diffuse; // color

float tu, tv; // one texture coordinate set

float rightFactor, upFactor; // custom data for projecting vertices

};

The members rightFactor and upFactor are both a combination of two values —
half the width and half the height, respectively, of the billboard and the direction
(positive or negative; see Figure 2) along the Right and Up vectors that the vertex
is projected. It is half the width and height because on each axis, vertices are pro-
jected along a unit vector positively and negatively, resulting in a doubled width
and height. Alternatively, you could multiply the Up and Right vectors by 0.5f.

Each particle has four vertices, and all vertices must be set up properly, as
demonstrated by the following pseudocode:

For each particle
{

For all four vertices in this particle // set common vertex data
{

vertex.xyz = particle.center; // all vertices are set to center of particle
vertex.diffuse = color;

}
// now set unique data
Set Uvs
// vertices are referred to as upperLeft, upperRight, lowerLeft, and lowerRight
// to indicate their position relative to the particle’s center
vertex[upperLeft].rightFactor = -1.0f * halfBillboardWidth;
vertex[upperLeft].upFactor = 1.0f * halfBillboardHeight;
vertex[upperRight].rightFactor = 1.0f * halfBillboardWidth;
vertex[upperRight].upFactor = 1.0f * halfBillboardHeight;
vertex[lowerRight].rightFactor = 1.0f * halfBillboardWidth;
vertex[lowerRight].upFactor = -1.0f * halfBillboardHeight;
vertex[lowerLeft].rightFactor = -1.0f * halfBillboardWidth;
vertex[lowerLeft].upFactor = -1.0f * halfBillboardHeight;

}

With this vertex data set up properly, we then set some constants and our shader
(as well as appropriate render states). I have my vertices in world coordinates, but
you may have them in a local object space if desired. Just remember to first trans-
form the position by the world matrix before projecting along the view vectors. In
my shader, c0 through c4 contain the concatenated, transposed view and projec-
tion transformations. c20 is the view’s Right vector, and c21 is the Up vector. The
fourth float (w-component) of both constants is set to 0.0f.

vs 1 1 ; vertex shader 1.1

#define VIEW PROJECTION TRANSPOSED c0

#define VIEW RIGHT VECTOR c20

#define VIEW UP VECTOR c21

dcl position v0 ; vertex position in register v0

110
Screen-aligned Particles with Minimal VertexBuffer Locking

Section II — Rendering Techniques

dcl color v1 ; vertex color in register v1

dcl texcoord v2 ; vertex texture coordinates in register v2

dcl texcoord1 v3 ; custom data, albeit declared as a texture coordinate (see DX9 SDK)

; right: r0 = view.Right * vertex.rightFactor

mul r0, VIEW RIGHT VECTOR , v3.x

; up: r1 = view.Up * vertex.upFactor

mul r1, VIEW UP VECTOR , v3.y

; final world position = position + up projection + right projection

add r2, r0, r1

add r2, v0, r2

; transform to homogenous clip space

m4x4 oPos, r2, VIEW PROJECTION TRANSPOSED

; set diffuse and texture coordinates

mov oD0, v1

mov oT0.xy, v2

We now have particles that are aligned properly every frame, without having to
touch the vertex buffer! But since they are static, they are rather dull and nearly
useless. Let’s look at a more complex particle structure:

struct DynamicParticleVertex

{

float x, y, z; // vertex position

float tu, tv; // one texture coordinate set

float rightFactor, upFactor; // custom data for projecting vertices

float velocityX, velocityY, velocityZ;

unsigned int beginningColor, endingColor;

};

A non-looping particle effect driven on a normalized timer ranging from 0.0f to
1.0f is easy to create. Once an event, such as a grenade exploding, triggers the
need for the effect, the vertex buffer is locked once at the very start to initialize
the effect. Vertex positions will be set, as well as velocityX, velocityY, and
velocityZ and beginningColor and endingColor. The velocity can be treated as a
texture coordinate set with three components, just as upFactor and rightFactor
are defined through a two-component texture coordinate set.

NOTE Don’t forget to scale the velocity and to the actual time. If the effect
plays over 30 seconds, then the velocity should be scaled by 30. Also, all four
vertices of a particle should have the same velocity.

The beginningColor would be the color at the start of the effect. In a fiery blast,
some particles may be white hot, while others might be a cooler orange or red.
The endingColor would be the color at the end of the effect, usually RGBA
(0,0,0,0) for additive blends and RGBA(255,255,255,0) for most other types of
blending, resulting in a totally transparent, faded-out particle.

Applying this data in the shader is easy. Another constant is needed to pass
along the normalized time. Since there will be an interpolation between colors,
one constant’s values should be the complement of the time (1.0 – current time).

Screen-aligned Particles with Minimal VertexBuffer Locking
111

Section II — Rendering Techniques

For the velocity, just multiply the vertex’s velocity by the current time constant,
and add that to the position before transforming to homogenous clip space:

;v3 is the vertex velocity, c22 is the time constant, and r2 is the vertex aligned to the

;viewport, before the transform to clip space

#define TIME c22.x

#define ACCELERATION c22.y; 0.5f * acceleration * time2

mul r3, v3, TIME; r3 = velocity * time

add r3.y, r3.y, ACCELERATION ; apply gravity along the up axis

add r4, r2, r3; r4 = position + velocity and acceleration offset

;then transform r4 to homogenous clip space

The color can easily be linearly interpolated. The complement of the current time
is multiplied by the beginning color and added to the ending color multiplied by
the current time:

diffuse = (complement of time * beginning color) + (time * ending color)

c22.x is the time, c22.y is the complement, v4 is the start color, v5 is the end color

mul r1, v4, c22.y;

mul r2, v5, c22.x;

add oD0, r1, r2;

Most particle effects can be done very easily in this manner. However, a more
complex particle simulation, such as a tornado, would require more touching of
the data between frames — not every single frame, if done cleverly, but more
than just the start of the effect.

Wrapping It Up

Be sure to check out my sample on the CD to see some cool examples of particle
effects. One major issue that I haven’t touched is sorting. Obviously, alpha-
blended objects should be drawn last in the scene. A very useful thing to know
is that additively blended particles (Source = D3DBLEND_ONE, Destination =
D3DBLEND_ONE) do not have to be sorted amongst each other. Since they are
all simply added to the frame buffer, any order will give the same results. For
effects with a different blend type, you will have to sort, but you don’t have to
mess with the vertex buffer. If you keep a system memory copy of your particles
and track the centers, you can sort them and modify the index buffer, which
would touch far less memory than adjusting the vertex buffer.

Summary

In this chapter, we learned how to do screen-aligned particles with a vertex
shader, bringing us one step closer to the big goal of having almost everything
done by the GPU. With a little cleverness, you can make vertex shaders for
almost any basic type of particle effect.

112
Screen-aligned Particles with Minimal VertexBuffer Locking

Section II — Rendering Techniques

Hemisphere Lighting with
Radiosity Maps

Shawn Hargreaves

This lighting model was designed for fast-moving objects in outdoor environ-
ments. Its goals are to tie the moving objects in with their surroundings, convey a
sensation of speed, and be capable of rendering large numbers of meshes at a
good framerate on first-generation shader hardware.

It combines a crude form of radiosity lighting with world-to-object shadow-
ing, using just one texture lookup and four pixel shader blend instructions.
Approximation is the name of the game here, with performance being by far the
most important consideration!

Hemisphere Lighting

There is an apocryphal story that in the early days of color television, someone
pulled off a successful scam selling kits that claimed to upgrade existing black and
white TVs to display a color picture. This was done using a bit of plastic that fitted
over the TV screen and tinted the top third of the display blue, the middle green,
and the bottom brown, on the assumption that most things in life have sky at the
top, trees in the middle, and soil underneath. This was not perhaps the most
robust of solutions, and I suspect the people who bought this kit were not terribly

113

Figure 1a: Diffuse (dot3) sunlight plus radiosity
hemisphere lookup (See Color Plate 4.)

Figure 1b: With the addition of specular and
Fresnel contributions, using a static cube map
holding an image of typical surroundings

happy, but it would have worked okay — at least for a few carefully chosen
images!

Hemisphere lighting is basically just a shader implementation of the same
concept.

Most conventional lighting models evaluate some sort of equation for the
more important few lights in a scene and then add in a constant ambient term as
an approximation of all the leftover bits and pieces. This works nicely for scenes
with many complex light sources but is less than ideal for outdoor environments
where all the direct light is coming from the sun. With only a single light source
available, fully half of every object will be in shadow and will thus be illuminated
only by the ambient term. This gets even worse in overcast or rainy weather con-
ditions because as the sun is obscured by clouds, its direct contribution becomes
less, and almost all of the light in the scene ends up being provided by the
catch-all ambient constant. A constant amount of light results in a constant color,
which makes things look flat and boring.

This is clearly wrong because you only have to step outside on a foggy morn-
ing to notice that even though the sun itself may by entirely hidden, there is still
enough variation in light levels that you can easily make out the contours of what-
ever you are looking at.

The problem with conventional lighting models is that in the real world, the
majority of light does not come directly from a single source. In an outdoor set-
ting, some of it does indeed come straight from the sun, but more comes equally
from all parts of the sky, and still more is reflected back from the ground and other
surrounding objects. These indirect light sources are extremely important
because they will often provide a much larger percentage of the total illumination
than the sun itself.

Hemisphere lighting is a simple way of emulating the indirect light contribu-
tions found in a typical outdoor scene. Any kind of complex radiosity lighting
could be modeled by encoding the surrounding light sources into an HDR (high
dynamic range) cube map, but it is impractical to update such a cube map in real
time as large numbers of objects move around the world. So we need to approxi-
mate, cutting down the complexities of the real world into a more efficient
real-time model.

The sun is easy: A per-vertex dot3 can handle that quite nicely. With this
taken out of the equation, we are left with a pattern of light sources that can be
roughly divided into:
� Sky: Usually blue, emits lots of light, located above your head
� Ground: Some other color, darker than the sky, located underneath you

This is trivial to evaluate in a vertex shader; just set your sky and ground colors
as constants, and use the y component of the vertex normal to interpolate
between them!

114
Hemisphere Lighting with Radiosity Maps

Section II — Rendering Techniques

Radiosity Maps

Hemisphere lighting avoids the flatness that can result from a constant ambient
term, but it also poses a question: What should you use for the ground color?
Bearing in mind our goal of making moving objects fit in with their surroundings,
it would be good if this could change appropriately depending on your location in
the world.

The solution is obvious: Encode the ground color into a texture as a large,
top-down image of the landscape. This map can then be sampled at a position cor-
responding to the location of the object or, even better, offset some distance (a
meter or so works well) along the vertex normal. Adding this offset stretches the
sample area to include a larger region of the ground image and introduces some
horizontal lighting variation in addition to the vertical ground to sky transition.

The results may not be exactly what a high-end renderer would describe as
radiosity lighting, but it can be a remarkably good approximation. The underside
of an object picks up color from the ground directly beneath it, while the sides are
influenced by the scenery slightly off to each side, and the top is affected entirely
by the sky color.

Making the Map

Ground color maps can easily be generated by taking a screen shot of your level
viewed from above with an orthographic projection. The results can be improved
if you preprocess the mesh by removing polygons that are too high above the
ground surface and rotating vertical polygons to face upward so elements like the
sides of fences will contribute to the radiosity colors.

I also found it useful to add about 10 percent of random noise to the resulting
texture, as this introduces a subtle speed-dependent flicker that gives an effective
sense of motion as you move around the world.

Hemisphere Lighting with Radiosity Maps
115

Section II — Rendering Techniques

Figure 2: Hemisphere lighting with and without a vertex normal offset

A 1024x1024 texture (only half a megabyte when encoded in DXT1 format) is
sufficient to represent a couple of square miles of landscape with enough preci-
sion to make out details such as alternating colors along the rumble strip at the
edge of a racetrack or dappled patterns of light and shadow in a forest scene.

Shadowing

Once you have the ground color encoded in a texture, it seems that static environ-
ment to object shadows ought to “just work” if you put a dark patch in the rele-
vant portion of the radiosity map. Compared to other shadowing techniques, this
is highly approximate but also incredibly cheap, and it can be very effective espe-
cially for complex shadow patterns, such as a forest floor.

Unfortunately, it doesn’t “just work.” The problem with using the radiosity
map to encode shadows is that even if you darken down the ground color, the sky
color is still a constant and so will not be affected.

There are several possible solutions:
� Use one texture to encode the ground color and another to encode shadows.

This is the highest quality and most controllable approach, but it burns two
texture units and requires double the amount of storage for the two textures.

� You could encode the shadow amount into the alpha channel of the radiosity
texture. In this case, your ground color would be (radiosity.rgb * radiosity.a),
while the sky color would be (sky_color_constant * radiosity.a). This works
well, but using alpha in the radiosity map requires at least an 8-bit texture
format, such as DXT5. For such a large image, storage space is a serious
concern.

� At the risk of excessive approximation, it is possible to collapse the ground
color and shadow data into a single RGB texture, thus allowing it to be stored
in 4-bit per-texel DXT1 format. The process is:

1. Convert your radiosity map into an HSV color space.

2. Find the average V (brightness) value.

3. Normalize the map so that all texels have this same constant bright-
ness level, except for areas shadowed by static environment geometry,
for which the brightness is left at a lower level. Hue and saturation are
not affected by this process.

116
Hemisphere Lighting with Radiosity Maps

Section II — Rendering Techniques

Figure 3: The images in Figures 1, 4, and 5 were created along the zoomed-in section on this
2048x512 radiosity map. (See Color Plate 5.)

4. Convert back into RGB format.

5. Work out a scaling factor that will turn the average radiosity brightness
into your desired sky color, and set this as a shader constant.

At run time, the ground color can be looked up directly from the modified radi-
osity map. Except for areas of shadow, this will now be lacking any variation in
brightness, but the changes in hue are enough for the technique to remain
effective.

To calculate the sky color, dot the ground color with (1/3, 1/3, 1/3) in your
pixel shader, thus converting it to grayscale. Because of the brightness normaliza-
tion, this will produce a constant value for all non-shadowed areas, or a darker
shade of gray if you are in shadow. Multiplying this value by the sky color scaling
constant gives a correctly shadowed version of the sky term.

Combining the ground color and shadow information into a single texture cre-
ates one final dilemma: Where should this texture be sampled? The radiosity
lighting works best if the sample position is offset along the vertex normal, but
that is blatantly incorrect for shadowing, where the map should be sampled
directly at the vertex position.

A hacky compromise is to apply an offset along the left-to-right component of
the normal but not in the front/back direction, so polygons facing forward or back-
ward will sample the radiosity map at their exact position, while side-facing poly-
gons use an offset sample point. Since objects usually travel roughly along their
forward axis, this maintains a nice solid transition as they move in and out of
shadow, while still allowing radiosity tints to be picked up from either side of their
exact location.

Hemisphere Lighting with Radiosity Maps
117

Section II — Rendering Techniques

Figure 4: These images show the hemisphere lighting on its own, using a single DXT1
format radiosity map that encodes both shadow and ground color information. (See
Color Plate 6.)

The Shaders

The complete lighting model combines four elements:
� Base texture
� Radiosity texture combining ground color and shadow information. The ver-

tex shader calculates the sample location and ground-to-sky tweening factor,
while the pixel shader generates a shadowed version of the sky color based
on the grayscale of the ground color and performs the hemisphere tween.

� Environment cube map containing a static image of a typical area of the level
along with a specular highlight in the alpha channel. The envmap intensity is
calculated in the vertex shader, combining a per-vertex reflectivity amount
(mapped by artists) with a 1-cos Fresnel approximation.

� The direct sun contribution is calculated per vertex using a straightforward
infinitely distant dot3 light.

vs.1.1

// vertex inputs:

#define iPos v0 // vertex position

#define iNormal v1 // vertex normal

#define iDiffuse v2 // reflectivity amount

#define iTex0 v3 // base texture coordinates

dcl position iPos

dcl normal iNormal

dcl color0 iDiffuse

dcl texcoord0 iTex0

// constants:

def c0, 0, 0, 0, 1

#define VS CONST 0 c[0].x

#define VS CONST 1 c[0].w

#define VS EYEPOS 1 // object space eye position

#define VS CAMERA1 2 // 4x4 object to screen matrix

#define VS CAMERA2 3

#define VS CAMERA3 4

#define VS CAMERA4 5

#define VS ENVMAP1 6 // 3x3 object to world matrix

#define VS ENVMAP2 7

#define VS ENVMAP3 8

#define VS FOG 9 // fog transform vector

118
Hemisphere Lighting with Radiosity Maps

Section II — Rendering Techniques

#define VS AMBIENT 10 // ambient light color

#define VS LIGHT COLOR 11 // diffuse light color

#define VS LIGHT DIR 12 // object space light direction

#define VS RADIOSITY U 13 // radiosity U mapping

#define VS RADIOSITY V 14 // radiosity V mapping

#define VS RADIOSITY SIDE 15 // object sideways offset

#define VS RADIOSITY SAT 16 // ground vs. sky vector

// outputs:

//

// oPos = position

// oFog = fogging

//

// oT0 = base texture coordinates

// oT1 = radiosity map sample location

// oT2 = environment cube map coordinates

//

// oD0.xyz = dot3 sunlight

// oD1.xyz = radiosity ground to sky tween factor

// oD0.w = fresnel term

// oD1.w = specular intensity

// transform the vertex position

mul r0, c[VS CAMERA1], iPos.x

mad r0, c[VS CAMERA2], iPos.y, r0

mad r0, c[VS CAMERA3], iPos.z, r0

add oPos, c[VS CAMERA4], r0

// calculate the fog amount

dp4 oFog, iPos, c[VS FOG]

// output the base texture coords

mov oT0.xy, iTex0

// **************** RADIOSITY HEMISPHERE ****************

// stretch the radiosity lookup area to either side of the model

dp3 r0.x, iNormal, c[VS RADIOSITY SIDE]

mad r0.xyz, r0.x, c[VS RADIOSITY SIDE], iPos

// planar map the radiosity texture

mov r0.w, VS CONST 1

dp4 oT1.x, r0, c[VS RADIOSITY U]

dp4 oT1.y, r0, c[VS RADIOSITY V]

Hemisphere Lighting with Radiosity Maps
119

Section II — Rendering Techniques

// calculate the ground to sky radiosity tween factor

dp4 oD1.xyz, iNormal, c[VS RADIOSITY SAT]

// **************** FRESNEL / SPECULAR CUBE MAP ****************

// calculate and normalize the eye->vertex vector

sub r0.xyz, iPos, c[VS EYEPOS]

dp3 r0.w, r0, r0

rsq r0.w, r0.w

mul r0.xyz, r0, r0.w

// dot the vertex normal with eye->vert

dp3 r1.x, r0, iNormal

// fresnel term = (1 - r1.x) * reflectivity amount

mad oD0.w, r1.x, iDiffuse.x, iDiffuse.x

// also output a non-fresnel version of the reflectivity amount

mov oD1.w, iDiffuse.x

// reflect the view direction through the vertex normal

add r1.x, r1.x, r1.x

mad r0.xyz, iNormal, -r1.x, r0

// transform the environment map sample location into worldspace

dp3 oT2.x, r0, c[VS ENVMAP1]

dp3 oT2.y, r0, c[VS ENVMAP2]

dp3 oT2.z, r0, c[VS ENVMAP3]

// **************** DOT3 SUNLIGHT ****************

// let's do a boring old school per vertex diffuse light, too...

dp3 r0.x, iNormal, c[VS LIGHT DIR]

max r0.x, r0.x, VS CONST 0

mul r0.xyz, r0.x, c[VS LIGHT COLOR]

add oD0.xyz, r0, c[VS AMBIENT]

ps.1.1

// inputs:

//

// v0.rgb = dot3 sunlight

// v1.rgb = radiosity ground to sky tween factor

// v0.a = fresnel term

// v1.a = specular intensity

//

// c1 = sky color

120
Hemisphere Lighting with Radiosity Maps

Section II — Rendering Techniques

def c0, 0.3333, 0.3333, 0.3333, 0.3333

tex t0 // base texture

tex t1 // radiosity texture

tex t2 // environment cube map

// envmap + specular

lrp r0.rgb, v0.a, t2, t0 // fresnel tween between envmap and base

mad r0.rgb, t2.a, v1.a, r0 // add the specular component

// radiosity hemisphere

dp3 r1.rgb, t1, c0 // grayscale version of the ground color

mul r1.rgb, r1, c1 // calculate sky color

lrp r1.rgb, v1, t1, r1 // tween between ground and sky

mul x2 r0.rgb, r0, r1 // apply the radiosity color

@codebg = // per vertex sunlight

mul x2 r0.rgb, r0, v0 // output color * diffuse

+ mov r0.a, t0.a // output base texture alpha

Hemisphere Lighting with Radiosity Maps
121

Section II — Rendering Techniques

Figure 5: The complete lighting model, combining a base texture, radiosity hemisphere,
Fresnel cube map, and dot3 sunlight (See Color Plate 7.)

Additional Considerations

This form of lighting can easily be simplified, using cheaper versions to imple-
ment shader LOD on distant objects. Most significantly, the per-pixel radiosity
lookups and sky color calculations can be replaced by a single CPU texture lookup
at the center of the object, with the resulting sky and ground colors set as vertex
shader constants, the hemisphere tween evaluated per vertex, and no work at all
required in the pixel shader.

Doing single-texel CPU lookups into the radiosity map is extremely fast, and
this data can be useful in many places. For instance, a particle system might do a
ground color lookup when spawning a new dust particle, to see if it should be in
shadow and also so it can be tinted to match the hue of its surroundings.

The radiosity maps can easily become very large, but they are also highly
compressible. Large areas of the map will typically contain either flat color or
smooth gradients, so good results can be obtained by splitting it into a grid of tiles
and adjusting the resolution of each tile according to how much detail it contains.
At run time, a quick render to texture can expand the area around the camera
back out into a continuous full resolution map.

Because the radiosity map is only a two-dimensional image, there will obvi-
ously be problems with environments that include multiple vertical levels. Such
cases can be handled by splitting the world into layers with a different radiosity
map for each, but this lighting model is not well suited to landscapes with a great
deal of vertical complexity.

References

Philip Taylor (Microsoft Corporation) discusses hemisphere lighting at:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndrive/html
/directx11192001.asp

The non-approximate version: Image Based Lighting, Cunjie Zhu, University of
Delaware: http://www.eecis.udel.edu/~czhu/IBL.pdf

Videos demonstrating various elements of the shaders presented above can be
found on the companion CD.

The lighting model presented in this article is used in the game MotoGP 2, on PC
and Xbox, developed by Climax and published by THQ. MotoGP 1 used a similar
radiosity technique but without the Fresnel term on the environment cube map.

122
Hemisphere Lighting with Radiosity Maps

Section II — Rendering Techniques

Galaxy Textures

Jesse Laeuchli

In many space simulations, it is useful to be able to render galaxies to provide
some background settings. Galaxies are a good effect to generate using a proce-
dural model, as there are many different types and variations of galaxies, and so it
is useful to be able to vary the generated galaxies. In this article a procedural
model is presented that can be implemented almost entirely on the GPU using Cg
pixel shaders.

Cluster Galaxies

The simplest type of galaxy to render is the cluster galaxy. A cluster galaxy is a
group of stars clustered together. This is fairly easy to simulate using a single
quad and a pixel shader. First, a quad is drawn and a texture filled with values
from [0,1] assigned to it. Then, for each pixel the distance from the center of the
quad needs to be found. To do this, the Cg function distance() can be used to find
the Euclidian distance between two points:

float4 center;

center.x=.5;

center.y=.5;

center.z=.0;

center.w=.0;

float d=distance(center,In.tex);

After the distance d has been obtained, the star density of the current point can be
found with the following equation:

stardensity=(1–(2*d))*(randomtexture^(d*10))

This equation moves d from the range [0,.5] to [0,1] and then multiplies that by
randomtexture to the power of d times 10. This causes the star density to fall off
away from the center of the galaxy.

Note that the constants 2 and 10 can be modified to adjust the appearance of
the galaxy. In addition, if the texture coordinates used to fetch the random vari-
ables are changed over time, the galaxy structure will appear to change. While
this may not be very realistic (real galaxies take many years to change drasti-
cally), it looks nice and can provide the application with more visual interest.

123

Cg Cluster Galaxy code:

float random(float2 xy,sampler2D BaseTexture)

// Index into texture filled with random values

{

float color=tex2D(BaseTexture,xy);

return color;

}

Pix Out;

float2 InputTest;

float4 center;

center.x=.5;

center.y=.5;

center.z=.0;

center.w=.0;

float d=distance(center,In.tex);

float randomtexture=random((In.tex.xy*10)+Time.xx,BaseTexture);//Random texture

d=(1-d*2)*pow(randomtexture,d*10);

Out.dif.x=d;

Out.dif.y=d;

Out.dif.z=d;

Spiral Galaxies

These equations can easily be modified to create another type of galaxy — a spiral
galaxy. Spiral galaxies are galaxies with swirls of stellar matter emanating from
their center. The amount, thickness, and length of the spirals vary greatly in real
galaxies, so any procedural model should be easily modifiable.

The first step in modifying the equation to support spirals is to find out the
angle at which the current pixel is being shaded. In other words, as the galaxy is
circular in shape, we need to find which angle of the circle the point being shaded
lies in.

124
Galaxy Textures

Section II — Rendering Techniques

Figure 1: Real cluster galaxy Figure 2: Procedural cluster galaxy

We can do that by finding the inverse tangent of the point, like this:

float angle=atan((In.tex.y-.5)/(In.tex.x-.5));

However, as atan’s range is [–�/2, �/2], it is necessary to move it so that its range
is positive. It is also helpful to convert the output into degrees.

float angle=atan((In.tex.y-.5)/(In.tex.x-.5)); //find angle

angle=degrees(angle); //convert angle

angle+=270; //Move angle to (0,360)

Next, the galaxy needs to be split into spiral sections. This can be done by per-
forming a modulus operation on the angle.

Angle%(360*d)

The amount that the angle is modulated by increases as the point being shaded is
farther away from the center of the galaxy. Spirals only result if the amount that
the angle is modulated by is increased with the distance. If the amount used to
modulate the angle is constant, the galaxy will be split into straight sections. This
calculation can be skipped if the point is too close to the center of the galaxy, as
the center of the galaxy does not swirl.

if(d>.15)

{

angle=fmod(angle,360*d);

dense=(dense)*(angle);

dense/=25;//scale the density

Out.dif.x=dense;

Out.dif.y=dense;

Out.dif.z=dense;

It is easy to change the appearance of the galaxy by changing a few of the con-
stants used here. For example, lowering 360 will change the structure of the gal-
axy by changing the number of spirals. Changing the amount that dense is divided
by will change the galaxies’ overall brightness.

Figure 3: Two procedural spiral galaxies

Galaxy Textures
125

Section II — Rendering Techniques

Summary

This article examined a procedural galaxies model used to generate various types
of animated galaxies, which can be used to generate a space background.

126
Galaxy Textures

Section II — Rendering Techniques

Figure 4: Two real spiral galaxies

Figure 5: Space background, showing galaxies generated
with the methods shown here

Turbulent Sun

Jesse Laeuchli

Many 3D engines today have situations where the sun needs to be rendered.
Whether the engine is being used to create a space simulation, flight simulation,
space conquest game, or even just a shooter, the sun needs to be displayed. Many
developers solve this by taking a sphere, texturing it bright yellow, and whitening
out the user’s view, but this is visually boring. By using the latest pixel shaders
and Cg, the sun can be rendered and animated entirely on the GPU. This article
examines how this can be done using nVidia’s Cg and shows several styles of
suns that can be generated by tweaking the shader.

The most important part of the sun shader is a noise function. As of
publication, Cg does not yet have a noise function implemented, so a large part of
the code is spent implementing one. In this shader, a 3D value noise function is
used. This takes a 1D table (stored in a 1D texture), looks into the table for the
random values surrounding each pixel, and then interpolates between them using
an ease curve and linear interpolation. Vnoise is used here because it only uses
one channel of one texture unit and reduces the number of texture lookups used.
On the downside, it uses a few more instructions than a gradient noise implemen-
tation. Using a different noise function will not affect the way the final image looks
significantly, so another noise function may be substituted as desired. Below is
the code for vnoise:

half random(float x,float y,float z,sampler1D g)

{

half index=(x*6.6)+(y*7.91)+(z*8.21);

index=index*0.001953125;

index=h1tex1D(g,index);

return index;

}

half3 scurve(half3 v)

{

return v * v * (3 - 2 * v);

}

half noise(float3 v,sampler1D g)

{

half3 LatticePoint=floor(v);

half3 frac1=scurve(frac(v));

half4 v1;

127

v1.x = random(LatticePoint.x, LatticePoint.y, LatticePoint.z,g);

v1.y = random(LatticePoint.x + 1, LatticePoint.y, LatticePoint.z,g);

v1.z = random(LatticePoint.x, LatticePoint.y + 1, LatticePoint.z,g);

v1.w = random(LatticePoint.x + 1, LatticePoint.y + 1, LatticePoint.z,g);

half2 i1 = lerp(v1.xz , v1.yw , frac1.x);

half a=lerp(i1.x , i1.y , frac1.y);

//

v1.x = random(LatticePoint.x, LatticePoint.y, LatticePoint.z+1,g);

v1.y = random(LatticePoint.x + 1, LatticePoint.y, LatticePoint.z+1,g);

v1.z = random(LatticePoint.x, LatticePoint.y + 1, LatticePoint.z+1,g);

v1.w = random(LatticePoint.x + 1, LatticePoint.y + 1, LatticePoint.z+1,g);

i1 = lerp(v1.xz , v1.yw , frac1.x);

half b=lerp(i1.x , i1.y, frac1.y);

return lerp(a,b,frac1.z);

}

For each pixel, the function random is called eight times to index into the table for
the random values (if animation is not desired, this can be reduced to four) and
then lerps between them. The artifacts generated by using lerps instead of a
better interpolation function are surprisingly small in this instance, and in any
case they are masked by using an ease curve to smooth it. Half variables are used
instead of floats to improve the performance, as the visual difference is not notice-
able in this instance. The texture is a 1D texture containing values from –1 to 1 in
the red channel.

To generate a sun texture, this function should be called several times per
pixel with different frequencies each call, using the texture coordinates as the x
and y parameters and time for the z parameter, if animation is desired. The output
is then applied to the final color. Calling noise more times makes the image have
more detail, but calling it past certain levels dependent on the display resolution
is useless, as there will be more detail than a single pixel can capture. Also, call-
ing noise more times increases the length of the program, so it is desirable to call
it fewer times. In the example below, it is called four times.

ninput.x=(IN.TexCoord0.x)*10;

ninput.y=(IN.TexCoord0.y)*10;

ninput.z=Time.x;

float suncolor= (noise(ninput,texture1)+(noise(ninput*2,texture1)*.5)+

(noise(ninput*4,texture1))*.25))+(noise(ninput*8,texture1))*.125);

When setting the output color, giving added weight to the red component makes
the sun look better. In Figure 1, the red is set to twice the value of green, and the
blue component is set to 0.

128
Turbulent Sun

Section II — Rendering Techniques

A more interesting look can be achieved by using a turbulence function. Turbu-
lence is the same as the sum of the noise functions used above, but instead of
using normal noise, the absolute value of signed noise is used. Signed noise is
usually created by:

2*noise(x,y,z)-1;

This scales the output to (–1,1).
Note that it is not required that the value 2 be used and that other values can

sometimes yield more interesting results. In Figure 2, a value of 1.5 was used.
This of course changes the value to which noise is scaled.

The change to the shader is simple:

Noise function…

.....

return 1.5*lerp(a,b,frac1.z)-1;

}

float test=abs(noise(ninput,texture1))+abs((noise(ninput*2,texture1))*.5)+

abs((noise(ninput*4,texture1))*.25) +abs((noise(ninput*8,texture1))*.125);

This looks better than just the sum of normal noise, but one other interesting
form is possible. Instead of getting the absolute value of every call to snoise, add
all the values of snoise and then take the absolute value. (See Figure 3.)

float test=abs(noise(ninput,texture1)+(noise(ninput*2,texture1)*.5)+

(noise(ninput*4,texture1)*.25) +(noise(ninput*8,texture1)* .125).);

After the sun has been rendered, a flare can be drawn using vertex shaders to
give the impression of light rays being emitted from the sun. The basic idea is to
render a circle around the sun, then deform the uppermost vertexes of the circle
by a constantly updated random value. This shader can be used even on graphics
cards that support only DirectX 8 functionality or even a software implementation
of vertex shaders. To generate the vertex coordinates, the number of triangles to
use must be decided on. Obviously, the more triangles used, the closer the
approximation is to a true circle, and the better it looks. In the following example,

Turbulent Sun
129

Section II — Rendering Techniques

Figure 1: Sun generated using noise Figure 2: Sun generated using turbulence

1000 triangles are used. After the number of triangles has been chosen, the ver-
tex number must be passed for each vertex, as well as the random number used
to deform the vertex position. The vertex shader then uses the sincos Cg func-
tion to generate the vertex positions. The following code is used to do this. Posi-
tion.x contains the number of the vertex being rendered, and position.y is used to
deform the flare and control the size. AmountOfVertexes is the uniform parame-
ter passed to the shader containing the number of vertexes in the flare:

float4 temppos=IN.position;

float step=IN. position.x*(6.283185307179586476925286766559)/AmountOfVertexes;

sincos(step, temppos.x, temppos.y);

temppos.x = (temppos.x * IN. position.y);

temppos.y = (temppos.y * IN. position.y);

To animate it, position.y should be updated with new random values periodically.

It is important when passing the parameters that a value of 1 be specified for the
innermost vertexes so they stay connected to the sun. Also, the flares should
become more transparent the farther they reach from the sun:

OUT.cColor.x = 1; // Flame-like color

OUT.cColor.y = .7125; // Flame-like color

OUT.cColor.z = 0;

OUT.cColor.w = 1-(In. position.y-1)*2

Summary

In conclusion, this article has examined how to generate value noise in a Cg
shader and then use it to produce turbulence, which can be applied per-pixel to
create animated sun textures. Also, a method for displaying and animating a light
flare around the sun has been shown. The entire source code for the shaders and
the example code can be seen on the companion CD.

130
Turbulent Sun

Section II — Rendering Techniques

Figure 3: Sun generated with
moderate turbulence

Figure 4: Sun with corona

Fragment-level Phong
Illumination

Emil Persson

Introduction

Phong illumination really isn’t anything new. The Phong illumination model has
been around for almost three decades now. First introduced by Phong Bui-Tuong
in 1975, this model is still frequently used in both the offline rendering world and
the real-time graphics world. Due to the complex math behind the model, it has
until recently only been used for vertex lighting in the real-time rendering world.
Both the Direct3D and OpenGL illumination models closely follow the Phong
model with some small variation. Doing it on a vertex level often causes visible
artifacts and a less-than-convincing look, unless you use a very high tessellation.
With advances like the dot3 operation in the fixed function pipeline, we came a
step closer to getting lighting on a per-pixel level. Unfortunately, the limitations of
the fragment processing pipeline meant a lot of compromises had to be made,
even in DirectX 8 level pixel shaders. With a limited range of [–1,1], or [–8,8] in
PS 1.4, and with the limited precision that the DirectX 8 level graphic cards
offers, much of the required math is simply not possible to do. Further, the fact
that there are no advanced math instructions in these graphics solutions is
another obstacle on our way toward advanced lighting, not to mention the instruc-
tion limit. For these reasons, tricks like packing attenuation into a 3D texture,
using cube maps for normalization, and using textures as lookup tables for
exponentiation of the specular component has been the norm for the past
generation.

Fortunately, this will sooner or later be nothing but a bad memory. With
DirectX 9 level hardware, we not only have the close-to-infinite range of float-
ing-point components and much higher precision, we are also able to do advanced
math and have a lot more instructions to play with before reaching the hardware
limits. This means that for the first time ever, we are able to truly evaluate the
Phong illumination model for each pixel completely in a pixel shader. I will state,
however, that even though we are finally able to evaluate the whole Phong illumi-
nation model in the pixel shader, there are still considerations and limitations that
need to be addressed. The number one consideration to take into account is, of
course, performance. Even with the top high-end graphics cards of today, the full
equation can be quite demanding on the fragment pipeline, and if care is not taken,
performance will suffer. We address some of these issues later in this article.

131

The Phong Illumination Model

Let me start by introducing the Phong illumination model:

I A A D Att L D D N Lcoeff color color color coeff color i� � � �((() ()))exp� �� S S R Vcoeff color
i

S

So what does all this do? Let’s consider every component and their purpose. The
first component, I, is of course the resulting color or intensity. The other compo-
nents, A, D, and S, represent three different attributes of light and are called
ambient, diffuse, and specular.

The Diffuse Component

We begin with diffuse, as it’s the most intuitive (though not the simplest) of
these. To understand what diffuse lighting is, take a piece of paper and point a
light toward it (or just imagine it). The paper may represent a polygon in our little
world. When the paper faces the light, it receives a lot of light and looks bright
white. Now slowly turn the paper around until the edge faces the light instead. As
you can see, it fades with the angle as the paper faces away from the light. This
phenomenon is what diffuse lighting represents. The actual math behind this is
what we see in the middle of the equation above, N·Li. N is the normal of the sur-
face, and Li is the light vector. The light vec-
tor is a vector that points from the point we’re
lighting toward the light. The light vector
should be normalized (that is, being of length
1). The same should of course be true for the
normal too. The dot product factor will thus
be a number between –1 and 1. We don’t want
negative light contribution, so all dot products
in this article are assumed to be clamped to
the [0...1] range. Why does this expression
give us the desired result? See Figure 1 for an
illustration.

A dot product between two perpendicular vectors will return 0. That’s the
case with light lying in the surface plane in the illustration above. Anything
behind the surface will return a negative number and thus be clamped to 0. A light
shining perpendicularly toward the surface from above will return 1, and anything
lighting the surface from an angle will get a higher contribution as the light vector
approaches the surface vector. Quite intuitive, but this is of course no proof of
correctness. At this time, it’s better to spill the beans: The Phong model isn’t cor-
rect. It’s just an approximation of how light tends to behave but nowhere near
acceptable for studying optics. However, in graphics we don’t need correctness;
our main concern is to please the eye. Thus, the motto is: If it looks good, then it
is good. Phong illumination looks good and consequently is good. That it can’t
predict how photons interact with matter is not going to concern us a whole lot.

132
Fragment-level Phong Illumination

Section II — Rendering Techniques

Figure 1: The diffuse component

If we go back to the equation, you can see that the diffuse contribution is
multiplied with two other variables, Dcoeff and Dcolor. Dcolor is the color of the mate-
rial of the surface, commonly represented by a texture or a constant color. We use
a texture, which is the normal base material texture used in many applications
and games and should not need any further introduction. Dcoeff is simply a variable
telling how much the diffuse component is going to contribute to the whole light-
ing equation. You’ll notice that there’s also an Acoeff and an Scoeff variable, which
control how much ambient and specular we want. For performance, we do not
necessarily need to care about all of these. In fact, it can be beneficial to just bake
the Dcoeff into the base texture. If you want less diffuse contribution, you can just
use a darker texture, similar to ambient and specular. So we can do the same thing
with that in mind and consequently have a somewhat simpler expression. Here
the components A, D, and S have their coefficients and colors pre-baked into sin-
gle entities.

I AD Att L D N L S R Vcolor i

S

i

� � � � � ��((() ()))exp

The Specular Component

So far we have only discussed diffuse lighting. Diffuse lighting works well for
materials like wood, stone, fabric, etc. But it won’t work that well for materials
like plastic, metal, and porcelain. Why not? These materials have a property that
rough wood, for instance, lacks — they are shiny. Shininess is the property that
the specular component tries to resemble. For rough wood you could do without
any shininess, and it would look pretty good. But even for rough wood, a small
specular component can enhance the image. There’s a saying in graphics: “If you
can’t make it good, make it shiny.” But be careful; with Phong illumination, you
can make it good, so you shouldn’t need to resort to making it overly shiny.
Unless you’re trying to make it look like polished wood, you should use a low
specular component. The best images are created by carefully balancing specular
and diffuse properly according to the properties of these materials in real life.

So how is the specular component calculated? The idea is similar to that of
the diffuse component. To begin with, compute the dot product between the
reflection vector R and the view vector V. The view vector is similar to the light
vector, except the view vector is the vector from the camera to the lit point rather
than from the light to that said point. This reveals a significant property of specu-
lar lighting. While diffuse lighting is viewpoint independent, specular is by its
nature very viewpoint dependent. If you navigate around in your little computer
graphics world, it doesn’t matter from where you observe a piece of rough wood;
it’ll look the same regardless of where you view it from. That’s not true for mate-
rials like plastics though; as you move around, you’ll see the reflection of the light
in the surface, and as the viewpoint changes the reflection will move around.
Figure 2 (on the following page) illustrates the behavior of the specular
component.

You, of course, get maximum reflected light if you view the surface from
somewhere along the reflection vector. As you move away from this vector, you

Fragment-level Phong Illumination
133

Section II — Rendering Techniques

see less and less reflected light. If you were
to use the dot product of the view vector
and reflection vector, the surface still
wouldn’t look particularly shiny; rather it
would just look bleached. Why is that?
Think of a perfectly reflective surface — a
mirror in other words. A mirror will only
reflect light in the exact direction of the
reflection vector. That is, if you viewed it at
a slight angle off from the ideal reflection angle, as in Figure 2, you wouldn’t see
any reflected light at all. Thus, in that case the dot product alone obviously does-
n’t work. Also think of a dull surface. It will reflect light in all possible directions,
so reflections should be visible from pretty much everywhere, even though you
don’t see a sharp reflection but rather just a uniformly lit surface. The difference
is the spread. The mirror doesn’t have any spread, while the dull material has a
significant spread. In other words, the more reflective the material, the faster the
light falls off as you move away from the reflection vector. Enter the specular
exponent. As you can see in the Phong equation, the dot product of the view vec-
tor and the reflection vector is raised to a power. This exponent represents the
shininess of the material. The higher the exponent, the shinier the material. A
specular exponent of infinity is a mirror, and a specular exponent of 0 is a com-
pletely dull surface where light is spread equally in all directions. If you didn’t
raise the specular to a power, basically using a specular exponent of 1, you still
have a pretty dull surface. Normal values of the specular exponent tend to be
around 8 to 64. We will use a constant specular exponent of 24, something I
choose because it looks pretty good. Remember, it if looks good, then it is good.
With pixel shaders 2.0, nothing really prevents us from changing the shininess of
the surface by storing the exponent in a texture and using that as a lookup table
for specular exponents for each pixel. This can be used to let rusty parts of metal
be non-shining while letting the intact parts shine as appropriate. A dark region in
this texture represents a non-shiny area, while bright regions are those that are
shiny. I’ll leave this as an exercise for the interested, however, and instead focus
on a more important part by which we can create a quite similar effect — gloss.

Gloss is basically just another word for the specular coefficient. As you
remember, we baked the coefficients together with the colors for each of the com-
ponents — ambient, diffuse, and specular. One often leaves the specular color as
white, which basically reduces the S component to be nothing but the specular
coefficient, or the gloss. This is because most shiny materials don’t significantly
change the color of the light as it reflects off the surface. Some material does
though, and if you’re going to simulate this behavior you should of course keep
the specular color component. Gloss is an important part of the equation, how-
ever, and should generally be left in the equation. It often gives better results to
just alter the gloss instead of the specular component across a surface to do
effects like rusty parts of a metal surface. So we will use a texture containing the
gloss, a so-called gloss map. If you want to use a specular color, you can bake it
into the gloss map, but in our case we will take advantage of the fact that we only

134
Fragment-level Phong Illumination

Section II — Rendering Techniques

Figure 2: The specular component

have a single property to take care of and use a single channel texture to store our
gloss map, which reduces the bandwidth need.

Attenuation

In real life, light fades as the lit surface gets farther from the light. The falloff is
roughly a 1/r2 function (think of the area of a sphere with the light in its center). In
real life, light sources aren’t really a dimensionless point in space either. A
lightbulb, for instance, while not particularly large, is still not exactly infinitesimal
either. So if we applied an attenuation factor of 1/r2, we wouldn’t get very realistic
results. To better capture the behavior of light, a slightly more complex function is
commonly used:

Att
1

c 1 r q r2
�

� � � �

We have constant, linear, and quadratic attenuation — c, l, and q in the formula
above. It’s not necessary to use all components; I usually drop the linear compo-
nent, since it doesn’t add a whole lot and places the heaviest load on the fragment
pipeline because it requires a square root. Usually it’s enough to just offset the
inverse square function with a constant. Setting this constant to 1 will usually suit
us well. So the attenuation function we use is:

Att
1

1 q r2
�

� �

The Ambient Component

If we were to implement the lighting equation as discussed so far, we would get
quite good results. However, there’s still something that will hurt the impression
of reality. Polygons in our little virtual world that face away from our light will be
black. This may sound natural, as no light would hit it. However, experience tells
us otherwise. If you’re in a decently lit room, you’ll have a hard time finding a sur-
face that’s so dark you can’t see its details and texture. Nothing really gets black.
Why is that? When light hits a surface, some of it scatters back. Some of that light
hits our eyes, which is the sole reason we can see anything at all. Not every pho-
ton scattering off from a surface will hit the eyes of the viewer though; some will
bounce away and hit other surfaces. Some of that light will then once again scatter
back into the scene. This is called indirect lighting and is something that our
Phong model doesn’t take care of. Fortunately, there’s a very cheap way to fake it.
Enter the ambient component. While none of the components of Phong illumina-
tion are particularly real or physically correct, the ambient is the most fake of
them all. In fact, it clearly goes against all our knowledge about light. But as
always, if it looks good, then it is good. Ambient gets rid of the blackness of unlit
surfaces and gives a decent impression that indirect light is present in the scene.
This alone is a noble enough goal to justify its place in the Phong model, and
given how cheap it is to implement, one would really have to justify the decision
not to use ambient.

Fragment-level Phong Illumination
135

Section II — Rendering Techniques

So what is ambient then? Basically it’s nothing but a constant light that hits
every surface. One assumes that the light scattered off from the surfaces in the
scene is uniformly distributed in all directions and all places. This is hardly close
to reality but works reasonably well for most normal scenes. With light hitting a
surface uniformly from all directions, you get no reflective behavior. It’s also com-
pletely angle independent, so anything like diffuse is out the window too.
Basically you end up with just the texture color multiplied with a constant of how
much ambient you want in the scene; very simple but quite effective. For being so
effective and yet so cheap, it’s easily the most worthwhile calculation your frag-
ment shader can do.

Fragment-level Evaluation

In real life, few surfaces are really flat; this is a painful truth for the graphic artist,
as it becomes so much harder to create realistic environments given the base
primitives of 3D graphics. However, there are solutions, and Phong illumination
on a fragment level gives you opportunities to ease the burden on the artist with-
out the need for zillions of tiny triangles to simulate rough surfaces. Also, it would
be wasteful to do all this work on every pixel without taking advantage of the pos-
sibilities this gives you. One could, for instance, just interpolate the normals and
evaluate the Phong equation on each pixel. While this would certainly look better
than normal per-vertex lighting, it would still look flat. Fortunately, the Phong
illumination model still has room to improve
this significantly. The solution is, of course,
to store them in a texture and look them up
on a per-pixel level instead of just interpo-
lating the normals. This is what’s commonly
called a normal map, or bump map. This will
let you give surfaces properties that real
surfaces tend to have, like roughness,
bumpiness, and fine details. However, this
introduces some important issues, and the
full concept can be a significant threshold
for many people to get over. Let’s take it
from the beginning and study the issues
that it raises in detail.

So let’s assume that we have a texture with the normals stored. We sample
this texture in our pixel shader and do the math. Will this work? Those who have
tried (including me before I understood these issues) can assure you that it’ll look
very odd and incorrect. It will look okay at some spots but wrong in most others.
If the normal map was created exactly for the given direction of a polygon, it
would work, but we can’t create a separate normal map for every direction that a
texture may be located in our scene. Not only would our dear artist refuse to take
on this tremendous job, but even if he did, we would bring the graphic card to its
knees due to the extreme memory requirements. So this is obviously not an
option. Ideally, we would want a base texture, a normal map, and a gloss map to go

136
Fragment-level Phong Illumination

Section II — Rendering Techniques

Figure 3: World space normals

together for each material. This is the solution I come to in the end, so why do I
insist that just sampling a texture and doing the math requires a separate texture
for each given possible direction? Consider a simple example: You are inside a
cube. All six faces use the same texture and the same normal map. Now assume
we want them all to look flat, so we store a constant normal (say for instance, (1,
0, 0)) in the normal map. Applying this to all six faces will give us something like
Figure 3. Of course, you’d want the normals to point into the box. The faces of the
cube obviously have different normals, and in this case only one face has correct
normals. It may appear impossible at first that the faces can share the same nor-
mal map given that they are oriented differently and have very different normals.
Using a separate normal map seems to be the only solution at first. Fortunately,
there’s a better solution.

Tangent Space

To solve the problem, we need to introduce the concept of a vector space. Imagine
that we removed the axis pointers in Figure 3. How would we know which direc-
tion is the X direction? We wouldn’t! Why? Because the direction of X is nothing
but an arbitrary choice that we have made. There’s no fundamental truth behind
this choice. It’s just a choice as good as any. Imagine that we put X into Y’s posi-
tion and vice versa. Suddenly the (1, 0, 0) normal would be incorrect for a face
that it was correct for before. Not only that, but suddenly it’s correct for the face
in the bottom of the cube. Now imagine that we used different meanings of X, Y,
and Z for each face. What would that imply? (1, 0, 0) can be the correct normal for
every face; we only need to adjust our coordinate system to suit the normals.
This may seem backward, but it is an extremely handy thing to do in graphics.

A vector space is basically just a coordinate system. You have three vectors
defining the direction of each major axis. These are the vectors pointing in the X,
Y, and Z directions, as defined by that vector space. There are two vector spaces
that are important to us right now. First, the standard vector space we place all
our objects into is called world space. This is the vector space you’ve been using
even though you may not have realized it. As we place our objects in absolute
coordinates, the world space is defined by the vectors (1, 0, 0), (0, 1, 0), (0, 0, 1).
The other space that’s important to us is the so-called tangent space. It is defined
by the tangent vectors and the surface normal. Note that we still need the surface
normal even though we have normals stored in the normal map. The difference
though is that the surface normal is a normal normal (no pun intended) — i.e., it’s
defined in world space. The normal map, however, contains normals in tangent
space. To better understand the concept of tangent spaces, try to think of a tex-
ture quad. The vectors that define this vector space are the ones that point in the
direction of the U and V texture coordinate in world space. The normal points
perpendicularly right up from the surface as usual. Figure 4 (on the following
page) may help you understand the concept. The tangent space in this figure is
thus defined by (0, 1, 0), (0, 0, –1), and (1, 0, 0), since the direction of the U tex-
ture coordinate points in the Y direction, V points in the –Z direction, and the
normal points in the X direction.

Fragment-level Phong Illumination
137

Section II — Rendering Techniques

Now that we have our tangent space, what’s
next? Well, we need to store the tangent space
for each vertex in our geometry and pass that
along with the vertex and texture coordinates to
the vertex shader. The vertex shader needs to
transform the light vector and reflection vector
into tangent space and pass that along to the
pixel shader. The pixel shader can then work as
usual and use the normal from the normal map.

An obvious question at this point is, of
course, how do we create the normal map?
Unfortunately, there’s no general method for cre-
ating a normal map from a base texture. Instead,
the artist needs to create the normal map along with the base texture as two sep-
arate but obviously connected entities. It’s quite unintuitive to draw a normal
map, however; a height map is much more intuitive. It’s easier to think of white
as high and black as low than it is to think of pink as pointing to the right and light
green as pointing down, etc. Fortunately, there’s a general way to convert a height
map into a normal map that can also be done at load time. All you need to do is
apply a Sobel filter to every pixel. Fortunately, the concept of a Sobel filter is quite
simple, but if that’s still too much, you can resort to the D3DXComputeNormal-
Map function. Basically, a Sobel filter finds the slope of a grayscale picture. First
you apply the Sobel filter in the X direction and then in the Y direction to form the
the vector (dX, dY, 1). Then normalize this vector, and you’re done. The filter
kernels look like this:

If you’re unfamiliar with the concept of
filter kernels, just place the pixel that
you’re filtering right now in the middle
square. Then multiply each pixel that each
square covers with the number that’s in

that square and sum it all together. The result is your filtered value. So applying
the left filter will give you dX, and applying the right one will give you dY.

Implementation

If you’ve read everything to this point, you are probably getting a little tired of all
the theory. So without further ado, let’s dive straight into the implementation.
The first thing we need to define is our vertex format. As we’ve concluded earlier
in this text, the data we need is a vertex position, a texture coordinate, and our
tangent space. This gives us this vertex format:

struct TexVertex {

Vertex vertex;

float s, t;

Vertex uVec, vVec, normal;

};

138
Fragment-level Phong Illumination

Section II — Rendering Techniques

Figure 4: Tangent space

–1 0 1

–2 0 2

–1 0 1

–1 –2 –1

0 0 0

1 2 1

Now we need to feed this info into the vertex shader. Feeding the vertex and tex-
ture coordinates into a vertex shader should be pretty much straightforward. It’s
important to note at this time though that texture coordinates no longer need to
be in any way related to textures. They are really nothing but generic interpolated
properties. So we feed info into the vertex shader through texture coordinates
and then pass new texture coordinates from the vertex shader into the pixel
shader. So the vertex declaration looks like this:

D3DVERTEXELEMENT9 texVertexFormat[] = {

{ 0, 0, D3DDECLTYPE FLOAT3, D3DDECLMETHOD DEFAULT,

D3DDECLUSAGE POSITION, 0},

{ 0, 1 * sizeof(Vertex), D3DDECLTYPE FLOAT2, D3DDECLMETHOD DEFAULT,

D3DDECLUSAGE TEXCOORD, 0},

{ 0, 1 * sizeof(Vertex) + 2 * sizeof(float), D3DDECLTYPE FLOAT3, D3DDECLMETHOD DEFAULT,

D3DDECLUSAGE TEXCOORD, 1},

{ 0, 2 * sizeof(Vertex) + 2 * sizeof(float), D3DDECLTYPE FLOAT3, D3DDECLMETHOD DEFAULT,

D3DDECLUSAGE TEXCOORD, 2},

{ 0, 3 * sizeof(Vertex) + 2 * sizeof(float), D3DDECLTYPE FLOAT3, D3DDECLMETHOD DEFAULT,

D3DDECLUSAGE TEXCOORD, 3},

D3DDECL END()

};

The vertex shader needs to compute the light vector and the view vector from
the provided data. Thus, we need to provide the vertex shader with the camera
position and light position. This is best done with vertex shader constants, as
these attributes don’t change with the geometry in any way. Once the view and
light vectors are done, we need to transform them into tangent space. The trans-
formation is just a matrix multiplication, which is nothing but a set of dot prod-
ucts. As these are three-dimensional properties, we need only do a dp3 operation
with each of uVec, tVec, and the normal. The resulting vertex shader ends up as
something like this:

vs.2.0

dcl position v0

dcl texcoord0 v1 // TexCoord

dcl texcoord1 v2 // uVec

dcl texcoord2 v3 // vVec

dcl texcoord3 v4 // normal

// c0-c3 = mvp matrix

// c4 = camera position

// c5 = light position

// Transform position

m4x4 oPos, v0, c0

// Output texcoord

mov oT0, v1

sub r0, c5, v0 // r0 = light vector

Fragment-level Phong Illumination
139

Section II — Rendering Techniques

dp3 oT1.x, r0, v2

dp3 oT1.y, r0, v3

dp3 oT1.z, r0, v4 // oT1 = light vector in tangent space

sub r1, c4, v0 // r1 = view vector

dp3 oT2.x, r1, v2

dp3 oT2.y, r1, v3

dp3 oT2.z, r1, v4 // oT2 = view vector in tangent space

Everything should now be properly set up for the most important piece of code of
ours, the pixel shader, which will do all the tough work. As everything is now in
tangent space, we can carry on all operations as if all data, including the normal
from the normal map, had been in world space. The pixel shader will be much lon-
ger, so we’ll go through it step by step instead of just printing all the code right
here. Let’s start with the diffuse component.

ps.2.0

dcl t0.xy

dcl t1

dcl 2d s0

dcl 2d s1

def c0, 2.0, 1.0, 0.0, 0.0 // (2.0, 1.0, unused ...)

texld r0, t0, s0 // r0 = base

texld r1, t0, s1 // r1 = bump

mad r1.xyz, r1, c0.x, -c0.y // bump[0..1] => bump[-1..1]

dp3 r7.w, r1, r1

rsq r7.w, r7.w

mul r1.xyz, r1, r7.w // r1 = post-filter normalized bump map

dp3 r7, t1, t1

rsq r7.w, r7.x

mul r3, t1, r7.w // r3 = normalized light vector

dp3 sat r4, r3, r1 // r4 = diffuse

mul r4, r4, r0 // r4 = base * diffuse

mov oC0, r4

This should be pretty straightforward. We begin by sampling our base texture and
grabbing the normal from the bump map. We could have used floating-point tex-
tures given that normals can have components that range from –1 to 1, but that
would reduce performance without a whole lot of image quality improvement.
Actually, it would reduce the image quality on current hardware, since at the time
of publication no hardware is available that supports filtering on floating-point
textures. Instead, we take the traditional approach of packing it into a normal
D3DFMT_X8R8G8B8 texture. This means that we have to unpack it in our

140
Fragment-level Phong Illumination

Section II — Rendering Techniques

shader though, and that’s the mad (as in “multiply” and “add,” not “crazy”)
instruction right after the sampling. Note that the linear filter on the normal map
isn’t really that suitable for normals, so after the filtering, the normal may no lon-
ger be of unit length but rather slightly shorter. This may not matter a whole lot
for diffuse, but it does matter quite a lot for specular. If the length is 0.99 instead
of 1.0 and you raise it to, say, 24, it’ll end up not with the wanted 1.0 but rather
something much lower, 0.9924 = 0.785, which will make our specular highlights
significantly less sharp. So the post-filter normalization is certainly needed,
though maybe not this early, but it doesn’t hurt to use a better normal for diffuse
also. The normalization process is quite simple. As you may remember from lin-
ear algebra, a vector dot multiplied with itself is the squared length of that vector.
So what we do is take the inverse square root of that squared length, which gives
us the inverse of the length. Multiply the vector with the inverse length, and the
normalization is done. The same is then done to the light vector. After the
normalizations, we can just do the dot product between these vectors, multiply
that with the base texture, and our diffuse is done. Note that we use dp3_sat as
opposed to just dp3. This is so that all negative dot products get clamped to zero.
We don’t want negative light, remember?

So far, the output doesn’t look particularly impressive. The most obvious
drawback is the lack of attenuation. So far, only the angle matters, not how far
from the light the surface is. We’ll remedy the problem right away. So we’ll need
this piece of code inserted right after the light vector normalization:

// c2 = (constant attenuation, quadratic attenuation, unused ...)

mad r5, c2.y, r7, c2.x

rcp r5, r5.x // r5 = attenuation

This will give us our wanted attenuation factor, which we can multiply with our
diffuse to get a properly attenuated light. So the last step in the shader changes is
as follows:

mul r4, r4, r0 // r4 = base * diffuse

mul r4, r4, r5 // r4 = base * diffuse * attenuation

mov oC0, r4

Next up is our specular. To begin with, we need to sample our gloss map. It has
the same texture coordinates as the base texture and normal map, so it’s straight-
forward to add. As you may remember from
our vertex shader above, we get our view
vector in t2. So we normalize as we did with
the light vector. We then need to compute
the reflection vector. The reflection vector is
illustrated in Figure 5.

Once the reflection vector is done, we
basically just need to do the dot product,
raise it to a power, and multiply with the gloss and we’re done. We’ll add the spec-
ular exponent to the first constant. The code ends up something like this:

Fragment-level Phong Illumination
141

Section II — Rendering Techniques

Figure 5: Reflection vector

dcl t2

dcl 2d s2

...

def c0, 2.0, 1.0, 24.0, 0.0 // (2.0, 1.0, specular exponent, 0.0)

...

texld r2, t0, s2 // r2 = gloss

...

dp3 r7, t2, t2

rsq r7.w, r7.x

mul r6, t2, r7.w // r6 = normalized view vector

dp3 r7, r3, r1

mul r7, r7, c0.x

mad r3, r7, r1, -r3 // r3 = reflection vector

dp3 sat r3, r3, r6

pow r3, r3.x, c0.z // r3 = specular

mul r3, r3, r2 // r3 = specular * gloss

Given the discussion above, there shouldn’t be a whole lot of questions about this
code. Now we just need to combine it with the diffuse component. The last piece
of code is as follows:

mad r4, r4, r0, r3 // r4 = base * diffuse + specular * gloss

mul r4, r4, r5 // r4 *= attenuation

mov oC0, r4

The last piece of the equation that remains is the ambient, which is also the sim-
plest to implement. So without further ado let’s go right to the task. We need to
pass the ambient factor to the shader. There are some unused components in our
c2 constant, so we’ll just use one of these. Then we only need to squeeze another
instruction into the final combining code.

// c2 = (constant attenuation, quadratic attenuation, ambient, unused)

mad r4, r4, r0, r3 // r4 = base * diffuse + specular * gloss

mul r4, r4, r5 // r4 *= attenuation

mad r4, r0, c2.z, r4 // r4 += base * ambient

mov oC0, r4

Yes, that’s it. The Phong model is now complete and ready for some serious
action.

Aliasing

While we already get pretty good results, there are still a couple of issues that
need to be addressed. One such issue is aliasing. You probably already know why
we use techniques like mipmapping. If you don’t have the mathematical back-
ground, you probably at least know from experience that not using mipmapping
will cause severe shimmering artifacts on objects at a distance. Why is that? The

142
Fragment-level Phong Illumination

Section II — Rendering Techniques

mathematical explanation is that it violates the Nyquist frequency. That probably
sounds like Greek to most people; only those with a signal processing background
will be familiar with it. Basically we are stating that the frequency present in the
texture is higher than half the sampling rate, which may only confuse you more,
but it’s actually a quite easy concept to understand, even though it would take a
higher degree of mathematical skills to do the reasoning from a mathematical
point of view. Assume we are rendering to a resolution of 256x256, a resolution
that will hardly ever be used in real life, but for this example it makes it easy to
understand the issues. Assume we also have a texture of a 256x256 containing a
checkerboard pattern (that is, every other pixel is black and white). Ignoring that
we usually have linear filtering, it would appear that mapping this texture onto the
full screen will work just fine. Every other pixel gets black and white. Now
assume we map it to the upper-left 128x128 pixels. Only every other pixel from
the texture will end up on screen (still ignoring filters), so we get only the black
pixels by seemingly unfortunate bad luck. Obviously, information got lost in the
process. It’s hard to get something useful in this situation either way, but at least
we would want all pixels in the texture to contribute to the final results, producing
some kind of gray. Alright you say, and you point out that this is exactly what a lin-
ear filter will do for us. True — in this case using a linear filter would be enough,
but then consider another checkerboard texture but with each 2x2 pixels being
either white or black. Mapping this to either 256x256 or 128x128 will work just
fine. Now map it to 64x64 and consider the results. We’re back in the same situa-
tion — we will get nothing but black, as nothing from the white 2x2 pixel blocks
will ever be touched by the linear filter. Obviously, information once again got lost.
Ideally we would want every 4x4 block in the texture to contribute to each pixel.
This is basically what mipmapping does. It tries to match the pixel and texel rates
by using smaller down-sampled textures to better fit the spacing between where
in the texture each pixel would sample. So when mapping to a 256x256 pixel area
the full 256x256 mipmap would be used, while when mapping it to a 64x64 pixel
area it would use a 64x64 mipmap. For anything in between, it would interpolate
between the two closest mipmap levels for a smooth transition. Doing this should
effectively get rid of all kinds of texture shimmer artifacts related to texture
sampling.

So what’s up with all this theory? The problem is solved, right? Well, I’d love
that to be true. Unfortunately it’s not. During the DirectX 7 era, one could pretty
much state that it was a solved problem, but with the pixel shaders of today, we
are basically back at square one again. Why? Well, during the DirectX 7 era, tex-
tures were combined with simple arithmetic operations like modulating a base
texture with a lightmap, possibly adding an environment map onto that. Simple
arithmetic operations like multiplications and additions don’t change the fre-
quency properties of the texture. So as long as you use these simple operations,
you’ll be fine. Unfortunately this is not the case with operations like dot products.
It basically kicks all the assumptions from the reasoning behind mipmapping out
of the window. This means that we once again see shimmering. Since the trend is
that multisampling replaces supersampling as the preferred anti-aliasing tech-
nique, we won’t get any help there either. The situation is not as horrible as it

Fragment-level Phong Illumination
143

Section II — Rendering Techniques

may first appear, however. We just need to be aware of the problem and carefully
tackle it. While mipmapping may no longer perfectly match our source, it cer-
tainly helps us a lot. Again, what’s the reason for shimmering? There are too-high
frequencies in the source material. What can we do about it? Reduce the high-fre-
quency components in our textures; in plain English, use blurrier textures. It is
important to note that there’s no need to use a blurrier base texture, since it will
only be part of simple arithmetic operations. Our main target is instead our nor-
mal map, and to some extent the gloss map. The general advice is to avoid having
sharp contrasts in the normal map. You also don’t necessarily need to use the
whole 0-to-1 range when creating your height map. Sharp contrasts in the gloss
map are generally not desired either. Smoother transitions in the gloss map can
help hide the aliasing artifacts slightly. It’s also noteworthy that a high specular
exponent, while giving sharper and generally better-looking specular highlights,
also adds to the aliasing, so these two factors need to be balanced. Some good
advice is to use a blurrier normal map the higher the specular exponent is. That
is, a shiny surface will need a blurrier normal map, while a matte surface may do
fine with fairly high contrasts in the normal map. Aliasing certainly occurs from
diffuse too, so you can’t use normal maps that are too sharp for dull surfaces
either. It’s also important to note that the artifacts tend to occur on lower mipmap
levels, so it may help to not only downsample the previous mipmap level when
creating the mipmap chain but also apply a soft blur filter.

If you work for a game or content creation company, it’s important that you
make sure the artist understands these issues. Unlike many other issues that can
be handled graciously by the programmer, this will require awareness from the
artists. The best thing the programmer can do is educate the artist and provide
good tools for previewing the material.

Shadows

There is one thing left that seriously hurts the impression of reality, and that’s the
lack of shadows. It would be wasteful to spend all this time implementing Phong
illumination and leave it in this state. There are several shadowing techniques to
choose from, some of them existing in several different forms. Unfortunately, they
all suck in one way or another. The two most common are stencil shadows and
shadow mapping. The advantages of stencil shadows are that the shadows are
pixel accurate, and stenciling is widely supported. The disadvantages are that it’s
slow, not particularly scalable, hard to implement, and not very general, and it
may interfere with some anti-aliasing techniques. The advantages of shadow map-
ping are that it’s reasonably fast, quite scaleable, easy to implement, and very
general. The disadvantage is that the shadows are prone to aliasing. It has enough
pluses though to make it my shadow technique of choice.

The idea behind shadow mapping is simple. In the first pass you render the
distance to the light into a texture from the light’s point of view. Then in the sec-
ond pass you check the distance to the light against what’s stored in the texture
from pass 1. If the distance is larger than the stored value, obviously some other
object is in the same line of view that covers the light, which implies that it’s in

144
Fragment-level Phong Illumination

Section II — Rendering Techniques

shadow. Otherwise, it’s lit. Quite simple, isn’t it? In our case, we use
omnidirectional lights, so we need to render to a cube map instead of a normal
texture. As we’re only interested in distance and not colors, etc., we can use a
much simpler pass — no textures, just plain geometry. For that we need a pair of
simple shaders.

vs.2.0

dcl position v0

// c0-c3 = mvp matrix

// c5 = light position

// Transform position

m4x4 oPos, v0, c0

sub oT0, c5, v0 // oT0 = light vector

It can’t be simpler; just compute the light vector — no tangent spaces or any-
thing, just a subtraction and we’re done. The pixel shader isn’t any more complex.

ps.2.0

dcl t0

dp3 r0, t0, t0

mov oC0, r0

The dot product with itself gives the squared length of the light vector. Normally,
one would compare the distances, but the squared distances work just as well
and give a significant speed boost. There is an issue we need to take care of for
this to work well, however; when comparing with the stored distance, there will
unavoidably be precision errors due to the finite resolution of our shadow map and
limited number of bits. For this reason, you need to bias the distance to give some
headroom for precision errors. Normally, you would just add a small number.
However, if we’re using the squared distances, this won’t work very well due to
the non-linear spacing that we have. It would effectively make our bias smaller
and smaller with distance, and artifacts would soon be visible. If we use a larger
bias, we would instead get problems with missing shadows close to the light.
Unfortunately, there’s no optimal bias in between either; rather, we could find
biases that cause both artifacts. Instead, we take a different approach. We just
multiply the distance with a constant slightly less than 1. This will instead define
the allowed error in terms of a certain percentage, which will work much better.
Only very close up on the light will there be artifacts. If this is a problem, there’s
still the option to use linear distance rather than the squared distance (but at a
performance cost, of course).

Note that squared distances will return quite large numbers — certainly
larger than 1 in general, unless we use a very small world. So we’ll need a float-
ing-point texture to store it to. We could use a normal fixed-point texture too, but
then we’d need to scale it down so that we’ll never get anything larger than 1. We
can’t allow clamping, as that will destroy our shadows. Also, floating point better

Fragment-level Phong Illumination
145

Section II — Rendering Techniques

suits our quadratic representation of distance. So the best choice for us is to use a
D3DFMT_R32F texture. Note that some pixel shader 2.0 hardware doesn’t sup-
port floating-point cube maps, but otherwise this is an ideal format, as it is single
channel and floating point with high precision. If you need to support such hard-
ware, you’re better off just using the linear distance instead.

To implement shadows, we also need to change our lighting shaders. Our
vertex shader will receive another line:

mov oT3, -r0 // oT3 = shadow map

This line isn’t obvious just by looking at it; instead you must take a look at the old
vertex shader and see that r0 will contain the light vector from earlier computa-
tions (that is, the light position minus the vertex position). We want to look up in
the cube map in the direction from the light position toward the vertex position
(that is, the exact opposite direction of the light vector). So that’s how we come
up with –r0. The pixel shader gets more extensive additions. First we need some
basic setup, and then we sample the shadow map:

dcl t3

dcl cube s3

...

def c1, 0.97, 1.0, 0.0, 0.0 // (biasfactor, averaging factors)

...

texld r8, t3, s3 // r8 = shadow map

Then right after we normalize the light vector, we’ll squeeze in an instruction to
compute the biased distance to the light. r7.x contains the squared distance to the
light from previous calculations above.

mul r8.y, r7.x, c1.x // r8.y = lengthSqr(light vector) * biasfactor

We now need to get a shadow factor (that is, 0 if we’re in shadow and 1 other-
wise). So we’ll compare and grab a 0 or 1 from our c1 constant, depending on the
outcome of the comparison.

sub r8.x, r8.x, r8.y

cmp r8.x, r8.x, c1.y, c1.z // r8.x = shadow factor

Now we only need to multiply this with our diffuse and specular components. The
ambient will be left alone though, as we want ambient to be visible in shadowed
areas too. So the component combining will be changed to this:

mad r4, r4, r0, r3 // r4 = base * diffuse + specular * gloss

mul r4, r4, r5 // r4 *= attenuation

mul r4, r4, r8.x // r8 *= shadow factor

mad r4, r0, c2.z, r4 // r4 += base * ambient

mov oC0, r4

Ta da — we have shadows! We could leave it at this and be fairly satisfied. This
doesn’t mean that there are no improvements left to be done, however. Sure
enough, I have another trick for you. While the shadows created with the above

146
Fragment-level Phong Illumination

Section II — Rendering Techniques

code look fairly good, there is a problem. If the shadow map is of low resolution
(say 256x256), we will get pixelation of the shadows in which the edges have
obvious stair-stepping. What can we do about it? Well, we could increase the reso-
lution of our shadow map. This will quickly kill our performance, though. Render-
ing to a 512x512 shadow map requires four times the fillrate of rendering to a
256x256 shadow map. Instead, let’s try to anti-alias our shadows. How can we do
that? By taking several samples and averaging them. So we just take the normal
shadow map sampling position, add an arbitrary constant to offset it slightly, and
take another sample. Take three additional samples for a total of four to get a
decent smoothing of the edges. So we need to provide three additional sampling
positions from the vertex shader.

def c8, 1.0, 2.0, -1.0, 0.0

def c9, 2.0, -1.0, 1.0, 0.0

def c10, -1.0, 1.0, 2.0, 0.0

...

sub oT4, c8, r0

sub oT5, c9, r0

sub oT6, c10, r0

The pixel shader gets its fair share of additions also. The changes are pretty
straightforward. First we just sample at the newly provided sample positions:

dcl t4

dcl t5

dcl t6

...

texld r9, t4, s3 // r9 = shadow map

texld r10, t5, s3 // r10 = shadow map

texld r11, t6, s3 // r11 = shadow map

...

Then we need to revise the shadow factor calculation slightly. Let’s use 0.25
instead of 1.0 for obvious reasons. We accumulate the results from all sample
comparisons in r8.x, so the final combining code remains the same:

def c1, 0.97, 0.25, 0.0, 0.0 // (biasfactor, averaging factors)

...

sub r8.x, r8.x, r8.y

sub r9.x, r9.x, r8.y

sub r10.x, r10.x, r8.y

sub r11.x, r11.x, r8.y

cmp r8.x, r8.x, c1.y, c1.z

cmp r9.x, r9.x, c1.y, c1.z

cmp r10.x, r10.x, c1.y, c1.z

cmp r11.x, r11.x, c1.y, c1.z

add r8.x, r8.x, r9.x

Fragment-level Phong Illumination
147

Section II — Rendering Techniques

add r8.x, r8.x, r10.x

add r8.x, r8.x, r11.x

And that’s it. The shadows should now look much smoother. If we look closely
though, we can still see stair-stepping; more samples would solve that. I’ll leave
that as an exercise for those who are interested.

We’ve come a long way. We have implemented something that was hardly
possible to do in real time just a year ago. It’s fascinating how far graphics tech-
nology has advanced recently, and we’re still moving. As mentioned several times
in this article, we are still doing many things that are hardly real, but as technol-
ogy goes forward, I hope we can overcome these problems also. I hope we can
join up some time in the future and implement real soft shadows, real indirect
lighting, and real displaced geometry instead of normal mapped simulations. See
you then.

148
Fragment-level Phong Illumination

Section II — Rendering Techniques

Specular Bump Mapping on
Pre-ps_1_4 Hardware

Matthew Halpin

Introduction

This article presents a selection of techniques that can be used to improve the
quality and flexibility of specular bump mapping on pre-ps_1_4 hardware. The
techniques are targeted at ps_1_1 hardware, with certain optimizations presented
for higher pixel shader versions. It should be noted that these techniques are
strictly suitable for pre-ps_1_4 hardware; there are more efficient and elegant
solutions for ps_1_4 and better hardware. There exists extensive documentation
for per-pixel lighting on these higher pixel shader versions (see [1] and [2]).

The following diagrams are provided to define some terms that will be used
extensively in this chapter.

149

Figure 1: Phong shading terms

Figure 2: Blinn shading terms

The equation for the specular lighting term using Phong shading is:

S = C * (R.L)P

Where S is the final specular value, C is the specular light value, R is the reflected
eye vector, L is the light vector, and P is the surface specular power.

The equation for the specular lighting term using Blinn shading is:

S = C * (N.H)P

Where S is the final specular value, C is the specular light value, N is the surface
normal, H is the interpolated half vector, and P is the surface specular power.

All techniques discussed in this article make use of per-vertex tangent space
data (tangent, normal, and bi-normal). See [2] for an explanation of tangent
spaces.

There are a number of aspects that affect the quality of a given specular bump
mapping technique. Here are the ones relevant to this article:
� Half vector or reflected eye vector. A technique can use an interpolated half vec-

tor (Blinn shading), or it can interpolate a vertex to eye vector and calculate
the reflection vector through the pixel normal (Phong shading). In the case of
Blinn shading, the interpolated half vector is combined with the per-pixel
normal using the dot product to find the parameter for the specular power
function. In the case of Phong shading, the per-pixel reflected vector is com-
bined with an interpolated light vector using the dot product to find the
parameter for the specular power function. Phong shading generally gives a
nicer-looking highlight but requires more work per pixel.

� Normalized half or reflected eye vector. When interpolating a vector between
vertices, the length of the vector can be shortened. This can cause problems
for vectors that are meant to be of unit length (light vector, half vector, eye
vector). A technique can ignore this problem on the assumption that the
mesh will be tessellated enough for the vector shortening to not have a visi-
ble effect, or it can normalize the vector using a normalization cube map or
shader arithmetic.

� Per-pixel specular power. A technique can allow a per-pixel specular power
value to be looked up from a texture, or it can allow a fixed specular power
value for each primitive render. Per-pixel specular power normally imposes a
fill-rate cost on the technique but allows meshes to be batched together if
they normally would have been rendered separately due to requiring different
specular values. Per-pixel specular power primarily provides more flexibility
for the artwork.

� Per-pixel specular level (gloss). This is a per-pixel value that is used to modu-
late the specular pass. This can be used to vary the surface material between
being shiny (e.g., metal) and being dull (e.g., rust).

� Arbitrarily high specular exponent. Some techniques may be limited in the
range of specular power values that they are able to work with. Generally,
high values will be unavailable rather than low values.

150
Specular Bump Mapping on Pre-ps_1_4 Hardware

Section II — Rendering Techniques

� Amount of banding for high specular exponents. Raising a value to a power is
not directly supported by ps_1_x hardware. There are a number of solutions
that can broadly be split into two categories: texture lookups and arithmetic
operations. Precision problems often occur when using arithmetic operations
to raise a value to a high power (e.g., a value can be raised to a power of 16 by
doing four successive multiply operations, but banding artifacts will be visi-
ble). This is because ps_1_1 hardware generally has limited precision
fixed-point arithmetic units, and each multiply loses precision.

All the final solutions presented below use Blinn shading (using half vectors)
rather than Phong shading.

In the following sections, techniques are presented for achieving various
combinations of the aspects presented above. This includes some alternatives for
the aspects that are of lower quality, as these are still useful as optimizations for
rendering of objects that may not necessarily require the higher quality
techniques.

Standard Shader

Here is an example standard shader that could be used to do specular (and diffuse)
bump mapping:

; c0 – c3 = local to clip space matrix

; c4 = camera position in local space

; c5 = light position in local space

vs 1 1

dcl position0 v0

dcl texcoord0 v1

dcl normal v2

dcl tangent v3

dcl binormal v4

m4x4 oPos, v0, c0 ; transform position into screen space

mov oT0, v1 ; output uv for diffuse texture

mov oT1, v1 ; output uv for normal map

sub r0, c4, v0 ; vertex to camera vector

dp3 r0.w, r0, r0

rsq r0.w, r0.w

mul r0, r0, r0.w ; Normalized view dir in r0

sub r1, c5, v0 ; vertex to light vector

dp3 r1.w, r1, r1

rsq r1.w, r1.w

mul r1, r1, r1.w ; Normalized light dir in r1

add r0, r0, r1 ; add view and light vectors

dp3 r0.w, r0, r0

rsq r0.w, r0.w

mul r0, r0, r0.w ; Normalized half vector in r0

Specular Bump Mapping on Pre-ps_1_4 Hardware
151

Section II — Rendering Techniques

dp3 oT2.x, v3.xyz, r1.xyz

dp3 oT2.y, v4.xyz, r1.xyz

dp3 oT2.z, v2.xyz, r1.xyz ; Tangent space light dir in oT2

dp3 oT3.x, v3.xyz, r0.xyz

dp3 oT3.y, v4.xyz, r0.xyz

dp3 oT3.z, v2.xyz, r0.xyz ; Tangent space half vector in oT3

; c0 = diffuse color

; c1 = specular color

ps 1 1

tex t0 ; Diffuse texture

tex t1 ; Normal map

texm3x2pad t2, t1 bx2 ; u = (N.L)

texm3x2tex t3, t1 bx2 ; v = (N.H)

mul r0, t0, c0 ; diffuse texture * diffuse light color

mul r0, r0, t3.a ; diffuse * (N.L)

mad r0, t3, c1, r0 ; (((N.H)^p) * specular) + diffuse

This shader uses (N.L) as the texture u coordinate and (N.H) as the texture v
coordinate. The texture contains (u) in the alpha component and (vp) in the RGB
components. The light vector and half vector are not normalized per pixel.

Per-pixel Specular Power

Techniques have been investigated that use arithmetic instructions to achieve
per-pixel variable specular power (see [3]). The most significant disadvantage to
this approach is the banding that occurs due to precision problems. The approach
presented in this article uses texture lookups to evaluate the specular power
function for a number of specular power values and then uses arithmetic instruc-
tions to interpolate the final value. For example, the specular power function may
be evaluated for power values of 2, 10, 30, 60, and a value of 45 can be achieved by
interpolating halfway between the 30 and 60 values. The per-pixel specular power
is stored as a single texture channel with the range [0–1]. This maps directly to
the range of specular powers. Hence a value of 0 means a power of 2, and a value
of 1 means a power of 60.

It is possible to evaluate the specular power function at up to four values due
to textures having up to four channels (alpha, red, green, blue). Each channel can
store the precomputed result of each specular power value. This can be achieved
by precalculating a 1D texture that stores up for four different values of p in each
channel and then doing a texture lookup with the result of the lighting dot product
(N.H) as the u coordinate.

The next step in the shader is to use the per-pixel specular power value to
interpolate between these four specular results. Initially this will be achieved
using another texture operation for simplicity, but this will later be converted to
arithmetic instructions.

An interpolation between two values can be achieved using this equation:

R = (t * a) + ((1–t) * b)

152
Specular Bump Mapping on Pre-ps_1_4 Hardware

Section II — Rendering Techniques

This is of the form of a weighted sum of a and b, where the weight for a is t and
the weight for b is (1–t). Here are the graphs for these weights, given t:

This needs to be extended to interpolate between four values. Value a must have
a weight of 1 when t = 0, and b, c, and d must have weights of 0. Likewise, b must
have a weight of 1 when t = 1

3, c when t = 2
3, and d when t = 1. The graphs for

wa, wb, wc, and wd are given below:

Specular Bump Mapping on Pre-ps_1_4 Hardware
153

Section II — Rendering Techniques

Figure 3

Figure 4

Texture-Encoded Interpolation

These weights can be encoded in a texture in a similar way as described above for
evaluating the specular power function. In this case, wa goes in the alpha channel,
wb in the red channel, wc in green, and wd in blue. This texture then needs to be
read with the per-pixel specular power value as the u coordinate.

The final step is to evaluate the weighted sum:

R = (wa * a) + (wb * b) + (wc * c) + (wd * d)

This equation is the same as a 4D dot product. Certain pixel shader versions have
a dp4 instruction, but where this isn’t available, a dp3 followed by a mad can be
used as follows:

dp3 r0, t1, t2

mad r0, t1.a, t2.a, r0

The dp3 instruction only modulates and sums the red, green, and blue compo-
nents, so the alpha component must be added with the mad instruction.

Here is the final pixel shader:

; c0 = specular color

ps 1 2

tex t0 ; read normal map with specular power in alpha

texdp3tex t1, t0 bx2 ; read (N.L)^p for 4 different values of p.

texreg2ar t2, t0 ; read weights for each component

dp3 r0, t1, t2 ; dp3

mad r0, t1.a, t2.a, r0 ; extend dp3 to dp4

mul r0, r0, c0 ; specular * specular light color

NOTE This shader only evaluates specular lighting, not diffuse.

The texreg2ar instruction uses the source texture alpha component as the u coor-
dinate and the source texture red component as the v coordinate. In this case, it is
being used to look up in the 1D weight’s texture, so the red component is being
ignored.

The pixel shader instruction texdp3tex is only available in pixel shader ver-
sions 1.2 and 1.3, so for version 1.1 the texm3x2tex instruction can be used
instead, though a wasted texm3x2pad instruction must be included as well.

Here is the final ps_1_1 shader:

; c0 = specular color

ps 1 1

tex t0 ; read normal map with specular power in alpha

texm3x2pad t1, t0 bx2

texm3x2tex t2, t0 bx2 ; read (N.L)^p for 4 different values of p.

texreg2ar t3, t0 ; read weights for each component

dp3 r0, t2, t3 ; dp3

mad r0, t2.a, t3.a, r0 ; extend dp3 to dp4

mul r0, r0, c0 ; specular * specular light color

154
Specular Bump Mapping on Pre-ps_1_4 Hardware

Section II — Rendering Techniques

Arithmetic Interpolation

The interpolation of the four specular values can be implemented as arithmetic
instructions instead of a texture lookup. This has the advantage of reducing tex-
ture bandwidth as well as making the technique compatible with more complex
specular solutions that require all four texture stages.

The graphs for wa,wb,wc, and wd need to be created using pixel shader arith-
metic instructions. Here is the shader fragment that achieves this:

; c0 = -0.33333, 0.0, 0.33333, 0.66666

; c1 = 0.0, 0.33333, 0.66666, 1.0

; c2 = 0.75, 0.75, 0.75, 0.75

sub sat r0, t0.a, c0 ; offset rising edges

mul x4 sat r0, r0, c2 ; scale rising edges

sub sat r1, t0.a, c1 ; offset falling edges

mul x4 sat r1, r1, c2 ; scale falling edges

sub sat r0, r0, r1 ; combine rising and falling edges

NOTE The input per-pixel specular power value is in t0.a, and r0 outputs
the final interpolated specular value.

This shader calculates each weight in parallel (in each component). It consists of
three parts: constructing the rising edge of the triangle, constructing the falling
edge of the triangle, and combining the two. The rising and falling edges have gra-
dients of 3 and –3, but the pixel shader constants can only be in the range of –1 to
1. Hence, a _x4 modifier must be used in combination with multiplying by 0.75 to
achieve a multiply by 3.

In this section, texture and arithmetic solutions have been provided for
achieving an approximation of per-pixel variable specular power using segmented
interpolation.

Normalized Specular Bump Mapping

The example shaders given previously all suffer from denormalized half vectors.
This happens when a vector that is meant to be of unit length is linearly interpo-
lated between vertices. When a denormalized vector is used in a dot product
operation, the result will be smaller than it would be for a normalized vector. This
can cause dulling of specular highlights in the middle of triangles and triangle
edges. To fix this, the vector needs to be normalized after interpolation and before
being used in a dot product. Usually, a normalization cube map is used to normal-
ize the vector because the texture-addressing algorithm for cube maps is inde-
pendent of vector magnitude.

Using a normalization cube map prohibits a technique from using a texture
lookup to implement the specular power function. This is because the relevant
instructions (texm3x2tex, etc.) do dot products between one texture result and
one texture coordinate, rather than between two arbitrary texture results.

Specular Bump Mapping on Pre-ps_1_4 Hardware
155

Section II — Rendering Techniques

To overcome this problem, the cube map can be directly used to implement
the specular power function as well. The technique is an extension of the standard
environment-mapped bump mapping shader. Here is the standard shader:

; c0 = specular light color

ps 1 1

tex t0

texm3x3pad t1, t0 bx2

texm3x3pad t2, t0 bx2

texm3x3vspec t3, t0 bx2

mul r0, t3, c0

This shader transforms the per-pixel normal value in t0 into world space, calcu-
lates the eye reflection vector, and looks this up in an environment cube map (the
eye vector is interpolated in oT1.w, oT2.w, and oT3.w).

The cube map will be precalculated as having a single light pointing in a fixed
direction. Each texel will be calculated using the specular function with the nor-
malized u,v,w coordinates of the texel as the input vector and a fixed vector for
the light direction, e.g., (0,1,0).

Using the above shader, this will give a consistent specular highlight in the
fixed direction (0,1,0), which is incorrect, as the highlight needs to point in the
direction of the light. By adjusting the interpolated texture coordinates (associ-
ated with t1, t2, and t3) in the vertex shader, the cube map can be aligned with the
direction of the light. To ease this process, the shader will be switched to use
Blinn shading rather than Phong shading. This means that the cube map needs to
be aligned with the vertex half vector, and the last texture instruction needs to be
texm3x3tex rather than texm3x3vspec. This also means that the vertex shader
doesn’t need to output the eye vector in the w components of oT1, oT2, and oT3,
as the pixel shader doesn’t need this information.

In order to perform this alignment, a 3x3 matrix needs to be constructed that
will transform the half vector onto the fixed vector (0,1,0). This matrix defines a
world space coordinate system that will be referred to as “light space.” Once this
matrix has been determined, it needs to be combined with the tangent space
matrix (tangent, normal, and bi-normal) so that the per-pixel normal will be trans-
formed from tangent space into light space before looking up in the cube map.

The light space matrix consists of three vectors defining the x, y, and z axes
of the light space in world space.

There is one constraint on creating the light space matrix: The y-axis must
be the same as the vertex half vector because the fixed light direction was (0,1,0).
Hence, the other two axes must be in the plane perpendicular to the half vector in
order to form an orthogonal basis, though their specific orientation does not affect
the lighting, as the cube map is symmetrical around the y-axis.

NOTE The only difference between directional and point lights for this
technique is in the calculation of the half vector (directional lights use the light
direction; point lights use the normalized vertex to light vector). After the half
vector has been calculated, the vertex shaders are identical and the pixel
shaders are completely identical.

156
Specular Bump Mapping on Pre-ps_1_4 Hardware

Section II — Rendering Techniques

Light Space Interpolation Consistency

One way of generating the other two axes (x and z) is to take any fixed vector,
cross it with the half vector to get the z-axis, and then cross the half vector with
this z-axis to get the x-axis. Once normalized, these two vectors will form an
orthonormal basis with the half vector.

Problems occur with this technique when the half vector points near the
fixed vector or nearly opposite the fixed vector. This is because neighboring verti-
ces might have half vectors that surround the fixed vector. When this happens,
the x- and z-axes for neighboring vertices will point in radically different direc-
tions as the small difference between the half vector and the fixed vector defines
their direction. This problem manifests itself as small highlights appearing inside
triangles where there shouldn’t be any. Hence, a fixed vector cannot be used to
construct a light space that can be consistently interpolated.

To overcome this problem, the tangent space vectors can be used as a start-
ing point for constructing a light space that can be consistently interpolated over
the mesh. Simply cross the vertex tangent vector with the half vector to get the
light space z-axis. Then cross the half vector with this z-axis to get the light
space x-axis. This works because a highlight is usually only visible on the surface
wherever the half vector is near to the surface normal and hence approximately
perpendicular to the tangent vector. Additionally, the tangent vector can be con-
sistently interpolated over the mesh (this is an assumption that all bump mapping
techniques have to be able to make about the tangent and bi-normal vectors).

NOTE This light space construction isn’t guaranteed to be artifact free; if
the mesh is so sparsely tessellated that neighboring tangent space vectors vary
greatly, then the half vector could point too close to the tangent vector and risk
causing small highlight artifacts.

Here are the vertex and pixel shaders to implement this:

vs 1 1

dcl position0 v0

dcl texcoord0 v1

dcl normal v2

dcl tangent v3

dcl binormal v4

m4x4 oPos, v0, c0 ; transform position into screen space

mov oT0, v1 ; output uv for normal map

sub r0, c5, v0

dp3 r0.w, r0, r0

rsq r0.w, r0.w

mul r0, r0, r0.w ; Normalized light dir in r0

sub r1, c4, v0

dp3 r1.w, r1, r1

rsq r1.w, r1.w

Specular Bump Mapping on Pre-ps_1_4 Hardware
157

Section II — Rendering Techniques

mul r1, r1, r1.w ; Normalized view dir in r1

add r2, r0, r1

dp3 r2.w, r2, r2

rsq r2.w, r2.w

mul r2, r2, r2.w ; Normalized half vector in r2

; Work out lightspace

; LightY = half vector. (r2)

; LightZ = Tangent x LightY (r6)

mul r6, v3.zxyw, r2.yzxw

mad r6, v3.yzxw, r2.zxyw, -r6

; Normalize

dp3 r6.w, r6, r6

rsq r6.w, r6.w

mul r6, r6, r6.w

; LightX = LightY x LightZ (r7)

mul r7, r2.zxyw, r6.yzxw

mad r7, r2.yzxw, r6.zxyw, -r7

; Normalize

dp3 r7.w, r7, r7

rsq r7.w, r7.w

mul r7, r7, r7.w

; Work out Tangent in lightspace

dp3 oT1.x, v3.xyz, r7.xyz

dp3 oT2.x, v3.xyz, r2.xyz

dp3 oT3.x, v3.xyz, r6.xyz

; Work out Bi-normal in lightspace

dp3 oT1.y, v4.xyz, r7.xyz

dp3 oT2.y, v4.xyz, r2.xyz

dp3 oT3.y, v4.xyz, r6.xyz

; Work out Normal in lightspace

dp3 oT1.z, v2.xyz, r7.xyz

dp3 oT2.z, v2.xyz, r2.xyz

dp3 oT3.z, v2.xyz, r6.xyz

; c0 = specular light color

ps 1 1

tex t0 ; read normal in .rgb

texm3x3pad t1, t0 bx2

texm3x3pad t2, t0 bx2

texm3x3tex t3, t0 bx2 ; lookup specular cube map with light space normal

mul r0, t0, c0 ; multiply by specular color

158
Specular Bump Mapping on Pre-ps_1_4 Hardware

Section II — Rendering Techniques

Normalized Specular Bump Mapping

with Per-pixel Power

This section combines the techniques described in the previous sections to give a
shader that can render specular bump mapping with normalized half vector and
per-pixel variable specular power.

Taking the normalized half vector shader described above as a starting point,
the first thing to do to extend it to allow per-pixel specular power is precalculate
four different specular functions, one in each channel of the cube map. Once this
has been done, the final shader simply involves copying the shader fragments
from the per-pixel specular power section and adjusting the register names so
they fit together. The vertex shader is the same as for the normalized half vector
technique, so here is the final pixel shader:

; c0 = -0.33333, 0.0, 0.33333, 0.66666

; c1 = 0.0, 0.33333, 0.66666, 1.0

; c2 = 0.75, 0.75, 0.75, 0.75

; c3 = Specular light color

ps 1 1

tex t0 ; read normal in .rgb and power in .a

texm3x3pad t1, t0 bx2

texm3x3pad t2, t0 bx2

texm3x3tex t3, t0 bx2 ; lookup specular cube map with light space normal

sub sat r0, t0.a, c0 ; offset rising edges

mul x4_sat r0, r0, c2 ; scale rising edges

sub sat r1, t0.a, c1 ; offset falling edges

mul x4 sat r1, r1, c2 ; scale falling edges

sub sat r1, r0, r1 ; combine rising and falling edges

dp3 r0, t3, r1 ; dp3 between weights and specular values

mad r0, t3.a, r1.a, r0 ; extend to dp4.

mul r0, r0, c3 ; multiply by specular color

NOTE Light attenuation can be added to this shader: Calculate the
attenuation value in the vertex shader, modulate with the specular light color,
output this in the oD1 register, and then replace the final pixel instruction with
mul r0, r0, v1.

Implementation Details

The demo associated with this article provides implementation details for some
of the techniques discussed. All the techniques use normalized half vectors.
Pressing the S key will cycle through different specular techniques to provide a
comparison between them. The “Fixed High” and “Per Pixel” options implement

Specular Bump Mapping on Pre-ps_1_4 Hardware
159

Section II — Rendering Techniques

the techniques described in this article, while the others use standard arithmetic
techniques for approximating specular power functions.

When implementing specular bump mapping on ps_1_1 hardware, it is impor-
tant to use the most efficient shaders that will achieve the desired effect. For
example, if per-pixel specular power is not needed (and it won’t be for many sur-
faces), then use a more efficient and simpler shader. Similarly, if a fixed power of 8
is sufficient for a given surface and the banding is not noticeable, then use it
rather than the shaders described in this article.

The demo shows how to combine a diffuse pass with the specular pass while
incorporating per-pixel specular level maps (gloss maps). It is also extended to
allow for multiple lights. The gloss map is stored in the diffuse texture alpha
channel and written to the destination alpha channel during the first pass. In sub-
sequent passes, alpha writing is disabled (by using the D3DRS_COLORWRITE-
ENABLE render state). This means that the gloss map is permanently stored in
the destination alpha channel, and specular passes can be modulated and added
using the following blend mode: D3DRS_SRCBLEND = D3DBLEND_DEST-
ALPHA; D3DRS_DESTBLEND = D3DBLEND_ONE.

Conclusion

In this article, two primary factors were addressed that affect specular bump map-
ping: per-pixel specular power values and normalized high exponent specular
power functions. It has been shown how to achieve either or both of these factors
in a single pass on ps_1_1 level hardware while minimizing banding artifacts.

Acknowledgments

Thanks to Oscar Cooper, Dean Calver, Andrew Vidler, and Peter Halpin for
proofreading.

Thanks to Tim Mews for providing the artwork in the demo.

References

[1] ATI developer page, http://www.ati.com/developer/. Papers,
http://www.ati.com/developer/techpapers.html.

[2] nVidia developer page, http://developer.nvidia.com/.

[3] Beaudoin, Philippe and Juan Guardado, “A Non-Integer Power Function
on the Pixel Shader,” http://www.gamasutra.com/features/20020801/
beaudoin_01.htm.

160
Specular Bump Mapping on Pre-ps_1_4 Hardware

Section II — Rendering Techniques

Voxel Rendering with PS_3_0

Aaron Burton

Introduction

With the advent of pixel shader 3_0, graphics hardware has become capable of
rendering hardware-accelerated voxels.

Voxel objects are stored as a three-dimensional map of matter, with each
voxel (or texel in a volume map) indicating something about that “lump” of matter
— its color, translucency, or “power” in the case of metaballs. In the “power”
case, a threshold value is used; voxel values that are above this value are consid-
ered to be solid matter, with the rest considered to be empty space. (Alternatively,
an implementation could reverse the comparison and consider matter to exist in
all voxels with a value below the threshold.)

Typically, voxel objects are converted to polygons before rendering using the
“marching cubes” algorithm or something similar. The method presented here
submits a single eight-vertex cube and extracts the surface in the pixel shader; a
ray is traced step by step through the volume, sampling the texture at each step,
searching for matter.

The method requires pixel shader loops, dynamic flow control (IF, BREAK),
unlimited texture reads, and unlimited dependent reads; it also makes use of func-
tion calls.

The Plan Revealed

The basic recipe is simple.

1. Take a volume texture(s) containing the voxel object. D3DTADDRESS_CLAMP
should be used, although small changes to the code would allow texture
repeats if that is desired.

2. Render a cube. The eight vertices have 3D texture coordinates applied that
simply map the entire volume texture to the cube (i.e., one vertex has coordi-
nates [0 0 0] and the opposite corner is [1 1 1]). If the front clip plane clips
this cube, it must have capping polygons added to cover the hole created.

3. In the vertex shader, output the 3D texture coordinate and a vector indicating
the direction of the line from camera to vertex.

161

4. In the pixel shader, start at the given texture coordinate and step along the
line, deeper into the volume. Sample the texture at each step.

The length of the camera to vertex vector, which is calculated in the vertex
shader, directly controls the distance stepped through the volume texture each
loop; thus volume textures containing small objects will require the vector length
to be no longer than the size of a voxel. For example, a 64x64x64 volume texture
would require the length of the step vector to be 64–1.

Note that the normal issues with vector interpolation apply: As the cube is
rendered, this vector will be linearly interpolated between vertices, and so it may
be shorter for some pixels — those toward the middle of polygons — than it
should be. This is not likely to be a problem unless both the near clip plane and
the object are very close to the camera, so the shaders herein do not attempt cor-
rective action.

The voxels may be rendered in many ways; the three demonstrated here are
accumulative (e.g., additive, such as holograms or light volumes, or multiplicative,
such as smoke), solid, and lit.

The Vertex Shader

The vertex shader used is simple and the same no matter which rendering
method is chosen.

// Constants: c0..c3 world.View.Proj matrix

// c4 Camera position (model space)

// c5.x Length of camera->vertex vector for pixel shader

vs 3 0

dcl position v0

dcl texcoord v1

dcl position o0

dcl texcoord0 o1

dcl texcoord1 o2

m4x4 o0, v0, c0 // Output: transformed position

mov o1.xyz, v1 // Output: texture coordinate

sub r1, v0, c4 // Camera->Vertex vector in model space...

nrm r2, r1 // ...normalize it...

mul r1, r2, c5.x // ...and scale it to the right "step" length.

mov o2.xyz, r1 // Output: Camera-direction in texture space

162
Voxel Rendering with PS_3_0

Section II — Rendering Techniques

Accumulated Voxels

This is the simplest method. Accumulated voxels require a single volume texture
containing the color at each voxel. The colors are summed (accumulated) as the
ray traces through the volume.

Accumulated voxel rendering is most obviously applied as additive (e.g.,
holography or light volumes), or obscuring, as smoke or fog (i.e., multiplicative
blending), or another blend type for another effect. There can be a problem with
using accumulated voxels as light volumes (i.e., the light from a window shining
through a dusty atmosphere) or smoke/fog volumes, which is covered later in this
article in the section titled “The Problem with Depth Buffering.”

1. As the ray steps through the volume, the texture is read and accumulated.
The final number must be modulated by some value, or else it will likely be
too bright — at least in the case of additive blending.

2. If a fixed number of steps are taken through the volume, this number can
then be used to divide the total and gain the final result; this will work on
pixel shader 2_0 hardware. Note that if pixel shader 2_0 hardware is used
with D3DTADDRESS_CLAMP, the pixel shader will be unable to terminate the ray
when it hits the edge of the volume; this will require the edge voxels to be
empty, as otherwise, matter in the edges will appear to be stretched to
infinity.

3. If the ray is terminated when it leaves the [0..1] texture coordinate range,
then fewer texture reads will be performed, and thus pixel shader 2_0 is no
longer sufficient. The number chosen to modulate the final result can be
tuned to give the desired brightness or set from the maximum number of
steps possible through the volume. The number must be constant across all
pixels (to avoid color banding), not calculated per pixel.

// Constants: c1.x Length of step, used as scale factor for final result

// i0 Loop enough times to step completely through object

ps 3 0

def c0, 0, 1, 0, 0

dcl texcoord0 v0.xyz // Start texture coordinate

dcl texcoord1 v1.xyz // Ray "step vector"

dcl volume s0 // "Matter map" - use alpha channel

dcl volume s1 // Color map

mov r0.xyz, v0 // r0.xyz is current sample position

mov r0.w, c0.x // r0.w is number of samples taken

texld r1, v0, s0

rep i0

add r0.xyz, r0, v1 // Step further along the ray

add r0.w, r0.w, c0.y // Increment sample count

Voxel Rendering with PS_3_0
163

Section II — Rendering Techniques

// Stop if any ray coord leaves [0..1] range

mov sat r3.xyz, r0

sub r3.xyz, r3, r0

abs r3.xyz, r3

dp3 r3.w, r3, c0.y

if ne r3.w, c0.x

break

endif

// Load the texture then

texld r2, r0, s0 // Load the texture...

add r1.a, r1, r2 // ...and add it to the total

endrep

// Scale result and output color

mul r1.a, r1.a, c1.x

mov oC0, r1.a

Solid Voxels

With solid voxels, the aim is to step through the volume texture until a non-empty
voxel is found and then render its color. This requires the ray to terminate when
it leaves the volume or finds matter. This is simple and should be easily under-
stood by examining the shader code.

If point sampling is used, a special color, or color-key, can be used to indicate
whether the voxel is opaque or not. If bilinear filtering is to be used, and this does
improve the results, then an additional alpha channel must be used to indicate the
existence of matter, as color filtering will prevent the use of a color-key. Most of
the ray tracing operation will consist of sampling the information contained in the
alpha channel, as the final color is only retrieved after an opaque voxel has been
found. For this reason, it may be best for performance if the matter (alpha) map
and color map are two separate volume textures. For the matter map, D3DFMT_A8
will do, although 1 bit per pixel might be suf-
ficient (e.g., for a landscape). For metaballs
and other surfaces that have varying densi-
ties, an 8-bit channel could be ideal. It is then
possible to vary the threshold value that the
pixel shader considers to be matter; this
effectively changes the isosurface that is
rendered.

The ray traces through the matter map,
sampling each step and searching for matter.
When matter is found, the pixel shader can
then sample the color map and write the
value. In Figure 1, the circles indicate sample
positions, and the arrows indicate the direc-
tion of the ray. Sampling stops and the object

164
Voxel Rendering with PS_3_0

Section II — Rendering Techniques

Figure 1: The ray steps through the
volume, sampling the texture to
search for matter.

color is output as soon as matter is found, in this case by the rightmost sample,
the fifth in the image.

// Constants: c1.y Threshold value to detect matter

// i0 Loop enough times to step completely through object

ps 3 0

def c0, 0.5f, 1, 0, 0

dcl texcoord0 v0.xyz // Start texture coordinate

dcl texcoord1 v1.xyz // Ray "step vector"

dcl volume s0 // "Matter map" - use alpha channel

dcl volume s1 // Color map

mov r0.xyz, v0 // r0 is our ray position; it starts at v0 and adds v1 with each step

mov r1, c0.z // Initialize output with black

rep i0

texld r2, r0, s0 // Sample the "matter map"

// Matter detected?

if gt r2.a, c1.y

texld r1, r0, s1 // Sample the color texture.

break // Done!

endif

add r0.xyz, r0, v1 // Step further along the ray

// Stop if any ray coord leaves [0..1] range

mov sat r2.xyz, r0

sub r2.xyz, r2, r0

abs r2.xyz, r2

dp3 r2.w, r2, c0.y

if ne r2.w, c0.z

break

endif

endrep

// Output color

mov oC0, r1

Lit Voxels (Calculating a Normal)

In order to light the rendered voxels, a normal must be obtained. Depending on
how the volume data was extracted, another volume texture containing normal
data could be accessed for visible voxels. If such data is not available, then a nor-
mal vector must be calculated per pixel; computing an accurate normal from vol-
ume data is a complex task that could make it the object of an article of its own.
The techniques described below give a good approximation of normal calculation;

Voxel Rendering with PS_3_0
165

Section II — Rendering Techniques

however, more sampling data and complex
algorithms could be used to improve the
visual accuracy of the results.

One approach is to trace three rays per
pixel and calculate the cross product of the
resulting hit points, but this is inordinately
expensive — and problem-rich.

A better solution is illustrated in Figure
2 and described here:

1. The hit point is found just as with the
solid voxels approach.

2. Sample a number of points on a sphere
around the hit point (eight sample points
are shown as diamond shapes in the
diagram).

3. Sum the offset vectors (i.e., the vector from hit point to sample point; vectors
a, b, c, and d in the diagram) that do not hit matter and normalize the result-
ing vector (N in the diagram). This then approximates the normal.

Improvements

The points sampled in order to generate the normal can be tuned to get the best
results.

1. The offset vector to each sample position on a sphere can be stored in pixel
shader constants. These positions are stored for just one octant of the
sphere; the sample positions for the other seven octants can be found by
inverting the offset vector across each axis. Thus, three supplied offset vec-
tors, with signs flipped and summed to the hit point, give coordinates for 24
texture samples. (Figure 3, which is 2D, would store two offset vectors per
quadrant for a total of eight sample positions.)

2. Better results may be gained by sam-
pling from several spheres of differing
radii; this can be easily achieved by vary-
ing the lengths of each supplied offset
vector.

There is potential for an error if the ray hits a
thin sliver of matter, as shown in Figure 3.
Offset vectors 2, 3, 4, 6, 7, and 8 all detect
“no matter”; the summed result is a
zero-length normal.

An additional check solves this problem:
When calculating the normal, only perform
texture samples for cases where the dot
product of the offset vector and the step vec-
tor is negative (i.e., in Figure 3, sample

166
Voxel Rendering with PS_3_0

Section II — Rendering Techniques

Figure 2. Additional texture samples
can calculate an approximate
normal.

Figure 3: Thin slivers of matter can
generate invalid normals unless fixed
with additional code.

points 5, 6, 7, and 8 would be tested); this also has the benefit of halving the num-
ber of texture reads.

// Constants: c1.x Length of step

// c1.y Threshold value to detect matter

// i0 Loop enough times to step completely through object

ps 3 0

def c0, 0.5f, 1, 0, -1

def c2, 0.363f, 0.363f, 0.858f, 0 // Offset vectors; 3 matter checks per octant

def c3, 0.363f, 0.858f, 0.363f, 0 // (used for normal calculation)

def c4, 0.858f, 0.363f, 0.363f, 0

def c20, 0, 1, 0, 0 // Light vector

dcl texcoord0 v0.xyz // Start texture coordinate

dcl texcoord1 v1.xyz // Ray "step vector"

dcl volume s0 // "Matter map" - use alpha channel

dcl volume s1 // Color map

mov r0.xyz, v0 // Initialize ray position to v0; add v1 with each step

mov r11, c0.z // Initialize output with black

rep i0

texld r1, r0, s0

// Matter detected?

if gt r1.a, c1.y

// Zero r1; it will be used to sum the vectors contributing to the normal

mov r1, c0.z

mov r2, c2

mul r2, r2, c1.x // r2 is the offset to sample around curr pos

call l0 // Will update r1 with normal contributions

mov r2, c3

mul r2, r2, c1.x // r2 is the offset to sample around curr pos

call l0 // Will update r1 with normal contributions

mov r2, c4

mul r2, r2, c1.x // r2 is the offset to sample around curr pos

call l0 // Will update r1 with normal contributions

// If the normal is zero, use the inverse camera direction

dp3 r1.w, r1, c0.y

if eq r1.w, c0.z

mov r1.xyz, -v1

endif

// Now normalize the normal & do some lighting

nrm r2, r1

Voxel Rendering with PS_3_0
167

Section II — Rendering Techniques

dp3 r3, r2, c20

mad r11, r3, c0.x, c0.x

break

endif

add r0.xyz, r0, v1 // Step further along the ray

// Stop if any ray coord leaves 0..1 range

mov sat r1.xyz, r0

sub r1.xyz, r1, r0

abs r1.xyz, r1

dp3 r1.w, r1, c0.y

if ne r1.w, c0.z

break

endif

endrep

// Output color

mov oC0, r11

ret // End of main

//

// Purpose: Check for matter around a position.

// In: r0.xyz Hit position

// r1.xyz Summed normal-contributions

// r2.xyz Offset vector, in octant 0, to use to search around r0

// Out: r1.xyz Updated with new contributions (if any)

// Uses: r3..r5

//

label l0

mov r3, r2 // Octant 0

call l1

mul r3.xyz, r2, c0.yyw // Octant 1

call l1

mul r3.xyz, r2, c0.ywy // Octant 2

call l1

mul r3.xyz, r2, c0.yww // Octant 3

call l1

mul r3.xyz, r2, c0.wyy // Octant 4

call l1

mul r3.xyz, r2, c0.wyw // Octant 5

call l1

168
Voxel Rendering with PS_3_0

Section II — Rendering Techniques

mul r3.xyz, r2, c0.wwy // Octant 6

call l1

mul r3.xyz, r2, c0.www // Octant 7

call l1

ret // End of function: l0

//

// Purpose: Check a position for matter; sum the offset vector if no hit.

// In: r0.xyz Hit position

// r1.xyz Summed normal-contributions

// r3.xyz Offset vector

// Out: r1.xyz Updated with new contributions (if any)

// Uses: r3..r5

//

label l1

// Only check this sample point if the offset vector faces the camera

dp3 r3.w, r3, v1

if lt r3.w, c0.z

add r4.xyz, r3, r0

texld r5, r4, s0

// If no is matter here, the offset vector can contribute to the normal

if le r5.a, c1.y

add r1, r3, r1 // Add to the generated normal

endif

endif

ret // End of function: l1

The Problem with Depth Buffering

Translucent, “accumulative” voxel objects will most likely be drawn after the
other geometry of the scene. Figures 4 and 5 show an object inside a light vol-
ume. Ideally, a ray being traced from the front of the volume would not only termi-
nate at the back of the volume but also when it hits an object, as shown in Figure
5. The supplied code does not demonstrate this. Thus, if an object gradually
moves through the volume from behind to in front, the intensity visible in front of
the object will not smoothly diminish; it will switch from full to none as the object
passes through the front of the volume. Fixing this requires knowledge of the con-
tents of the depth buffer, which currently can only be achieved by having a copy of
it in a texture.

With both solid and lit voxels, it may be desirable to have the objects cor-
rectly depth buffered by calculating and outputting the correct depth value oDepth

in the pixel shader. For solid objects that should never have any intersections with
other objects, this is not necessary and should be strongly avoided for

Voxel Rendering with PS_3_0
169

Section II — Rendering Techniques

performance reasons, as 3D hardware typically prefers not to have the pixel
shader output a depth value. However, in most other cases, correct depth buffer-
ing will likely be required. Note that unlike the accumulative case, it is not neces-
sary to have current depth buffer values available as an input to the pixel shader.

Comparison with “Stacked Quads” Method

Another method that has been used to visualize a volume texture is the “stacked
quads” approach. A collection of quads is rendered, screen aligned, equally spaced
in depth, and with the same screen-space size, each with 3D texture coordinates
applied, which extract a different “slice” of the volume; the volume texture can be
rotated by changing the texture coordinates or moved by shifting the stacked
quads. Typically, additive blending is used. This can be compared to the accumula-
tive, additive voxels; the distance between each quad is similar to the length of
the step vector. One approach uses more geometry; the other uses more pixel
shader power. If an alpha-test were used on the stacked quads approach, the visual
result would be similar to the solid rendering approach. Lighting — that is, nor-
mal calculation — appears to be beyond the stacked quads method.

Imposters

Just as with polygonal models, “imposters” may be used to cut the processing
costs of voxel objects.

In addition, voxel objects could conceivably be used as a 3D imposter. This
would require code to be written to render slices of polygonal objects to the slices
of a volume texture. 2D imposters must be updated when the view of the object
significantly changes, for reasons including motion toward/away from the camera

170
Voxel Rendering with PS_3_0

Section II — Rendering Techniques

Figure 4: An object in a light beam,
which is passing through a dusty
atmosphere

Figure 5: Top view of Figure 4,
showing the eye position and ray
paths

or when it changes (animates) or rotates. A 3D imposter would not have to be
updated due to rotation.

Shadows

Voxel objects are compatible with shadow-buffer shadows but not with stencil
shadows. This is because a shadow texture can be rendered containing the voxel
object as easily as rendering it to the screen, but there is no geometry information
from which to calculate a shadow volume for stencil shadows.

Generating Voxel Data

Voxel data can come from many sources. Physical objects can be scanned and con-
verted to voxel data, for example, from MRI or CT scans. Polygonal objects can be
rendered in slices to volume textures; an approach similar to rendering stencil
volumes should work, though appropriate code was left as a “future direction.”
Another approach is algorithmically generating voxel data, as in the case of
metaballs; the volume texture is filled with power values, and the pixel shader
code considers matter to exist when the power is above a certain threshold.

CD Demo

The demo included on the companion CD requires 3D hardware supporting the
pixel shader 3_0 model. If no such 3D accelerator is present, a batch file forcing
the reference device is provided so that the demo can be run. Note that perfor-
mance will then become a direct factor of the CPU power of the host platform.

The CD also contains movies illustrating some of the techniques described in
this article.

Summary

Consumer triangle-accelerating hardware has become sufficiently advanced that it
is now able to hardware accelerate voxels and metaballs. This article described
how to render voxel objects using volume textures. Different implementations
were proposed, which can be evaluated depending on the application required.
While it might be some time before consumer 3D hardware can run anything
more than a few voxel objects at acceptable speeds, this technique opens the door
to a new set of possible visual effects, which, until now, were not accessible in
mainstream real-time rendering.

Voxel Rendering with PS_3_0
171

Section II — Rendering Techniques

Simulating Blending Operations
on Floating-point Render Targets

Francesco Carucci

Introduction

One of the most exciting new features introduced with DX9 class hardware (R300
and NV30) is floating-point textures, where RGBA channels are not fixed-point
numbers restricted in the range from 0.0 to 1.0, as in the past, but can be
expressed by 16- or 32-bit floating-point numbers, which extends both dynamic
range and precision. A floating-point texture can be used both as input in a pixel
shader or as a render target, storing the result coming from pixel color computa-
tion. This comes with some limitations: Current generation hardware can’t do
blend operations on floating-point render targets. This article introduces a tech-
nique to overcome the limitation when non-overlapping geometry is rendered.

Creating a Floating-point Texture

Direct3D 9 currently supports 16 and 32 bits per-channel formats for textures
that can be used as render targets.

D3DFMT_R16F 16-bit texture using 16 bits only for the red channel

D3DFMT_G16R16F 32-bit texture using 16 bits for the red channel and
16 bits for the green channel

D3DFMT_A16B16G16R16 64-bit texture using 16 bits for each channel (alpha,
blue, green, red)

D3DFMT_R32F 32-bit texture using 32 bits only for the red channel

D3DFMT_G32R32F 64-bit texture using 32 bits for the red channel and
32 bits for the green channel

D3DFMT_A32B32G32R32 128-bit texture using 32 bits for each channel
(alpha, blue, green, red)

The 16 bits per-channel format is an s10e5 floating-point number with 10 bits
mantissa and 5 bits exponent. The 32 bits per-channel format is an s23e8 float-
ing-point number with 23 bits mantissa and 8 bits exponent.

Here is some code to create a floating-point texture to use as a render target:

172

LPDIRECT3DSURFACE9 gColorBufferSurface[2];

LPDIRECT3DTEXTURE9 gColorBufferTexture[2];

// create color buffer surfaces

gD3DDevice->CreateTexture(

gWidth, gHeight,

1,

D3DUSAGE RENDERTARGET,

D3DFMT A16B16G16R16F,

D3DPOOL DEFAULT,

&gColorBufferTexture[0],

NULL);

// get associated surfaces

gColorBufferTexture->GetSurfaceLevel(

0,

&gColorBufferSurface[0]);

Where gWidth and gHeight are the screen’s current width and height.
Texture and surface (gColorBufferSurface[1] and gColorBufferTexture[1])

for the second color buffer can be created in the same way and will be used later
in the code.

The following code sets the floating-point texture surface as the current ren-
der target:

gD3DDevice->SetRenderTarget(

0,

gColorBufferSurface[0]);

It’s now possible to output the color resulting from pixel shader computation to
the floating-point render target and make full use of higher precision floating-point
math, for example, to accumulate results of several lighting passes without the
limitations imposed by fixed-point math, both in precision and dynamic range.

Overview of the Technique

Current generation DX9-class hardware cannot perform post-pixel shader opera-
tions, such as blending, dithering, alpha testing, fogging, and masking on floating-
point render targets, but blending operations with some limitations can be simu-
lated in the pixel shader using floating-point precision.

The idea behind this technique is simple: By setting the floating-point render
target both as input texture and as output in a pixel shader, we can read the color
value of the currently rendered pixel and blend it with the color computed in the
pixel shader and then write it again into the render target in the same pass.

An additive blending operation, for example, looks like this:

FinalColor = TexelColor + PixelColor

Where FinalColor is the color being written to the render target, TexelColor is
the color read from the input texture, and PixelColor is the color computed in the
pixel shader.

Simulating Blending Operations on Floating-point Render Targets
173

Section II — Rendering Techniques

The idea cannot be implemented in a straightforward manner as described
because having the same render target texture both as input and as output of the
same pixel shader is not officially supported by current hardware and might lead
to undefined and unpredictable results, due to the presence of texture and
frame-buffer caches that usually do not talk to each other.

As a workaround, we can borrow the double buffering idea and create two
floating-point textures; when the first one is used as input texture, the second one
is used as a render target. After the pass is rendered, they can be switched for the
next pass. The pseudocode for this is as follows:

Set i to 0
Clear texture[0]
Clear texture[1]

For each pass
Set texture[i] as input texture
Set texture[not i] as render target

Render geometry

Swap texture[0] and texture[1];

Reading the Input Texture in the Pixel Shader

The first step is to properly read the input texture stored by the previously ren-
dered pass from within the pixel shader. Each fragment processed by the pixel
shader corresponds to a unique texel in the input texture, which is the pixel com-
puted in the previous pass. To compute the texture coordinates to access that
texel, the vertex shader will pass the position of each vertex transformed in nor-
malized device coordinates (x, y, and z vary from –1.0 to 1.0) through a texture
coordinate interpolator, which is automatically linearly interpolated per pixel and
gives the needed position of each fragment in the right space. This is imple-
mented by the following HLSL code:

struct sVertexOutput

{

float4 pos: POSITION;

float2 texcoord0: TEXCOORD0;

float4 position: TEXCOORD1;

};

sVertexOutput main(

sVertexInput vIn)

{

sVertexOutput o;

// transform vertex position using the model view projection matrix

float4 pos = mul(vIn.position, matModelViewProj);

// copy transformed position to output vertex position

174
Simulating Blending Operations on Floating-point Render Targets

Section II — Rendering Techniques

o.pos = pos;

// copy input vertex texture coordinates to the first interpolator

o.texcoord0 = vIn.texcoord0;

// copy transformed position to the second interpolator

o.position = pos;

// return output vertex

return o;

}

To compute the 2D coordinates to access the input texture, the pixel shader must
now project the position in normalized device space of the fragment or, in other
words, divide x and y by the w component; notice that this is exactly the same
operation performed internally by the rasterizer when a pixel is projected after
being transformed by the projection matrix. After the projection, x and y are in
the range from –1.0 to 1.0; a simple scale and bias will give the right texture coor-
dinates (in the range from 0.0 to 1.0) to access the color buffer texture. Here is a
function in HLSL that accepts as input a sampler to a color buffer texture and a
transformed position and returns the right pixel value:

float4 tex2DRect(

in sampler2D s,

in float4 position)

{

float2 tc;

tc.x = (position.x / position.w) * 0.5 + 0.5;

tc.y = (-position.y / position.w) * 0.5 + 0.5;

return tex2D(s, tc);

}

This function can be optimized using a projected texture access that saves the
explicit division by w. The scale and bias can be moved to the vertex shader to
further save some instructions in the pixel shader. While production code should
use these tricks, the presented code is much more readable and easy to test dur-
ing the development cycle.

Putting Everything Together

Finally, everything is put together in a simple shader that shows the technique.

float4 main(

in float4 pos: POSITION,

in float2 texcoord0: TEXCOORD0,

in float4 position: TEXCOORD1): COLOR

{

float4 o;

Simulating Blending Operations on Floating-point Render Targets
175

Section II — Rendering Techniques

// fetch the diffuse texture

float4 src = tex2D(texture, texcoord0);

// read the previous pass' source pixel

float4 dst = tex2DRect(ColorBuffer, position);

// additive blend!

o = src + dst;

return o;

}

In a real shader, the source color comes from some kind of computation (in this
small example, it’s just a texture fetch from a diffuse map) and is blended with the
color in the destination color buffer to achieve the wanted result.

When Should One Use It?

I have used this technique to accumulate lighting passes in a high-precision color
buffer with pleasing results. This is the blending equation used:

Cf = (A + L1 + L2) * T

Where Cf is the final color, A is the color from an ambient light pass (it is useful to
fill the z buffer using an inexpensive rendering pass so as to take full advantage of
the early-z rejection unit of DirectX9-class GPUs), L1 and L2 are colors from two
lighting passes, and T is the final texture color blended with the content of the
floating-point accumulation buffer.

The result of this computation might be greater than 1.0, which cannot be
displayed directly if not saturated or properly mapped. A simple logarithmic func-
tion can be used to map the result to the [0.0, 1.0] displayable color range to avoid
color saturation (a problem likely to appear in such a situation). Refer to “color
mapping” techniques in high dynamic range rendering for further details on this
topic.

This technique can’t be used when the source color needs to be blended with
a destination color computed in the same pass, as the requisite color has not yet
been written to the destination color buffer. As an example, this is a common
problem when developing a particle system. In this case I would suggest render-
ing the particle system in a normal color buffer after the color mapping, which
reduces fillrate usage.

The last problem in using floating-point color buffers is the huge amount of
fillrate used to render to a 64- or 128-bit render target, but, if the application is
CPU bound or fillrate is not an issue, the use of floating-point color buffers signifi-
cantly improves an application’s visual fidelity at a negligable cost.

176
Simulating Blending Operations on Floating-point Render Targets

Section II — Rendering Techniques

Rendering Volumes in a Vertex &
Pixel Program by Ray Tracing

Eli Z. Gottlieb

3D graphics programmers have long strived for the most realistic graphics possi-
ble. We’ve used mathematical lighting models, textures, bump maps, environment
maps, and now vertex and pixel shaders to achieve as much realism as possible
with as much speed and interactivity as possible. And as always, we have used
streams of triangle vertex data to represent shapes. Still, perfect realism can only
come from one thing: ray tracing. Ray tracing simulates how photons interact
with the environment by following a ray as it moves through a scene. There were
always two problems with ray tracing, though; first, you need access to all the
scene data at once, and second, performing ray-triangle intersections and reflec-
tions is very slow, even when done on the GPU via shaders. Volume textures are
a solution to all these problems. Volumes store the entire scene as a 3D array of
voxels, which in memory are xyzw floating-point vectors, just like pixels. This
means we can trace rays through volumes, and we’re no longer reliant on trian-
gles that would eventually grow smaller than a pixel! In this article, an algorithm
is presented for tracing rays through volume textures and using the rays for light-
ing implemented in v_2_x vertex and pixel shaders. The algorithm is written in
Cg for readability, but you can implement it in any shading language that you
want.

To Trace a Ray

In order to trace a ray through a volume, we first need to be able to render a vol-
ume. For this algorithm, we trace a ray at the same time as rendering the volume.
So we just need to render a cube or another low-poly model to put the volume in.

We also need to pass the vertex’s object space coordinates to the pixel shader
for use as texture coordinates into the volume. To do that, we use this fairly sim-
ple vertex shader:

struct VertexIn

{

float3 xyz : POSITION;

};

struct VertexOut

177

{

float4 xyzw : POSITION;

float3 xyz : TEXCOORD0;

};

float4 Vec3To4(float3 v)

{

return float4(v.x,v.y,v.z,1);

}

VertexOut main(VertexIn vIn,uniform float4x4 mWorld,uniform float4x4 mView,uniform float4x4 mProj)

{

VertexOut fOut;

fOut.xyz = vIn.xyz;

fOut.xyzw = mul(Vec3To4(vIn.xyz),mWorld);

fOut.xyzw = mul(fOut.xyzw,mView);

fOut.xyzw = mul(fOut.xyzw,mProj);

return fOut;

}

In the pixel shader we use the texture coordinate to trace the ray through the vol-
ume and sample the appropriate voxels. Now we’ve got to start writing our pixel
shader.

Inputs and Outputs of the Pixel Shader

The first thing we do to write the pixel shader is figure out what parameters we
need and what data to return. We definitely need the output of the vertex shader,
and this ray tracing algorithm doesn’t require any depth returns or multiple ren-
der targets, so we just return a float4 for the pixel color. This pixel shader doesn’t
do much; it’s just a starting point to work from.

struct VertexIn

{

float4 xyzw : POSITION; //Clip space position for rasterizer.

float3 xyz : TEXCOORD0; //Object space position.

};

struct FragOut

{

float4 color : COLOR0; //Output pixel color.

};

FragOut main(VertexIn vIn)

{

FragOut fOut;

fOut.color = float4(1,1,1,1);

return fOut;

}

178
Rendering Volumes in a Vertex & Pixel Program by Ray Tracing

Section II — Rendering Techniques

As you can see, we need a way to store our volume texture data. For ray tracing,
we’re going to need a per-voxel normal, a voxel color, and a voxel emissive light
color.

That’s too much for one voxel in any format! So we have to split it into multi-
ple textures. We use an ARGB volume texture to contain the normal data in x, y,
and z, and it also holds a 1D texture coordinate into the other two in its alpha
component. That component is used to look up a 1D ARGB color texture and a 1D
RGB emissive light texture. In reality, light doesn’t have an alpha component, so
therefore there is no alpha in the emissive light texture. After those changes, the
result is this shader:

FragOut main(VertexIn vIn,

uniform sampler3D tVolume, //Normal in RGB, texcoord in A.

uniform sampler1D tColor, //RGBA voxel color.

uniform sampler1D tLight) //RGB emissive light color.

{

FragOut fOut;

fOut.color = float4(1,1,1,1);

return fOut;

}

Notice that we gain an advantage in working with the two 1D textures in that like
voxels can lookup at the same coordinate, thus saving memory. Now we need a
way to map our polygon model with the volume texture. To do this, we sample the
volume and use the .a swizzle supported by Cg to lookup into the color texture
and set the color. Then we lookup into the light texture and light the pixel. First,
though, to get a proper coordinate into the volume texture, we must transform
the object space vertex position from a space with the origin at the center, where
OpenGL and Direct3D 9 place the origin, to a space with the origin at the top-left
front corner.

To do this, we just multiply it by an appropriate matrix. Now our code looks
much closer to rendering volume textures.

const float4x4 mVolumeCoords = {1,0,0,0,

0,-1,0,0,

0,0,1,0,

0.5,-0.5,1,0};

float4 Vec3To4(float3 v)//Converts float3 to float4 w/ w=1.

{

return float4(v.x,v.y,v.z,1);

}

FragOut main(VertexIn vIn,

uniform sampler3D tVolume, //Normal in RGB, texcoord in A.

uniform sampler1D tColor, //RGBA voxel color.

uniform sampler1D tLight) //RGB emissive light color.

{

FragOut fOut;

float3 texcoord = mul(vIn.xyz,mVolumeCoords);

fOut.color = tex1D(tColor,tex3D(tVolume,texcoord).a);

Rendering Volumes in a Vertex & Pixel Program by Ray Tracing
179

Section II — Rendering Techniques

fOut.color.rgb *= tex1D(tLight,tex3D(tVolume,texcoord).a);

return fOut;

}

There’s still one more thing necessary to make a shader for volume rendering. If
the sampled voxel is empty, we should extrude the texture coordinate along the
vector from the eyepoint to the vertex position. This is where things start to get
messy. To do the extrusion, we need to use a while loop, and the Cg compiler
can’t compile while loops in pixel shaders. This means you’ll have to translate the
shader into ASM yourself. For the extrusion we need to add a new uniform
parameter, a float3 containing the eye position in object space. We also need the
volume texture dimensions so we always extrude one voxel. Finally, we arrive at
the shader for rendering volume textures.

struct VertexIn

{

float4 xyzw : POSITION; //Clip space position for rasterizer.

float3 xyz : TEXCOORD0; //Object space position.

};

struct FragOut

{

float4 color : COLOR0; //Output pixel color.

};

const float4x4 mVolumeCoords = {1,0,0,0,

0,-1,0,0,

0,0,1,0,

0.5,-0.5,1,0};

float4 Vec3To4(float3 v) //Converts float3 to float4 w/ w=1.

{

return float4(v.x,v.y,v.z,1);

}

FragOut main(VertexIn vIn,

uniform float3 vDimens, //Dimensions of the volume texture.

uniform float3 vEyePos, //Eye position in object space.

uniform sampler3D tVolume, //Normal in RGB, texcoord in A.

uniform sampler1D tColor, //RGBA voxel color.

uniform sampler1D tLight) //RGB emissive light color.

{

FragOut fOut;

bool bPixelFound = false;

float3 vVolPoint = vIn.xyz; //Cartesian point in the volume to sample.

while(!bPixelFound)

{

fOut.color = tex1D(tColor,tex3D(tVolume,mul(vVolPoint,mVolumeCoords)).a);

if(fOut.color.a > 0)

{

bPixelFound = true;

fOut.color.rgb *= tex1D(tLight,tex3D(tVolume, mul(vVolPoint,mVolumeCoords)).a);

180
Rendering Volumes in a Vertex & Pixel Program by Ray Tracing

Section II — Rendering Techniques

};

vVolPoint += normalize(vVolPoint-vEyePos)/vDimens;

};

return fOut;

}

Okay, now how do we ray trace with that? Well, one aspect of ray tracing is finding
out where the ray is going. This means that we trace it through the volume and
reflect and refract it off of voxels as necessary. We can already trace a ray and
reflect it in the pixel shader by storing the coordinate’s voxel that we’re currently
sampling in vVolPoint, giving the ray a velocity, iterating through a loop to reflect
vVolPoint against voxels, and at the end of every iteration adding the velocity vec-
tor to vVolPoint to trace the ray one voxel further. Here’s the resulting shader:

const float4x4 mVolumeCoords = {1,0,0,0,

0,-1,0,0,

0,0,1,0,

0.5,-0.5,1,0};

float4 Vec3To4(float3 v) //Converts float3 to float4 w/ w=1.

{

return float4(v.x,v.y,v.z,1);

}

FragOut main(VertexIn vIn,

uniform float3 vDimens, //Dimensions of the volume texture.

uniform float3 vEyePos, //Eye position in object space.

uniform sampler3D tVolume, //Normal in RGB, texcoord in A.

uniform sampler1D tColor, //RGBA voxel color.

uniform sampler1D tLight) //RGB emissive light color.

{

FragOut fOut;

float3 vRayPoint = vIn.xyz; //Cartesian point in the volume to sample.

float3 vRayDir = normalize(vIn.xyz-vEyePos);

float3 vLight = float3(0,0,0); //RGB light.

while(length(vRayPoint) <= 1) //Once vRayPoint is > 1 we would be sampling voxels

//outside the volume.

{

float3 vNormal = tex3D(tVolume,mul(vRayPoint,mVolumeCoords));

if (length(vNormal) > 0)

{

fOut.color.rgb *= tex1D(tColor,tex3D(tVolume,mul(vIn.xyz,mVolumeCoords)).a).rgb;

vLight += tex1D(tLight,tex3D(tVolume, mul(vRayPoint,mVolumeCoords)).a).rgb;

if (dot(vRayDir,vNormal) > 0) //Allow for 2-sided objects to be represented w/a

//1-sided set of voxels.

vRayDir = reflect(vRayDir,-vNormal);

else

vRayDir = reflect(vRayDir,vNormal);

};

vRayPoint += vRayDir/vDimens;

};

Rendering Volumes in a Vertex & Pixel Program by Ray Tracing
181

Section II — Rendering Techniques

return fOut;

}

Now there’s only one thing missing: refraction. To implement it, we would have
to be able to start a new loop whenever the ray is refracted. This is impossible
because Cg code can’t add new loops to itself at run time. We can, however,
encapsulate the tracing of the ray in a function and call the function inside itself
whenever we need to refract. So the next question is, how do we know when to
refract? We check the alpha component of the voxel’s color. If it’s below 1, then
the voxel is transparent to some degree and we need to refract through it. To get
the refractive index, a one-component float texture is sampled. Finally, the color,
light, ray position, and ray direction need to be passed to the tracing function
every time it’s called. All the unchanging parameters can be made global vari-
ables. We end up with this final version of the ray tracing code:

struct VertexIn

{

float4 xyzw : POSITION; //Clip space position for rasterizer.

float3 xyz : TEXCOORD0; //Object space position.

};

struct FragOut

{

float4 color : COLOR0;

}

const float4x4 mVolumeCoords = {1,0,0,0,

0,-1,0,0,

0,0,1,0,

0.5,-0.5,1,0};

float4 vColor;

float3 vLight; //No alpha in light.

float3 vNormal;

float3 vDimens;

sampler3D tVolume,

//An RGBA volume texture for normals in object space and a texcoord.

sampler1D tColors, //An RGBA texture containing voxel colors.

sampler1D tLight, //An RGB texture containing emmissive colors.

sampler1D tRefracts) //A one-component texture for refractive indices.

float4 Vector3To4(float3 v)

{

return float4(v.x,v.y,v.z,1);

}

float4 TraceRay(float4 vColor,inout float3 vLight,float3 vRayPos,float3 vRayDir)

{

float4 fOut;

bool bLit = false;

if (length(vNormal) == 1)

{

182
Rendering Volumes in a Vertex & Pixel Program by Ray Tracing

Section II — Rendering Techniques

vColor = tex1D(tColors,tex3D(tVolume,mul(Vector3To4(vRayPos),mVolumeCoords)).a);

vLight += tex1D(tLight,tex3D(tVolume,mul(Vector3To4(vRayPos),mVolumeCoords)).a) .rgb;

if (dot(vRayDir,vNormal) > 0)

vRayDir = reflect(vRayDir,-vNormal);

else

vRayDir = reflect(vRayDir,vNormal);

fOut.color *= vColor;

};

vRayPos += vRayDir/vDimens;

while (!bLit)

{

if (vColor.a < 1)

{

float4 vRefractColor = TraceRay(vColor,vLight,vRayPos,refract(vRayDir,vNormal,tex1D

(tRefracts,tex3D(tVolume,mul(Vector3To4(vRayPos),mVolumeCoords)).a).r);

vColor = vColor.a*vColor * vRefractColor*vRefractColor.a;

};

vNormal = tex3D(tVolume,mul(Vector3To4(vRayPos),mVolumeCoords)).rgb;

if (length(vNormal) == 1)

{

vColor = tex1D(tColors,tex3D(tVolume,mul(Vector3To4(vRayPos),mVolumeCoords)).a);

vRayDir = reflect(vRayDir,vNormal);

fOut *= vColor;

};

else

if (length(vRayPos) == 1)

{

fOut *= vColor * clamp(vLight) + (vLight - 1.xxx); //Diffuse and specular lighting.

bLit = true;

}

vRayPos += vRayDir/vDimens;

};

return fOut;

}

FragOut main(VertexIn vIn,

uniform float3 vDimens, //Dimensions of the volume texture.

uniform float3 vEyePos, //The eye position, in object space.

uniform sampler3D Volume,

//An RGBA volume texture for normals in object space and a texcoord.

uniform sampler1D Colors, //An RGBA texture containing voxel colors.

uniform sampler1D Light, //An RGB texture containing emmissive colors.

uniform sampler1D Refracts) //A 1-component texture for refractive indices.

{

FragOut fOut;

tVolume = Volume;

tColors = Colors;

tLight = Light;

tRefracts = Refracts;

float3 vRayDir = normalize(vIn.xyz-vEyePos);

float3 vRayPos = vEyePos;

vColor = tex1D(tColors,tex3D(tVolume,mul(Vector3To4(vRayPos),mVolumeCoords)).a);

Rendering Volumes in a Vertex & Pixel Program by Ray Tracing
183

Section II — Rendering Techniques

vLight = tex1D(tLight,tex3D(tVolume,mul(Vector3To4(vRayPos),mVolumeCoords)).a) .rgb;

vNormal = tex3D(tVolume,mul(Vector3To4(vRayPos),mVolumeCoords)).rgb;

fOut.color = float4(0,0,0,1);

fOut.color = TraceRay(vColor,vLight,vRayPos,vRayDir);

fOut.color.a = 1;

return fOut;

}

Some Optimizations

Of course, there are some things that you can do to make the shader run faster or
use less memory. One would be a limit on how many times the tracing function
can nest. Another, obviously, would be to compress the textures. You can also
make a fairly small quality sacrifice to save memory by using point lights to trace
rays back to. You may even see a way to optimize the shader code (this wouldn’t
surprise me). As is though, I think the shader runs fast enough on most volumes
to be used in real time.

What to Use It For

Probably the best current use of the shader is to render the unchanging parts of a
scene as volumes so you can obtain the benefits of ray tracing. Another good use
of volume ray tracing is rendering objects with complicated emissive lighting,
such as fireballs, lightning, flashlights, and anything else that shines. On future
hardware, you might be able to blit volume textures, allowing the rendering of the
scene as volumes so you can show an entire ray-traced scene! For now, however,
we don’t have such OGL 2.0 type hardware. In conclusion, volume textures can
have rays traced through them starting from the pixel’s object space coordinates
to render them with ray tracing effects such as shadowing, reflection, and refrac-
tion. This algorithm achieves that goal using hardware pixel shaders for real-time
speed.

184
Rendering Volumes in a Vertex & Pixel Program by Ray Tracing

Section II — Rendering Techniques

Normal Map Compression

Jakub Klarowicz

The development of new rendering techniques and the increasing popularity of
per-pixel lighting make normal maps play more and more of a significant role in a
texture set of any 3D project. New tools for geometry simplification that move all
geometry details to bump maps (like ATI’s Normal Mapper or nVidia’s Melody)
generate an additional amount of high-resolution normal maps. It leads to a situa-
tion where big chunks of precious video memory are consumed by normal maps.

In the past, when the number and size of textures used in graphical projects
were increasing quickly, developers faced the same problem. A solution to this
was a lousy texture compression standard called DXTC, which allows for memory
footprints up to six times smaller for a texture without noticeable loss in image
quality. Unfortunately, the direct use of the DXTC format for normal map com-
pression leads to poor quality results. Because of the nature of data contained in
normal maps, as well as the way they are used in the rendering process, all distor-
tions and errors caused by the compression are easily noticeable. Only very sub-
tle and soft normal maps can be compressed with an acceptable quality.

This article presents a new approach to the compression of normal maps
using DXTC. The special preprocessing of a map before the compression allows
for the retention of much more detail in comparison with direct compression and
also results in a significantly better visual quality of renderings.

Technique

The main idea of the technique is to use all four RGBA channels of the DXT5 for-
mat to compress a three-channel normal map (RGB). The map is transformed in
such a way that part of the information is moved from RGB to alpha channel A.
Since RGB and A channels are compressed independently in the DXT5 format,
the loss of information during compression is smaller and artifacts caused by the
compression are less visible.

The transformation that has to be applied to normal maps before the com-
pression is very simple. One channel of the normal map (R, G, or B) is copied to
the alpha channel A, and it is then cleared (filled with zero values). The trans-
formed map consists of the same components as the original map, with one of
them moved into alpha channel A and one of the R, G, or B channels containing
only zeroes. Normal maps preprocessed in such a way are then compressed with
any application that is able to compress to the DXT5 format.

185

In order to use the compressed normal map, it is necessary to move the com-
ponent stored in the alpha channel back to its original place (R, G, or B). Decoding
is performed during the rendering and is also very simple. It requires one addi-
tional pixel shader instruction and one additional pixel shader constant. Here’s
some ps 1.1 code that does the job:

ps 1 1

def c0, 1, 0, 0, 0 // 1 in red channel

tex t0 // read normal map

mad t0, t0.a, c0, t0 // move alpha to red channel

... // use normal map

The code assumes that the red channel has been stored in alpha. For other cases,
the only thing that is different is the value of the c0 constant. It should be 0,1,0,0
for green in alpha and 0,0,1,0 for blue in alpha. The c0 constant doesn’t have to be
stored in the pixel shader code directly; it can be set using the Direct3D function
SetPixelShaderConstantF. This way, a proper constant can be set according to
how the normal map that is being used has been prepared.

Results

The figures on this and the follow-
ing page present a per-pixel lit
quad with the same normal map.

Notice the “blocky” look of
the directly compressed map.
These blocks correspond to 4x4
groups of pixels — the basic unit
on which DXTC compression
operates. As you can see in Fig-
ure 3, the presented method sig-
nificantly reduces the
“blockiness.” You can also see
that much more detail is pre-
served in the map.

The best results are obtained
with tangent space normal maps. Vectors in model space normal maps vary much,
and thus compression artifacts are more visible. It is best to place a component
that has the greatest variation in the alpha channel — for tangent space normal
maps, it’s either R or G.

There’s a small application on the CD that shows the results for various nor-
mal maps. All maps have been coded with the green in alpha method.

186
Normal Map Compression

Section II — Rendering Techniques

Figure 1: Uncompressed normal map

How to Prepare the Normal Map

Here’s a complete procedure on how to prepare a normal map with the green
channel copied to the alpha using Adobe Photoshop 7.0 and nVidia DDS Compres-
sion Plugin [1].

1. Load uncompressed map to Photoshop.

2. Choose Channels from the Window menu.

3. Select the green channel in the Channels tab.

4. Right-click on the green channel.

5. Select Duplicate Channel from the pop-up menu and press OK in the dialog
that appears.

6. Select the green channel again.

7. Choose All from the Select menu.

8. Choose Clear from the Edit menu.

9. Save the map using Save As and the DDS format, making sure the Alpha
Channels check box is selected.

10. Choose DXT5 format in the Save Format combo box.

11. Press Save.

Why It Works

This section assumes the reader’s basic knowledge of the DXT5 format, espe-
cially its compression methods. Details can be found in [2].

At first sight, it may be surprising that map quality can be improved just by
moving one normal component to the alpha channel. One reason for this is that
the alpha channel is quantized separately from RGB channels; the other is the fact
that it is quantized with an increased accuracy. In DXT5, each 4x4 block of pixels
quantizes the alpha to eight separate values. These eight values are distributed

Normal Map Compression
187

Section II — Rendering Techniques

Figure 3: Normal map compressed with
described method

Figure 2: Normal map compressed directly to
DXT5

uniformly in a sub-range of the [0, 1] alpha range. This way, the compressed alpha
channel can represent the original content very precisely. The accuracy of the
representation depends on how much the original values differ in the 4x4 block —
the less they differ, the narrower the sub-range is, and thus the quantization error
is smaller. Fortunately, in most normal maps the variation of the normal vector is
smooth and doesn’t change by a big amount in one block.

Due to removing one of the RGB components, the quantization of the RGB
channels is also improved. The DXT5 format quantizes the color channel to a pal-
ette of four colors for each 4x4 block. Two of these colors are stored within the
block, and the other two are derived as a weighted sum of the former two. This
four-color palette can be treated as a set of four points placed on a line in 3D
space. Two of these points can be chosen arbitrarily to explicitly define the line.
16 points in 3D space representing sixteen original colors in the block are
replaced with four colors from the palette. It is now obvious why directly com-
pressed normal maps look so bad — each block is represented by only four differ-
ent vectors; smoothly varying normal vectors are snapped to four vectors from
the palette.

By removing one of the RGB components, the dimension of the original 16
points is reduced by one. Now four points from the palette represent 16 points in
2D space — therefore, the quantization error is smaller in most cases. Further
improvement follows with normal maps authored for the tangent space because
such normal maps are almost 2D initially. Vectors in the tangent space maps are
near (0,0,1), so if the x or y component is removed, the remaining vector is almost
1D and only one of its components varies. This makes a very good fit to the 1D
color quantization of the DXT5.

Pros and Cons

Pros:

� The described method is widely available because of good hardware support
for DXTC.

� Only uses 8 bits per pixel — three times less memory sizes
� Only 1 TMU used (does not require additional TMUs)
� Easy to use, does not require dedicated tools for compression
� Fast and simple decoding in the pixel shader
� It uses DXT5, so it guarantees that the color channel is decoded with full

24-bit precision on all nVidia hardware.

Cons:

� There is a small amount of additional data stored with each normal map —
the constant for a pixel shader required to decode the map that has to be set
in the pixel shader.

� Doesn’t work as well for model space normal maps as for tangent space maps

188
Normal Map Compression

Section II — Rendering Techniques

� Very rough normal maps still look bad when compressed; uncompressed for-
mat is required in such cases.

References

[1] DXTC texture tools: http://developer.nvidia.com/view.asp?IO=ps_texture_
compression_plugin.

[2] DirectX SDK 9.0, DirectX documentation for C++.

Normal Map Compression
189

Section II — Rendering Techniques

Drops of Water and Texture
Sprites

Sylvain Lefebvre

Introduction

Textures are present in almost every real-time graphics application. They are a
very convenient way of improving the appearance of a surface at low cost (in com-
parison to the geometry needed to obtain the same appearance). We can distin-
guish two main types of textures: explicit textures that consist of (potentially
large) images that are loaded in memory and procedural textures that are com-
puted on the fly at the pixel level (only the procedure needs to be stored).

While the former are supported by almost all graphics hardware, procedural
textures have been limited to software renderers. Nowadays, as graphics hard-
ware becomes more and more powerful, classical procedural textures become
affordable on the GPU [1].

However, in many applications something between purely procedural and
explicit textures is needed; we want textures to be created by procedurally com-
bining explicit textures. We refer to these textures as pattern-based procedural tex-

tures (see [2]). They are not procedural in the sense of classical marble or wood
textures [3], but they combine explicit textures (patterns) in order to create a
larger texture with the desired appearance. For instance, we may need footsteps
to appear on top of a snow texture, impacts to appear where a bullet hit the wall,
or drops of water to fall along a surface. These kinds of dynamic textures cannot
be explicit: Just imagine a game level with thousands of surfaces. Each time a bul-
let hits a wall, we have to update the corresponding texture. But as we do not
want the same impact to appear on all surfaces, we need to create a copy of all the
texture data for each surface. The required amount of texture memory would be
prohibitive. Moreover, the resolution of the impacts would not be able to exceed
the resolution of the original texture.

Yet there are bullet impacts on the walls in my favorite first-person shooter
game. How is this done? In most games, effects like bullet impacts are created by
adding a small textured geometric quad, called a decal, on top of the geometry.
This has some inconveniences. First, the quad has to be positioned precisely and
split along the edges of the model on which it is applied. Second, this introduces
geometry for non-geometrical reasons; the effect is purely textural, and here we

190

have to simulate it using geometry. Third, imagine that we want to animate the
decals on top of the surface; we would have to do all the positioning work at each
frame for each decal. Working with complex surfaces, this would have a high com-
putational cost.

To overcome this problem, [2] introduced a method of implementing texture

sprites using graphics hardware. Texture sprites allow us to position and animate
sprites in a texture. The main advantage is that we no longer have to worry about
the geometry; the problem will be directly solved in texture space. Another inter-
esting point is that the resolution of the sprites can be higher than the resolution
of the underlying texture. The memory cost of this technique is low, and it can be
implemented on GeForce3/Radeon 8500 (with some limitations) and on the latest
programmable graphics board. The Drops of Water shader uses the texture
sprites technique to render drops over the texture. It is therefore a pattern-based
procedural texture, as its appearance results from the procedural combination of
explicit textures (the drop and the surface texture).

In the section titled “Texture Sprites,” we introduce the texture sprites tech-
nique and describe its implementation on various types of hardware. In the sec-
tion titled “The Drops of Water Effect,” we see how to combine texture sprites, a
wet surface effect, and a magnification effect in order to create the Drops of Water
shader.

Texture Sprites

The texture sprites technique
relies on a new functionality of
graphics hardware that was first
designed to create a fake bump
mapping. This functionality is
called offset textures. It allows the
encoding in a texture of an offset
that is added to the texture coordi-
nates of a second texture. We use
this in order to position sprites in
our textures.

Reference Texture

First we need to store our sprites in a texture, which is called the reference texture

in the discussion that follows. The reference texture is considered a regular grid.
Each cell of this grid is a square block of pixels called a tile. In each tile, we can
either store a sprite or leave it empty (i.e., with the background color). For imple-
mentation reasons, we need empty tiles around a tile containing a sprite. This
limitation can be overcome on the latest graphics hardware, as explained in the
“Implementation Notes” section.

Drops of Water and Texture Sprites
191

Section II — Rendering Techniques

Figure 1: The value read in the offset texture
(stage 0) is used to add an offset to the texture
coordinates of a second texture (stage 1).

Offset Map

Now we can see how to use offset textures to procedurally create a new texture
from a given explicit texture. We begin with a practical case: Let’s take an offset
texture with a resolution of 8x8 pixels. Each pixel encodes an offset. If we apply
this offset texture on a geometric quad without any filtering, we obtain a grid of
8x8 cells, one for each pixel of the offset texture. Each cell will contain one
(du,dv) vector. Now we take another texture with 256x256 pixel resolution, map it
onto the same quad, and use the offset texture to perturb its texture coordinates.

Each cell of the offset texture therefore applies a translation to the texture
coordinates of a block of 64x64 pixels of the second texture (256/8 = 64). This
way we can independently translate the content of each texture block by simply
updating the corresponding cell of the offset texture (only one pixel in video
memory). As the translation is applied to texture coordinates, this method can be
used with any textured geometry. This type of offset texture is called an offset

map.

Sprite Positioning

We use an offset map to procedurally create a new texture from the tiles of the
reference texture. This new texture shows the sprites at their choosen position.
We need each cell of the offset map to cover a tile of the reference texture. Sup-
pose that the offset map and the reference texture are respectively in texture
stages 0 and 1 and have independent texture coordinates. The idea is to compute
the texture
coordinates of
the reference
texture so that
one cell of the
offset map cov-
ers exactly one
tile. This can
easily be done in
a vertex
program.

192
Drops of Water and Texture Sprites

Section II — Rendering Techniques

Figure 2: A reference texture
containing two sprites. It
consists of 4x2 tiles of 8x8
pixels each. The resolution of
this reference texture is
therefore 32x16 pixels. Each
sprite is surrounded by empty
tiles (the texture is cyclic).

Figure 3: Each cell of the offset map covers exactly one tile of the
reference texture.

Visually, the effect is as if each cell of the offset map were a window opened on
the reference texture. This window has the same resolution as one tile. In each
cell we can choose which part of the reference texture will be displayed. As we
can choose to display only a small part of a tile of the reference texture, we need
to have empty tiles around one sprite tile; we do not want a neighboring sprite to
be visible if we only display a small part of a sprite.

As you can see in Figure 4, to translate the sprite by (0.5,0) we have to use an off-
set of (–0.5,0). It comes from the fact that the offset is added to the texture coordi-

nates. Let’s assume that the point at the top-left corner of the sprite is at (0,0) in
the reference texture. Point M, without using the offset map, has texture coordi-
nates (0.5,0). When we add the offset (–0.5,0) to M, the resulting texture coordi-
nate is (0,0); that is why we can see the top-left corner of the sprite at this
location. Visually, the sprite has been translated by (0.5,0).

We now have a reference texture containing some sprites and an offset map
that allows us to display sprites or part of sprites in its cells. How do we position a
sprite at a given texture coordinate?

Imagine that we want a sprite at texture coordinates (u,v). That is to say, we
want the top-left corner of the tile containing the sprite to be at (u,v). We can eas-
ily compute in which cell (gi,gj) of the offset map the (u,v) texture coordinates lie;
if the offset map has a resolution of N x N, the corresponding cell is1:

(gi,gj) = (floor(N * u) % N, floor(N * v) % N)

As the tile of the sprite has the same size as the
cell of the offset map, four cells of the offset map
are needed to display the sprite.

First we position the chosen sprite tile in the
four concerned cells of the offset map: (gi,gj),
(gi+1,gj), (gi,gj+1), (gi+1,gj+1). See Figure 6,
step 1. For this purpose, we need to compute
which tile (ti,tj) of the reference texture is dis-
played in the cell at the (u,v) texture coordinates if
we were not using an offset map. If the reference

Drops of Water and Texture Sprites
193

Section II — Rendering Techniques

Figure 4: Adding an offset (u,v) to the texture
coordinates results in a translation (-u,-v) of the sprite in
the texture.

When the sprite in tile (ti,tj) is
translated, the neighbouring tiles
become visible.

Figure 5: To display a sprite at
an arbitrary position in the
texture, four cells of the offset
map are needed.

1 % is the modulo operator; floor(x) returns the greatest integer that is less than or equal to x.

texture contains T by T tiles2, the corresponding tile is:

(ti,tj) = (gi % T, gj % T)

We can therefore compute the offset (duij,dvij) to be stored in (gi,gj) in order to
have the tile containing the sprite (si,sj) displayed instead of the tile (ti,tj):

()du dv
si ti

T

sj tj

T
ij ij, (

()
,
()

)�
� �

This offset translates the tile (si,sj) on top of the tile (ti,tj).
Now we have to take into account the relative position of the sprite tile

within the cell (gi,gj). See Figure 6, step 2. The relative position (�uij, �vij) of (u,v)
within (gi,gj) is computed as follows:

(�uij, �vij) = (u*N – gi, v*N – gj)

To make the sprite appear at the correct position in tile (gi,gj), we have to trans-
late it by:

()� �u v

T

ij ij,

Because we work in texture coordinate space, we have to subtract3 this vector
from the previously computed offset (duij,dvij). Given (�uij, �vij), the (�u, �v) val-
ues of the four cells are:

(�uij, �vij) (�u(i+1)j, �v(i+1)j) = (�uij – 1, �vij)

(�ui(j+1), �vi(j+1)) = (�uij, �vij – 1) (�u(i+1)(j+1), �v(i+1)(j+1)) = (�uij – 1, �vij – 1)

The entire process of sprite positioning is summarized in Figure 6.

194
Drops of Water and Texture Sprites

Section II — Rendering Techniques

Step 1: Using the
offset map and the
computed (du,dv), the
tile containing the
sprite is placed in the
four cells.

Step 2: A translation

(�u, �v) is added in
the four cells in order
to display only the
needed part of the
sprite.

Each cell displays a part
of the sprite. When
viewed side by side, the
sprite appears to be at
the chosen (u,v)
coordinates.

Figure 6: We want to
position the top-left
corner of the sprite at
(u,v).

2 If tileres * tileres is the size (in pixels) of a tile, the reference texture has a size (in pixels) of
(T * tileres) by (T * tileres).

3 As explained before, translating a sprite by (tu,tv) corresponds to subtracting (tu,tv) from the offset.

Rotation and Scaling

Now that we are able to position sprites in a texture, we can go further and apply
transformations on each sprite (i.e., scaling and rotation). The idea is to transform
the sprite within its tile by applying the transformation to the texture coordinates
before accessing the sprite texture data. To do so, we need a map of the same res-
olution as the offset map to store the transformation associated with a sprite (i.e.,
rotation angle and scaling factor). This map will be called the transformation map.
In the same way that a sprite uses four cells of the offset map, the four corre-
sponding cells of the transformation map will store the transformation information
of the sprite.

Imagine that we are accessing a texture with (u0,v0) coordinates, where (u0,

v0) 	 [0,1]x[0,1]. If we want the texture to appear rotated by an angle
 around its
center (0.5,0.5), we have to compute new texture coordinates (u1,v1) using a 2D
rotation formula:

(u1,v1) =
(cos(–�)*(u0 – 0.5) + sin(–�)*(v0 – 0.5) + 0.5

– sin(–�)*(u0 – 0.5) + cos(–�)*(v0 – 0.5) + 0.5)

As the transformation is applied on texture coordinates, we have to use an angle
of –� to rotate the texture of an angle � (see Figure 7).

If we want the texture to appear scaled by a factor of s from its center, we
have to compute new texture coordinates (u2,v2) using a 2D scaling formula:

() (0.5 0.5)u v
u

s

v

s
2 2

1 10 5 0 5
,

(.)
,
(.)

�
�

�
�

�

We have to scale texture coordinates by a factor of to scale the texture by a
factor of s.

Applying this method to the tile of a sprite in the reference texture is straightfor-
ward: We can easily express the texture coordinates in the tile space. Indeed,
given (u,v) coordinates in the reference texture, the corresponding coordinates in
tile space are4:

(tu,tv) = (frac(u * T),frac(v * T))

Drops of Water and Texture Sprites
195

Section II — Rendering Techniques

1
s

Figure 7: Scaling texture coordinates

4 Where frac extracts the fractional part of a floating-point number

The corresponding tile index is:

(si,sj) = (floor(u * T),floor(v * T))

From (tu,tv), we can go back to reference texture space by computing:

() ()u v
si tu

T

sj tv

T
,

()
,
()

�
� �

But wait! What will ensure that we are not going out of the sprite tile? Nothing!
So we have to check whether we are going out of the tile; this is done by testing
whether the coordinates still lie in [0,1]x[0,1] after transformation. This is impor-
tant because as multiple sprites may be stored in the reference texture, neighbor-
ing sprites may become visible if we shrink a sprite beyond a certain threshold
(even with the empty tiles; see Figure 8).

There are some constraints on the scaling that we can apply: If we enlarge a
sprite too much, it may be clipped by the border of the offset map cells. However,
we can shrink the sprite as much as we want. In order to allow arbitrary rotations,
the shape of a sprite must also be contained in a circle centered at the tile center.

Limitations

Overlapping Sprites

As each sprite requires four cells of the offset map, multiple grids should be used
in order to allow the sprites to overlap. This could be done in multiple passes or
in one pass, depending on the hardware that you are working with (see the Drops
of Water effect implementation).

Precision

The limited precision of per-pixel arithmetic operations can result in positioning
problems; an artifact can appear on the sprite at tile borders. This issue is mainly
solved by carefully creating the positioning texture: All arithmetic operations are
done with respect to 8 or 16 bits of precision. However, some artifacts may still be
visible when the viewpoint is very close to the texture. On recent graphics
boards, the introduction of floating-point textures and 32-bit precision solves this
problem.

196
Drops of Water and Texture Sprites

Section II — Rendering Techniques

Figure 8: Reference texture One sprite with
scaling of 0.5 (2.0 in
texture space). Only
empty tiles are
displayed.

If we shrink the sprite too much, other
sprites become visible (left). If the hard-
ware allows it (see the “Implementation”
section), we can check that the texture
coordinates are still in the sprite tile. If not,
we display the background color (right).

Filtering
� Mipmapping — As we are packing sprites in the same texture, we have to

prevent the use of the latest mipmapping levels. Indeed, there is a level for
which each pixel corresponds to the average color of one tile of the reference
texture. All coarser levels are not correct, as they are computed by using pix-
els from multiple tiles.

� Far viewpoint — If the viewpoint is far from the surface, aliasing occurs on
the offset map: Multiple cells of the offset map are projected onto one pixel of
the screen. To solve this problem, we have to compute a color version of the
offset map, where each pixel is the average color of the pixels displayed in
the offset map cell. When far from the surface, this texture should be used
instead of the texture sprites.

Implementation

Software Positioning

Software positioning of sprites is done by the PutSprite function. Its parameters
are a sprite index, a texture coordinate, a rotation angle, and a scaling factor. The
PutSprite function computes the indices of the four cells of the offset map that
need to be updated in order to position the sprite. It also computes the relative
coordinates of the sprites in these cells. Then it calls RefTexIJ2OffsetMapIJ,
which updates each cell in order to display the sprite tile with the correct transla-
tion. Note that we pack the transformation data (i.e., rotation angle and scaling
factor) in the blue and alpha channel of the offset map.

void PutSprite(int si,int sj,

double u,double v,

double angle,double scale)

{

double ugrid,vgrid;

double du,dv;

int gi,gj;

// ensure u and v are both > 0.0 (because of modulo operations)

// texture are cyclic with a period of 1.0:

// adding an integer to texture coordinates

// does not change the final result

if (u < 0.0)

u=1.0+(u-(int)u);

if (v < 0.0)

v=1.0+(v-(int)v);

// compute pos in offset map

ugrid=(u*m dwOffsetMapRes);

vgrid=(v*m dwOffsetMapRes);

// compute offset map cell index

gi=(int)ugrid;

Drops of Water and Texture Sprites
197

Section II — Rendering Techniques

gj=(int)vgrid;

// compute texture coordinates relative to the cell

du=ugrid-gi;

dv=vgrid-gj;

// cell i,j

RefTexIJ2OffsetMapIJ(si,sj,

gi,gj,

du,dv,

angle,scale);

// cell i+1,j

RefTexIJ2OffsetMapIJ(si,sj,

gi+1,gj,

du-1.0,dv,

angle,scale);

// cell i,j+1

RefTexIJ2OffsetMapIJ(si,sj,

gi,gj+1,

du,dv-1.0,

angle,scale);

// cell i+1,j+1

RefTexIJ2OffsetMapIJ(si,sj,

gi+1,gj+1,

du-1.0,dv-1.0,

angle,scale);

// update offset map in video memory

UpdateOffsetMap();

}

void RefTexIJ2OffsetMapIJ(int si,int sj,

int gi,int gj,

double delta u,double delta v,

double angle,double scale)

{

int ti,tj;

double du,dv;

int 1 T,idu,idv;

// ensure gi,gj are in grid bounds

gi %= m dwOffsetMapRes;

gj %= m dwOffsetMapRes;

// compute what tile would be here if we were not using an offset map

ti=gi % m dwRefTexNbTiles;

tj=gj % m dwRefTexNbTiles;

// compute offset to apply in this cell

du=(si-ti) - delta u;

dv=(sj-tj) - delta v;

// encoding du,dv as 8-bit integers (low precision !)

1 T=128 / m dwRefTexNbTiles;

idu=(int)(du* 1 T);

idv=(int)(dv* 1 T);

// write to grid

198
Drops of Water and Texture Sprites

Section II — Rendering Techniques

m OffsetMap[(gi+gj*m dwOffsetMapRes)*4]=(BYTE)idu;

m OffsetMap[(gi+gj*m dwOffsetMapRes)*4+1]=(BYTE)idv;

// transformation data in blue and alpha channel of offset map

m OffsetMap[(gi+gj*m dwOffsetMapRes)*4+2]=(BYTE)(angle*256.0/360.0);

m OffsetMap[(gi+gj*m dwOffsetMapRes)*4+3]=(BYTE)(255.0*scale);

}

GeForce 3/4 (and higher) ps 1.3 (no rotation, no scaling)
With ps 1.3, the implementation relies on the texbem instruction to add the trans-
lation encoded in the offset map to the texture coordinates of the reference
texture.

ps.1.3

tex t0

texbem t1, t0

mov r0, t1

Radeon 8500 (and higher) ps 1.4 (no rotation, no scaling)
The implementation is straightforward; we simply read the offset map and add the
offset to the texture coordinates.

ps.1.4

texcrd r0.xyz, t1 // read texture coordinates

texld r1, t0 // read offset map

add r1.xyz, r0, r1 bx2 // add offset to tex coords

phase

texld r0, r1.xyz // read reference texture

GeForce FX / Radeon 9700 HLSL/ps 2.0
The implementation includes rotation and scaling of sprites. The transformation
of texture coordinates is done by the transformedLookup function. The Cg code
would be almost the same.

half4 transformedLookup(uniform sampler2D tex,

half2 ctex,

half angle,half scale)

{

half4 c;

// transform coordinates from reference texture space to tile space

half2 gcoords=ctex*RefTexNbTiles;

half2 uv0=frac(gcoords); // tile space

half2 isprite=floor(gcoords); // sprite index (si,sj)

// apply rotation

half si,cs;

Drops of Water and Texture Sprites
199

Section II — Rendering Techniques

sincos(-angle*6.28,si,cs);

uv0=uv0-0.5;

half2 uv1=half2(uv0.x*cs + uv0.y*si,

-uv0.x*si + uv0.y*cs);

uv1=uv1+0.5;

// apply scaling

uv1=uv1-0.5;

half2 uv2=uv1/scale;

uv2=uv2+0.5;

// are coordinates still in sprite tile?

if (uv2.x > 1.0 || uv2.x < 0.0

|| uv2.y > 1.0 || uv2.y < 0.0)

c=bkgColor;

else

c=tex2D(tex,(uv2+isprite)/RefTexNbTiles);

return c;

}

float4 ps20TSprite(VS OUTPUT In) : COLOR

{

float4 color;

// read offset map

float4 mapdata=tex2D(SOff0,In.Tex);

// unpack offset

float2 offset=2.0*mapdata.rg-1.0;

// apply offset

float2 uv0=offset+In.Grid;

// apply transformation

float angle=mapdata.b;

float scale=mapdata.a;

color=transformedLookup(STex0,uv0,angle,scale);

return (color);

}

Implementation Notes

With ps 2.0/ps 2.x, it is possible to get rid of the empty tiles in the reference tex-
ture by testing if the texture coordinates are outside of the sprite tile. If the tex-
ture coordinates are outside, we use the background color. As there was no
conditional statement before ps 2.0, we had to use empty tiles.

Extensions

Several extensions of this method are possible, such as random positioning of
sprites according to a spatial probability distribution or aperiodic tiling. Please
refer to the paper [2] for more information on extensions of this method.

200
Drops of Water and Texture Sprites

Section II — Rendering Techniques

The Drops of Water Effect

The Drops of Water effect involves the following techniques:
� Texture sprites for the positioning of drops
� Magnification effect for the rendering of drops
� Phong illumination model for the rendering of surfaces

The Phong illumination model will not be described here. Please refer to the arti-
cle “Fragment-level Phong Illumination” in Section II by Emil Persson.

Drops Motion

The animation of drops is obtained by computing a direction and speed for each
drop. At each time step, we update the position of each drop using its direction
vector multiplied by its speed. The direction is basically a straight line going from
top to bottom with some random angle perturbation. The speed depends on the
size of the drop and is also randomly perturbed. If we want drops to fall along a
complex surface, we must also take curvature into account.

Wet Surface

The best way to render the appearance of a wet surface is to begin by looking at a
real wet surface. Let’s drop some water on a table (the computer keyboard is not
a good example — avoid it). What happens? Basically, you can see that the surface
becomes darker and shinier. In terms of the Phong illumination model, this
implies that the diffuse coefficient of the surface decreases while the specular
coefficient increases.

To keep track of wet areas, drops are rendered in a texture as white spots.
This texture is called the wet areas texture. At each time step, the drops are ren-
dered at their new position on top of the previous time step wet areas texture. To
obtain a drying effect, we simply darken the previous time step texture. This
results in a white trace following the path of each drop. The more time passes, the
darker the trace becomes.

The wet areas texture is then used to modify the diffuse and specular coeffi-
cients of the final surface. If there is a white pixel in the wet areas texture, a low
diffuse coefficient and a high specular coefficient are used. The darker the pixel,
the higher the diffuse coefficient and the lower the specular coefficient.

Now we have animated drops that leave a wet trace on the surface!

Drops of Water and Texture Sprites
201

Section II — Rendering Techniques

Magnification Effect

Looking carefully at a real drop of water, we can see that it behaves like a small
magnifying glass. This is due to the refraction of light rays passing from air to
water [4]. Even if it were possible to compute the exact refraction of rays hitting
the drop surface [5], it would be costly.

There is a much simpler way to render such an effect (which has absolutely
no physical correctness!). The idea is to compute an offset to be added to the tex-
ture coordinates of the underlying texture at each pixel. This offset is computed in
order to render the behavior of a magnifying glass: It depends both on the surface
shape and the viewpoint position.

The offset formula is:

offset mag
height texcoords

coeff� �
�()

(
texcoords center

)
.

�

�

�

�
�
� � view viewvector coeff

offset, texcoords, center, and viewvector are 2D vectors, and height(texcoords) returns
the height of the drop at texcoords. It is a scalar value. magcoeff and viewcoeff are also
scalar values. Increasing magcoeff results in an increased magnification effect.
Increasing viewcoeff results in more dependency between the viewpoint and the
aspect of the drop. The demo application allows interactively changing these
parameters.

202
Drops of Water and Texture Sprites

Section II — Rendering Techniques

Figure 9: The wet area’s texture... Figure 10: ...and the corresponding final
result (See Color Plate 8.)

Figure 11:
magcoeff = 0.00 magcoeff = 0.15 magcoeff = 0.30 magcoeff = 0.45 magcoeff = 0.60 magcoeff = 0.75

Combining All

Each drop is encoded as a sprite. The final effect uses multiple layers of texture
sprites in order to allow the overlapping of drops. The program detects overlap-
ping after updating the position of drops and tries to put overlapping drops in dif-
ferent texture layers. It also merges close drops into bigger drops. The rendering
algorithm for multiple layers of sprites proceeds as follows: First it renders the
background surface, and then it renders each layer of sprites.

Render object with background texture
For I=1 to number of sprite layers
If there are some sprites in the layer I

Render object using texture sprites shader for layer I

For each layer of texture sprites, only pixels that effectively correspond to a sprite
are rendered. All other pixels are discarded. The drop of water effect begins by
rendering the wet areas texture and then renders the final object. The complete
algorithm is as follows:

Animate drops

Set render target to wet areas texture
Render wet areas texture with a darkening factor
For each layer of drops,

If there are some drops in the layer
Render drops as white spots

Set render target to screen
Render surface with per-pixel Phong model
For each layer of drops,

If there are some drops in the layer
Render drops with magnification effect and Phong model

Note that if the program only uses one or two layers of sprites, all the previous
operations can be done in one fragment program (i.e., in one pass). The choice of
multipass versus all-in-one pass depends on the complexity of the geometry; if
there is a lot of geometry, a more complex pixel shader should be used, as the
rendering of the geometry will take a long time. If the geometry is simple, we can
use multipass rendering, as the geometry can be rendered very quickly. Never-
theless, to determine which approach is the best in a particular case, it is best to
test both approaches. Indeed, rendering bottlenecks are difficult to identify on
modern hardware, and testing is often better than assuming.

The Drops of Water effect is written using Cg. It runs on hardware with ps
2.x support. It cannot run on ps 2.0 because of the program length limitation (64
instructions on ps 2.0). It is, however, possible to simplify the code in order to
make it shorter. There are three Cg fragment programs; the first program renders
the drops as white spots for the wet areas textures, the second program renders
the underlying surface with the Phong model, and the third program renders a
layer of drops of water. The textures used by the programs are:

Drops of Water and Texture Sprites
203

Section II — Rendering Techniques

OffsetMap Texture sprites offset map for the current layer

DropNrms Reference texture encoding drop normals in RGB channels and drop
height in alpha channel

ColorMap Texture of the underlying surface

NrmsMap Normal map of the underlying surface

WetAreas Wet areas texture

The first Cg program (renders a layer of drops in the wet areas texture):

PixelOut main(DowV2F IN,

uniform sampler2D OffsetMap : texunit0,

uniform sampler2D DropNrms : texunit1)

{

half3 color;

half2 coords;

half4 offset;

half4 drop;

// ======================================

// texture sprites

// -> look in offset map

offset=h4tex2D(OffsetMap,IN.TCoords0.xy);

offset.xy=(offset.xy-0.5)*2.0;

coords.xy=(offset.xy+IN.TCoords1.xy);

drop=transformedLookup(DropNrms,coords,offset.z,offset.w);

// -> if not in a drop, discard fragment

if (drop.w < 0.7)

discard;

// -> else output white color

PixelOut OUT;

OUT.COL = half4(half3(1.0,1.0,1.0),1.0);

return OUT;

}

The second Cg program (renders the underlying surface):

PixelOut main(DowV2F IN,

uniform sampler2D ColorMap : texunit2,

uniform sampler2D NrmsMap : texunit3,

uniform sampler2D WetAreas : texunit4)

{

half3 color;

// ===================

// floor lighting

// -> compute per-pixel Light and View vector

half3 nL=normalize(IN.L);

half3 nV=normalize(IN.V);

half3 H=(nV+nL)*0.5;

// -> wet areas texture is used to control diffuse and specular

// coefficients

half wetfloor =h1tex2D(WetAreas,IN.TCoords0.xy);

204
Drops of Water and Texture Sprites

Section II — Rendering Techniques

half diffatten=0.45+0.55*(1.0-wetfloor);

// -> read surface normal

half3 fnrm =h3tex2D(NrmsMap,IN.TCoords0.xy)*2.0-1.0;

// -> compute diffuse and specular terms

half fspec =pow(dot(fnrm,H),50.0)*wetfloor;

half fdiff =diffatten*dot(fnrm,nL);

// -> final color

color=h3tex2D(ColorMap,IN.TCoords0.xy)*fdiff+fspec;

PixelOut OUT;

OUT.COL = half4(color,1.0h);

return OUT;

}

The third Cg program (renders a layer of drops):

PixelOut main(DowV2F IN,

uniform sampler2D OffsetMap : texunit0,

uniform sampler2D DropNrms : texunit1,

uniform sampler2D ColorMap : texunit2,

uniform half MagCoeff,

uniform half ViewCoeff)

{

half3 color;

half2 coords;

half4 offset;

half4 drop;

// ======================================

// texture sprites

// -> look in offset map

offset=h4tex2D(OffsetMap,IN.TCoords0.xy);

offset.xy=(offset.xy-0.5)*2.0;

coords=(offset.xy+IN.TCoords1.xy);

coords=frac(coords);

drop=transformedLookup(DropNrms,coords,offset.z,offset.w);

// -> if not in a drop, discard fragment

if (drop.w < 0.1)

discard;

// ===================

// drop lighting

// -> compute per-pixel Light and View vector

half3 nL=normalize(IN.L);

half3 nV=normalize(IN.V);

half3 H=(nV+nL)*0.5;

// -> magnification effect

half2 decal=-(MagCoeff*(coords-0.75)/drop.w)-nV.xy*ViewCoeff;

// -> unpack drop normal

half3 nrm=(drop.xyz*2.0-1.0);

// -> specular + diffuse

half spec=pow(dot(nrm,H),20.0)*0.75;

Drops of Water and Texture Sprites
205

Section II — Rendering Techniques

half diff=(0.6+0.5*dot(nrm,nL));

// -> color

color=h3tex2D(ColorMap,IN.TCoords0.xy+decal.xy)*diff+spec;

// -> alpha for antialiasing of drop edges

half alpha=min((drop.w-0.1)/0.2,1.0);

PixelOut OUT;

OUT.COL = half4(color,alpha);

return OUT;

}

The Companion CD

There are two demos on the companion CD. The first program (tsprite) is written
with DirectX/HLSL and illustrates the texture sprites technique with various
hardware implementations. The second program (dow) is written with DirectX/Cg
and demonstrates the Drops of Water effect. Both programs have parameters that
can be interactively changed. Use the menus or press F1 for help.

Conclusion

The Drops of Water effect is a complex shader that involves many different tech-
niques. It is an illustration of how much textures can improve the appearance of a
surface and how they can be used to achieve complex animated effects. I hope
that you had fun playing with these little drops and that you will find hundreds of
different applications for the texture sprites technique.

Acknowledgments

Thanks to Przemek Prusinkiewicz, Julia Taylor-Hell, and Samuel Hornus for care-
fully proofreading this article.

References

[1] 3D Procedural texturing in nVidia Cg Effect Browser — Cg Toolkit.

[2] Lefebvre, Sylvain and Fabrice Neyret, “Pattern Based Procedural Textures,”
Proceedings of the ACM SIGGRAPH 2003 Symposium on Interactive 3D Graph-
ics, http://www-imagis.imag.fr/Membres/Sylvain.Lefebvre/pattern.

[3] Ebert, David S., F. Kenton Musgrave, Darwyn Peachey, Ken Perlin (Edi-
tor), and Steven Worley, Texturing & Modeling: A Procedural Approach, Academic
Press, 2003.

[4] Glassner, Andrew S. (Editor), An Introduction to Ray Tracing, Academic Press,
1989.

[5] Eye Raytrace in nVidia Cg Effect Browser — Cg Toolkit.

206
Drops of Water and Texture Sprites

Section II — Rendering Techniques

Advanced Water Effects

Kurt Pelzer

Introduction

A water simulation as realistic as possible and as widely usable as possible is
desired for many targeted applications, such as a basic component of the game
play, as an idyllic ambient element, or simply as a delimitation of game worlds.
The first ShaderX book [Engel 2002] had several articles about this topic from dif-
ferent viewpoints using version 1.x shaders. Additionally, some tech demos and
benchmark tools have presented impressive water effects.

In order to achieve a further increase in visual quality, we need the following
features, among others:
� An exact mixing of the visible reflection and semitransparent underwater

scene with respect to the involved materials at the boundaries (specifically
single boundaries of less dense to more dense materials — for example,
air-to-water) and the different angles of incidence between the line of vision
and the tangent planes of the rippled water surface. Each wave and ripple has
to be visible by a correct Fresnel reflection.

� The water surface must be animated as realistically as possible — that is, all
ripples move in a common direction (but the smaller ones with a lower
speed) and smoothly change their look at run time without visible repetitions
at higher viewpoints.

� Depending on the distance from the water surface, the lighting of the visible
underwater objects must be changed to make different water depth recogniz-
able by the simulated absorption of light. This absorption should be adjust-
able for each color channel.

� The complete water effect must fade out at the water’s edge to hide the
coarseness of the game world’s polygonal construction, and this fading should
be done automatically to handle a changing water level or world geometry at
run time.

Based on the new extended shaders as well as the increased performance of
DirectX 9-compliant video cards, you can build a top-quality and fast water effect
that includes the above features. This article presents an implementation using
vertex and pixel shader version 2.0 instructions (it is possible to build shaders
with reduced effects based on version 1.x instructions, but the goal of this article

207

is to introduce the complete effects). The composition of the complete water sim-
ulation is presented first; all components are explained more precisely in later
sections. Additionally, a demo application with included source code is available on
the companion CD. Screen shots of the demo are shown in Color Plates 9 and 10.

Overview

Before we discuss each component of the advanced water effects, it makes sense
to display the general idea of the complete water simulation.

Figure 1 and the following outline should help you find your path through this
article:

Preparation of the Underwater Scene
� Rendering the Underwater Scene (First Render Pass)
� Modifications Dependent on Water Depth (Second Render Pass)
� Projection of the Final Underwater Scene Texture

Preparation of the Above-Water Scene
� Rendering the Reflection Map
� The Detail Map

Faking Waves and Ripples
� Animated Surface Bumping
� Per-Pixel Fresnel Reflection

The Complete Shader Programs
� The Final Vertex Shader
� The Final Pixel Shader

208
Advanced Water Effects

Section II — Rendering Techniques

Figure 1: Overview of water simulation

Preparation of the Underwater Scene

We have to run two render
passes to generate a realistic
underwater scene view. The first
pass simply fills a render-target
texture with the scene (see the
following section). Depending on
the water depth, a second render
pass modifies this texture to
receive a more realistic absorp-
tion of the light and make differ-
ent water depths recognizable
(see the section “Modifications
Dependent on Water Depth (Sec-
ond Render Pass)”). Later on
when the water plane is ren-
dered, we have to project the
final texture to the water surface
(see the section “Projection of
the Final Underwater Scene Tex-
ture”). Figure 2 displays the
whole process.

Rendering the Underwater Scene (First Render Pass)

We want to simulate a close-to-reality view into the water. The seabed and objects
like fish or plants should be distortable by faked bumps (see the section “Ani-
mated Surface Bumping”). So, we have to render the underwater scene view each
frame again into a render-target texture. For this job, we use the original camera.
A clip plane cuts off the invisible part of the scene above the water surface (see
Figure 3).

Advanced Water Effects
209

Section II — Rendering Techniques

Figure 2: Preparation of the underwater scene

Figure 3: Original camera and clip plane

Modifications Dependent on Water Depth

(Second Render Pass)

With a second render pass, this render target texture (containing the underwater
scene view) will be modified so that afterward the alpha channel holds the blend-
ing for the water’s edge and the color channels contain a darkened color (depend-
ing on the current water depth). This darkening is to make different water depths
recognizable and simulate water pollution. To compute the intensity for each color
channel, we use a reduction formula: exp(–d * �). You may know this type of for-
mula from the law of radioactive decay. The parameter d is the current depth of
water, and the � (may be three different values for red, green, and blue) will cause
a water dye (see Figure 4).

Since in the pixel shader the exponential function with basis 2 is available, our
three � are the reciprocals of the half-life values for each color component. This
is the depth underneath the waterline where the red, green, and blue components
of the light are reduced to half of their brightness. So, our three � are very simple:
�red = 1/Half-Life-Of-Red, �green = 1/Half-Life-Of-Green, and �blue = 1/Half-Life-
Of-Blue. If we select a greater value for �blue, its half-life is going to be smaller.
That means the blue component quickly disappears from the water color, giving
all underwater objects a dimmed blue color and yellow-dyed appearance. Our
reduction formula requires knowing the depth (underwater, not z) of the current
pixel being processed. To do this, we pass the vertex position to the pixel shader
PS-1 as texture coordinates. This guarantees that the vertex position will be
interpolated linearly, providing us with the underwater depth of each pixel. So, the
vertex shader VS-1 is very simple (and can also be implemented using version 1.x
instructions):

// VERTEX SHADER (for DX9 hardware and better) VS-1

// FUNCTION: Modifies underwater scene texture

//

// INPUT:

// v0 = position (3 floats)

// c0 - c3 = world/view/proj matrix

// version instruction

vs 2 0

210
Advanced Water Effects

Figure 4: Reduction formula exp (–d * �)

// declare registers

dcl position v0

// transform position into projection space

dp4 oPos.x, v0, c0 // c0 = first row of transposed world/view/proj-matrix.

dp4 oPos.y, v0, c1 // c1 = second row of transposed world/view/proj-matrix.

dp4 oPos.z, v0, c2 // c2 = third row of transposed world/view/proj-matrix.

dp4 oPos.w, v0, c3 // c3 = forth row of transposed world/view/proj-matrix.

// transfer position to pixel shader

mov oT0, v0 // We pass the vertex position to the pixel shader as tex coord.

This is the associated pixel shader PS-1:

// PIXEL SHADER (for DX9 hardware and better) PS-1

// FUNCTION: Modifies underwater scene texture

//

// INPUT:

// t0 = object position (in world space)

// c0 = cam-point in object-space

// c1 = water height in y component, fading scale in alpha component

// c2 = �’s for absorption of light (�(Red), �(Green), �(Blue))

// version instruction

ps 2 0

// define the constants

def c3, 0.00f, 1.00f, 0.00f, 0.00f

// declare the used resources

dcl t0

// calculate the alpha value for water’s edge fading

mov r1, c3 // Calculate the underwater depth

mad r1, -t0, r1, c1 // (distance: water plane � object),

mul sat r0.a, c1.a, r1.g // scale this value and clamp the result to [0,1].

rsq r0.a, r0.a // We want to see a smooth fading, so computing the

rcp sat r0.a, r0.a // square root will be fine.

// calculate the underwater absorption of light

mul r2.rgb, c2, r1.g // Calculate d * � for each color.

exp sat r0.r, -r2.r // exp(-d * �) for red color.

exp sat r0.g, -r2.g // exp(-d * �) for green color.

exp sat r0.b, -r2.b // exp(-d * �) for blue color.

// output color

mov oC0, r0 // Output: The final color intensities and the fading alpha.

The result of this second render pass must be multiplied by the current content in
the underwater scene texture. Therefore, the alpha blending needs the following
parameters:

Advanced Water Effects
211

Section II — Rendering Techniques

D3DRS_SRCBLEND = D3DBLEND_DESTCOLOR;
D3DRS_DESTBLEND = D3DBLEND_ZERO;

Projection of the Final Underwater Scene Texture

To project the final underwater scene texture on the water surface, the vertex
shader VS-2 must receive the transposed version of the following matrix:

ProjectionMatrix = OrigCam.ViewMatrix * OrigCam.ProjectionMatrix * TrafoMatrix

OrigCam.ViewMatrix*OrigCam.ProjectionMatrix transforms the world into pro-
jection space, where coordinates range from –1 to +1 (see Figure 5).

To map these coordinates from the projection space where (x, y) belongs to the
range [–1,+1] to the texture space where (x, y) belongs to the range [0,1], we
have to multiply a special TrafoMatrix. This transformation matrix causes the
transition of the projection space to the texture space by scaling and translating
the vertex positions of all objects.

0.5 0 0 0
TrafoMatrix = 0 –0.5 0 0

0 0 0 0
0.5 0.5 1 1

A sign change in the y component is necessary for correct alignment because
from the texture’s point of view, the scene seems to be inverted (top�down, the
v components of texture coordinates use an inverted y direction — see Figure 6).

212
Advanced Water Effects

Section II — Rendering Techniques

Figure 5: From world space to projection space

Figure 6: Inverted y (= v) direction for texture coordinates

The vertex shader VS-2 (used to build the water surface) computes the dot prod-
ucts of the water’s vertex positions and the rows of this projection matrix. The
resulting values are the new texture coordinates for the underwater scene tex-
ture and will be sent to the pixel shader PS-2:

// r0 contains the translated object position

dp4 r9.x, r0, c8 // c8 = first row of transposed refraction-projection-matrix

dp4 r9.y, r0, c9 // c9 = second row of transposed refraction-projection-matrix

dp4 r9.zw, r0, c10 // c10 = third row of transposed refraction-projection-matrix

mov oT2, r9 // output: underwater scene tex coords (send to pixel shader)

Finally, in the pixel shader these texture coordinates will be bumped like those of
the reflection map before sampling the texture, but with a lowered strength and
contrarotated direction (see the section “Animated Surface Bumping”).

Preparation of the Above-Water Scene

The above-water scene contains two different areas: objects that can be seen in
the reflection and floating details on the water surface.

Rendering the Reflection Map

To simulate a close-to-reality reflection, we have to render the above-water scene
view (maybe with a reduced object LOD) each frame again into a render-target
texture. For this job, we need the original camera mirrored at the water surface.
The invisible part of the scene under the water surface will be cut off by a clip
plane to prevent obstructions of vision for this new camera (see Figure 7).

Mirroring the original camera at the water plane is done by a simple modification
of the view matrix. It works like mirroring the world about the water surface:

MirrorCam.ViewMatrix = MirrorTrafoMatrix * OrigCam.ViewMatrix

Starting with a vertex v = (x, y, z) that is to be reflected, we translate the scene in
the y direction by the negative water-level v = (x, y–wl, z). So the mirror plane
will become the xz plane. Subsequently, reflection about the translated plane is

Advanced Water Effects
213

Section II — Rendering Techniques

Figure 7: Mirrored camera and clip plane

done by changing the sign of the y component of the input vertex v = (x, –(y–wl),
z). Finally, the mirror plane will be shifted back to its old place again: v = (x,
–(y–wl)+wl, z) = (x, –y+2*wl, z). The previous transformations can be put in the
following matrix form:

1 0 0 0
MirrorTrafoMatrix = 0 –1 0 0

0 0 1 0
0 2*WaterLevel 0 1

To project this reflection map (rendered with the mirrored camera) on the water
surface, the vertex shader VS-2 must receive the transposed version of the fol-
lowing matrix:

ProjectionMatrix = MirrorCam.ViewMatrix * OrigCam.ProjectionMatrix * TrafoMatrix

MirrorCam.ViewMatrix*OrigCam.ProjectionMatrix transforms the world into
projection space. Just to map these coordinates from the projection space to the
texture space, we have to multiply a special TrafoMatrix. This transformation
matrix equals the one we used for projecting the underwater scene texture (see
the section “Projection of the Final Underwater Scene Texture”). As done for the
underwater scene map, the vertex shader VS-2 computes the dot products of the
water’s vertex positions and the rows of the projection matrix. The resulting val-
ues are the new texture coordinates for the reflection map and are sent to the
pixel shader PS-2:

// r0 contains the water’s vertex position

dp4 r9.x, r0, c4 // c4 = first row of transposed reflection-projection-matrix

dp4 r9.y, r0, c5 // c5 = second row of transposed reflection-projection-matrix

dp4 r9.zw, r0, c6 // c6 = third row of transposed reflection-projection-matrix

mov oT1, r9 // output: reflection tex coords (send to the pixel shader)

Finally, in the pixel shader these texture coordinates will be distorted by animated
bump-normals before sampling the texture (see the section “Animated Surface
Bumping”).

The Detail Map

To provide the water surface with additional details (like algae or oil), we add a
separate texture that has an alpha channel to indicate sections of different trans-
parency. This detail map must be able to be tiled seamlessly without showing visi-
ble artifacts. Sections without these details should be completely transparent, and
objects like algae should get a semitransparent alpha value. The map will be
translated each frame like the bump-normal maps (see the section “Animated Sur-
face Bumping”), but this translation scales down to run at a lower speed. Thus,
the realistic impression results in the water and the objects floating on it moving
more slowly than the waves. Like the reflection and underwater scene maps, this
detail texture will be distorted in the pixel shader PS-2 (but the bump-normal gets
a different scaling factor for this job):

// r5 contains the bump (see section: Animated Surface Bumping)

mul r0.rgb, r5, c10.b // c10.b = scaling factor to reduce the bumping

214
Advanced Water Effects

add r0.rgb, r0, t3 // t3 contains the original tex coords for the detail map

texld r3, r0, s3 // load filtered detail texel from tex sampler 3

This reinforces the impression of a close-to-reality animation of the water surface
(see the following section). Blending with the remaining part of the water effect
will happen later on in the pixel shader by calculating a linear interpolation:

lrp sat r8.rgb, r3.a, r3, r7 // r7 contains the blended reflection and underwater scene

Faking Waves and Ripples

Now we have to add realistic waves and ripples to the water surface. We make
use of the interferences between multiple bump map layers and introduce an
exact per-pixel Fresnel reflection to make each surface bump visible.

Animated Surface Bumping

The water surface animation is done with simulated waves and ripples that must
smoothly change their shape at run time without visible repetitions at higher
viewpoints (no visible tiles). As a basic resource, we only need to have one
bump-normal map that can be tiled seamlessly without visible artifacts. This map
must be used at least once again in a second layer to overlap the first one. We
want to mix multiple bump-map layers to use interference effects between them.
Each layer has to be scaled with a different factor and has its own time-stamp con-
trolled translation (see Figure 8).

For example, dealing with the first layer is done in the vertex shader VS-2, like
this:

mov r1, c13.x // c13.x = current time-stamp

mul r2, r1, c14 // c14 = translation for the first layer coords

frc r2.xy, r2 // only use the fractional component

mul r3, v8, c15 // v8 = original bump map coords, c15 = scaling factor for

// the first layer coords

add oT0.xy, r2, r3 // calc the final tex coords for first bump layer

The other layers must be scaled and translated in the same way (but with differ-
ent parameters). The content mixing of the overlapping layers (with different

Advanced Water Effects
215

Section II — Rendering Techniques

Figure 8: Two layers with different scalings and time-stamp-based translation

weighting factors for each one) is done afterward in the pixel shader PS-2. For
example, two bump-normal maps in four layers can be blended this way:

texld r0, t0, s0 // load first normal layer – first bump maps

texld r4, t4, s0 // load second normal layer – first bump map

texld r5, t5, s4 // load third normal layer – second bump map

texld r6, t6, s4 // load forth normal layer – second bump map

mul r6.rgb, r6, c3 // c3 = scaling factor for forth normal

mad r5.rgb, r5, c2, r6 // c2 = scaling factor for third normal

mad r4.rgb, r4, c1, r5 // c1 = scaling factor for second normal

mad r5.rgb, r0, c0, r4 // c0 = scaling factor for first normal

add r5.rgb, r5, c4 // c4 = (-0.5f*(c0+..+c3)) for color-to-vector trafo

Each ripple and its strength can be detected by bumping the reflection, underwa-
ter scene, and detail maps. Also the change of the reflection and refraction shares
in the final blending help to make out the ripples and waves (see the following
section). Additionally, the contrarotated and different scaled bumping of the reflec-
tion and underwater scene maps increases the visual quality. The refraction at the
air-water boundaries reduces the bump effect for the underwater scene map;
therefore, the scaling factor for the refraction bumps should have a lesser abso-
lute value (see Figure 9).

Bumping the reflection and underwater scene maps is done in the pixel shader
PS-2 this way:

// r5 = mixed bump vector, c12 and c13 = scaling factors for reflection and refraction bumps

mad r7, r5, c12, t1 // add scaled bump to reflection tex coords

mad r8, r5, c13, t2 // add scaled bump to refraction tex coords

texldp r1, r7, s1 // load filtered reflection texel

texldp r2, r8, s2 // load filtered refraction texel

Per-Pixel Fresnel Reflection

The Fresnel term gives a description of how much light is reflected at the bound-
aries of two materials. The rest of the light finds its refracted way into the second
semitransparent material. We get the strongest reflection (total reflection) as long
as the angle of incidence of the light ray (just as the ray of view) is greater than a

216
Advanced Water Effects

Section II — Rendering Techniques

Figure 9: Reduced bumping range for the underwater scene map

“critical” angle (Snell’s Law). When the light ray is orthogonal to the surface,
there is only a dim reflection (see Figure 10).

A good approximation of the correct Fresnel term is this formula:

(1) R(�) = R(0) + (1 – R(0)) * (1 – cos(�))5

with R(0) = (n1 – n2)2 / (n1 + n2)2

(n1 and n2 are the indices of refraction for the involved materials.)

You may also use a much simpler approximation: R(�) = 1 – cos(�). But this for-
mula doesn’t take the indices of refraction into account and has a stronger diver-
gence from the original graph. This divergence produces an unnaturally strong
reflection (see Figure 11). That is why we prefer the better approximation (1).
Although it’s a more complex formula with higher run-time costs, we use it for
our calculations.

The indices of refraction for air and water are these:

n1 = 1.000293 (air) n2 = 1.333333 (water at 20°C / 68°F)

So we get the following constants for the Fresnel approximation at the
air-to-water boundaries:

R(0) = 0.02037f 1 – R(0) = 0.97963f

Advanced Water Effects
217

Section II — Rendering Techniques

Figure 10: Different Fresnel reflections

Figure 11: Original Fresnel for air-to-water and two approximations

The Fresnel reflection based on (1) is done in the pixel shader PS-2, like this:

// -r6 contains the normalized cam-to-surface vector and r5 is the surface normal

dp3 sat r7.a, -r6, r5 // calculate the angle alpha

add r8.a, c10.a, -r7.a // c10.a = 1.0f

mul r6.a, r8.a, r8.a // squared

mul r6.a, r6.a, r6.a // quadric

mul r6.a, r6.a, r8.a // quintic

mad r6.a, c10.g, r6.a, c10.r // c10.g = 1-R(0) and c10.r = R(0)

The cam-to-surface vector will be precalculated by the vertex shader VS-2 to
send it (packed as color output) to the pixel shader PS-2:

add r10, r0, -c12 // r0 = position of current water vertex, c12 = cam-

// point in object-space

nrm r8, r10 // normalize the cam-to-surface vector (each component

// must fit into [-1,1])

mad oD0.xyz,r8, c22.z, c22.z // c22.z = 0.5f

In the pixel shader, our vector must be unpacked again before running the Fresnel
calculation. Also, a renormalization of the vector is necessary because a color
interpolation may have taken place (Gouraud shading):

// v0 contains the pre-calculated cam-to-surface vector as color

add r7.rgb, v0, c5 // c5 = (-0.5f, -0.5f, -0.5f, 0.0f)

nrm r6.rgb, r7 // normalize the cam-to-surface vector

The Fresnel code in the pixel shader receives the normal of the rippled water sur-
face by normalization of the previously calculated bump vector and exchanging
the y and z components afterward (see the section “Animated Surface Bumping”):

nrm r6.rgb, r5 // normalize bump vector

mov r5.r, r6.r // keep the x component

dp3 r5.g, r6, c14 // c14 = (0.0f, 0.0f, 1.0f, 0.0f)

dp3 r5.b, r6, c15 // c15 = (0.0f, 1.0f, 0.0f, 0.0f)

The “lying bump vector” is set upright by this coordinate exchange and takes its
correct place as a normal in the tangent space of the bumped water surface (see
Figure 12).

Of course, the bump-normal maps must be prepared for this operation. We simply
use a “bumped” height map and convert it into a bump-normal map using a

218
Advanced Water Effects

Section II — Rendering Techniques

Figure 12: Normal vectors of the bumped water surface

method introduced by the Direct3D extensions (D3DX) utility library: the
D3DXComputeNormalMap function. After calculating R(�), we are going to mix
the underwater scene and the reflection by simply using a linear interpolation:

// r5.a contains the R(�) value

lrp sat r7.rgb, r5.a, r1, r2 // r1 und r2 are the reflection and underwater

// scene texels

Now we can see all reflections on the water with different strengths, depending
on the ripples and waves. The detailed information in [Wloka 2002] should be
useful for those of you who need indices of refraction for other materials or want
to gain a better knowledge of this topic (approximating the Fresnel reflection).

The Complete Shader Programs

In this section, the final vertex and pixel shader programs (VS-2 and PS-2) are
presented using shader instructions from version 2.0. They must be activated
when rendering the water plane. Based on the calculated alpha value, the color
result must be blended to the frame buffer’s current content. So, the source and
destination blending factors are:

D3DRS_SRCBLEND = D3DBLEND_SRCALPHA;
D3DRS_DESTBLEND = D3DBLEND_INVSRCALPHA;

That will make the effect fade out at the water’s edge (see Figure 13).

The Final Vertex Shader

// VERTEX SHADER (for DX9 hardware and better) VS-2

// FUNCTION: Water effect

//

// INPUT:

// v0 = position (3 floats)

// v1 = normal (3 floats)

// v8 = tex coord stage 0 (2 floats – bump map)

// v9 = tex coord stage 1 (3 floats - reflection)

// v10 = tex coord stage 2 (3 floats - underwater scene)

Advanced Water Effects
219

Section II — Rendering Techniques

Figure 13: Fading dependent on water depth

// v11 = tex coord stage 3 (2 floats - surface details)

// c0 - c3 = world/view/proj matrix

// c4 - c7 = reflection texture trafo matrix

// c8 - c11 = underwater scene texture trafo matrix

// c12 = cam-point in object-space & water height

// c13 = time

// c14 = first bump-normal map coords translation

// c15 = first bump-normal map coords scalar

// c16 = second bump-normal map coords translation

// c17 = second bump-normal map coords scalar

// c18 = third bump-normal map coords translation

// c19 = third bump-normal map coords scalar

// c20 = fourth bump-normal map coords translation

// c21 = fourth bump-normal map coords scalar

// c22 = 0.5f in z component

// version instruction

vs 2 0

// define the constants

def c22, 1.0f, 1.0f, 0.5f, 1.0f

// declare registers

dcl position v0

dcl normal v1

dcl texcoord0 v8

dcl texcoord1 v9

dcl texcoord2 v10

dcl texcoord3 v11

// transform position into projection space

mov r0, v0 // We are able to change the water level at run time.

add r0.y, r0.y, c12.w // So, we have to add the current height difference

// to original water y coord.

dp4 oPos.x, r0, c0 // This lifted plane has to be transformed by the

// current world/view/proj matrix.

dp4 oPos.y, r0, c1 // (ditto)

dp4 oPos.z, r0, c2 // (ditto)

dp4 oPos.w, r0, c3 // (ditto)

// calc projective tex coords

dp4 r9.x, r0, c4 // Based on lifted water position we calculate tex coords

dp4 r9.y, r0, c5 // for the reflection map

dp4 r9.zw, r0, c6 // (ditto)

mov oT1, r9 // and hand them over to the pixel shader.

dp4 r9.x, r0, c8 // Based on lifted water position we calculate tex coords

dp4 r9.y, r0, c9 // for the underwater scene map

dp4 r9.zw, r0, c10 // (ditto)

mov oT2, r9 // and hand them over to the pixel shader.

mov oT3.xy, v11 // Tex coords for detail map are passed to pixel shader.

220
Advanced Water Effects

Section II — Rendering Techniques

// calc the distorted bump-normal map coords

mov r1, c13.x // Based on the current time stamp we calculate some scaled

// and translated

mul r2, r1, c14 // coordinates for the bump-normal map layers.

frc r2.xy, r2 // (ditto)

mul r3, v8, c15 // (ditto)

add oT0.xy, r2, r3 // Output: Tex coords for the first bump-normal map layer.

mul r2, r1, c16 // (ditto)

frc r2.xy, r2 // (ditto)

mul r3, v8, c17 // (ditto)

add oT4.xy, r2, r3 // Output: Tex coords for the second bump-normal map layer.

mul r2, r1, c18 // (ditto)

frc r2.xy, r2 // (ditto)

mul r3, v8, c19 // (ditto)

add oT5.xy, r2, r3 // Output: Tex coords for the third bump-normal map layer.

mul r2, r1, c20 // (ditto)

frc r2.xy, r2 // (ditto)

mul r3, v8, c21 // (ditto)

add oT6.xy, r2, r3 // Output: Tex coords for the forth bump-normal map layer.

// compute the cam-to-water vector

add r10, r0, -c12 // Based on lifted water plane we calculate normalized current

nrm r8, r10 // cam-to-water vector.

// Prepare for per-pixel normalization

mad oD0.xyz, r8, c22.z, c22.z // This vector (packed in a color) has to be passed

// to the pixel shader.

The Final Pixel Shader

// PIXEL SHADER (for DX9 hardware and better) PS-2

// FUNCTION: Water effect

//

// INPUT:

// v0 = cam-to-water vector in cam-space

// t0 = tex coords for first bump-normal map layer

// t1 = tex coords for reflection texture

// t2 = tex coords for underwater scene texture

// t3 = tex coords for surface detail texture

// t4 = tex coords for second bump-normal map layer

// t5 = tex coords for third bump-normal map layer

// t6 = tex coords for fourth bump-normal map layer

// s0 = first bump-normal map

// s1 = reflection texture

// s2 = underwater scene texture

// s3 = surface detail texture

// s4 = second bump-normal map

// c0 = scale first bump-normal map layer (z component must be 2.f)

// c1 = scale second bump-normal map layer (z component must be 2.f)

// c2 = scale third bump-normal map layer (z component must be 2.f)

// c3 = scale fourth bump-normal map layer (z component must be 2.f)

// c4 = weigthed shift for color-to-vector trafo (-0.5f*(c0+..+c3))

Advanced Water Effects
221

Section II — Rendering Techniques

// c5 = shift for color-to-vector trafo

// c10 = r(0) (air&water), 1-r(0) for Fresnel, detail bump scaling, const 1

// c11 = shift bumped reflection map

// c12 = scale bumps in reflection map

// c13 = scale bumps in refraction map

// c14 + c15 = change y and z components of bump normal

// version instruction

ps 2 0

// define the constants

def c5, -0.5f, -0.5f, -0.5f, 0.0f

def c10, 0.0204f, 0.9796f, 0.3f, 1.0f

def c14, 0.0f, 0.0f, 1.0f, 0.0f

def c15, 0.0f, 1.0f, 0.0f, 0.0f

// declare the used resources

dcl v0

dcl t0

dcl t1

dcl t2

dcl t3

dcl t4

dcl t5

dcl t6

dcl 2d s0

dcl 2d s1

dcl 2d s2

dcl 2d s3

dcl 2d s4

// load the bump-normal map layers

texld r0, t0, s0 // Load content of first bump-normal layer (using first b-n map)

texld r4, t4, s0 // Load content of second bump-normal layer (using first b-n map)

texld r5, t5, s4 // Load content of third bump-normal layer (using second b-n map)

texld r6, t6, s4 // Load content of fourth bump-normal layer (using second b-n map)

// scale and add the content of the different bump-normal layers

mul r6.rgb, r6, c3 // All four sampled bump-normal colors have to be mixed

mad r5.rgb, r5, c2, r6 // (ditto)

mad r4.rgb, r4, c1, r5 // (ditto)

mad r5.rgb, r0, c0, r4 // (ditto)

add r5.rgb, r5, c4 // and unpacked (color-to-vector-trafo) to be usable as

// current bump vector.

// shift the bumped reflection map

add r7, r5, c11 // Shift the bump vector to prevent reflection artifacts

// at the water’s edge.

// scale bumps in reflection and refraction map

mad r7, r7, c12, t1 // Use a scaled bump vector to modify the coords of

// the reflection map.

222
Advanced Water Effects

Section II — Rendering Techniques

mad r8, r5, c13, t2 // Use a scaled bump vector to modify the coords of the

// underwater scene map.

// load the bumped refraction and underwater scene

texldp r1, r7, s1 // Load reflection texel (using modified tex coords).

texldp r2, r8, s2 // Load underwater scene texel (using modified tex coords).

// exchange y and z components of bump-normal (from now on this vector can be used as

// normal vector)

nrm r6.rgb, r5 // Normalize the calculated bump-normal vector.

mov r5.r, r6.r // Keep the x component of this vector.

dp3 r5.g, r6, c14 // Exchange the y and z component of this vector.

dp3 r5.b, r6, c15 // (ditto)

// load the surface detail (also bumped)

mul r0.rgb, r5, c10.b // Bump the tex coords for surface details

add r0.rgb, r0, t3 // (ditto)

texld r3, r0, s3 // and load the surface detail texel.

// renormalize cam-to-water vector in v0

add r7.rgb, v0, c5 // Unpack cam-to-water vector (passed by vertex shader).

nrm r6.rgb, r7 // Renormalize this vector.

// dot cam-to-water vector with the mixed normal vector

dp3 sat r7.a, -r6, r5 // Calculate the cosine of the angle between both vectors.

// calculate the Fresnel term (air-to-water)

add r8.a, c10.a, -r7.a // Use this cosine to calculate the Fresnel approximation.

mul r6.a, r8.a, r8.a // (ditto)

mul r6.a, r6.a, r6.a // (ditto)

mul r6.a, r6.a, r8.a // (ditto)

mad r6.a, c10.g, r6.a, c10.r // (ditto)

// blend underwater scene and reflection map

// use the alpha of the underwater scene map to reduce Fresnel reflection at water’s edge

mul r6.a, r6.a, r2.a // Modulate strength of Fresnel reflection with

// underwater alpha.

lrp sat r7.rgb, r6.a, r1, r2 // Blend both maps (underwater scene and reflection).

// blend in the surface details

mov r8.a, r2.a // (Yep, this line can be cancelled if we use

lrp sat r8.rgb, r3.a, r3, r7 // r2.rgb as target for lrp sat result in this line

mov oC0, r8 // and move the complete r2 register to oC0)

Further Improvements

Of course, the top quality water simulation explained in this article has several
areas that could stand further improvements, including these four:
� The absorption of light calculated in the second render pass of the underwa-

ter scene (see the section “Modifications Dependent on Water Depth”)

Advanced Water Effects
223

Section II — Rendering Techniques

should not only be based on the current distance between water surface and
underwater object; the underwater part of the cam-to-object view line should
also be taken into account. In fact, the light passes the area between water
surface and object two times before it arrives at the camera (see Figure 14).
This way, we receive a high absorption of light also for lower water levels if
the camera looks with a flat angle of incidence.

� A correct refraction of the line of sight is not simulated at the moment (see
Figure 15). The angle of refraction � has to be calculated this way:

� = arcsin(sin(�) * c2 / c1)

. . .with � = angle of incidence, c1 = 1.000293 (refraction index of air), and c2
= 1.333333 (refraction index of water).

� Additional specular reflections will create highlights on the water surface and
increase the visual quality. The water articles in the first ShaderX book
[Engel 2002] present an easy way to add them.

� This article is intended as an introduction to the presented advanced water
effects. To increase the practical usability, we should implement the complete
effect using a high-level shader language (like DX9-HLSL or Cg). This will
raise the level of abstraction and decouple the programs from specific
hardware.

224
Advanced Water Effects

Section II — Rendering Techniques

Figure 14: The light passes the area between water surface and object two times.

Figure 15: Refraction of the line of sight

There are many starting points to develop further improvements for the visual
quality.

Conclusion

Using multiple render passes (reflection map 1, underwater scene 1+1, water
surface 1), we created a close-to-reality water effect, including the desired fea-
tures listed at the beginning. Especially in view of the per-pixel Fresnel reflection
for each ripple, the water surface has a good three-dimensional look. Additionally,
the contrarotated and different scaled bumping of the reflection and underwater
scene maps increases the simulation’s quality. Without decreasing quality, we are
able to change the world geometry or the water level due to the dynamic darken-
ing of the underwater scene map and also the supported alpha-fading at the
water’s edge. On the companion CD, you can find a demo application and com-
plete source code presenting an executable implementation of the discussed
water simulation.

References

[Engel 2002] Engel, Wolfgang F., ed., Direct3D ShaderX: Vertex and Pixel Shader

Tips and Tricks, Wordware Publishing, 2002.

[Wloka 2002] Wloka, M., “Fresnel Reflection,” nVidia Technical Report, 2002,
http://developer.nvidia.com/docs/IO/3035/ATT/FresnelReflection.pdf.

Advanced Water Effects
225

Section II — Rendering Techniques

Efficient Evaluation of Irradiance
Environment Maps

Peter-Pike J. Sloan

Introduction

Irradiance environment maps [3] are an effective technique to render diffuse
objects in arbitrary lighting environments. They are more efficient to compute
and use fewer resources than diffuse cube maps [1]. In [3], a method is presented
that uses spherical harmonics to efficiently represent an irradiance environment
map. Based on the surface normal, two formulas for evaluation are presented.
One is tailored for matrix/vector operations using the standard matrix form of a
quadratic equation, and the other more direct technique is specified for “systems
not optimized for matrix and vector operations.” This article presents a more effi-
cient mapping of the second formula; with the current vertex shader instruction
set, it uses seven constant registers and 11 instructions versus 12 constant regis-
ters and 15 instructions using the quadratic form.

One significant benefit to dealing with lights using irradiance environment
maps or diffuse cube maps is that the cost of evaluating the representation is
independent of the number of lights. This is because the lighting environment is
represented as a whole, and the integration is precomputed for all possible nor-
mals instead of evaluated on the fly for each light. Using spherical harmonics to
represent irradiance environment maps is much more efficient than diffuse cube
maps and can make other techniques built around them (like [1]) more efficient.
Greger et al. [2] precomputes a regular volume of irradiance cube maps in a
scene. Diffuse objects can be efficiently moved around inside the scene by inter-
polating between the different cube maps. Using spherical harmonics would just
amount to interpolating the spherical harmonic coefficients instead. One limita-
tion of these techniques is that they are only truly accurate for convex objects. If
shadows or other global effects are to be modeled, other techniques, like
precomputed radiance transfer (PRT) [4], need to be used.

226

Background

This article focuses on how to light a diffuse object with a distant spherical light-
ing environment, ignoring shadows and other global effects. This is done by com-
puting the radiance (light) leaving a point on the object, which requires an

evaluation of the reflection integral: R v L s H s dsp
d

N

s

() () ()
�

� �
�

�
where �d is the

diffuse reflectance (commonly referred to as the albedo) of the surface and is in
the range [0,1]; the division by � guarantees energy conservation1. This integral
represents the irradiance2, where L(s) is a spherical function representing the
lighting environment and HN(s) is the cosine term (dot product of the surface nor-
mal at the given point and a unit direction clamped to zero if it is negative). The
domain of integration is over the sphere of all incoming directions denoted by the
variable s. It is possible to precompute this integral for every possible normal,
since it is just a convolution of HN(s) against L(s) for all possible normal direc-
tions. This results in a spherical function that can be evaluated to determine
reflected radiance.

In image processing, when convolving large kernels, it is more efficient to
use the fourier transform to project the image and the kernel into frequency-
space, evaluate the convolution (which amounts to multiplication in frequency-
space), and then inverse transform the image back into the spatial domain. The
cosine kernel is a very large one, covering half the sphere. Ramamoorthi and
Hanrahan [3] observed that the projection of HN(s) into the “frequency-space” of
the sphere (using spherical harmonics, which is described in the next section)
results in almost all of the energy existing in the first nine coefficients. This
means that an accurate representation of the convolved spherical function repre-
senting exit radiance for any normal direction can be expressed using just nine
numbers per color channel instead of a full diffuse cube map.

Spherical Harmonics for Rendering

Spherical harmonics are the natural basis functions to use on the sphere. This
article only briefly describes them; for a more complete description, look at the
references in [3] and [4]. The mathematical form of the complex spherical har-
monics is as follows:

Y K e P l m ll
m

l
m im

l

m(,) (cos); ,| |
 �
�� 	 � � �� 1

. . .where the parameterization of the unit sphere is:

s x y z� �(, ,) (sin() cos(),sin()sin(), cos())
 �
 �
 (1)

Efficient Evaluation of Irradiance Environment Maps
227

Section II — Rendering Techniques

1 The net energy leaving a point is never greater than the net energy impinging on it.

2 Irradiance is the integral of the lighting environment impinging on a point. For a diffuse object, the
irradiance should be multiplied by the albedo of the surface divided by � to compute the light
leaving the surface — this is commonly referred to as radiance.

The Pl

m are the associated Legendre polynomials, and K l
m are the normalization

constants.

K
l l m

l m
l
m �

� �

�

()(| |)!
(| |)!

2 1
4�

When representing lighting, the complex form is not interesting, so the real form
of the spherical harmonics can be used:

y

Y m

Y m

Y m

l
m

l
m

l
m

l

�

�

�

�

�

�
��

�
�

2 0

2 0

00

Re()

Im() (2)

The spherical harmonics can also be expressed as polynomials in 3D, where eval-
uation is restricted to the surface of the unit sphere. These polynomials can be
computed by factoring equation (2) using the trigonometric forms for x, y, and z
in equation (1) and trigonometric identities. The index l represents the band
index and corresponds to the degree of the polynomial (analogous to frequency).
A complete lth degree basis contains (l+1)2 coefficients and can represent all
polynomials through degree l. For simplicity, this article sometimes uses a form
that represents each basis function with a single index yi, where i=l(l+1)+m+1.
The spherical harmonics are an orthonormal basis; this means that

y s y s ds if i j and if i ji j() () () (!)� � �� 1 0 . One byproduct of the above definition

is that the basis functions can be defined with any sign convention. Since sign
conventions vary, care has to be taken when mixing between definitions of the
basis functions found in different references. This is particularly true when using
projection coefficients or code that is found on the web.

Since the spherical harmonics form an orthonormal basis, projecting a func-
tion into them is straightforward. Here is the formula for evaluating the projected
function:

�

f s l y sl
m

l
m() ()!�

. . .where ll
m are the projection coefficients of the function f into the spherical har-

monic basis (i.e., a linear combination of the spherical harmonics with these coef-
ficients results in an optimal approximation of the function). They can be
computed by integrating the function against the basis functions over the sphere:

l f s y s dsl
m

l
m� � () ()

If the function is band limited, a finite number of bands are required to exactly
reconstruct the function. If the sequence is truncated before the band limit, the
approximation is optimal in a least squares sense (this is the same with the fou-
rier transform). This projection can be done using code from the web page of the
author of [3] or by using the spherical harmonic projection functions in the latest
version of the DirectX SDK.

228
Efficient Evaluation of Irradiance Environment Maps

Section II — Rendering Techniques

The convolution formula for spherical harmonics is very simple. Given a cir-
cularly symmetric function h 3 oriented in z expressed in spherical harmonics, the
convolution4 of another function f (projection coefficients ll

m) with h (projection
coefficients hl

m) is just:

c
l

h ll
m

l l
m�

�

4
2 1

0�

. . .where cl
m are the projection coefficients of the convolved function. All circularly

symmetric functions oriented with z only have one non-zero basis function in each
band5 — namely the one where m is equal to zero.

Evaluating the spherical harmonics scaled by the convolved coefficients in a
given direction results in the same value that one would get if one computed an
integral of the product of h oriented in the chosen direction with f over the
sphere. If h is a cosine lobe clamped to zero in the lower hemisphere, f is a light-
ing environment, and the direction is a surface normal, then this integral is
exactly the irradiance evaluated at the corresponding point. The cosine lobe has
most of its energy in the first nine coefficients, so the higher frequency terms of
the lighting environment have a minimal contribution; this is the fundamental
observation in [3].

Here are the explicit representations of the first nine spherical harmonics in
polynomial form:

y

y y y x y z

y y y

0
0

1
1

1
1

1
0

2
2

2
1

2
1

1

2
3

2

�

� � �

�

�

� �

�

�
(; ;) (; ;)

(; ;)
15

2
5

4
3 1

15

4

2
0 2

2
2 2 2

�

�

�

(; ;)

()

()

xy xz yz

y z

y x y

� �

� �

� �

In the shader in the next section, there are seven constant registers that have to
be computed whenever the lighting environment changes. Given the projection of
the lighting environment into spherical harmonics resulting in coefficients Rl

m ,
Gl

m , Bl
m for the red, green, and blue channel of the lighting environment, respec-

tively, they are defined as follows:

Efficient Evaluation of Irradiance Environment Maps
229

Section II — Rendering Techniques

3 A circularly symmetric function on the sphere is one that only has variation in one direction — i.e.,
if you align the direction of variation with the z axis, the function is constant along lines of constant
latitude, and the function varies in
 but not � using the spherical parameterization defined above.

4 A non-circularly symmetric function convolved with a spherical function would not result in a
spherical function. This is because circularly symmetric functions can be aligned with a point on
the sphere without any extra parameters (because of the single direction of variation).

5 When oriented in z there is no variation in the variable �, and the basis function where m"0
integrates to zero for any function that has this symmetry.

C
R

cAr cAg cAb cBr cBg cBb cC

x c R c G c B c R c� � � � ��
1 1

1
1 1

1
1 1

1
2 2

2
2 2

2
2 2

2
4 2

2

1 1
1

1 1
1

1 1
1

2 2
1

2

G c B c R

y c R c G c B c R c G

� �

� � � �

�

� � � � � 2
1

2 2
1

4 2
2

1 1
0

1 1
0

1 1
0

3 2
0

3 2
0

33 3 3

� ��

� � �

c B c G

z c R c G c B c R c G c B2
0

4 2
2

0 0
0

3 2
0

0 0
0

3 2
0

0 0
0

3 2
0

2 2
1

c B

w c R c R c G c G c B c B c R� � � � � � � � �c G c B x2 2
1

2 2
1

. . .where:

c n c h n c h n c h n h h0 0 1 1 1 2 2 2 3 2 4 1 2
2
3

1
4

� � � � � �; ; ; ; ; ;

n n n n n0 1 2 3 4
1

2

3

2

15

2

5

4

15

4
� � � � �

� � � � �
; ; ; ;

The hi are the convolution coefficients divided by � (irradiance is turned into exit
radiance), and the ni are the normalization coefficients of the basis functions. The
x in cC can be any value, since it is not used by the shader.

In [3] transforming the surface normals by the inverse of the lights’ rotation
relative to the model is proposed. While that is necessary for deformable objects,
for rigid objects it is more efficient to rotate the lighting coefficients directly
before loading them into the shaders — this saves three instructions. If materials
are stored per vertex, the following shader would need one extra instruction that
multiplies the lighting times the diffuse reflectance of the surface.

Shader

vs 1 1

dcl position v0

dcl normal v1

m4x4 oPos, v0, c0

mov r0, v1 ; read port limits on inputs

; compute 1st 4 basis functions – linear + constant

; v1 is the normal with a homogenous 1

; c* are precomputed constants

dp4 r1.r, r0, cAr ; r channel from 1st 4 basis functions

dp4 r1.g, r0, cAg ; g channel from 1st 4 basis functions

dp4 r1.b, r0, cAb ; b channel from 1st 4 basis functions

; compute polynomials for next 4 basis functions

mul r2, r0.xyzz, r0.yzzx ; r1 is xy/yz/z^2/xz

; add contributions – store in r2

dp4 r3.r, r2, cBr

dp4 r3.g, r2, cBg

230
Efficient Evaluation of Irradiance Environment Maps

Section II — Rendering Techniques

dp4 r3.b, r2, cBb

; compute the final basis function x^2-y^2

mul r0.xy, r0.xy, r0.xy ; x^2 y^2 – other slots are free

add r0.x, r0.x, -r0.y ; x^2-y^2,

mad r1.rgb, cC.rgb, r0.x, r3.rgb

add r0, r1.rgb, r2.rgb ; r0 is now rgb lighting

Acknowledgments

Thanks to Dan Baker for carefully proofreading this article. Wolfgang Engel, Tom
Forsyth, and Willem de Boer provided useful feedback on early versions as well.

References

[1] Brennan, C., “Diffuse Cube Mapping,” Direct3D ShaderX: Vertex and Pixel

Shader Tips and Tricks, Wolfgang Engel, ed., Wordware Publishing, 2002, pp.
287-289.

[2] Greger, G., P. Shirley, P. Hubbard, and D. Greenberg, “The Irradiance Volume,”
IEEE Computer Graphics and Applications, 6(11):1986, pp. 21-29.

[3] Ramamoorthi, R. and P. Hanrahan, “An Efficient Representation for Irradiance
Environment Maps,” Computer Graphics, SIGGRAPH 2001, pp. 497-500.

[4] Sloan, P., J. Kautz, and J. Snyder, “Precomputed Radiance Transfer for Real-
Time Rendering in Dynamic, Low-Frequency Lighting Environments,” Computer

Graphics, SIGGRAPH 2002, pp. 527-536.

Efficient Evaluation of Irradiance Environment Maps
231

Section II — Rendering Techniques

Practical Precomputed Radiance
Transfer

Peter-Pike J. Sloan

Abstract

Precomputed radiance transfer (PRT) is a technique that enables rigid objects to be
illuminated in low-frequency lighting environments with global effects like soft
shadows and interreflections in real time. It achieves these results by running a
lengthy preprocess that computes how light is transferred from a source environ-
ment to exit radiance at a point. This article discusses the technique in general
and focuses on a practical example using the recently introduced compressed [7]
form in a vertex shader.

Introduction

Generating accurate depictions of complex scenes in interesting lighting environ-
ments is one of the primary goals in computer graphics. The general solution to
this problem requires the solution of an integral equation that is difficult to solve,
even in non-interactive settings [1]. In interactive graphics, shortcuts are gener-
ally taken by making simplifying assumptions of several properties of the scene;
the materials are generally assumed to be simple. The lighting environment is
either approximated with a small number of point and directional lights or envi-
ronment maps and transport complexity (i.e., how the light bounces around the
scene — interreflections, caustics, and shadows are examples) are only modeled
in a limited way. For example, shadows are computed for dynamic point lights but
not for environment maps.

There is a lot of interesting previous work that has trade-offs different from
those made with PRT. Polynomial texture maps [3] allow interactive rendering of
diffuse objects with textures that capture local interreflections and scattering, but
they are limited to point light sources. There are several papers that deal with
prefiltering environment maps — most notably in [4], diffuse objects can be inter-
actively rendered in arbitrary environments by projecting the lighting environ-
ment into spherical harmonics, and the prefiltering is done via convolution in the
frequency domain. This technique is flexible and allows for dynamic geometry, but
no transport complexity is modeled; it is technically only accurate for convex

232

objects. In [5], a method is presented that can interactively render a wider range
of materials but still does not handle other forms of transport complexity.

Extensions to precomputed radiance transfer is currently an active research
area; while this work focuses on practical concerns and shaders for the most effi-
cient formulation (diffuse objects), it has been successfully applied to more gen-
eral reflectance models [2], integrated with ideas from bidirectional texture
functions and texture synthesis [8], and compressed to handle higher frequency
lighting and extended to handle subsurface scattering [7]. The primary limitations
are relatively low-frequency lighting environments and, more importantly, while
the objects are assumed to be rigid, they are not allowed to deform.

General Background on Precomputed Radiance Transfer

For a diffuse object illuminated in distant lighting environment L, the reflected
radiance at a point P on the surface is:

R v L s V s H s dsp
d

p N

s

() () () ()
�

� �
�

�
(1)

. . .where Vp represents visibility, a binary function that is 1 in a given direction if a
ray in that direction originating at the point can “see” the light source and 0 oth-
erwise. HN represents the projected area (or cosine term), and the integration is
over the hemisphere about the point’s normal. The diffuse reflectance (or albedo)
of the surface is �d and is generally an RGB color, where each value is between
zero and one. The division by � maps irradiance (the integral) into exit radiance
(what we see) and guarantees energy conservation (i.e., the amount of energy
reflected is never greater than the amount of energy arriving at a point).

With a point or directional light, the lighting environment is effectively a delta
function, which turns the integral into a simple function evaluation — the cosine
of the angle between the light and the normal if the direction is not in shadow or
just zero if it is. Since the object is diffuse, the reflected radiance is the same in all
directions, and the integral does not depend on the view direction. The key idea
behind precomputed radiance transfer is to approximate the lighting environment
using a set of basis functions over the sphere:

L s l B si i
i

() ()
� �

� �

. . .where the Bs are a set of basis functions and the ls are the coefficients corre-
sponding to the optimal (in a least squares sense) projection of the lighting envi-
ronment into the basis functions; that is, they minimize:

(() ())L s l B s dsi i

� �

� ��
2 (2)

If the basis functions are orthogonal, this just amounts to integrating the lighting
environment against the basis functions, while in general it is necessary to inte-
grate against the duals of the basis functions.

Now substitute the approximation of the lighting environment into (1):

Practical Precomputed Radiance Transfer
233

Section II — Rendering Techniques

R v l B s V s H s dsp
d

i i
i

p N

s

() () () ()
� � � �

!
�

�

�

�
����

�

�
(3)

Recall two concepts from basic calculus: the integral of a sum equals the sum of
the integrals, and constants can be pulled outside of integrals1. This allows us to
reformulate (3), as follows:

R v l B s V s H s dsp d i i p N

si

() () () ()
� � � �

! ���
�

1
(4)

The important thing to note about the above equation is that the integral only
depends on the choice of basis functions, not on the value of the particular lighting
environment or the albedo of the surface. This means that if you precompute the
integral for each basis function at every point on the object, you are left with the
following expression for reflected radiance:

R v l tp d i pi
i

()
�

! ��

A dot product between the global lighting coefficients and the spatially varying
(through the index p) transfer vector scaled by the albedo is all that is required. If
the lighting and transfer are represented as vectors (L and T, respectively), this
equation becomes:

R v T Lp d() ()
�

! �� (5)

Compression

As the number of basis functions grows, these transfer vectors become larger and
the data size can become unwieldy. A compression technique was recently pro-
posed [7] that can significantly reduce both the compute and storage require-
ments of the technique. The vertices (or texels) in a mesh are split into discrete
clusters, and each cluster is approximated with a mean and an optimal linear
basis. Mathematically:

T M w Pp k pj kj
j

! ��

. . .where Tp is the transfer vector at a point, Mk is the mean for cluster k, the Pkj

represents the local linear basis for the cluster, and the wpj represents the coordi-
nates of Tp subtracted from the mean in the given basis. The important thing to
note is that k and wpj vary at every sample (vertex or texel), while Mk and Pkj are
constant for a given cluster.

If this approximation for the transfer vector is now inserted into equation (5),
the following equation results:

R v M w P Lp d k pj kj
j

()
�

! �
�

�

�

�

�
� �

�

�

�

�

�
���

234
Practical Precomputed Radiance Transfer

Section II — Rendering Techniques

1 This is because integration is a linear operator, that is I(f+g) = I(f)+I(g) and I(s*f) = s*I(f) where f
and g represent functions, s represents a scalar, and I represents integration.

Again, exploiting a linear operator (the dot product), the terms can be redistrib-
uted into the final form:

R v M L w P Lp d k pj kj
j

() () ()
�

! � � �
�

�

�

�

�
��� (6)

An important thing to note is that the dot products in the above equation only
depend on per-cluster information, so they can be performed once per frame and
stored as constants in the shader. This also makes the evaluation of reflected radi-
ance independent of the dimensionality of the lighting basis. Given K clusters and
N local basis vectors, K*(N+1)*3 coefficients have to be computed for each frame
(the 3 is for colored lights) and stored as constants.

Choice of Basis Functions

While any basis functions that approximate the sphere can be used, much of the
previous work has focused on using the real spherical harmonics. In this article
we just touch on the basic formulation and some useful properties. More thorough
descriptions can be found in the references in [6]. The mathematical form of the
complex spherical harmonics is as follows:

Y K e P l m ll
m

l
m im

l

m(,) (cos); ,| |
 �
�� 	 � � �N 1

. . .where the parameterization of the sphere is:

s x y z� �(, ,) (sin() cos(),sin()sin(), cos())
 �
 �
 (7)

The Pl
m are the associated Legendre polynomials, and the K l

m are the normaliza-
tion constants.

K
l l m

l m
l
m �

� �

�

()(| |)!
(| |)!

2 1
4�

The real form of the spherical harmonics is:

y

Y m

Y m

Y m

l
m

l
m

l
m

l

�

�

�

�

�

�
��

�
�

2 0

2 0

00

Re()

Im() (8)

The spherical harmonics can also be expressed as polynomials in 3D where evalu-
ation is restricted to the surface of the unit sphere. These polynomials can be
computed by factoring equation (8) using the trigonometric forms for x, y, and z in
equation (7) and trigonometric identities; [4] has examples through the quadrat-
ics. The index l represents the band index and corresponds to the degree of the
polynomial; a complete lth degree basis contains (l+1)2 coefficients and can repre-
sent all polynomials through degree l. For simplicity, we sometimes use a form
that represents each basis function with a single index yi, where i=l(l+1)+m+1.
The spherical harmonics are what is known as an orthonormal basis; this means
that y s y s ds if i j and if i ji j ij() () () (!)� � � �� # 1 0 .

Practical Precomputed Radiance Transfer
235

Section II — Rendering Techniques

One byproduct of the above definition is that the basis functions can be
defined with any sign convention. Care has to be made when mixing between defi-
nitions of the basis functions found in different references, particularly when
using projection coefficients or code that is found on the web. Generating the
least squares optimal projection coefficients that minimize equation (2) is simple
for any orthogonal basis:

l y s f s dsi i� � () ()

One other important property of spherical harmonics is that they are rotationally
invariant. This is analogous to the translation invariance in the fourier transform
and can be mathematically expressed as follows: R(proj(f(s)))= proj(f(R(s))),
where R is a rotation matrix and proj represents a projection into spherical har-
monics. This means that the shape of the projection is stable under rotations, so
there will not be any temporal artifacts as the light or object is rotated. Rotations
can be computed in various ways, but all forms ultimately are a linear combination
of the projection coefficients (i.e., the rotated coefficients can be computed by a
matrix multiplication); for low orders, symbolic integration can be used to com-
pute the entries in these rotation matrices, which happen to be polynomials of the
coefficients of R. See [2] and [6] for a more thorough description and other
references.

Setting up the Shaders

Before PRT can be used, several things have to occur. Any lights in the scene
have to be represented using spherical harmonics and combined into a single
spherical function (just add them together, possibly rotating them independently),
the spherical function representing the lights has to be transformed into object
space (i.e., the basis functions have to be oriented in the same way they were dur-
ing the precomputation), and if compression is used, the per-cluster dot products
have to be performed.

The latest DirectX SDK update has several functions for mapping lights into
spherical harmonic coefficients and rotating them using any pure rotation matrix.
In particular, directional/cone/spot lights can be evaluated, and cube maps can be
directly projected. After the lights have been evaluated in world space, they need
to be rotated into object space (using the transpose of the rigid rotation mapping
the object from object space to world space) or, alternatively, always evaluated
directly in object space (i.e., one rotation applied directly to coefficients or the
“lighting” functions evaluated with direction vectors mapped into object space).

If compression is used, the shader constants need to be evaluated (the per-
cluster dot products from equation (6)) before being uploaded.

The uncompressed form requires a transfer vector to be stored at every texel
or vertex, while the compressed form requires a mapping into the start of the cor-
responding sample’s clusters’ constants (in the constant table) and coefficients in
the clusters’ linear subspace (generally much fewer than the number of basis
functions used to represent the lighting environment). If more clusters are used

236
Practical Precomputed Radiance Transfer

Section II — Rendering Techniques

than can be represented in the constant table of the graphics card, a multi-pass
technique described in [7] must be employed instead.

Compressed Shader

The following shader is written in HLSL and parameterized by a single variable
NPCA representing the number of PCA basis vectors stored in each cluster. This
has to be passed in to the compiler or set with a #define at the top of the shader.
The HLSL code assumes that NPCA is a multiple of 4. If NPCA is zero, the tech-
nique is pure vector quantization (this is an inferior compression technique and
should not be used in general). BLENDWEIGHT0 has to index into the start of
the cluster for each vertex. The per-cluster data (from equation (6)) is stored to
minimize the number of constant registers. The mean is first stored as an RGB
color, and then all of the dot products of the PCA vectors with the R lighting coef-
ficients are stored, followed by G and B. Constraining NPCA to be a multiple of 4
allows this more efficient packing scheme that reduces the number of constant
registers and the number of assembly instructions that are required. If a single
color is stored for each basis vector (effectively wasting all of the alpha channels),
NPCA+1 constant vectors are needed for each cluster, while this scheme
requires (NPCA/4)*3 + 1 registers per cluster — wasting only one slot (the
alpha channel of the dot product with the per-cluster mean).

// inputs stored per vertex

struct VS INPUT

{

float4 vPosition : POSITION;

int vClusterInfo : BLENDWEIGHT0;

#if (NPCA>0)

float4 vPCAWts[(NPCA+3)/4] : BLENDWEIGHT1;

#endif

};

// outputs – position and color

struct VS OUTPUT DIFF

{

float4 vPosition : POSITION;

float4 vDiff : COLOR;

};

// all of the constant registers are mapped

// if vs1.1 is used have to use the appropriate #

// This assumes that the first 4 constants contain

// the complete transformation matrix to NDC space.

float4 c[255] : register(vs 2 0, c0);

VS OUTPUT DIFF DiffShader(const VS INPUT v)

{

VS OUTPUT DIFF o;

Practical Precomputed Radiance Transfer
237

Section II — Rendering Techniques

// 1st four constants are the transformation matrix

matrix mXform;

mXform[0] = c[0];

mXform[1] = c[1];

mXform[2] = c[2];

mXform[3] = c[3];

o.vPosition = mul(mXform,v.vPosition); // xform point

int iIndexBase = v.vClusterInfo.x;

float4 vRes = c[iIndexBase]; // cluster mean color

#if (NPCA > 0)

float PCACoefs[NPCA] = (float[NPCA])v.vPCAWts;

// accumulate R/G/B each in a 4 vector

float4 vRed = 0;

float4 vGreen = 0;

float4 vBlue = 0;

// compute the sum from equation 6

// do R/G/B in parallel, 4 coefficients at a time

for(int i=0;i<NPCA/4;i++) {

vRed += v.vPCAWts[i]*c[iIndexBase+i+1];

vGreen += v.vPCAWts[i]*c[iIndexBase+i+1+(NPCA/4)];

vBlue += v.vPCAWts[i]*c[iIndexBase+i+1+(NPCA/4)*2];

}

float3 vTmp;

// sum across the accumulation register for each color channel

// adding it to the mean color

vTmp.r = dot(vRed,1);

vTmp.g = dot(vGreen,1);

vTmp.b = dot(vBlue,1);

vRes.rgb += vTmp.rgb;

#endif

o.vDiff = vRes;

return o;

}

238
Practical Precomputed Radiance Transfer

Section II — Rendering Techniques

Acknowledgments

This article is based on research results generated in collaboration with several
individuals — in particular John Snyder, Jan Kautz, and Jesse Hall. Jason Sandlin
and Ben Luna have been extremely helpful discussing these ideas. Wolfgang
Engel provided valuable feedback and encouragement while I wrote this article.

References

[1] Kajiya, J., “The Rendering Equation,” SIGGRAPH 1986, pp. 143-150.

[2] Kautz, J., P. Sloan, and J. Snyder, “Fast, Arbitrary BRDF Shading for Low-Fre-
quency Lighting Using Spherical Harmonics,” 12th Eurographics Workshop on
Rendering, pp. 301-308.

[3] Malzbender, T., D. Gelb, and H. Wolters, “Polynomial Texture Maps,”
SIGGRAPH 2001, pp. 519-528.

[4] Ramamoorthi, R. and P. Hanrahan, “An Efficient Representation for Irradiance
Environment Maps,” SIGGRAPH 2001, pp. 497-500.

[5] Ramamoorthi, R. and P. Hanrahan, “Frequency Space Environment Map Ren-
dering,” SIGGRAPH 2003, pp. 517-526.

[6] Sloan, P., J. Kautz, and J. Snyder, “Precomputed Radiance Transfer for
Real-Time Rendering in Dynamic, Low-Frequency Lighting Environments,”
SIGGRAPH 2002, pp. 527-536.

[7] Sloan, P., J. Hall, J. Hart, and J. Snyder, “Clustered Principal Component for
Precomputed Radiance Transfer,” SIGGRAPH 2003, pp. 382-391.

[8] Sloan, P., X. Liu, H. Shum, and J. Snyder, “Bi-Scale, Low-Frequency Radiance
Self-Transfer,” SIGGRAPH 2003, pp. 370-375.

Practical Precomputed Radiance Transfer
239

Section II — Rendering Techniques

Advanced Sky Dome Rendering

Marco Spoerl and Kurt Pelzer

Introduction

With the current interest of both hobbyist and professional game programmers in
landscape rendering and the shift from indoor to outdoor environments in game
design, one aspect has become very important: the sky. Traditional approaches for
rendering skies only used texture-mapped domes. This is acceptable for indoor
environments, since the player only sees a glimpse of it. Such sky domes can be
implemented both easily and efficiently. But their major drawback is a lack of flex-
ibility, which makes it difficult to render dynamic effects like changes with the
time of day.

This article describes a better solution and illustrates the implementation of
a basic vertex color sky dome that:
� Computes the correct position of both the sun and the moon, depending on

time of day
� Changes its color depending on the position of the sun
� Renders a projection of the sun at its correct position
� Renders a projection of the moon at its correct position, including the moon’s

current phase using per-pixel lighting

Position of Sun and Moon

[SchlyterA] and [SchlyterB] give excellent instruction for computing the positions
of sky objects from their orbital elements. Although the algorithms presented
there are significantly simplified, they still work well for real-time computer
graphics.

Using the equations in [SchlyterA], it’s simple to compute the position of the
sun. The orbital elements used are longitude of perihelion (w), mean distance (a)
measured in astronomical units (AU), eccentricity (e), and mean anomaly (M).
Most of those and the obliquity of the ecliptic (oblecl) depend on the current time.
From these, all other elements needed to determine the position of the sun are
computed: mean longitude (L), eccentric anomaly (E), rectangular coordinates (x,
y), distance (r) measured in astronomical units, true anomaly (v), and longitude

240

(lon). Finally, the ecliptic rectangular coordinates are calculated and stored as the
sun’s current position.

In addition to the basic orbital elements mentioned above, the moon needs
the longitude of the ascending node (N) and inclination (i). Everything else is
computed similar to the sun with the exception of the longitude (lon) and the new
parameter latitude (lat), which are computed using the ecliptic rectangular coordi-
nates and the fact that all distances are not measured in astronomical units but
Earth radii. After that, the longitude, latitude, and distance are corrected using
the perturbations of the moon, and the resulting final coordinates are stored as
the current position. The computation of
the moon’s position is completed with two
important values, elongation and the result-
ing phase angle, needed later to display the
moon’s phase.

The computed positions, as illustrated
in Figure 1, are geocentric (i.e., the viewer
is located at the center of the Earth).
Although this affects the results for the
moon (but not for the sun, as it’s too far
away), the position is not shifted to
topocentric coordinates for the sake of clar-
ity. Still another correction has to be made
to both results regarding the geocentric
position: the influence of the Earth’s rota-
tion. Without it, one “day” would last one
year — the time needed for the Earth to circle the sun or, from a geocentric point
of view, for the sun to circle the Earth. To simulate the effect, the sky object’s
position vector is simply transformed by a matrix built from a rotation around the
z-axis by an angle relative to the time of day. Of course, any other axis of rotation
could be chosen to simulate a lower course instead of the current one, which
always leads through the zenith.

Rendering the Dome

The dome itself is a simple sphere created at run time. Only the position and nor-
mal of each vertex are stored. Texture coordinates and vertex color are computed
in the vertex shader. One characteristic of the dome is its transformation. The
viewer is always in the center of the sky sphere (i.e., the sky dome moves as the
viewer moves). To take this into account, the translational part of the view matrix
is set to zero before building the transformation matrix for the vertex program.

As the dome has to be huge to cover the whole world while moving around
with the viewer, another modification has to be made. When transforming the ver-
tex position to clip space inside the vertex shader, the z- and w-coordinates are
made equal (that is, after the division of the x-, y-, and z-coordinates by the
w-component z becomes 1, making the vertex lie on the far clipping plane).

Advanced Sky Dome Rendering
241

Section II — Rendering Techniques

Figure 1: Difference between
geocentric and topocentric
coordinates

; v0 = position

; c0 - c4 = proj matrix * view matrix

vs 1 1

dcl position v0

; transform position

dp4 oPos.x, v0, c0

dp4 oPos.y, v0, c1

dp4 oPos.zw, v0, c3 ; simply force z to 1.0f by making it equal to w

NOTE Throughout this article, the world matrix is ignored, as it’s always the
identity matrix.

Determination of the sky color is roughly oriented to [Nishita], which
defines equations to compute the color using single and multiple scattering.
Compared to the equations presented in that paper, this article uses a slightly dif-
ferent, much simplified formula to calculate the final vertex color.

CV(�)=(KrFr(�)+KmFm(�))SCS

Fr and Fm are the phase functions for molecule and aerosol scattering, respec-
tively. Kr and Km are the colors of the molecules and aerosols. S is a scaling factor
relative to the vertex’s y-coordinate, and Cs is the current color of the sun.

The shader starts with the calculation of the scaling value and an exponent
needed later:

(...)

; v0 = position

; c16 = constants (-1000.0f*fInvR*fInvR, 3000.0f, 0.0f, 2.0f)

; calculate steps

mul r0.x, v0.y, v0.y

mad r0.xw, r0.x, c16.xxzz, c16.yyww

(...)

The angle needed to calculate molecule and aerosol scattering is computed using
the sun normal and the current vertex normal. This is feasible, as the viewer is
always standing at the dome’s center.

; v1 = normal

; c12 = sun normal (sunN.x, sunN.y, sunN.z, 0.0f)

(...)

dcl normal v1

(...)

"; calc angle normal - sunnormal

dp3 r0.y, v1, c12

(...)

Molecule scattering is performed using the equation:

242
Advanced Sky Dome Rendering

Section II — Rendering Techniques

Fr() ()

� � � �
3
4

1
3
4

3
4

2 2

; c15 = constants (0.0f, 1.0f, 0.75f, 0.9f)

(...)

; calculate fr (molecule scattering)

lit r3.z, r0.yyww

mad r4.x, r3.z, c15.z, c15.z

(...)

Aerosol scattering is simply a scalar 1.75f or 0.75f, depending on the magnitude of
the angle calculated earlier.

"; c15 = constants (0.0f, 1.0f, 0.75f, 0.9f)

(...)

; calculate fm (aerosol scattering)

max r6.x, r0.y, -r0.y

sge r6.x, r6.x, c15.y

add r5.x, r6.x, c15.z

(...)

Afterward, the final color is computed as follows:

; c11 = sun color (red, green, blue, 0.0f)

; c12 = sun normal (sunN.x, sunN.y, sunN.z, 0.0f)

; c13 = constants (KrRed, KrGreen, KrBlue, 0.0f)

; c14 = constants (KmRed, KmGreen, KmBlue, 0.0f)

(...)

; Calculate the color regarding to the scattering values

mul r7.xyz, c13, r4.x ; multiply Fr by Kr color of the molecules

mad r9.xyz, c14, r5.x, r7 ; multiply Fm by Km color of the aerosols and add

mul r9.xyz, r9.xyz, r0.x ; scale by steps

mul oD0.xyz, r9, c11 ; output vertex color scaled by the sun’s current color

(...)

Rendering the Sun

Drawing the sun is actually quite simple. Every
sky object has a camera associated with it. As
seen in Figure 2, this camera is used as a texture
projector located at the world origin and looks at
the sun’s current position.

Its projection and view matrix are concate-
nated with a special matrix needed to handle the
transformation from projection space to texture
space.

Advanced Sky Dome Rendering
243

Section II — Rendering Techniques

Figure 2: Basic texture projection
setup

TexSpaceMatrix

f f f f

f f f f
�

�

0 5 0 0 0 0 0 0

0 0 0 5 0 0 0 0

0

. . . .

. . . .

.0 0 0 0 0 0 0

0 5 0 5 1 0 1 0

f f f f

f f f f

. . .

. . . .

�

�

�

�

�
�
�
�
�

The transposed view-projection-texspace-matrix is passed into the vertex shader
where the texture coordinates for the projected sun texture are computed based
on the current vertex position.

; v0 = position

; c5 - c7 = view matrix * projection matrix * texspace matrix (sun projector)

; c15 = constants (0.0f, 1.0f, 0.75f, 0.9f)

(...)

dp4 oT0.x, v0, c5

dp4 oT0.y, v0, c6

dp4 r0.zw, v0, c7

sge r1.w, r0.w, c15.x

mul oT0.zw, r0, r1.w

(...)

The extra operations before storing the oT0.zw
coordinates are needed to avoid a second projec-
tion behind the sky object’s camera.

The pixel shader is a simple fixed-function-
style ADDSMOOTH to blend the sun texture (as
seen in Figure 3) indexed via the texture coordi-
nates with the calculated sky color passed in via
v0.

; v0 = calculated sky color

; t0 = sun texture

ps 1 1

tex t0 ; fetch sun texture

(...)

mad sat r0, t0, 1 - v0, v0

(...)

Rendering the Moon and Its Phase

Displaying the moon is basically the same as drawing the sun. Again, a transposed
view-projection-texspace-matrix is passed in to the vertex shader to compute the
texture coordinates.

; v0 = position

; c8 - c10 = view matrix * projection matrix * texspace matrix (moon projector)

; c15 = constants (0.0f, 1.0f, 0.75f, 0.9f)

244
Advanced Sky Dome Rendering

Section II — Rendering Techniques

Figure 3: The sun texture

(...)

dp4 r2.x, v0, c8

dp4 r2.y, v0, c9

dp4 r0.zw, v0, c10

sge r1.w, r0.w, c15.x

mul r2.zw, r0, r1.w

mov oT1, r2

mov oT2, r2

If rendered like this (just with the texture, as seen in Figure 4), the moon will
always appear full because its predominant feature — the moon’s phase — is
missing. To solve this, per-pixel lighting using a spherically based normal map is
necessary. There’s only one problem; as the moon itself is not a real object, how
do you compute the tangent space matrix needed for per-pixel lighting? Simple
answer: You don’t. An imaginary viewer on Earth mostly sees the same side of
the moon (i.e., the moon “object” can be thought of as a simple textured quad
always facing the viewer). The imaginary sun rotates around that object (remem-
ber that geocentric coordinates are used — that is, both sun and moon are circling
the Earth) with the light vector being perpendicular to the front of the quad at full
moon and perpendicular to the back at new moon. So the light vector used is sim-
ply a vector (0.0f, 0.0f, –1.0f) rotated around the quad’s local y-axis by the moon’s
phase angle computed earlier. Figure 5 shows the solution.

With this composition, the tangent space matrix would be the identity matrix and
is omitted altogether. Bearing that in mind, the transformation of the light vector
inside the vertex program is easy.

; c17 = lightvec sun->moon (light.x, light.y, light.z, 0.5f)

(...)

mov r0, c17

mad oD1.xyz, -r0.xyz, c17.w, c17.w

(...)

The pixel shader uses the normal map, as seen in Figure 6, and the light vector
passed with oD1 or v1, respectively, to “light” the moon texture. The resulting
value is multiplied by an external factor and added to the current color. This factor

Advanced Sky Dome Rendering
245

Section II — Rendering Techniques

Figure 4: The moon texture Figure 5: Setup for lighting the
moon

Figure 6: The moon normal map

is relative to the sun’s current normalized y-position and is used to “disguise” the
moon during the day.

; c0 = scaling factor for the moon color

; v1 = transformed light vector for the moon phase

ps 1 1

(...)

tex t1 ; fetch moon texture

tex t2 ; fetch moon normal map

(...)

dp3 r1, t2 bx2, v1 bx2 ; calculate angle light vector / moon normal

mul sat r1, t1, r1 ; light moon texture

mad sat r0, r1, c0, r0 ; multiply by scaling factor and add to current color

(...)

Putting It All Together

These are the final shaders:

;***

; Vertex Shader

; Author: Marco Spoerl

; Function: Sky dome

; v0 = position (3 floats)

; v1 = normal (3 floats)

; c0 - c4 = proj matrix * view matrix

; c5 - c7 = view matrix * proj matrix * texspace matrix (sun projector)

; c8 - c10 = view matrix * proj matrix * texspace matrix (moon projector)

; c11 = sun color (red, green, blue, 0.0f)

; c12 = sun normal (sunN.x, sunN.y, sunN.z, 0.0f)

; c13 = constants (KrRed, KrGreen, KrBlue, 0.0f)

; c14 = constants (KmRed, KmGreen, KmBlue, 0.0f)

; c15 = constants (0.0f, 1.0f, 0.75f, 0.9f)

; c16 = constants (-1000.0f*fInvR*fInvR, 3000.0f, 0.0f, 2.0f)

; c17 = lightvec sun->moon (light.x, light.y, light.z, 0.5f)

;***

vs 1 1

dcl position v0

dcl normal v1

; transform position

dp4 oPos.x, v0, c0

dp4 oPos.y, v0, c1

dp4 oPos.zw, v0, c3 ; simply force z to 1.0f by making it equal to w

; calculate steps

246
Advanced Sky Dome Rendering

Section II — Rendering Techniques

mul r0.x, v0.y, v0.y

mad r0.xw, r0.x, c16.xxzz, c16.yyww

; calc angle normal - sunnormal

dp3 r0.y, v1, c12

; calculate fr (molecule scattering)

lit r3.z, r0.yyww

mad r4.x, r3.z, c15.z, c15.z

; calculate fm (aerosol scattering)

max r6.x, r0.y, -r0.y

sge r6.x, r6.x, c15.y

add r5.x, r6.x, c15.z

; Calculate the color regarding to the scattering values

; Kr color of the molecules

mul r7.xyz, c13, r4.x

; Km color of the aerosols

mad r9.xyz, c14, r5.x, r7

; scale by steps

mul r9.xyz, r9.xyz, r0.x

; output color scaled by current sun color

mul oD0.xyz, r9, c11

; output transformed light vector for the moon phase

mov r0, c17

mad oD1.xyz, -r0.xyz, c17.w, c17.w

; output projected texcoord0 (sun)

dp4 oT0.x, v0, c5

dp4 oT0.y, v0, c6

dp4 r0.zw, v0, c7

sge r1.w, r0.w, c15.x

mul oT0.zw, r0, r1.w

; output projected texcoord1/2 (moon/moonnormals)

dp4 r2.x, v0, c8

Advanced Sky Dome Rendering
247

Section II — Rendering Techniques

dp4 r2.y, v0, c9

dp4 r0.zw, v0, c10

sge r1.w, r0.w, c15.x

mul r2.zw, r0, r1.w

mov oT1, r2

mov oT2, r2

;***

; Pixel Shader

; Author: Marco Spoerl

; Function: Sky dome

; c0 = scaling factor for the moon color

; v0 = calculated vertex color

; v1 = transformed light vector for the moon phase

; t0 = sun texture

; t1 = moon texture

; t2 = moon normal map

;***

ps 1 1

; Fetch textures

tex t0 ; sun

tex t1 ; moon

tex t2 ; moon normals

; ADDSMOOTH vertex color and sun

mad sat r0, t0, 1 - v0, v0

; Calculate moon color

dp3 r1, t2 bx2, v1 bx2

mul sat r1, t1, r1

; ADD current color and scaled moon color

mad sat r0, r1, c0, r0

248
Advanced Sky Dome Rendering

Section II — Rendering Techniques

Where to Go from Here

There are a number of improvements that can be made to these shaders. Among
them are the following:
� Currently, no stars are displayed. They can be implemented using a static

cube map made from photographs of the night sky. A better approach is the
run-time creation of a map using the positional data from the public Bright
Star Catalogue (BSC) or displaying them as points using the information from
the BSC. Furthermore, the star map must be rotated by the time of day to
simulate the Earth’s rotation.

� In addition to the position of the sky objects, [SchlyterA] gives equations to
compute the apparent diameter. The resulting value can be used to change
the projected size of the object.

� The texture for the moon and the sun can be generated at run time using real
3D objects. A solar and lunar eclipse would be possible.

� Other sky objects can be simulated (e.g., planets, asteroids, and comets).
� The topocentric position can be used instead of the geocentric one. Note

that when using topocentric coordinates, the positions of the stars have to
change depending on the position of the viewer. The night sky in the north-
ern hemisphere, for example, is different from that in the southern side.

� A better night sky model can be applied simulating the influence of the moon-
light, the stars, and phenomena like zodiacal light or airglow. [Jensen] has
some great ideas on that.

� Fog and haze are missing. The method outlined in [Hoffman] can be useful as
an expansion or substitution.

� Clouds are missing, a topic that could fill many books. They can be imple-
mented using simple noise textures or with approaches described in [Harris]
or [Miyazaki], for example. With clouds, effects like rainfall, snowfall, and
maybe even rainbows or lightning can be simulated.

Conclusion

This article showed a basic approach for implementing a simple, non-static sky
dome. Although incomplete and not very accurate, it is a good starting point for
further research into the topic of outdoor rendering. The complete source code
and a sample application can be found on this book’s companion CD. In addition,
Color Plates 9 and 10 show screen shots of the sky along with the advanced water
effects discussed earlier in the book.

Acknowledgments

Thanks to Max Dennis Luesebrink and Matthias Wloka for their work on the very
early version of the sky dome and its vertex shader.

Advanced Sky Dome Rendering
249

Section II — Rendering Techniques

References

[Harris] Harris, Mark J. and Anselmo Lastra, “Real-Time Cloud Rendering,”
Eurographics 2001 Proceedings, Vol. 20, no. 3, pp. 76-84.

[Hoffman] Hoffman, Naty and Arcot J. Preetham, “Rendering Outdoor Light Scat-
tering in Real Time,” Proceedings of the 2002 Game Developers Conference.

[Jensen] Jensen, Henrik Wann, Fredo Durand, Michael M. Stark, Simon Premoze,
Julie Dorsey, and Peter Shirley, “A Physically-Based Night Sky Model,”
SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference Series,
pp. 399-408.

[Miyazaki] Miyazaki, R., S. Yoshida ,Y. Dobashi, and T. Nishita, “A Method for
Modeling Clouds based on Atmospheric Fluid Dynamics,” Pacific Graphics 2001,
pp. 363-372.

[Nishita] Nishita, Tomoyuki, Yoshinori Dobashi, Kazufumi Kaneda, and Hideo
Yamashita, “Display Method of the Sky Color Taking into Account Multiple Scat-
tering,” SIGGRAPH 1996, Computer Graphics Proceedings, Annual Conference
Series, pp. 379-386.

[SchlyterA] Schlyter, Paul, “How to compute planetary positions,” available online
at http://hem.passagen.se/pausch/comp/ppcomp.html.

[SchlyterB] Schlyter, Paul, “Computing planetary positions — a tutorial with
worked examples,” available online at http://stjarnhimlen.se/comp/tutorial.html.

250
Advanced Sky Dome Rendering

Section II — Rendering Techniques

Deferred Shading with
Multiple Render Targets

Nicolas Thibieroz

Introduction

Traditional rendering algorithms submit geometry and immediately apply shading
effects to the rasterized primitives. Complex shading effects often require multi-
ple render passes to produce the final pixel color with the geometry submitted
every pass. Deferred shading (aka quad shading) is an alternative rendering tech-
nique that submits the scene geometry only once, storing per-pixel attributes into
local video memory to be used in the subsequent rendering passes. In these later
passes, screen-aligned quads are rendered, and the per-pixel attributes contained
in the buffer are retrieved at a 1:1 mapping ratio so that each pixel is shaded indi-
vidually. The following figure illustrates the principle of deferred shading.

Deferred shading has a number of advantages over traditional rendering. Firstly,
only a single geometry pass is required, even if shadow algorithms are used. By

251

Figure 1: Deferred shading flow diagram with arbitrary examples of stored data
(position, normal, and color)

virtually eliminating multiple geometry passes, the saved vertex throughput can
be used to dramatically increase the polygon budget of the single geometry pass,
improving the scene’s realism without compromising the performance of the
shading passes (as they are not dependent on underlying geometry).

Secondly, all shading calculations are performed per-pixel, as each pixel has a
unique set of properties. For shading effects that simulate lighting, this is prefera-
ble to using interpolated vertex shader outputs. This subtle difference can have a
dramatic impact on the quality of the visual results.

Thirdly, deferred shading has the advantage of reducing pixel overdraw, as
only the initial geometry pass may have an average overdraw value above 1. This
is because all shading passes operate on pixels that are already visible; thus, no
overdrawn pixel will ever be touched by the pixel shader during the shading
passes.

These advantages make deferred shading an interesting alternative to tradi-
tional multi-pass rendering, though the accrued memory footprint and bandwidth
requirements need careful consideration when implementing this technique. This
article describes deferred shading in detail and gives practical implementation
examples that show how deferred shading can be applied to current and future
games using the DirectX 9 API and beyond.

Multiple Render Targets

Prior to DirectX 9, one could only output a maximum of 32 bits consisting of four
color components to a render target in a single pass. However, deferred shading
requires a greater number of components to accommodate the pixel attributes cal-
culated during the initial pass. Multiple render targets (MRTs), a new feature of
DirectX 9, allow up to four render targets to be written to in the same rendering
pass, bringing the total number of output components to 16 and the maximum
precision to 512 bits (although these can vary depending on the host 3D device).
Without MRT support, outputting more than four components would require addi-
tional geometry passes.

These MRTs are used to store scene information during the geometry pass
(or “building pass”) and are then accessed as textures during the shading passes.
Note that MRTs have the following limitations in the DirectX 9 API:
� They must be of identical size.
� They can only be of different bit depths if the D3DPMISCCAPS_MRTINDEPENDENT-

BITDEPTHS cap is exported by the 3D device.
� Dithering, alpha testing, fogging, blending, or masking are only supported if

the 3D device exposes the D3DPMISCCAPS_MRTPOSTPIXELSHADERBLENDING cap.
� They may not be antialiased.

Each MRT contains per-pixel information about the scene and therefore should be
of the same size as the main render target (the back buffer). Because the back
buffer’s width and height are usually not a power of two, 3D devices not support-
ing the D3DPTEXTURECAPS_NONPOW2CONDITIONAL cap will need to create MRTs at the

252
Deferred Shading with Multiple Render Targets

Section II — Rendering Techniques

next power of two size above the main render target dimensions (e.g., for a
1280x1024 back buffer, the MRT’s size will be 2048x1024). Although non-power
of two MRTs have limitations, these do not directly affect the algorithm.

Multi-element textures (METs) are another feature, albeit less flexible, of
DirectX 9 that closely resembles MRTs. METs are basically a set of textures of the

same format packed together. This limitation and the fact that DirectX 9 exports a
single MET format called D3DFMT_MULTI2_ARGB8 (two textures of 8888 format)
make METs unsuitable for deferred shading.

Attribute Buffer

The attribute buffer is the name that we give to the scene data we are storing in
our MRT textures during the building pass. The choice of stored data depends on
the shading model. For instance, Gouraud-shaded directional (or parallel) lights
only require each pixel’s normal and material properties, whereas Phong-shaded
point or spotlights require the pixel’s position in addition to its normal and mate-
rial properties.

The implementation detailed in this article assumes all lights required during
the shading passes are based on the Phong model, and therefore the attribute
buffer contains the following:
� Pixel position (X, Y, Z)
� Pixel normal vector (X, Y, Z)
� Pixel diffuse color (R, G, B)

Pixel Position

This is the world space position of the pixel. Note that it is also possible to store
the position in a different coordinate system (eye space being the other logical
alternative), providing all data stored and used in the pixel shader during the light-
ing passes is in the same space.

World space pixel positions can be calculated by transforming each vertex in
the vertex shader by the world matrix for the associated model and outputting the
result to a 3D texture coordinate. The iterated texture coordinates in the pixel
shader define the world space position for this pixel.

A 16-bit per-channel float format is ideal to store the pixel’s world position in
order to accommodate a wide range of possible values with sufficient precision
(i.e., D3DFMT_A16B16G16R16F). See Color Plate 11 for an illustration of position
data.

Pixel Normal Vector

This is the world space normalized normal vector for the pixel. There are two
options that we can choose when producing the world space normal vectors for
storage in the property buffer: model space and tangent space.

Deferred Shading with Multiple Render Targets
253

Section II — Rendering Techniques

Pixel Normals Defined in Model Space

The first and simplest option is to have the normals in bump maps already defined
in model space. Model space normal maps are sometimes calculated with a soft-
ware tool to generate a low-poly model with model space normal maps from a
high-poly model. With normals defined in model space, a simple world matrix
transformation in the pixel shader is all that is required to obtain world space nor-
mals. Although this solution is simple to implement in terms of calculations, it
also requires more texture memory, since texture maps are usually unique for
each model. Also, the artist may have the scene’s normal data already defined in
tangent space, so it might be more convenient from a design point of view to use
these instead.

Pixel Normals Defined in Tangent Space

The second option is more complicated but operates from normals defined in tan-

gent space (also called texture space). Tangent space is a coordinate system indicat-
ing the texture surface orientation at each vertex. Traditional per-pixel lighting
usually involves transforming the light vector into tangent space so that a DOT3
operation can be performed with the tangent space normals contained in the
bump map. See Equation (1).

� � �

V V TS V

T N B

T N B

T N B

TS MS MS

X X X

Y Y Y

Z Z Z

� $ � $

�

�

�

�

�
�
�

() (1)

With deferred shading, the normals need to be transformed from tangent space to
world space. In the same way a vector is transformed from model space to tan-
gent space using the tangent space matrix, a tangent space vector can be trans-
formed to model space using the inverse of the tangent space matrix.
Conveniently, the tangent space matrix is a pure rotation matrix, so its inverse is
simply its transpose. See Equation (2).

� � �

V V

T N B

T N B

T N B

V

T T T

TS TS

X X X

Y Y Y

Z Z Z

T

TS

X Y

� $

�

�

�

�

�
�
�

� $
Z

X Y Z

X Y Z

N N N

B B B

�

�

�

�

�
�
�

(2)

Because we need the normal vectors in world space, we also need to transform
them with the rotation part of the world matrix associated with the current model.
The equation becomes:

� �

V V TS WWS TS
T� $ $() () (3)

For static models, it is a good idea to have their local orientation match their ori-
entation in world space so that only a simple transformation with the transpose of
the tangent space matrix is necessary. This saves a few instructions compared to
the dynamic object’s case, which requires Equation (3) to be fully honored.

Because we need a set of transposed tangent space vectors at each pixel, the
normal, binormal, and tangent vectors are passed to the pixel shader through a

254
Deferred Shading with Multiple Render Targets

Section II — Rendering Techniques

set of three 3D texture coordinates. The iterated vectors define our tangent space
matrix for the current pixel. In theory, these vectors need renormalization before
they can be used to transform the normal; however, in practice the difference in
visual quality is negligible, provided the scene tessellation is high enough.

Precision and Storage

In both cases it can be desirable to renormalize the iterated normals for improved
accuracy. Although linearly interpolated normals are usually close enough to unit
vectors, the error margin accumulates when complex math operations are per-
formed on these vectors (e.g., calculation of reflection vectors).

Although a float format could be used to store world space normal vectors in
the attribute buffer, it is more economical and usually sufficiently accurate to use
a 32-bit integer format instead (D3DFMT_A2W10V10U10, D3DFMT_A2B10G10R10,
D3DFMT_Q8W8V8U8, D3DFMT_A8R8G8B8).

The deferred shading implementation described in this article uses tangent
space normal maps. See Color Plate 12 for an illustration of normal data.

Pixel Diffuse Color

The pixel’s diffuse color is stored in the property buffer. This color is extracted
from the diffuse texture associated with the model. This color can be stored using
a simple 32-bit texture format (D3DFMT_A8R8G8B8). Diffuse data is shown in Color
Plate 13.

Building Pass

This section details how the attribute buffer is constructed and stored in MRTs.
During the building pass, all the data relevant to the scene is calculated and stored
in our MRTs. The pixel shader sends the relevant data into each of the three
MRTs (i.e., pixel position, normal, and color).

Vertex Shader Code

The vertex shader code used for the building pass is fairly simple.

;---

; Constants specified by the app

; c0-c3 = Global transformation matrix (World*View*Projection)

; c4-c7 = World transformation matrix

;

; Vertex components

; v0 = Vertex Position

; v1, v2, v3 = Inverse of tangent space vectors

; v4 = 2D texture coordinates (model coordinates)

;---

vs 2 0

dcl position v0 ; Vertex position

Deferred Shading with Multiple Render Targets
255

Section II — Rendering Techniques

dcl binormal v1 ; Transposed binormal

dcl tangent v2 ; Transposed tangent

dcl normal v3 ; Transposed normal

dcl texcoord v4 ; Texture coordinates for diffuse and normal map

; Vertex transformation

m4x4 oPos, v0, c0 ; Transform vertices by WVP matrix

; Model texture coordinates

mov oT0.xy, v4.xy ; Simply copy texture coordinates

; World space coordinates

m4x3 oT1.xyz, v0, c4 ; Transform vertices by world matrix (no w

; needed)

; Inverse (transpose) of tangent space vectors

mov oT2.xyz, v1

mov oT3.xyz, v2

mov oT4.xyz, v3 ; Pass in transposed tangent space vectors

Pixel Shader Code

The pixel shader version used has to be able to output multiple color values.
Therefore, pixel shader 2.0 or higher is required. The model texture coordinates
are used to sample the pixel diffuse color and normal from their respective tex-
tures. The world space coordinates are directly stored into the position MRT.
Finally, the transposed tangent space vectors are used to transform the sampled
normal before storing it into the normal MRT.

;---

; Constants specified by the app

; c0-c3 = World transformation matrix for model

;---

ps 2 0

; Samplers

dcl 2d s0 ; Diffuse map

dcl 2d s1 ; Normal map

; Texture coordinates

dcl t0.xy ; Texture coordinates for diffuse and normal map

dcl t1.xyz ; World-space position

dcl t2.xyz ; Binormal

dcl t3.xyz ; Tangent

dcl t4.xyz ; Normal (Transposed tangent space vectors)

; Constants

def c30, 1.0, 2.0, 0.0, 0.0

def c31, 0.2, 0.5, 1.0, 1.0

; Texture sampling

texld r2, t0, s1 ; r2 = Normal vector from normal map

256
Deferred Shading with Multiple Render Targets

Section II — Rendering Techniques

texld r3, t0, s0 ; r3 = Color from diffuse map

; Store world-space coordinates into MRT#0

mov oC0, t1 ; Store pixel position in MRT#0

; Convert normal to signed vector

mad r2, r2, c30.g, -c30.r ; r2 = 2*(r2 - 0.5)

; Transform normal vector from tangent space to model space

dp3 r4.x, r2, t2

dp3 r4.y, r2, t3

dp3 r4.z, r2, t4 ; r4.xyz = model space normal

; Transform model space normal vector to world space. Note that only

; the rotation part of the world matrix is needed.

; This step is not required for static models if their

; original model space orientation matches their orientation

; in world space. This would save 3 instructions.

m4x3 r1.xyz, r4, c0

; Convert normal vector to fixed point

; This is not required if the destination MRT is float or signed

mad r1, r1, c31.g, c31.g ; r1 = 0.5*(r1 + 0.5)

; Store world-space normal into MRT#1

mov oC1, r1

; Store diffuse color into MRT#2

mov oC2, r3

We’ve already established that all models rendered with an identity rotation in
their world matrix do not need to have their normals further transformed by this
matrix. As shown above, skipping this step would save three pixel shader instruc-
tions. However, this implies using two different shaders, one for dynamic models
and another for static ones. As these are usually not rendered in a defined order,
the amount of swapping between the two pixel shaders could be excessive. Using
extended pixel shader 2.0 (ps_2_x) or pixel shader 3.0, static flow control can be
used to determine if transformation with the world matrix is needed.

Note that all texture filtering, such as trilinear or anisotropic, need only be
performed in the building pass; the shading passes will directly access the
already-filtered pixels from the MRT surfaces that we have rendered (using point
sampling).

NOTE It is possible to store extra components into the attribute buffer using
some form of compression. For instance, bias and scale operations would
allow two 16-bit integer components to be stored in a 32-bit component. Pixel
shader instructions are required to pack and unpack the data, but it enables
more elements to be stored in case there are not enough outputs available.

Deferred Shading with Multiple Render Targets
257

Section II — Rendering Techniques

Shading Passes

Each shading pass needs only to send a screen-aligned quad so that the shading
calculations affect the entire render surface. The quad’s texture coordinates have
to be set up so that all pixels in the quad reference our MRT data at a 1:1 mapping
ratio. Direct3D’s sampling rules stipulate that an offset is required in order to
achieve a perfect texel-to-pixel mapping. Given the width (W) and height (H) of
the back buffer, the vertices forming the full-screen quad need to be set up in the
following way:

POSscreen is the vertex position in screen space coordinates. TEX represents the
2D texture coordinates to use for this vertex.

NOTE The same 1:1 mapping ratio is achieved by offsetting screen space
positions by –0.5 and setting texture coordinates to (0,0), (1, 0), (0, 1), and
(1,1).

Because the contents of the MRTs already represent visible pixels, there is no
need to enable depth buffering during the shading passes, saving valuable mem-
ory bandwidth.

Vertex Shader Code

No vertex processing is required, since screen space coordinates are directly sent
to the pixel shader. To skip vertex processing, the vertex declaration must include
the D3DDECLUSAGE_POSITIONT definition. In this case, only the transformed posi-
tion and the texture coordinates are required, thus the vertex declaration is:

D3DVERTEXELEMENT9 declTPositionUV[] =

{

{ 0, 0, D3DDECLTYPE FLOAT4, D3DDECLMETHOD DEFAULT, D3DDECLUSAGE POSITIONT, 0},

{ 0, 16, D3DDECLTYPE FLOAT2, D3DDECLMETHOD DEFAULT, D3DDECLUSAGE TEXCOORD, 0},

258
Deferred Shading with Multiple Render Targets

Section II — Rendering Techniques

Figure 2: Setting up the vertex structure for a screen-aligned quad

D3DDECL END()

};

Pixel Shader Code

The calculations to be performed during the shading passes obviously depend on
the needs of the application. It is up to the programmer to decide what lighting or
special effects can be applied with the data available in the attribute buffer. The
actual shading algorithms are not affected by their transition to a deferred shading
context.

The following pixel shader is based on Phong lighting and implements diffuse
and specular shading with distance attenuation. Each active light’s contribution is
accumulated by additively blending a full-screen quad onto the frame buffer. A
number of optimizations can be implemented in this shader, but for simplicity they
are not shown here. For example, another lookup texture could be used to replace
the 3-slot pow instruction or a simpler falloff model could be used, etc. A cube nor-
malization map is used for vector normalization, although the nrm instruction is an
alternative choice. The falloff texture is a simple lookup texture containing the
light attenuation based on the pixel’s distance from the light divided by its maxi-
mum range (texture clamping is used).

;---

; Constants specified by the app

; c0 : light position in world space

; c8 : camera position in world space

; c22: c22.a = 1/(light max range), c22.rgb = 1.0f

;---

ps 2 0

; Samplers

dcl 2d s0 ; MRT#0 = Pixel position in world space

dcl 2d s1 ; MRT#1 = Pixel normal vector

dcl 2d s2 ; MRT#2 = Pixel diffuse color

dcl 2d s3 ; Falloff texture

dcl cube s4 ; Cube normalization texture map

; Texture coordinates

dcl t0.xy ; Quad screen-space texture coordinates

; Constants

def c20, 0.5, 2.0, -2.0, 1.0

def c21, 8.0, -0.75, 4.0, 0.0

; Retrieve property buffer data from MRT textures

texld r0, t0, s0 ; r0.xyz = Pixel world space position

texld r2, t0, s1 ; r2.xyz = Pixel normal vector

texld r3, t0, s2 ; r3.rgb = Pixel color

; Convert normal to signed vector

; This is not required if the normal vector was stored in a signed

Deferred Shading with Multiple Render Targets
259

Section II — Rendering Techniques

; or float format

mad r2, r2, c20.y, -c20.w ; r2 = 2*(r2 - 1)

; Calculate pixel-to-light vector

sub r1.xyz, c0, r0 ; r1 = Lpos - Vpos

mov r1.w, c20.w ; Set r1.w to 1.0

nrm r4, r1 ; Normalize vector (r4.w = 1.0/distance)

; Compute diffuse intensity

dp3 r5.w, r4, r2 ; r5.w = (N.L)

; FallOff

rcp r6, r4.w ; r6 = 1/(1/distance) = distance

mul r6, r6, c22.a ; Divide by light max range

texld r6, r6, s3 ; Sample falloff texture

; Compute halfway vector

sub r1.xyz, c8, r0 ; Compute view vector V (pixel to camera)

texld r1, r1, s4 ; Normalized vector with cube map

mad r1, r1, c20.y, -c20.w ; Convert vector to signed format

add r1, r1, r4 ; Add view and light vector

texld r1, r1, s4 ; Normalize half angle vector with cube map

mad r1, r1, c20.y, -c20.w ; Convert to signed format

; Compute specular intensity

dp3 sat r1.w, r1, r2 ; r1.w = sat(H.N)

pow r1.w, r1.w, c21.r ; r1.w = (H.N)^8

; Set specular to 0 if pixel normal is not facing the light

cmp r1.w, r5.w, r1.w, c21.w ; r1.w = ((N.L)>=0) ? (H.N)^8 : 0

; Output final color

mad r0, r3, r5.w, r1.w ; Modulate diffuse color and diffuse

; intensity and add specular

mul r0, r0, r6 ; Modulate with falloff

mov oC0, r0 ; Output final color

Advanced Shading Passes

The simple lighting pass shown above is only the beginning of what can be
achieved with deferred shading. Because shading passes are no longer geome-
try-dependent and only applied to visible geometry, their utilization is optimal.
This performance saving can be used to implement more complex shaders or
effects.

260
Deferred Shading with Multiple Render Targets

Section II — Rendering Techniques

Better Lighting

A “real” specular calculation based on the camera reflection vector is straightfor-
ward to implement, since both the pixel and camera position are known. That is,
instead of calculating (.)

� �

H N , the light reflection vector around the normal (given

by
� � � � �

R N L N L� $ $ �2 (.)) can be calculated and used in a dot product operation
with the view vector. The specular properties of each pixel could be stored in the
attribute buffer (e.g., using the alpha of the diffuse texture in our implementation)
and used as the power of the specular calculation.

Different types of light can be implemented, from directional and point lights
to spotlights or custom-shaped lights (light volumes are discussed later in this
article). More complex light attenuation models can be implemented using math
instructions inside the pixel shader instead of a texture lookup. Light maps can be
used for custom-shaped lights or when there is a need to restrict light contribu-
tion to a defined area. The demo on the CD offers some implementations of the
effects mentioned above.

Extended Attribute Buffer

Providing memory storage and bandwidth are not limiting factors (see later in this
article for a discussion about bandwidth considerations), the attribute buffer can
be used to store additional data relevant to the scene properties, allowing more
complex effects to be implemented later on in the shading passes.

In the example shown in this article, the material properties are simply
approximated to a diffuse color issued from each model’s diffuse map. Other prop-
erties, like specular maps, specular power maps, detail maps, tangent vectors for
anisotropic lighting, a Fresnel term, BRDF data, etc., could be stored in the attrib-
ute buffer. There are potentially so many material properties to store that there
might not be enough space to accommodate them. Various tricks can be used to
effectively compress as much data as possible in a reasonably allocated MRT
space, like storing material IDs, using volume textures, etc.

Shadows

Deferred shading is fully compatible with the rendering of shadows within the
scene.

Let’s consider stencil shadows (as used in the demo). In the traditional ren-
dering case (e.g., Doom III-style rendering), each shadow-casting light requires
the scene geometry to be submitted (on top of shadow volumes) so that only
non-shadowed areas are affected by the lighting calculations. When a high number
of lights are used, the number of geometry passes quickly becomes overwhelm-
ing. With deferred shading, only the shadow volumes and a full-screen quad per
light are required:

Building pass
For each light:

Clear stencil buffer, disable color writes

Deferred Shading with Multiple Render Targets
261

Section II — Rendering Techniques

Render shadow volumes onto stencil buffer
Enable color writes, stencil test passes for non-shadowed areas
Light pass

Shadow maps are also compatible with deferred shading. Since the world space
pixel position can be stored in the attribute buffer, the distance from the pixel to
the current light can be calculated in the shading pass. It can then be compared to
the depth value in the shadow map to determine if the pixel is in shadow or not.
This technique is sometimes referred to as forward shadow mapping.

Higher Color Range

DirectX 9 does not allow blending into floating-point render targets. Because of
this limitation, alpha blending cannot be used to accumulate high dynamic range
lighting calculation results into a destination frame buffer in float format. With
fixed-point render targets, color channels are automatically clamped to 1.0 during
the blending process, and so if a higher color range is not needed, it is more eco-
nomical and straightforward to blend all shading contributions into a fixed-point
frame buffer. High color range effects, however, require an alternative solution.

The most obvious workaround to this limitation is to ignore the hardware
blending capabilities and perform alpha blending on the pixel shader manually.
The idea is to alternate between two floating-point render targets; one contains
the current contents of all shading contributions prior to the current pass and is
set as a texture input to the pixel shader, while the other is set as the destination
render target and receives the new color values updated with the contributions of
the current pass.

Translucency

In traditional rendering, alpha-blended polygons require a rendering pass of their
own. With deferred shading, alpha polygons requiring shading (e.g., stained-glass
objects) also need separate processing, although punch-through polygons (i.e.,
alpha-tested) can be sent with all other opaque triangles during the building pass.
This is because the attribute buffer can only store properties for a single pixel;
thus, any translucent pixels rendered on top of these would need to be stored
elsewhere. Unless additive blending is used, real translucent pixels (using an
order-dependent blending mode like SRCALPHA-INVSRCALPHA) need to be
blended with the back buffer only once to avoid repeated contributions from them-
selves. Hence, all shading passes need to be performed on the translucent pixels
before any blending with the background takes place. Another problem is overlap-
ping translucency; any translucent pixel rendered on top of a previously rendered
translucent pixel will need to take into account the new pixel color at this location
(i.e., resulting from the previous blending). These two points are of paramount
importance, since ignoring them can cause visual errors in the resulting render.

Unfortunately, there is no easy way to overcome these problems. For a
real-time application relying on performance, the best idea is probably to avoid

262
Deferred Shading with Multiple Render Targets

Section II — Rendering Techniques

using translucent objects that require lighting (light-independent translucent
objects like explosions, laser beams, smoke, etc., are unaffected because they typ-
ically do not need to be shaded). One could attempt to concatenate all shading
passes in one large shader and gross-sort the translucent triangles from back to
front using this shader. However, this might not be practical because of the sam-
pler and instruction limits in the pixel shader. Furthermore, this might not be
compatible with some shadowing techniques like stencil buffering. If lit translu-
cent objects are a requirement of your scene and you are prepared to “go all the
way,” then a solution is depth peeling (i.e., shading each “layer” of translucency
separately before blending it with the frame buffer). In practice the additional
memory, performance, and complexity caused by depth peeling do not make it a
very attractive solution to the translucency problem inherent in deferred shading.

Deferred Shading Optimizations

MRT Configuration and Bandwidth

Care must be taken when choosing the format and bit depth of the MRTs to use
with deferred shading. With DirectX 9 support for IEEE float formats, one might
be tempted to use four MRTs in the D3DFMT_A32B32G32R32F format for the added
precision and robustness they bring. However, not only will the memory require-
ments be considerable (at a 1024x768 screen resolution, this corresponds to total
of 48MB), but also the required memory bandwidth for each frame is likely to
cause a performance bottleneck.

Let’s examine in detail how much memory bandwidth deferred shading
requires. We define the following variables and assume some practical values for
them:

Variable

Name

Description Values Justification

W, H Render width, height 1024, 768 Typical rendering resolution

ZBPP, BBBPP Depth/stencil buffer bit depth, back
buffer bit depth

32 bpp,
32 bpp

Typical depth/back buffer bit
depth

Overdraw Average overdraw per pixel 3 Average overdraw

Sorting Average number of pixels
arranged in a back to front order.
In the worst case where all pixels
are ordered back to front this value
equals Overdraw; in the best case
it will be equal to 1:
1�Sorting�Overdraw.

1.5 We assume that half of
overdrawn pixels are drawn
back to front.

TBPP Average texture bit depth (e.g., if
half of textures are 32bpp and
other half is 16bpp, then TBPP=24)

24 bpp Mix of compressed, 32bpp
and 32bpp+ textures

Deferred Shading with Multiple Render Targets
263

Section II — Rendering Techniques

Variable

Name

Description Values Justification

TB, TS Average number of texture lookups
in building pass/shading pass pixel
shader

2, 4 Two texture lookup in
building pass (e.g., diffuse
and normal map), four in
shading pass (e.g., light
maps, cube normalization
map, etc.)

n Number of shading passes to
perform

8 Average of eight full-screen
shading passes

nMRT Number of MRT surfaces: 1�nMRT�4 - Variable

MRTBPP MRT bit depth - Variable

Table 1: Description of variables used in bandwidth calculation

Assumptions

Because of different 3D acceleration implementations among graphic adapters, it
can be difficult to model a universal bandwidth equation. However, by making a
number of assumptions about the rendering environment, we can get close to an
accurate result. Firstly, we assume the target 3D accelerator is an immediate
mode renderer with some form of early Z support (i.e., the depth test is per-
formed before the pixel shader — we can reasonably expect this optimization
from all new DX9 accelerators). Secondly, we assume a texture sample needs only
a single texel fetch, regardless of texture filtering. Finally, we ignore any form of
cache effectiveness.

Let’s see how much memory needs to be transferred across the bus for a sin-
gle frame using deferred shading. We start by analyzing each feature requiring
memory traffic during the building pass:

Depth/Stencil: WHZBPP$(Overdraw+Sorting)

Back Buffer: 0 (the back buffer is not read nor written during the building
pass)

Textures: WHTBPPTBSorting

Geometry buffers (vertex and index buffers): CGeometry (constant value)

MRTs: nMRTWH$MRTBPP$Sorting

Adding these together, we get:

MemoryOneFrame=WH[ZBPP$(Overdraw+Sorting)+ (4)
TBPPTBSorting+nMRT$MRTBPP$Sorting]+CGeometry

Let’s now examine how much memory needs to be transferred across the bus
during the n shading passes.

Depth/Stencil: 0 (depth buffer disabled)

Back Buffer: 2(R/W)WH$BBBPP$n

Textures: WHTS$TBPP$n

264
Deferred Shading with Multiple Render Targets

Section II — Rendering Techniques

Geometry buffers: 0

MRTs: nMRTWH$MRTBPP$n

Adding these together we get:

MemoryOneFrame=WHn$%&(R/W)$BBBPP+TS$TBPP+nMRT$MRTBPP' (5)

By adding the amounts of external memory accesses to perform during the build-
ing and the n shading passes and multiplying by a desired frame rate of 60 fps, we
obtain the following bandwidth formula:

Bandwidth W H

MRT n Sorting n

Z O
fps

BPP MRT

BPP

60 � $ $

$ $ �

� $

()

(

()

verdraw Sorting

T T Sorting

n BB T T

BPP B

BPP S BPP

�

� $ $

� $ $ � $

)

2

*

%

+
+
+
+
+

,

'

-
-
-
-
-

�

�

�

�

�

�
�
�
�
�

$CGeometry 60Bytes / Sec

Practical Example

Using our practical values, the bandwidth equation becomes:

Bandwidth

MRT n

fps

BPP MRT

60 1024 768

1 5 8

8 3 1
� $ $

$ $ �

� $ �

(.)

(

()

.)

.
.

5

3 2 1 5

8 2 4 4 3

16 106

� $ $

� $ $ � $

*

%

+
+
+
+
+

,

'

-
-
-
-
-

�

�

�

�

�

�
�
�
�
�

$ 60Bytes / Sec

. /Bandwidth MRT nfps BPP MRT60 0 05 9 5 205 1� $ $ $ � �. . GBytes / Sec

A gross approximation of the end result is:

Bandwidth
n MRT

fps
MRT BPP

60 2
10�

$
� GBytes / Sec (7)

Here are some examples of bandwidth values for a defined number of MRTs and
their bit depth for the selected variables:

MRTBPP=32 bpp MRTBPP=64 bpp MRTBPP=128 bpp

nMRT=2 14 GBytes/Sec 18 GBytes/Sec 26 GBytes/Sec

nMRT=3 16 GBytes/Sec 22 GBytes/Sec 34 GBytes/Sec

nMRT=4 18 GBytes/Sec 26 GBytes/Sec 42 GBytes/Sec

Table 2: Bandwidth figures for various MRT configurations with selected variables

This table clearly shows the overwhelming bandwidth requirements when an
unreasonable MRT configuration is chosen. Of course, other factors influence the
bandwidth requirements (notably the number of shading passes to perform), but
overall it is wiser to select the minimum possible number and bit depth for MRTs,
which can accommodate the stored data.

Deferred Shading with Multiple Render Targets
265

Section II — Rendering Techniques

Optimized MRT Configuration

The implementation described in this article stores position, normal, and diffuse
color into MRTs, totaling 64+32+32=128 bits of data. Providing the 3D device
supports the D3DPMISCCAPS_MRTINDEPENDENTBITDEPTHS cap, this data can be rear-
ranged in an optimized configuration so that memory bandwidth and footprint are
reduced. Consider the following configuration of four MRTs:
� MRT#0: D3DFMT_G16R16F: Store X, Y position in Red and Green channels
� MRT#1: D3DFMT_R16F: Store Z position in Red channel
� MRT#2: D3DFMT_A8R8G8B8: Store diffuse color in RGB, normal Z in A
� MRT#3: D3DFMT_A8L8: Store normal X in A, Y in L

This equates to a total of 96 bits. Note that the 3D device has to support these
formats as render targets for this configuration to be valid. The pixel shader code
in the building and shading passes needs to be adjusted to write and read MRT
data into their appropriate components.

Using 2D Shapes to Optimize Shading Passes

Sending full-screen-aligned quads for all shading passes results in all the screen
pixels being processed by the pixel shader. Depending on the number of passes to
perform, screen resolution, and shader complexity, this can lead to excessive and
costly pixel processing. By knowing the boundaries at which a light or special
effect ceases to contribute to the scene, only the screen pixels that are inside
those limits need to be sent (e.g., for a point light, this would be a 2D-projected
sphere whose radius is the maximum range of the light). Explosions, cone lights,
etc., can also benefit from using 2D shapes during the shading passes.

Projected Volumes

Unless the screen coordinates to which an effect is to be applied are already
known (HUD, part-screen filters, etc.), in most cases the 2D shapes to deal with
will be projections of 3D volumes into screen coordinates. This is required so that
world space units can be correctly transformed and mapped into screen space.

Let’s consider a simple point light of maximum range, MaxRange. Instead of
sending a full-screen quad during the shading pass, a sphere of radius MaxRange
is transformed and rasterized. This results in only the pixels inside the sphere to
be affected by the light and thus processed. Note that the pixel shader’s falloff cal-
culation must match the range used by the volume (i.e., pixels whose distance
from the light source is greater than MaxRange have a falloff of zero); otherwise
the difference in intensity between pixels inside and outside the sphere will be
clearly visible.

Sending a volume will have the same visual result as sending a full-screen
quad but without the overhead of processing out-of-bounds pixels. Color Plate 14
demonstrates this idea of processing only those pixels that are affected by the
light.

266
Deferred Shading with Multiple Render Targets

Section II — Rendering Techniques

Back Faces Only

Because the camera could be located inside the volume, it is important to render
the back faces of the volume only. Providing the volume is closed, is convex, and
does not intercept the far clip plane, this will ensure the projected shape is always
visible on the screen (for non-convex light volumes, a convex bounding volume
should be used). If the culling order was not reversed for those volumes, then the
projected shapes would only be correct if the camera was outside the volumes.
Rendering back faces only ensures the projected shape is correct regardless of
the camera position. Note that turning back-face culling off completely is not a
solution because some screen pixels end up being processed twice.

Because we are interested in the intersection of the light area with the visi-
ble pixels in the scene, a further optimization to this technique is to only render
the back-facing pixels of a volume whenever the normal depth buffer visibility
test fails. This can be achieved by simply inverting the Z test when rendering the
volume (e.g., using D3DCMP_GREATER instead of D3DCMP_LESSEQUAL).

Mapping Volume Texture Coordinates to Screen Space

Calculating screen space texture coordinates for the 2D projection of a volume is
more complicated than for an already-transformed full-screen quad. Given the
homogenous clipping coordinates xH, yH, zH, wH and the back buffer dimensions
Width and Height, the equation to retrieve screen-space texture coordinates uS

and vS is given by:

u
x

w Width

v
y

w

S
H

H

S
H

H

� $ �
�

�

�

�
�
� � $

� $ �
�

�

�

�
�
� �

1
2

1
1

2

1
2

1
1

2$ Height

(8)

Although the vertex shader could pass homogenous clipping coordinates directly
to the pixel shader, a sensible optimization is to precalculate the texture coordi-
nates in the vertex shader so that the pixel shader need only perform the projec-
tive divide. Conveniently, the latter can be obtained during the sampling process
by projected texture lookup. The equation becomes:

u
w

x w w

Width

v
w

w y w

H

S

H

H H H

S

H

H H H

� $ � �
$

�

�

�

�
�

� $ � �
$

1
2 2 2

1
2 2 2 eight

�

�

�

�
�
�

(9)

Vertex Shader Code
;---

; Constants specified by the app

; c0-c3 = Global transformation matrix (World*View*Projection)

; c9 = 1.0f/(2.0f*dwScreenWidth), 1.0f/(2.0f*dwScreenHeight)

Deferred Shading with Multiple Render Targets
267

Section II — Rendering Techniques

;

; Vertex components

; v0 = Vertex Position

;---

vs 2 0

dcl position v0 ; Vertex position

def c8, 0.5, -0.5, 0.0, 0.0

; Vertex transformation

m4x4 r0, v0, c0 ; Transform vertices by WVP matrix

mov oPos, r0 ; Output position

; Compute texture coordinates

mul r0.xy, r0, c8 ; x/2, -y/2

mad r0.xy, r0.w, c8.x, r0 ; x/2 + w/2, -y/2 + w/2

mad r0.xy, r0.w, c9, r0 ; x/2 + w/2 + w/(2*Width),

; -y/2 + w/2 + w/(2*Height)

mov oT0, r0 ; Output texture coordinates

Pixel Shader Code
The iterated texture coordinates issued from the vertex shader are divided by wH

and used as texture coordinates to sample the MRT textures using a projected
texture lookup.

ps 2 0

; Texture coordinates

dcl t0.xyzw ; iterated texture coordinates

; Samplers

dcl 2d s0 ; MRT#0 = World space position

dcl 2d s1 ; MRT#2 = World space normal vector

dcl 2d s2 ; MRT#3 = Pixel Diffuse Color

; Projected texture lookup into MRT textures

texldp r0, t0, s0 ; r0 = world space position

texldp r1, t0, s1 ; r1 = world space normal

texldp r2, t0, s2 ; r2 = Diffuse map color

NOTE With pixel shader 3.0 support, the process of retrieving texture
coordinates for a projected shape is simpler; the position register (which
contains the x, y screen position of the pixel currently being processed) can be
used with some scaling and biasing to perform this calculation directly.

Using shapes is better suited for smaller lights and special effects with limited
range. For bright lights or global effects likely to affect the entire render, a
full-screen quad is a better solution.

268
Deferred Shading with Multiple Render Targets

Section II — Rendering Techniques

CD Demo

The demo on the companion CD shows a scene using deferred shading (see Color
Plate 15). A total of nine lights are used — one point light affecting the entire
screen (“full-screen” light), two point lights rendered using projected sphere
shapes, and six cone lights rendered using projected cone shapes. A DX9-class 3D
accelerator with vertex shader 2.0/pixel shader 2.0 and MRT support is required
to run this demo.

The application can be controlled using menu options (press Alt to bring up
the menu in full-screen mode). The latest version of the demo is available on the
PowerVR Developer Relations web site at www.pvrdev.com.

Summary

This article described deferred shading and showed how to implement this tech-
nique using multiple render targets in DirectX 9. The two-phase process of the
algorithm was detailed with shader code examples as supportive material. Some
advanced deferred shading effects were proposed, and the robustness and overall
simplicity of the technique should encourage graphics programmers to invent
their own ideas for even better usage of this rendering algorithm. Finally, perfor-
mance and memory footprint considerations were discussed, and optimizations
were suggested to improve the effectiveness of the technique.

Deferred Shading with Multiple Render Targets
269

Section II — Rendering Techniques

Meshuggah’s Effects Explained

Carsten Wenzel

Before We Start…

What exactly is Meshuggah? It’s the name of my final year project at university
and was released in March 2001 at http://meshuggah.4fo.de. It uses DirectX 8.1
class hardware to render a number of shader effects. All of them are of a different
flavor and range from simple to fairly advanced. Meshuggah has two modes of
operation. There’s a demo mode where all effects run in a sequence and are syn-
chronized to a music track. The other mode is the interactive browser mode,
which allows you to view each effect individually and tweak all of its parameters.
One of the main goals while developing those shader effects was eye candy. This
means that the effects described herein are not pure vertex or pixel shader tricks.
Rather, they combine various techniques with shader technology to produce
something “visually stunning.” Quite a few of them were heavily inspired by
some great productions released by different demo scene groups during the last
couple of years. Others are my take on research results published in various
papers.

You are reading these words because Wolfgang Engel somehow came across
Meshuggah’s web site (around the time Direct3D ShaderX was hitting the
shelves) and sent me an e-mail asking whether I’d like to contribute to the
successor.

I hope the following pages offer some useful and interesting stuff to shader
fanatics — Xbox and PC game developers alike. I’m sure there are still a handful
of developers targeting DirectX 8.1. Before we delve into the details, please have
a look at the demo on the companion CD to get an idea of what you can expect to
find on the following pages. The demo comes with full source code for you to
study and experiment with. It contains some changes made to the original ver-
sion; specifically, these are minor fixes, speed-ups and cleanups in shader and
demo code.

Infinite Zoom on the z Plane

The subject of the first effect is a zoom into an “infinitely” detailed picture placed
on the z plane. Instead of starting to blur or get blocky, the picture constantly
reveals new detail. Ideally, hand-drawn pictures are used to render the zoom

270

sequence, as shown in Contour by The Black Lotus and Spot by Exceed (both
downloadable at [1]). Due to the author’s lack of artistic skills, we use fractals
(e.g., the Mandelbrot set) instead of hand-drawn art. Don’t confuse it with a typical
fractal zoom though; we don’t evaluate the Mandelbrot set for each frame that we
render. It’s a strictly image-based rendering effect.

The basic algorithm works as follows. Given is a sequence of bitmaps for a
predefined zoom path, each bitmap refining a certain area of the previous one (see
Figure 1).

Some rules apply in order to maintain the illusion of a zoom.
� As mentioned before, each bitmap has to reside strictly within the previous

one.
� Each bitmap should cover at least one quarter of the previous one. This way,

new detail will always be available for the area we’re zooming into, thus pre-
venting blurry results.

� The bitmap resolution should at least match the screen resolution. This
avoids blurry parts in the corners of a rendered frame.

Achieving a zoom effect is now just a matter of drawing these bitmaps properly.
The bitmap sequence needs to be laid out on the z plane. Position and size —
width and height if it’s not a square — of the first bitmap are set to some default
values (e.g., (0, 0) and 1). For the following bitmaps, position and size result from
their absolute location within the first bitmap and how much of its area they
occupy (see Figure 2).1

Meshuggah’s Effects Explained
271

Section II — Rendering Techniques

Figure 1: Two consecutive bitmaps of a zoom sequence

1 As we zoom into the Mandelbrot set, we can also derive position and size values from the complex
coordinates used to render the bitmap sequence.

To render a frame of the zoom, we draw the sequence of bitmaps in ascending
order with depth test and write being disabled. The position and size values for
each bitmap are used to form a quad or rectangle, respectively. In fact, not all
bitmaps need to be drawn. It is enough to begin with the bitmap having the high-
est index in the sequence and still filling the entire screen for the current zoom
position of the camera.

The camera hovers over the z plane, looking straight down using a 90
degrees field of view. Its position is determined by evaluating a spline function
based on the key points of the zoom path for a given time t. Each key point maps
directly to a bitmap. It describes the position of the camera necessary to see the
associated bitmap entirely at full resolution. For a 90 degrees field of view, the key
point ci for bitmap i placed at position pi and having a size of si (or width wi and
height hi) is as follows:

ci.x = pi.x + si · 0.5 or ci.x = pi.x + wi · 0.5

ci.y = pi.y + si · 0.5 or ci.y = pi.y + hi · 0.5

ci.z = – (si · 0.5) or ci.z = – (max(wi, hi) · 0.5)

Applying those formulas to the two bitmaps in Figure 2 yields c1 = (0.5, 0.5, –0.5)
and c2 = (0.45, 0.62, –0.25).

The shaders used for rendering the zoom are straightforward. The vertex
shader transforms each quad/rectangle into clip space and feeds the vertex shader
with texture coordinates. The pixel shader just fetches a color from a bitmap and
stores it as the output color.

Meshuggah uses ten mipmapped textures with a resolution of 1024x1024
pixels to represent the sequence of bitmaps for a zoom. Each texture alone
would take up 6MB if stored as a raw 32-bit ARGB texture. To save texture
memory and bandwidth without compromising zoom depth, compressed textures
are used. This way (using DXT1), we can cut down the required storage space to

272
Meshuggah’s Effects Explained

Section II — Rendering Techniques

Figure 2: Possible layout of bitmaps for a zoom sequence

one-eighth of the original uncompressed textures. Obviously, all this isn’t for free.
Saving a texture in a compressed format will introduce artifacts that are more or
less visible, depending on the texture’s content. Also, compressed texture for-
mats usually store colors at a lower depth (16 bits for the colors at either extreme
of a compression block in DXT1), thus introducing color bleeding. In order to
remedy this and improve texture quality, dithering should be performed when
saving textures in a compressed format.

Anisotropic Lighting on Hair Strands

In this section, we generate hair strands that move around, bend under the force
of gravity and inertia, and have anisotropic lighting applied to them. For some of
you, it might be reminiscent of the hair effect in Lapsus by Maturefurk (also avail-
able for download at [1]).

Let’s first talk about how physics are implemented in order to animate the
hair. As mentioned above, the two forces used to animate the hair in this effect
are gravity and inertia. Gravity is simply a constant vector for all hairs. Inertia is
simulated by calculating the second derivative of a function describing each hair
tip’s current position.

What information is necessary to create hair strands? Well, assuming each
hair starts at the origin and ends at some point on a unit sphere, we only need a
unitized normal for the default hair direction (in case there is zero gravity and
zero inertia). To get some variation, we also store the hair length as well as a 1D
texture coordinate. The 1D texture coordinate will be used in conjunction with a
1D noise texture to model streaks running along the hair. Using randomized val-
ues to set up all components gives each hair an individual and more natural look.

It’s time to generate the hairs. Each hair has a fixed number of joints for
which a position needs to be calculated. We start at the origin and set the current
hair direction to its default. For the rest of the joints, we sum up the current direc-
tion, the global gravity vector, and the hair’s inertia vector to a new temporary
direction vector. This temporary direction vector needs to be normalized. The
position for each hair joint is then calculated by taking the position of the previous
joint and adding the normalized temporary direction vector scaled by the hair
length to it. The current hair direction is updated by setting it to the normalized
temporary direction vector. This translates into the following code:

vCurPos = (0, 0, 0);

vCurDir = vHairDir;

for(int i(0); i < NUM JOINTS; ++i)

{

vTempDir = vCurDir + vGravity + vHairInertia;

Normalize(vTempDir);

vCurPos += vTempDir * fHairLength;

vCurDir = vTempDir;

}

This is the generation of one hair. Bold arguments indicate hair and physics
parameters.

Meshuggah’s Effects Explained
273

Section II — Rendering Techniques

We connect all adjacent joints by generating quads between them. In DirectX
this can be done efficiently using triangle strips. Note that multiple hairs can be
put into one big triangle strip by stitching them together to increase rendering
performance. In order to generate a quad, we actually need two position vectors
per joint. Otherwise, we would be generating lines — that is, triangles with an
area of zero! By crossing the initial direction vector of each hair with the global
gravity vector and normalizing the result, we get a vector that when shortened by
some amount (depending on how thick the hair should be) can be added to each
joint’s position vector to get the second position vector that we need. At this
point, we should also prepare a 1D texture coordinate for both position vectors so
we can form vertices that can be sent to the vertex shader later. The 1D texture
coordinate for the first position vector is simply the one specified for each hair;
the 1D texture coordinate for the second position vector is the sum of the first
one and an arbitrary value, which is constant for all hairs. The bigger this arbi-
trary constant value, the thinner the streaks.

Now that we have generated the geometry, we need to define an appropriate
vertex and pixel shader to give the hair the proper look. Rendering the hair by
applying normal Phong shading works, although the result looks rather plastic.
Instead we take advantage of an anisotropic shading model to get the kind of light-
ing that we’re after. [2] and [3] describe how this can be done in hardware using a
2D texture as a lookup table for diffuse and specular intensities. The following
two formulas denote the diffuse and specular intensity for a given point P on a
surface with L being the vector from P to the light source, N the surface normal
in P, T the tangent vector in P, V the vector from P to the viewer, and R the
reflected light vector in P.

Diffuse intensity: L N L T� � � �1 2()

Specular intensity: V R L T V T L T V T� � � � � � � � � � �1 12 2() () () ()

As you can see from those formulas, the only two values we need for the texture
lookup are L·T and V·T. We pass the tangent vector for each joint of a hair (that is,
the current hair direction) along with the position vector and the 1D texture coor-
dinate to the vertex shader. Here we calculate L and V for each vertex and dot
them with T to get the proper texture coordinates for a lookup in the anisotropic
light map. Care must be taken to map L·T and V·T from [–1, 1] to [0, 1], since the
result of a dot product for two normalized vectors is in [–1, 1] but the correspond-
ing texture address range is [0, 1].

The following is a hair vertex shader:

#include "..\..\Effects\Hair\HairShaderConstants.h"

#define srcP v0

#define srcT v1

#define srcTex0 v2

#define V r2

#define T r0

274
Meshuggah’s Effects Explained

Section II — Rendering Techniques

#define L r3

#define PWorld r1

#define Temp r10

#define Temp1 r11

vs.1.1

// def CV CONSTANTS, 0.0, 0.5, 1.0, 2.0

// compute world space position

dp4 PWorld.x, srcP, c[CV WORLD 0]

dp4 PWorld.y, srcP, c[CV WORLD 1]

dp4 PWorld.z, srcP, c[CV WORLD 2]

dp4 PWorld.w, srcP, c[CV WORLD 3]

// vector from vertex position to eye

add V, c[CV VIEWERPOS], -PWorld

dp3 V.w, V, V

rsq V.w, V.w

mul V, V, V.w

// transform tangent into world space

dp3 T.x, srcT, c[CV WORLDIT 0]

dp3 T.y, srcT, c[CV WORLDIT 1]

dp3 T.zw, srcT, c[CV WORLDIT 2]

// normalize tangent

dp3 T.w, T, T

rsq T.w, T.w

mul T, T, T.w

// vector from vertex position to light

add L, c[CV LIGHTPOS], -PWorld

dp3 L.w, L, L

rsq L.w, L.w

mul L, L, L.w

// generate texture coordinates for anisotropic lighting

// and map from [-1, 1] to [0, 1]

dp3 Temp.x, V, T

dp3 Temp.y, L, T

mad oT0.xy, Temp.xy, c[CV CONSTANTS].y, c[CV CONSTANTS].y

// copy texture coordinate for 1D hair streaks texture

mov oT1.x, srcTex0.x

// transform vertex into clip space

dp4 oPos.x, srcP, c[CV WORLDVIEWPROJ 0]

dp4 oPos.y, srcP, c[CV WORLDVIEWPROJ 1]

dp4 oPos.z, srcP, c[CV WORLDVIEWPROJ 2]

Meshuggah’s Effects Explained
275

Section II — Rendering Techniques

dp4 oPos.w, srcP, c[CV WORLDVIEWPROJ 3]

The pixel shader finally computes the lighting. It fetches the diffuse and specular
intensity from the anisotropic light map as well as the color of the streaks from
the 1D noise texture. The colors and intensities are modulated and combined in
the following way:

#include "..\..\Effects\Hair\HairShaderConstants.h"

ps.1.1

tex t0 // get texel from anisotropic texture

tex t1 // get texel from 1D hair streaks texture

// r1 = specular intensity * specular color

mul r1, c[CP SPECULAR COLOR], t0.a

// r1 *= hair streak

mul r1, r1, t1

// r0 = diffuse intensity * hair streak

mul r0, t0, t1

// r0 = r0 * diffuse color + specular term in r1

mad r0, r0, c[CP DIFFUSE COLOR], r1

Reflections and Refractions on Soft Objects

Soft objects are usually expressed implicitly by mathematical functions. In order
to render them, it is therefore necessary to determine the polygonal representa-
tion of their so-called iso-surface first. This is where the marching cubes algo-
rithm or one of its derivatives comes into play.2 It allows us to determine the
polygonal surface of a 3D density field for a given density threshold. The density
data either comes from 3D volumetric data sets (e.g., taken from MRI scans) or is
generated by evaluating density functions (e.g., those used to describe soft
objects). Meshuggah’s soft objects are a conglomeration of simple blobs. A blob
can be defined as follows3:

�

�

�

�
�

p p p p

o o o o

F p
p o

x y z
T

x y z
T

�

�

�
�

()

()

()
| |

1
2

F returns the density at a given point p for a blob originated at o. Given such a
density function, we are able to calculate its partial derivative to obtain the normal
N for a point p in our density field. Having correct normals is crucial when render-
ing the surface later on.

The following is a partial derivative of a density function F(p) and its applica-
tion to calculate a normal N(p).

276
Meshuggah’s Effects Explained

Section II — Rendering Techniques

2 For an introduction to the marching cubes algorithm, refer to [4]. It also provides a C/C++ implementation.

3 Other formulas for modeling soft objects are presented in [5].

0 �
�

�

�

�

�
�

0 �

F p
F p

x

F p

y

F p

z

F p
o

T

()
() () ()

()

�

� � �

�

�

1

1

1

1

1

1

2
()�

�

� �0

�

�
�

� �

p

p o

N p F p

| |

() ()

4

()

()

()

N p
p o

p o

N p
p o p o p o

p o

x x y y z z

T

x x

()
| |

()

�

�
�

�
�

�

�
�

�

�
� � �

� �

2

2

4

2 () (). /p o p oy y z z� � �
2 2 2

For more complicated density functions, N can be approximated this way:

()()
()

#

2

#

#

#

2�

3

�

� �

� �

�10
1

1
0 0

0N p

F p F p

F p F p oapprox

T

()

()

()
�

� �

� �

()
()()

T

T
F p F p o()

� �

� �

�

�

�

�

�
�
�
��0 #

To build a complex soft object, the density functions of several individual blobs are
summed up. The normal at a given point p in space is the sum of each blob’s N(p).

As mentioned earlier in the text, we use the marching cubes algorithm to find
the polygonal surface of the soft object. However, the tessellation code in
Meshuggah takes special care to avoid brute-force testing of all voxels of the 3D
density field, which would result in a run-time
complexity of O(n3). Since the soft object’s
surface usually cuts through just a small frac-
tion of the total number of voxels, we track its
surface to limit further processing to those
only. For each blob we therefore trace a line
from its center out (any direction will do) until
we find a voxel that the soft object’s surface
cuts through. If it hasn’t been tessellated yet,
we compute the polygonal surface for it and
then progress to all neighbors also cut by the
surface until all interlinked voxels have been
visited. Otherwise, the blob penetrates
another one that has already been processed.
An algorithm outline is given in [6]. Figure 3
illustrates the tessellation procedure on a slice
of a 3D density field for a soft object consist-
ing of five blobs.

Meshuggah’s Effects Explained
277

Section II — Rendering Techniques

Figure 3: Efficiently tessellating a
soft object. The arrows indicate
surface tracking. The lines around
the object indicate the soft object’s
surface for a given density
threshold.

Now that the polygonal representation of the surface has been generated, we can
focus on the shaders. The goal is to render the soft object like a liquid. To do this,
a vertex shader has to calculate the reflected view vector and an approximately
refracted view vector for each vertex. It also computes an approximation of the
Fresnel term given in [7], which is used later in the pixel shader to combine two
colors sampled from an environment map that corresponds to the reflected and
refracted view direction.

The following is a reflection and refraction vertex shader:

#include "..\..\Effects\SoftObjects\SoftObjectsShaderConstants.h"

#define srcP v0

#define srcN v1

#define N r0

#define V r1

#define NShort r9

#define Temp r10

#define Temp1 r11

vs.1.1

// def CV CONSTANTS, 0.0, 0.5, 1.0, 2.0

// normalize normal

dp3 N.w, srcN, srcN

rsq N.w, N.w

mul N, N.w, srcN

// vector from vertex to eye

add V, c[CV VIEWERPOS], -srcP

dp3 V.w, V, V

rsq V.w, V.w

mul V, V, V.w

// calculate approximated Fresnel term F

// F = Fresnel factor * (1 - V.N) ^ 2

dp3 Temp, V, N

add Temp, c[CV CONSTANTS].z, -Temp

mul Temp, Temp, Temp

mul oD0.xyz, Temp, c[CV FRENSEL FACTOR].x

// calculate reflection vector

// R = 2 * (E.N) * N - V

dp3 Temp, N, V

mul Temp1, Temp, c[CV CONSTANTS].w

mul Temp1, Temp1, N

add oT0.xyz, Temp1, -V

// calculate refraction vector

278
Meshuggah’s Effects Explained

// R' = 2 * (E.NShort) * N - V

mul NShort, N, c[CV REFRACT]

dp3 Temp, NShort, V

mul Temp1, Temp, c[CV CONSTANTS].w

mul Temp1, Temp1, NShort

add oT1.xyz, Temp1, -V

// transform vertex to clip space

dp4 oPos.x, srcP, c[CV WORLDVIEWPROJ 0]

dp4 oPos.y, srcP, c[CV WORLDVIEWPROJ 1]

dp4 oPos.z, srcP, c[CV WORLDVIEWPROJ 2]

dp4 oPos.w, srcP, c[CV WORLDVIEWPROJ 3]

Reflection and refraction pixel shader:

#include "..\..\Effects\SoftObjects\SoftObjectsShaderConstants.h"

ps.1.1

tex t0 // get reflected color

tex t1 // get refracted color

// blend between refracted color and reflected color

// using Fresnel term

lrp r0, v0, t0, t1

Volumetric Beams via Radial Blur

Volumetric beams as the result of a spherical object emitting light can be rendered
quite convincingly using a radial blur. This technique doesn’t suffer from artifacts
usually found at silhouette edges when rendering shafts of light via multiple
additively blended shells — that is, by extruding the object’s mesh several times.

The beams effect in Meshuggah demonstrates the use of a radial blur by ren-
dering a “seething” sun. To achieve this, two things need some further thought:
� How to render the turbulent surface of a sun
� How to efficiently implement a radial blur in 3D hardware

Let’s begin with how to render the sun surface. It’s basically a textured sphere. A
great source for textures of that kind is [8], where you can find real sun pictures
shot by SOHO — the Solar & Heliospheric Observatory project carried out by the
European Space Agency (ESA) and the U.S. National Aeronautics and Space
Administration (NASA). One of the sun pictures provided there was taken to cre-
ate the texture in Figure 4 (on the following page).

In Figure 4 the alpha channel (left) is a filtered version of the color channel
(right) at a higher scale. Photoshop’s Glowing Edges filter was used to create it.
Bright pixels indicate areas of high sun activity, which will eventually end up as
long, intense beams. To make things more interesting, texture data from the alpha
channel should be animated when rendering the sun surface to gain a complex

Meshuggah’s Effects Explained
279

Section II — Rendering Techniques

motion. The following vertex and pixel shaders take care of this job. The following
is a sun surface vertex shader:

#include "..\..\Effects\Beams\RenderSunShaderConstants.h"

#define srcP v0

#define srcTex v1

#define Temp r0

vs.1.1

// apply texture scale factor

mul Temp, srcTex, c[CV TEXSCALE]

// animate texture coordinates

add oT0.xy, Temp.xy, c[CV TEXOFFSET 0].xy

add oT1.xy, Temp.xy, c[CV TEXOFFSET 1].xy

add oT2.xy, Temp.xy, c[CV TEXOFFSET 2].xy

add oT3.xy, Temp.xy, c[CV TEXOFFSET 3].xy

// transform surface vertex into clip space

dp4 oPos.x, srcP, c[CV WORLDVIEWPROJ 0]

dp4 oPos.y, srcP, c[CV WORLDVIEWPROJ 1]

dp4 oPos.z, srcP, c[CV WORLDVIEWPROJ 2]

dp4 oPos.w, srcP, c[CV WORLDVIEWPROJ 3]

The vertex shader creates four unique texture coordinates by scaling and translat-
ing the original uv coordinates fed to it. These are used later in the pixel shader to
create a complex motion of the sun’s surface. The offset constants are updated
per frame. Care must be taken when setting these values. Ideally, none of the tex-
ture coordinates move into the same direction at any time. Otherwise, the eye
will be able to keep the animation of individual textures coordinates apart, thus
destroying the illusion of a complex motion.

The following is a sun surface pixel shader:

280
Meshuggah’s Effects Explained

Section II — Rendering Techniques

Figure 4: Sun surface texture

#include “..\..\Effects\Beams\RenderSunShaderConstants.h"

ps.1.1

// get four samples from sun surface texture map

tex t0

tex t1

tex t2

tex t3

// calculate weighted sum of four alpha values

mul r0.a, t0.a, c[CP SURFACE BLEND VALUE].a

mad r0.a, t1.a, c[CP SURFACE BLEND VALUE].a, r0.a

mad r0.a, t2.a, c[CP SURFACE BLEND VALUE].a, r0.a

mad r0.a, t3.a, c[CP SURFACE BLEND VALUE].a, r0.a

// modulate weighted alpha value on

// surface color to compute final output

mul r0, t0, r0.a

The sun’s surface is animated by sampling the surface texture four times and cal-
culating the weighted sum of the alpha values — i.e., 0.25 · (t0.a + t1.a + t2.a +
t3.a). The result is then modulated on the color of the first sample to get the final
output color (see Figure 5a).

Now that the sun’s surface is rendered a radial blur has to be applied to it to
get volumetric beams. But how do we implement a radial blur taking advantage of
3D hardware? One way is to transform the image from Cartesian coordinates (x,
y) to polar coordinates (r, 4) and then do a horizontal blur (or vertical blur depend-
ing on which axis corresponds to r and 4 after the transformation) and finally
transform the result back to Cartesian coordinates. The problem with this
approach is that the CPU needs frame buffer read access to do it, a big perfor-
mance bottleneck on current 3D hardware. Fortunately, there is another way to do
the very same thing, which is particularly well suited for hardware-accelerated
rendering.

To accumulate a series of gradually zoomed-in versions of a source texture,
we render it into a destination texture with alpha blending being enabled. The
source texture contains the image to be used for the radial blur. In our case, it’s
the sun’s surface that we just rendered in the previous step. The destination tex-
ture stores the result of the radial blur. Have a look at the following code snippet
in which we render a radial blur:

Clear(pDstTexture);

SetRenderTarget(pDstTexture);

SetTexture(0, pSrcTexture);

EnableAlphaBlending(true);

SetSourceBlend(ONE);

SetDestinationBlend(ONE);

Meshuggah’s Effects Explained
281

Section II — Rendering Techniques

EnableDepthTest(false);

for(int i(0); i < NUM RADIAL BLUR STEPS – 1; ++i)

{

struct SScreenVertex2D

{

float x, y;

float u, v;

};

float fW((float) GetViewPort().GetWidth());

float fH((float) GetViewPort().GetHeight());

float fUVOffset(i * 0.0075f);

SScreenVertex2D pvQuad[4] =

{

{ 0.0f, 0.0f, fUVOffset, fUVOffset },

{ fW, 0.0f, 1.0f - fUVOffset, fUVOffset },

{ fW, fH, 1.0f - fUVOffset, 1.0f - fUVOffset },

{ 0.0f, fH, fUVOffset, 1.0f - fUVOffset }

}

float fTextureFactor((float) (NUM RADIAL BLUR STEPS - i) /

(float) (8 * NUM RADIAL BLUR STEPS));

SetTextureStageState(0, COLOROP, MODULATE);

SetTextureStageState(0, COLORARG1, TEXTURE);

SetTextureStageState(0, COLORARG2, fTextureFactor);

DrawScreenQuad(pvQuad);

}

As you can see, the code draws a number of screen quads into the destination tex-
ture with depth testing being disabled. They all have the same size covering the
entire viewport of the destination texture. The only difference is that with every
new quad that gets drawn, we zoom into the source texture by moving the texture
coordinates toward the source texture’s center at (0.5, 0.5). Additively, blending
the individual quads together results in a radial blur effect. Pixels with a high
intensity in the source texture get smeared in radial fashion, thus creating beams.
A texture factor is applied while rendering the quads in order to let beams fade
out (see Figure 5b).

In a final step, the destination texture is stretched over the screen. To main-
tain a correct aspect ratio, the sun surface should have been rendered into the
source texture using the aspect ratio of the screen, as opposed to using the one of
the source texture itself. This ensures that the sun appears as a spherical and not
elliptical object when finally making its way to the screen.

282
Meshuggah’s Effects Explained

Section II — Rendering Techniques

Simple, Faked Displacement Mapping

Due to the fast pace at which new generations of GPUs are developed, displace-
ment mapping has become more and more a standard feature in hardware-acceler-
ated rendering. Displacement maps, as opposed to bump maps, won’t destroy the
impression of surface detail once a certain part of an object that you’re looking at
has turned to such a degree that it shows its silhouette. With bump maps, this
impression fades at the silhouette edges of an object because these bumps don’t
really exist physically; they have influence on lighting only. Displacement maps,
however, alter geometry based on the height values stored in them, which affects
both an object’s silhouette and lighting. Another advantage of displacement map-
ping is that it can reduce memory bandwidth during rendering. A low-resolution
mesh of an object with a displacement map applied can be used to render a highly
detailed version of the same object. Since tessellation happens entirely on the
GPU geometry, data transfer can be kept minimal. Nevertheless, bump maps have
their place when rendering miniscule surface details, such as scratches, creases,
pores, etc.

So how does it work in general? Take a triangle of an arbitrary mesh, for
example. For each vertex there is a position, a normal, and a 2D texture coordi-
nate for the displacement map. Upon sending the triangle to the GPU, it gets sub-
divided multiple times. Position, normal, and texture coordinates for each vertex
inserted artificially due to subdivision are interpolated. Now every vertex position
needs to be altered. Otherwise, we would end up having a lot of small triangles
representing the original one. Therefore, for each vertex, the GPU determines
the height value from the displacement map at the provided 2D texture coordinate
and uses this value to displace the vertex position along the vertex normal. Like-
wise, vertex normals need to be perturbed, as the object’s surface has changed.

At the time that Meshuggah was created, DirectX didn’t support displace-
ment mapping. That’s why this section demonstrates a very simple approach to
fake it with the help of the CPU.

To keep the workload of subdivision low, we limit ourselves to one quad that
should be displacement mapped. This way, we can simply subdivide it in a grid-
like fashion. There’s no need to interpolate normals, and the position as well as

Meshuggah’s Effects Explained
283

Section II — Rendering Techniques

Figure 5: Sun surface (a) and radial blur applied to it (b)

texture coordinates can be derived directly from the grid position. Also, the dis-
placed position of a vertex and its perturbed normal can be calculated directly
from the associated height value and its neighbors in the displacement map. To
get a high-quality displacement map effect, the quad needs to be subdivided quite
a bit depending on the amount and size of detail provided in the displacement
map. In Meshuggah, the displacement map has a size of 256x256 pixels. The quad
is split into 255x255 tiny pieces that need to be rendered every frame. For each
row of quads, a triangle strip is built and sent to the GPU.

The above technique should now be able to lift a 2D logo up into three
dimensions. Environment and decal mapping enhance the visual detail after dis-
placement mapping has been applied.

The vertex shader calculates the reflected view vector as well as the Fresnel
term for each vertex. It’s very similar to the soft object vertex shader. The pixel
shader uses the reflected view vector to fetch a color from an environment map. It
is multiplied by the material color of the logo. The result is combined with the
material to blend in reflections. Since we want certain parts of the logo to appear
darker, we create a copy of that color with half the intensity. The final output color
is computed by taking the logo texture into account. Its RGB channels contain a
decal value to blend between the two colors that we’ve just calculated. As a last
step, we copy the value from the alpha channel of the logo texture to mask out all
invisible logo parts.

The following is a pixel shader to render the displaced logo:

#include "..\..\Effects\DisplacementMap\DisplacementMapConstants.h"

ps.1.1

tex t0 // get texel from logo map (decal in rgb, mask in alpha)

tex t1 // get texel from environment map

// environment * material

mul r0, t1, c[CP MATERIALCOLOR]

// blend between material color and environment * material color

// based on Fresnel term

lrp r0, v0, c[CP MATERIALCOLOR], r0

// get the same color with half the intensity

mov d2 r1, r0

// use logo decal value to blend between light and dark color and

// mask out parts of the logo that are invisible (co-issuing)

lrp r0.rgb, 1 - t0, r0, r1

+ mov r0.a, t0.a

284
Meshuggah’s Effects Explained

Section II — Rendering Techniques

Ocean Scene

The ocean scene is Meshuggah’s most complex effect, both visually/compu-
tationally and in terms of shader usage. It’s based on a statistical model to realisti-
cally animate ocean waves ([9] and [10]). In combination with shaders to calculate
color of water and per-pixel bumpy reflections4, it results in a highly believable
rendering of an ocean. Making use of a high dynamic range Fresnel term allows
better visualization of glossy spots on the ocean surface while still maintaining a
high image contrast. The color of water is evaluated utilizing simplified equations
from [11] to determine the view-dependent color of water. Contrast enhancement
is based on an approach described in [12] to further improve the visual results
when rendering ocean water.

First and foremost, a realistic model for simulating and animating ocean
water is necessary to generate an appropriate mesh used for rendering. As men-
tioned above, [9] — in some greater detail — and [10] describe a statistical model
based on observations of the real sea. In this model, a wave height field is decom-
posed into a set of sinus waves with different amplitudes and phases. While the
model itself provides formulas to generate these amplitudes and phases, an
inverse Fast Fourier Transformation (iFFT) converts them back into the spatial
domain, thus creating a wave height field required for building the ocean mesh. It
also allows calculating proper normals and displacement vectors for the height
field. These are used for lighting calculations and forming choppy waves.

A big advantage of this particular model is that it produces an ocean height
field that tiles perfectly. In Meshuggah, a 64x64 ocean height field is repeated four
times, both horizontally and vertically, to form a 256x256 ocean mesh.

Ocean color computations performed in the shaders take several contributing
factors into account to determine a final pixel color. First up, there is the color of
water. As mentioned above, we can take the equations provided in [11] and sim-
plify them by treating the water surface as a flat plane. The result is an equation
only depending on the angle between the viewer v, a point p, and its normal n on
the ocean surface. It returns greenish colors for angles of about 90 degrees
(viewer looks over wave) and dark blue colors for angles near or equal to 0
degrees (viewer looks straight at wave). Another factor influencing the final color
is a reflected skylight taken from an environment map. To further enhance details
of the water, surface reflections will be per-pixel based, meaning that the viewer
will be able to see little ripples on the water surface coming from a dynamically
updated bump map.5 In order to not overemphasize reflections, we calculate a
Fresnel term for the air to water case (slightly different than the one used in pre-
vious sections), multiply it by the reflected skylight color, and add the result to
the color of water. Otherwise, reflections would make the water look more like
liquid metal. [10] proposed the following approximation of the Fresnel term for
the air to water case. � denotes the angle between viewer v and surface normal n.

Meshuggah’s Effects Explained
285

Section II — Rendering Techniques

4 These represent low-scale ripples on the water surface.

5 The normals of the current ocean height field are used here.

Fresnel()
(cos())

�
�

�
�

1
1 8

The Fresnel term is a good candidate for performing contrast enhancement. It
influences how much reflected skylight should be added to the color of water for
a given pixel. By multiplying an exposure factor to the Fresnel term, we can
increase the intensity in areas of the ocean surface where direct sunlight is
reflected while leaving other areas relatively dark. Further details follow the list-
ing of the ocean scene vertex shader:

#include "..\..\Effects\OceanScene\ShaderConstants.h"

#include "..\..\Effects\OceanScene\OceanShaderConstants.h"

#define srcP v0

#define srcN v1

#define srcTex v2

#define P r0

#define V r1

#define S r2

#define SxT r3

#define T r4

#define Temp r10

#define Temp1 r11

vs.1.1

// def CV CONSTANTS, 0.0, 0.5, 1.0, 2.0

// scale and translate vertex

mul P, srcP, c[CV MESH XYZ SCALE]

add P, P, c[CV MESH XYZ OFFSET]

// apply curvature

add Temp, P, -c[CV VIEWERPOS]

mul Temp, Temp, c[CV CONSTANTS].zxz

dp3 Temp, Temp, Temp

mad P.y, -Temp.x, c[CV CURVATURE].x, P.y

// generate S, T and SxT

dp3 SxT.w, srcN, srcN

rsq SxT.w, SxT.w

mul SxT, srcN, SxT.w

mov S, c[CV CONSTANTS].zxx

mul T, S.zxyw, SxT.yzxw

mad T, S.yzxw, SxT.zxyw, -T

dp3 T.w, T, T

286
Meshuggah’s Effects Explained

Section II — Rendering Techniques

rsq T.w, T.w

mul T, T, T.w

mul S, SxT.zxyw, T.yzxw

mad S, SxT.yzxw, T.zxyw, -S

// set up transformation matrix for bump map normals

mov oT1.x, S.x

mov oT2.x, S.y

mov oT3.x, S.z

mov oT1.y, SxT.x

mov oT2.y, SxT.y

mov oT3.y, SxT.z

mov oT1.z, T.x

mov oT2.z, T.y

mov oT3.z, T.z

// set up view vector for per-pixel reflections

// put it into per-pixel reflection matrix

add oT1.w, c[CV VIEWERPOS].x, -P.x

add oT2.w, c[CV VIEWERPOS].y, -P.y

add oT3.w, c[CV VIEWERPOS].z, -P.z

// set up texture uv for bump map

mul oT0.xy, srcTex.xy, c[CV BUMP UV SCALE].xy

// calculate normalized view vector

add V, c[CV VIEWERPOS], -P

dp3 V.w, V, V

rsq V.w, V.w

mul V, V, V.w

// set up lerp factor for ocean color

dp3 oD0.xyz, V, SxT

// calculate approximated Fresnel term F

// 1

// F = -------------------------------------

// (1 + V.N) ^ FresnelApprox PowFactor

dp3 Temp, V, SxT

add Temp, c[CV CONSTANTS].z, Temp

mov Temp.y, c[CV FRESNELAPPROX POWFACTOR].x

lit Temp.z, Temp.xxyy

rcp Temp.z, Temp.z

mul Temp.z, Temp.z, c[CV DYNAMIC RANGE].x

// set up high dynamic range Fresnel term

expp Temp1.y, Temp.z

mov oD0.w, Temp1.y

Meshuggah’s Effects Explained
287

Section II — Rendering Techniques

add Temp.z, Temp.z, -Temp1.y

mul oD1.w, Temp.z, c[CV DYNAMIC RANGE].y

// transform vertex to clip space

dp4 oPos.x, P, c[CV WORLDVIEWPROJ 0]

dp4 oPos.y, P, c[CV WORLDVIEWPROJ 1]

dp4 oPos.z, P, c[CV WORLDVIEWPROJ 2]

dp4 oPos.w, P, c[CV WORLDVIEWPROJ 3]

The first step transforms a vertex of our generated ocean mesh into world space.
Then a curvature factor is applied to the world space position. It alters the height
(y) of each ocean vertex based on the squared x/z distance to the current view
position.

Doing per-pixel reflections requires setting up a transformation matrix,
which is used to transform normals fetched from a bump map into world space6 so
that the view vector is reflected correctly. Normals stored in the bump map are
compatible to our (left-handed) world space coordinate system. That is, if the
ocean surface is a flat (y) plane, the transformation matrix is set to identity. Since
our ocean mesh is based on a height field, which in turn is based on a rectangular
grid, generating the transformation matrix is easy. It’s formed by three normal-
ized vectors x, y, z (also called s, t, and sxt), which are copied into the consecutive
output texture registers oT1-oT3. oT0 is reserved for the bump map’s texture
coordinates. The following is a matrix to transform bump map normals:

�

� �

� �

y normal of ocean mesh vertex

z y

x y

T

T

�

� $

� $

()

()

1 0 0

0 0 1

M x y z T� ()
� � �

The view vector, which is also necessary for the reflection computations later in
the pixel shader, is stored in the w components of oT1-oT3.

To calculate the color of water, we determine a lerp factor that is used in the
pixel shader to blend between two colors. As you can see, it is a really stripped-
down version of the original formulas given in [11]. For a given ocean mesh ver-
tex, the lerp factor is just the cosine of the angle between viewer and vertex nor-
mal. A more complex color function encoded in an environment map, as in [10],
was avoided since all available texture slots are already reserved for other pur-
poses and a second render pass was omitted for performance reasons.

The next step determines the Fresnel term to be used for blending in
reflected skylight in the pixel shader. As mentioned earlier, it serves as a high
dynamic range value. In order to overcome DirectX 8.1 class hardware’s limited
range of color inputs and color math, we do the following steps. The Fresnel term
is multiplied by a constant user-customizable exposure factor. Its range is limited
to [0, 4], thus saving pixel shader instructions as we will see later. Since any value
written to output color registers oD0 or oD1 gets clamped to [0, 1], we need to
split up our Fresnel term. The fractional portion of it is extracted and copied to

288
Meshuggah’s Effects Explained

Section II — Rendering Techniques

6 It’s the inverse orthonormal basis for the tangent space of each vertex.

oD0. The integer portion is divided by the maximum exposure factor and copied
to oD1. This way, we avoid any clamping of color values. That’s it for the vertex
shader. Let’s have a look at the ocean scene pixel shader to see how it does its
work:

#include "..\..\Effects\OceanScene\ShaderConstants.h"

#include "..\..\Effects\OceanScene\OceanShaderConstants.h"

ps.1.1

tex t0 // get normal from bump map

texm3x3pad t1, t0 // transform normal.x into world space

texm3x3pad t2, t0 // transform normal.y into world space

texm3x3vspec t3, t0 // transform normal.z into world space

// and get color for reflected view vector

// apply high dynamic range Fresnel term to env map

mul x4 r0, t3, v1.a

mad r0, t3, v0.a, r0

// calculate ocean color

lrp r1, v0, c[CP OCEAN COLOR DARK], c[CP OCEAN COLOR LIGHT]

// combine ocean and env color

add r0, r0, r1

The reflected skylight color is determined via transforming a normal from our
bump map into world space using the interpolated per-pixel transformation matrix
stored in t1-t3 and then reflecting the view vector to look up a color in the corre-
sponding skylight environment map.

To apply the high dynamic range Fresnel term, we first multiply the reflected
skylight color from the environment map by v1 (corresponds to oD1) and use the
_x4 instruction modifier to even out the division that was performed when split-
ting up the Fresnel term in the vertex shader. Then we multiply the reflected sky-
light color from the environment map by v0 (corresponds to oD0) and add it to the
previous result. This yields the desired Fresnel · reflected skylight color, which is
added to the color of water.

Volumetric Light via Ray Casting

The second volumetric light effect in Meshuggah creates shafts of light via ray
casting. These are shining through a bitmap (e.g., a logo) mapped onto a plane in
3D. Each ray starts traveling from the light’s origin and runs along its given direc-
tion until it either hits the plane (that is, an opaque part of the bitmap) or its
intensity has fallen below a certain threshold. To simplify things, we cast rays on
the z plane. The following equation shows the intersection of a ray with the z
plane.

Meshuggah’s Effects Explained
289

Section II — Rendering Techniques

r t o t d

n

p

n x n y n z n p

T

T

x y z

()

()

()

� � �

�

�

� � � � � � �

�

�

�

�

�
�

0 0 1

0 0 0

z

o t d

t
d

o

r t o

z z

z

z

�

� � �

�
�

�

0

0

Intersection

Intersection()
�

� �t dIntersection

�

If a ray hits the plane and the intersection point is actually within the boundary of
the bitmap mapped onto the plane, then the corresponding opacity value from the
bitmap determines whether the ray should continue or stop traveling.

Rendering is split up into three parts:

1. For each ray, draw the part from the origin of the light to its intersection
point with the z plane. At the intersection point, the ray’s intensity is set to
one over traveled ray length. Another distance-based attenuation function
can be used as well.

2. Blend the bitmap mask onto the result of the last render step.

3. For each ray that didn’t hit the bitmap, draw the part from its intersection
point with the z plane to infinity.

To allow smooth changes between “ray hit” and “ray didn’t hit” in step three, we
store opacity values at eight bits instead of one bit. This way, we can gradually
fade out a ray when it comes close to an opaque part of the bitmap. All rays are
rendered using alpha blending with both source and destination blend factor set to
one. Ray edges can be smoothed by applying a 1D gradient texture (black �

white � black) perpendicular to the ray direction.
The shaders involved in this effect are rather simple. Texture coordinate and

ray color (the intensity was already premodulated at ray setup) are copied by the
vertex shader. The pixel shader modulates the interpolated ray color on the color
fetched from the gradient texture.

Transition Effects

This final section deals with transition effects. It describes the technique used in
Meshuggah to make things more interesting than a simple color fade. The basic
idea is to have a per-pixel ramp function determine how much to blend between
two corresponding pixels in a source and destination frame. To allow arbitrary
transition patterns, we use a texture to store per-pixel threshold values (see Fig-
ure 6), which will later be accessed by a transition pixel shader to evaluate a ramp
function. The transition effect is applied as some sort of post-processing step.
Therefore, a screen space rectangle is rendered stretching the transition texture

290
Meshuggah’s Effects Explained

Section II — Rendering Techniques

over the entire frame to feed the transition
shader with a per-pixel threshold value.

All threshold values stored in the texture are
in range [0, 1]. The darker a pixel in the transi-
tion texture, the longer it takes a pixel of the
source frame to appear in the final image and vice
versa. To control the transition’s progress, we
introduce a constant value fTransTime, 0 �

fTransTime � 1, which is set per frame. Setting
fTransTime to zero and gradually increasing it to
one will smoothly blend between the destination
and source frame. The following ramp function
implements the specified behavior:

f fTransTime fTransThreshold clamp fTransTh(,) ((� �0
1 16 reshold fTransTime� � �2 1))

Obviously, this ramp function was chosen to be efficiently evaluated in a pixel
shader. It directly translates to the following pixel shader code:

#include "TransitionShaderConstants.h"

ps.1.1

tex t0 // get threshold value

// set color of source frame and calculate

// first part of ramp function (co-issuing)

mov r0.rgb, c[CP TRANSITION COLOR]

+ add x4 r0.a, t0, c[CP TRANSITION TIME] bx2

// calculate final part of ramp function

mov x4 r0.a, r0.a

It computes and stores the result of
the ramp function in the alpha chan-
nel of the output color register. Dur-
ing alpha blending, this value is used
to combine the source and destination
frame accordingly. It should be noted
that in this implementation, the
source frame is just a constant color.
But your app could also render the
source frame into a texture and use
that instead. The destination frame is
stored in the frame buffer. Figure 7
shows the result of the transition
shader applied to the ocean scene in
Meshuggah.

Meshuggah’s Effects Explained
291

Section II — Rendering Techniques

Figure 6: A texture containing
threshold values for the
transition pixel shader

Figure 7: Result of the transition pixel shader
for fTransTime = 0.5 using the texture shown
in Figure 6

Wrapping It Up

In the last few sections, various real-time graphic effects that take advantage of
DirectX 8.1-style vertex and pixel shaders were presented. The shaders primarily
dealt with typical tasks found in computer graphics, such as animation, lighting,
and texturing. Implementing the effects required developing different tricks to
overcome some limitations of the DirectX 8.1 class hardware and enable hard-
ware-friendly rendering. Porting the shaders to DirectX 9 vertex and pixel shader
assembly or re-engineering them to HLSL or Cg should be fairly simple and
might be interesting for further experiments.

References and Further Reading

[1] Resources for demo scene productions http://www.scene.org,
http://www.pouet.net.

[2] Heidrich, Wolfgang and Hans Peter Seidel, “Anisotropic Reflections in
OpenGL,” http://www9.informatik.uni-erlangen.de/eng/research/rendering/
anisotropic/.

[3] Kilgard, Mark J.,“Hardware Accelerated Anisotropic Lighting,” http://devel-
oper.nvidia.com.

[4] Bourke, Paul, “Polygonising a Scalar Field,” http://astronomy.swin.edu.au/
pbourke/modelling/polygonise/.

[5] Bourke, Paul, “Implicit Surfaces,” http://astronomy.swin.edu.au/pbourke/
modelling/implicitsurf/.

[6] Jönsson, Andreas, “Fast Metaballs,” http://www.angelcode.com/articles/
metaballs/metaballs.asp.

[7] Watt, Alan and Mark Watt, Advanced Animation and Rendering Techniques,

Addison Wesley, 1992.

[8] “The very latest SOHO images,” http://sohowww.nascom.nasa.gov/data/
realtime-images.html.

[9] Tessendorf, Jerry, “Simulating Ocean Water,” http://home1.gte.net/tssndrf/
index.html.

[10] Jensen, Lasse S. and Robert Goliáš, “Deep Water Animation and Rendering,”
http://www.swrendering.com/water, http://www.gamasutra.com/gdce/jensen/
jensen_01.htm.

[11] Cohen, Jonathan, Chris Tchou, Tim Hawkins, and Paul Debevec, “Real-time
High Dynamic Range Texture Mapping,” http://www.ict.usc.edu/~jcohen/
hdrtm.html.

[13] Nishita, Tomoyuki and Eihac hiro Nakamae, “Method of Displaying Optical
Effects within Water using Accumulation Buffer,” http://nis-lab.is.s.u-tokyo.ac.jp/
~nis/pub_nis.html.

292
Meshuggah’s Effects Explained

Section II — Rendering Techniques

Layered Car Paint Shader

John Isidoro, Chris Oat, and Natalya Tatarchuk

The application of paint to a car’s body can be a complicated process. Expensive
auto body paint is usually applied in layered stages and often includes dye layers,
clear coat layers, and metallic flakes suspended in enamel. The result of these
successive paint layers is a surface that exhibits complex light interactions,
giving the car a smooth, glossy, and sparkly finish. The car model shown here
uses a relatively low number of polygons but employs a high-precision normal
map generated by an appearance-preserving simplification algorithm (visit
http://www.ati.com/developer/ for more information on the ATI Normal Mapper
tool). Due to the pixel shader operations performed across the smoothly changing
surfaces (such as the hood of the car), a 16-bit per-channel normal map is
necessary.

293

Figure 1: Two-tone, suspended microflake car paint rendered in real time using an HLSL
pixel shader in DirectX 9

Normal Map Decompression

The first step in this pixel shader is normal decompression. Since the normals are
stored in surface local coordinates (aka tangent space), we can assume that the z
component of the normals is positive. Thus, we can store x and y in two channels
of a 16-16 texture map and derive z in the pixel shader from +sqrt(1 – x2 – y2).
This gives us much higher precision than a traditional 8-8-8-8 normal map (even
10 or 11 bits per channel is not enough for this particular shader) for the same
memory footprint.

Base Color

The normal decompression described above is performed on a surface normal
map, which is generated from an appearance-preserving simplification process (N)
and a high-frequency normalized vector noise map (Nn), which is repeated across
the surface. These two normals are used to compute two perturbed normals that
are used to simulate the two-toned nature of the paint as well as the microflake
suspended in an inner coat of the paint.

294
Layered Car Paint Shader

Section II — Rendering Techniques

Figure 2: Two-tone, microflake, clear coat, and final lighting on side rearview mirror

These normals, Ns and Nss, are computed as follows:

N
aN bN

aN bN
s

n

n

�
�

�| |
where a < b

N
cN dN

cN dN
ss

n

n

�
�

�| |
where c = d

The coefficients a, b, c, and d above are constant input parameters to the pixel
shader that determine the distributions of the perturbed normals. The magnitude
of these perturbed normals determines the width of the region in which the
microflake is readily visible. The two normals are dotted with the view vector and
used as parameters in the following polynomial, which determines the color of the
base coat and strength of the microflake term:

c N V c N V c N V c N Vs s s ss0
2 4 161 2 3() () () ()� � � � � � �

The first three terms of this polynomial perform the blend between the two tones
of the paint. The fourth term adds an extra layer of sparkle for the microflake’s
contribution. Constants c0, c1, and c2 correspond to the base paint colors, while c3
corresponds to the microflake color.

Clear Coat Paint Layer

The final step in rendering the painted areas of the car is the inclusion of the clear
coat through the addition of an environment map, as shown below.

One interesting aspect of the clear coat term is the decision to store the envi-
ronment map in an RGBScale form to simulate high dynamic range in a low mem-
ory footprint. The alpha channel of the texture, shown on the right in Figure 4,
represents one-sixteenth of the true range of the data, while the RGB, shown on
the left, represents the normalized color. In the pixel shader, the alpha channel
and RGB channels are multiplied together and multiplied by eight to reconstruct a
cheap form of HDR reflectance. This is multiplied by a subtle Fresnel term before
being added to the lighting terms described above.

Layered Car Paint Shader
295

Section II — Rendering Techniques

Figure 3: Metallic microflakes, suspended in clear enamel, are applied over a base paint
coat (dye layer) and result in subsurface light scattering.

The full HLSL pixel shader for the car paint and trim is shown here:

struct PsInput

{

float2 Tex : TEXCOORD0;

float3 Tangent : TEXCOORD1;

float3 Binormal : TEXCOORD2;

float3 Normal : TEXCOORD3;

float3 View : TEXCOORD4;

float3 SparkleTex : TEXCOORD5;

};

float4 main(PsInput i) : COLOR

{

// fetch from the incoming normal map:

float3 vNormal = tex2D(normalMap, i.Tex);

// Scale and bias fetched normal to move into [-1.0, 1.0] range:

vNormal = 2.0f * vNormal - 1.0f;

// Microflakes normal map is a high frequency normalized

// vector noise map which is repeated across the surface.

// Fetching the value from it for each pixel allows us to

// compute perturbed normal for the surface to simulate

// appearance of microflakes suspended in the coat of paint:

float3 vFlakesNormal = tex2D(microflakeNMap, i.SparkleTex);

// Don't forget to bias and scale to shift color into [-1.0, 1.0] range:

vFlakesNormal = 2 * vFlakesNormal - 1.0;

// This shader simulates two layers of microflakes suspended in

// the coat of paint. To compute the surface normal for the first layer,

// the following formula is used:

// Np1 = (a * Np + b * N) / || a * Np + b * N || where a < b

296
Layered Car Paint Shader

Section II — Rendering Techniques

Figure 4: The top face of the HDR cubic environment map with RGB channels on the left
and the alpha channel on the right

//

float3 vNp1 =

microflakePerturbationA * vFlakesNormal + normalPerturbation * vNormal ;

// To compute the surface normal for the second layer of microflakes, which

// is shifted with respect to the first layer of microflakes, we use this formula:

// Np2 = (c * Np + d * N) / || c * Np + d * N || where c == d

//

float3 vNp2 = microflakePerturbation * (vFlakesNormal + vNormal) ;

// The view vector (which is currently in world space) needs to be normalized.

// This vector is normalized in the pixel shader to ensure higher precision of

// the resulting view vector. For this highly detailed visual effect, normalizing

// the view vector in the vertex shader and simply interpolating it is insufficient

// and produces artifacts.

float3 vView = normalize(View);

// Transform the surface normal into world space (in order to compute reflection

// vector to perform environment map lookup):

float3x3 mTangentToWorld = transpose(float3x3(Tangent, Binormal, Normal));

float3 vNormalWorld = normalize(mul(mTangentToWorld, vNormal));

// Compute reflection vector resulted from the clear coat of paint on the metallic

// surface:

float fNdotV = saturate(dot(vNormalWorld, vView));

float3 vReflection = 2 * vNormalWorld * fNdotV - vView;

// Here we just use a constant gloss value to bias reading from the environment

// map, however, in the real demo we use a gloss map which specifies which

// regions will have reflection slightly blurred.

float fEnvBias = glossLevel;

// Sample environment map using this reflection vector:

float4 envMap = texCUBEbias(showroomMap, float4(vReflection, fEnvBias));

// Premultiply by alpha:

envMap.rgb = envMap.rgb * envMap.a;

// Brighten the environment map sampling result:

envMap.rgb *= brightnessFactor;

// Compute modified Fresnel term for reflections from the first layer of

// microflakes. First transform perturbed surface normal for that layer into

// world space and then compute dot product of that normal with the view vector:

float3 vNp1World = normalize(mul(mTangentToWorld, vNp1));

float fFresnel1 = saturate(dot(vNp1World, vView));

// Compute modified Fresnel term for reflections from the second layer of

// microflakes. Again, transform perturbed surface normal for that layer into

// world space and then compute dot product of that normal with the view vector:

float3 vNp2World = normalize(mul(mTangentToWorld, vNp2));

float fFresnel2 = saturate(dot(vNp2World, vView));

Layered Car Paint Shader
297

Section II — Rendering Techniques

//

// Compute final paint color: combines all layers of paint as well as two layers

// of microflakes

//

float fFresnel1Sq = fFresnel1 * fFresnel1;

float4 paintColor = fFresnel1 * paintColor0 +

fFresnel1Sq * paintColorMid +

fFresnel1Sq * fFresnel1Sq * paintColor2 +

pow(fFresnel2, 16) * flakeLayerColor;

// Combine result of environment map reflection with the paint color:

float fEnvContribution = 1.0 - 0.5 * fNdotV;

float4 finalColor;

finalColor.a = 1.0;

finalColor.rgb = envMap * fEnvContribution + paintColor;

return finalColor;

}

Conclusion

This shader was developed using empirically gathered phenomenological illumi-
nation characteristics rather than actual physical material attributes. Many differ-
ent car paint swatches were observed under various lighting conditions. This
shader strives to reproduce the observed characteristics of those swatches. This
article demonstrated a compelling simulation for the illumination of car paint
using a real-time pixel shader.

298
Layered Car Paint Shader

Section II — Rendering Techniques

Motion Blur Using Geometry
and Shading Distortion

Natalya Tatarchuk, Chris Brennan, Alex Vlachos, and John Isidoro

Introduction

When our demo team decided to implement a real-time version of the Animusic
Pipe Dream animation shown in the SIGGRAPH 2001 Electronic Theater, we real-
ized that we needed to create a fast, reliable technique for rendering a convincing
motion blur effect for the many balls moving around the complicated music
machine shown in Figure 1. Although enough approaches existed for simulating
motion blur for computer-generated images, some of them weren’t fast enough or
accurate enough for our purposes. Rather than draw the moving balls several
times at different points in space and time, as one might do with an accumulation
buffer [Haeberli90], we chose to draw each ball once, distorting its appearance to
make it appear as if it were in motion during the frame “exposure.” This tech-
nique is an extension to the approach taken by [Wloka96].

299

Figure 1: A screen shot from the real-time Animusic Pipe Dream demo
(See Color Plate 16 for another view of the demo.)

The motion blur effect on film appears due to finite camera shutter speeds. When
the object moves too quickly compared to the shutter speed, the resulting image
of that object seems to move along the film surface while the shutter is opened.
The image on film appears smeared, depending on how fast the object was moving
with respect to the observer. Motion blur is an important cue for realistic render-
ing of our world, and it becomes ever more significant as computer-generated
imagery approaches the detailed look of cinematic art. Motion blur is very com-
mon in photography and motion pictures and can be used in different ways for
specific artistic choices. Some artists use motion blur deliberately to delineate
dynamic motion in photographs. Human beings perceive motion blur as natural,
and thus it is expected for convincing computer-generated simulation.

Simulating Motion Blur Effect

For our purposes, let’s consider the movement of objects in object space. There,
motion blur is caused by the object moving through a finite amount of space dur-
ing a short time step (equivalent to the exposure time due to an opened shutter).
This allows us to use the distance that the object moved since the previous time
step as an approximation for the instantaneous velocity value necessary to com-
pute the blurring of the object. The previous work by Wloka and Zeleznik elimi-
nates the obvious discrete renderings of the ball, which is inevitable in an
accumulation buffer approach, while our technique also accounts for blurring of
the object and computing a more accurate approximation to its contribution to the
scene over time. To achieve the look we wanted, we used a vertex shader and a
pixel shader to distort both the shape and shading of the balls.

Sample RenderMonkey Workspace

The RenderMonkey IDE, an environment for shader development, can be down-
loaded from http://www.ati.com/developer/sdk/radeonSDK/html/Tools/Render
Monkey.html. Along with the application itself, it installs a series of workspaces,
including one called Motion Blur.rfx. This workspace contains the effect that we
are describing in this article. Feel free to modify any of the parameters to the
shaders to explore their effects on the final visual result. Of course, you can also
modify the actual shaders to understand the algorithms in greater depth.

Geometry Distortion

We distort the shape of the ball along the movement direction vector to simulate
the stretching of the object as it moves quickly across the image plane with
respect to the observer. Each individual ball is modeled as a “capsule” (two hemi-
spheres with a connecting cylinder), which is aligned with the direction of motion.
The vertex shader stretches the ball tangent to the direction of motion, as shown
below. The vertices of the front half of the capsule (those whose normals have a
positive dot product with the direction of motion) are pushed in the direction of
motion, and the vertices of the back half of the capsule (those whose normals

300
Motion Blur Using Geometry and Shading Distortion

Section II — Rendering Techniques

have a negative dot product with the direction of motion) are pulled in the oppo-
site direction. Naturally, the total amount of stretching is the amount of distance
the ball moved since the previous frame.

In Figure 2, we show how the ball’s shape is distorted by the vertex shader in
the direction tangent to the path of motion at the time instant centered in the cur-
rent finite shutter time.

The capsule geometry is stretched in the vertex shader as a function of distance
traveled, d, measured in ball diameter units. Figure 3 shows a snapshot from the
demo showing a distorted ball moving quickly in the scene.

The vertex shader also computes a blurriness factor from 1 / (1 + d). The object
becomes more blurred as it moves faster past the observer; thus, it is very impor-
tant to use relative speed rather than the actual movement of the ball in the
scene, since motion blur is relative to the observation point. The motion blur
amount is measured as a distance traveled relative to the camera’s motion. If the

Motion Blur Using Geometry and Shading Distortion
301

Section II — Rendering Techniques

Without motion blur With motion blur

Figure 2: Shape distortion

Figure 3: Geometry distortion for a quickly moving object

observer moves along with the same speed as the object, no motion blur is per-
ceived. To determine the rate of fade-out for the object, we calculate how much
visible area is covered as the ball moves (which is measured in ball widths). The
fade-out rate is calculated in the range of [0..1] and interpolated across the poly-
gons to be used in the pixel shader to determine how much to blur the shading of
the balls.

Vertex Shader

Below you can see an example of the vertex shader that performs shape distor-
tion. It is also used to compute diffuse illumination contribution from two
run-time lights, which is propagated to the pixel shader.

float4x4 mBallOrientation;

float4x4 inv view matrix;

float4x4 view proj matrix;

float4x4 mW0Matrix;

float4 vColor;

float4 vExtensionDirection;

float4 vObjectCenter;

float4 vMotionDirection;

float4 vAmbientPos3;

float4 vAmbientPos1;

float4 vAmbientPos2;

float4 vAmbientColor1;

float4 mLight1Pos;

float4 mLight2Pos;

float4 vLight1Color;

float4 vLight2Color;

float4 vAmbientColor3;

float4 vAmbientColor2;

float fBallSize;

float fObjectScale;

float fSpeed;

float fZoom;

struct VS OUTPUT

{

float4 ProjPos : POSITION;

float3 Diffuse : COLOR0;

float4 Normal : TEXCOORD0;

float3 View : TEXCOORD1;

float3 Light1 : TEXCOORD2;

float3 Light2 : TEXCOORD3;

float3 Pos : TEXCOORD4;

};

VS OUTPUT main(float4 Pos: POSITION, float3 Normal: NORMAL)

{

302
Motion Blur Using Geometry and Shading Distortion

Section II — Rendering Techniques

VS OUTPUT o = (VS OUTPUT).5;

Pos = float4(Pos.xyz*fObjectScale, 1);

float4 vCameraPosition = mul(inv view matrix, float4(0,0,0,1));

// Calculate View Vector

float3 vView = normalize(vCameraPosition - mul(mW0Matrix, Pos));

// Calculate velocity relative to the eye

float3 vVelocity = vMotionDirection * fSpeed;

// motion vector as seen by the eye

float3 vEyeMotion = vVelocity - vView * dot(vVelocity, vView);

// Speed as relative to the observer:

float fEyeSpeed = length(vEyeMotion);

// Calculate the area that the stretched ball will take on

// the screen – it is dependent on the instantaneous velocity

// of the moving object and its size:

float fBallCoverage = 1 + fEyeSpeed / fBallSize;

// Calculate the blurriness factor for later alpha blending of

// the ball – the faster it moves, the more “smeared” it will

// appear:

float fBlurriness = 1 - 1/fBallCoverage;

// Export blurriness factor the pixel shader:

o.Normal.w = fBlurriness;

// Translate object to object origin:

float4 vObjectPos = Pos - vObjectCenter;

// Extend the position to elongate the ball relative to the speed:

vObjectPos += fSpeed * vExtensionDirection * -sign(Normal.z);

// Re-orient the ball along its motion path:

float3 vOrientedPosition = mul((float3x3)mBallOrientation, vObjectPos);

// Rotate ball into correct orientation:

vOrientedPosition = mul(vOrientedPosition, (float3x3)mW0Matrix);

// Remove world matrix rotation

vOrientedPosition += vObjectCenter;

//

// Translate object back to where it started:

//

// Transform position into world space and output it:

float4 vWorldPos = mul(mW0Matrix, float4(vOrientedPosition, 1));

o.Pos = vWorldPos;

Motion Blur Using Geometry and Shading Distortion
303

Section II — Rendering Techniques

o.ProjPos = mul(view proj matrix, float4(vWorldPos.xyz*fZoom, vWorldPos.w));

//

// Calculate Normal

//

// Rotate normal into correct orientation:

float3 vWorldNormal = mul((float3x3)mBallOrientation, Normal);

// Remove world matrix rotation of normal:

vWorldNormal = mul(vWorldNormal, mW0Matrix);

// Translate to world space:

vWorldNormal = mul(mW0Matrix, vWorldNormal);

o.Normal.xyz = vWorldNormal;

//

// Light vectors for specular lighting:

//

// Light vector 1:

o.Light1 = normalize((float3)mLight1Pos - (float3)vWorldPos);

// Light vector 2:

o.Light2 = normalize((float3)mLight2Pos - (float3)vWorldPos);

//

// Compute diffuse illumination contribution:

//

o.Diffuse = max(dot(vWorldNormal, normalize(vAmbientPos1 –

vWorldPos)), 0) * vAmbientColor1;

o.Diffuse += max(dot(vWorldNormal, normalize(vAmbientPos2 –

vWorldPos)), 0) * vAmbientColor2;

o.Diffuse += max(dot(vWorldNormal, normalize(vAmbientPos3 -

vWorldPos)), 0) * vAmbientColor3;

o.Diffuse += max(dot(vWorldNormal, o.Light1), 0) * vLight1Color;

o.Diffuse += max(dot(vWorldNormal, o.Light2), 0) * vLight2Color;

o.Diffuse = o.Diffuse * vColor;

// More accurate view vector

o.View = normalize(vCameraPosition - vWorldPos);

return o;

}

Shading Distortion

In addition to merely stretching the capsule geometry along the tangent to the
path of the ball’s motion, the shading of the object is affected by the blurriness
factor computed above. The most important visual cue for motion blur effect is
the increasing transparent quality of the object as it moves quicker on the screen.
This creates the impression that the object really is moving rapidly in the scene.

304
Motion Blur Using Geometry and Shading Distortion

Section II — Rendering Techniques

Figure 4 shows comparison rendering of two objects moving at different speeds
— even just glancing at the two snapshots, we get the impression that the ball in
the right picture is moving much faster than the ball in the left picture.

In our shader, blurring is achieved in multiple ways. There are a number of factors
that contribute to the final ball color, including two specular highlights and an
environment map, all of which are blurred as a function of the ball’s motion during
the frame. In the case of the two specular highlights on each ball, the specular
exponent and its intensity are lowered as the ball goes faster, which effectively
broadens the highlight on the surface of the ball. This serves to spread out the
highlight and make it appear to be blurred in the direction of the ball’s motion. In
essence, the goal is to spread the energy radiating from the specular highlight
among the pixels that the specular highlight would move across during a finite
frame exposure time. In the case of the environment map, we use the
texCUBEbias pixel shader instruction, which applies a per-pixel bias to selectively
sample the smaller mip levels. This blurs the environment map term. The
texCUBEbias intrinsic is used to perform biased texture sampling, where the bias
can be computed per-pixel. This is done to induce some over-blurring of the tex-
ture as the ball moves faster through the image.

...

// Apply environment map to the object, taking into account

// speed-dependent blurring:

float3 vCubeLookup = vReflection + i.Pos/fEnvMapRadius;

float4 cReflection = texCUBEbias(tCubeEnv,

float4(vCubeLookup, fBlur * fTextureBlur)) * vReflectionColor;

...

In the last few instructions of the pixel shader, the diffuse and specular compo-
nents of illumination are combined. Because the specular contribution can be
greater than one, we perform part of the frame buffer compositing operation (Src
* SrcAlpha) in the pixel shader before the colors are clamped to the zero-to-one

Motion Blur Using Geometry and Shading Distortion
305

Section II — Rendering Techniques

Slowly moving ball (speed = 0.6) Quickly moving ball (speed = 2.15)

Figure 4: Velocity-dependent shading distortion

range. Each pixel is composited with the frame buffer with a src + srcAlpha *
Dest blend. Doing the Src * SrcAlpha premultiplication in the pixel shader gives a
more accurate result, since it happens prior to pixel shader output color satura-
tion. See [Tatarchuk03] for a more detailed description of this blending approach
as it is used for preserving specular highlights and color saturation for a translu-
cent and iridescent surface.

Pixel Shader

Following is the complete pixel shader used for the effect described in this article.
This is a DirectX HLSL pixel shader, which can be compiled to the ps_2_0 target.

float4 vReflectionColor;

float4 vLight1Color;

float4 vLight2Color;

float fBaseSpecularIntensity;

float fTextureBlur;

float fSpecularExpBlurScale;

float fSpecularExp;

float fSpecularDimScale;

float fEnvMapRadius;

sampler tCubeEnv;

struct PS INPUT

{

float3 Diffuse : COLOR0;

float4 Normal : TEXCOORD0;

float3 View : TEXCOORD1;

float3 Light1 : TEXCOORD2;

float3 Light2 : TEXCOORD3;

float3 Pos : TEXCOORD4;

};

float4 main(PS INPUT i) : COLOR

{

// Extract blurring factor from the normal vector interpolator:

float fBlur = i.Normal.w;

// Compute reflection vector:

float3 vNormal = normalize(i.Normal);

float3 vReflection = normalize(2 * dot(i.View, vNormal) * vNormal - i.View);

// Compute fade out rate for the moving ball taking into

// account Fresnel effect:

float fFirstBallWidthFade = saturate(2 * fBlur);

float fRestBallWidthFade = saturate(2 - 2 * fBlur);

float fFresnel = 1 - saturate(dot(vNormal, i.View));

float fAlpha = fRestBallWidthFade * (1 – fFirstBallWidthFade * fFresnel);

306
Motion Blur Using Geometry and Shading Distortion

Section II — Rendering Techniques

// Environment map the object taking into account

// speed-dependent blurring:

float3 vCubeLookup = vReflection + i.Pos/fEnvMapRadius;

float4 cReflection = texCUBEbias(tCubeEnv,

float4(vCubeLookup, fBlur * fTextureBlur)) * vReflectionColor;

// Compute smearing of specular highlights depending on the amount

// of motion blur:

float fBlurredSpecularExp = max(1, fSpecularExpBlurScale*fBlur + fSpecularExp);

float fSpecularIntensity = fBaseSpecularIntensity * (1 - (fBlur * fSpecularDimScale));

// Compute specular contribution for the first light:

float3 cSpecular1 = pow(saturate(dot(vReflection, i.Light1)),

fBlurredSpecularExp) * fSpecularIntensity * vLight1Color;

// Compute specular contribution for the second light:

float3 cSpecular2 = pow(saturate(dot(vReflection, i.Light2)),

fBlurredSpecularExp) * fSpecularIntensity * vLight2Color;

// Compute input diffuse contribution with both specular

// highlight areas and environment map term:

float3 cColor = cReflection + cSpecular1 + cSpecular2 + i.Diffuse;

// Determine the actual blending amount:

float alpha = fRestBallWidthFade *

(1 – fFirstBallWidthFade * (1-saturate(dot(-vNormal, -i.View))));

// Pre-multiply by alpha and output color:

return float4(cColor*alpha, alpha);

}

Summary

In this article we described an efficient way to implement convincing motion blur
effect by using speed-dependent shape distortion and alignment of objects along
the path of movement combined with shading distortion to simulate accurate blur-
ring of objects as they move quickly on the screen. Figure 5 shows the progres-
sion of a ball slowing down to collide with another object, a drum, and quickly
moving away after the collision. On each of the pictures in that figure, we can see
how the geometry and shading is changed to provide visual cues about the move-
ment of the ball.

Motion Blur Using Geometry and Shading Distortion
307

Section II — Rendering Techniques

Figure 5: Motion blurring of moving ball

References

[Haeberli90] Haeberli, Paul E. and Kurt Akeley, “The accumulation buffer: Hard-
ware support for high-quality rendering,” SIGGRAPH 1990, pp. 309-318.

[Tatarchuk03] Tatarchuk, N. and C. Brennan, “Simulation of Iridescence and
Translucency on Thin Surfaces,” ShaderX2: Shader Programming Tips & Tricks

with DirectX 9, Wolfgang Engel, ed., Wordware Publishing, 2004, pp. 309-318.

[Wloka96] Wloka, M. and R.C. Zeleznik, “Interactive Real-Time Motion Blur,”
Visual Computer, Springer Verlag, 1996.

308
Motion Blur Using Geometry and Shading Distortion

Section II — Rendering Techniques

The ball is moving quickly toward the
drum.

The ball is about to hit the drum.

The moment right after impact The ball moving away after the
collision

Simulation of Iridescence and
Translucency on Thin Surfaces

Natalya Tatarchuk and Chris Brennan

Introduction

This article focuses on simulating the visual effect of translucency and irides-
cence of thin surfaces such as butterfly wings. When creating a visual impression
of a particular material, an important characteristic of that surface is the luminos-
ity of the material. There are various ways that a surface can be luminous. These
include sources with or without heat, from an outside source, and from the object
itself (other than a mere reflection). Luminous objects that exhibit certain combi-
nations of these characteristics can be described as translucent or iridescent,
depending on the way that the surface “scatters” incoming light.

Translucency of a material is determined by the ability of that surface to allow
light to pass through without full transparency. Translucent materials can only
receive light and thus can be luminous only when lit from an outside source.
Although there has been ample research in recent years of interactive simulation
of fully translucent surfaces such as marble or wax [Jensen01], this article focuses
on simulating translucency for thin surfaces. A good example of the visual effect
of translucency of thin surfaces is if you were to take a piece of rice paper and
hold it against a light source (for example, Chinese lanterns). You would see that
the light makes the rice paper seem to glow from within, yet you cannot see the
light source through the paper because the paper scatters incoming light.

Iridescence is an effect caused by the interference of light waves resulting
from multiple reflections of light off of surfaces of varying thickness. This visual
effect can be detected as a rainbow pattern on the surface of soap bubbles and
gasoline spills and, in general, on surfaces covered with thin film diffracting differ-
ent frequencies of incoming light in different directions. The surface of a soap
bubble exhibits iridescence due to a layer of air, which varies in thickness,
between the top and bottom surfaces of the bubble. The reflected colors vary
along with the thickness of the surface. Mother-of-pearl, compact discs, and vari-
ous gemstones share that quality. Perhaps most captivating of all, however, is the
iridescence seen on the wings of many beautiful butterflies, such as blue pansy
butterflies, Junonia orithya, or the malachite butterflies, Siproeta stelenes. These
wings exhibit vivid colorful iridescence (see Figure 1 for examples), the color of
which has been shown to be independent of the pigmentation of the wings and is

309

attributed to the microstructure of the scales located on and within butterfly
wings.

Figure 1: Butterflies in nature

The effect described in this chapter simulates translucency and iridescent pat-
terns of delicate butterfly wings. To generate iridescence, we have merged the
approaches described in “Bubble Shader” [Isidoro02] and “Textures as Lookup
Tables for Per-Pixel Lighting Computations” [Vlachos02].

Algorithm

Inputs

This effect uses a geometric model with a position, a normal, a set of texture
coordinates, a tangent, and a binormal vector. All of these components are sup-
plied to the vertex shader. At the pixel level, we combine gloss, opacity, and nor-
mal maps for a multi-layered final look. The gloss map is used to contribute to
“satiny” highlights on the butterfly wings. The opacity map allows the wings to
have variable transparency, and the normal map is used to give wings a bump-
mapped look to allow for more surface thickness variations. The input texture
coordinates are used to sample all texture maps.

Sample RenderMonkey Workspace

The RenderMonkey IDE, an environment for shader development, can be down-
loaded from http://www.ati.com/developer/sdk/radeonSDK/html/Tools/Render
Monkey.html. Along with the application itself, the RenderMonkey installer
installs a series of workspaces, including one called Iridescent Butterfly.rfx. This
workspace contains the effect that we are describing in this article. Feel free to
modify any of the parameters to the shaders to explore their effect on the final
visual result. Of course, you can also modify the actual shaders to understand
their algorithms in greater depth.

310
Simulation of Iridescence and Translucency on Thin Surfaces

Section II — Rendering Techniques

Blue pansy butterfly, Junonia
orithya

Malachite butterflies, Siproeta stelenes

Vertex Shader

The vertex shader for this effect computes vectors that are used by the pixel
shader to compute the illumination result. At the pixel level, the view vector and
the light vector are used for calculating diffuse illumination and scattered illumi-
nation off of the surface of the wings, which contributes to the translucency effect.
The halfway vector will be used for generation of glossy highlights on the wing’s
surface. In the vertex shader, however, these vectors are simply transformed to
tangent space.

struct VS OUTPUT

{

float4 Pos : POSITION;

float2 Tex : TEXCOORD0;

float3 View : TEXCOORD1;

float3 Light : TEXCOORD2;

float3 Half : TEXCOORD3;

};

VS OUTPUT main(float4 Pos : POSITION,

float4 Normal : NORMAL0,

float2 Tex : TEXCOORD0,

float3 Tangent : TANGENT0,

float3 Binormal : BINORMAL0)

{

VS OUTPUT Out = (VS OUTPUT) 0;

// Output transformed vertex position:

Out.Pos = mul(view proj matrix, Pos);

// Propagate input texture coordinates:

Out.Tex = Tex;

// Compute the light vector (object space):

float3 vLight = normalize(mul(inv view matrix, lightPos) - Pos);

// Define tangent space matrix:

float3x3 mTangentSpace;

mTangentSpace[0] = Tangent;

mTangentSpace[1] = Binormal;

mTangentSpace[2] = Normal;

// Output light vector in tangent space:

Out.Light = mul(mTangentSpace, vLight);

// Compute the view vector (object space):

float3 vView = normalize(view position - Pos);

// Output view vector in tangent space:

Out.View = mul(mTangentSpace, vView);

Simulation of Iridescence and Translucency on Thin Surfaces
311

Section II — Rendering Techniques

// Compute the half angle vector (in tangent space):

Out.Half = mul(mTangentSpace, normalize(vView + vLight));

return Out;

}

Pixel Shader

The pixel shader computes the illumination value for a particular pixel on the sur-
face of the butterfly wings, taking into account the light propagated through the
surface of the wings due to the translucency effect and light emitted due to the
iridescence of the wings.

First, we load the color value from a base texture map. For efficiency reasons,
we have stored the opacity in the alpha channel of the base texture map. We also
load a normal vector (in tangent space) from the precomputed normal map and a
gloss value, which is used to modulate highlights on the surface of the wings. The
scalar gloss map is stored in the alpha channel of the normal map. Combining
three-channel texture maps with single-channel grayscale value maps allows us to
load two values with a single texture fetch.

float3 vNormal, baseColor;

float fGloss, fTransparency;

// Load normal and gloss map:

float4(vNormal, fGloss) = tex2D(bump glossMap, Tex);

// Load base and opacity map:

float4 (baseColor, fTransparency) = tex2D(base opacityMap, Tex);

Don’t forget to scale and bias the fetched normal map into the [–1.0, 1.0] range:

// Signed scale the normal:

vNormal = vNormal * 2 - 1;

Figure 2 displays the contents of the texture maps used for this effect:

312
Simulation of Iridescence and Translucency on Thin Surfaces

Section II — Rendering Techniques

Base texture map for wings
texture

Opacity texture map

Figure 2: Input texture maps

The texture address mode should be set to CLAMP in u and v for both of these
texture maps. Also, they should be trilinearly filtered (MAGFILTER = linear,
MINFILTER = linear, and MIPFILTER = anisotropic).

Translucency

Next we compute the translucency effect. The amount of light scattered through a
thin surface is proportional to the incident angle of the light on the back side. So,
similar to a Lambertian diffuse calculation, we dot the light vector but with the
negative of the normal vector. We also use a prespecified translucency coefficient
in addition to the fetched opacity value to control the amount of scattered light:

float3 scatteredIllumination = saturate(dot(-vNormal, Light)) *

fTransparency * translucencyCoeff;

As described above, the scattered light contribution is dependent on both the
direction of incident light as well as the surface normal for the pixel location. This
contribution to diffuse illumination of the wings’ surface is what accounts for their
subtle glow. Figure 3 illustrates the contribution of scattered reflected light on the
surface of the wings. If you modify the pixel shader for this effect in the Render-
Monkey workspace to output only the scattered light contribution, you will be
able to investigate how this contribution changes as you rotate the model.

To simulate varying thickness of scales on the surface of butterfly wings as
well as within them, we use a normal map to perturb the normal vectors. The
usual diffuse illumination is computed with a simple dot product and a global
ambient term:

float3 diffuseContribution = saturate(dot(vNormal,Light)) +

ambient;

Figure 3 shows the result of computing diffusely reflected light for the butterfly
wings.

Simulation of Iridescence and Translucency on Thin Surfaces
313

Section II — Rendering Techniques

Normal map for bump mapping Gloss map

Figure 3: Diffuse illumination

In the next step we combine the base texture map with the diffuse term and the
scattered reflected light contribution to compute a final value for diffuse surface
illumination:

baseColor *= scatteredIllumination + diffuseContribution;

Figure 4 illustrates the results of this operation. Now we can see how scattered
reflected light contributes to the translucency effect of the butterfly wings in the
more illuminated portions of wings in the final picture in Figure 4.

Since butterfly wings in nature have varying transparency, we had our artists
paint in the appropriate opacity values. However, since the desired effect has
transparent geometry, which also has specular highlights, we must take care

314
Simulation of Iridescence and Translucency on Thin Surfaces

Section II — Rendering Techniques

Scattered light contribution Diffuse term

Figure 4: Combining the base texture map with scattered reflected light and diffusely
reflected light

when doing blending to properly achieve transparency. Typically, blending trans-
parent materials is done during the blending stage of the rendering pipeline. How-
ever, if the object that you are rendering as transparent is a specular surface,
blending should be done before actually applying specular highlights to the sur-
face. A brute-force approach for this is to render two separate passes (the diffuse
alpha-blended pass first) and adding specular highlights in the second pass. But to
speed up our effect, we wanted to do it all in one pass. This requires some tricks
with the way alpha blending is used. Since the specular pass is additive and the
diffuse is blended, we want to pre-blend the diffuse color and add the specular
color in the shader. Then, during the blending stage, the source color is not modi-
fied; it’s simply added, since that portion of the blending equation is already taken
care of in the shader code. The destination has the same blend as it normally
would with the standard two-pass “brute-force” approach. If we look at the blend-
ing equation, the two-pass approach is expressed in the following form:

Pass 1: diffuseIlluminationColor * �+ destination * (1 – �)

Pass 2: specularColor + destination

The single-pass approach can be expressed as follows:

Pass 1: (diffuseIlluminationColor * � + specularColor) * 1+

destination * (1 – �)

Here’s the portion of the shader that premultiplies the diffuse illumination result
with the alpha:

float fOpacity = 1 - fTransparency;

// Premultiply alpha blend to avoid clamping:

baseColor *= fOpacity;

Figure 5 illustrates the effect of this action on the diffuse illumination result.

Iridescence

One of the reasons why butterflies are so captivating in nature is the iridescence
of their wings. To simulate iridescent patterns on the surface of our simulated
butterfly wings, we use an approach similar to the technique described in the

Simulation of Iridescence and Translucency on Thin Surfaces
315

Section II — Rendering Techniques

Figure 5: Premultiplied alpha blending

“Bubble Shader” article in the original Direct3D ShaderX book [Isidoro02]. Irides-
cence is a view-dependent effect, so we can use the view vector, which was com-
puted in the vertex shader and interpolated across the polygon in tangent space.
We also use scale and bias coefficients to scale and bias the index to make irides-
cence change more quickly or slowly across the surface of the wings. You can
explore the effects of these parameters by modifying the variables iridescence_

speed_scale and iridescence_speed_bias in the Iridescent Butterfly.rfx
RenderMonkey workspace.

// Compute index into the iridescence gradient map,

// which consists of N·V coefficients

float fGradientIndex =

dot(vNormal, View) * iridescence speed scale +

iridescence speed bias;

// Load the iridescence value from the gradient map based on the

// index we just computed above:

float4 iridescence = tex1D(gradientMap, fGradientIndex);

This effect uses a 1D gradient texture map (Figure 6) for computing color-shifted
iridescence values. This texture should have trilinear filtering enabled and
MIRROR texture address mode selected for both u and v coordinates.

Figure 7 illustrates the resulting iridescence value.

To add satiny highlights to the surface of the wings, we use a gloss map generated
by the artist. We compute the gloss value based on the result fetched from the
gloss map and N·V for determining the placement of specular highlights. Finally,
we add the gloss contribution to the previously computed diffuse illumination
result to obtain the final result:

// Compute the final color using this equation:

// N*H * Gloss * Iridescence + Diffuse

float fGlossIndex = fGloss *

316
Simulation of Iridescence and Translucency on Thin Surfaces

Section II — Rendering Techniques

Figure 6: Gradient texture map

Figure 7: Iridescence of butterfly wings

(saturate(dot(vNormal, Half)) *

gloss scale + gloss bias);

baseColor += fGlossIndex * iridescence;

Figure 8 shows the final color for the butterfly wings.

To render the final effect correctly, we output the previously computed scalar
fOpacity in the alpha channel of our result:

return float4(baseColor, fOpacity);

Because of the premultiplication mentioned earlier, this means that our
alpha blend factors should be ONE for the SRCBLEND render state and
IVRSRCALPHA for DESTBLEND.

Summary

In this chapter we presented a technique for simulating translucency and irides-
cence on thin surfaces, such as butterfly wings. Our technique combines scat-
tered reflected light with diffusely reflected light and a color-shifted iridescence
value for a visually interesting final result. You can see this effect in Color Plate
17 and in the Chimp Demo in the ATI Radeon 9800 demo suite on the ATI web
site (see Figure 9): http://www.ati.com/developer/demos/r9800.html.

References

[Isidoro02] Isidoro, J. and D. Gosselin, “Bubble Shader,” Direct3D ShaderX: Vertex

and Pixel Shader Tips and Tricks, Wolfgang Engel, ed., Wordware Publishing,
2002, pp. 369-375.

[Jensen01] Jensen, H.W., S.R. Marschner, M. Levoy, and P. Hanrahan, “A Practical
Model for Subsurface Light Transport,” proceedings of SIGGRAPH 2001.

[Vlachos02] VlachosA., J. Isidoro, and C. Oat, “Textures as Lookup Tables for
Per-Pixel Lighting Computations,” Game Programming Gems 3, Charles River
Media, 2002.

Simulation of Iridescence and Translucency on Thin Surfaces
317

Section II — Rendering Techniques

Figure 8: Assembled final color

318
Simulation of Iridescence and Translucency on Thin Surfaces

Section II — Rendering Techniques

Figure 9: Transluscent and iridescent shader-based effects are used to
render the butterfly in the ATI Radeon 9800 Chimp Demo using
hardware acceleration. (Image courtesy of ATI Technologies Inc.)

Floating-point Cube Maps

Arkadiusz Waliszewski

Introduction

Floating-point computations are one of the most welcome features in DX9-com-
patible hardware. Floating-point surfaces add more precision and make many
algorithms possible to implement. Unfortunately, the current hardware line imple-
ments them with many limitations. This article addresses issues related to the
floating-point textures.

Floating-point Cube Maps

Cube maps are a very important texture paradigm in computer graphics. They
allow texture lookups based on the direction of the three-dimensional vector.
Unfortunately, not all hardware supports cube maps based on floating-point
surfaces.

We can use 64-bit textures instead (16 bits per component) if we do not care
about dynamic range and memory footprint. But what if hardware also does not
support this format with cube maps or we need greater dynamic range?

The trick is to use a classic 32-bit RGBA texture to represent IEEE 32-bit
floating-point values with limited precision. We pack floating-point values (RGB)
into a single 32-bit texture, where RGB channels keep mantissas of the original
floating-point values and the A channel keeps the common exponent. This format
is known as Radiance RGBE format.

The common exponent keeps the greatest exponent from the RGB floating-
point channels. Because of that, all mantissas must be normalized into a [0.5, 1]
range and adjusted to the common exponent. This means loss of precision on
channels, which keeps values significantly smaller than a channel with the great-
est exponent. This loss of data is perfectly acceptable in many areas (e.g., in high
dynamic range environmental mapping) because significantly smaller components
would not be visible after conversion from high-dynamic range values to the visi-
ble range (8-bit back buffer).

319

The following example illustrates this idea:

Floating-point values:
R = 0.9, G = 0.01, and B = 0.1

are encoded into RGBE format as:
R = 230, G = 2, B = 25, and E (exponent) = 128

This is because 230/255 is about 0.9, 2/255 is 0.008, 25/255 is 0.098, and the
common exponent is 2 to the power of 0 (because 128 in signed 8-bit repre-
sentation is 0).

The second example shows a much greater dynamic range:

Floating-point values:
R= 355.0, G = 0.01, and B = 10.003

are encoded into RGBE format as:
R = 177, G = 0, B = 5, and exponent E = 137

This means the exponent is 2 to the power of 9 (512) and decoded values are:
R = 177/255 * 512 = 355.388
G = 0/255 * 512 = 0
B = 5/255 * 512 = 10.03

We lost all data from the green channel, but the value from the green channel
is significantly smaller than from the red and blue channels, so its contribu-
tion to the final image is insignificant.

The following HLSL pixel shader code decodes the RGBE format into an RGB
high dynamic range value (it assumes that the BaseMapSampler sampler is
defined and holds cube map texture).

// samples cube map texture and decodes into a high dynamic range value

// fPos – direction vector (for lookup into the cube map texture)

float3 sampleCube(float3 fPos)

{

float4 tmp = texCUBE(BaseMapSampler, fPos);

return tmp.rgb * exp2(tmp.a * 255.0 – 128.0);

}

RGBE format covers about 76 orders of magnitude with 1 percent relative accu-
racy. It is perfectly acceptable in areas where the alpha channel is not needed, and
loss of data in some circumstances is acceptable. This solution requires all man-
tissas to be positive. Negative values are uncommon but can be handled with addi-
tional code and the loss of one mantissa’s bit.

Cube Map Filtering

Although some hardware supports floating-point cube maps, there is no hardware
that supports floating-point surface with filtering better than point sampling.
Sometimes such a limitation is not important, but usually aliasing artifacts related
to the point sampling are unacceptable.

320
Floating-point Cube Maps

Section II — Rendering Techniques

The solution to this problem is to write our own filtering routine in a pixel
shader. We limit our discussion to bilinear filtering and cube maps.

First, we must understand how bilinear filtering works. Consider one-dimen-
sional texture. Graphics hardware converts a texture’s coordinate from the float-
ing-point value (range [0, 1]) to the “texel space” (range [0, width of the 1D
texture]). For point sampling, a filtered value comes from one texel, which is clos-
est to the converted texture coordinate. For bilinear sampling, hardware fetches
two texels that lie closest to the converted coordinate (the converted coordinate
is usually between two texels). Then the hardware computes the contribution of
each texel based on the distance from the coordinate value in “texel space” and
lerps these two texels to produce the final pixel.

This approach is directly applicable to the two- and three-dimensional textures. In
the case of cube maps, this is not always true. This is because of the cube map
face selection step, which usually precedes the filtering phase. It means that on
some hardware, cube map bilinear (or above) filtering is done “per cube face,” and
some artifacts are noticeable on the boundaries of the faces (you will notice it if
you know what to search for).

We take another approach. We completely eliminate the face selection phase
from the pixel shader. We treat cube map texture coordinates like regular 3D tex-
ture coordinates, and we use these coordinates to fetch eight texels from the cube
map and lerp them to produce the final pixel. Although this approach is not 100
percent mathematically correct, it usually produces images better filtered than
built-in hardware filtering and simplifies pixel shader code.

We can summarize this by writing some pseudocode of the algorithm:
� Multiply each component of the texture coordinate by the size of the texture

(in pixels) to get the coordinate in “texel space.”
� For each component, compute two closest integer values (e.g., 123.4 value

gives 123 and 124).
� Compute contribution of each integer part by using the fractional part of the

component (e.g., 123.4 gives us integer 123 with contribution 1 – 0.4 = 0.6
and 124 with contribution 0.4).

� From these integer values, construct eight possible texture coordinates and
fetch eight texels (first divide these coordinates by the texture size to get
coordinates in the 0-1 range).

� Compute the final pixel value using contributions and fetched texels (the
exact formula is in the following shader code).

Floating-point Cube Maps
321

Section II — Rendering Techniques

Figure 1: Filtering

The following HLSL shader code demonstrates this technique:

float4 hlsl filtered cube shader(float3 uvw : TEXCOORD0) : COLOR

{

// should be defined outside the shader

float3 textureSize = float3(32, 32, 32);

float3 textureSizeDiv = float3(0.03125, 0.03125, 0.03125);

float3 halfPixel = float3(0.5, 0.5, 0.5);

float3 oneConst = float3(1.0, 1.0, 1.0);

// multiply coordinates by the texture size

float3 texPos = uvw * textureSize;

// compute first integer coordinates

float3 texPos0 = floor(texPos + halfPixel);

// compute second integer coordinates

float3 texPos1 = texPos0 + oneConst;

// perform division on integer coordinates

texPos0 = texPos0 * textureSizeDiv;

texPos1 = texPos1 * textureSizeDiv;

// compute contributions for each coordinate

float3 blend = frac(texPos + halfPixel);

// construct 8 new coordinates

float3 texPos000 = texPos0;

float3 texPos001 = float3(texPos0.x, texPos0.y, texPos1.z);

float3 texPos010 = float3(texPos0.x, texPos1.y, texPos0.z);

float3 texPos011 = float3(texPos0.x, texPos1.y, texPos1.z);

float3 texPos100 = float3(texPos1.x, texPos0.y, texPos0.z);

float3 texPos101 = float3(texPos1.x, texPos0.y, texPos1.z);

float3 texPos110 = float3(texPos1.x, texPos1.y, texPos0.z);

float3 texPos111 = texPos1;

// sample cube map (using function defined earlier)

float3 C000 = sampleCube(texPos000);

float3 C001 = sampleCube(texPos001);

float3 C010 = sampleCube(texPos010);

float3 C011 = sampleCube(texPos011);

float3 C100 = sampleCube(texPos100);

float3 C101 = sampleCube(texPos101);

float3 C110 = sampleCube(texPos110);

float3 C111 = sampleCube(texPos111);

// compute final pixel value by lerping everything

float3 C = lerp(

lerp(lerp(C000, C010, blend.y),

lerp(C100, C110, blend.y),

blend.x),

322
Floating-point Cube Maps

Section II — Rendering Techniques

lerp(lerp(C001, C011, blend.y),

lerp(C101, C111, blend.y),

blend.x),

blend.z);

return float4(C.r, C.g, C.b, 1.0f);

}

Conclusion

This article showed how to overcome the lack of floating-point cube maps and
floating-point surface filtering. By combining the two techniques presented here,
we can use high dynamic range cube maps on hardware that does not support
them natively.

Demo

A simple demo application on the CD shows the presented techniques in action.
The left part of Figure 2 shows the classic teapot rendered with a pixel shader
that implements the described algorithms, whereas the right part is rendered
with a standard 32-bit cube map. Corresponding source code also shows how to
simply convert floating-point values into an RGBE format.

Floating-point Cube Maps
323

Section II — Rendering Techniques

Figure 2: Using a pixel shader vs. a cube map

Stereoscopic Rendering in
Hardware Using Shaders

Thomas Rued

Introduction

Even though we push more polygons than ever before, use modern rendering
hardware, and the resolution and bit depth continues to get better and better, we
still end up letting our projection matrix project our 3D space into a 2D image that
is presented on the screen. This works fine for many applications, but since we
are striving for more photorealistic images and illusions of the real world as we
see it, it is only natural to expand this 2D imaging into a full 3D stereoscopic
image.

Volumetric visualization of medical data is only one area where the percep-
tion of depth can be critical. Games and virtual reality applications can also use
the third axis as a cool gimmick for the users. Earlier, this was only done by using
expensive VR equipment, shutter-glasses, and the like.

The anaglyph (red/green) method (invented by Wilhelm Rollmann in 1853)
is an easy and cheap way to get started with stereoscopy. Early on, it could be
implemented in software, but with the advent of rendering hardware the pixel
processing power increased; in the beginning it was limited to whatever capabili-
ties the rendering hardware had.

With the appearance of programmable graphics hardware, the stereoscopic
possibilities opened up even more. Now it is possible to use more than just tradi-
tional anaglyph encoding. New innovative ways of rendering stereo can be devel-
oped and implemented directly through the use of shaders.

Stereoscopic Rendering Overview

Stereoscopic rendering can be done in many ways, depending on the needs,
equipment, and requirements of the final picture.

Active and Passive Stereo

When using special glasses that actually take part in the encoding of the stereo-
scopic image, it’s called active stereo. Typical systems using active stereo are
shutterglass systems. When the glasses don’t do anything other than decode the

324

image, it is called passive stereo. Passive stereo is the area that we are going to
explore in this article, since this is the technique we can implement and use
through pixel shaders on modern 3D rendering hardware.

Generic Stereoscopy

To do stereoscopic rendering in a generic way, we need to expand our normal geo-
metric pipeline a bit. First, we work with two cameras instead of one (left/right
eye). Second, we need to do a final compositing of the left and right images to cre-
ate the final stereoscopic image presented on the screen.

The compositing itself requires temporary storage of image data in a render
target and good control of the viewport and FOV. We go through the setup and use
of these primitives.

Even though there are a handful of different ways to actually compose the
stereo image, they all share the same virtual camera setup. This is the best way
to have a good stereo image. Consequently, we use a fair amount of space on a
detailed description on that aspect.

We also look at stereoscopic artifacts and what we can do about it. Finally, we
go through three different shaders doing stereoscopic compositing.

Stereoscopic Camera Setup

Before rendering anything, we have to set up our camera(s) in the correct way.
Failing to do this results in an incorrect stereo image. This results in perception
of depth anomalies and an incorrect visualization of the geometry in the scene.

Basic Scene

For our demonstration purposes, we assume a simple scene consisting of an
object and a camera. For stereoscopic rendering, we need two cameras. But for
this part, we assume a single camera setup, since the double scene rendering due
to an extra camera pass is trivial.

Stereoscopic Rendering in Hardware Using Shaders
325

Section II — Rendering Techniques

Figure 1: Our basic test scene with an object and a camera

Viewport and Aspect Ratio

Since we are using render targets for our intermediate results and our final
compositing is done using shaders, we need to use textures for render targets.
Like all textures, we have to select power of 2 sized textures. This isn’t exactly
what we want for 800x600 display modes, etc., but with a little help from our pro-
jection matrix, field of view, and aspect ratio, we can render to the full target that
when scaled to the screen looks correct.

First we set the virtual camera viewports to the actual render target size (512x
512, for example). Then we set up the projection matrix to render the scene as if
it was actually rendered to our destination viewport size (1024x768, for example).
This is accomplished by specifying a horizontal and vertical FOV that corresponds
to the aspect ratio of the 1024x768 viewport.

If we choose to set a horizontal FOV, we have to calculate the vertical FOV
by using the formula below:

Vertical FOV (radians) = 2 * tan–1(1/aspect * tan(horizontal FOV/2))

For example: for a 1024x768 viewport, the traditional 4:3 aspect will be 1.333333.
Setting the horizontal FOV to 60 degrees (1.047 radians) results in a vertical FOV
as follows:

Vertical FOV (radians) = 2 * tan–1(0.75 * tan(1.047/2))

Doing this makes use of the total allocated texture size and still gets a correct
aspect on the final image when it is used on the original destination viewport.
However, if a texture with a different size than the actual viewport is used, the
final image will contain scaling artifacts. In practice, these artifacts can be limited
by using traditional texture filtering.

If you need a full 1:1 mapping between render target pixels and screen pixels,
you have to make a render target texture with at least the size of the destination
viewport and then only use a subpart of this texture. By doing this you will not
need to set up a special projection matrix. You can render directly to the render

326
Stereoscopic Rendering in Hardware Using Shaders

Section II — Rendering Techniques

Figure 2: Basic scene rendered to a
quadratic render target texture with
respect to the aspect ratio of the
final destination

Figure 3: Render target rendered on final
destination. Now the aspect ratio of the
image is correct, but scaling artifacts may
occur.

target, using the same viewport and projection matrix as you would use for non-
render target rendering. Just remember that later on you need to use special
texture coordinates to obtain the rendered part of the render target. Also, you
will not make use of the total amount of allocated render target memory.

Camera Optics

Even though the camera FOV in computer graphics typically is expressed in
terms of degrees and/or radians, it is often practical to express it in mm. In that
way, we get closer to the real photographic world, but we also get values that we
can reuse later in the basis calculation (see below). The FOV is translated from
mm to radians below:

Horizontal FOV (radians) = 2 * tan–1(36 / (2 * mm))

The vertical FOV can be calculated by using the formula above.

Depth Buffer

Setting up render targets for scene rendering requires the attachment of a depth
buffer. We need two render targets but can reuse the depth buffer between render
sessions:

Clear left render target and common depth buffer
Render scene to left render target
Clear right render target and common depth buffer
Render scene to right render target

In this way, we reuse the depth buffer memory. You must make sure that you do
not use a multipass render back end, as that presumes a certain state of the depth
buffer between passes.

Stereoscopic Rendering in Hardware Using Shaders
327

Section II — Rendering Techniques

Figure 4: Basic scene rendered to an
oversized quadratic render target,
resulting in waste of expensive
memory

Figure 5: Render target rendered on the
final destination. Only the original subpart
of the quadratic render target has been
retrieved.

Parallax, Exo-, Endo-, and Meso-Stereo

In general, the amount of stereo can be expressed as the parallax in the picture.
The zero parallax is located at the screen plane with the positive parallax inside
the screen and the negative outside. When all the objects in a scene are in front of
the screen plane, having only negative parallax, it is called exo-stereo, and when
all the objects in a scene are behind the screen plane, having only positive paral-
lax, it is called endo-stereo. Normally, the scene is composed in a way where both
a negative and positive parallax is present, resulting in meso-stereo.

We can calculate a correct parallax difference for the scene by using:

� � A / n

where:

� = parallax difference
A = the distance between the eyes equal to 65 mm (international standard value)
n = the scale factor between the physical width of the filmstrip and the width of

the screen

We started by setting the camera’s horizontal FOV and aspect ratio with respect
to the render target size and frame buffer destination viewport size. Then we
found the needed parallax for the scene. Now it’s time to set up the relationship
between the two cameras — the relationship between “the two eyes,” so to
speak.

328
Stereoscopic Rendering in Hardware Using Shaders

Section II — Rendering Techniques

Figure 6: Visualization of the parallax in a stereoscopic scene. Notice that the object
outside the screen plane has a lighter shadow to the right and the object inside the
screen plane to the left. The object located at the screen plane doesn’t have any
parallax (zero parallax).

Basis

First, let me point out that the basic way you set up two virtual cameras for any
kind of stereoscopic rendering is in a parallel way. Some systems wrongly make
use of converging cameras, which doesn’t result in a correct stereo simulation.
The only way to set the cameras up (both virtual and real cameras) is to let their
aiming lines be parallel.

That said, the distance between the camera’s aiming lines is denoted as the basis.
To define a good basis is the “holy grail” of getting good stereo perception.

Calculating the basis can be done in different ways, depending on the scene
rendered and the available amount of data.

Optimal Depth

When rendering a big scene, it’s difficult to accurately define where the far point
is. In that case, we calculate the basis in the following way:

b = � * ((N / f)–1)

where:

b = Basis
� = Parallax difference in final picture
N = Near point
f = Focal length

Maximum Depth

If the far distance is known (which is the case for a simple model viewer and the
like), we can estimate the near and far point exactly and calculate the basis:

b = (� * F * N) / (f * (F–N))

where:

F = Far point

Stereoscopic Rendering in Hardware Using Shaders
329

Section II — Rendering Techniques

Figure 7: Converging cameras. This
is the incorrect way to set up the
camera’s aiming lines.

Figure 8: Parallel cameras. This is the
correct way to initially set up the camera’s
aiming lines.

Notice that the near and far points aren’t necessarily the same as the near and far
z clip planes of the projection matrix.

Here is an example: We have a simple scene with a known far point distance, so
we use the latter basis formula:

A = 65 mm
n = 1500 mm / 36 mm = 42, normal PC screen and filmstrip
� = 65 mm / 42 = 1.56 mm
F = 900 mm
N = 300 mm
f = 35 mm, typical wide-angle lens
b = (1.56mm * 900mm * 300mm) / (35mm * (900mm–300mm))
b = 20 mm

Depending on our scene, we have to scale this from millimeters into world units.

Basis Factor

Often, the basis is calculated through the use of a basis factor (bf). We can calcu-
late the basis factor based on the optimal depth formula above and deduce the for-
mula below:

bf = N/b

where:

bf = basis factor

The basis factor is used to recalculate the basis in situations where the scene
setup is the same and only the camera translation and rotation has changed. In
these situations, the near point changes a lot, and we can benefit from recalculat-
ing the basis the following way:

b = N/bf

where:

bf = basis factor found from the initial scene setup

Giantism and Lilliputism

It should be noted that if the camera basis is smaller than the distance between
the eyes (retinal disparity), the result is called giantism. If the basis is bigger than
the distance between the eyes, it is called lilliputism. These artifacts can be useful
in situations where the amount of stereo isn’t good enough. If we are simulating a
large terrain, it’s difficult to get good stereo from objects far away. In this case, we
can use a larger basis resulting in artificial depth on the distant objects (lilliputism
– model effect). The opposite scenario could also be the case if we had a game con-
centrated on nano-technology and we needed to visualize small objects. In this
case, we can get a good stereo effect by using a smaller basis (giantism).

Now that our basis is set up correctly, let’s talk about how these two virtual
cameras are used within a dynamic scene with frequent camera transformation
updates.

330
Stereoscopic Rendering in Hardware Using Shaders

Section II — Rendering Techniques

Camera Transformation

Since it is important that the two virtual cameras maintain their basis within the
lifetime of the application, we must guarantee that the transformations made to
the cameras don’t break this individual relationship. So, instead of using a tradi-
tional lookat function directly on the left and right camera, you should use a
dummy matrix.

If our scene graph contains a forward kinematics/attachment system, it’s
easy to make a dummy actor and attach the two cameras to this actor, which is the
one controlled and moved around by the user. If that isn’t the case, we need to use
a matrix stack or multiply the dummy element and camera matrices. In either
case, we have to set the initial transformation for the virtual cameras.

Initial Transformation

This is a fairly simple step. By initializing the virtual camera’s transformation
matrix to the identity matrix and only offsetting them in x direction by the basis,
we can multiply them with the camera dummy’s transformation matrix and main-
tain the correct basis even after the camera is translated and rotated arbitrarily.

A common mistake is to offset the cameras with a +/– basis, resulting in a
distance between the cameras of 2*basis. This can be fixed by offsetting with +/–
basis/2.

1 0 0 +/– Basis/2

0 1 0 Y

0 0 1 Z

0 0 0 1

The illustrations below show the setup. Here the cameras are initially positioned
attached to a dummy — or at least transformed by a dummy matrix. Then the
“stereo-camera” can be moved around freely.

Stereoscopic Rendering in Hardware Using Shaders
331

Section II — Rendering Techniques

Figure 9: Initial x offset of
the cameras to set up the
parallel aiming lines with
the basis distance

Figure 10: The cameras are attached to a dummy or
manipulated by a matrix stack.

Stereo Window

When looking at a stereo image that has a correct basis setup, we will typically
have some objects in the scene behind the screen plane and some objects in front
of the screen plane.

For static images or prerendered movies, we have a good chance of control-
ling how and where this is happening, but for real-time graphics, we can’t guaran-
tee what the user is doing and the user will consequently get into situations
where the stereo perception will break down (diplopia).

The problem arises when an object located outside of the screen is suddenly
clipped by the screen’s border. This doesn’t happen in the real world. Neither will
an object that is located farther away block an object located nearer in a real-world
situation. In these situations, the brain receives conflicting depth information and
the stereoscopic effect is destroyed.

One trick is to use blurry borders (StereoWindowSuppress), since this will
blur out the artifact for the brain and make it more believable. However, this
doesn’t look good on ordinary scenes, but for a sniper rifle or submarine peri-
scope, this could be a good solution.

A general solution though is to move the conflicting object behind the stereo
window, resulting in a more positive parallax. In practice, this means that we push
our scene into the screen until the objects clipped by the border are behind the
border, resulting in correct stereo perception by the brain.

332
Stereoscopic Rendering in Hardware Using Shaders

Section II — Rendering Techniques

Figure 11: The dummy
object can be moved freely
around the scene.
Traditional matrix math
guarantees that the parallel
aiming lines and the basis
are maintained.

Figure 12: An object located in front of
the stereo window but clipped by the
border of the screen. This results in bad
stereo perception.

Figure 13: The object is moved behind the
stereo window, resulting in a correct
perception of depth.

Image Offset

Traditionally, offsetting the “left” and “right” images in the horizontal direction
does this. The “left” is moved in one horizontal direction, and the “right” is
moved in the other. Consequently, this results in missing pixels at the left and
right borders. Since we are working in a virtual world, we do not always have to
do things the traditional way, so why not do the offsetting at the matrix projection
level?

Matrix Offset

By offsetting at the matrix projection level, we do exactly the same thing as the
image offsetting, but since we are doing it at matrix level, we do not get the arti-
facts of missing pixels. To do this, we need to look at the projection matrix:

?? 0 +/– stereo window offset 0

0 ?? ?? 0

0 0 ?? ??

0 0 1 0

Notice that even though we pushed the rendered scene into the screen in this
situation to fix a stereo artifact, we could also use the same technique to move
things out of the screen, making them fly over the keyboard. Just make sure that
the screen borders don’t clip the objects, since that ruins the stereo effect, as
stated earlier. Also make sure that a hyper-/hypo-stereo artifact doesn’t appear.

Stereo Window — Basis Relationship

Since both the basis and stereo window are manipulating the parallax of the final
stereoscopic image, it should be noted that these two depend on each other.
Sometimes we have to readjust the basis when the stereo window is set and vice
versa. Unfortunately, the relationship in many ways depends on the given scene,
so a general rule can’t be set forth. It is a subjective evaluation by a person used
to looking at stereoscopic images. Advanced formulas can be used, but in the end
it still depends on the scene’s content. So, for this article we do not go into depth
on that aspect.

Compositing

When rendering a scene in stereo, we need to render the scene twice, one for
each eye. Two virtual cameras (left and right eye) render the scene from its point
of view, resulting in a slight difference, which is used by our brain to calculate the
depth. This is exactly the same case when we look at the real world through our
eyes.

We cannot render the scene directly to the frame buffer, since we have to
post-process the two rendered scenes into a final stereoscopic image. We

Stereoscopic Rendering in Hardware Using Shaders
333

Section II — Rendering Techniques

therefore store the intermediate result in a separate render target for later use,
one for each eye.

Render Targets

In DirectX, render targets are either handled as a surface (IDirect3DSurface9) or
as a texture (IDirect3DTexture9). Since we need the render target to be able
to be used as a texture later on, we do not use the CreateRenderTarget(...)

method, since it creates a surface (IDirect3DSurface9). Instead, we use the tradi-
tional CreateTexture(...) method. We have to create a new texture by using the
D3DUSAGE_RENDERTARGET flag, and we have to allocate it in the default memory pool
by using the D3DPOOL_DEFAULT. The memory is updated per frame and is therefore
too expensive for the texture manager to update. On the backside, this means that
we have to check if the target is lost and restore/recreate it if this is the case.

For the final image presentation, a screen-sized quad is used, which renders
the scene by using the two render targets as texture inputs and using a pixel
shader to do the actual mixing of the pictures.

Vertex Format

The quad’s vertex format can be constructed in different ways, depending on what
kind of information we need. One common part though is the transformed posi-
tion of the position.

struct Vertex

{

float x,y,z,w;

.

.

.

};

After this declaration, we continue on and allocate a vertex buffer containing the
four corners of the screen (0,0,1024,768). Remember to set the w value to 1.

LPDIRECT3DVERTEXBUFFER9 vb;

CreateVertexBuffer(4*sizeof(Vertex),0,D3DFVF XYZRHW | ..., D3DPOOL MANAGED, &vb, NULL);

Rendering

Later on in the rendering pipeline, we do the actual rendering by setting the pipe-
line up in the following way:

Set the current stream: SetStreamSource(0, vb, 0, sizeof(Vertex));

In this case we do not use any vertex shader: SetVertexShader(NULL);
Set the vertex format used in the creation: SetFVF(D3DFVF_XYZRHW | ...);

Set the stereoscopic pixel shader: SetPixelShader(...);
Set left render target: SetTexture(0,...);
Set right render target: SetTexture(1,...);
Draw the quad: DrawPrimitive(D3DPT_TRIANGLESTRIP,0,2);

334
Stereoscopic Rendering in Hardware Using Shaders

Section II — Rendering Techniques

Pixel Shader Implementation

Doing stereoscopic rendering using pixel shaders doesn’t include shutter glasses,
polarized glasses, and similar devices, since these solutions require a special
hardware setup. We only make use of the 3D hardware, the monitor, and some
special glasses.

We look into three different methods: the traditional anaglyph, an enhanced
anaglyph (ColorCode 3-D), and finally the ChromaDepth system.

Traditional Anaglyph

Anaglyph is widely known from the ’50s as the special “red/green” glasses that
people use in cinemas to get an extra illusion of realism. The system is quite sim-
ple and only requires some cheap cardboard viewers with a red filter covering the
left eye and a green filter covering the right. The system gives good perception of
depth but lacks the reproduction of color. Later the system was expanded to be a
red/cyan solution, in which colors were better preserved since no color informa-
tion was discarded. A red/cyan pixel shader can be found in the following code.

ps.1.1 // GeForce 3 class hardware support

def c0, 1.0f, 0.0f, 0.0f, 0.0f // R separation mask (for left).

def c1, 0.0f, 1.0f, 1.0f, 0.0f // GB separation mask (for right).

tex t0 // Declaration of left.

tex t1 // Declaration of right.

// Left

mul r1, t0, c0 // Remove GB channels.

// Right

mad r0, t1,c1, r1 // Add GB to R.

The shader starts off by removing the GB channels from the left RGB input. This
is done by multiplying R*1, G*0, and B*0; the result is saved in r1. The second
step multiplies the right RGB input: R*0, G*1, and B*1 and adds the saved result
from r1. Finally, it outputs the result to r0. In short, the shader takes the R from
the left and the GB from the right and forms a new RGB value that is output.

Colors

Even though the creation of the red/cyan anaglyph system was a great improve-
ment to the red/green and red/blue system, it didn’t make it all the way. The prob-
lem is that the red/cyan filters separate both color and depth, and the eye-brain
system can only manage to recombine the depth information — not the colors.
This has resulted in a quite good stereo effect but very limited and distorted col-
ors, plus a very possible stereoscopic sheen.

Stereoscopic Rendering in Hardware Using Shaders
335

Section II — Rendering Techniques

ColorCode 3-D

In 1997 a Danish scientist found that instead of splitting both color and depth
between the eyes, it would be easier for the brain to use one eye for color and one
for depth. The result was ColorCode 3-D. In many ways the ColorCode 3-D sys-
tem is similar to the traditional anaglyph system. The big difference is the way
the picture is stereo encoded and later decoded by the glasses and the brain. At
first, it seems like the ColorCode 3-D system hurts the eyes more than the tradi-
tional anaglyph system, but after a few seconds the brain adapts to this system
and you experience stereo in full color.

Ghosting

Both shutter glasses, polarized glasses, and anaglyph-based systems lack a 100
percent perfect separation of the left and right image. Consequently, this results
in a “ghosting” effect, where some of the left image can be seen by the right eye
and vice versa. The ColorCode 3-D system has greatly reduced this problem by
using a finalizing step in its encoding of pixels. By implementing a special ghost-
removing algorithm, special color correction steps, etc., the final result gets rid of
most of the ghosting and other color artifacts.

Since the appearance of programmable hardware, the ColorCode 3-D encod-
ing and color correction/ghost removal steps have been possible to implement
using pixel shader 1.1 and above. It must be implemented as a two-step solution
on ps < 1.4 and can be implemented as a single-step solution on ps >= 1.4 by
using the phase instruction. The system is protected by patent and license, so I
can’t show the full pixel shader here, but a pseudocode version of pixel shader 1.4
can be found in the following code. Additionally, a screen shot of the output is
shown in Color Plate 18.

ps.1.4 // // ATI Radeon 8500 class hardware support

def c0, 1.0f, 1.0f, 0.0f, 0.0f // RG separation mask (for left).

def c1, 0.0f, 0.0f, 1.0f, 0.0f // B separation mask (for right).

def c2, ... // Weights for right blue channel.

def c3, 1.0f, 1.0f, 1.0f, 0.0f // Mask for collapsing weighted RGB values into B.

texld r0,t0 // Declaration of left.

texld r1,t1 // Declaration of right.

// Left – calculate color

mul r3, r0, c0 // Remove B channel, and store in r3

// Right – Calculate depth

mul r0, r1, c2 // Compose new B value as a weighted RGB value

dp3 r0, r0, c3 // Collapse RGB values into a grayscale

mad r0, r0, c1, r3 // Separate B and add to existing RG result in r3

336
Stereoscopic Rendering in Hardware Using Shaders

Section II — Rendering Techniques

phase

texld r2,r0 // Dependent lookup in a volume texture using rgb as uvw

mov r0,r2 // Result of full color-converted ColorCode encoding

The shader starts by removing all blue from the left RGB. A balanced grayscale
is then made from the right RGB values, which are added as the blue channel.
Lastly, the result is stored in r0. In ps<1.4, we would have to handle the final
color conversion in different ways, but with pixel shader 1.4 and above we can do
a simple dependent read from a volume texture containing the correction. Ori-
ginally, this was a full 256x256x256 volume, but testing has shown that good
results can be attained by using only a 32x32x32 texture and linear filtering/inter-
polation of colors.

ChromaDepth

As a special artistic stereoscopic phenomenon, the ChromaDepth should be men-
tioned. Forget for a moment all that we have been running through — of stereo
settings, basis, etc. — and imagine that we just render our scene to the graphics
card the traditional way. By doing this, we actually have a 3D picture of our scene
already (color and depth buffer). By visualizing the depth buffer, we actually get a
stereoscopic view of our scene. No colors can be reproduced, since the colors are
used to reproduce the depth, but for special gaming situations and/or artistic
setup, the ChromaDepth should be considered a viable solution. The technology
uses the fact that red has a different bandwidth than blue, and by using some
ChromaDepth viewers from ChromaTek, we are able to experience red as close
and blue as far. A ChromaDepth shader can be found in the following code:

vs.2.0 // ATI Radeon 9700, nVidia GeForceFX class hardware support

dcl position v0

def c4, 300.0f, 800.0f, 0.0f, 0.0f // Near plane & far plane

m4x4 r0, v0, c0 // Transform position to screen space

mov oPos, r0 // Output position

sub r0.z, r0.z, c4.x // Get distance from near plane

sub r0.y, c4.y, c4.x // Get distance from near to far plane

rcp r0.w, r0.y // Calculate 1/w

mul r0.z, r0.z, r0.w // Scale z by 1/w

mov oT0.xy, r0.zw // Output texture coord

ps 2 0 // ATI Radeon 9700, nVidia GeForceFX class hardware support

dcl t0.xy // Texture coord contains scaled z(0..1)

dcl 2d s0

add r1, t0.x, c0.x // Add stereo window offset to scaled z

texld r1, r1, s0 // Use scaled z as texture coord

mov oC0,r1 // Output color

Stereoscopic Rendering in Hardware Using Shaders
337

Section II — Rendering Techniques

The ChromaDepth encoding is split into two shaders. The vertex shader
retrieves the z, scales it to fit within a [0..1] range value, and outputs it as a tex-
ture coordinate. Once that is done, the pixel shader only needs to take the z
(located in t0.x), adjust the calculated texture coordinates (to simulate the stereo
window), and do a lookup into a 1D texture. The texel retrieved is then output.

Stereo Comparison

Looking at the different results from the three types of encoding shaders, it’s
clear that they all give a feeling of depth but are very different at the same time.

Anaglyph

The traditional anaglyph is easy to implement, and it is widely used. Conse-
quently, a lot of viewers are already out there, resulting in a lot of potential users.
It also gives good quality stereo. On the downside, it is lacking in the reproduction
of color.

ColorCode 3-D

ColorCode 3-D takes care of the color problem. It’s a bit more difficult to use for
the very first time, but after a few seconds, the picture is clearly much better. The
stereo quality is even comparable with the much more expensive shutter glass
systems because the ColorCode 3-D system uses a post-processing step where
the picture is finalized and the stereo artifacts removed. On the downside,
ColorCode 3-D isn’t that widely used, and it is protected by a patent, so you have
to contact ColorCode 3-D Ltd. for more information on the full hardware-acceler-
ated ColorCode 3-D implementation.

ChromaDepth

ChromaDepth is the only system using clear separation filters. This results in
both good stereo and clean colors. Unfortunately, the whole system’s depth
encoding is based on the visible spectrum of colors to reproduce stereo. So, for
generic use, the system isn’t very usable. Also, it should be noted that since the
system uses clear filters, the separation isn’t that good, resulting in a lot of ghost-
ing. However, if we need to create artistic stereo that from the start has been
designed for ChromaDepth, the system is good. Finally, we have shown that a
ChromaDepth shader can be implemented as a visualization of the depth buffer,
resulting in minimal rendering overhead (the scene needs to be rendered only
once), so it is clearly the fastest method of doing stereo if colors aren’t needed.

338
Stereoscopic Rendering in Hardware Using Shaders

Section II — Rendering Techniques

Conclusion

It has been proven scientifically that stereo images improve visual perception by
as much as 400 percent. Stereo is a direction on the road to a more realistic simu-
lation of reality. Therefore, stereo must be considered an option on the same level
as more geometry, better light calculations, smoother shadows, more detailed tex-
tures, etc.

Viewing Ortho-, Hypo-, and Hyper-stereo

It should be noted that when a given scene is viewed from the same initial posi-
tion as it was first recorded, it is called ortho-stereo. The normal goal for stereo-
scopic rendering is to achieve the highest possible reproduction of the initial
scene. However, if the scene is viewed from a closer distance, it results in less
stereo (hypo-stereo), and if the distance is larger, there is more stereo (hyper-ste-
reo). These general rules should be kept in mind when presenting stereoscopic
images on bigger screens for audiences, etc.

Future Implementation

Even though these general stereoscopic setup rules hold for both current and
future stereoscopic systems that make use of virtual camera setups, there are still
issues to consider. Traditionally, game development has included a lot of tricks and
hacks to make it all work in real time. One of these hacks is to make use of
imposters for complex imaging. Particles, flares, beams, trees, grass, etc., all
make use of some kind of “quad-based” system. This works fine for traditional
non-stereo 3D applications, but if translated into a stereo system directly, these
illusions are suddenly noticeable by the viewer. A flat quad-based flare appears flat
and consequently destroys the illusion of a glowing ball of fire.

The solution is to use even more advanced shaders, where depth is consid-
ered and a kind of fake depth image is made, resulting in a correct visual appear-
ance when viewed in stereo. Depth sprites might be one of the steps in the right
direction, but research must be done in this area.

Acknowledgments

Svend B. Sørensen, ColorCode 3-D Ltd., www.colorcode3d.com.

Tammy Barnett and William K. Chiles, American Paper Optics,
www.chromatek.com.

Niels Husted Kjær, Medical Insight, www.medical-insight.com.

Mark Rudings, Titoonic, www.titoonic.com.

Illustrations: Kristina Gordon, Dotrix, www.dotrix.dk.

Modeling: Thomas Suurland, www.suurland.com.

Stereoscopic Rendering in Hardware Using Shaders
339

Section II — Rendering Techniques

Hatching, Stroke Styles, and
Pointillism

Kevin Buchin and Maike Walther

Introduction

Hatching is a common technique used in non-photorealistic rendering (NPR). For
hatching, a series of strokes are combined into textures. These compositions of
strokes can convey the surface form through stroke orientation, the surface mate-
rial through stroke arrangement and style, and the effect of light on the surface
through stroke density.

Up until now, an important issue of real-time hatching techniques has been
how to employ the limited programmability of the graphics hardware currently
available. Pixel programmability has now reached a state where we can shift the
focus to adding more flexibility to the hatching scheme and combining hatching
with other techniques for creating new effects.

We present a hatching scheme and some extensions to it, namely changing
the stroke style interactively and hatching with specular highlights. Then we
show how we integrate hand drawings into a scene, taking into account the effect
of lighting. Finally, we show how to choose a color for each stroke — depending
on the background color — that can be used for a pointillistic style.

Approaches to Hatching

For hatching, strokes have to be chosen from a collection of possible strokes to
convey some tonal value. A possible approach to this problem is to think of each
stroke having a priority and choose strokes according to their priority (i.e., using
only the most important strokes for light tonal values and adding less important
strokes in areas of darker tonal values). Such collections of strokes are called pri-

oritized stroke textures [Winkenbach94] and can be seen as the basis for current
hatching schemes.

For real-time hatching, stroke textures for some specific tonal values and dif-
ferent mipmap levels can be precomputed and blended at run time according to
the given tonal value [Praun01]. To maintain a constant stroke width in screen
space, the mipmap levels contain strokes of the same texel width. Thus, higher
mipmap levels contain fewer strokes than lower mipmap levels for representing

340

the same tonal value. This technique can be implemented using pixel shaders, as
presented in the first ShaderX book [Card02].

Prioritized stroke textures can also be implemented using a thresholding

scheme (i.e., encoding intensity thresholds and information on resulting color
values in a texture). For instance, this information can be differences in tone
[Webb02]. While strokes fade in gradually when blending stroke textures for given
tonal values, using a thresholding scheme lets strokes appear more suddenly.

There is more to hatching than the actual rendering. In particular, texture-
based hatching only works well with an appropriate texture parameterization. An
overview of the complete hatching process is given in [Domine01]. Here we focus
on the shader used for hatching.

Our Thresholding Scheme

Our approach is to encode a stroke by its color and intensity threshold. Figure 1
shows a sample stroke texture with grayscale values (a) and corresponding inten-
sity thresholds (b). An advantage of this approach is that we don’t need to decide
how the stroke color is combined with the background color (for instance, adding,
overlaying, modulating, or replacing the background color) when creating the
textures.

The stroke colors can be stored in the RGB channels of a texture and the corre-
sponding intensity thresholds in the alpha-channel of the same texture. To be able
to distinguish the color values and intensity thresholds of the different strokes in
one texture, the texture may not contain overlapping strokes. For drawing over-
lapping strokes, we use several textures (for instance, two for horizontal strokes
and two for vertical strokes). Instead of actually using several textures, we can
reuse one stroke texture by translating and/or rotating the original texture coordi-
nates. To keep the pixel shader simple, we do this in the vertex shader by adding
several texture coordinates to the output Out and — for two horizontal and two
vertical stroke textures — the following lines:

Hatching, Stroke Styles, and Pointillism
341

Section II — Rendering Techniques

Figure 1: (a) A texture containing the stroke colors as grayscale values, (b) a texture
containing the corresponding intensity thresholds

Out.Tex0 = Tex0;

Out.Tex1 = Tex0 + offset1.xy;

Out.Tex2 = Tex0.yx + offset1.zw;

Out.Tex3 = Tex0.yx + offset2.xy;

To each stroke texture we assign an intensity interval [start, end] and map the
threshold t in the alpha channel to this interval by start + t/(end-start). After com-
puting a desired intensity, we can modulate the background color with the stroke
color using the following lines of code:

float4 stroke = tex2D(stroke sampler, Tex0);

color *= (intensity < start + stroke.a/q) ? stroke.rgb : 1.0;

. . .with q = end-start. In the pixel shader, we compute an intensity using a lighting
model and, again in the case of two horizontal and two vertical applications of one
stroke texture, add the following lines:

float3 color = background color.rgb;

float4 stroke = tex2D(stroke sampler, Tex0);

color *= (intensity < 0.75 + stroke.a/4) ? stroke.rgb : 1.0;

stroke = tex2D(stroke sampler, Tex1);

color *= (intensity < 0.5 + stroke.a/4) ? stroke.rgb : 1.0;

stroke = tex2D(stroke sampler, Tex2);

color *= (intensity < 0.25 + stroke.a/4) ? stroke.rgb : 1.0;

stroke = tex2D(stroke sampler, Tex3);

color *= (intensity < stroke.a/4) ? stroke.rgb : 1.0;

return float4(color.r, color.g, color.b, background color.a);

A teapot rendered with this technique is shown in Figure 2.

342
Hatching, Stroke Styles, and Pointillism

Section II — Rendering Techniques

Figure 2: A teapot hatched using our thresholding scheme

Varying the Line Style

We can extend the above technique to allow variation of the hatching strokes at
run time. For this, we do not encode strokes directly into a stroke texture but
instead encode lookups into single-stroke textures. We call these textures
stroke-lookup textures.

A simple example of a stroke-lookup texture is shown in Figure 3. The channels
R and G store the lookups in t and s, channel B stores the threshold, and alpha is
used as a stencil to prevent incorrect interpolation. For achieving a roughly uni-
form screen width of the strokes — as in hand-drawn hatchings — we use
mipmap levels with strokes of the same texel size. Standard generation of mipmap
levels would halve the texel width of a stroke in each level, thus strokes farther
away from the viewer would be thinner than those close to the viewer. For correct
interpolation between these mipmap levels, we extend the stroke-lookup coordi-
nates from [0,1] to [–0.5,1.5]. For this we scale the texture coordinates appropri-
ately, as illustrated in Figure 4.

Hatching, Stroke Styles, and Pointillism
343

Section II — Rendering Techniques

Figure 3: (a) – (d) show the RGBA channels of a stroke-lookup texture and (e) is an illustration of a
lookup. (a) shows the R channel that contains the lookup in s, (b) the G channel that contains the
lookup in t, (c) the B channel that contains the threshold, and (d) the A channel that is used as a
stencil.

The above calculations have to be adapted in the following way:

float4 lookup = tex2D(stroke lookup sampler, Tex0);

lookup.xy = (lookup.xy - 0.25)*2;

bool stroke flag = (intensity < interv.x + interv.y*lookup.b) && (lookup.a > 0.99);

color *= stroke flag ? tex2D(single stroke sampler, lookup.xy) : 1.0;

For different strokes, we use lookups into several different single-stroke textures.
For this, we use an additional texture with indices for single-stroke textures.
Alternatively, we could encode the indices into the stenciling channel. To keep the
pixel shader simple, we assume that we have done the lighting computation in the
vertex shader. The simple pixel shader, using lookups into two different single-
stroke textures — a short and a long stroke — could look like this:

float4 getStrokeColor(float2 texCoord, float shiftedIntensity) {

float4 lookup = tex2D(stroke lookup sampler, texCoord);

lookup.xy = (lookup.xy - 0.25)*2;

float stroke = tex2D(index, texCoord);

float4 stroke color = (stroke < 0.5) ?

tex2D(short stroke, lookup.xy) : tex2D(long stroke, lookup.xy);

bool stroke flag = (lookup.w > 0.99) && (shiftedIntensity < lookup.z/4.0);

stroke color = stroke flag ? stroke color : 1.0;

return stroke color;

}

float4 main(

float2 Tex0 : TEXCOORD0,

float2 Tex1 : TEXCOORD1,

float2 Tex2 : TEXCOORD2,

float2 Tex3 : TEXCOORD3,

float2 Tex4 : TEXCOORD4,

float4 Diff : COLOR0) : COLOR

{

float4 color = 1.0;

color *= getStrokeColor(Tex0, Diff.x - 0.75);

color *= getStrokeColor(Tex0, Diff.x - 0.75);

color *= getStrokeColor(Tex1, Diff.x - 0.5);

344
Hatching, Stroke Styles, and Pointillism

Section II — Rendering Techniques

Figure 4: Illustration of the texture coordinates tau and scaled
stroke-lookup coordinates lookup_x and lookup_y

color *= getStrokeColor(Tex2, Diff.x - 0.25);

color *= getStrokeColor(Tex3, Diff.x - 0.0);

return color;

}

Figure 5 shows the use of different stroke styles in combination with specular
highlights.

Hatching with Specular Highlights

So far, we have used strokes only to darken a rendition where the desired inten-
sity is below a certain threshold. But we can also draw light strokes — assuming
the background is not white. We use this for drawing specular highlights. To draw
light strokes, we just need to check whether the intensity is above a given thresh-
old. We can use the same stroke textures as for dark strokes — and possibly com-
bine dark and light strokes — by taking one minus the previous threshold to
maintain the stroke priorities. This effect is illustrated in Figure 5.

Lighting Hand-drawn Illustrations

Hatching can be used for lighting a hand-drawn illustration and integrating it into
a 3D scene. We use billboards for placing the illustration in the scene. For the
lighting computation, we need to provide normals for the illustration. We do this
by roughly approximating our hand drawing by simple primitives and rendering
these with a pixel shader outputting the color-encoded (normalized) normal vec-
tors or with a normalization cube map. Using the normals, we choose which
strokes to draw according to the light. Figure 6 (a) shows a hand-drawn image that
we approximated with the shape in (b) and placed in a scene in (c).

Hatching, Stroke Styles, and Pointillism
345

Section II — Rendering Techniques

Figure 5: (a) A shaded teapot and (b) – (d) the same teapot hatched with specular highlights and
different stroke styles

Stroke Colors and Pointillism

The last effect chose the stroke color according to the background color. The
resulting strokes were unicolored simply because the background color of one
stroke did not change. In the case of varying background or base color for a
stroke, we would still like to draw unicolored strokes — as is typical for stroke-
based illustrations, such as mosaics, oil paintings, and many others. We can do
this by encoding offsets into the strokes, which are used for reading the base color
so that all points of a stroke read the same color. Figure 7 shows the R channel of
such a stroke. The brush uses values from black (0) to white (1). This value has to
be scaled by the maximal relative brush width and height offset_scale.xy in the
pixel shader. If brushes of different sizes are used simultaneously, smaller brushes
should use values from a smaller interval. The code for modifying the texture
coordinate used to determine the base color could look like this:

float2 offset = (tex2D(offset sampler, Tex.xy*scale).xy – 0.5) * offset scale.xy / scale;

float2 newTex = Tex + offset;

Used on its own, this technique can create a
pointillistic style. Figure 8 shows some
examples.

Conclusion

Pixel shaders offer great possibilities for
implementing stroke-based rendering tech-
niques. As examples of this we have shown
a hatching scheme and several effects
extending this scheme. We hope that these
examples may serve as an inspiration for the
many more effects that are possible.

346
Hatching, Stroke Styles, and Pointillism

Section II — Rendering Techniques

Figure 6: (a) A hand-drawn image as input, (b) approximation of the shape, (c) resulting image in
a 3D scene (See Color Plate 19.)

Figure 7: R channel of the texture with
the brush used in Figure 8 and the
relative maximal brush width
offset_scale.x.

References

[Card02] Card, Drew and Jason Mitchell, “Non-Photorealistic Rendering with
Pixel and Vertex Shaders,” Direct3D ShaderX: Vertex and Pixel Shader Tips and

Tricks, Wolfgang Engel, ed., Wordware Publishing, 2002, pp. 319-333.

[Domine01] Dominé, Sébastien, Ashu Rege, and Cem Cebenoyan, “Real-Time
Hatching (Tribulations in),” GDC, 2001.

[Praun01] Praun, Emil, Hugues Hoppe, Matthew Webb, and Adam Finkelstein,
“Real-Time Hatching,” proceedings of SIGGRAPH 2001, pp. 581-586.

[Webb02] Webb, Matthew, Emil Praun, Adam Finkelstein, and Hugues Hoppe,
“Fine Tone Control in Hardware Hatching,” proceedings of NPAR 2002, pp. 53-ff.

[Winkenbach94] Winkenbach, Georges and David H. Salesin, “Computer-Gener-
ated Pen-and-Ink Illustration,” proceedings of SIGGRAPH 1994, pp. 91-100.

Hatching, Stroke Styles, and Pointillism
347

Section II — Rendering Techniques

Figure 8: The RenderMonkey Iridescent Butterfly rendered (a) without the effect, (b) using a brush
in form of the word “ShaderX²,” (c) and (d) using the brush shown in Figure 7 with different values
for scale.

Layered Fog

Guillaume Werle

Overview

Vertical or layered fog can drastically change the mood and realism level of the
scenes produced by your rendering engine. It is also probably one of the easiest
effects that you can implement using shaders. If you’re learning shaders and want
quick, good-looking results, this article is for you.

As shown in Figure 1, the basic idea is to use the height from some plane instead
of the depth or distance from the viewpoint as the density factor. The technique
described in this article computes the height on a per-vertex basis and uses the
texture coordinate interpolator to get per-pixel precision. This way, the faces
don’t have to be split at the fog’s boundaries.

348

Figure 1: Volumetric fog in action

Integrating Fog in Your Engine

The key to success when designing a shader-driven engine is modularity. To
increase efficiency and reduce the number of shaders needed, the rendering
should be split into independent passes.

Since it uses alpha blending, fog needs to be computed and rendered in the
final stage of the rendering pipeline. D3D’s blending render states need to be set
in the following way to mix the fog with the frame buffer content:

SetRenderState(D3DRS ALPHABLENDENABLE, TRUE);

SetRenderState(D3DRS SRCBLEND, D3DBLEND SRCALPHA);

SetRenderState(D3DRS DESTBLEND, D3DBLEND INVSRCALPHA);

Depth precision issues (also known as Z-fighting) may appear when using multi-
ple passes for rendering. A little bit of tweaking of your projection matrix should
eliminate these artifacts. Additional information on this topic can be found on Tom
Forsyth’s web page at http://tomsdxfaq.blogspot.com/2002_07_01_tomsdxfaq_
archive.html#79344425.

Density Formula

Since the density of the fog is based on its height, we want to have maximum
opacity at the low boundary of our fog range (FogLowRange) and no fog at all when
our height is equal or above the high boundary (FogHighRange).

Using this very simple formula, we get a coefficient representing this value.

VertexDelta = (FogHighRange–VertexHeight)

FogDelta = (FogHighRange–FogLowRange)

VertexDensity =
VertexDelta

FogDelta

Implementation

Since we can’t divide in a vertex shader, we have to multiply VertexDelta by the
reciprocal of FogDelta (InvFogDelta).

InvFogDelta =
1 0.

FogHighRange FogLowRange�

VertexDensity = (FogHighRange–VertexHeight)*InvFogDelta

Now, let’s take a look at the vertex shader implementation:

vs.1.1

// constants 0 1 2 3 = world * view * projection matrix

m4x4 oPos, v0, c0 // vertex in screenspace output

Layered Fog
349

Section II — Rendering Techniques

mov oT0, v7 // copy diffuse texture coordinates

// constants 4 5 6 7 = world matrix

dp4 r0, v0, c5 // vertex y position in world space

// constant 8 = (FogHighRange, InvFogDelta, 0.0f , 1.0f)

sub r0, c8.xxxx, r0 // (high – y)

mul oT1, r0, c8.yyyy // output = (high - y) * InvFogDelta

The density value might exceed the range [0.0 � 1.0], but this isn’t an issue. The
density value will be interpreted in the pixel shader using the texcoord instuction.
This opcode interprets texture coordinates as RGBA values and will clamp them.

The final pixel density also depends on the camera height. CameraDensity

can be computed using the same formula as the vertex density. This value should
be computed only one time per frame and then passed to the pixel shader using a
constant register. This value will need to be clamped in the range [0.0 � 1.0].

The diffuse texture might use alpha blending for transparency, so we also
need to take this into account.

If we summarize the above, we end up with this formula:

FogPixel.a = saturate(VertexDensity+CameraDensity)*FogColor.a*Diffuse.a

FogPixel.rgb = FogColor.rgb

Here is the pixel shader implementation:

ps.1.1

tex t0 // diffuse texture

texcoord t1 // vd = vertex density

// t1 = (vd, vd, vd, 1.0f)

// c2 = red mask (1.0f , 0.0f, 0.0f, 0.0f)

dp3 r0, t1, c2 // copy the red component everywhere

// r0 = (vd, vd, vd, vd)

// cd = camera density

// c1 = (cd, cd, cd, cd)

add satr0, r0, c1 // VertexDensity + CameraDensity

// c0 = fog color

mul r0, r0, c0 // c0.a = fog density

mul r0, r0, t0 // diffuse texture opacity

mov r0.rgb, c0 // output

// r0.rgb = fog color

// r0.a= fog density

NOTE The DirectX documentation states that the alpha value of a pixel
fetched with the texcoord instruction should be 1.0, but I haven’t seen any
piece of hardware that follows this rule. You usually get the .w value passed
by the vertex shader.

350
Layered Fog

Section II — Rendering Techniques

Final Words

I implemented this shader for a demo scene application called Raw Confession.
The demo can be found on the companion CD or downloaded from my web page:
http://cocoon.planet-d.net/raw/!Raw_Beta.zip.

Special thanks to Jeff Kiel from nVidia for proofreading this article.

Layered Fog
351

Section II — Rendering Techniques

Dense Matrix Algebra on the GPU

Ádám Moravánszky

Introduction

Perhaps the most important innovation of the latest generation of programmable
graphics processors (GPUs) is their capability to work with floating-point color
data. Previous generations of GPUs have worked with up to a byte of integer data
per color channel. Developers working on graphics engines with advanced light-
ing effects often complained about banding artifacts, even in true-color video
modes, because multiplicative effects quickly made the round-off error caused by
the limited precision noticeable. The advent of GPUs that represent each color
channel with a 32-bit floating-point value has thus been widely celebrated in the
real-time graphics community.

More importantly, while 8-bit color channel precision is often adequate, the
dynamic range is quite limited. Floating-point color buffers make it possible to
work with brightness values well beyond the maximum value that can be repre-
sented in the final image. Though the dynamic range of output device stays the
same, intermediate values during a computation are no longer clamped to this
range. This way, a much more realistic simulation of lighting is possible, resulting
in vibrant images.

The topic of this article is made possible by the emergence of floating-point
color support as well, but we will not be dealing with either of the often-cited
advantages of floating-point buffers described above. In fact, we will not be ren-
dering images in the conventional sense at all. Instead, we look at the GPU as a
powerful vector coprocessor to the CPU. We use it to solve two common prob-
lems in scientific computing: solving systems of linear equations and linear
complementarity problems. Both of these problems come up in dynamics simula-
tion, which is a field drawing increasing interest from the game developer
community.

By implementing these algorithms on the GPU, we hope to achieve a perfor-
mance gain or at least free up CPU resources, which can then be better spent run-
ning algorithms that are not vectorizable. Because the GPU usually has its hands
full rendering graphics in a computer game, and because GPUs with floating-point
color support are anything but widespread, the results of this article are initially
primarily of theoretical interest for the game community. However, if we can
show convincing performance figures that make such application of GPUs

352

desirable, we may soon find these applications becoming practical and widespread.
If GPU performance continues to grow at its present rate, we may eventually see
researchers and engineers abandoning expensive supercomputers for clusters of
GPU-equipped PCs.

Previous Work

The fundamental concept of linear algebra is the matrix. Matrices are used in sim-
ulation in order to describe a linear relationship in a concise way. A significant
amount of research has gone into working with large dense matrices. BLAS
(Basic Linear Algebra Subprograms) [2, 7] has emerged as the standard interface
to linear algebra libraries. Freely available implementations of BLAS include
ATLAS (Automatically Tuned Linear Algebra Software) [9], a linear algebra
library that includes Intel SSE2 and AMD 3DNow optimized matrix multiply ker-
nels. These fast kernels, combined with ATLAS’ cache-friendly memory access
pattern achieved by special ordering of the input data, make it one of the fastest
dense matrix libraries available on the PC platform. In [6], Larsen and McAllister
first investigated using GPUs for linear algebra. At the time of its publication,
floating-point pixel processing was not yet available, so their results were not
practical for real-world problems. The papers [1, 5], made available after this arti-
cle was initially submitted, tackle the representation of sparse matrices on the
GPU.

While ATLAS provides a selection of higher-level linear algebra operations,
such as solving linear systems, the code of ATLAS is a high-performance matrix
multiply kernel, which is then leveraged by the high-level operations. We follow
the same principle in our GPU matrix library: We implement a few basic matrix
operations using shaders, including matrix multiply, and then use these as build-
ing blocks to solve the higher level problems. While we have not written a full
GPU BLAS implementation due to time constraints, we show how to implement
all the basic components necessary for this goal.

Implementation

Our implementation consists of a matrix class that carries out all the core arith-
metic operations. It interfaces with the GPU using the DirectX 9 Graphics SDK.
The user interface is a script interpreter that parses matrix operation instructions
out of a text stream, manages matrix variable names, reads and writes matrix
variable data to file, and passes operations for execution to the matrix class. We
discuss the matrix class below, as well as two examples of its use.

Matrix Textures

If the GPU is to perform large matrix multiplication for us, the first thing we need
to do is represent the matrix data in a format that is accessible by the GPU. GPUs
can in principle work on two basic types of data: geometry and texture maps. Tex-
tured geometry is preferable because of the more compact representation when

Dense Matrix Algebra on the GPU
353

Section II — Rendering Techniques

compared with highly tessellated geometry with vertex colors. Also, unlike geom-
etry, textures can be output by the GPU in the form of render target surfaces. If
we store a matrix as a texture and then perform a matrix operation, such as
matrix addition by rendering two textures with additive blending into a third ren-
der target surface, the storage format of the resulting matrix can be identical to
the input format. This is a desirable property because this way we can immedi-
ately reuse the resulting texture as an input to another operation without having
to perform format conversion.

We would like our library to work with matrices of real numbers because this
domain is the most generally useful for simulation problems, especially dynamics
simulation. Integers would be too restrictive, while complex numbers are usually
not required. Note that the system we present could be extended to handle com-
plex numbers should this be the case. Real numbers are most efficiently approxi-
mated on computers using floating-point numbers of various precisions.
Unfortunately, GPUs still only support single-precision floating-point, and future
support for double or higher precision is unlikely, as this sort of precision is not
thought to be needed for graphics applications. Nonetheless, single-precision
floating-point is adequate for many applications.

Storage Format

There are several ways in which the elements of a matrix can be mapped to the
pixels of a texture image. Perhaps the most obvious approach would be to take a
luminance (one channel per pixel) image and fill it with the matrix data using a
direct mapping of elements to pixels in either row or column major format. The
disadvantage is, of course, that GPUs are optimized to process RGBA pixels and
thus have four-way SIMD for executing pixel shaders. A luminance texture would
only use a quarter of the available bandwidth.

Instead, we pack four adjacent matrix elements into a single pixel’s RGBA
channels. The simplest possibilities are to either pack rows or columns of four.
While this packing does make square matrices into 4:1 aspect rectangular tex-
tures, it makes the writing of the pixel shaders for multiplication quite straightfor-
ward. Other schemes, such as packing 2x2 rectangular submatrices into each
pixel, complicates the pixel shaders for doing matrix multiplication and offers no
clear advantage. It is interesting to note that CPU linear algebra packages like
ATLAS primarily get their speed boost by storing the matrices in a convoluted
but very cache-friendly way. Data locality is an important key to performance.
Unfortunately, in contrast to CPU programming, we have only a relatively
high-level control of the GPU. In particular, the order in which pixels get pro-
cessed is an undocumented implementation detail. Usually, the GPU automatically
stores textures in a swizzled form to improve cache coherence. It may be inter-
esting to investigate if more exotic storage formats can boost performance, but
one would have to do quite a bit of experimentation, without necessarily being
able to generalize the results to different GPUs.

The final question regarding data storage is whether there is any difference
between packing rows or columns of four into a pixel. One important difference
comes up when we consider doing vector operations. It is important that pixels be

354
Dense Matrix Algebra on the GPU

Section II — Rendering Techniques

created along the length of a vector, instead of across. In the latter case, a vector
would only fill one color channel and leave three empty. In this implementation,
we arbitrarily decided to go with storing CPU matrices in row major format and
working with column vectors. Thus, we put 4$1 sub-column vectors into each
pixel. The width of a texture that corresponds to an n$m matrix is thus m, while

the height is
n

4
*

+
+

,

-
-.

To create a matrix texture from some source data, we create an appropriately
sized render target surface using the D3DFMT_A32B32G32R32F floating-point pixel
format. We don’t need any mipmapping; in fact, we render with point sampling to
prevent texture filtering from falsifying our computations.

Creating a render target texture is technically only necessary if we want the
matrix to serve as a destination for matrix operations; in our application, we
choose not to keep track of this distinction and treat all matrices equally for the
sake of simplicity.

Unfortunately in DirectX 9, it is not possible to lock render target surfaces,
so we need to create an identically formatted temporary texture in the SYSTEMMEM

pool. This texture’s surface is then locked, and the matrix data is read into it.
Finally we use the DirectX method UpdateTexture() to copy the temporary tex-
ture into our render target texture.

Reading back from the matrix texture happens in the same way. This time the
method GetRenderTargetData() is used to copy from the matrix texture to the
temporary texture.

Matrix Operations

After reading in the data, we are ready to perform some matrix operations. We
start by implementing three basic operations — matrix assignment, addition, and
multiplication. Later we will add some others as required by our higher level
algorithms. Note that some operations are not strictly necessary and could be
expressed using others. For example, assignment could be emulated by adding a
zero matrix to the source matrix. Still, writing special-case code when optimi-
zations are possible is a good idea.

Assignment

Matrix assignment is the most elementary operation, so we cover it first to intro-
duce some details in our code:

void Matrix::copy(Matrix & other) {

Note that while the reference rasterizer works fine with the render target surface
being the same as one of the source textures, this case is not officially supported
by Direct3D and should be avoided. In the case of assignment, it is obviously a
null operation to assign a matrix to itself, so we can early out in this case.

if (this == &other) return;

Dense Matrix Algebra on the GPU
355

Section II — Rendering Techniques

If the destination texture is not the same size as the source texture, it needs to be
resized. We resize a texture by releasing it and creating a new one of the correct
size.

resize(other.getNRows(), other.getNCols());

If one of the dimensions of the matrix is 0, there is nothing to do:

if (nRows * nCols == 0) return;

Next, we set the destination texture as the render target, begin the scene, assign
vertex and pixel shaders, and assign the source texture to the 0th sampler. For
this simple operation, we do not really need shader support and could do the same
operation with the fixed-function pipeline and texture combiners. On the other
hand, any hardware that supports floating-point pixel formats will most likely have
shader support as well, so we might as well use them. We omit DirectX error han-
dling in the cited code for clarity.

d3dDevice->SetRenderTarget(0,mathSurface);

d3dDevice->BeginScene();

d3dDevice->SetVertexShader(vertexShaders[VS SINGLE TEX QUAD]);

d3dDevice->SetPixelShader(pixelShaders[PS COPY]);

d3dDevice->SetTexture(0,other.mathTexture);

Next, we render a single quadrilateral polygon that exactly covers the destination
texture by using a triangle fan with four vertices. This is what our vertex buffer
contains:

MathVertex quad[4]= {

// x y

{ -1.0f, -1.0f},

{ +1.0f, -1.0f},

{ +1.0f, +1.0f},

{ -1.0f, +1.0f}};

We have 2D clip space coordinates for each vertex. Because we won’t be render-
ing 3D shapes, and because texture coordinates can be trivially generated in the
vertex shader from this basic data, it is all we need. We place this data into a man-
aged pool vertex buffer and do not worry about it anymore. It is used for all the
matrix operations except multiplication.

The actual rendering code looks like this:

d3dDevice->SetStreamSource(0, quadVertexBuffer, 0, sizeof(MathVertex));

float TexcoordBiasW = (1.0f/cols2TextureWidth(nCols)) * 0.5f;

float TexcoordBiasH = (1.0f/rows2TextureHeight(nRows)) * 0.5f;

float consts[4 * 2] = {

0.5, -0.5, 0.5, 1,

0.5+ TexcoordBiasW, 0.5 + TexcoordBiasH, 0, 0 };

d3dDevice->SetVertexShaderConstantF(0, consts, 2);

d3dDevice->DrawPrimitive(D3DPT TRIANGLEFAN, 0, 2);

d3dDevice->EndScene();

}

356
Dense Matrix Algebra on the GPU

Section II — Rendering Techniques

The function of the texture coordinate bias values that get passed to the vertex
shader is to line up the destination pixels with the source texel centers by shifting
the texture coordinates by half a texel. If we were to omit this, at each pixel the
texture would be sampled halfway between texels, making it effectively random
which of the four neighboring texels the point sampling would pick.

cols2TextureWidth() and rows2TextureHeight() simply map matrix dimen-
sions to texture dimensions using the formula mentioned previously:

inline unsigned roundUpDivide(unsigned a, unsigned b) { return (a + b-1) / b; }

inline unsigned rows2TextureHeight(unsigned rows) { return roundUpDivide(rows,4); }

inline unsigned cols2TextureWidth (unsigned cols) { return cols; }

The vertex shader we use, SINGLE_TEX_QUAD, is shown below:

// c0 = [0.5, -0.5, 0.5, 1]

// c1 = [0.5+ TexcoordBiasW, 0.5 + TexcoordBiasH, 0 , 0]

vs 1 1

dcl position v0

mov oPos, v0

mov oPos.zw, c0.zw

mov r0, c1

mad oT0.xy, v0.xy, c0.xy, r0.xy

We basically emit the vertices that we put in the vertex buffer in clip space after
assigning some constant values to the z and w coordinates. The texture coordi-
nates are computed from the vertex position in a single instruction, which
involves the flipping of the vertical axis and the application of the bias constants
described above.

Finally, the pixel shader is shown below. It serves to simply copy the input
texture to the destination surface:

//PS COPY out = tex0

ps 2 0

dcl 2d s0

dcl t0

texld r0, t0, s0

mov oC0, r0

We have tried using HLSL to produce these shaders, and several of them were
prototyped that way, but the DirectX shader compiler failed to produce efficient
code for the more involved matrix multiply cases, so we decided to stay with
hand-coded assembly for this project. The use of pixel shader 2.0 or greater is
necessary in the case of this simple shader not because of any special instructions
or even the number of instructions, but because lower pixel shader versions auto-
matically clamp their final result to [0,1]. We would like to use the entire float-
ing-point range.

Dense Matrix Algebra on the GPU
357

Section II — Rendering Techniques

Addition

Addition is very similar to assignment. Because we have the limitation that the
destination texture may not be the same as either of the source textures, we need
to code both a general add and an accumulate (+=) operation. We only cover the
binary version here because the accumulate version is the same as the above
assignment with additive blending with the existing render target turned on.

void Matrix::add(Matrix & a, Matrix & b) {

if (a.nRows != b.nRows || a.nCols != b.nCols)

throw "matrix dimensions don't agree";

if (this == &a) { add(b);return;}

else if (this == &b) { add(a);return;}

resize(a.nRows, a.nCols);

if (a.nRows * a.nCols == 0) return;

d3dDevice->SetRenderTarget(0,mathSurface);

d3dDevice->BeginScene();

d3dDevice->SetVertexShader(vertexShaders[VS SINGLE TEX QUAD]);

d3dDevice->SetPixelShader(pixelShaders[PS ADD]);

d3dDevice->SetTexture(0,a.mathTexture);

d3dDevice->SetTexture(1,b.mathTexture);

d3dDevice->SetStreamSource(0, quadVertexBuffer, 0, sizeof(MathVertex));

float TexcoordBiasW = (1.0f/cols2TextureWidth(nCols)) * 0.5f;

float TexcoordBiasH = (1.0f/rows2TextureHeight(nRows)) * 0.5f;

float consts[4 * 2] = {

0.5, -0.5, 0.5, 1,

0.5+ TexcoordBiasW, 0.5 + TexcoordBiasH, 0, 0 };

d3dDevice->SetVertexShaderConstantF(0, consts, 2);

d3dDevice->DrawPrimitive(D3DPT TRIANGLEFAN, 0, 2);

d3dDevice->EndScene();

}

There are only a few places where the above differs from the assignment code.
First, we need to check if the dimensions of the two source textures match; oth-
erwise, the addition operation is mathematically undefined. We also check if one
of the source operands is the same as the destination and call the special-case
accumulate code in this case. The second texture is also assigned to the second
texture sampler. We use the same vertex shader as before.

The pixel shader is a different one but not much more complicated; it simply
performs additive blending of the two source textures:

//PS ADD out = tex0 + tex1

ps 2 0

dcl 2d s0

358
Dense Matrix Algebra on the GPU

Section II — Rendering Techniques

dcl 2d s1

dcl t0

texld r0, t0, s0

texld r1, t0, s1

add r0, r0, r1

mov oC0, r0

Multiplication

Writing a general matrix multiply is a bit more challenging because unlike addi-
tion, it doesn’t reduce to mere image blending. Figure 1 shows the schematic for
our matrix multiply procedure.

The texture corresponding to the left operand matrix A is shown on the left side.
The texture of the right-side operand matrix B is at the top right. C, the result
matrix, is shown at the bottom right. C = A B should hold after the operation
completes.

By the definition of matrix multiplication, the number of columns in A has to
equal the number of rows in B. We call this range of q numbers the inner dimen-

sion. Finally, the number of rows in A is equal to the number of rows in C, and the
number of columns in B is equal to the number of columns in C. We call these the
outer dimensions.

In our Figure 1 example, matrix A is 14$30 and matrix B is 30$12. The 4$1
submatrices stored by the textures in a single pixel are shown as ovals. Because
the matrices’ heights are not exactly divisible by four, the last two elements of the
last row of pixels are unused, indicated by their white color. Note that the texture
representing A is only 30 pixels wide. The last two columns of white ovals with
gray markings represent samples read in by the pixel shader outside of the [0,1]

Dense Matrix Algebra on the GPU
359

Section II — Rendering Techniques

Figure 1: Schematic of matrix multiply

texture coordinate range; these virtual texels need to read as zero. They are nec-
essary so our pixel shader can always work with blocks of four texels, even if the
input matrix sizes are not exact multiples of four.

As any pixel shader, the matrix multiply code has to emit a single (partially
computed) pixel from the pixel shader. Each pixel stores four values, each of
which is a dot product between a row vector of A and a column vector of B. Both
of these vectors have q elements, where q is 30 in our example. Thus, at each
pixel, we need to perform four of these dot products, which is the same as a 4$q
matrix-vector multiplication. Because q may be quite large, our GPU may not be
able to sample all the 11

4
q texels necessary in one pass due to pixel shader

instruction count limits. Thus, we need to decompose this operation into a set of
smaller operations depending on our instruction count limits.

Our atomic pixel shader operation is a 4$4 matrix-vector multiplication,
where the 4$4 matrix is fetched from A and the 4$1 vector from B. We refer to
this atomic multiply as a MOP for “matrix operation.” We need to perform * ,

q

4
of

these MOPs per pixel and accumulate the results in order to obtain the final result
for an output pixel. We pack as many of these MOPs into our pixel shader as
possible.

In our example, we assume a hypothetical pixel shader that can perform no
more than three of these MOPs in a single pass. In general, we define the macro
numMOpsPerFragment as the number of MOPs that can fit into a pixel shader. For ps
2.0, we managed to fit six of them.

If the hypothetical example shader can do three MOPs per pass, and we need
a total of * ,

30
4

= 8 MOPs for the final result, we need to perform * ,
8
3

= 3 additive
passes, as indicated in the figure. Ps 2.0 would only need two passes.

As an example, we have highlighted a pixel in the destination texture. The
pixel shader that emits this pixel as part of the second additive pass samples the
darkened 15 texels from A and B.

Of course, the outer dimensions we don’t have to worry about; they are taken
care of by the inherent parallel processing of the GPU in the form of adjacent pix-
els, just like in the assignment and addition shaders. Now that we have covered
the theory, we present the implementation:

void Matrix::multiply(Matrix & a, Matrix & b) {

As usual, we need to check if we’re trying to render a texture onto itself. Here we
do not have a backup plan, so we simply report an error:

if (this == &a || this == &b)

throw "can't operate inplace -- not supported by D3D.";

If the matrix dimensions do not agree, matrix multiplication is undefined:

if (a.nCols != b.nRows)

throw "matrix dimensions don't agree";

resize(a.nRows, b.nCols);

if (nRows * nCols == 0) return;

360
Dense Matrix Algebra on the GPU

Section II — Rendering Techniques

First, we compute a few constants depending on the input sizes and the number
of instructions permitted in the pixel shader. We render numQuads quads aligned
with the destination surface, with additive shading. We compute numQuads with
the formulas given above.

const unsigned numQuads = roundUpDivide(rows2TextureHeight(b.nRows),numMOpsPerFragment);

Like we did for assignment and addition, we compute texture coordinate bias val-
ues to ensure that texels are sampled at their centers. Here we have two input
textures, so we need to do this twice:

const float TexcoordBiasW = (1.0f/cols2TextureWidth(nCols)) * 0.5f;

const float TexcoordBiasH = (1.0f/rows2TextureHeight(nRows)) * 0.5f;

const float TexcoordBiasAW = (1.0f/cols2TextureWidth(a.nCols)) * 0.5f;

const float TexcoordBiasBH = (1.0f/rows2TextureHeight(b.nRows)) * 0.5f;

A single pixel shader performs several MOPs. We supply it with texture coordi-
nates for the first five samples corresponding to the first MOP but only provide
texture coordinate increments relative to the first five, which can be used by the
pixel shader to compute the texture coordinates of the subsequent samples.
tcMOpIncrementBH is the height of a texel in B, which is the amount the pixel
shader has to seek down in the texture to get to the pixel used for the next MOP.

const float tcPixelBH = 2 * TexcoordBiasBH;

const float tcMOpIncrementBH = tcPixelBH;

The second increment we need is that of the texture coordinates between the
additive passes. These will be used by the vertex shader, as we will not pass
explicit texture coordinates to minimize the size of our vertex buffer.

const float tcPassIncrementBH = numMOpsPerFragment * tcPixelBH;

The same constants are also computed for the other input texture:

const float tcPixelAW = 2 * TexcoordBiasAW;

const float tcMOpIncrementAW = 4 * tcPixelAW;

const float tcPassIncrementAW = numMOpsPerFragment * tcMOpIncrementAW;

The meaning of the vertex and pixel shader constants will become clear when we
look at the shaders:

float vconsts[] = {

0.5 + TexcoordBiasW, 0.5 + TexcoordBiasH, 0 + TexcoordBiasBH, 0,

0 + TexcoordBiasAW, tcPixelAW + TexcoordBiasAW,

2 * tcPixelAW + TexcoordBiasAW, 3 * tcPixelAW + TexcoordBiasAW,

tcPassIncrementBH, tcPassIncrementAW, 0, 0

};

float pconsts[] = {

1 * tcMOpIncrementAW, 0, 0,0, //2 mops

0, 1 * tcMOpIncrementBH, 0,0,

2 * tcMOpIncrementAW, 0, 0,0, //3 mops

0, 2 * tcMOpIncrementBH, 0,0,

3 * tcMOpIncrementAW, 0, 0,0, //4 mops

Dense Matrix Algebra on the GPU
361

Section II — Rendering Techniques

0, 3 * tcMOpIncrementBH, 0,0,

4 * tcMOpIncrementAW, 0, 0,0, //5 mops

0, 4 * tcMOpIncrementBH, 0,0,

5 * tcMOpIncrementAW, 0, 0,0, //6 mops

0, 5 * tcMOpIncrementBH, 0,0,

};

d3dDevice->SetRenderTarget(0,mathSurface);

d3dDevice->BeginScene();

d3dDevice->SetVertexDeclaration(vertexDeclaration2);

d3dDevice->SetVertexShader(vertexShaders[VS MULT 1]);

d3dDevice->SetPixelShader(pixelShaders[PS MULT 0]);

d3dDevice->SetTexture(0,a.mathTexture);

d3dDevice->SetTexture(1,b.mathTexture);

d3dDevice->SetStreamSource(0, quadsVertexBuffer, 0,TINYVERTEX SIZE);

d3dDevice->SetVertexShaderConstantF(1, vconsts, 3);

d3dDevice->SetPixelShaderConstantF(0, pconsts, 2 * numMOpsPerFragment);

The vertex buffer contains a triangle list in the following format:

/* x y quadIndex

{ -1, -1, 0 },

{ +1, -1, 0 },

{ +1, +1, 0 },

{ -1, -1, 0 },

{ +1, +1, 0 },

{ -1, +1, 0 },

{ -1, -1, 1 },

{ +1, -1, 1 },

{ +1, +1, 1 },

{ -1, -1, 1 },

{ +1, +1, 1 },

{ -1, +1, 1 },

....

{ -1, -1, 99 },

{ +1, -1, 99 },

{ +1, +1, 99 },

{ -1, -1, 99 },

{ +1, +1, 99 },

{ -1, +1, 99 },

*/

The first two numbers are the 2D clip space coordinates of the vertex, as before.
We have also added a value that is the index of the quad that the vertex belongs to
in the sequence. The vertex shader uses this index value for texture coordinate
generation. Because the data is so simple, we pack each vertex into a 32-bit word
and use the D3DDECLTYPE_UBYTE4 data type. As the bytes are unsigned, we add two

362
Dense Matrix Algebra on the GPU

Section II — Rendering Techniques

to the coordinates, storing –1 as 0 and 1 as 2. Finally, we render two numQuads of
these triangles:

d3dDevice->DrawPrimitive(D3DPT TRIANGLELIST, 0, 2);

if (numQuads > 1)

{

d3dDevice->SetRenderState(D3DRS ALPHABLENDENABLE, TRUE);

d3dDevice->DrawPrimitive(D3DPT TRIANGLELIST, 6, 2 * (numQuads - 1));

d3dDevice->SetRenderState(D3DRS ALPHABLENDENABLE, FALSE);

}

d3dDevice->EndScene();

}

On to the shaders. The vertex shader’s job is to “decompress” the very frugal
quantity of data from the vertex buffer and generate decent texture coordinates.
Note how we have submitted all our rendering passes after the first in a single
DrawPrimitive() call, so there is no room to perform any state changes between
quads. The vertex shader has to use the quad index from the vertex buffer to tell
which pass is being performed.

vs 1 1

dcl position v0

def c0, 0.5, -0.5, 0.5, 1

def c4, -1, -1, 0, 0

Because we have encoded the input vertex coordinates as unsigned bytes, we
map them to signed values by subtracting one.

add r3.xy, v0.xy, c4.xy //map from [0,2] to [-1, 1]

mov oPos.xy, r3.xy //emit pos

mov oPos.zw, c0.zw

We start the texture coordinate generation by taking the vertex coordinate as the
starting point and inverting the vertical axis; this is the same as in the previous
shaders.

mov r0.xy, c1.xy //transform viewport axes to tex uv axes

mad r0.xy, r3.xy, c0.xy, r0.xy

Next, we need to compute the U texture coordinates for texture A and the V tex-
ture coordinates for texture B. These depend on which pass we are in; the pass
index is stored in v0.w. This is multiplied by tcPassIncrementAW and
tcPassIncrementBH, respectively, which are constants computed above, and stored
in c3.

mul r1, v0.w, c3.zzxz //can't 'mad' as it would reference 2 consts in 1 instr

add r1, r1, c1

mul r2, v0.w, c3.yyyy

add r2, r2, c2

Finally, we emit the five texture coordinates needed for the first MOP of the pixel
shader. The V coordinates of texture A and the U coordinate of texture B are sim-
ply stretched along with the quad to map linearly over the entire destination

Dense Matrix Algebra on the GPU
363

Section II — Rendering Techniques

surface. Even though it would be trivial to compute the four texture coordinates
of A in the pixel shader itself, we choose to do as much of this work as possible in
the vertex shader. This way, we avoid bumping up against the very restrictive
pixel shader instruction count limits, particularly the dependent texture sampling
limits.

mov oT0.x, r2.x

mov oT1.x, r2.y

mov oT2.x, r2.z

mov oT3.x, r2.w

mov oT0.y, r0.y

mov oT1.y, r0.y

mov oT2.y, r0.y

mov oT3.y, r0.y

mov oT4.x, r0.x

mov oT4.y, r1.z

All the matrix element arithmetic is done in the pixel shader. We have made the
pixel shader generic in the sense that it is made up of as many MOPs as it is pos-
sible to execute at once on the target architecture, which is six in ps 2.0. When
new hardware becomes available that supports newer pixel shader versions, get-
ting a performance boost should only be a matter of duplicating some additional
MOP blocks in the shader and incrementing the ps version declaration. Our ps 2.0
implementation uses 30 texld instructions of the maximum 32 and is thus very
close to optimal.

Inputs to the pixel shader are the registers t0...t3, the texture coordinates
of four horizontally adjacent pixels in A, t4, the texture coordinate for texture B,
and a large set of constants; c0.x holds the texture coordinate increment needed
to move four pixels to the left in A, while c1.y has the increment needed to move
one pixel down in B. c2 and c3 are two times c0 and c1, respectively. c4 and c5 are
the same values times three and so on. Because we have many constant registers
available and few instruction slots, it is good to precompute these values.

ps 2 0

dcl t0.xyzw

dcl t1.xyzw

dcl t2.xyzw

dcl t3.xyzw

dcl t4.xyzw

dcl 2d s0

dcl 2d s1

To perform the first MOP, we fetch the needed data:

texld r0, t0, s0

texld r1, t1, s0

texld r2, t2, s0

texld r3, t3, s0

texld r4, t4, s1

364
Dense Matrix Algebra on the GPU

Section II — Rendering Techniques

. . .and execute the 4$1 matrix vector multiply. The result is held in r5.

mul r5, r4.xxxx, r0

mad r5, r4.yyyy, r1, r5

mad r5, r4.zzzz, r2, r5

mad r5, r4.wwww, r3, r5

If we had defined numMOpsPerFragment as 1 above, we would just write r5 to oC0

and be done. However, we have not yet exhausted the capacities of the pixel
shader, so we keep going:

#if numMOpsPerFragment >= 2

The texture coordinates are adjusted to correspond to the next set of inputs:

add r6, t0, c0

add r7, t1, c0

add r8, t2, c0

add r9, t3, c0

add r10, t4, c1

Then we sample the textures as before. Note, however, that we now use registers
r6 through r10 instead of r0 through r4. This is because ps 2.0 does not allow us
to sample a texture into any one register more than four times, so the destination
registers have to be rotated.

texld r6, r6, s0

texld r7, r7, s0

texld r8, r8, s0

texld r9, r9, s0

texld r10, r10, s1

We accumulate the result of the second matrix-vector product with the first:

mad r5, r10.xxxx, r6, r5

mad r5, r10.yyyy, r7, r5

mad r5, r10.zzzz, r8, r5

mad r5, r10.wwww, r9, r5

#endif

MOPs three to six are identical save for the register rotation we mentioned:

#if numMOpsPerFragment >= 3

add r0, t0, c2

add r1, t1, c2

add r2, t2, c2

add r3, t3, c2

add r4, t4, c3

texld r0, r0, s0

texld r1, r1, s0

texld r2, r2, s0

texld r3, r3, s0

texld r4, r4, s1

Dense Matrix Algebra on the GPU
365

Section II — Rendering Techniques

mad r5, r4.xxxx, r0, r5

mad r5, r4.yyyy, r1, r5

mad r5, r4.zzzz, r2, r5

mad r5, r4.wwww, r3, r5

#endif

#if numMOpsPerFragment >= 4

add r6, t0, c4

add r7, t1, c4

add r8, t2, c4

add r9, t3, c4

add r10, t4, c5

texld r6, r6, s0

texld r7, r7, s0

texld r8, r8, s0

texld r9, r9, s0

texld r10, r10, s1

mad r5, r10.xxxx, r6, r5

mad r5, r10.yyyy, r7, r5

mad r5, r10.zzzz, r8, r5

mad r5, r10.wwww, r9, r5

#endif

#if numMOpsPerFragment >= 5

add r0, t0, c6

add r1, t1, c6

add r2, t2, c6

add r3, t3, c6

add r4, t4, c7

texld r0, r0, s0

texld r1, r1, s0

texld r2, r2, s0

texld r3, r3, s0

texld r4, r4, s1

mad r5, r4.xxxx, r0, r5

mad r5, r4.yyyy, r1, r5

mad r5, r4.zzzz, r2, r5

mad r5, r4.wwww, r3, r5

#endif

#if numMOpsPerFragment >= 6

add r6, t0, c8

add r7, t1, c8

add r8, t2, c8

add r9, t3, c8

add r10, t4, c9

texld r6, r6, s0

texld r7, r7, s0

texld r8, r8, s0

texld r9, r9, s0

366
Dense Matrix Algebra on the GPU

Section II — Rendering Techniques

texld r10, r10, s1

mad r5, r10.xxxx, r6, r5

mad r5, r10.yyyy, r7, r5

mad r5, r10.zzzz, r8, r5

mad r5, r10.wwww, r9, r5

#endif

mov oC0, r5

There are a few additional details to be mentioned. Because a pixel shader oper-
ates on 4$(4 numMOpsPerFragment) submatrices, only input matrices with dimen-
sions that are multiples of 4 numMOpsPerFragment are handled trivially. Other
matrix sizes perform extra work because the pixel shading involving the last col-
umn-block of A and last row-block of B read in zeros and perform redundant com-
putations. We even have to do work to ensure that, indeed, zeros get read in and
not undefined values. First, we set the texture coordinate mapping mode to the
black border color. Unfortunately, not all GPUs support this feature. To support
these GPUs, we either need to change the way we store the matrices in the sur-
faces so that the edge texels are not used, set the edge pixels to black, and use
clamp mode, or restrict ourselves to matrices with row and column counts that
are multiples of 4 numMOpsPerFragment. Finally, the pixel shader does a lot of
redundant work processing input matrices with the inner dimension significantly
smaller than 4 numMOpsPerFragment. Of course, such small matrices are best pro-
cessed on the CPU anyway to avoid the overhead of creating and reading back
textures.

Transposed Multiplication

In practice, we rarely need to compute the transpose of a matrix as such but often
need to multiply the transpose of a matrix with another matrix. We implement a
transposed multiply operation to be able to do this. The operation we now
describe implements C := AT B, where A, B, and C are still defined as in the last
section. The operation C := A BT is also useful, but its implementation would be
very similar to this one, so we will omit it. As we see later, this operation ends up
to be more costly than the plain multiply. For this reason, it may be worth it to
implement a simple transpose operation C := AT as well, even though this opera-
tion can be inefficiently emulated using this code with B = 1. Such an operation
would be a clear win if a sequence of multiplications were needed with a certain
transposed matrix and perhaps even in general.

A trivial CPU implementation of the transposed multiply code would simply
exchange the row and column indexing of A, but this is not so easy on the GPU
because we have packed several matrix elements into a single pixel, so the trans-
pose has to happen on two levels: The atomic 4$4 matrix pixel shader operation
has to be transposed, and the ordering of these submatrices also needs to be
reversed. An indication of this added complexity is that this time we only man-
aged to fit four transposed MOPs into our ps 2.0 pixel shader, as opposed to six for
the plain multiply. Because this new constant is different from the previous, we
define it as numMTOpsPerFragment.

Dense Matrix Algebra on the GPU
367

Section II — Rendering Techniques

A diagram to explain this algorithm is provided in Figure 2. This is exactly the
same problem as given in Figure 1, with the matrix A now provided in a trans-
posed form. To compute C as before, we transpose A while we perform the multi-
ply. The matrix B and C are unchanged. The darkened regions again show the
texels sampled to compute the contribution of the second pass to the black output
pixel. Note that in matrix A, the region consists of three vertically stacked MOPs,
each of which has four texels in a horizontal row. Our pixel shader will now be
stepping four times to the left before resetting the horizontal offset and taking a
step downward. The pixel shader has to move the starting texture coordinate of A
downward between passes.

The C++ code for the operation is quite similar to the plain-vanilla multiply:

void Matrix::multiplyAT(Matrix & a, Matrix & b){

if (this == &a || this == &b)

throw "can't operate inplace -- not supported by D3D.";

if (a.nRows != b.nRows)

throw "matrix dimensions don't agree";

resize(a.nCols, b.nCols);

if (nRows * nCols == 0) return;

const unsigned numQuads = roundUpDivide(rows2TextureHeight(b.nRows),numMTOpsPerFragment);

const float TexcoordBiasW = (1.0f/cols2TextureWidth(nCols)) * 0.5f;

const float TexcoordBiasH = (1.0f/rows2TextureHeight(nRows)) * 0.5f;

const float TexcoordBiasAW = (1.0f/cols2TextureWidth(a.nCols)) * 0.5f;

const float TexcoordBiasABH = (1.0f/rows2TextureHeight(a.nRows)) * 0.5f;

We compute bias values as usual above, and the offsets for texture B are also
unchanged below:

368
Dense Matrix Algebra on the GPU

Section II — Rendering Techniques

Figure 2: Schematic for transposed matrix multiply

const float tcPixelBH = 2 * TexcoordBiasABH;

const float tcMOpIncrementBH = tcPixelBH;

const float tcPassIncrementBH = numMTOpsPerFragment * tcPixelBH;

The offsets for matrix A are now in both the horizontal and vertical directions:

const float tcPixelAW = 2 * TexcoordBiasAW;

const float tcPixelAH = 2 * TexcoordBiasABH;

const float tcMOpIncrementAH = tcPixelAH;

const float tcPassIncrementAH = numMTOpsPerFragment * tcMOpIncrementAH;

There is an additional issue in the transposed multiply that did not show up
before. Previously, it was always proper for the vertex shader to simply linearly
map vertex coordinates from the range [1,–1] to the texture coordinate range
[0,1] to define the U or V texture coordinates of an input texture. Now, however,
the U dimension of texture A is mapped vertically and the V dimension horizon-
tally. If A is not square, and there are unused components in the bottom row of the
destination texture because its height is not a multiple of four, the mapping has to
be adjusted. We map the vertex range [1,–1] to [0, quotient], where quotient is
computed below. In effect, we virtually round up the texture size to the nearest
multiple of four. The rest of the code should be familiar.

const unsigned awidth = cols2TextureWidth(a.nCols);

unsigned modW = awidth % 4;

if (modW != 0) modW = 4 - modW;

const float quotient = (awidth + modW)/(float)awidth;

const float halfQuot = quotient * 0.5f;

float vconsts[] = {

0.5, - halfQuot, 0.5, 1,

0.5+ TexcoordBiasW, 0.5 + TexcoordBiasH, 0 + TexcoordBiasABH, 0,

0 + TexcoordBiasABH, 0, 0, 0,

0, q + TexcoordBiasAW, 0, 0,

tcPassIncrementBH, tcPassIncrementAH, 0, 0

};

float pconsts[] = {

tcPixelAW, 0, 0,0,

0, 1 * tcMOpIncrementBH, 0,0,

0, 1 * tcPixelAH, 0,0,

0, 2 * tcMOpIncrementBH, 0,0,

0, 2 * tcPixelAH, 0,0,

0, 3 * tcMOpIncrementBH, 0,0,

0, 3 * tcPixelAH, 0,0,

0, 4 * tcMOpIncrementBH, 0,0,

0, 4 * tcPixelAH, 0,0,

0, 5 * tcMOpIncrementBH, 0,0,

0, 5 * tcPixelAH, 0,0,

};

d3dDevice->SetRenderTarget(0,mathSurface);

d3dDevice->BeginScene();

Dense Matrix Algebra on the GPU
369

Section II — Rendering Techniques

d3dDevice->SetVertexDeclaration(vertexDeclaration2);

d3dDevice->SetVertexShader(vertexShaders[VS MULT T]);

d3dDevice->SetPixelShader(pixelShaders[PS MULT T]);

d3dDevice->SetTexture(0,a.mathTexture);

d3dDevice->SetTexture(1,b.mathTexture);

d3dDevice->SetStreamSource(0, quadsVertexBuffer, 0, TINYVERTEX SIZE);

d3dDevice->SetVertexShaderConstantF(0, vconsts, 5);

d3dDevice->SetPixelShaderConstantF(0, pconsts, 1 + 2 * (numMTOpsPerFragment - 1));

d3dDevice->DrawPrimitive(D3DPT TRIANGLELIST, 0, 2);

if (numQuads > 1)

{

d3dDevice->SetRenderState(D3DRS ALPHABLENDENABLE, TRUE);

d3dDevice->DrawPrimitive(D3DPT TRIANGLELIST, 6, 2 * (numQuads - 1));

d3dDevice->SetRenderState(D3DRS ALPHABLENDENABLE, FALSE);

}

d3dDevice->EndScene();

}

The vertex shader code first extracts and emits the vertex position, as the
straight multiply did:

vs 1 1

dcl position v0

def c5, -1, -1, 0, 0

add r3.xy, v0.xy, c5.xy

mov oPos.xy, r3.xy

mov oPos.zw, c0.zw

The vertex to texture coordinate mapping is now done twice because, as dis-
cussed above, texture A’s texture coordinate range is no longer always [0,1],
while B’s still is. These four instructions could be optimized into fewer instruc-
tions, but the vertex shader is no bottleneck here.

mov r0.xy, c1.xy

mad r0.xy, r3.xy, c0.xy, r0.xy

mov r1.xy, c3.xy

mad r1.xy, r3.xy, c0.xy, r1.xy

The code to add offsets to the texture coordinates is the same as in the plain mul-
tiply, except it works along different dimensions for A:

mul r3, v0.w, c4.zzxz

add r3, r3, c1

mul r2, v0.w, c4.yyyy

add r2, r2, c2

Note that unlike before, we only emit two texture coordinates. We were not able
to optimize the pixel shader in this case by precomputing more texture coordi-
nates here.

mov oT0.x, r1.y

mov oT0.y, r2.x

mov oT1.x, r0.x

370
Dense Matrix Algebra on the GPU

Section II — Rendering Techniques

mov oT1.y, r3.z

Below is the last shader presented in this article. Notice that after we fetch the
first sample from A, we keep nudging the texture coordinates to the right to fetch
the next three samples. The last texld samples the 4-vector from B.

ps 2 0

dcl t0.xyzw

dcl t1.xyzw

dcl 2d s0

dcl 2d s1

texld r0, t0, s0

add r4, t0, c0

texld r1, r4, s0

add r4, r4, c0

texld r2, r4, s0

add r4, r4, c0

texld r3, r4, s0

texld r4, t1, s1

The transposed multiply can be accomplished with four dp4s, and the result goes
to r5:

dp4 r5.x, r4, r0

dp4 r5.y, r4, r1

dp4 r5.z, r4, r2

dp4 r5.w, r4, r3

#if numMTOpsPerFragment >= 2

To execute the next MOP, we push the original t0 downward in A by adding c2

and then again sampling four consecutive pixels. We rotate the sampling destina-
tion registers so we avoid getting a fourth-order dependent read error in the
shader compiler as long as possible.

add r0, t0, c2

texld r6, r0, s0

add r0, r0, c0

texld r7, r0, s0

add r0, r0, c0

texld r8, r0, s0

add r0, r0, c0

texld r9, r0, s0

add r1, t1, c1

texld r10, r1, s1

dp4 r6.x, r10, r6

dp4 r6.y, r10, r7

dp4 r6.z, r10, r8

dp4 r6.w, r10, r9

add r5, r5, r6

#endif

#if numMTOpsPerFragment >= 3

Dense Matrix Algebra on the GPU
371

Section II — Rendering Techniques

The third and fourth blocks simply continue to follow this pattern.

add r4, t0, c4

texld r0, r4, s0

add r4, r4, c0

texld r1, r4, s0

add r4, r4, c0

texld r2, r4, s0

add r4, r4, c0

texld r3, r4, s0

add r4, t1, c3

texld r4, r4, s1

dp4 r6.x, r4, r0

dp4 r6.y, r4, r1

dp4 r6.z, r4, r2

dp4 r6.w, r4, r3

add r5, r5, r6

#endif

#if numMTOpsPerFragment >= 4

add r0, t0, c6

texld r6, r0, s0

add r0, r0, c0

texld r7, r0, s0

add r0, r0, c0

texld r8, r0, s0

add r0, r0, c0

texld r9, r0, s0

add r1, t1, c5

texld r10, r1, s1

dp4 r6.x, r10, r6

dp4 r6.y, r10, r7

dp4 r6.z, r10, r8

dp4 r6.w, r10, r9

add r5, r5, r6

#endif

Unfortunately, the above conditional block is the last one that compiles with ps 2.0
because the first texld of the next block produces a fourth-order texop error. This
hand-coded assembly code still manages to pack much more math into the pixel
shader than the HLSL compiler managed.

#if numMTOpsPerFragment >= 5

add r7, t0, c8

texld r0, r7, s0

add r7, r7, c0

texld r1, r7, s0

add r7, r7, c0

texld r2, r7, s0

add r7, r7, c0

372
Dense Matrix Algebra on the GPU

Section II — Rendering Techniques

texld r3, r7, s0

add r4, t1, c7

texld r4, r4, s1

dp4 r6.x, r4, r0

dp4 r6.y, r4, r1

dp4 r6.z, r4, r2

dp4 r6.w, r4, r3

add r5, r5, r6

#endif

mov oC0, r5

Other Operations

From the operations described above, we create more by writing different varia-
tions and writing macro operations that build on them. We briefly summarize
them here:

float Matrix ::dot(Matrix & vec); //this *= vec’

This is only defined if both operands are vectors. The dot product of two vectors a
and b equals aTb, so we can reuse the transposed multiply operation. This results
in a temporary 1$1 texture whose red component we read out and return.

float Matrix::normSquared();

Only defined for a vector a, this simply calls a.dot(a).

void Matrix::multiply(float c); //this *= c

Multiplication by a constant is implemented with a simple shader that does a
multiplicative blend between the destination and a c-colored quad.

void Matrix::add(Matrix & b); //this += b

Unary accumulate is the copy() operation with additive blending with the render
target turned on.

void Matrix::max(Matrix & a, float ref); //this = max(a, ref)

This operation is also similar to copy() but also employs the max pixel shader
opcode to compute the maximum of the corresponding matrix elements.

void Matrix::mad(Matrix & b, float c); //this += b * c.

void Matrix::mad(Matrix & a,Matrix & b,float c); //this = a + b * c

void Matrix::mad(Matrix & a, Matrix & b); //this += a .* b

void Matrix::madad(Matrix & a, Matrix & b, Matrix & c, Matrix & d);

//this = a + (b + c) .* d

Finally, all the different flavors of the mad (multiply add) operation are a combina-
tion of the add and constant multiply shaders. We use .* to denote array multipli-
cation. We also implemented some initialization operations. To create a zero
matrix, we simply clear the texture to black. Identity matrices and other special

Dense Matrix Algebra on the GPU
373

Section II — Rendering Techniques

matrices are best implemented by writing the appropriate data with the CPU.
This is also how matrices are saved and loaded from file.

Applications

In this section we describe two high-level algorithms that use the operations we
described above. None of them reads back intermediate results (other than sca-
lars) from the CPU, so all the real work still happens on the GPU as a sequence of
render-to-texture operations. It would be possible to optimize both of them by
writing special-purpose macro shaders that combine several basic matrix opera-
tions to reduce the number of render-to-texture operations. We have done this to
a small degree by implementing the multiply-add operations, but in general we
would like to keep our operations small in number and reusable.

Both of the discussed methods are iterative. Iterative methods, in contrast to
pivoting methods, are typically simple and perform a small number of matrix
operations to converge to the desired result, rather than doing a number of scalar
operations that are often difficult to vectorize.

Conjugate Gradients

The conjugate gradients algorithm was developed at the ETH Zurich in 1952 [4].
It is the most common iterative algorithm used to solve a system of linear equa-
tions of the form Ax = b, where the matrix A and the vector b are given and the
vector x is to be found. Although this algorithm has been extended to handle more
general classes of matrices, we only deal with the simplest version that requires
A to be symmetric positive definite.

Our implementation of the algorithm does not have any DirectX or shader
code of its own. Instead, it uses the methods of the matrix class we created. The
three operand matrices are given:

Matrix & A = ...;

Matrix & x = ...;

Matrix & b = ...;

unsigned n = b.getNRows();

If the algorithm is used in a physics simulation context, it is often desirable to
warm-start it with the solution of the problem in the previous simulation time
step, with the hope that the solution of the current time step is nearby. If the size
of the input vector x is compatible with the size of A, we assume that the user
wants to warm-start with x; otherwise, we start with a first guess of zero:

if (x.getNRows() != n || x.getNCols() != 1)

x.zeros(n, 1);

The algorithm uses three temporary vectors:

Matrix p, r, s;

374
Dense Matrix Algebra on the GPU

Section II — Rendering Techniques

p.copy(b);

r.copy(b);

float rr = r.normSquared();

s.multiply(A,p);

float t = p.dot(s);

float alpha = rr / t;

x.mad(p, alpha);

float rrnew = rr;

The conjugate gradients algorithm is proven to converge to the exact solution
within n steps1, though we could get an approximate solution with fewer
iterations.

unsigned iter = n;

for (unsigned k = 2; k<=iter; k++)

{

r.mad(s, -alpha);

rr = rrnew;

rrnew = r.normSquared();

float beta = rrnew / rr;

p.mad(r, p, beta);

s.multiply(A,p);

t = p.dot(s);

alpha = rrnew / t;

x.mad(p, alpha);

}

The most expensive operation in the algorithm is the matrix-vector multiply M*p
above. All other operations are vector operations. This makes the algorithm rela-
tively “lightweight” and less suitable for demonstrating the number-crunching
abilities of the GPU. On the other hand, a much more expensive algorithm would
be less practical, and therefore this example is a good real-world test of the GPU’s
applicability to real-world linear algebra applications.

Linear Complementarity Problem

The linear complementarity problem, while not as widely known as the problem
of linear equation systems, is very useful for solving a wide variety of problems,
including the dynamics of resting contact. Linear complementarity problems are a
special kind of nonlinear programming problem, which in turn is a problem of con-
strained optimization. The LCP problem can be stated as:

x

Ax b

x Ax bT

3

� 3

� �

0

0

0()

Dense Matrix Algebra on the GPU
375

Section II — Rendering Techniques

1 This is only strictly true if we were using exact arithmetic. For a discussion of the convergence
properties of conjugate gradients using floating-point arithmetic, see [3].

As before, A and b are given, and x is to be found. We use the projected Jacobi
method [8] for solving the problem, which is perhaps the simplest way to do so,
though not necessarily the one with the best convergence properties. The pro-
jected Jacobi algorithm can be stated succinctly as the recursion:

x x D Ax bi i i� � � �1 0max((),)
�

Where D is defined as:

D A� �5diagonal() 1

6 is a constant that steers convergence. Clever implementations of the algorithm
tune this value, while the solver runs to speed up convergence; we just use a
fixed value. This algorithm again requires A to be symmetric positive definite.

As before, we first receive the matrices we are to operate on. Note that
because d is a constant, it is also expected to be provided as an input. This time,
the number of iterations is also a mandatory input because with this algorithm,
there is no guaranteed convergence for a certain number of iterations. In the code
below we store the diagonal elements of the diagonal matrix D in a column vector
d.

Matrix & x = ...;

Matrix & A = ...;

Matrix & d = ...;

Matrix & b = ...;

unsigned iter = ...;

unsigned n = b.getNRows();

Matrix w, t;

Here we again warm-start the algorithm with the initial value of x if it exists; oth-
erwise, we start at zero:

if (x.getNRows() != n || x.getNCols() != 1)

{

x.zeros(n, 1);

w.zeros(n, 1);

}

else

w.multiply(A, x);

t.madad(x, b, w, d);

x.max(t, 0);

for (unsigned k = 1; k<iter; k++)

{

w.multiply(A, x);

t.madad(x, b, w, d);

x.max(t, 0);

}

376
Dense Matrix Algebra on the GPU

Section II — Rendering Techniques

The above loop implements the iteration presented above. Here too the most
expensive operation is a matrix vector multiply.

Results

Figure 3 summarizes the running times for the matrix copy, add, multiply, trans-
posed multiply, conjugate gradients, and projected Jacobi algorithms. We have pro-
filed four configurations: Our GPU implementation was run on a Radeon 9500 Pro
that was plugged into a PC with an AMD Athlon 800 Mhz processor and 256 MB
of RAM and a Radeon 9700 Pro in a P4 2.4 GHz, with 256 MB RAM. The two
CPU configurations were a simple C implementation by the author and a program
using the ATLAS library. Both of the CPU configurations were timed on a 1.6
GHz Intel Pentium 4 processor-equipped PC with 256 MB RAM. We used a ver-
sion of ATLAS optimized for Pentium 4 CPUs with 8 KB L1 cache and 256 KB L2
cache; these specifications correspond to our test system. Note that while ATLAS
gains a sizeable performance boost from this cache-size specific optimization, it
means that the library has to be reconfigured for each target platform; this is
somewhat impractical for interactive entertainment software that is to be distrib-
uted to end users. In comparison, a DirectX 9 program, which only indirectly
interfaces with hardware and thus exploits the video card’s manufacturer-specific
driver optimizations, is more flexible.

All GPU timings represent the time elapsed between the call of the appropri-
ate matrix class method and completion of the readback of the result matrix from
video to system memory. Retrieving results to system memory is a significant
portion of the time needed for copy and addition but are negligible for the other

Dense Matrix Algebra on the GPU
377

Section II — Rendering Techniques

Figure 3: GPU vs. CPU performance for various operations involving a

1000�1000 matrix

operations. The C implementation is an order of magnitude slower than either the
ATLAS or the GPU implementation, which fall in the same performance class.
The GPU transposed multiply is slower than the straight multiply because it
needs more rendering passes. The CPU implementations’ speeds are the same
for straight and transposed multiply because here the difference boils down to a
change in matrix indexing and computation order that does not even need to influ-
ence cache coherence.

The projected Jacobi algorithm for LCPs runs faster than conjugate gradients
for a given problem size because the number of render-to-texture operations in
the loop is much lower, and we never read back any intermediate values from the
GPU — not even scalars. Conjugate gradients read back a scalar value in
normSquared() — this is the result of a dot product operation and is retrieved
from the 1$1 render target texture used in this case. Because it is only a single
value, it does not stress the limited texture memory to system memory band-
width of PCs, but it still hurts performance because it forces the CPU and GPU to
work together in lockstep instead of working asynchronously. One could further
optimize conjugate gradients by merging its sequence of vector operations into a
single operation by writing a custom “macro” pixel shader. This is left as an exer-
cise for the reader.

Because LCP and conjugate gradients consist of a sequence of vector-vector
and matrix-vector operations, ATLAS is unable to leverage its optimized
matrix-matrix kernel and instead adds significant overhead, losing out to the
inlined C version. For these two algorithms, data caching is less of a bottleneck
because there are fewer numbers to work with. Instead, raw floating-point perfor-
mance is dominant, catapulting the Radeons into the lead.

378
Dense Matrix Algebra on the GPU

Section II — Rendering Techniques

Figure 4: Collapsing wall of 60 cubes

Figure 4 shows a practical application: a wall of 60 cubes collapsing. The simula-
tion is performed by the projected Jacobi code. The simulation uses 6 = –0.1 and
does 2n iterations, where n is the size of the input matrix. If the problem is
expressed as a single dense matrix (with an initial size of 400$400), the simula-
tion runs at two seconds per frame. If the problem is dynamically decomposed
into small sub-problems, real-time performance is achieved. Of course, more
advanced LCP algorithms (which are less suitable for GPU implementation) can
achieve even better results because of eventually lower storage overhead (sparse
matrix) and much faster convergence.

Conclusion

In [6], Larsen and McAllister have benchmarked matrix multiplies on GeForce3
GPUs and found that the GPU, working with byte values, achieves similar perfor-
mance to the CPU using single-precision floating-point, effectively operating on
four times as much data. They were pessimistic about the prospect of a fourfold
increase in GPU performance, even if GPUs were to integrate floating-point pro-
cessing capabilities. Our results above indicate that this has indeed happened only
two years later.

We have observed that the Radeon GPUs have outperformed optimized CPU
code running on a mid-range PC when executing two important algorithms.
Moreover, the performance penalty due to moving data to the GPU and back to
main memory can be negligible compared to the overall cost of the computation
when the problem size is sufficient. As a result, this additional source of comput-
ing power should not be ignored. Instead, algorithms must be found that can
exploit the specific strengths of the GPU. Approaches that split the work between
CPU and GPU and thus achieve maximum parallelism will make it possible to run
simulations of previously untractable scales on low-cost PCs.

Acknowledgments

Thanks to Wolfgang Engel, Tom Forsyth, and ATI and nVidia developer relations
for help with different aspects of this project and to Erwin Coumans, Mark Harris,
Stephane Redon, and Jan Paul van Waveren for valuable suggestions.

References

[1] Bolz, Jeff, Ian Farmer, Eitan Grinspun, and Peter Schröder, “Sparse Matrix
Solvers on the GPU: Conjugate Gradients and Multigrid,” to appear in the pro-
ceedings of SIGGRAPH 2003.

[2] Dongarra, J.J., J. Du Croz, S. Hammarling, and R.J. Hanson, “An extended set
of FORTRAN Basic Linear Algebra Subprograms,” ACM Trans. Math. Soft., 14
(1988), pp. 1-17.

Dense Matrix Algebra on the GPU
379

Section II — Rendering Techniques

[3] Facius, Axel, “Iterative Solution of Linear Systems with Improved Arithmetic
and Result Verification,” Ph.D. thesis, Universität Karlsruhe, July 2000.

[4] Hestenes, M. and E. Stiefel, “Methods of conjugate gradients for solving linear
systems,” J. Research Nat. Bur. Standards 49, 1952.

[5] Krüger, Jens and Rüdiger Westermann, “Linear Algebra Operators for GPU
Implementation of Numerical Algorithms,” to appear in the proceedings of
SIGGRAPH 2003.

[6] Larsen, E.S. and D. McAllister, “Fast Matrix Multiplies using Graphics Hard-
ware,” SuperComputing 2001 Conference, Denver, CO, November 2001.

[7] Lawson, C.L., R.J. Hanson, D. Kincaid, and F.T. Krogh, “Basic Linear Algebra
Subprograms for FORTRAN usage,” ACM Trans. Math. Soft., 5 (1979), pp.
308-323.

[8] Murty, K.G., Linear Complementarity, Linear and Nonlinear Programming,
Helderman-Verlag, 1988.

[9] Whaley, R.C. and J. Dongarra, “Automatically Tuned Linear Algebra Software,”
SuperComputing 1998 Conference, Orlando, FL, November 1998.

380
Dense Matrix Algebra on the GPU

Section II — Rendering Techniques

Section IIISection III

Software Shaders and
Shader Programming
Tips

381

Software Vertex Shader Processing

by Dean P. Macri

x86 Shaders–ps_2_0 Shaders in Software

by Nicolas Capens

SoftD3D: A Software-only Implementation
of Microsoft’s Direct3D API

by Oliver Weichhold

Named Constants in Shader Development

by Jeffrey Kiel

Software Vertex Shader
Processing

Dean P. Macri

Introduction

Recent advances in processor performance coupled with the programmability
available in the vertex shader models provided in Microsoft DirectX gives devel-
opers considerable freedom to write customized and specialized techniques for
real-time graphics and gaming. DirectX 9 introduced the vs.2.0, vs.2.x, and vs.3.0
shader models that provide static and dynamic branching capabilities, looping,
conditional execution, predication, and more flexible addressing and computa-
tional ability. Rather than waiting for a proliferation of graphics cards that support
these features in hardware, developers can begin using these features today with
software vertex processing. In addition, highly optimized vector processing for
non-graphics data can be done using the software vertex processing pipeline.

This article explores optimization guidelines for writing shaders that use the
software vertex processing pipeline. While that is the main goal, the techniques
described here should also apply to vertex shaders written for graphics hardware.
First I talk about why you’d want to use software vertex processing and I describe
some non-graphics algorithms and techniques that can benefit from software
vertex processing. Then I describe some of the processor features that give the
pipeline significant performance capability and discuss some of the design charac-
teristics of the Intel implementation of the software vertex processing pipeline.
Next, I walk through the specific optimization guidelines, why they have an
impact, and how to get the highest performance out of your shaders. Finally, I
wrap up with a description of the included sample program and shaders.

Throughout this article, I refer to the Intel-optimized portion of the DirectX
runtime as a compiler because it recompiles shader bytecode to IA-32 instruction
sequences. Any reference to the word “compiler” is with that context in mind. If
you’re eager to just begin optimizing your vertex shaders and aren’t really inter-
ested in the motivation or background material, feel free to skip ahead to the
“Optimization Guidelines” section.

383

Why Software Vertex Processing?

Once you’ve looked at the vertex shader models provided by DirectX, several rea-
sons for doing software vertex processing quickly come to mind:
� Support for graphics hardware that doesn’t have vertex shaders
� Use of higher shader versions than is supported by available hardware
� Writing shaders with more instructions than the limits of hardware shaders

After some additional thought, other, less obvious reasons that might be envi-
sioned for doing software vertex processing include:
� Doing work other than pixel processing on the output of the vertex shader
� Doing non-graphics type work using the familiar, vector-oriented shader

model
� Ensuring predictable performance and compatibility across end-user systems

While each of these is relatively self explanatory, I want to focus on the first two
items of the second list and discuss in more detail why you might want to do
these things.

With all the flexibility that the programmable aspects of the DirectX pipeline
provides, there are still some situations in which you want to short-circuit the
pipeline and do your own work on the intermediate results. One example would
be using the vertex shader portion of the pipeline for transforming bounding vol-
umes for occlusion or collision detection tests. You don’t want to send those
transformed volumes through the pixel processing pipeline; you just want to do
tests on them to determine whether or not other data should be sent through the
graphics pipeline. In this case, developers have often chosen to implement their
own transformation code to do the work, and often, the optimization level of that
code is minimal. Using the ProcessVertices() method of the IDirect3DDevice9
interface, developers can write a small vertex shader that does the transformation
and writes the results out to a system memory vertex buffer. That buffer can then
be examined for doing the occlusion or collision tests. The end result is that fast
Streaming SIMD Extensions (SSE) optimized code will be used on the transfor-
mations, resulting in a net performance gain with a minimal amount of
development.

Another possibility would be using a vertex shader to update positions and
velocities for a large particle system using numerical integration. The software
vertex processing pipeline could quickly go through a large number of particles,
again using the ProcessVertices() method of the IDirect3DDevice9 interface.
After processing, additional work for preparing a graphical display of the data
could be done.

These two examples should provide some reasonable motivation for why
software vertex processing is useful. The next section describes how the high
performance is achieved using the features of recent processors.

384
Software Vertex Shader Processing

Section III — Software Shaders and Shader Programming Tips

Processor Features and Performance Advances

With the introduction of the Intel Pentium 4 processor with hyper-threading tech-
nology, Intel has brought multi-processing to consumer PCs. Combined with the
SSE introduced in the Pentium III processor and the Streaming SIMD Extensions
2 (SSE2) introduced in the Pentium 4 processor, there’s now support of SIMD
operations on 128-bit data in the form of single- and double-precision float-
ing-point numbers as well as integer values from bytes to double-quadwords with
all sizes in between, as seen in Figure 1. The software implementation of the ver-
tex processing pipeline described in the next section takes advantage of all these
features. To set the context for better understanding of that information, I briefly
describe some of these features here. Considerably more in-depth information on
the Pentium 4 processor and its features can be found at http://www.intel.com/
products/desktop/processors/pentium4/.

Streaming SIMD Extensions (SSE)

If you’ve been optimizing assembly routines or happen to have browsed through
the instruction set manuals for Intel’s latest processors, you’re well aware that
the vertex shader instructions don’t map one-to-one to the IA-32 instruction set.
However, the SSE and SSE2 instructions are a fairly close fit. Using these
instruction set extensions, engineers at Intel have created a compiler that takes
already-compiled vertex shader bytecode and converts it to optimal SSE and
SSE2 instruction sequences.

The nature of the SSE and SSE2 instruction sets is most appropriate for
operating on data in pairs of registers rather than within a single register. Some
instructions in the vertex shader specifications, like dp3 and dp4, combine the val-
ues within a given register and produce a single result. If the vertex shader
instructions were mapped as directly as possible to SSE and SSE2 instructions,

Software Vertex Shader Processing
385

Section III — Software Shaders and Shader Programming Tips

Figure 1: SSE and SSE2 data types

then “horizontal” operations like dp3 and dp4 would eliminate three-quarters of
the computation bandwidth provided. In an attempt to fully utilize the compute
bandwidth provided for maximum performance, incoming data is transformed
such that one 128-bit SSE/SSE2 register (also known as an XMM register) con-
tains a single component (.x, .y, .z, or .w) of four vertices. So completely repre-
senting a four-component register from a vertex shader would require four XMM
registers but would contain information for four vertices. Similarly, vertex shader
constant registers are replicated (and stored in memory initially) so that a single
constant register would also consume four XMM registers. Figure 2 shows an
example of a single shader register transformed into four XMM registers.

The data at the left of Figure 2 is known as array-of-structures (AOS) data
because it could be represented by a C/C++ data structure with one element of
the structure for each component of the vector. For multiple vectors, you’d have
an array of the structures, hence the name. The data at the right of Figure 2 is
known as structure-of-arrays (SOA) data because you could have a C/C++ struc-
ture with four arrays, one for the x components, one for the y components, etc.

Hyper-Threading Technology

The latest addition to the Pentium 4 processor family is support for symmetric
multithreading with what’s known as hyper-threading technology (HT technol-
ogy). HT technology adds a second “logical” processor to the package of a
Pentium 4 processor. The operating system can schedule processes and threads
on the second processor, and behind the scenes the processor schedules opera-
tions from each of the logical processors onto the shared execution resources of
the processor core. The processor caches and most internal data structures are
shared between the logical processors, with only a few essential components
being duplicated, as seen in Figure 3. Because typical IA-32 code sequences have
branches or memory loads that stall the processor temporarily, each of the logical
processors can make progress and combined can often achieve an additional 15 to
20 percent speedup over the same code running on a similar processor with only
one logical processor active.

With HT technology reaching consumer desktop PCs, Intel engineers work-
ing on the shader compiler took the opportunity to create multiple threads of ver-
tex shader processing code when sufficiently large batches of vertices are being

386
Software Vertex Shader Processing

Section III — Software Shaders and Shader Programming Tips

Figure 2: Transforming data from AOS to SOA

processed. The exact number of vertices
that produce the additional thread is
determined at run time based on several
factors. It’s worth noting that if your appli-
cation is doing software vertex processing
and running on a multiprocessor system
or a system with HT technology, one or
more additional threads of execution may
be created to boost performance.

With that sampling of background
information, we now have sufficient infor-
mation to look closely at the guidelines
that we can use when writing software
vertex shaders. The next section does
just that.

Optimization Guidelines

The optimization guidelines listed here can help improve the performance of ver-
tex shaders running in software. Following the list is a detailed description of each
of the guidelines with some examples of how to apply them and why they impact
performance.
� Use the highest shader version provided by the API.
� Use the macros.
� Define heavily used constants.
� Write directly to output registers.
� Use source swizzle and destination masks.
� Minimize dependency chains.
� Minimize temp register usage between basic blocks.
� Use rep instruction if aL isn’t needed in a loop.
� Avoid address register usage or reorder vertices based on expected values.
� Try to eliminate unnecessary conditionals.
� Use predicates for a few instructions when masking won’t work.
� Use the break instructions to early-exit from loops.
� Use conditionals to early-exit from rarely used code.
� Try to arrange conditional data based on expected behavior.
� Profile!

Software Vertex Shader Processing
387

Section III — Software Shaders and Shader Programming Tips

Figure 3: Intel Pentium 4 processor with
HT technology diagram

Use the Highest Shader Version Provided by the API

DirectX 9 introduced three new vertex shader models: vs.2.0, vs.2.x, and vs.3.0.
For the software pipeline, the 2.x and 3.0 models also have vs.2.sw and vs.3.sw
versions that eliminate the constraints on the number of instructions available as
well as extend the register and label limits. By using the highest shader version
available (vs.3.0 or vs.3.sw if limits are a concern), you can take advantage of all
the features provided by that shader model to get the best performance possible.
The Mandelbrot sample shader provided on the companion CD illustrates the per-
formance advantage of having instructions like break_ge available to early-exit
from loops. Using it yielded a 2.5x speedup in some cases over the vs.2.0 version.

Use the Macros

The shader models in DirectX 9 include several macro instructions — some new
and some carried over from previous shader versions. Some examples are the
matrix multiplication instructions (M4X4, M3X4, etc.) and cross-product (CRS)
instructions. Using them helps the compiler make smarter decisions about which
registers need to be temporarily saved to memory and which can be discarded
after use. As a general guideline, if an operation can be done with a single shader
instruction or a combination of other shader instructions, use the single instruc-
tion version. The following code sequence illustrates an example:

Before After

dp4 r0.x, v0, c2

m4x4 r0, v0, c2
dp4 r0.y, v0, c3

dp4 r0.z, v0, c4

dp4 r0.w, v0, c4

mul r2, v1.yzxw, v2.zxyw
crs r2, v1, v2

mad r2, –v2.yzxw, v1.zxyw, r2

Define Heavily Used Constants

When you use the def, defi, and defb instructions to define constants in a shader,
the compiler can examine the specific values and produce code that is more opti-
mal than if the constants were defined through the DirectX APIs outside of the
shader. As an example, if you use the def instruction to define a four-wide con-
stant of all zeros (0.0f) or all ones (1.0f), the compiler can make smart decisions
when that constant is used. Assuming these are in constants C0 and C1, respec-
tively, if the compiler encounters an addition of C0 to another register, it won’t
have to generate any code because adding zero to a value won’t change the value.
Similarly, if a value is multiplied by C1, the compiler again wouldn’t have to gener-
ate any code. Any constants that will be the same, regardless of how the shader is
used, should be defined directly in the shader itself using the def, defi, and defb

instructions.

388
Software Vertex Shader Processing

Section III — Software Shaders and Shader Programming Tips

Write Directly to Output Registers

As described previously, the small number of SIMD registers and the reformat-
ting of the input data to work on four vertices at a time mean that the shader com-
piler must generate code to save temporary results to memory whenever they’re
generated but not immediately used. For this reason, if a result being generated is
ultimately to be copied to an output register, modify the shader code to write
directly to that output register rather than to a temporary register that eventually
gets copied.

Use Source Swizzle and Destination Masks

Like the previous guideline, the limited number of SIMD registers available
means that if results are calculated that aren’t used, one or more SIMD registers
are wasted and unnecessary instructions for spilling data to memory and then
restoring it have to be generated. If you need fewer than all four components of a
source register or you only need a subset of the results generated by an instruc-
tion, make certain to specify source swizzle and destination write masks to inform
the compiler of that. In the following example, the mov on the left only uses one
component of r0 and only writes one component of oPos. The code on the right
shows how to improve this to minimize register usage. Note that the mov instruc-
tion doesn’t change.

Before After

dp3 r0, v0, r1 dp3 r0.x, v0.xyz, v1.xyz

add r0, r0, v1 add r0.x, r0.x, v1.x

mov oPos.x, r0.x mov oPos.x, r0.x

Minimize Dependency Chains

When writing shader assembly, you’re often faced with a situation of one instruc-
tion operating on the results generated by a previous instruction. A given
sequence of instructions in which the input of each instruction is dependent on
the output of previous instructions is called a dependency chain. When implement-
ing your algorithms in shaders, try to make dependency chains as short as possi-
ble or eliminate them altogether. Also, try to keep the instructions of a
dependency chain clustered closely together rather than spread throughout the
shader. Doing so gives the compiler more flexibility in scheduling instructions and
register usage so that long latency instructions can be overlapped with shorter
latency instructions and less spilling of registers to memory needs to be done.

Minimize Temp Register Usage between Basic Blocks

A basic block is a piece of code that has no branching (in the form of if state-
ments, call statements, and loop or rep constructs). The original vs.1.0 and
vs.1.1 shader models consisted entirely of one basic block because no branching
of any kind existed. In the vs.2.0 and higher shader models, however, multiple

Software Vertex Shader Processing
389

Section III — Software Shaders and Shader Programming Tips

basic blocks can exist in a given shader. To assist the compiler in its optimizations,
it’s recommended that temporary registers are not reused between basic blocks.
Otherwise, the compiler will have to generate code to save and restore the temp
register from memory.

Use rep Instruction if aL Isn’t Needed in a Loop

Two types of looping were introduced in the vs.2.0 shader model: rep and loop.
The rep instruction enables a sequence of instructions to be repeated for a num-
ber of iterations based on an integer constant. The loop instruction works simi-
larly, but it provides the aL register used as a loop counter for indexing into the
constant pool. For loops where you don’t need to access the constant registers
based on the loop counter, use the rep instruction because the compiler generates
less code for it.

Avoid Address Register Usage or Reorder Vertices Based

on Expected Values

A common theme with the optimizations described here is that anything that
hurts the performance due to the SOA arrangement of data should be eliminated
or avoided. Another example in this area is the use of the address register, a0.
The address register is used to index into the constant registers, and because it
can be computed dynamically within the shader, it can have different values for
different vertices. If you can accomplish a task without the use of the address reg-
ister, do so — even if it means a few extra instructions in your shader.

Figure 4 shows the effect of using the address register when the values for
the four vertices in the address register are not all the same. As you can see from
the diagram, the compiler must produce code that extracts each of the four com-
ponents (based on the four values in the address register x component) from the
various constant values and then combine them together to produce the final
result (r5.x). The overhead of doing this is approximately 20 clocks. If all four val-
ues of the address register across four vertices were the same, a single instruc-
tion would suffice. Therefore, if possible, reorder your vertices based on the
expected values in the address register.

390
Software Vertex Shader Processing

Section III — Software Shaders and Shader Programming Tips

Figure 4: Address register usage effect on SOA data

Try to Eliminate Unnecessary Conditionals

Similar to the problem associated with address register usage, conditionals that
vary from one vertex to the next can severely impact performance of software
vertex shaders. When a conditional is encountered, the compiler must generate
code to compute the outcome of the conditional for all four vertices and then exe-
cute both paths (for an if/else statement) and mask and combine the results.
Because of this, it’s best to avoid conditionals if at all possible.

One way to avoid conditionals is to use numerical masking. The sge and slt

instructions compute a 1.0 or 0.0 result for each component of the destination
register based on pair-wise comparisons between the source registers. By doing
both comparisons, two multiplies, and an add, you can produce results that are
commonly implemented with an if/else sequence. For example:

Before After

if_lt r0.x, r1.x slt r8, r0.x, r1.x

add r2, r2, r3 sge r9, r0.x, r1.x

else mul r8, r8, r3 ; “if” portion

add r2, r2, r4 mul r9, r9, r4 ; “else” portion

endif add r8, r8, r9 ; combined results

add r2, r2, r8

Granted, this adds several instructions to the flow and is less easy to understand,
but the performance gain can be significant because no branches are generated.

Use Predicates for a Few Instructions when

Masking Won’t Work

In cases where you have a small number of instructions in the if and else parts
of a loop but where masking as described in the previous guideline won’t work (or
at least not as easily), you can use predicates to achieve the same results. Here’s
an example, similar to the previous one, that uses predicates to avoid branching:

Before After

if_lt r0.x, r1.x setp_lt p0. r0.x, r1.x

mul r2, r1.x, c8 (p0) mul r2, r1.x, c8

add r2, r2, r0.x (p0) add r2, r2, r0.x

else

mul r2, r0.x, c9 (!p0) mul r2, r0.x, c9

add r2, r2, r1.x (!p0) add r2, r2, r1.x

endif

The benefit of using predication is that the code is still fairly readable and the
compiler can generate code that is still branch free to obtain the highest perfor-
mance possible.

Software Vertex Shader Processing
391

Section III — Software Shaders and Shader Programming Tips

Use the Break Instructions to Early-exit from Loops

The old saying “the fastest code is the code that isn’t executed” means that if you
can avoid doing some computation, do so. With the break_xx instructions pro-
vided in the vs.2.x and vs.3.0 shader models, you can check for conditions being
met and exit out of a loop that won’t be doing any useful computation for the
remainder of its iterations. The Mandelbrot sample included on the companion
CD illustrates this quite nicely. As mentioned in the first tip, the speedup that
resulted was very significant.

Use Conditionals to Early-exit from Rarely Used Code

Use of any of the transcendental instructions (log, exp, pow) in vertex shader code
causes the compiler to generate a call to an optimized routine. However, the per-
formance impact can be significant if a large number of these are used. In some
cases, it’s possible to do a dynamic branch based on comparison of values and
avoid having to do the expensive computation. One example is when generating
specular highlights in lighting code; by checking to see if the highlight color is
black or if the specular power is very low, you can branch over the specular light-
ing calculation and avoid the call to the pow function. Whenever possible, use con-
ditionals and branches (not masking or predication) to avoid expensive operations
like log, exp, and pow.

Try to Arrange Conditional Data Based on Expected Behavior

When you do have to use conditionals with branching, if possible you can help the
compiler achieve better performance by rearranging your data based on expected
true/false behavior of the conditionals. A rudimentary example is a conditional
that did something different based on whether a face was front facing or back fac-
ing. If you make sure to group your vertices based on spatial locality of the faces,
you get better clustering of vertices that are all on front-facing triangles and verti-
ces that are all on back-facing triangles. The processor’s branch prediction is
more accurate in these cases and the performance of your shader is higher.

Profile!

The best way to get great performance out of any piece of code, whether C++,
assembly, or, in this case, vertex shader code, is to profile repeatedly with optimi-
zation in between. Other than watching frame rates as you make tweaks to the
shader assembly, there hasn’t been much that you could do to profile your vertex
shaders, since the tools available are rather minimal. Now, Intel VTune Perfor-
mance Analyzer 7.0 has a feature that makes profiling and optimizing software
vertex shaders extremely simple. A trial version is available at http://www.
intel.com/software/products/vtune/vpa/eval.htm. To get a trial license, visit
http://www.intel.com/software/products/distributors/shader_x.htm.

If you write a test case that uses software vertex processing to process a
batch of triangles and it does so in a repeatable way, when you profile the

392
Software Vertex Shader Processing

Section III — Software Shaders and Shader Programming Tips

application using VTune Analyzer 7.0, you’ll see a large spike in the module
SWShaders.exe.jit where SWShaders will be replaced with the name of your
application (see Figure 5).

Double-clicking on this module will list a few routines that are arbitrarily named,
based on the order in which your vertex shaders and declarations were declared.
If you have multiple vertex shaders, you’ll see multiple routines, but with just one
vertex shader, you should see a routine that handles the vertex declaration map-
ping and another that implements the vertex shader itself (see Figure 6).

Software Vertex Shader Processing
393

Section III — Software Shaders and Shader Programming Tips

Figure 5: VTune Analyzer 7.0

Figure 6: Hotspots in vertex shader code

Double-clicking on the vertex shader module brings up a listing of the vertex
shader code with clockticks indicating which instructions consumed the most
CPU time, as seen in Figure 7. In this example, we can see that the dp3 instruc-
tion contributed to the biggest portion of time in this shader.

One thing to be aware of when using the VTune Analyzer to profile software ver-
tex shaders is that sampling must be enabled when the vertex shader declarations
and shaders are created. Two common scenarios that would prevent this and leave
you scratching your head trying to figure out why the biggest spike is in a module
called Other32 are:
� Using a start delay that causes the VTune Analyzer to miss the creation of

the shaders. Start delays are often used to give your application time to
launch and load data so you don’t end up profiling all the startup operations.

� Using the VTPause() and VTResume() APIs to only enable profiling of a spe-
cific portion of your application.

If you find that your sampling is primarily showing up in a module called Other32
(which you can’t drill down into), then one of these situations is probably arising.
The best recommended fix is to use the VTPause() and VTResume() APIs and
make sure that you’ve enabled sampling around any creation of vertex shaders
and declarations.

Sample Shader

The sample program on the companion CD, built on the DirectX 9 framework, can
be used to see the relative performance of two shaders. The program uses a ver-
tex shader to calculate values of the Mandelbrot set. In doing so, it illustrates how

394
Software Vertex Shader Processing

Section III — Software Shaders and Shader Programming Tips

Figure 7: Vertex shader profile

the features available in
later shader models can
significantly improve the
performance of software
shaders in some cases.
Figure 8 shows a screen
capture from the sample
shader.

It’s interesting to
note that as you zoom in
on the Mandelbrot set
using the dialog controls
in the sample, it’s possi-
ble to get to regions that
are very noisy in terms of
values staying close to
the set and values escap-
ing from the set. In those

situations, the branching (in the form of a break instruction) in the optimized ver-
sion can actually cause the performance to degrade. This is one reason why it’s
very important to profile your shader across as broad a sampling of uses as possi-
ble. Of course, if your shader doesn’t have any branching, then the performance
will be independent of the workload.

Conclusion

The software vertex processing support in DirectX 9 provides excellent perfor-
mance to begin shipping game titles that incorporate vertex shading for doing
both graphics and non-graphics-related computation. It provides a flexible and
straightforward way to produce vectorized code that can take full advantage of the
instruction sets and technology features of the latest processors to reach consum-
ers. The guidelines presented here can help you ensure that your shaders will
perform optimally, free the processor to do other game-related calculations, and
enable your titles to stand out from the crowd.

Acknowledgments

I’d like to acknowledge a few individuals who made this article possible. First and
foremost is Ronen Zohar at Intel. Ronen has worked closely with Microsoft in
optimizing the Intel implementation of the processor-specific graphics pipeline in
DirectX. Ronen also assembled the list of guidelines described in this article and
wrote the original version of the Mandelbrot shader. Additional thanks go to Will
Damon and Kim Pallister at Intel who provided source material, feedback, and
suggestions that helped improve this article.

Software Vertex Shader Processing
395

Section III — Software Shaders and Shader Programming Tips

Figure 8: Mandelbrot sample shader

x86 Shaders–ps_2_0 Shaders in
Software

Nicolas Capens

Introduction

Programmable graphics existed long before hardware acceleration. Unfortunately,
the processors used back then were too slow for performing even the simplest
shading tasks in real time. Nevertheless, software shaders are still more flexible
than hardware-accelerated shaders. In this article we investigate the possibility of
real-time software shading with modern processors like the Pentium III and 4.
First, we see a few reasons why software rendering is still useful. Then we try to
find out what makes the straightforward emulation so slow and what can be done
about it. After that we discuss how to implement an efficient software renderer
and DirectX pixel shader emulator. Finally, we solve a few practical problems
encountered in the rendering pipeline.

x86 Shaders

If we could make software shaders reasonably efficient, they would have a good
chance of surviving the battle against hardware-accelerated shaders because they
have their own benefits. Although hardware-accelerated shader support is becom-
ing more common for the professional industry and competitive gamers, it is not
an obvious feature for low-budget, portable, or office computers. But even in
these cases where top performance is not a requirement, the unlimited program-
mability of software shaders brings interesting new possibilities. Other benefits
are getting exactly the same result on pretty much all systems without unsolvable
driver issues or hardware limitations. It frees us from the complexity of handling
graphics card capabilities, so we can focus on the actual application. Software ren-
dering can also work together with hardware rendering to combine their advan-
tages and implement the features not supported by the hardware as a fallback.
Pentium III-compatible processors are much more widespread than graphics
acceleration hardware with pixel shader support. Also remember that people who
don’t regularly play games commonly spend more money on a processor than on a
good graphics card. Schools and universities mostly use computers without 3D
graphics cards but often require 3D animations and simulations. Because software

396

rendering has no limitations, it can be ahead of hardware to develop new
technologies.

Current DirectX 9 support for pixel shaders is only useful as a reference
because it takes several seconds per frame, even at low resolutions. There are a
few reasons why the current shader emulation implementation is this slow. Writ-
ing an efficient software renderer for one specific task isn’t very hard with the
help of assembly optimizations, but as soon as we need multiple shaders, it is too
much work to write different code for them and optimize everything manually. So
we need to make it more generic by using lots of control statements to select dif-
ferent operations. On modern processors with deep pipelines, these control state-
ments drastically reduce performance. If the processor cannot predict the result
of a comparison correctly, it starts executing code from a wrong branch before it
realizes this error. In this case, it has to stall for many cycles and has to start fill-
ing the pipelines again. Even when the comparisons are perfectly predictable, it
still takes at least a compare and a jump per shader instruction and per render
state. Also, an important performance bottleneck of modern processors is the
memory throughput for the code, so it is necessary to make the inner loop small
by avoiding redundant instructions — not to mention the cache incoherency we
create by jumping.

So what we need is a way to eliminate these control statements. This can be
done by selecting only those blocks of code that perform the wanted operation.
This is just like conditional compilation, only at run time. In other words, instead
of writing optimized routines manually, we need to generate them automatically.
We can immediately make a parallel with hardware-accelerated shaders here,
since these are also compiled at run time. Compilation of DirectX shaders is quite
complex and generates much slower code than manually written assembly code,
so what we need for maximum performance is a run-time assembler for our main
processor’s x86 assembly language. Instead of writing our shaders in the DirectX
shader assembly language, we now write x86 shaders.

Let’s see if this is feasible. Although 3D graphics cards have tremendous par-
allel processing power, the main processor is still clocked almost ten times higher.
A quick calculation shows us that on a Pentium 4 running at 2.4 GHz, we could
have 100 clock cycles available per pixel for a resolution of 800x600 and a target
FPS of 50. So to get the most out of it, we need to use instructions that perform
complex tasks in little time. The MMX and SSE instruction sets are especially
very interesting for software rendering. The MMX instruction set is specialized
in doing operations on four 16-bit integers in parallel, which is ideal for high-preci-
sion color operations. The SSE instructions operate on four single-precision float-
ing-point numbers in parallel, so this is ideal for processing vertex components.
Not only can the programmable shaders be run-time assembled, but also the
fixed-function pipeline can be optimized this way. Some pixel shader instructions
also depend on the current render state. With hardware, this isn’t a problem,
since one tiny transistor can decide what part of the silicon has to be used for the
current operation. Here the compare will also be evaluated for all pixels, but this
takes a negligible amount of time. In software, we again need conditional compila-
tion. This way, only exactly those instructions needed for the current render state

x86 Shaders–ps_2_0 Shaders in Software
397

Section III — Software Shaders and Shader Programming Tips

are assembled. We don’t even need the transistor that the hardware needed.
Instead of hard-wired logic, we now have soft-wired logic!

SoftWire is also the name of the assembler that we use throughout this arti-
cle. Unlike many overcomplicated commercial assemblers that are aimed at gen-
erating executables and libraries from many source files, SoftWire is specialized at
generating functions that can be called at run time. It is written in C++ and avail-
able as an open-source project under the LGPL license [1]. The object-oriented
interface was designed especially with simplicity for run-time code generation in
mind. We specify a file to assemble, along with the external data and conditional
parameters, and it returns the corresponding block of machine code that can be
called directly.

Let’s try an easy example of an x86 shader assembled with SoftWire to get
started. We subtract 1 from all color components, so we get a fade-to-black effect.
Of course, this can also be done with graphics cards without shader support, but
this example is only for illustrating the very basics. Suppose we already have the
rest of our rendering pipeline and we want our inner pixel loop to be run-time
assembled as a function. This isn’t optimal yet, but the x86 code could look like
this:

p0001h: // Label to reference static data

DW 0001h // Used for subtracting 1 from every

DW 0001h // 16-bit color component

DW 0001h

DW 0001h

Fade:

mov esi, [displayPointer]

punpcklbw mm0, [esi] // Load pixel 32-bit -> 64-bit

psubusw mm0, [p0001h] // Subtraction with saturation

packuswb mm0, mm0 // Pack pixel 64-bit -> 32-bit

movd [esi], mm0 // Write pixel

emms

ret

Let’s store this in a Fade.asm file. Now all we need to do is tell SoftWire where
the displayPointer external variable is stored by passing its address, and then we
can assemble this code. The basic interface of the SoftWire::Assembler class
looks like this:

Assembler(const char *fileName);

const void *callable(const char *entryPoint = 0);

static void defineExternal(void *pointer, const char *name);

static void defineSymbol(int value, const char *name);

To define the displayPointer external variable, we need to use the define-

External method, like this:

defineExternal(&displayPointer, “displayPointer”);

398
x86 Shaders–ps_2_0 Shaders in Software

Section III — Software Shaders and Shader Programming Tips

There is a handy macro to make it a little easier to do this:

ASM EXPORT(displayPointer);

Because the defineExternal method is static, this works even when no Assem-

bler has been constructed yet. Now that we have defined the externals, we are
ready to assemble the file:

Assembler x86(“Fade.asm”); // Construct an assembler called x86

At this point, the file has been translated to machine code, but it is not loaded into
a block of memory, so it is not yet ready to be called. To link and load the code, we
need to do the following:

void (*x86Shader)() = (void(*)())x86.callable(“Fade”);

We can now call x86Shader() in our inner pixel loop, and it will start executing
from the Fade label. Pretty boring stuff for now, so let’s start playing with the con-
ditional compilation a bit. Fading to black can be useful, but fading to white is
often used too. To do this, we only need a few extra lines:

Fade:

mov esi, [displayPointer]

punpcklbw mm0, [esi] // Load pixel 32-bit -> 64-bit

#if fadeBlack

psubuswmm0, [p0001h] // Subtraction with saturation

#else

padduswmm0, [p0001h] // Addition with saturation

#endif

packuswb mm0, mm0 // Pack pixel 64-bit -> 32-bit

movd [esi], mm0 // Write pixel

Depending on the value of fadeBlack, this code now fades the screen to black or
white. All we have to do is tell the assembler the value of fadeBlack, and we can
assemble the file again. This is done with the defineSymbol method:

defineSymbol(fadeState(), “fadeBlack”);

or a handy macro:

bool fadeBlack = fadeState();

ASM DEFINE(fadeBlack);

That’s it! These are the most important features that SoftWire is capable of for
using x86 shaders. It all seems limited, but that’s only because we’ve used the
simplest example. The complete x86 instruction set is supported with all 32-bit
addressing modes, and the conditional compilation can be made arbitrarily com-
plex. Also, C++ functions can be called from within the assembly code — again
by exporting it. It is also possible to jump to or call internal labels. For more infor-
mation, please refer to the SoftWire documentation [1].

But why use SoftWire if we could just use inline x86 assembly and let our
C++ compiler do the rest? SoftWire has one important extra advantage over
inline assembly — namely the conditional compilation. Suppose the fixed-function
vertex pipeline has more than 1000 different combinations of states and we would

x86 Shaders–ps_2_0 Shaders in Software
399

Section III — Software Shaders and Shader Programming Tips

like to be able to do them all in software. Without using soft-wiring technology, we
would have to write 1000 files and wait until they are all compiled before we can
test them. But even if this could be done with things like macros and templates
and we could put them in one huge library, it would still not be very useful. If we
wanted to add just one extra feature, our library would have to double in size and
it would take twice as long to compile. So this problem grows exponentially, and
using a run-time assembler is the only option left as soon as we need more than a
few render states.

Assembling takes time though. SoftWire was not designed for fast compila-
tion. In practice, the average x86 shader takes almost a millisecond. If we had to
assemble every shader for every frame and for every render state, it would dis-
turb the rendering smoothness. Therefore, it is important that we use some sort
of caching system to minimize the number of shaders being reassembled. In the
future, SoftWire might feature a system for fast relinking when only a few con-
stants are changed. This is possible because many of the instructions being
assembled remain the same.

In many situations, we also need a rasterizer optimized for only one purpose.
While conditional compilation allows supporting any render state, it doesn’t give
us optimal results, especially for simple operations. For example, deferred render-
ing techniques draw the scene in a first pass only to the depth buffer to have visi-
bility information. In this case, a hand-optimized rasterizer could be faster
because we can use all registers for just one task and even process a few pixels in
parallel. Another example is the rasterization of small polygons. For geometry
with a high polygon count, a scanline that is only one or two pixels long occurs a
lot. These scanlines don’t need the complex setup of longer scanlines, and a few
approximations can be used that don’t degrade quality. Affine texture mapping and
per-polygon mipmapping are some examples of approximations that can signifi-
cantly boost performance. This can be implemented together with the caching
technique. When we need a certain rasterizer for the first time, we first check if
any of the specialized rasterizers support the current render mode. If this fails,
we use the general rasterizer. This doesn’t mean that the specialized rasterizers
can’t use conditional compilation. For example, the specialized depth buffer
rasterizer could use conditional compilation for the different depth compare
modes. If a rasterizer is needed again, we first search if there’s a compatible
rasterizer in the cache. Since we search for rasterizers in the order of most spe-
cialized to most general, we know that the first compatible rasterizer that we find
will also be the most efficient.

x86 shaders probably sound great in theory, but what about the results? Well,
SoftWire was designed especially for a software-only renderer. It is still a work in
progress, but it’s already reaching 20 FPS in 640x480x32 display mode on a
Celeron running at 1200 MHz for Quake III [2] scenes with all features turned on.
This includes bilinear filtering, exact mipmapping, lightmapping, per-pixel per-
spective correction, dynamic lighting, fog, and more. On a Pentium 4 running at
2400 MHz, we get 22 FPS. This is a disappointingly low improvement over the
Celeron and is caused by the Pentium 4’s much higher latency for SIMD instruc-
tions. On a Pentium III running at 450 MHz, we get 9 FPS, which shows that the

400
x86 Shaders–ps_2_0 Shaders in Software

Section III — Software Shaders and Shader Programming Tips

Celeron suffers a bit from its smaller cache and slower front side bus. We can con-
clude that performance can be considered real time for a 1 GHz Pentium III or a
2 GHz Pentium 4. Note that Quake III was not designed for software rendering,
so with some specific optimizations aimed at preventing overdraw, it could be
much faster. For more recent information and screen shots, please visit the
SoftWire web site [1].

A great advantage of SoftWire over hardware-accelerated shaders is that we
have access to the complete x86 instruction set and all memory! We can make our
shader code as long and as complex as we like, we can do operations that are not
available in current hardware shader languages, and we have full control over
memory. Want to implement your own filtering method? Need an extra memory
buffer for storing certain parameters? Want to render voxels instead of polygons?
Want to do ray tracing or call a recursive function for photon mapping? This is all
no problem when using SoftWire. It is also open source, so adding specific fea-
tures is easy. The conditional compilation can also help make the code processor
independent. When SSE support is not detected, we can fall back to regular FPU
instructions or use AMD’s 3DNow! instructions. Note however that MMX uses
the same registers, and a slow emms instruction is needed when switching from
MMX to FPU mode. For AMD processors, a faster femms instruction can be used,
but 3DNow! uses the same FPU registers once again. Because of this and
because SSE operates on four instead of two floating-point numbers, it is far supe-
rior. Luckily, the newest generation of AMD’s Athlon processors also supports
SSE. The SSE instruction set also has some important instructions that comple-
ment the MMX integer instructions, so it is a must for efficient rendering on an
x86 processor.

But there are also disadvantages when using x86 shaders. We cannot expect
to reach the same performance as dedicated hardware. Although it has a higher
clock frequency, the main processor’s power lies primarily in its versatility, not
raw number crunching. The conditional compilation also has a disadvantage over
writing everything manually; it is hard to do instruction scheduling, since we can-
not know in advance which instructions will be assembled. But this slight perfor-
mance loss is nothing compared to the flexibility that it brings. For people who are
not familiar with x86 code and especially the SIMD instruction sets, SoftWire
might not seem very interesting. Why not immediately compile the DirectX
shader instructions to x86 assembly? Although we see how to do this later, there
are two main reasons why using x86 assembly is ideal when aiming for maximum
performance. First of all, to use software shaders, we also need a fixed-function
geometry pipeline and scan converter. To make these efficient, they need to be
written using x86 assembly anyway. Secondly, even if we already had these and
we would still like to write the shaders with the DirectX shader languages, we can
never generate code as optimal as manually written code. So it is best to just
regard it as another shader assembly language. But never fear — SoftWire can be
used for much more than pure x86 shaders.

This brings us to another powerful feature supported by SoftWire that we
haven’t touched yet. SoftWire supports a form of macros that is ideal for

x86 Shaders–ps_2_0 Shaders in Software
401

Section III — Software Shaders and Shader Programming Tips

abstracting the x86 code into more powerful “instructions” like with DirectX
shaders. They are much like the C++ inline functions, and they use a similar
syntax:

inline mad(dest, src0, src1, src2)

{

movq dest, src0

psrlw dest, 1

pmullw dest, src1

psrlw dest, 7

paddw dest, src2

}

. . .which can be invoked like this:

mad mm0, mm1, mm2, mm3

Assuming the MMX registers hold the data in signed 8.8 fixed-point format, this
“instruction” is compatible with the ps 1.3 mad instruction. It is even possible to
use the ps 1.3 register names with some macros. The r0 and r1 registers can be
mapped onto mm0 and mm1, t0 to t3 can be mapped onto mm2 to mm5, and the
read-only registers can be held in memory. This leaves mm6 and mm7 available for
temporary results in the macros. This way, ps 1.3 can be implemented efficiently
with a very similar syntax.

ps_2_0 Shaders

So what about the more advanced pixel shaders from DirectX 9 like ps 2.0? These
shaders use floating-point numbers everywhere, so MMX is of little use for the
pixel operations. Unfortunately, SSE instructions are also at least twice as slow as
MMX instructions, so it is less suited for real time. On the other hand, MMX
needed many shift instructions for fixed-point arithmetic, which can now be elimi-
nated. We now also have all MMX registers available for things like texture filter-
ing. But the number of registers is still a limiting factor. The ps 2.0 standard
specifies no less than 12 temporary registers, which is more than what SSE
offers. So we can’t simply map DirectX 9 registers onto x86 registers like we
could with ps 1.3. These extra problems make it too slow for games on the cur-
rent generation of processors. But with soft-wiring techniques and SIMD instruc-
tions, it is still much faster than the reference rasterizer. For things like CAD, the
frame rate only has to be interactive and the viewport is usually smaller than the
screen resolution.

Let’s first focus on how to actually compile ps 2.0 shaders into x86 assembly.
Because we need to use SSE and MMX, we need a convenient way to generate
many different instructions. As a first attempt, we could create a string with the
instruction and its operands and let SoftWire assemble this. This is hopelessly
cumbersome. We would need to write many functions to generate code for just a
few instructions. Also note that this is a huge detour because we first select an
instruction and its operands, write that to a string, let SoftWire parse this string,
and check its syntax and semantics; only then can we generate the machine code.

402
x86 Shaders–ps_2_0 Shaders in Software

Section III — Software Shaders and Shader Programming Tips

Luckily there’s a shortcut called run-time intrinsics. In SoftWire, run-time
intrinsics are a list of member functions of the Assembler with the same names as
the x86 instructions, which generate the corresponding machine code at run time
and put it into the assembler’s internal buffer. So we can simply construct a new
Assembler instance without specifying a file in the constructor, and we can start
generating code by writing the assembly instructions as intrinsics. Besides being
very easy to use, they are also safer than assembling from a file because the syn-
tax is checked almost completely at compile time. Also, because it is still written
in C++, things like passing pointers to external data and conditional compilation
become trivial.

To become familiar with the use of run-time intrinsics, let’s write something
more useful than the fade code. Suppose we want to compute the dot product of
two 3D vectors r0 and r1 and store the result in r2. Also suppose that we have a
class SwShader derived publicly from SoftWire::Assembler:

void SwShader::encodeDP3()

{

movaps(xmm0, xmmword ptr [r0]);

movaps(xmm1, xmmword ptr [r1]);

mulps(xmm0, xmm1);

movhlps(xmm1, xmm0);

addss(xmm1, xmm0);

shufps(xmm0, xmm0, 0x01);

addss(xmm0, xmm1);

movss(dword ptr [r2], xmm0);

}

This clearly shows that the C++ intrinsics syntax closely resembles the usual
assembly syntax, so it is easy to convert existing code. In the above example, we
used fixed source and destination “registers” stored in memory. Of course, we
can just as easily parse the instruction and its operands from a ps 2.0 shader file
and encode the instruction with the according registers.

For the parsing job, many tools for generating a parser from a grammar are
available. Popular scanner and parser generators like Flex and Bison are slightly
too sophisticated and do not produce C++ code. A simple parser generator more
suited for this simple task is CppCC by Alec Panovici [3]. It produces understand-
able C++ code, and it’s very easy to derive the SwShader class used above from
the parser class. This allows parsing the file and directly storing the data in a list
of ps 2.0 intermediate code instructions in the SwShader class.

Notice that in the example only two SSE registers are used, and three mem-
ory operations are needed. A much better situation would be to use all available
registers to eliminate most of the loading and storing, but as we discussed before,
we can’t directly map ps 2.0 registers to SSE registers. The best compromise is
to map as many ps 2.0 registers as possible to SSE registers and keep the rest in
memory. This is known as virtual register allocation. Optimal register allocation
cannot be solved in polynomial time, so a few heuristics are available. The most
straightforward method is to just assign SSE registers to the most frequently

x86 Shaders–ps_2_0 Shaders in Software
403

Section III — Software Shaders and Shader Programming Tips

used ps 2.0 registers. Unfortunately, this means that when we use any other ps
2.0 register, an SSE register needs to be freed by writing it back to memory. This
is called spilling and adds lots of extra instructions with slow memory accesses.
Most compilers use a graph coloring heuristic. Although near-optimal for the
amount of spill code needed, it is also quite complex to compute. The most popu-
lar solution for run-time compilation is linear-scan register allocation [4]. It is also
quite straightforward, marking when registers need to be allocated and when they
are free for other variables to avoid much of the spill code. When a spill is neces-
sary, a simple heuristic decides which register is needed the least. It is very fast
and does not produce too much spill code.

Let’s see how we can integrate linear-scan register allocation into SoftWire’s
run-time intrinsics. Since it’s all written in C++, we can write a function xmmreg,
which takes a ps 2.0 register as an argument and returns the SSE register to
where it is mapped. This can then be used as the argument for the run-time
intrinsic. If the ps 2.0 register is not already mapped to an SSE register, the
xmmreg function adds spilling code if necessary. Similarly, we can write a function
r_m128, which returns either a register or memory reference. This needs some
illustration. Suppose the destination ps 2.0 register is stored in dst, the source
registers in src0 and src1, and tmp0 and tmp1 are temporary registers; then the
code would look like this:

void SwShader::encodeDP3(Operand &dst, Operand &src0, Operand &src1)

{

movaps(xmmreg(tmp0), r m128(src0));

mulps(xmmreg(tmp0), r m128(src1));

movhlps(xmmreg(tmp1), xmmreg(tmp0));

addss(xmmreg(tmp1), r m32(tmp0));

shufps(xmmreg(tmp0), r m128(tmp0), 0x01);

addss(xmmreg(tmp0), r m32(tmp1));

movss(xmmreg(dst), r m32(tmp0));

}

We have solved two problems now: We’ve made the source and destination regis-
ters variable, and if there are enough SSE registers available, we’ve eliminated
many memory operations. But it’s still not optimal. The first instruction is only
needed for preserving the source register. If the destination register is equal to
one of the source registers, we can eliminate some instructions. Here we can use
run-time conditional compilation again. Thanks to run-time intrinsics, this can
simply be written in C++. Let’s try this for the abs instruction:

void SwShader::encodeABS()

{

if(dst != src0)

{

movaps(xmmreg(dst), xmmreg(src0));

}

typedef declspec(align(16)) float float4[4];

404
x86 Shaders–ps_2_0 Shaders in Software

Section III — Software Shaders and Shader Programming Tips

static float4 = {0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF};

andps(xmmreg(dst), signMask);

}

Another important optimization is not to copy data from a register to itself. This
can be done by overloading the mov* instructions and detecting when the
operands are equal. The list of optimizations that can be done is almost endless,
and with run-time intrinsics, they can be implemented in a convenient manner.

Note that when a render state changes, we need to reassemble the shader
because it can modify the behavior of texture lookup instructions and the like.
Luckily, we don’t need to parse the file again; only the code generation has to be
redone. Since run-time intrinsics work directly with the SoftWire code, this takes
little time. As we discussed before, caching techniques can further eliminate
unnecessary work.

For a proof of concept for compiling ps 2.0 shaders to x86 assembly using
SoftWire and CppCC, take a look at the swShader project [5]. This work in prog-
ress shows the details of how to implement the above techniques. Preliminary
tests on the Celeron 1200 show that a pixel fill rate of five million pixels per sec-
ond can be reached for a long shader of 40 arithmetic instructions translated to
150 SSE instructions. Compared to hardware-accelerated pixel shaders, this is
very little, but it is certainly a lot better than the reference rasterizer. At modest
resolutions, this is sufficient for interactive rendering.

Rendering Pipeline Operations

This article is complemented with the efficient solutions to a few practical prob-
lems when implementing a software renderer. An efficient implementation of
shader emulation using soft-wiring and SIMD instructions isn’t worth anything if
the rest is inefficient or inaccurate. Since we already discussed the operations at
pixel level, let’s build it up all the way to the primitive level, which is the input of
the renderer. Keep in mind that with software rendering, we are not limited in the
way we implement something, but the following methods have proven their use-
fulness in practice.

Closest to the pixels are the frame buffer, the depth buffer, and the textures.
The most limiting factor here is the memory bandwidth. Take for example the
Pentium 4 with 400 MHz front side bus, which has a theoretical memory band-
width limit of 3.2 GB/s. Suppose we render at a resolution of 800x600 with a
32-bit frame buffer and depth buffer. Per frame we might want to clear the frame
buffer, clear the depth buffer, and then refill them both with the new frame. With
an average overdraw of two and the double amount of depth buffer tests, this
results in 15MB per frame. This seems small, but when we target 30 FPS, this
takes one-seventh of the time for one frame, and that’s even without all the other
memory accesses, like for texturing and fetching code. That’s millions of clock
cycles where the processor can hardly do any useful arithmetic instructions.

We can’t overcome this bandwidth limit, so it’s important to minimize the
number of memory accesses. In most situations, it is possible to eliminate

x86 Shaders–ps_2_0 Shaders in Software
405

Section III — Software Shaders and Shader Programming Tips

clearing the frame buffer, since the whole scene is redrawn and fills the frame
buffer. Reducing overdraw can be done efficiently when rendering from front to
back and using one bit per pixel to indicate if it’s already been filled. Unfortu-
nately, sorting the polygons is not easy, so using a depth buffer is often the only
option. Clearing the depth buffer can be eliminated by using positive depth values
in even frames and negative values with the inverted depth compare mode in odd
frames. With soft-wiring, we can change the compare mode instantly. So by sacri-
ficing the sign bit of the depth buffer values, we can clear it at almost no cost. Tex-
ture memory access is something completely different. Because the addresses
are not successive, the data is often not ready in the cache and the CPU has to
read them from the RAM. Not only does the memory bus have a maximum
throughput, the memory itself also requires time before the data is available. With
an access time of 6 ns, this requires roughly a dozen clock cycles waiting for a few
bytes and a lot more for actually finishing the move instruction. For this reason,
the SSE instruction set also features prefetch instructions. They load the
requested data into the cache without blocking other operations. When they are
used a couple of instructions before the data are used, no memory stall will occur
because the data will be available in the cache.

When a triangle is rasterized, it is broken up into horizontal lines of pixels
called scanlines. The scanline setup is responsible for providing the input to the
pixel shader. This is the ideal phase to convert some parameters from float-
ing-point format to fixed-point integer format, since these are faster to interpolate
and it is quite slow to do conversions per pixel. For colors with integer compo-
nents, it is important to use saturated interpolation to avoid artifacts at the edges.
Run-time conditional compilation can be used to interpolate only those parame-
ters needed by the pixel shader. More specifically for DirectX shaders, the dcl

instructions determine what texture coordinates need to be interpolated.
The triangle setup stage is a lot more advanced. First of all, it is responsible

for determining where each scanline starts and ends (called scan-conversion). An
excellent reference for this is the “Perspective Texture Mapping” article by Chris
Hecker [6]. Calculating gradients for interpolants like the depth value and texture
coordinates is another important task of the triangle setup. A common pitfall is to
compute them per scanline. This is not necessary, since the slope of a triangle is
equal everywhere. Another problem is precision. Let’s take, for example, the hor-
izontal slope of the z-value: �z/�x. Most implementations compute �z at the lon-
gest scanline and divide that by its length. This 2D method brings many problems
with sub-pixel accuracy, and it also doesn’t work well with thin polygons. A much
more robust 3D solution is to use the plane equation:

Ax By Cz Dw� � � � 0

Now we want to know �z/�x, which is equal to �z/�x, since it is constant. This can
be computed by differentiating:

A x B y C z D w� � � �� � � � 0

Keeping y and w constant, we get:

406
x86 Shaders–ps_2_0 Shaders in Software

Section III — Software Shaders and Shader Programming Tips

�

�

z

x

A

C
� �

For the gradient in the y direction, we get –B/C. Starting from the plane equation,
we get all our other gradients in a similar way. We just need to substitute z with
the parameter for which we want to compute the gradients and recalculate the
plane equation with the cross product for this new parameter. A nice property is
that C is independent of the coordinate for which we calculate the gradients, so it
only has to be computed once for all gradients. This is because C is twice the area
of the triangle, which is of course constant. We can even compute –1/C at once to
multiply it with the different A and B values to avoid many divisions. D is never
needed, so only A and B have to be computed for every interpolant. With SSE,
this takes just a few clock cycles when computing four gradients in parallel.

This method of computing gradients is also an argument to only render trian-
gles. We could be tempted to render polygons with more than three vertices, but
this brings many problems. To compute the plane equation, we can use only three
vertices, so the other vertices would need to be on the plane to be able to use the
same gradient. This is easy to visualize for the z component. If not all vertices lie
in the same plane, the polygon is not flat, and so the z gradients can’t be constant.
To avoid precision artifacts and to keep things simple, it is advisable to only
rasterize triangles. With n-gons, we always need a loop, while with triangles, we
avoid the loop setup and the stalls caused by mispredicted jumps.

Mipmapping requires computing the compression of the texture with respect
to screen coordinates. In general, the relationship between screen coordinates
and homogeneous texture coordinates is given by:

u
u

x
x

u

y
y u

v
v

x
x

v

y
y v

'
' '

'

'
' '

'

� � �

� � �

�

�

�

�

�

�

�

�

0

0

. . .where we use an apostrophe to denote that these texture coordinates are
homogeneous and u0' and v0' are the coordinates at the origin of the screen (x = 0,
y = 0). So the texture compression in the affine x direction is the length of the
vector (�u/�x, �v/�x):

m
u

x

v

x
x �

�

�
�

�

	

 �

�

�
�

�

	

�

�

�

�

2 2

To get the affine texture coordinates u and v, we need to divide the homogeneous
coordinates by w:

m

u

w

x

v

w

x
x �

�

�
�

�

	

�

�

�
�
�
��

�

	

�

�

�
�

�

	

�

�

�
�
�
��

�

�

�

�

' '
2

�

	

2

x86 Shaders–ps_2_0 Shaders in Software
407

Section III — Software Shaders and Shader Programming Tips

Even though there are fast SSE instructions for computing the square root and
we already have 1/w for perspective correct texture mapping, it’s not that simple.
The gradients of the affine texture coordinates are not constants like the gradi-
ents of the homogeneous texture coordinates. So we have to try to find out how it
changes as a function of the screen coordinates. First we use the quotient rule for
derivatives:

�
�

�

�

�
�
�
�

�

	

�
�

�

�

�
�
�

�

�

�

�

�

�

�

�

u

x
w

w

x
u

w

v

x
w

w

x
v

w

'
'

'
'

2

2

2

�

�

	

� �
�

�
�

�

	

 � �

�

�
�

�

2

2

2
1

w

u

x
w

w

x
u

v

x
w

w

x
v

�

�

�

�

�

�

�

�

'
'

'
'
	

2

We now have a function where all gradients are constant and can be computed
with the plane equation method. We now investigate how this compression value
changes when we step from one pixel to the next in the hope that we can simplify
the formula. So let’s write u', v', and w as a function of x and y and substitute that
into the formula. To simplify notation, we remove the apostrophe for homoge-
neous coordinates:

u
u

x
x

u

y
y u

v
v

x
x

v

y
y v

w
w

x
x

w

y
y w

m

� � �

� � �

� � �

�

�

�

�

�

�

�

�

�

�

�

�

�

0

0

0

x
w

u

x

w

y
y w

w

x

u

y
y u� �

�

�
��

�

	

 � �

�

�
��

�

	

�

�
�
�

1
2 0 0

�

�

�

�

�

�

�

�

�

	

 � �

�

�
��

�

	

 � �

�

�
��

�

	

�

�
�

2

0 0
�

�

�

�

�

�

�

�

v

x

w

y
y w

w

x

v

y
y v�

�

	

2

Suddenly we lose the dependency in x under the square root. So although this for-
mula looks horrible, only the w in the front changes when we step along the
scanline. In other words, we only need to compute the square root for every
scanline; but there’s more. The u0, v0, and w0 are constants, and we can collect
them into other constants. If we give these new constants a logical name, we can
also make this long formula look a little nicer:

408
x86 Shaders–ps_2_0 Shaders in Software

Section III — Software Shaders and Shader Programming Tips

C
u

x

w

y

w

x

u

y

C
v

x

w

y

w

x

v

y

U
u

x
w

u

v

x

� �

� �

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
0

�
 �

�

�
�

�

�

�

w

x
u

V
v

x
w

w

x
v

m
w

C y U C y V

x

x u x v x

0

0 0

2

2 21

� �

� � � �

For the compression in the y direction, my, we have a similar formula but now with
constants Uy and Vy. The biggest compression factor determines which mipmap
level we have to use:

�
m m mx y� max ,

We could evaluate the maximum at every pixel, but this is not necessary. We can
approximate this by computing m only at the vertices and using interpolation in
between. This is also what is done by many hardware implementations, since the
difference is hardly noticeable. By multiplying m by w2 at the vertices and multi-
plying twice by 1/w at every pixel, this becomes simple linear interpolation. We
already need 1/w for perspective texture mapping, so this adds no extra cost.
Computing the maximum at the vertices saves us from needing to interpolate
both compression factors. The gradients for m can again be computed using the
method with the plane equation. The last thing that needs to be done per pixel is
taking the log2 of m because mipmap dimensions are progressively divided by
two. This can be implemented efficiently by either using the exponent of the float-
ing-point representation or converting to integer and using the bsr instruction to
find the index of the highest bit. It can be handy to index the mipmaps starting
from 0 for 216×216 texture size to 15 for 1×1 texture size. For non-square tex-
tures, the biggest dimension determines the index to avoid over-blurring.

One last trick that can be used in the triangle setup is the method used to
sort the vertices from top to bottom. Normally, sorting involves copying the ele-
ments to a temporary location and swapping values. For vertices with many com-
ponents, this can cost a considerable amount of time. Fortunately, this is not
necessary, since we can just sort their references. This trick can be used for any
sorting problem, but it is often forgotten.

Before triangles can be rasterized, they need to be clipped, projected, and
then scaled into the viewport. It is very important to do this in homogeneous
space to have z-values independent of the w coordinate, which is needed for per-
spective correction. We could use a clipping volume like the one used in DirectX,
but there is a more efficient choice. If we use [0, 1]×[0, 1]×[0, 1] as a clipping
volume, the distances from a vertex to the left, bottom, and front clipping planes
are equal to the x, y and z coordinate, respectively:

x86 Shaders–ps_2_0 Shaders in Software
409

Section III — Software Shaders and Shader Programming Tips

0 1
0 1
0 1

0
0
0

0 0
0 0

� �

� �

� �

� �

� �

� �

� � � �

� � � �

x

y

z

X W

Y W

Z W

X W X

X W Y

�

�

0 0� � � �Z W Y

In this notation, lowercase letters are screen coordinates, while capital letters are
clip space coordinates. As we can see, only three subtractions are needed. For the
comparisons, it is advisable to use the sign bit of the floating-point format instead
of using the compare instructions because this is faster and also works with SSE
so we can stay in MMX mode. This can be useful for interpolating color values
efficiently when an edge is clipped. To interpolate only those values needed by the
rasterizer, we can once more use run-time conditional compilation.

In this article we focused primarily on pixel shading instead of vertex T&L
because the latter can be performed efficiently by DirectX. However, if we want
to develop an API-independent renderer, soft wiring can also make a big differ-
ence in performance for vertex processing. Implementing a vertex shader com-
piler is similar to the pixel shader. There’s just one important difference, which
allows another big optimization. With pixel shaders, we have to work per-pixel,
but with vertex shaders, we can work per-component. For example, when trans-
forming a vertex in a straightforward manner, we need a lot of shuffle instructions
to do the dot products. All internal data movement is wasted time, so we’d like to
eliminate that. We can do this by noting that the x, y, z, and w coordinates can be
computed independently. So transforming all vertices separately or first trans-
forming all x components, then all y components, etc., gives no difference in the
operations being performed. However, when working per-component instead of
per-vertex, we do not need any shuffle instructions because four x coordinates
from different vertices in an SSE register are independent. So what we do is store
a structure-of-arrays for the components instead of storing an array-of-structures
for the vertices. The components are then processed in groups of four in a tight
loop. To implement this, it is useful to first write the SSE code using only the sin-
gle-scalar instructions and then replacing them all with packed-scalar instructions
to do exactly the same operation on four components at a time.

As mentioned before, manual scheduling of instructions is not possible. How-
ever, we could develop an automatic optimizer. First, a peephole optimizer can be
used and then a scheduler. Scheduling can considerably improve performance,
since a Pentium III and 4 cannot execute dependent instructions or instructions
that use the same execution unit in parallel. Unfortunately, optimal scheduling

410
x86 Shaders–ps_2_0 Shaders in Software

Section III — Software Shaders and Shader Programming Tips

cannot be done in polynomial time. There exist some heuristics, but they need to
know many parameters for each instruction. This includes the throughput, the
latency, and the execution units that it uses. Since there are so many instructions
and variants, this is hard to implement. The Pentium III and 4 are superscalar,
pipelined processors with out-of-order execution, which basically means that we
can’t predict when a certain instruction is executed. Instructions are also com-
posed of one or more micro-instructions, but this micro-code is a well-kept secret.
It is stored in a ROM that is model specific, making it almost impossible to have
accurate parameters for the heuristical scheduler.

A much easier approach is to treat the processor as a theoretical black box. A
block of code goes in, and we can only see the results. We don’t even care how it
works internally. Practically, this means that we just measure the execution time
of the code and see what happens if we change the instruction order. We use a
brute-force approach by doing many tests, and we keep the code that had the
smallest execution time. By constructing a graph of instruction dependencies,
every permutation of the instructions that preserves dependencies can be tested.
This can quickly become billions of possibilities, but with a good heuristic, a
near-optimal solution can be found in linear time. However, this method is not
that easy to implement in a renderer because an accurate performance measure-
ment is needed. A benchmark with only one small triangle could execute in less
than a millisecond, but this is not always consistent because of interrupts, task
switches, and other stalls. So the test has to be repeated long enough to have a
reliable average. We often also need more than one shader, so we can’t let the
user wait hours before we start rendering at around 20 percent higher perfor-
mance. One solution is to run the scheduler in the background in another thread.
By temporarily setting the thread priority higher, we can try to avoid the task
switches. The longer the user runs the application, the more the shaders get opti-
mized. This also means that when the user closes the application, the optimal
scheduling is lost. It is also useless to use 20 percent of processor time for sched-
uling if we only expect, at most, a 20 percent performance increase from it.
Another solution is to compile them in advance and put them in a library, but then
we lose flexibility. The system that has been used for scheduling can also differ
significantly from the user’s system, which influences the optimal instruction
order. The last solution is to give the user the option to run a long benchmark to
schedule the shaders for the current settings and keeping the results.

The brute-force scheduling method isn’t very practical for graphics shaders,
but there are still other options. One method that certainly deserves attention is
peephole scheduling. Looking at only a few instructions at a time, we can reduce
dependencies between them and empirically schedule the execution unit usage.
This method is very fast, since it doesn’t need to measure the performance of the
altered code, and it is scalable. On the other hand, changes that appear to be bene-
ficial at first can work adversely in practice because of the badly predictable
behavior of processors with out-of-order execution. So in the end, we just have to
accept that we can’t do a perfect job here.

x86 Shaders–ps_2_0 Shaders in Software
411

Section III — Software Shaders and Shader Programming Tips

Conclusion

We conclude this article by summarizing the results. Software rendering shows
new potential thanks to the speed of modern SIMD processors, the optimization
via soft wiring, and the ultimate programmability of x86 shaders. For applications
where reliability and a wide market are more important than the race for perfor-
mance, it is an interesting alternative. It’s also very discussable that games need a
great deal of eye candy and more frames per second than can be perceived to have
good gameplay. Let’s not forget web multimedia, where we can’t assume that
everyone has hardware acceleration that supports the wanted features but where
soft-wiring can get the best performance out of any type of CPU. It is also useful
for scripting engines, JIT-compilers, and optimization in general. Run-time
intrinsics are very easy to use, so it takes little time to convert existing assembly
code to intrinsics. Application areas like real-time sound and video processing also
benefit a lot from it, as it is less common to have hardware support for these
tasks. In these cases, it also might be worth it to spend a few minutes trying to
get a near-optimal instruction order. So let’s break free from our dependability on
hardware support and do things that have never been tried before!

References

[1] Capens, Nicolas, SoftWire Run-Time Assembler Library, http://soft-
wire.sourceforge.net.

[2] id Software, Quake III, http://www.idsoftware.com.

[3] Panovici, The C++ Compiler Compiler, http://cppcc.sourceforge.net.

[4] Poletto, Massimiliano and Vivek Sarkar, “Linear-scan register allocation,”
ACM Transactions on Programming Languages and Systems, Volume 21, Issue 5
(Sept. 1999), pp. 895-913, http://www-124.ibm.com/developerworks/
oss/jikesrvm/info/pubs.shtml#toplas99.

[5] Capens, Nicolas, SoftWire Shader Emulator, http://sw-shader.sourceforge.net.

[6] Hecker, Chris, “Perspective Texture Mapping,” April/May 1995,
http://www.d6.com/users/checker/misctech.htm.

412
x86 Shaders–ps_2_0 Shaders in Software

Section III — Software Shaders and Shader Programming Tips

SoftD3D: A Software-only
Implementation of Microsoft’s

Direct3D API

Oliver Weichhold

In this article I describe the process of making SoftD3D and some of the chal-
lenges that had to be overcome along the long road to completion.

Some time ago, our company decided to shift part of its focus toward the
upcoming generation of embedded devices like the Compaq IPAQ. There was a
variety of products in the pipeline — among them an application that required
real-time 3D graphics. After a great deal of internal discussion and brainstorming,
the team opted against the acquisition or in-house development of a proprietary
3D engine. Instead, I was assigned to develop a piece of software that would allow
everyone involved to continue to work on the new platform with a well-known
technology. That technology was Direct3D 8.

Fortunately, at the time I was carrying out the initial planning stage for the
project, a subset of the DirectX 8 API was already available for our target platform
(Compaq IPAQ). Unfortunately, due to the lack of built-in 3D hardware, Direct3D
was present but not operational on this platform. I recalled that the IDirect3D8
interface featured a member called RegisterSoftwareDevice, which according to
the documentation could be used to plug in arbitrary (software) rasterizers. I
reckoned that I just had to write a software rasterizer instead of reinventing the
entire API.

Despite the fact that the RegisterSoftwareDevice member was not sup-
ported on the Win32 platform, I started my research and consumed every piece of
publicly available documentation and software related to the task, ranging from
the Windows DDK (device development kit) to actual graphics device driver
source code. After a few days, I came to the conclusion that it wasn’t meant to be;
RegisterSoftwareDevice was either not supported at all or reserved for internal
use by Microsoft. I had to do it the hard way.

At first I felt overwhelmed by the challenge of writing a compatible imple-
mentation of a technology that Microsoft had developed using significant man-
power. True, I had a good deal of experience with all major Direct3D releases, but
that experience was based on the standpoint of an application developer, not that
of an API implementer or even a device driver developer.

After concluding my initial research about the inner workings of the Direct-
3D pipeline, during which the diagrams by Rich Thomson proved to be extremely

413

useful, I began to iron out the object hierarchy. Since DirectX is based on
Microsoft’s Component Object Model (COM) technology, decisions had to be
made in regard to how the Direct3D COM interfaces would be exposed. Under
normal circumstances, this process should be pretty straightforward, but when
you are dealing with a real-time environment where every clock cycle counts,
things can easily get a bit more complicated.

The goal was to produce a Dynamic Link Library (DLL) that would be binary
compatible to Microsoft’s own D3D8.DLL that implements the core of Direct3D
version 8. That task was easily accomplished because D3D8.DLL exports only a
single function relevant to application developers. The name of this function is
Direct3DCreate8. The implementation of the Direct3DCreate8 function exported
by SoftD3D.dll is shown below:

Direct3D8 * stdcall Direct3DCreate8(UINT SDKVersion)

{

CComObject<Direct3D8> *p;

CComObject<Direct3D8>::CreateInstance(&p);

if(p)

p->AddRef();

return p;

}

The next task involved creating a set of skeleton classes from the object model
whose sole purpose for now was to expose the associated COM interfaces to get
things running. The actual implementation of most interface members was left
blank at that time. The skeleton for the class implementing the IDirect3DDevice8
interface is shown below:

class ATL NO VTABLE Device8 :

public CComObjectRootEx<CComSingleThreadModel>,

public IDirect3DDevice8

{

BEGIN COM MAP(Device8)

COM INTERFACE ENTRY IID(IID IDirect3DDevice8, IDirect3DDevice8)

END COM MAP()

protected:

// IDirect3DDevice8

STDMETHOD(TestCooperativeLevel)();

STDMETHOD (UINT, GetAvailableTextureMem)();

...

};

NOTE Some readers might notice that I’m using the ActiveX Template
Library (ATL) and are wondering why I did this, considering the real-time
nature of the project. The answer is that it is comfortable and has virtually no
performance impact.

414
SoftD3D: A Software-only Implementation of Microsoft’s Direct3D API

Section III — Software Shaders and Shader Programming Tips

Then it was time to implement the “adapters” that would be responsible for dis-
playing the rendered images on screen. This task was especially tricky since I
was planning on doing most of the work on Win32 to speed up the development
process. As always, if you develop something on a host platform that is primarily
targeted to another platform that is far inferior performance-wise, you have to be
very careful not to make design decisions that don’t work out on the target plat-
form later on.

The plan was to employ DirectDraw 7 for frame buffer management on Win-
dows. To make sure that I wouldn’t hit a dead end when porting the project to the
target hardware, I began evaluating and benchmarking various libraries dealing
with frame buffer and off-screen surface management on PocketPCs. Luckily, it
turned out that the approach taken by most of those libraries was close to optimal
performance and even better — conceptually compatible with DirectDraw.

Having solved that problem, I wrote two adapters: one for Windows using
DirectDraw and another for the Compaq IPAQ using the GapiDraw library.

class ATL NO VTABLE DDraw7Adapter :

public CComObjectRootEx<CComSingleThreadModel>,

public IAdapter

{

BEGIN COM MAP(DDraw7Adapter)

COM INTERFACE ENTRY IID(uuidof(IAdapter), IAdapter)

END COM MAP()

// IAdapter

STDMETHOD (UINT, GetModeCount)();

STDMETHOD(EnumModes)(UINT Mode, D3DDISPLAYMODE* pMode);

STDMETHOD(BeginScene)();

STDMETHOD(EndScene)();

STDMETHOD(Flip)();

...

};

Before even thinking about working on the actual rendering pipeline, another
problem had to be solved: floating-point calculations. Unlike almost every modern
personal computer, embedded devices such as PocketPCs are usually not
equipped with special hardware that handles floating-point calculations. The IPAQ
is no exception. Floating-point calculations are nonetheless possible on these
devices, but they are slow — very slow. Even the fastest floating-point libraries
for StrongARM processors (which power the IPAQ) are between ten and 100
times slower than integer calculations. This fact poses a huge problem to software
that primarily deals with floating-point calculations. However, there is a solution
called fixed-point math. For the reader unfamiliar with this concept, here is a
quick rundown:

Fixed-point math is a simple way to speed up floating-point calculations by
using integers to represent fractional numbers. Fixed-point formats are usually
expressed using the xx.yy form, where xx describes the number of bits before the

SoftD3D: A Software-only Implementation of Microsoft’s Direct3D API
415

Section III — Software Shaders and Shader Programming Tips

decimal point and yy the number of bits after the decimal point. In the case of
16.16 fixed-point, 65535.99998 is the largest possible number.

Because the actual calculations are performed using integer math, fixed-point
runs at an acceptable speed, even on the low-end CPUs used in embedded
devices. But there’s a hook; by using fixed-point calculations, you sacrifice preci-
sion and range — things that easily render the performance gain irrelevant if not
used correctly.

Regardless of the potential problems, I decided to add support for fixed-point
math right from the start. Thanks to C++’s operator overloading, it was rela-
tively easy to produce a fixed-point class that, if used in conjunction with custom
type definitions, handles all floating-point calculation by changing a simple prepro-
cessor symbol.

The next step involved writing all the resource management and setup code
necessary to create and initialize the device, frame buffer, textures, depth buffer,
and vertex and index buffers allocated by a client application. At that point, I was
already using DirectX SDK samples for testing and everything worked quite well
— at least with the SDK samples, as I soon found out.

Let’s now move on to the implementation of the rendering pipeline.

Vertex Stream Splitting

The first thing that happens when any of the DrawPrimitive member functions of
the IDirect3DDevice8 are called is the stream setup. This stage performs the
separation of incoming vertex data for further processing. The term “incoming”
refers to vertex streams specified using a previous call to SetStreamSource or the
vertex data passed to any of the DrawPrimitiveUP functions.

class VertexStreamsInfo

{

public:

VertexStreamsInfo();

virtual ~VertexStreamsInfo();

// Attributes

VertexStreamInfo m Streams[VSTREAM MAX];

DWORD m dwTexCoordCount;

DWORD m dwCombinedFVF;

DWORD m dwMaskAllocated; // bitmask indicating streams that were allocated in the

// vertex pipeline and should be freed after processing

// Implementation

HRESULT Init(StreamInfo *pSI, DWORD dwVertexShader);

HRESULT Init(BYTE *pData, DWORD dwStride, DWORD dwVertexShader);

HRESULT Init(StreamInfo *pSI, DWORD *pDeclaration);

};

The Init member is overloaded three times to facilitate the following cases:
� Fixed-function pipeline

416
SoftD3D: A Software-only Implementation of Microsoft’s Direct3D API

Section III — Software Shaders and Shader Programming Tips

� Fixed-function pipeline using DrawPrimitiveUP

� Programmable pipeline

After the Init function returns, the incoming vertex stream(s) have been sepa-
rated into 1-n stream information blocks stored in m_Streams, which will be
passed further down the pipeline.

For example, an FVF (flexible vertex format) of D3DFVF_XYZ |
D3DFVF_TEX2 is split into three distinct streams — one for the vertex position
and one for each of the two texture coordinates.

Depending on whether we are dealing with transformed or untransformed
vertices, the following section can be skipped.

Vertex Processing

During this stage, the incoming vertex streams are processed. This is done by
concatenating one or more discrete implementations of the internal IVertex-
StreamProcessor interface.

interface IVertexStreamProcessor

{

STDMETHOD(ProcessStreams)(VertexStreamsInfo *pVSI, DWORD dwStartVertex, DWORD

dwNumVertices) PURE;

STDMETHOD (void, SetNext)(IVertexStreamProcessor *pNext) PURE;

};

Each vertex processor operates on all vertices between StartVertex and
NumVertices using single or multiple input streams, producing 0-n output
streams. The resulting set of vertex streams is then passed to the next processor
in the chain (if present).

There are various reasons behind the decision to handle vertex data in a
streaming manner, as opposed to processing them as needed:
� Best performance with indexed primitives
� The use of SIMD instructions (single instruction multiple data) like MMX,

SSE, 3DNOW. These instructions are best suited for larger batches of data
and may even cause heavy speed penalties when the processor has to switch
often between modes (FPU <-> MMX).

� The memory layout of vertex buffers is optimized for processor cache friend-
liness and SIMD instructions

The following vertex processors are currently implemented:
� VSP_XFormWorldViewProjection — Applies world/view/projection

transformation and produces XYZW output stream from incoming XYZ
stream

� VSP_XFormWorldViewProjection_X86_SSE — Applies world/view/projec-
tion transformation and produces XYZW output stream from incoming XYZ
stream; SSE optimized

SoftD3D: A Software-only Implementation of Microsoft’s Direct3D API
417

Section III — Software Shaders and Shader Programming Tips

� VSP_XFormWorldView — Applies world/view transformation and produces
XYZW output stream from incoming XYZ stream

� VSP_VertexFog — Produces FOG output stream from incoming XYZW
stream

� VSP_VertexFogRange — Produces FOG output stream from incoming XYZW
stream — range-based fog

� VSP_TexGen_CameraSpace_Normal — Texture coordinate generation
� VSP_TexGen_CameraSpace_Position — Texture coordinate generation
� VSP_TexGen_CameraSpace_ReflectionVector — Texture coordinate

generation
� VSP_TC_Transform — Texture coordinate transformation
� VSP_Lighting — Direct3D fixed-function pipeline conformant vertex light-

ing; produces DIFFUSE and SPECULAR output streams
� VSP_Lighting_X86_SSE — Direct3D fixed-function pipeline conformant ver-

tex lighting — produces DIFFUSE and SPECULAR output streams; SSE
optimized

The number and type of vertex processors that get concatenated to a processing
chain solely depends on the current renderstate settings.

Rasterizer/Interpolator Setup

This stage consists of a large switch tree that picks the rasterizer that is best
suited to handle the current renderstate settings. SoftD3D implements more than
40 distinct rasterizers and interpolators, which only differ by the number and
quality of interpolated values. This might sound like a lot of work (and it is), but
fortunately this high level of specialization can be accomplished by excessive use
of C++ templates to combine simple fragments into more powerful ones. More
on this later.

At this point, we enter the main triangle loop. This loop iterates over all tri-
angles that are affected by the current DrawPrimitive call.

Backface Culling

Depending on the current value of the D3DRS_CULLMODE renderstate, triangles get
backface culled. There are a number of possible approaches to backface culling.
SoftD3D performs backface culling in object space because of the advantage of
the possible rejection of triangles very early in the pipeline.

To do this, we first compute the viewer position in object space using the
following pseudocode:

ViewerPosition.x = -Transform[D3DTS VIEW].m[0][0] * Transform[D3DTS VIEW].m[3][0] -

Transform[D3DTS VIEW].m[0][1] * Transform[D3DTS VIEW].m[3][1] -

Transform[D3DTS VIEW].m[0][2] * Transform[D3DTS VIEW].m[3][2];

418
SoftD3D: A Software-only Implementation of Microsoft’s Direct3D API

Section III — Software Shaders and Shader Programming Tips

ViewerPosition.y = -Transform[D3DTS VIEW].m[1][0] * Transform[D3DTS VIEW].m[3][0] -

Transform[D3DTS VIEW].m[1][1] * Transform[D3DTS VIEW].m[3][1] -

Transform[D3DTS VIEW].m[1][2] * Transform[D3DTS VIEW].m[3][2];

ViewerPosition.z = -Transform[D3DTS VIEW].m[2][0] * Transform[D3DTS VIEW].m[3][0] -

Transform[D3DTS VIEW].m[2][1] * Transform[D3DTS VIEW].m[3][1] -

Transform[D3DTS VIEW].m[2][2] * Transform[D3DTS VIEW].m[3][2];

After that, we calculate a vector from the object space viewer position to the tri-
angle and take the dot product of this vector and the normal vector of the triangle.
The resulting scalar is treated differently depending on whether D3DRS_CULLMODE

= D3DCULL_CCW or D3DRS_CULLMODE = D3DCULL_CW.

Because this process is repeated for every triangle, optimized implementa-
tions for different processor architectures exist.

Vertex Assembly

At this point, almost all the data required by the rasterizer is available. The vertex
processing stage has transformed the vertices using the world/view/projection
matrices, lit the vertices, and applied texture transformations and fog. But the
generated data has been stored in a stream layout, which is not exactly optimal for
the rasterizer.

To avoid time-consuming pointer arithmetic at the rasterizer stage, the data
from all streams is now reconciled into a single vertex structure. This is achieved
by dereferencing the streams using pointer arithmetic. To speed up this process,
optimized versions of the code for each Direct3D primitive type have been
implemented.

class TLVertex

{

public:

Vector4 Position;

Vector2D<int> ScreenPosition; // Computed AFTER clipping

TLColor Diffuse; // normalized for interpolation

TLColor Specular; // normalized for interpolation

float Fog;

};

class TLVertexTex : public TLVertex

{

public:

TexCoord tc[MAX TEX COORD];

};

After all three vertices of the current triangle have been initialized, they are
passed down to the next stage.

SoftD3D: A Software-only Implementation of Microsoft’s Direct3D API
419

Section III — Software Shaders and Shader Programming Tips

Clipping

During clipping, we test an individual triangle against the canonical view frustum
in homogeneous clip space (–w <= x <= w, –w <= y <= w, 0 <= z <= w).
This is controlled by D3DRS_CLIPPING. The actual implementation is described in
various documents and beyond the scope of this article.

One aspect about the implementation worth mentioning is the use of vertex
pointer arrays. To avoid excessive copying of vertex data and optimize data cache
coherency, the clipping function gets passed an array of pointers to vertices (com-
puted in the last section). Whenever a vertex passes the clipping test, only the
pointer to the vertex is copied to the input array for the next clipping stage.

Once all vertices of the current primitive have passed the clipping stage, the
function determines if there are sufficient vertices to render the primitive. If this
test fails, the primitive is skipped.

Homogeneous Divide and Viewport Mapping

We are now entering the final step before the rasterizer is going to render the
primitive.

With view frustum clipping completed, each group of vertex coordinates is
projected by computing x/w, y/w, and z/w. The resulting values are multiplied and
offset by the parameters that control the size of the viewport into which the prim-
itives are to be drawn (D3DVIEWPORT8 structure). The resulting screen coordi-
nates are then converted to integer values for further use by the rasterizer.

This process may sound trivial, but surprisingly, it turned out to be a major
performance bottleneck during my tests. Why? Look at this code snippet:

v.ScreenPosition.x = v.Position.x;

v.ScreenPosition.y = v.Position.y;

Looks simple, doesn’t it? The problem with this code is the conversion of float-
ing-point numbers to integer numbers. The Visual C++ compiler for Win32 per-
forms this conversion using a function call that is, of course, rather slow. To speed
this up, I chose to manually perform the conversion using an inline function:

forceinline int FastFloat2Int(float fFloat)

{

static DWORD nTemp;

asm

{

fld fFloat

fistp nTemp

mov eax, nTemp

}

}

Before you can use this function, you have to configure the rounding mode of the
floating-point unit. This code does the trick:

420
SoftD3D: A Software-only Implementation of Microsoft’s Direct3D API

Section III — Software Shaders and Shader Programming Tips

forceinline void FastFloat2Int SetFloor()

{

asm

{

fnstcw wFastFloatTemp

mov ax, wFastFloatTemp

and ax, ~(3 << 10)

or ax, 1 << 10 // set RC DOWN

mov wFastFloatTemp, ax

fldcw wFastFloatTemp

}

}

Initializing the FPU rounding mode once and repetitively calling FastFloat2Int

turned out to be more than ten times faster than the compiler-generated code.
After the integer conversion of screen coordinates has been completed, one

last check is performed on the screen coordinates against the viewport dimen-
sions. This is because it is perfectly legal to pass in pretransformed vertices to
DrawPrimitive, effectively bypassing the stages covered in the “Vertex Pro-
cessing” and “Vertex Assembly” sections. Unfortunately, some applications (can
you say “Unreal Engine”) provide coordinates that lie slightly out of the viewport
area, causing visual artifacts. 3D hardware accelerators simply alleviate this prob-
lem through guard band clipping.

Triangle Setup

NOTE Although Direct3D supports other primitive types besides triangles,
for simplicity, we focus solely on triangles for the remainder of the article.

In order to render a triangle to the render target (usually the screen), a triangle
has to be broken up into scanlines, which are then rendered one at a time. This
process is called scan conversion. There is a variety of different solutions for per-
forming scanline conversion and interpolation. SoftD3D uses a derivate of Chris
Hecker’s excellent solution described in [1].

During triangle setup, a number of so-called “gradients” is calculated. These
gradients are used to interpolate values from the triangle’s vertices across the
visible surface of the triangle. The type and number of the computed gradients is
affected by several renderstates, including D3DRS_ZENABLE, D3DRS_ALPHABLEND-
ENABLE, D3DRS_SHADEMODE, D3DRS_LIGHTING, D3DRS_SPECULARENABLE, D3DRS_FOG-
ENABLE, and all texture mapping-related renderstates.

For example, let’s assume that we want to render a single triangle that is lit
by a light source. Let’s also assume that D3DRS_LIGHTING is true, D3DRS_SPEC-
ULARENABLE is false, and D3DRS_ZENABLE is false. A possible vertex structure would
consist of just the vertex position and a normal vector. During vertex lighting
(performed in the “Vertex Processing” section), a new component is computed
for each vertex: the diffuse color. In this case, the rasterizer needs to interpolate
xs, ys, z, and diffuse along the edges of the triangle and across each scanline.

SoftD3D: A Software-only Implementation of Microsoft’s Direct3D API
421

Section III — Software Shaders and Shader Programming Tips

SoftD3D implements interpolators for:
� x and y coordinates in screen space
� w for depth buffering
� Diffuse color (not perspective correct)
� Specular color (not perspective correct)
� Fog color (not perspective correct)
� One to eight texture coordinates (perspective correct)

Obviously, there’s quite a large number of possible combinations. Computing all
gradients regardless of the renderstate settings is not an option because doing so
wastes a huge amount of processor time. What we need is a set of interpolators
that only work on values that are really going to be used for rendering. One could
write customized code for each possible case, but not only would this be a cum-
bersome process but also very prone to human errors. Once again, C++ tem-
plates come to our rescue.

If we could split up the problem into smaller parts and let the compiler com-
bine those fragments into a working unit without suffering a performance impact,
we’d be set. This is exactly how SoftD3D implements its set of more than 40 dis-
tinct rasterizers. Take a look at the following class declaration:

template<class TFramebuffer, class TVertex, class TEdge, class TGradient, class TDerived>

class Rasterizer : public IRasterizer

{

...

};

The Rasterizer class acts as a template-based abstract base class for all
rasterizers, importing its entire functionality from the template arguments speci-
fied by derived classes.

The class declaration below shows a discrete rasterizer that is responsible for
rendering Gouraud-shaded triangles not using a depth buffer. The RTriGouraud
rasterizer really consists of just the declaration. No additional code or data had to
be added.

class RTriGouraud : public Rasterizer<TFramebuffer, TLVertex, RasterEdgeGouraud

Diffuse, RasterGradientsGouraud Diffuse<RasterGradientsdXY>, RTriGouraud>

{

};

Now take a look at this one:

template<class TFramebuffer>

class RTriGouraudZ : public Rasterizer<TFramebuffer, TLVertex,

RasterEdgeZ<RasterEdgeGouraud Diffuse>,

RasterGradientsGouraud Diffuse<RasterGradientsZ>, RTriGouraudZ>

{

};

As you might have guessed, this rasterizer also renders Gouraud-shaded trian-
gles, but this version includes support for interpolating depth values (1/w).

422
SoftD3D: A Software-only Implementation of Microsoft’s Direct3D API

Section III — Software Shaders and Shader Programming Tips

Let’s summarize this stage again. During triangle setup, we compute a set of
constants called gradients that allow us to interpolate arbitrary values across the
surface of the triangle for further processing.

Scanline Rendering

When the rendering process gets down to the scanline level, things start getting
interesting — and complicated. The scanline level is the place where the most
time is spent during rendering, and performance can be gained but more often is
lost. This is the place where every processor cycle matters. Speed is the name of
the game.

There are three main techniques for implementing the scanline loop:

A single complex loop Multiple simple loops Dynamic compilation

Pixel p;

for(i = Left;i<=Right;i++)
{

if(Feature1)
DoSomething(&p);

if(Feature2)
DoSomethingElse(&p);

DisplayPixel(p);
}

PixelArray pa[Width];

if(Feature1)
{

for(i = Left;i<=Right;i++)
DoSomething(pa[i]);

}

if(Feature2)
{

for(i = Left;i<=Right;i++)
DoSomethingElse(pa[i]);

}

This advanced technique works
by compiling small assembly
fragments into complex
subroutines at run time.

The previous article by my
colleague Nicolas Capens is
dedicated to this topic.

At present, SoftD3D uses the multiple simple loops technique. The disadvantages
of this approach:
� Multiple loops instead of a single one, thus more branch instructions
� An increased number of memory accesses

The advantages:
� Elimination of many branch instructions from the inner loop, which are very

costly on processors with long pipelines like the Intel Pentium 4
� Possibility to write (SIMD) optimized code for every stage of the pipeline
� Very hot data caches, most likely L1. (OK, this is not really an advantage, but

it at least softens up the performance impact caused by the increased number
of memory accesses.)

When the scanline loop is entered, all color values have been already converted to
a 32-bit RGBA format that will be used until the final output stage is reached.

Texture Blending Cascade

Very early on in the pipeline (during the step described in the “Rasterizer/
Interpolator Setup” section) checks are made that determine whether the

SoftD3D: A Software-only Implementation of Microsoft’s Direct3D API
423

Section III — Software Shaders and Shader Programming Tips

rasterizer will have to deal with textures or fog. If any of these conditions is true,
then a suitable texture cascade is assembled for later use.

The heart of the system is an interface called ITSSProcessor.

interface ITSSProcessor

{

STDMETHOD (void, SetNext)(ITSSProcessor *pNext) PURE;

STDMETHOD (ITSSProcessor *, GetNext)() PURE;

STDMETHOD (BOOL, IsStatic)() PURE;

virtual void fastcall Process(Device8 *pD3DD, int Width, BOOL bUsePMask) PURE;

virtual void fastcall ProcessBounds(Device8 *pD3DD, int Width, BOOL bUsePMask) PURE;

};

Classes that implement this interface are called TSSProcessors and act as a
hybrid between the interpolator and processor that handles an entire scanline.

Similar to the vertex processing chain explained in the “Vertex Processing”
section, TSSProcessors are concatenated to a chain that, once it is done process-
ing, has completed the entire Direct3D texture cascade plus fog blending.

The process of assembling the texture cascade represented one of the big-
gest challenges because it had to meet the following requirements:
� Very fast
� Perform texture usage tracking — detect and eliminate combinations of tex-

ture stage states and texture settings that will effectively result in no texture
output, thus eliminating the very costly texel lookup phase

� Perform data flow tracking — detect and eliminate cases where data is trans-
ported and/or processed in earlier texture stages only to be discarded later in
the cascade

� Produce accurate results

Because of the highly speed-sensitive nature of every piece of code executed in
the context of a scanline, a large number of specialized TSSProcessors exist.
TSSProcessors can be categorized into the following groups:
� Texel fetchers: Fill a color channel with color and alpha data from a texture

with or without bilinear filtering
� Color operators: Carry out operations defined by the Direct3D D3DTOP

enumeration
� Fog blenders

Texel fetchers represent the most heavily optimized code in SoftD3D. Specialized
implementations for virtually all combinations of processor architectures and tex-
ture formats exist.

Color operators have been heavily (MMX) optimized as well, although not to
the same extent as texel fetchers.

424
SoftD3D: A Software-only Implementation of Microsoft’s Direct3D API

Section III — Software Shaders and Shader Programming Tips

Alpha Testing

If D3DRS_ALPHATESTENABLE is true, then the alpha testing stage is fed with either
the output of the final TSSProcessor in the texture blending cascade or the output
of the scanline color interpolator.

The actual comparison is performed by one implementation of the
IAlphaTester interface:

interface IAlphaTester

{

virtual void SetRef(DWORD dwAlphaRef) PURE;

virtual void Test(ScanLineContext *pSLC, int Width) PURE;

};

SoftD3D features IAlphaTester implementations for each member of the
D3DRS_ALPHAFUNC enumeration.

Once a call to the Test() method is complete, a bit in the pixel mask con-
tained in the ScanLineContext object is set for each pixel that didn’t pass the
alpha test, and the number of pixels that didn’t pass the test is returned.

Z-Testing

If D3DRS_ZENABLE is true, then the Z-testing stage is fed with output of the 1/w
interpolator.

interface IZTester

{

virtual void SetBuffer(IDirect3DSurface8 *pSurface) PURE;

virtual void SetStart(int x, int y) PURE;

virtual void SkipX() PURE;

virtual int Test(ScanLineContext *pSLC, int Width, BOOL bUsePMask, BOOL bUpdate) PURE;

};

The actual comparison is performed by one implementation of the IZTester inter-
face, which works exactly like the aforementioned IAlphaTester interface.

Pixel Mask Check

Alpha testing and Z-testing is always performed as early as possible in the pipe-
line. According to the Direct3D specification, alpha testing is always performed
before Z-testing.

Either testing method produces both a bitfield of masked (skipped) pixels and
a pixel skip counter. If the value of the counter equals the width of the current
scanline, this case is treated as an early out condition, and the entire scanline is
skipped.

If no early out condition is met, all of the following operations must obey the
state of the pixel mask produced by either or both testing stages.

SoftD3D: A Software-only Implementation of Microsoft’s Direct3D API
425

Section III — Software Shaders and Shader Programming Tips

Alpha Blending

If D3DRS_ALPHABLENDENABLE is true, alpha blending is performed on all non-masked
pixels produced by the previous stages.

This is another area of the pipeline that posed a serious challenge. The first
problem that I encountered had something to do with memory accesses. To
explain the problem, we recall how color blending actually works:

If an application enables texture blending, Direct3D must then combine the
color value of the processed polygon pixel with the pixel already stored in the
frame buffer. Direct3D uses the following formula to determine the final color for
each pixel in the primitive’s image [2].

FinalColor TexelColor SourceBlendFactor PixelColor� � � � DestBlendFactor

Right, “Direct3D must then combine the color value of the processed polygon
pixel with the pixel already stored in the frame buffer.” The end of the quote is
the important part.

We must read from the frame buffer! So what’s the problem, you might ask.
The problem is the frame buffer itself. When you allocate a frame buffer intended
for displaying real-time graphics, you preferably allocate video memory on the
graphics card. This way, you get the fastest performance if and only if you restrict
yourself to writing to that chunk of memory because when a frame has been ren-
dered and must be presented to the user, the video driver only has to change a
memory address on the card in the best case or perform a fast video memory to
video memory transfer in the worst case. That’s great, but unfortunately, this is
not the case with alpha blending because, as mentioned above, we have to read
the frame buffer; reading from video memory is very slow because that memory
area is not cached by the host CPU.

Initially I thought the performance advantage of a video memory frame buffer
would outweigh the slow memory access during blending operations. This
assumption indeed applies to simple test applications. But with real-world applica-
tions, the picture shifted into the opposite direction, which in the end forced me
to abandon video memory frame buffers, bite the bullet, and suffer from system
memory to video memory transfers for every frame.

Another problem was the huge number of possible blending operations
resulting from:
� The number of defined blend factors independently set for both source and

destination (15)
� The number of different frame buffer formats (2)

My solution was to write small code fragments that handle each of the aforemen-
tioned cases and glue those fragments together using macros: DECLARE_ALPHA-
BLENDER(ONE, ZERO);

The device object tracks the various alpha blending-related render states at
all times and provides a suitable alpha blending handler to the rasterizer on
demand, which is cached as long as the affected render states remain unchanged.

426
SoftD3D: A Software-only Implementation of Microsoft’s Direct3D API

Section III — Software Shaders and Shader Programming Tips

Output to the Render Target

Finally, we have reached the last stage of the rendering pipeline.
As I’ve mentioned before, the entire pixel pipeline operates on 32-bit RGBA

packed color values organized into streams. The result of all the previous render-
ing stages is a single output stream that represents an entire scanline.

The final task is to write this stream to the correct location within the render
target surface, optionally performing a conversion of the RGBA32 value to the
pixel format of the target surface.

The color conversion turned out to be another major bottleneck, but at least
on the x86 platform the performance gained from employing MMX and SSE
instructions for the color conversion was tremendous.

This concludes our trip down the graphics pipeline of SoftD3D.

Related Problems

Clearing the Depth Buffer

During one of my profiling sessions, I noticed a spike in VTune’s function graph. It
turned out to be the Clear() member of the ZBufferSurface32 class. Ironically, I
only noticed how much time was actually spent in that function because of a bug
in my test client that yielded no polygon output. Therefore, almost 99 percent of
the processor time was spent clearing the depth buffer and blitting the off-screen
render target surface into the video memory.

Today I know that clearing the Z buffer can be avoided with software
rasterizers, but back then I spent a good amount of time optimizing the Clear()

function. The result outperforms the initial rep stosd solution by 300 to 400 per-
cent on an AMD Athlon CPU.

The secret behind this huge performance increase is the use of the new
movntq instruction, which writes directly to a location in memory, bypassing the
cache hierarchy.

Real-world Applications

When the feature set of SoftD3D grew beyond the scope of DirectX SDK sam-
ples, we began to test the library with real-world applications. This proved to be a
very good decision. The first real-world test was done using Unreal Tournament.
Of course, the game crashed.

A debugging session quickly unveiled several problems with SoftD3D’s
resource management. As those problems were ironed out, the game was still
crashing. But this time, it was not because of a bug in SoftD3D but simply a result
of the game not honoring some of the bits in the D3DCAPS8 structure — a problem
more or less repeated by almost any application we tried for testing.

One application would simply refuse to initialize if certain caps bits were not
available, although the application wouldn’t even make use of those features, and
another one insisted on creating textures using unsupported formats. This forced

SoftD3D: A Software-only Implementation of Microsoft’s Direct3D API
427

Section III — Software Shaders and Shader Programming Tips

me to add some features that were initially excluded from SoftD3D’s feature set
and write several workarounds to overcome problems caused by applications
making tricky assumptions about the availability of features and the internal for-
mat of some resources.

Yes, it was a lot of work, but the result was one giant leap toward a mature
product.

The Future

The outlook of the future of SoftD3D begins with a quick glance back to the days
when I was working on the pixel pipeline of the library.

I was just working on an SSE-optimized version of a texture filter object
when it struck me: Wouldn’t it be cool if we could generate this assembly code at
run time instead of writing dozens of specialized routines? Coincidently, I was
working on another Direct3D-related project at the same time, and nVidia’s
NVLink tool [3] was used for this project to generate D3D vertex shaders at run
time.

NVLink works by taking a number of small pieces of vertex shader code
called fragments and “sewing” them together at run time. The advantage is that
one no longer has to write specialized shaders for each rendering state. DirectX 9
offers a very similar functionality through the ID3DXFragmentLinker interface
[2]. Take a look at these vertex shader fragments:

#beginfragment f_load_r_diffusecolor_incoming_diffuse

mov r_diffusecolor, v2

#endfragment

#beginfragment f_write_diffuse_result

mov oD0, r_diffusecolor

#endfragment

The most obvious departure from ordinary vertex shader code is that hardware
registers have been replaced by symbolic names. These symbols act as virtual
registers and define an “interface” between fragments. For example, the virtual
register r_diffusecolor is referenced by both the f_load_r_diffusecolor_

incoming_diffuse and the f_write_diffuse_result fragments. The assembly
code generated by NVLink for a shader program using both fragments would look
like this:

mov r0, v2

mov oD0, r0

Because of NVLink’s optimizing capabilities, the final output is this:

mov oD0, v2

The unnecessary use of a temporary register has been eliminated.
This concept inspired me to try a different solution for implementing

SoftD3D’s pipeline. However, my own solution differed in a number of aspects
from NVLink. My first decision was to define the shader fragments as binary x86

428
SoftD3D: A Software-only Implementation of Microsoft’s Direct3D API

Section III — Software Shaders and Shader Programming Tips

assembly code blocks to avoid the difficult task of writing a parser. Because of this
decision, the project was doomed! But read on.

The shader fragments were implemented as C++ inline assembly:

PXOAPI void PXO_LERP_DIFFUSE_MMX_X86()

{

__asm

{

movq mm0, QWORD PTR [ebx + PXOC_Diffuse]

paddsw mm0, QWORD PTR [ebx + PXOC_DiffuseStep]

movq QWORD PTR [ebx + PXOC_Diffuse], mm0

}

}

The C++ compiler does all the dirty work and generates the data to embed the
fragments into SoftD3D in binary form. In order to avoid the tracking of processor
register usage by fragments, a bank of “virtual” registers was defined and all real
processor registers declared as scratch registers.

At run time, SoftD3D generated a list of fragments depending on the current
render states and the available processor features and linked them together into
one big chunk of assembly code. It worked — somehow. The code was slower
than the compiler-generated code! This was mainly because of the ever-increas-
ing need to move certain data from processor registers to main memory in order
to resolve register conflicts between fragments. Now I was paying the price for
not writing a parser and thus losing the ability to easily track the use processor
registers by the combined fragment program. I decided to discontinue this part of
the project.

Looking back, I feel that my initial attempt at implementing a programmable
software pipeline was merely half-baked, and its failure was actually a good thing
because I’ve learned quite a lot from this failure, and most importantly it cleared
the way for a better implementation. Ironically, the solution was there all the time,
but I didn’t realize it — until now.

I was trying to figure out why one of my shaders (for another project) didn’t
produce the expected results, and I suspected a compiler bug. So I dug down into
the compiled shader token array. The token array is a simple collection of codes
emitted by the vertex or pixel shader assembler. These codes instruct the driver
on how to create the shader. The format of tokens within each shader code deter-
mines its uniqueness. A shader code token is a DWORD with a specific format.
The driver (in this case, SoftD3D) reads the shader code’s tokens to interpret the
code.

Each individual shader code is formatted with a general token layout. The
first token must be a version token. The version token provides the version num-
ber of the code and also determines whether the code is for a pixel or vertex
shader. Shader content follows the version token and is composed of various
instruction tokens, perhaps intermingled with comment tokens and white space.
Depending on the precise operation that an instruction token specifies, destina-
tion and source parameter tokens can also be part of the shader content and fol-
low an instruction token. For example, if the instruction token specifies an add

SoftD3D: A Software-only Implementation of Microsoft’s Direct3D API
429

Section III — Software Shaders and Shader Programming Tips

operation, the driver determines that one destination and two source parameter
tokens follow the instruction token. An end token completes the shader code.
� Version token: Describes the version number of the shader code and

informs the driver whether the shader code is for a pixel or vertex shader
� Instruction token: Informs the driver of a specific operation to perform
� Destination parameter token: Describes properties of a destination

register
� Source parameter token: Describes properties of a source register
� Label token: Used for certain operations (for example, D3DSIO_CALLNZ)
� Comment token: Describes the length of the comment that follows
� End token: Informs the driver of the end of the shader code

The video driver parses the token array and compiles it into a set of hardware-
specific opcodes and register states. It should be possible to mimic that behavior
by compiling the tokens into processor-specific assembly language at run time.
Because compilation occurs at run time, processor-specific extensions could be
used. It would all depend on the quality of the token compiler. The idea was born.

Before I got to work on the actual implementation, I wrote a series of tools to
improve my understanding of the subject. The logical first step was a shader
disassembler. Not only was I forced to understand the meaning of every single bit
but the resulting source code still acts as an invaluable reference as well.

After the disassembler was done, I felt that my understanding of the subject was
still not proficient enough, and I began to work on its counterpart — a macro
assembler. Should the requirement of compiling shader source code at run time
ever arise, the technology would be there.

Now I won’t go into the gory details, but I have to say that it was actually less
complicated than expected thanks to a dream team called Flex & Yacc — well
known in the UNIX world.

Armed with in-depth knowledge and lots of sample code, I went on with the
implementation. I quickly realized that the integration of the shader framework

430
SoftD3D: A Software-only Implementation of Microsoft’s Direct3D API

Section III — Software Shaders and Shader Programming Tips

Figure 2: Shader disassembler

into the existing pipeline of SoftD3D was not an easy task. Some architectural
decisions still had to be made before real work could be done. The most important
one was how to map the hardware register set exposed by vertex and pixel
shaders in the correct way.

As mentioned before, the final implementation is supposed to compile the
assembled shaders into processor-specific assembly code. This process is far from
being a trivial issue, and implementing it with parts of the execution environment
yet to be determined would be crazy. An interim implementation was necessary
— an interpreter. This is exactly where SoftD3D stands now. It executes vertex
shaders up to version 3.0 using an interpreter. Of course, the interpreter works
slowly, but this is irrelevant because its sole purpose was laying the foundation for
the final goal: the shader compiler — and this has been accomplished.

References

[1] Hecker, Chris, “Perspective Texture Mapping,” Game Developer magazine,
April/May ’95, http://www.d6.com/users/checker/misctech.htm.

[2] Microsoft, DirectX 9.0 Programmer’s Reference, 2002.

[3] NVLink, nVidia, http://developer.nvidia.com/view.asp?IO=nvlink_2_1.

SoftD3D: A Software-only Implementation of Microsoft’s Direct3D API
431

Section III — Software Shaders and Shader Programming Tips

Named Constants in Shader
Development

Jeffrey Kiel

If you’re like me, you have been looking at the articles in this book saying things
like, “Wow, look at that!” or “I didn’t think you could do something that cool!”
Inevitably, you decide that some shader does have the exact effect that will put
your app over the top (with your own tweaks added, of course), so you start to
delve deeper into the workings of the code. While doing this, you come across
some code that looks like this:

ps.1.0

tex t0

dp3 r0, c0, t0

...

So, of course, you look just a few lines below this and see:

float c0[4] = {0.2125f, 0.7154f, 0.0721f, 1.0f}; // Convert RGB to Grayscale

pDevice->SetPixelShaderConstant(0, c0, 1);

Being the expert programmer that you are, you figure out that the data in the float
array c0 is being placed into constant register 0, which corresponds to c0 in the
shader code. You further deduce that it is taking the color value retrieved from
the texture and modulating it by this constant to convert it into a grayscale value.

You continue this exercise on some more lines of shader code and quickly get
overwhelmed trying to remember what the different constants actually mean, flip-
ping back and forth between the shader definition and the setting of the constants,
which you can only hope happen in close proximity. Finally, you tear the page out
of the book and turn it over so you can look at them side by side. Frustrated, you
get out your colored pens and begin to color code the constants in the shader with
those in the code where they are set. Darn, why don’t they make highlighters in
all colors, like my crayons as a kid? ARGH! OK, OK, calm down. Maybe you
aren’t as hyped up on caffeine to let it get this far (yeah, right), but it can be diffi-
cult to make sense of other people’s code that uses numeric identifiers for things
like constants. You would probably fire the guy who wrote his C code like we used
to write Pascal back in high school — with variable names like v1. There must be
a better way.

Yes, there is. Though the implementation is simple (trivial, really), the use-
fulness is enormous. This article shows you an easy, useful way to incorporate

432

named constants into your code that make development easier, help with bug find-
ing, and even help with performance.

The Way Things Should Be

Here is the example from above with named constants:

ps.1.0

tex t0

dp3 r0, c[RGB_TO_GRAYSCALE], t0

...

float afRGBToGrayscale[4] = {0.2125f, 0.7154f, 0.0721f, 1.0f}; // Convert RGB to grayscale

pDevice->SetPixelShaderConstant(RGB_TO_GRAYSCALE, afRGBToGrayscale, 1);

This is obviously much more readable and maintainable.

How Did They Do That?

The real magic in this solution happens with a data structure to map the string
names to enumerated values and some #define macros. First, let’s look at how to
make the constants file. Typically, you want to create one include file (that does
not have any multiple include guards on it like #ifndef or #pragma) that contains
all of your constants. Remember, this is a normal include file, so comments are
just fine. In my example, all of the constants can only contain alphanumeric and
underscore characters, but you can change the parser to take other characters
into account. For example:

//////////////////////////

// shaderdefines.h

// This file defines all of the shader constants

// Vertex shader constants

DEFINECONSTANT(ONE, 1)

DEFINECONSTANT(TRANSPOSE_WORLDVIEWPROJ_MATRIX, 2) // Transpose WORLDVIEWPROJ matrix

// Pixel shader constants

DEFINECONSTANT(RGB_TO_GRAYSCALE, 0) // Convert RGB to grayscale

I placed some other examples to help you to see that any constant from any
shader can be defined here.

In some other code (either an include file if you have multiple source files
containing shaders or in the single shader source file), you need to define the enu-
meration that enables you to use these values as constants in your C code. This is
how it is done:

#define DEFINECONSTANT(name, n) name = n,

enum SHADERCONSTANTS {

#include "shaderdefines.h"

};

Named Constants in Shader Development
433

Section III — Software Shaders and Shader Programming Tips

#undef DEFINECONSTANT

As you can see, we define a macro that takes the first parameter as the name and
the second parameter as the enumerated value. Understand that you can reuse
elements in the enumeration, thereby having multiple names with the same
numeric value.

Once the enumeration is defined, we need to create the data structure used
when parsing the shader. This should probably be done in the same source file
that contains the parser. This is a simple version of it:

typedef struct _ShaderConstNameMap {

char *pcName;

int nID;

} ShaderConstNameMap;

As you can see, this simply provides a table to map from the ASCII name to the
associated number. We populate this table with the following code:

#define DEFINECONSTANT(name, n) {#name, n},

ShaderConstNameMap G_aSCNameMap[] = {

#include "shaderdefines.h"

};

#undef DEFINECONSTANT

We now have the enumeration and the mapping table defined; all that is left is cre-
ating the parser.

Parsing the Shader Values

I decided that efficiency was not that important for the parser, since it is a small
part of the loading effort. Rather than spending a lot of time on a superefficient
parser with lots of bells and whistles, I decided to make it simple and just add the
capability of having integer offsets for the constants (i.e., c[RGB_TO_GRAY-
SCALE + 2]). Here is the code for this simple parser:

#define elementsof(x) (sizeof(x)/sizeof(x[0]))

void ProcessConstants(char *pcOriginal, char *pcProcessed)

{

char *pcWalker = pcOriginal, *pcTagWalker, *pcLengthWalker;

char *pcOutWalker = pcProcessed;

int ii, nTagLength, nTagCount = elementsof(G_aSCNameMap);

int nMultiplier = 1, nOffset = 0;

bool bTagFound;

char zTmp[8], zThisTag[80];

while(*pcWalker != '\0') {

bTagFound = false;

if(*pcWalker == '[') {

pcTagWalker = pcWalker + 1;

434
Named Constants in Shader Development

Section III — Software Shaders and Shader Programming Tips

// Figure out how many chars to the next nonalphanum & non-underscore char

pcLengthWalker = pcTagWalker;

while(isalnum(*pcLengthWalker) || *pcLengthWalker == '_')

pcLengthWalker++;

// Copy this tag into a temporary buffer

strncpy(zThisTag, pcTagWalker, pcLengthWalker - pcTagWalker);

zThisTag[pcLengthWalker - pcTagWalker] = '\0';

// Look for the tag in the table

for(ii = 0; ii < nTagCount; ii++) {

nTagLength = strlen(G_aSCNameMap[ii].pcName);

if(!strcmp(G_aSCNameMap[ii].pcName, zThisTag)) {

// We have a match, check for additions and subtractions...

pcTagWalker += nTagLength; // Skip past the tag name

while(*pcTagWalker != '\0' && *pcTagWalker != ']') {

if(*pcTagWalker == '+') {

// It is assumed to be addition, so skip it

pcTagWalker++;

}

else if(*pcTagWalker == '-') {

nMultiplier = -1;

pcTagWalker++;

}

else if(*pcTagWalker == ' ') {

// OK, skip it

pcTagWalker++;

}

else if(isdigit(*pcTagWalker)) {

nOffset = atoi(pcTagWalker);

// Skip over all of the digits...

while(isdigit(*pcTagWalker))

pcTagWalker++;

}

else {

// Probably should complain here...

pcTagWalker++;

}

}

// OK, now that we have the tag and the offset, replace this in the outgoing

// string...

if(*pcTagWalker == ']') {

sprintf(zTmp, "%d", G_aSCNameMap[ii].nID + (nMultiplier * nOffset));

*pcOutWalker = '\0'; // Temporary so the strcat will work

strcat(pcOutWalker, zTmp);

pcOutWalker += strlen(zTmp);

pcWalker = pcTagWalker + 1; // Skips the close bracket we are on

Named Constants in Shader Development
435

Section III — Software Shaders and Shader Programming Tips

bTagFound = true;

nOffset = 0; // Reset to 0 in case it was used

break;

}

else {

// Probably should complain here...

}

}

}

}

if(!bTagFound) {

*pcOutWalker = *pcWalker;

pcOutWalker++;

pcWalker++;

}

}

*pcOutWalker = '\0';

}

Wrap-up

Hopefully this provides a good basis for using named constants in your code.
Another nice feature of using named constants is that you can rearrange the con-
stants in your code to make uploading them more efficient. If you do some timing
tests, you can see that the more you group the constants that change, the better
performance you see when setting them. Also, you could use this same code to
redefine the texture registers (t0/SetTexture()), temporary registers, etc. It might
lead to shaders that are very large, but since you will probably compile them and
ship a binary version, it might be worth the added readability during development
time.

436
Named Constants in Shader Development

Section III — Software Shaders and Shader Programming Tips

Section IVSection IV

Image Space

437

Advanced Image Processing with DirectX 9 Pixel
Shaders

by Jason L. Mitchell, Marwan Y. Ansari,

and Evan Hart

Night Vision: Frame Buffer Post-processing with
ps.1.1 Hardware

by Guillaume Werle

Non-Photorealistic Post-processing Filters in
MotoGP 2

by Shawn Hargreaves

Image Effects with DirectX 9 Pixel Shaders

by Marwan Y. Ansari

Using Pixel Shaders to Implement a Mosaic Effect
Using Character Glyphs

by Roger Descheneaux and Maurice Ribble

Mandelbrot Set Rendering

by Emil Persson

Real-Time Depth of Field Simulation

by Guennadi Riguer, Natalya Tatarchuk, and

John Isidoro

Advanced Image Processing with
DirectX 9 Pixel Shaders

Jason L. Mitchell, Marwan Y. Ansari, and Evan Hart

Introduction

With the introduction of the ps_2_0 pixel shader model in DirectX 9, we were able
to significantly expand our ability to use consumer graphics hardware to perform
image processing operations. This is due to the longer program length, the ability
to sample more times from the input image(s), and the addition of floating-point
internal data representation. In Direct3D ShaderX: Vertex and Pixel Shader Tips

and Tricks, we used the ps_1_4 pixel shader model in DirectX 8.1 to perform
basic image processing techniques, such as simple blurs, edge detection, transfer

functions, and morphological operators [Mitchell02]. In this chapter, we extend our
image processing toolbox to include color space conversion, a better edge detection
filter called the Canny filter, separable Gaussian and median filters, and a
real-time implementation of the Fast Fourier Transform.

Review

As shown in our original image processing article in the Direct3D ShaderX book,
post-processing of 3D frames is fundamental to producing a variety of interesting
effects in game scenes. Image processing is performed on a GPU by using the
source image as a texture and drawing a screen-aligned quadrilateral into the back
buffer or another texture. A pixel shader is used to process the input image to
produce the desired result in the render target.

439

Figure 1: Using a pixel shader for image processing by rendering
from one image to another

Image processing is especially powerful when the color of the destination pixel is
the result of computations done on multiple pixels from the source image. In this
case, we sample the source image multiple times and use the pixel shader to com-
bine the data from the multiple samples (or taps) to produce a single output.

Color Space Conversion

Before we get into interesting multi-tap filters, we present a pair of shaders that
can be used to convert between HSV and RGB color spaces. These shaders per-
form some relatively complex operations to convert between color spaces, even
though they are only single-tap filters.

For those who may not be familiar with HSV space, it is a color space that is
designed to be intuitive to artists who think of a color’s tint, shade, and tone
[Smith78]. Interpolation in this color
space can be more aesthetically pleasing
than interpolation in RGB space. Addi-
tionally, when comparing colors, it may
be desirable to do so in HSV space. For
example, in RGB space the color {100,
0, 0} is very different from the color {0,
0, 100}. However, their V components
in HSV space are equal. Colors, repre-
sented by {hue, saturation, value}
triples, are defined to lie within a hexag-
onal pyramid, as shown in Figure 2.

The hue of a color is represented by
an angle between 0° and 360° around the
central axis of the hexagonal cone. A
color’s saturation is the distance from
the central (achromatic) axis, and its
value is the distance along the axis. Both
saturation and value are defined to be
between 0 and 1.

We have translated the pseudocode
RGB-to-HSV transformation from
[Foley90] to the DirectX 9 High Level Shading Language (HLSL) and compiled it
for the ps_2_0 target. If you are unfamiliar with HLSL, you can refer to the “Intro-
duction to the DirectX 9 High Level Shading Language” article in ShaderX2:

Introductions & Tutorials with DirectX 9. As described in [Smith78], you can see
that the RGB_to_HSV() function in this shader first determines the minimum and
maximum channels of the input RGB color. The max channel determines the
value of the HSV color or how far along the achromatic central axis of the hexago-
nal cone the HSV color will be. The saturation is then computed as the difference
between the max and min RGB channels divided by the max. Hue (the angle
around the central achromatic axis) is then a function of the channel that had the
max magnitude and thus determined the value.

440
Advanced Image Processing with DirectX 9 Pixel Shaders

Section IV — Image Space

Figure 2: HSV color space

float4 RGB to HSV (float4 color)

{

float r, g, b, delta;

float colorMax, colorMin;

float h=0, s=0, v=0;

float4 hsv=0;

r = color[0];

g = color[1];

b = color[2];

colorMax = max (r,g);

colorMax = max (colorMax,b);

colorMin = min (r,g);

colorMin = min (colorMin,b);

v = colorMax; // this is value

if (colorMax != 0)

{

s = (colorMax - colorMin) / colorMax;

}

if (s != 0) // if not achromatic

{

delta = colorMax - colorMin;

if (r == colorMax)

{

h = (g-b)/delta;

}

else if (g == colorMax)

{

h = 2.0 + (b-r) / delta;

}

else // b is max

{

h = 4.0 + (r-g)/delta;

}

h *= 60;

if(h < 0)

{

h +=360;

}

hsv[0] = h / 360.0; // moving h to be between 0 and 1.

hsv[1] = s;

hsv[2] = v;

}

return hsv;

}

Advanced Image Processing with DirectX 9 Pixel Shaders
441

Section IV — Image Space

The HSV-to-RGB transformation, also translated from [Foley90], is shown below
in HLSL.

float4 HSV to RGB (float4 hsv)

{

float4 color=0;

float f,p,q,t;

float h,s,v;

float r=0,g=0,b=0;

float i;

if (hsv[1] == 0)

{

if (hsv[2] != 0)

{

color = hsv[2];

}

}

else

{

h = hsv.x * 360.0;

s = hsv.y;

v = hsv.z;

if (h == 360.0)

{

h=0;

}

h /=60;

i = floor (h);

f = h-i;

p = v * (1.0 - s);

q = v * (1.0 - (s * f));

t = v * (1.0 - (s * (1.0 -f)));

if (i == 0)

{

r = v;

g = t;

b = p;

}

else if (i == 1)

{

r = q;

g = v;

b = p;

}

else if (i == 2)

{

r = p;

g = v;

442
Advanced Image Processing with DirectX 9 Pixel Shaders

Section IV — Image Space

b = t;

}

else if (i == 3)

{

r = p;

g = q;

b = v;

}

else if (i == 4)

{

r = t;

g = p;

b = v;

}

else if (i == 5)

{

r = v;

g = p;

b = q;

}

color.r = r;

color.g = g;

color.b = b;

}

return color;

}

Other Color Spaces

It is worth noting that RGB and HSV are not the only color spaces of interest in
computer graphics. For example, the original paper [Smith78] that introduced
HSV also introduced a color space called HSL (for hue, saturation, and lightness),
where L is often the same as the Luminance (Y) channel used in the YIQ color
space. If you are interested in learning more about color spaces, [Smith78] and
[Foley90] both provide excellent discussions.

Now that we have introduced some reasonably advanced single-tap image
operations for converting between color spaces, we can discuss a few multi-tap
filters that perform some sophisticated image processing operations.

Advanced Edge Detection

In Direct3D ShaderX, we discussed the Roberts and Sobel edge detection filters
[Mitchell02]. Here, we expand upon those filters and introduce an implementation
of the Canny edge detection filter [Canny86].

Advanced Image Processing with DirectX 9 Pixel Shaders
443

Section IV — Image Space

Step-by-Step Approach

As outlined in [Jain95], the Canny edge detection filter can be implemented by
performing the following operations:

1. Apply a Gaussian blur.

2. Compute the partial derivatives at each texel.

3. Compute the magnitude and direction of the line (tan-1) at each point.

4. Sample the neighbors in the direction of the line and perform nonmaxima
suppression.

Naturally, we implement this in a series of steps, each using a different shader to
operate on the output from the preceding step. A Gaussian blur is the first
shader that is run over the input image. This is done to eliminate any high
frequency noise in the input image. Various filter kernel sizes can be used for this
step.

The next step in the process is computation of the partial derivatives (P and
Q) in the u and v directions, respectively:

Then the magnitude of the derivative is computed using the standard formula:

Magnitude P Q� �2 2

Finally, the P and Q values are used to determine the direction of the edge at that
texel using the standard equation:

� � atan2(,)Q P

Magnitude and � are written out to an image so that the next shader can use them
to complete the Canny filter operation. The edge direction, �, is a signed quantity
in the range of –� to � and must be packed into the 0 to 1 range in order to pre-
vent loss of data between rendering passes. In order to do this, we pack it by
computing:

A = abs(�) / �

You’ve probably noticed that due to the absolute value, this function is not invert-
ible, hence data is effectively lost. This does not present a problem for this partic-
ular application due to symmetries in the following step.

The final pass involves sampling the image to get the magnitude and the
edge direction, �, at the current location. The edge direction, �, must now be
unpacked into its proper range. Figure 3 shows a partitioning of all values of � (in
degrees) into four sectors.

444
Advanced Image Processing with DirectX 9 Pixel Shaders

Section IV — Image Space

The sectors are symmetric and
map to the possible ways that a line can
pass through a 3×3 set of pixels. In the
previous step, we took the absolute
value of � and divided it by � to put it in
the 0 to 1 range. Since we know that �
is already between 0 and 1 from the pre-
vious step, we are almost done. Since
the partitioning is symmetric, it was an
excellent way to reduce the number of
comparisons needed to find the correct
neighbors to sample. Normally, to com-
plete the mapping, we would multiply A
by 4 and be done. However, if you look
closely at Figure 3 you can see that the
sectors are centered around 0 and 180.
In order to compensate for this, the proper equation is:

Sector = floor((A – �/16) � 4)

Next, we compute the neighboring texel coordinates by checking which sector
this edge goes through. Now that the neighbors have been sampled, we compare
the current texel’s magnitude to the magnitudes of its neighbors. If its magnitude
is greater than both of its neighbors, then it is the local maximum and the value is
kept. If its magnitude is less than either of its neighbors, then this texel’s value is
set to zero. This process is known as nonmaxima suppression, and its goal is to
thin the areas of change so that only the greatest local changes are retained. As a
final step, we can threshold the image in order to reduce the number of false
edges that might be picked up by this process. The threshold is often set by the
user when he or she finds the right balance between true and false edges.

As you can see in Figure 4, the Canny filter produces one-pixel-wide edges
unlike more basic filters such as a Sobel edge filter.

Advanced Image Processing with DirectX 9 Pixel Shaders
445

Section IV — Image Space

Figure 3: The 360 degrees of an angle
partitioned into four sectors

Figure 4: One-pixel-wide edges from the Canny filter

Implementation Details

This shader is implemented in the VideoShader application on the companion CD
(see the section 4\04 folder) using HLSL and can be compiled for the ps_2_0
target or higher. In this implementation, the samples are taken from the eight
neighbors adjacent to the center of the filter. Looking at the HLSL code, you can
see an array of float
two-tuples called
sampleOffsets[]. This
array defines a set of 2D
offsets from the center
tap, which are used to
determine the locations
from which to sample
the input image. The
locations of these sam-
ples relative to the cen-
ter tap are shown in
Figure 6.

The four steps of the Canny edge detection filter described above have been
collapsed into two rendering passes requiring the two shaders shown below. The
first shader computes the gradients P and Q followed by the Magnitude and direc-
tion (�). After packing � into the 0 to 1 range, Magnitude and � are written out to a
temporary surface.

sampler InputImage;

float2 sampleOffsets[8] : register (c10);

446
Advanced Image Processing with DirectX 9 Pixel Shaders

Section IV — Image Space

Figure 5: Gradient magnitudes from the Sobel filter (see
[Mitchell02])

Figure 6: Locations of taps as defined in sampleOffsets[]

struct PS INPUT

{

float2 texCoord:TEXCOORD0;

};

float4 main(PS INPUT In) : COLOR

{

int i =0;

float4 result;

float Magnitude, Theta;

float p=0,q=0;

float pKernel[4] = {-1, 1, -1, 1};

float qKernel[4] = {-1, -1, 1, 1};

float2 texCoords[4];

float3 texSamples[4];

float PI = 3.1415926535897932384626433832795;

texCoords[0] = In.texCoord + sampleOffsets[1];

texCoords[1] = In.texCoord + sampleOffsets[2];

texCoords[2] = In.texCoord;

texCoords[3] = In.texCoord + sampleOffsets[4];

for(i=0; i <4; i++)

{

texSamples[i].xyz = tex2D(InputImage, texCoords[i]);

texSamples[i] = dot(texSamples[i], 0.33333333f);

p += texSamples[i] * pKernel[i];

q += texSamples[i] * qKernel[i];

}

p /= 2.0;

q /= 2.0;

Magnitude = sqrt((p*p) + (q*q));

result = Magnitude;

// Now we compute the direction of the

// line to prep for Nonmaxima supression.

//

// Nonmaxima supression - If this texel isn’t the Max,

// make it 0 (hence, supress it)

Theta = atan2(q,p); // result is -pi to pi

result.a = (abs(Theta) / PI); // Now result is 0 to 1

// Just so it can be written out.

return result;

}

In the second pass of the Canny edge detector, Magnitude and � are read back
from the temporary surface. The edge direction, �, is classified into one of four
sectors and the neighbors along the proper direction are sampled using dependent

Advanced Image Processing with DirectX 9 Pixel Shaders
447

Section IV — Image Space

reads. The magnitudes of these neighbor samples along with a user-defined
threshold are then used to determine whether this pixel is a local maximum or
not, resulting in either 0 or 1 being output as the final result.

sampler InputImage;

float2 sampleOffsets[8] : register (c10);

float4 UserInput : register (c24);

struct PS INPUT

{

float2 texCoord:TEXCOORD0;

};

float4 main(PS INPUT In) : COLOR

{

int i =0;

float4 result;

float Magnitude, Theta;

float2 texCoords[4];

float4 texSamples[3];

float PI = 3.1415926535897932384626433832795;

// Tap the current texel and figure out line direction

texSamples[0] = tex2D(InputImage, In.texCoord);

Magnitude = texSamples[0].r;

// Sample two neighbors that lie in the direction of the line

// Then find out if this texel has a greater Magnitude.

Theta = texSamples[0].a;

// Must unpack theta. Prior pass made Theta range between 0 and 1

// But we really want it to be either 0,1,2, or 4. See [Jain95]

// for more details.

Theta = (Theta - PI/16) * 4 ; // Now theta is between 0 and 4

Theta = floor(Theta); // Now theta is an INT.

if(Theta == 0)

{

texCoords[1] = In.texCoord + sampleOffsets[4];

texCoords[2] = In.texCoord + sampleOffsets[3];

}

else if(Theta == 1)

{

texCoords[1] = In.texCoord + sampleOffsets[2];

texCoords[2] = In.texCoord + sampleOffsets[5];

}

else if(Theta == 2)

{

texCoords[1] = In.texCoord + sampleOffsets[1];

448
Advanced Image Processing with DirectX 9 Pixel Shaders

Section IV — Image Space

texCoords[2] = In.texCoord + sampleOffsets[6];

}

else //if(Theta == 3)

{

texCoords[1] = In.texCoord + sampleOffsets[0];

texCoords[2] = In.texCoord + sampleOffsets[7];

}

// Take other two samples

// Remember they are in the direction of the edge

for(i=1; i <3; i++)

{

texSamples[i].xyz = tex2D(InputImage, texCoords[i]);

}

// Now it’s time for Nonmaxima supression.

// Nonmaxima supression - If this texel isn't the Max,

// make it 0 (hence, supress it)

// This keeps the edges nice and thin.

result = Magnitude;

if(Magnitude < texSamples[1].x || Magnitude < texSamples[2].x)

{

result =0;

}

// Threshold the result.

if(result.x < UserInput.z)

{

result =0;

}

else

{

result = 1;

}

return result;

}

You can see in Figure 4 that this produces one-pixel-wide edges, which may be
more desirable for some applications. You may see some gaps in the detected
edges, and in some cases, it may be useful to apply a dilation operation to fill in
these gaps [Mitchell02].

Separable Techniques

Certain filtering operations have inherent symmetry, which allows us to imple-
ment them more efficiently in a separable manner. That is, we can perform these
2D image processing operations with a sequence of 1D operations and obtain
equivalent results with less computation. Conversely, we can implement a large
separable filter kernel with the same amount of computation as a small, non-sepa-
rable filter. This is particularly important when attempting to apply “blooms” to

Advanced Image Processing with DirectX 9 Pixel Shaders
449

Section IV — Image Space

final frames in high dynamic range space to simulate light scattering. In this final
section of the chapter, we discuss three separable filtering operations: the
Gaussian blur, a median filter approximation, and the Fast Fourier Transform.

Separable Gaussian

A very commonly used separable filter is the Gaussian filter, which can be used to
perform blurring of 2D images. The 2D isotropic (i.e., circularly symmetric)
Gaussian filter, g2D(x, y), samples a circular neighborhood of pixels from the input
image and computes their weighted average, according to the following equation:

� �g x y eD

x y

2
21

2

2 2

2, �
�

�

�	

	

. . .where 	 is the standard deviation of the Gaussian and x and y are the coordi-
nates of image samples relative to the center of the filter. The standard deviation,
	, determines the size of the filter.

This means that we sample a local
area of texels from the input image and
weight them according to the above equa-
tion. For example, for a Gaussian with 	 =
1, we compute the following filter kernel
(after normalization).

In theory, the Gaussian has infinite
extent, but the contribution to the final
result is insignificant for input texels out-
side of this 5×5 region.

An extremely important property of
the Gaussian is that it is separable. That is,
it can be rearranged in the following
manner:

� �g x y e eD

x y

2
2 21

2

1

2

2

2

2

2, �
�

�

�

�

�
� �

�

�

�

�

�
�

� �

�	 �	
	 	

� � � �� �g x g yD D1 1

This means that we can implement a given Gaussian with a series of 1D filtering
operations: one horizontal (g1D(x)) and one vertical (g1D(y)). This allows us to
implement Gaussians with much larger kernels (larger) while performing the
same amount of calculations that are required to implement a smaller non-separa-
ble filter kernel. This technique was used in our real-time implementation of Paul
Debevec’s Rendering with Natural Light animation as seen in Figure 7.

After rendering the scene in high dynamic range space, Debevec performed a
number of large Gaussian blurs on his 2D rendered scene to obtain blooms on
bright areas of the scene. In order to do this in real-time, we exploited the Gaussi-
an’s separability to perform the operation efficiently. In our case, we used 	 = 7,
which resulted in a 25×25 Gaussian.

450
Advanced Image Processing with DirectX 9 Pixel Shaders

Section IV — Image Space

Due to the fact that we have only eight texture coordinate interpolators in the
ps_2_0 pixel shader programming model, we must derive some of our texture
coordinates in the pixel shader as deltas from the center tap location. To make the
most efficient use of the hardware, we can perform as many reads from the input
image as possible using non-dependent texture reads.

In our implementation, we divided our samples into three types: inner taps,
outer taps, and the center tap. The center tap (c) and inner taps (x) shown in Figure
8 are performed using interpolated texture coordinates (and hence non-dependent
texture reads).

The outer taps (o) shown in Figure 8 are sampled using texture coordinates com-
puted in the pixel shader. That is, they are done with dependent reads. Note that
the center tap (c) uses pick-nearest filtering and is aligned with the center of a
specific texel in the input image. The other 12 taps all use bilinear filtering and
are aligned so that they sample from two different texels in the input image. This
Gaussian filter is implemented in HLSL in the following shader:

float4 hlsl gaussian (float2 tapZero : TEXCOORD0,

float2 tap12 : TEXCOORD1,

float2 tapMinus12 : TEXCOORD2,

float2 tap34 : TEXCOORD3,

float2 tapMinus34 : TEXCOORD4,

float2 tap56 : TEXCOORD5,

float2 tapMinus56 : TEXCOORD6) : COLOR

Advanced Image Processing with DirectX 9 Pixel Shaders
451

Section IV — Image Space

Figure 7: Frame from real-time Rendering with Natural Light (See Color
Plate 20.)

Figure 8: Layout of 13 taps of separable Gaussian

{

float4 accum, Color[NUM INNER TAPS];

Color[0] = tex2D(nearestImageSampler, tapZero); // sample 0

Color[1] = tex2D(linearImageSampler, tap12); // samples 1, 2

Color[2] = tex2D(linearImageSampler, tapMinus12); // samples -1, -2

Color[3] = tex2D(linearImageSampler, tap34); // samples 3, 4

Color[4] = tex2D(linearImageSampler, tapMinus34); // samples -3, -4

Color[5] = tex2D(linearImageSampler, tap56); // samples 5, 6

Color[6] = tex2D(linearImageSampler, tapMinus56); // samples -5, -6

accum = Color[0] * gTexelWeight[0]; // Weighted sum of samples

accum += Color[1] * gTexelWeight[1];

accum += Color[2] * gTexelWeight[1];

accum += Color[3] * gTexelWeight[2];

accum += Color[4] * gTexelWeight[2];

accum += Color[5] * gTexelWeight[3];

accum += Color[6] * gTexelWeight[3];

float2 outerTaps[NUM OUTER TAPS];

outerTaps[0] = tapZero * gTexelOffset[0]; // coord for samp 7, 8

outerTaps[1] = tapZero * -gTexelOffset[0]; // coord for samp -7, -8

outerTaps[2] = tapZero * gTexelOffset[1]; // coord for samp 9, 10

outerTaps[3] = tapZero * -gTexelOffset[1]; // coord for samp -9, -10

outerTaps[4] = tapZero * gTexelOffset[2]; // coord for samp 11, 12

outerTaps[5] = tapZero * -gTexelOffset[2]; // coord for samp -11,-12

// Sample the outer taps

for (int i=0; i<NUM OUTER TAPS; i++)

{

Color[i] = tex2D (linearImageSampler, outerTaps[i]);

}

accum += Color[0] * gTexelWeight[4]; // Accumulate outer taps

accum += Color[1] * gTexelWeight[4];

accum += Color[2] * gTexelWeight[5];

accum += Color[3] * gTexelWeight[5];

accum += Color[4] * gTexelWeight[6];

accum += Color[5] * gTexelWeight[6];

return accum;

}

Applying this shader twice in succession (with different input texture coordinates
and the gTexelOffset[] table), we compute a 25×25 Gaussian blur and achieve
the bloom effect that we are looking for.

Separable Median Filter Approximation

Another important filter in image processing is the median filter, the output of
which is the median of the set of input data sampled by the filter kernel. For those
who may not recall, the median of a set of values is the middle value after sorting
or ranking the data. For example, if you have the following set of numbers: {9, 3,

452
Advanced Image Processing with DirectX 9 Pixel Shaders

Section IV — Image Space

6, 1, 2, 2, 8}, you can sort them to get {1, 2, 2, 3, 6, 8, 9} and select the middle
value 3. Hence, the median of these values is 3. In image processing, a median fil-
ter is commonly used to remove “salt and pepper noise” from images prior to per-
forming other image processing operations. It is good for this kind of operation
because it is not unduly influenced by outliers in the input data (i.e., the noise) the
way that a mean would be. Additionally, the output of a median filter is guaranteed
to be a value that actually appears in the input image data; a mean does not have
this property.

As it turns out, an approximation to a 2D median fil-
ter can be implemented efficiently in a separable manner
[Gennert 03]. Say we have sampled a 3×3 region of our
input image and the data are ranked in the following
order:

We can first take the median of the rows of the
ranked data:

We can then take the median of these medians to get an approximation to the
median of the whole 3×3 region:

From this, we obtain the data in the fifth-ranked image sample, which is the cor-
rect value. We say that this method is only an approximation to a true median fil-
ter because the true median will not be found if the ranked data is not so evenly
distributed within the filter kernel. For example, if we have the following ranked
data, we can get an incorrect median:

Advanced Image Processing with DirectX 9 Pixel Shaders
453

Section IV — Image Space

For a 3×3 filter kernel, however, the worst case that this separable median filter
implementation will give you is the fourth or sixth rank instead of the fifth, which
may be adequate for many applications.

We have implemented this separable approximation to a median filter with a
two-pass rendering approach. The first pass finds the median of each 3×1 region
of the image and outputs it to an intermediate buffer. The second pass performs
the same operation on each 1×3 region of the intermediate buffer. The end result
is equivalent to the separable median algorithm outlined above.

Median Filter HLSL Implementation

In our HLSL implementation of the separable median approximation, both passes
will use the FindMedian() function, which takes three scalar inputs:

float FindMedian(float a, float b, float c)

{

float median;

if(a < b)

{

if(b < c)

{

median = b;

}

else

{

median = max(a,c);

}

}

else

{

if(a < c)

{

median = a;

}

else

{

454
Advanced Image Processing with DirectX 9 Pixel Shaders

Section IV — Image Space

median = max(b,c);

}

}

return median;

}

The first pass of the 3×3 median filter, shown below, takes three samples from
the input image: the texel at the current location and the left and right neighbors.
The median red, green, and blue values are found independently, and the result is
written out to a temporary surface.

sampler InputImage;

float2 sampleOffsets[8];

struct PS INPUT

{

float2 texCoord:TEXCOORD0;

};

float4 main(PS INPUT In) : COLOR

{

int i =0;

float4 result;

float2 texCoords[3];

float3 texSamples[3];

texCoords[0] = In.texCoord + sampleOffsets[3];

texCoords[1] = In.texCoord;

texCoords[2] = In.texCoord + sampleOffsets[4];

// the left and right neighbors of this texel

for(i=0; i <3; i++)

{

texSamples[i].xyz = tex2D(InputImage, texCoords[i]);

}

result.r = FindMedian(texSamples[0].r,texSamples[1].r,texSamples[2].r);

result.g = FindMedian(texSamples[0].g,texSamples[1].g,texSamples[2].g);

result.b = FindMedian(texSamples[0].b,texSamples[1].b,texSamples[2].b);

result.a = 0;

return result;

}

In the second pass of the 3×3 median filter, the texel at the current location and
the top and bottom neighbors are sampled. The median red, green, and blue val-
ues are found independently, and the final result of the shader is computed.

sampler InputImage;

float2 sampleOffsets[8];

struct PS INPUT

{

float2 texCoord:TEXCOORD0;

Advanced Image Processing with DirectX 9 Pixel Shaders
455

Section IV — Image Space

};

float4 main(PS INPUT In) : COLOR

{

int i =0;

float4 result;

float2 texCoords[3];

float3 texSamples[3];

texCoords[0] = In.texCoord + sampleOffsets[1];

texCoords[1] = In.texCoord;

texCoords[2] = In.texCoord + sampleOffsets[6];

// the top and bottom neighbors of this texel

for(i=0; i <3; i++)

{

texSamples[i].xyz = tex2D(InputImage, texCoords[i]);

}

result.r = FindMedian(texSamples[0].r,texSamples[1].r,texSamples[2].r);

result.g = FindMedian(texSamples[0].g,texSamples[1].g,texSamples[2].g);

result.b = FindMedian(texSamples[0].b,texSamples[1].b,texSamples[2].b);

result.a = 0;

return result;

}

Median Filter Results

To test the ability of this median filter approximation to remove salt and pepper
noise, we have added noise to a test image and run the median filter over it twice
to obtain the results shown in Figure 9.

Figure 9: Median filter results

The original image (Figure 9a) has had some noise added to it. With only one pass
of the median filter, much of the noise is removed (Figure 9b). Applying the
median filter a second time eliminates the noise almost completely (Figure 9c).

456
Advanced Image Processing with DirectX 9 Pixel Shaders

Section IV — Image Space

(a) Original (b) One median pass (c) Two median passes

Median-filtering the red, green, and blue channels of the image independently is a
reasonably arbitrary decision that seems to work well for our data. You may find
that another approach, such as converting to luminance and then determining the
median luminance, works better for your data.

Fourier Transform

A very powerful concept in image processing is transformation of spatial domain

images into the frequency domain via the Fourier Transform. All of the images that
we have discussed so far have existed in the spatial domain. Using the Fourier
Transform, we can transform them to the frequency domain, where the images
are represented not by a 2D array of real-valued brightness values distributed
spatially, but by a 2D array of complex coefficients that are used to weight a set of
sine waves, which when added together would result in the source image. This
set of sine waves is known as a Fourier series, named for its originator, Jean
Baptiste Joseph Fourier. Fourier’s assertion was that any periodic signal can be
represented as the sum of a series of sine waves. This applies to any sort of sig-
nal, including images. The conversion from the spatial domain to the frequency
domain is performed by a Fourier Transform. In the case of digital images consist-
ing of discrete samples (pixels), we use a Discrete Fourier Transform (DFT). The
equations for performing a DFT and its inverse on a two-dimensional image are
shown below:

Fourier Transform

� � � � � �
H u v

MN
h x y e

i ux M vy N

y

N

x

M

, , / /
�

� �

�

�

�

�

��
1 2

0

1

0

1
�

Inverse Fourier Transform

� � � � � �
h x y H u v e

y

N

x

M
i ux M vy N, , / /

�
�

�

�

�
�

��
0

1

0

1
2�

. . .where h(x, y) is the value of the pixel located at location (x, y), H(u, v) is the
value of the image in frequency space at location (u, v), M is the width of the
image in pixels, and N is the height of the image in pixels.

For these equations, it is important to remember that these are complex
numbers (i is the square root of –1). Additionally, from complex math:

� � � �e x i xix � �cos sin and � � � �e x i xix� � �cos sin

GPU Implementation

A naïve implementation of these operations would be an extremely expensive
processing step, O(n4) in big O notation. Fortunately, much research has gone into
a class of algorithms known as Fast Fourier Transforms (FFTs). These algorithms
refactor the transform equations above to reduce the complexity to O(n � log n).
The initial algorithm described to accomplish this is referred to as “Decimation in
Time” and was published in 1965 by Cooley and Tukey [Cooley65]. As it turns
out, the decimation in time algorithm translates very naturally to multipass

Advanced Image Processing with DirectX 9 Pixel Shaders
457

Section IV — Image Space

rendering on graphics hardware with floating-point pixel processing pipelines. Our
multipass rendering technique is based on the code listed in [Crane96].

The FFT uses two primary optimizations to minimize its computational com-
plexity. The first optimization that the FFT makes is to exploit the transform’s
separability and break the two-dimensional transform into several one-dimen-
sional transforms. This is done by performing a one-dimensional FFT across the
rows of the image followed by a one-dimensional FFT along the columns of the
resulting image. This greatly reduces the growth in complexity of the operation as
the image size grows. The next optimization uses the fact that a Fourier Trans-
form of size N can be rewritten as the sum of two Fourier Transforms of size N/2,
eliminating redundant computations. This portion of the optimization reduces the
cost of the one-dimensional transforms from O(n2) to O(n � log n).

The first thing to note when using a GPU to implement an FFT based on the
decimation in time algorithm is that, to maintain most of its efficiency improve-
ments, the algorithm must be implemented in multiple passes by rendering to
floating-point temporary buffers. If the spatial domain image is color (i.e., has mul-
tiple channels), these temporary buffers need to be set up as multiple render tar-
gets, since the frequency domain representation of the image uses complex
numbers, thus doubling the number of channels on the output.

For a width × height image, the decimation in time FFT algorithm takes
log2(width) + log2(height) + 2 rendering passes to complete. For example, a
512×512 image takes 20 rendering passes, which renders at approximately 30
frames per second on today’s fastest graphics processors. Because each step of
the computation is based solely on the previous step, we are able to conserve
memory and ping-pong between two floating-point renderable textures to imple-
ment the following steps of the decimation in time algorithm:

1. Horizontal scramble using scramble map to do dependent texture reads from
the original image

2. log2 (width) butterfly passes

3. Vertical scramble using scramble map again

4. log2 (height) butterfly passes

Let’s describe each of these steps in detail.

Scramble
The decimation in time algorithm starts with a phase referred to as a scramble.
This phase reorders the data such that:

data[i] :=: data[rev(i)]

. . .where rev(i) is the bit reverse of i.
In other words, the data member at location i is swapped with the data mem-

ber at the location at the bit-reversed address of i. The bit reverse of a given
value is its mirror image written out in binary. For example, the bit reverse of
0111 is 1110. Figure 10 shows an example of a scramble of a 16-element image.

458
Advanced Image Processing with DirectX 9 Pixel Shaders

Section IV — Image Space

Values connected by arrows in Figure 10 are swapped during the scramble step.
Obviously, symmetric values such as 0000, 0110, 1001, and 1111 are left in place.
Since pixel shaders can’t easily do such bit-twiddling of pixel addresses, the most
effective way to perform the scramble step is via a dependent read from the input
image using a specially authored scramble map stored in another texture to pro-
vide the bit-twiddled address from which to do the dependent read. The shader to
perform such a dependent read for the horizontal scramble is shown below:

sampler scramble : register(s0);

sampler sourceImage : register(s1);

struct PS INPUT

{

float1 scrambleLoc:TEXCOORD0;

float2 imagePos:TEXCOORD1;

};

float4 main(PS INPUT In) : COLOR

{

float2 fromPos;

fromPos = In.imagePos;

// scramble the x coordinate

// fromPos.x gets assigned red channel of texture

fromPos.x = tex1D(scramble, In.scrambleLoc);

return tex2D(sourceImage, fromPos);

}

It is important to remember that the scramble map must contain enough bits to
uniquely address each texel in the source image. Typically, this means the texture
should be a 16-bit single channel texture, preferably an integer format such as
D3DFMT_L16.

Butterflies
Once the image has been scrambled, a series of butterfly operations are applied to
the image. In each butterfly pass, a pair of pixels is combined via a complex multi-
ply and add. Due to the inability of graphics processors to write to random loca-
tions in memory, this operation must be done redundantly on both of the pixels in
the pair, and therefore some of the ideal FFT efficiency gains are lost. The

Advanced Image Processing with DirectX 9 Pixel Shaders
459

Section IV — Image Space

Figure 10: Simple scramble of 16×1 image

locations of the paired pixels are encoded in a butterfly map. The butterfly map is
as wide as the source image and has one row for each butterfly step. The code for
applying horizontal butterflies is shown below.

//all textures sampled nearest

sampler butterfly : register(s0);

sampler sourceImage : register(s1);

struct PS INPUT

{

float2 srcLocation:TEXCOORD0;

};

//constant to tell which pass is being used

float pass; // pass = passNumber / log2(width)

float4 main(PS INPUT In) : COLOR

{

float2 sampleCoord;

float4 butterflyVal;

float2 a;

float2 b;

float2 w;

float temp;

sampleCoord.x = srcLocation.x;

sampleCoord.y = pass;

butterflyVal = tex2D(butterfly, sampleCoord);

w = butterflyVal.ba;

//sample location A

sampleCoord.x = butterflyVal.y;

sampleCoord.y = srcLocation.y;

a = tex2D(sourceImage, sampleCoord).ra;

//sample location B

sampleCoord.x = abs(butterflyVal.x);

sampleCoord.y = srcLocation.y;

b = tex2D(sourceImage, sampleCoord).ra;

//multiply w*b (complex numbers)

temp = w.x*b.x - w.y*b.y;

b.y = w.y*b.x + w.x*b.y;

b.x = temp;

//perform a + w*b or a - w*b

a = a + ((butterflyVal.x < 0.0) ? -b : b);

//make it a 4 component output for good measure

return a.xxxy;

}

460
Advanced Image Processing with DirectX 9 Pixel Shaders

Section IV — Image Space

The shader performs an extremely simple operation to accomplish its goal. First,
it fetches a texture to determine where on this line of the image to get two para-
meters a and b. This same texel contains a factor w that is combined with a and b

to produce the final result. From these parameters, the algorithm can actually pro-
duce two of the results needed for the next pass (a' and b'), but since GPUs do not
perform random writes to memory, the texture also includes a flag for which value
to leave at this location. The following equation, a butterfly operation, shows the
math used to convert a and b to a' and b'.

a a wb

b a wb

'
'
� �

� �

The shader only concerns itself with a single channel image and expects that the
real component is fetched into the first component and the imaginary component
is fetched into the fourth component. To handle more components, the shader
does not need to change significantly, but it does need to use separate textures
and multiple render targets to handle more than two channels simultaneously.
The largest amount of magic is in the special butterfly texture. This texture con-
tains the offsets of the a and b parameters to the function in its first two compo-
nents and the real and imaginary parts of the w parameter in its last two
components. Additionally, the second texture coordinate is given a sign to encode
whether this execution of the shader should produce a' or b'. To ensure an accu-
rate representation of all this with the ability to address a large texture, a 32-bit
per-component floating-point texture is the safest choice.

After the scramble and butterfly passes are applied in the horizontal direc-
tion, the same operations are applied to the columns of the image to get the verti-
cal FFT. The overall algorithm looks something like the following pseudocode:

// Horizontal scramble first

SetSurfaceAsTexture(surfaceA); //input image

SetRenderTarget(surfaceB);

LoadShader(HorizontalScramble);

SetTexture(ButterflyTexture[log2(width)]);

DrawQuad();

// Horizontal butterflies

LoadShader(HorizontalButterfly);

SetTexture(ButterflyTexture[log2(width)]);

for (i = 0; i < log2(width); i++)

{

SwapSurfacesAandB();

SetShaderConstant(“pass”, i/log2(width));

DrawQuad();

}

// Vertical scramble

SwapSurfacesAandB();

LoadShader(VerticalScramble);

SetTexture(ButterflyTexture[log2(height)]);

DrawQuad();

Advanced Image Processing with DirectX 9 Pixel Shaders
461

Section IV — Image Space

// Vertical butterflies

LoadShader(VerticalButterfly);

SetTexture(ButterflyTexture[log2(height)]);

for (i = 0; i < log2(height); i++)

{

SwapSurfacesAandB();

SetShaderConstant(“pass”, i/log2(height));

DrawQuad();

}

To transform back to the spatial domain, the same operations are performed on
the data, except that as one final step the data has a scaling factor applied to bring
it into the correct range.

Results

So, now that we know how to apply an FFT to an image using the graphics pro-
cessor, what have we computed? What does this frequency domain representation
look like, and what does it mean?

The output of the Fourier Transform consists not only of complex numbers
but also typically spans a dynamic range far greater than what can be displayed
directly in print or on a monitor. As a result, the log of the magnitude of the fre-
quency is typically used when displaying the Fourier domain. The function used to
visualize the Fourier domain in this article is given below:

� � � �f x x re x i� � � �0 1 1 2 2. log . .

Finally, the image is also shifted into what is referred to as normal form. This is
done primarily as a way to simplify the interpretation of the data. The shift can be
done on graphics hardware by setting the texture wrap mode to repeat and biasing
the texture coordinates by (–0.5, –0.5). In this format, the lowest frequencies are
all concentrated in the center of the frequency-domain image, and the frequencies
are progressively higher, closer to the edges of the image.

462
Advanced Image Processing with DirectX 9 Pixel Shaders

Section IV — Image Space

Figure 11: Original image Figure 12: Fourier Transform
(raw)

Figure 13: Fourier Transform in
normal form

Utilizing the FFT

Besides just providing an interesting way to look at and analyze images, the fre-
quency space representation allows certain operations to be performed more effi-
ciently than they could be in the spatial domain.

First, removing high frequencies that contribute to aliasing can be most eas-
ily performed in frequency space. The simplest implementation of this simply
crops the image in frequency space to remove the higher frequencies. This is the
application of what is called the ideal filter, but its results tend to be anything but
ideal on an image of finite size. The ideal filter really has an infinite width in the
spatial domain, so when the cropped image is transformed back to the spatial
domain, sharp edges will ring with ghosts propagating in the image. Other filters
have been designed to work around such issues. One well-known filter for this
sort of purpose is the Butterworth filter.

Additionally, frequency space can be used to apply extremely large convolu-
tions to an image. Convolutions in image space are equivalent to multiplication in
the frequency domain. So instead of having a multiply and add for each element of
a convolution mask at each pixel, as would be required in the spatial domain, the
operation takes only a multiply per pixel in the frequency domain. This is most
useful on large non-separable filters like the Laplacian of Gaussians (LoG), which
produces a second order derivative that can be used to find contours in images. In
Figure 14, a LoG filter has been applied to the reference image used throughout
the section. To apply the filter in the frequency domain, the image and the filter
must first both be transformed into the frequency domain with the Fourier Trans-
form. The filter must also be centered and padded
with zeros so that it is the same size as the image
to which it is being applied. Once in the frequency
domain, the filter and image — both of which con-
tain complex numbers — must undergo a com-
plex multiplication. The result is next run through
the Inverse Fourier Transform. Finally, the image
must be translated similar to the way in which the
frequency space images are translated to get the
correct image. This last step appears to be often
unmentioned in discussions of this operation, but
failure to do it can lead to a fruitless bug hunt.

Conclusion

In this chapter, we’ve added some sophisticated tools to our image processing
toolbox, including HSV�RGB color space conversion, the Canny edge detection
filter, and separable implementations of a Gaussian blur, a median filter, and the
decimation in time formulation of the Fast Fourier Transform. We hope that these
implementations, presented here in the industry standard DirectX 9 High Level
Shading Language, are easy for you to drop into your own image processing

Advanced Image Processing with DirectX 9 Pixel Shaders
463

Section IV — Image Space

Figure 14: 17×17 Laplacian of
Gaussian operation

applications. We also hope that they inspire you to create even more powerful
image processing operations specific to your needs.

Sample Application

The image processing techniques presented in this chapter were developed using
live and recorded video fed to Direct3D via the Microsoft Video Mixing Renderer
(VMR). The sample app, VideoShader, demonstrates the use of Direct3D and the
VMR, with the above filters and several others implemented using HLSL. Source
for the sample application and all of the shaders is available on the companion CD
as well as the ATI Developer Relations web site (www.ati.com/developer). The
latest version of VideoShader is available at http://www2.ati.com/misc/demos/
ATI-9700-VideoShader-Demo-v1.2.exe.

Acknowledgments

Thanks to John Isidoro of Boston University and ATI Research for the separable
Gaussian filter implementation. Thanks to Michael Gennert of Worcester Poly-
technic Institute and David Gosselin of ATI Research for discussions that resulted
in the implementation of the separable median filter approximation.

References

[Canny86] Canny, John, “A Computational Approach to Edge Detection,” IEEE
PAMI 8(6) 679-698, November 1986.

[Cooley65] Cooley, J. W. and O. W. Tukey, “An Algorithm for the Machine Calcula-
tion of Complex Fourier Series,” Mathematics of Computation, 19, 297-301, 1965.

[Crane96] Crane, Randy, A Simplified Approach to Image Processing: Classical and

Modern Techniques in C, Prentice Hall, 1996.

[Foley90] James Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes,
Computer Graphics: Principles and Practice, Second Ed., Addison-Wesley, 1990.

[Gennert03] Gennert, Michael, personal communication, 2003.

[Jain95] Jain, Ramesh and Rangachar Kasturi, et al., Machine Vision, McGraw Hill,
1995.

[Mitchell02] Mitchell, Jason L., “Image Processing with 1.4 Pixel Shaders in
Direct3D,” Direct3D ShaderX: Vertex and Pixel Shader Tips and Tricks, Wolfgang
Engel, ed., Wordware Publishing, 2002, pp. 258-269.

[Smith78] Smith, Alvy Ray, “Color Gamut Transform Pairs,” SIGGRAPH ’78, pp.
12-19.

464
Advanced Image Processing with DirectX 9 Pixel Shaders

Section IV — Image Space

Night Vision: Frame Buffer Post-
processing with ps.1.1 Hardware

Guillaume Werle

Introduction

A few years ago, when hardware-accelerated rendering was starting to be a com-
mon feature in every game engine, players complained that all games were some-
how looking quite the same.

Now that programmable hardware is available, the entire rendering process
can be configured. This means that any game with a creative graphic programmer
or a skilled technical artist can have its own graphic touch and look that is differ-
ent from the others.

Frame buffer post-processing is one of the easiest ways to achieve a unique
look. Many resources on these topics are available on the Internet nowadays, but
most of them make use of ps.1.4 hardware. In this article I describe how to use
texture-dependent reads on ps.1.1 class hardware to achieve the following effect
(see Figures 1 and 2).

465

Figure 1: Scene from the Raw Confessions demo
(models and textures by Christophe Romagnoli
and Guillaume Nichols)

Figure 2: Scene from the Raw Confessions demo
(models and textures by Christophe Romagnoli
and Guillaume Nichols)

Description

Texture-dependent reads are definitely harder to use when targeting ps.1.1 hard-
ware. The rendering process is split into several passes to take care of this issue.

Here’s a quick description of the required steps to achieve this effect:

1. Render the scene in a texture.

2. Convert to grayscale while rendering in another render texture.

3. Use the luminance value of each pixel as an index into a gradient texture and
render in the frame buffer.

Technical Brief on Render Texture

Instead of rendering directly in the frame buffer, the rendering must be done in a
texture. Create a texture with the same size, color format, and depth format as
your frame buffer, and then use the ID3DXRenderToSurface interface provided
with the D3DX library to map that the BeginScene() and the EndScene() calls.

NOTES

� Render textures’ dimensions don’t need to be aligned on a power of two
if the caps D3DPTEXTURECAPS_NONPOW2CONDITIONAL is set.

� Don’t use the D3DXCreateTexture() function to create your render tex-
ture; this function will round the dimensions to the nearest power of two,
even if it’s not needed.

Converting to Grayscale

The luminance value of a color can be computed using a dot product.

Luminance = Red � 0.3 + Green � 0.59 + Blue � 0.1

The following pixel shader applies this formula to output the luminance value in
every color channel:

ps.1.1

tex t0 // rgb texture

// c0 = (0.3, 0.59, 0.1, 1.0)

dp3 r0, t0, c0 // r0 = t0.r * 0.3 + t0.g * 0.59 + t0.b * 0.1

466
Night Vision: Frame Buffer Post-processing with ps.1.1 Hardware

Section IV — Image Space

Quad Rendering

Once the scene is stored in the texture, a quad is used for rendering into the
frame buffer.

The Microsoft Direct3D texture sampling rules say that texels are fetched in
the top-left corner. For example, when enabling bilinear filtering, if you sample a
texel at the coordinates (0,0) and if the addressing mode is set to warp, the result-
ing color will be a mix of the four corners of the texture.

Knowing this, an offset of a half-texel size (0.5 / TextureSize) must be added
to the texture coordinates.

Color Remapping

This is the last step of the effect. The pixel shader in charge of the color remap-
ping uses the texreg2gb dest, src instruction. This opcode is able to interpret
the green and blue color components of the source register — the grayscale tex-
ture — as texture coordinates to sample the destination register — the gradient
texture.

The gradient texture is a simple 1D texture. Figure 3 shows the gradient
used to produce Figures 1 and 2.

This code snippet shows the whole pixel shader :

ps.1.1

// t0 grayscale texture

// t1 gradient

tex t0 // grayscale texture

texreg2gb t1, t0 // sample t1 at the coordinates (t0.g, t0.b)

mov r0, t1 // output

Enhancement

Those shaders leave a great deal of room for visual improvements and
experimentation; for example, a blur filter can be applied while converting the pic-
ture to grayscale, and some extra textures can be blended with the gradient
remapping results. Figures 1 and 2 use this technique to achieve the scanline
screening effects.

Night Vision: Frame Buffer Post-processing with ps.1.1 Hardware
467

Section IV — Image Space

Figure 3: 1D gradient texture

Final Words

I implemented this shader for a demo scene application called Raw Confession.
The demo can be found on the companion CD or downloaded from my web page:
http://cocoon.planet-d.net/raw/!Raw_Beta.zip.

The corresponding RenderMonkey workspace can be found on the compan-
ion CD as well.

Special thanks to Bertrand Carre and David Levy for proofreading this
article.

468
Night Vision: Frame Buffer Post-processing with ps.1.1 Hardware

Section IV — Image Space

Non-Photorealistic
Post-processing Filters in

MotoGP 2

Shawn Hargreaves

Stylized rendering techniques are cool, and with programmable shader hardware,
they can be easy to implement too. This article discusses how such effects can be
applied as a post-process over the top of a conventional renderer. The goal is to
have a minimal impact on the structure of an existing engine so that if you are
already using 100 different shaders, adding a new stylized filter should only
increase this to 101, rather than needing a modified version of every existing
shader.

The idea is to render your scene as normal but to an off-screen texture
instead of directly to the D3D back buffer. The resulting image is then copied
across to the back buffer by drawing a single full-screen quad, using a pixel shader
to modify the data en route. Because this filter is applied entirely as a 2D image
space process, it requires no knowledge of the preceding renderer. In fact, these
techniques can just as easily be used over the top of video playback as with the
output of a real-time 3D engine.

Setting Up the Swap Chain

The first step in getting ready to apply a post-processing filter is setting up a swap
chain that lets you hook in a custom pixel shader operation. A typical D3D swap
chain looks something like this:

Depending on which D3DSWAPEFFECT you specified when creating the device,
the Present() call might swap the two buffers or it might copy data from the back
buffer to the front buffer, but either way there is no room for you to insert your
own shader anywhere in this process.

To set up a post-processing filter, you need to create a texture with D3D-
USAGE_RENDERTARGET and an associated depth buffer. You can then set
EnableAutoDepthStencil to FALSE in the D3DPRESENT_PARAMETERS

469

structure, since you will not need a depth buffer while drawing to the D3D back
buffer. This results in a triple-buffered swap chain:

The rendering process now looks like:
� BeginScene().
� Set your texture as the active render target.
� Draw the 3D scene.
� Restore the D3D back buffer as the render target, and set your texture sur-

face as the active texture.
� Draw a full-screen quad to copy the image, applying pixel shader filtering

effects.
� Draw 2D user interface elements such as menus and the heads-up display,

which will not be affected by stylistic processing.
� Call D3D Present() and EndScene().

An incidental benefit of extending the swap chain in this way is that if you create
your device with D3DSWAPEFFECT_COPY (so the D3D back buffer will persist
from one frame to the next), you can turn on alpha blending during the filter oper-
ation to get a cheap full-screen motion blur, blending in some proportion of the
previous frame along with the newly rendered image.

The main disadvantage is that texture render targets do not support
multisampling, so you cannot use any of the clever antialiasing techniques found
in modern GPUs.

What Size Render Target?

Display resolutions tend to have dimensions like 640x480, 1024x768, or
1280x1024, which are not powers of two. This is OK as long as the driver exposes
the NONPOW2CONDITIONAL texture capability, but some hardware does not
support this, and even on cards that do, pixel shader versions 1.0 to 1.3 do not
allow dependent reads into such textures.

The solution is simple: Round up your render target size to the next larger
power of two, which for a 640x480 display mode is 1024x512. While drawing the
scene, set your viewport to only use the top-left 640x480 subset of this image,
and when you come to copy it across to the D3D back buffer, modify your texture
coordinates accordingly.

Beware of a common “gotcha” in the calculation of those texture coordinates.
To preserve correct texture filtering during a full-screen image copy, a half-texel
offset must be added. When copying the top-left portion of a 1024x512 render tar-
get onto a 640x480 back buffer, the correct texture coordinates are:

Top left: u = 0.5 / 1024 v = 0.5 / 512
Bottom right: u = 640.5 / 1024 v = 480.5 / 512

470
Non-Photorealistic Post-processing Filters in MotoGP 2

Section IV — Image Space

Color Conversions

OK, so we are all set up to feed the output of our main renderer through the pixel
shader of our choosing. What do we want that shader to do?

The most obvious, and probably most widely useful, type of operation is to
perform some kind of colorspace conversion. This could be as simple as a colored
tint for a certain type of lens or a gamma curve adjustment to simulate different
camera exposure settings. The image could be converted to monochrome or sepia
tone, and by swapping or inverting color channels, night vision and infrared
effects can easily be imitated.

The most flexible way of transforming colors is to use the RGB value sam-
pled from the source image as coordinates for a dependent read into a volume tex-
ture. A full 256x256x256 lookup table would be prohibitively large (64MB if stored
in a 32-bit format!), but thanks to bilinear filtering of the volume texture, a much
smaller table can still give adequate results. Even a small volume texture is still
much bigger than a pixel shader, though, and its effects cannot so easily be
changed just by modifying a few constants. So wherever possible, I think it is
better to do your work directly in the shader.

This is the saturation filter from MotoGP 2. The result of using this filter on
Figure 1 is shown in Figure 2 (see Color Plate 21). It makes bright colors more
intense and primary, while converting the more subtle tones to grayscale. This
demonstrates several important principles of pixel shader color manipulation.

ps.1.1

def c0, 1.0, 1.0, 1.0, 1.0

def c1, 0.3, 0.59, 0.11, 0.5

tex t0 // sample the source image

1: mov x4 sat r0.rgb, t0 bx2 // saturate

2: dp3 sat r1.rgba, r0, c0 // do we have any bright colors?

3: dp3 r1.rgb, t0, c1 // grayscale

4: lrp r0.rgb, r1.a, r0, r1 // interpolate between color and grayscale

5: + mov r0.a, t0.a // output alpha

Non-Photorealistic Post-processing Filters in MotoGP 2
471

Section IV — Image Space

Figure 1: The source image used by all
the filters shown in the following figures

Figure 2: Color saturation filter

Instruction #1 (mov_x4_sat) calculates an intensified version of the input color.
The _bx2 input modifier scales any values less than 0.5 down to zero, while the
_x4 output modifier scales up the results, so anything greater than 0.625 will be
saturated right up to maximum brightness. It is important to remember the _sat
modifier when doing this sort of over-brightening operation because if you leave it
out, calculations that overflow 1.0 will produce inconsistent results on different
hardware. DirectX 8 cards will always clamp the value at 1.0 (as if the _sat modi-
fier was present), but ps 1.4 or 2.0 hardware will not.

Instruction #3 calculates a monochrome version of the input color by dotting
it with the constant [0.3, 0.59, 0.11]. It doesn’t really matter what values you use
for this, and [0.33, 0.33, 0.33] might seem more logical, but these values were
chosen because the human eye is more sensitive to the luminance of the green
channel and less sensitive to blue. These are the same scaling factors used by the
standard YUV colorspace.

Instruction #4 chooses between the saturated or monochrome versions of
the color, based on what instruction #2 wrote into r1.a. That summed all the satu-
rated color channels to create a Boolean selector value, which contains 1 if the
input color is bright enough to saturate upward or 0 if the input is dark enough for
the _bx2 modifier to round it down to black. In C, this calculation would be:

color = (source brightness > 0.5) ? saturated color : monochrome color

The cnd pixel shader instruction seems ideal for such a task, but in fact it is
almost always better to use lrp instead. A discrete test such as cnd tends to cause
popping artifacts as the input data moves past its selection threshold, where a lrp
can give a smooth transition over a range of values.

Displacement Effects

You can do color conversions by using the input color as source coordinates for a
dependent texture read into a lookup table. But what if you reversed this and used
another texture as the source for a dependent read into the image of your main
scene? The shader is trivial:

ps.1.1

tex t0 // sample the displacement texture

texm3x2pad t1, t0 bx2

texm3x2tex t2, t0 bx2 // sample the source image

mov r0, t2

But by the appropriate choice of a displacement texture, all sorts of interesting
effects can be achieved — heat haze, explosion shock waves, refraction of light
through patterned glass, or raindrops on a camera lens (or in this case, sticking
with a non-photorealistic theme, the mosaic effect shown in Figure 3; see Color
Plate 21).

472
Non-Photorealistic Post-processing Filters in MotoGP 2

Section IV — Image Space

Our goal is to cover the screen with a
grid of hexagons, each filled with a solid
color. Imagine what a 160x100 CGA
mode might have looked like if IBM had
used hexagonal pixels…

This can be done by tiling a hexago-
nal displacement texture over the
screen. The values in this texture mod-
ify the location at which the main scene
image is sampled. With the right dis-
placement texture, all pixels inside a
hexagon can be adjusted to sample
exactly the same texel from the source
image, turning the contents of that hexagon into a single flat color.

The texture coordinates for stage 0 control how many times the displace-
ment texture is tiled over the screen, while stages 1 and 2 hold a 3x2 transform
matrix. If the hexagon pattern is tiled H times horizontally and V times vertically,
your vertex shader outputs should be:

oPos oT0 oT1 oT2
(0, 0) (0, 0) (0.5 * (right – left) / H, 0, left) (0, 0.5 * (bottom – top) / V, top)

(1, 0) (H, 0) (0.5 * (right – left) / H, 0, right) (0, 0.5 * (bottom – top) / V, top)

(1, 1) (H, V) (0.5 * (right – left) / H, 0, right) (0, 0.5 * (bottom – top) / V, bottom)

(0, 1) (0, V) (0.5 * (right – left) / H, 0, left) (0, 0.5 * (bottom – top) / V, bottom)

left, right, top, and bottom are the texture coordinates given in the “What Size Ren-
der Target” section.

The horizontal offset comes from the red channel of the displacement texture
and the vertical offset from the green channel. The blue channel must contain
solid color, as this will be multiplied with the last column of the oT1/oT2 matrix to
give the base coordinates onto which the displacement is added.

The only remaining question is what to put in your displacement texture. If
you are good with Photoshop, you could probably draw one using the gradient fill
tools, but it is easier to generate it in code. My hexagon pattern was created by a
render to texture using the function:

void draw mosaic hexagon()

{

// x y r g b

draw quad(Vtx(0.0, 0.0, 0.5, 0.5, 1.0),

Vtx(0.5, 0.0, 1.0, 0.5, 1.0),

Vtx(0.5, 0.5, 1.0, 1.0, 1.0),

Vtx(0.0, 0.5, 0.5, 1.0, 1.0));

draw quad(Vtx(1.0, 1.0, 0.5, 0.5, 1.0),

Vtx(0.5, 1.0, 0.0, 0.5, 1.0),

Vtx(0.5, 0.5, 0.0, 0.0, 1.0),

Vtx(1.0, 0.5, 0.5, 0.0, 1.0));

draw quad(Vtx(1.0, 0.0, 0.5, 0.5, 1.0),

Non-Photorealistic Post-processing Filters in MotoGP 2
473

Section IV — Image Space

Figure 3: Hexagonal mosaic filter using
dependent texture reads

Vtx(0.5, 0.0, 0.0, 0.5, 1.0),

Vtx(0.5, 0.5, 0.0, 1.0, 1.0),

Vtx(1.0, 0.5, 0.5, 1.0, 1.0));

draw quad(Vtx(0.0, 1.0, 0.5, 0.5, 1.0),

Vtx(0.5, 1.0, 1.0, 0.5, 1.0),

Vtx(0.5, 0.5, 1.0, 0.0, 1.0),

Vtx(0.0, 0.5, 0.5, 0.0, 1.0));

draw quad(Vtx(0.0, 0.333, 0.0, 0.333, 1.0),

Vtx(1.0, 0.333, 1.0, 0.333, 1.0),

Vtx(1.0, 0.667, 1.0, 0.667, 1.0),

Vtx(0.0, 0.667, 0.0, 0.667, 1.0));

draw tri(Vtx(0.0, 0.333, 0.0, 0.333, 1.0),

Vtx(1.0, 0.333, 1.0, 0.333, 1.0),

Vtx(0.5, 0.167, 0.5, 0.167, 1.0));

draw tri(Vtx(0.0, 0.667, 0.0, 0.667, 1.0),

Vtx(1.0, 0.667, 1.0, 0.667, 1.0),

Vtx(0.5, 0.833, 0.5, 0.833, 1.0));

}

Rendering more complex animating patterns into the displacement texture can
produce a huge range of cubist or pointillistic style distortions; check out the
Kaleidoscope filter in MotoGP 2 for some examples. Scaling or rotating the offset
values in oT1 and oT2 also gives interesting results.

Cartoon Rendering

The main characteristics of a cartoon style are black lines around the edges of
objects and the use of flat color where there would normally be textured detail or
smooth lighting gradients. There are plenty of ways to achieve these effects, most
of which have been described in detail elsewhere, but the technique presented
here is unusual in that it requires minimal changes to an existing renderer and no
artwork or mesh format alterations whatsoever.

The first step is to add black borders
by running an edge detect filter over the
image of our scene. This is done by set-
ting the same texture three times on dif-
ferent stages with the texture
coordinates slightly offset. The pixel
shader compares the brightness of adja-
cent samples and, if the color gradient is
steep enough, marks this as an edge
pixel by turning it black. The following
shader produced the image shown in Fig-
ure 4 (see Color Plate 21):

474
Non-Photorealistic Post-processing Filters in MotoGP 2

Section IV — Image Space

This displacement texture
produces a hexagonal
mosaic pattern.

Figure 4: The cartoon shader starts by
applying an edge detect filter.

ps.1.1

def c0, 0.3, 0.59, 0.11, 0

tex t0 // sample the source image

tex t1 // sample offset by (-1, -1)

tex t2 // sample offset by (1, 1)

dp3 r0.rgba, t1, c0 // grayscale sample #1 in r0.a

dp3 r1.rgba, t2, c0 // grayscale sample #2 in r1.a

sub x4 r0.a, r0, r1 // diagonal edge detect difference

mul x4 sat r0.a, r0, r0 // square edge difference to get absolute value

mul r0.rgb, r0, 1-r0.a // output color * edge detect

+ mov r0.a, t0.a // output alpha

More accurate edge detection can be done by using a larger number of sample
points or by including a depth buffer and looking for sudden changes in depth as
well as color (see the references at the end of this article), but in this case we
don’t actually want that precise of a result! With the samples offset along a single
diagonal line, the filter favors edges in one direction compared to the other, which
gives a looser, more hand-drawn appearance.

Image-based edge detection can pick out borders that would be impossible to
locate using a geometric approach, such as the lines around individual clouds in
the sky texture.

Getting rid of unwanted texture detail is not as easy to do as a post-process,
so for that we do need to change the main rendering engine. This is a trivial alter-
ation, however, as you undoubtedly
already have flat color versions of all
your textures loaded into memory. Sim-
ply set D3DSAMP_MAXMIPLEVEL (or
D3DTSS_MAXMIPLEVEL in DX8) to
something greater than zero, and all that
nasty high-resolution texture detail will
go away, as shown in Figure 5 (see Color
Plate 21).

While you are at it, if you have any
alpha texture cutouts, such as trees, a
few trivial changes can make their black
borders thicker and more solid. You
probably already have a good idea how to
do that, as chances are that you spent quite a while trying to get rid of those very
same black borders at some point in the past. If you are using premultiplied alpha,
disable it. If you are using alpha blending, turn it off and go back to simple alpha
tests. If you have D3DRS_ALPHAREF set to something sensible, change it to 0
or 1 — instant black borders around everything you draw!

Unfortunately, this still isn’t quite enough to give a plausible cartoon effect,
so I’m going to have to break the “no new shaders” rule and change the lighting

Non-Photorealistic Post-processing Filters in MotoGP 2
475

Section IV — Image Space

Figure 5: Changing the mipmap settings
to remove texture detail

model. Smooth gradients from light to dark just don’t look right in a cartoon
world. The lighting should be quantized into only two or three discrete levels,
with sudden transitions from light to shadow.

This is easy to do with a texture lookup. Discard everything but the most sig-
nificant light source, and then in your vertex shader, output the light intensity as a
texture coordinate:

#define LIGHT DIR 1 // object space light direction vector

dp3 oT1.x, v1, c[LIGHT DIR] // dot vertex normal with the light direction

This light value is used to lookup into a 1D texture containing three discrete lev-
els of brightness:

Figure 6 (see Color Plate 21) shows the
final cartoon renderer, combining the
edge detect filter, changes to the
mipmap and alpha test settings, and
three-level quantized lighting. It isn’t
quite a pure post-processing effect, but it
still only required three new shaders:
one pixel shader for the edge detection
and two vertex shaders for the toon
lighting (one for the bike, another for the
animating rider).

Pencil Sketch Effect

The most important characteristics of a pencil sketch can be summarized as:
� Drawing starts with an empty piece of white paper, which is then darkened

down by the addition of pencil strokes.
� Both the intensity and direction of the strokes may be varied to convey shape

and form, but stroke direction is mostly regular.
� Sketches are often entirely monochrome. Even when colored pencils are

used, there will be a limited color palette.
� When animations are made from a series of sketches, they tend to be at

extremely low framerates due to the amount of manual labor involved in
drawing them.

The first step is obviously to create a texture holding a suitable pattern of pencil
strokes. I used two images with slightly different stroke graphics aligned in oppo-
site directions:

476
Non-Photorealistic Post-processing Filters in MotoGP 2

Section IV — Image Space

Figure 6: The complete cartoon mode
uses a discrete three-level lighting shader
on bike and rider.

These are combined into a single texture, with the first stroke pattern in the red
channel and the second in the blue channel. This combined stroke texture is tiled
over the screen, set on texture stage 1, while the main scene image is set on
stage 0. This is then processed through the shader:

ps.1.1

def c1, 1.0, 0.0, 0.0, 0.0

def c2, 0.0, 0.0, 1.0, 0.0

tex t0 // sample the source image

tex t1 // sample the stroke texture

1: mul x4 sat r0.rgb, t0, c0 // scale the frame buffer contents

2: mul r0.rgb, 1-r0, 1-t1 // image * pencil stroke texture

3: dp3 sat r1.rgba, r0, c1 // r1.a = red channel

4: dp3 sat r1.rgb, r0, c2 // r1.rgb = blue channel

5: mul r1.rgb, 1-r1, 1-r1.a // combine, and convert –ve color back to +ve

6: mov x4 sat r0.rgb, t0 // overbrighten the frame buffer contents

7: mul r0.rgb, r1 bx2, r0 // combine sketch with base texture

8: mul x2 r0.rgb, r0, v0 // tint

9: + mov r0.a, v0.a

Instruction #1 scales the input color by a constant (c0), which is set by the appli-
cation. This controls the sensitivity of the stroke detection — too high and there
will be no strokes at all but too low and the strokes will be too dense. It needs to
be adjusted according to the brightness of your scene: somewhere between 0.25
and 0.5 generally works well.

Instruction #2 combines the input color with the stroke texture in parallel
for both the red and blue channels. It also inverts both colors by subtracting them
from one. This is important because sketching operates in a subtractive color-
space. Unlike a computer monitor, which adds light over a default black surface, a
pencil artist is removing light from the white paper. It seems highly counterin-
tuitive from my perspective as a graphics programmer, but the hatching in the
blue sky area is actually triggered by the red color channel, while the hatching on
the red bike comes from the blue channel! This is because there is no need for
any hatching to add blue to the sky, all colors already being present in the default

Non-Photorealistic Post-processing Filters in MotoGP 2
477

Section IV — Image Space

white background. On the contrary, the sky needs hatching in order to remove the
unwanted red channel, which will leave only the desired shade of blue. We are
drawing the absence of color rather than its presence, and this means we have to
invert the input values to get correct results.

Instructions #3 and #4 separate
out the red and blue color channels, cre-
ating Figure 7 and Figure 8, while
instruction #5 combines them back
together, producing Figure 9 (see Color
Plate 22). Although this is purely a
monochrome image, the input color is
controlling the direction of the stroke
texture. The blue sky and red bike are
shaded in opposing directions, while
dark areas such as the wheels combine
both stroke directions to give a cross-
hatch pattern.

Instruction #6 scales up the input
color by a massive amount, producing
Figure 10 (see Color Plate 22). Most of
the image has been saturated to full
white, with only a few areas of intensely
primary color retaining their hue. When
this is multiplied with the sketch pattern
(instruction #7, producing Figure 11), it
reintroduces a small amount of color to
select parts of the image, while leaving
the bulk of the hatching in monochrome.

478
Non-Photorealistic Post-processing Filters in MotoGP 2

Section IV — Image Space

Figure 7: Sketch strokes keyed off the
inverse of the red color channel

Figure 8: Sketch strokes in the alternate
direction keyed off the inverse blue

Figure 9: Both stroke directions combined
together

Figure 10: Overbrightening the source
image removes all but the most primary
of colors.

The final step, in instruction #8, is to apply a colored tint. Figure 12 (see
Color Plate 22) shows the final image with a sepia hue.

This is all very well for a still image, but how is a pencil sketch to move? It looks
silly if the pencil strokes stay in exactly the same place from one frame to the
next, with only the image beneath them moving. But if we randomize the stroke
texture in any way, the results will flicker horribly at anything approaching a
decent refresh speed. Real sketched animations rarely run any faster than ten or
15 frames per second, but that is hardly desirable in the context of a 3D game
engine!

My compromise was to run at full framerate, redrawing the input scene for
each frame but to only move the stroke texture at periodic intervals. The low
framerate movement of the pencil strokes can fool the eye into thinking that the
scene is only being redrawn at a plausible pencil sketch type of rate, but it
remains smooth and responsive enough for a player to interact with the underly-
ing game.

References

Better edge detection methods:

Mitchell, Jason L., “Image Processing with 1.4 Pixel Shaders in Direct3D,”
Direct3D ShaderX: Vertex and Pixel Shader Tips and Tricks, Wolfgang Engel, ed.,
Wordware Publishing, 2002, pp. 258-269.

Mitchell, Jason, Chris Brennan, and Drew Card, “Real-Time Image-Space Out-
lining for Non-Photorealistic Rendering,” SIGGRAPH 2002,
http://www.ati.com/developer/SIGGRAPH02/NPROutlining_Mitchell.pdf.

Applying image post-processing techniques to video streams:

Ansari, Marwan, “Video Image Processing Using Shaders,” ATI Research,
http://www.ati.com/developer/gdc/GDC2003_VideoShader.pdf.

Non-Photorealistic Post-processing Filters in MotoGP 2
479

Section IV — Image Space

Figure 11: The stroke pattern from Figure
9 is multiplied with the color data from
Figure 10.

Figure 12: The final sketch image is given
a yellow tint.

Doing “proper” sketch rendering with awareness of the underlying geometry, rather

than as an image post-process. These techniques can give far more sophisticated

results but are less easy to fit over the top of an existing renderer:

Buchin, Kevin and Maike Walther, “Hatching, Stroke Styles, and Pointillism,”
ShaderX2: Shader Programming Tips & Tricks with DirectX 9, Wolfgang Engel, ed.,
Wordware Publishing, Inc., 2004, pp. 340-347.

Praun, E., H. Hoppe, M. Webb, and A. Finkelstein, “Real-time hatching,”
SIGGRAPH 2001, http://research.microsoft.com/~hoppe/hatching.pdf.

The conventional approach to cartoon rendering, using geometry rather than image

post-processing:

NVidia sample program, http://developer.nvidia.com/view.asp?
IO=Toon_Shading

The cartoon and pencil sketch techniques presented in this article were devel-
oped for the Xbox game MotoGP by Climax and published by THQ. MotoGP 2
adds new filters such as saturate and mosaic and supports these effects in the PC
version as well as on the Xbox.

480
Non-Photorealistic Post-processing Filters in MotoGP 2

Section IV — Image Space

Image Effects with DirectX 9
Pixel Shaders

Marwan Y. Ansari

Introduction

When most engineers think of pixel and vertex shaders, they instantly think of
fully 3D scenes with animations and textures and the like. However, in the article
“Image Processing with 1.4 Pixel Shaders in Direct3D” [Mitchell02] as well as
the article “Advanced Image Processing Using DirectX 9 Shaders” in this book, it
was shown that shaders can be used for far more than the hardware architects
planned.

In “Advanced Image Processing Using DirectX 9 Shaders,” shaders are used
to perform image processing operations, such as Canny edge detection, HSV �
RGB color conversions, and the Fast Fourier Transform. In this article, we deal
more with the implementation of cool (well, at least we think so) image space
special effects rather than the science of image processing.

This chapter discusses three classes of image effects:
� Transitions
� Distortions
� Posterization

All of the effects discussed in this chapter were developed using the VideoShader
application supplied on the companion CD and found on the ATI developer rela-
tions web site. Furthermore, all of the effects you see here run in real time on live
video (most at better than 30 frames per second on Radeon 9700 class hardware).

481

Some Review and Notes about This Article

The techniques in this article rely on some basic concepts when processing
images. Firstly, all techniques discussed here are applied to images stored in tex-
tures. Though these algorithms were built to be applied to live video, they are not
limited to that field. The incoming texture can be the result of a 3D rendered
scene, live video, or any 2D image.

The vertex shader does little more than transform the vertex positions and
normals. It does, however, pack both transformed and raw normal information
into texture coordinates so that the pixel shader can use them.

The geometry used for these effects is a simple screen-aligned quad. When
we render the screen-aligned quad, we put the image that we want to process on
one of the texture samplers, typically sampler 0, and render. We term each ren-
dering of the quad a pass. For 3D graphics engineers, this makes complete sense.
However, in the area of image processing and image effects, rather than saying we
rendered a single quad, we say we “processed the image” once or “went over the
image” once. So in this article, though each pass does render a screen-aligned
quad, it is referred to as a pass over the image.

The two implementations of the Kuwahara filter rely on multiple passes over
the image while the other effects in this article are single pass. In some cases, the
output of pass n is used as the input to pass n+1. In other cases, one pass outputs
to a temporary buffer (a renderable texture), the next pass outputs to another
temporary buffer (another renderable texture), and a third pass samples both of
those buffers in order to get the final resultant image.

Some algorithms discussed in this article and in the “Advanced Image Pro-
cessing Using DirectX 9 Shaders” article rely on constants that are loaded from
the application. Some constants may not change over time, while some may
change every frame. Below is a list of constants used in the effects discussed in
this chapter:
� sampleOffsets[8]: Offsets for sampling the 3×3 area around the current

texel. See Figure 1. Therefore, sampleOffsets[2] contains pixel width in the x

component and pixel height in
the y component. Pixel width
and height are defined as
1/image width and 1/image

height, respectively.
sampleOffsets[6] contains 0 in
the x component and negative
pixel height in the y compo-
nent. These values are added
to the incoming texture coor-
dinate inside the pixel shader
to sample the eight nearest
neighbors.

482
Image Effects with DirectX 9 Pixel Shaders

Section IV — Image Space

Figure 1: X represents the current texel sur-
rounded by its eight nearest neighbors. The
values in the neighboring texels (0...7) are what
the indexes use to reference them in

� viewMatrix: View matrix. This is used in distortion effects.
� UserInput.z: Last X location the user clicked. This is used in thresholding

images. The left edge is 0 and the right edge is 1.
� UserPoint1.xy: First location that the user clicked. Coordinates in the range

[0,1]. Used in ripple shader.
� UserPoint2.xy: Second location that user clicked. Coordinates in the range

[0,1]. Used in ripple shader.
� Timers.w: Time value oscillating between –1 and 1. This allows effects to

use time to animate. The application updates this value on behalf of the
shader. It takes about 15 seconds for the time value to cycle from 1 to –1 and
back to 1.

� Pt1Time.x: Time value remaining for first click. It decreases from 1 to 0.
This allows effects to run for a while and then stop without having the appli-
cation swap out the shader. Used in the ripple shader.

� Pt1Time.y: Time value remaining for first click. It increases from 0 to 1.
This allows effects to run for a while and then stop without having the appli-
cation swap out the shader. Used in the ripple shader.

� Pt2Time.x: Same as Pt1Time.x but for the second ripple.
� Pt2Time.y: Same as Pt1Time.y but for the second ripple.

Finally, all of the shaders in this chapter are implemented using Microsoft’s High
Level Shading Language (HLSL) compiled for the ps.2.0 shader model under
DirectX 9. For more information on HLSL, the ps.2.0 shader model, or DirectX 9,
please see the Microsoft web site, the DirectX 9 SDK help files, or Shader X2:

Introductions & Tutorials with DirectX 9 [Mitchell04].

Transition Effects

Transition effects can be used when creating cut scenes in a game or when
switching between multiple video streams. They are the simplest of image effects
to perform because they tend to rely on spatial positioning inside the image more
than the content of the pixels. In this section we discuss three transition effects:
left-right slide, spin and shrink away, and spice transitions (created by Pixelan Soft-
ware LLC).

Left-Right Slide

The left-right slide transition is fairly straightforward. It creates the appearance
that one image is sliding in over the other. All the work is done in the pixel
shader, and no constants other than time are needed.

Figure 2 shows snapshots of the progression of the left-right slide transition.

Image Effects with DirectX 9 Pixel Shaders
483

Section IV — Image Space

The left-right slide algorithm:

For each texel (u,v)

time = time * 1.1

u' = u – time

If(u' < 0 ||u' > 1)

Sample first image using u,v

Else

Sample second image using u',v

Return sample

The first step for this shader is to remap the time value to range from –1.1 to 1.1.
We do this to give the effect a nice feel, as the image slides completely off the
screen. If we were to leave the time value range at [–1,1] the image would imme-
diately reverse its direction once it has completely slid off the screen. By chang-
ing the range to [–1.1, 1.1], we allow a fraction of a second to elapse after the
image has slid off to one side and is completely removed from screen. Then, as
time crosses into the (0,1) range, the image becomes visible again.

As you can see, the u coordinate is computed for each texel based on time.
As time approaches –1.1, u' has a range across the image of [–1,0] or mostly all
clipped. The same is true as time approaches 1.1 (when u' has a range of [1,2]).
The image is only completely visible when time = 0 and u' has a range of [0,1].

The net result is that the image appears to slide left and right without having
to render a separate pass of geometry.

The left-right slide transition:

//--//

// LRSlidingTransitionNoScale.hlsl

//

// Slide one image left and right over a second image.

//

// Marwan Y. Ansari - ATI Research, Inc. - 2003

//--//

sampler inputImage; // incoming image

sampler productImage; // transition image

float4 Timers; // for sliding animation

struct PS INPUT

{

float2 texCoord:TEXCOORD0; // incoming tex coord.

};

float4 main(PS INPUT In) : COLOR

{

// xPosition is fancy name of u coord (as in u,v)

484
Image Effects with DirectX 9 Pixel Shaders

Section IV — Image Space

Figure 2: In the five snapshots above, you can see the image of the messy cubicle slide over the
product logo until it is finally completely hidden.

// xPosition = [-1.1, 1.1]

float xPosition = Timers.w * 1.1;

float2 newCoords;

float4 c = .5;

//===//

// Calc new u Coord by subtracting off time. //

// (time range : [-1.1, 1.1]) //

//===//

xPosition = In.texCoord.x - xPosition;

//if u coord is outside 0 to 1 range,

// background image is showing.

if((xPosition < 0) || (xPosition > 1))

{

c = tex2D(productImage, In.texCoord);

}

else

{

newCoords.y = In.texCoord.y;

newCoords.x = xPosition;

c = tex2D(inputImage, newCoords);

}

return c;

}

Left-Right Squeeze

In a similar vein, we can squeeze the two images to make the transition. Again,
the only constant used is time. Instead of clipping the images against the left or
right side of the window, we keep one image touching the left edge while the
other is always touching the right edge. As time changes, the images squeeze and
stretch in the window. Figure 3 shows snapshots of the progression of the
left-right squeeze.

The left-right squeeze transition algorithm:

For each texel

Length = Scale and bias time to be between 0 and 1

If(Length < u)

u' = u scale

Sample first image using u',v.

Else

Image Effects with DirectX 9 Pixel Shaders
485

Section IV — Image Space

Figure 3: In the five snapshots above, you can see the image of the messy cube squeeze against
the product image as time goes forward.

u' = u scaled based on length

Sample second image using u',v.

Return sample

This algorithm scales and biases time from –1 to 1 into the range of 0 to 1. Doing
so allows us to use the new time value as the current location of the boundary
between the two images. Bear in mind that time ranges from 0 to 1 independently
of u'.

Then the algorithm goes on to compute u' based on the length of one of the
images.

u
u length

length
' �

�

�1
if the new time value is less than this texel’s u value.

. . .or:

u
u

length
' � if the new time value is greater than this texel’s u value.

Here, (u – length) is the distance between the texel and the left edge of the
image and (1 – length) is the total width of the image during this time. This divi-
sion results in a value that ranges from [0,1].

The left-right squeeze transition:

//--//

// LRSlidingTransition20.hlsl

//

// Left to right squeezing transition between two images.

// Compute the squeezing square’s current position based on

// time...see if the current pixel is inside or outside that

// square and pick the right sample to display.

//

//

// Marwan Y. Ansari - ATI Research, Inc. - 2003

//--//

sampler inputImage; // image to be processed

sampler productImage; // Background image

float4 Timers; // Time value

struct PS INPUT

{

float2 texCoord:TEXCOORD0;

};

float4 main(PS INPUT In) : COLOR

{

float length = Timers.w; // length = [-1..1]

float2 scaledCoords;

float4 c = .5;

//===//

// Get the length of the shrinking area based on the

// time...this is done above.

// Here we make length = [0..1]

486
Image Effects with DirectX 9 Pixel Shaders

Section IV — Image Space

//===//

length = (length * 0.5) + 0.5 ;

// find out where this point is in relation to the image;

if (length < In.texCoord.x)

{

//==//

// y doesn't change

// x =

//

// 1

// --- * (texcoord.x - length.x)

// 1-length

//

// Which will map the image into the right side of

// the screen.

//==//

scaledCoords.y = In.texCoord.y;

scaledCoords.x = (1.0 / (1.0 - length)) *

(In.texCoord - length);

c = tex2D(productImage, scaledCoords);

}

else

{

//==//

// y doesn't change

// x =

//

// 1

// --- * texcoord.x

// length

//

// Which will map the image into the left side of the

// screen.

//==//

scaledCoords.y = In.texCoord.y;

scaledCoords.x = (1.0 / (length)) * In.texCoord;

scaledCoords.x = saturate(scaledCoords);

c = tex2D(inputImage, scaledCoords);

}

return c;

}

Spin and Shrink Away

Another interesting transition effect can give the appearance of geometry without
actually sending any new vertices down the pipe. Below is the algorithm for a
transition that makes one image appear to spin and shrink away from the viewer.
This is quite simple to do by applying a transformation in the pixel shader. Again,
only one set of vertices are ever sent down. As seen in the shaders above, this
method relies on knowing where you are in the image (by way of u,v) and picking

Image Effects with DirectX 9 Pixel Shaders
487

Section IV — Image Space

an image to display. Figure 4 shows snapshots of the progression of the spin and
shrink away transition.

The spin and shrink transition algorithm:

For each texel (u,v)

Length = time scaled and biased to be 0 to 1

Get sine and cosine based on length

Construct rotation matrix

Rotate coordinates(u,v) about its center

If(current u,v are inside the transformed coordinates)

Compute u',v' based on time and rotation of u,v

Sample first image using u',v'

Else

Sample second image using u,v

Return sample

A 1D texture is used to compute the sine and cosine values used in the rotation
matrixes. The texture filter naturally and linearly interpolates to compute values
not present in the sine table. Since sine and cosine can be considered the same
function one quarter out of phase, you can do the following:

sin = fetch into sin texture (length)

cos = fetch into sin texture (length + .25)

After constructing the rotation matrix, the coordinates must be translated to the
origin before transformation. Rather than building this directly into the matrix
through matrix concatenation, we simply subtract the 0.5 offset before the trans-
formation. This saves operations, since it reduces matrix multiplies and does vec-
tor addition instead and centers the square at (0, 0) instead of at (0.5, 0.5).

Now the current coordinate, which may or may not be an element of the spin-
ning shrinking square, has been translated to the center about the origin. All the
points in the spinning shrinking square are bound between (lengthOver2,
lengthOver2)… (–lengthOver2, –lengthOver2). Since all the coordinates are sym-
metric and are bound by lengthOver2, we can simplify the comparison by taking
the absolute value of the coordinates. If the absolute value of either u' or v' is
greater than lengthOver2, then this point is considered outside the rotating
square. See Figure 5.

If the current texel is considered outside the spinning shrinking square, we
can simply display the background image. If it is inside the square, we must
recompute the texture coordinates based on rotation and the shrinking effect.
This is done in two steps. First, compute the coordinates inside the square and
then rotate those coordinates.

488
Image Effects with DirectX 9 Pixel Shaders

Section IV — Image Space

Figure 4: In the five snapshots above, you can see the image of the messy cubicle rotate and
shrink away until it is completely gone.

The square’s edge (in texture space) that corresponds to 0, 0 will be at offset= 0.5

– lengthOver2.
That is the offset from either the left edge or the bottom of the texture. Sub-

tracting that value from our current u,v and dividing the entire amount by length

scales the current u,v properly, based on its shrinking as time progresses.

u v u v lengthOver
length

' , ' ((,) (.))� � � �0 5 2
1

The resulting u',v' is measured relative to (or from) the top-left edges of the
square (this is actually a translation of u,v axes from the top-left corner of the tex-
ture to the top-left corner of the square). Then, division by length results in u,v

pairs that are in the range [0,1]: (0,0) at the top-left corner of the square, (1,1) at
the bottom-right corner of the square. Thus, the texture is completely mapped
onto the spinning shrinking square.

The coordinate u',v' is correctly placed inside the shrunken square and ready
for the final step, which is a rotation about the center of the square. As we did
before, subtract 0.5 from the coordinates, multiply by the rotation matrix built ear-
lier, and add 0.5 to the result.

u v u v

u v mul u v rotationMatrix

' , ' (,) .
', ' ((', '),)

� �

� �

0 5
0.5

The u',v' coordinates computed are now properly scaled down and rotated based
on time. Now sample the image to be shrunk and spun away with the u',v' coordi-
nates and return the sample.

The spin and shrink away transition:

//--//

// SpinTransition 2 20.hlsl

//

// Rotates image as it spins to and from the user.

// Compute the shrinking, spinning square’s current position

// based on time...see if the current pixel is inside or

// outside that square and pick the right sample to display.

//

// Marwan Y. Ansari - ATI Research, Inc. - 2003

Image Effects with DirectX 9 Pixel Shaders
489

Section IV — Image Space

Figure 5: We can optimize the number of comparisons that we need to
perform by using the absolute value of our coordinates. This limits their range
to the shaded area above.

//--//

sampler inputImage;

sampler sinTexture;

sampler productImage;

float4 Timers;

struct PS INPUT

{

float2 texCoord:TEXCOORD0;

};

float4 main(PS INPUT In) : COLOR

{

float length = Timers.w; // length = [-1..1]

float lengthOver2, sinValue, cosValue;

float2 sinCoords = 0;

float3x3 rotMat =0; // initialize the matrix to 0

float3 coords=0;

float3 rotatedCoords;

float4 c = .5;

//===============================//

// Get the length of the shrinking square based

// on the time...this is done above. Here we make

// length = [0..1]

length = ((length * 0.5) + 0.5) ;

lengthOver2 = length * 0.5;

// Use length and length - .25 to sample sin and cos

sinCoords.x = length;

sinValue = tex2D(sinTexture, sinCoords);

sinCoords.x = length - .25;

cosValue = tex2D(sinTexture, sinCoords);

// build rotation matrix

rotMat[0][0] = cosValue;

rotMat[0][1] = sinValue;

rotMat[1][0] = -sinValue;

rotMat[1][1] = cosValue;

rotMat[2][2] = 1.0;

// Rotate the box around the screen center

coords.xy = In.texCoord -.5 ;

rotatedCoords = mul(coords, rotMat);

// Now the coords have been x-lated and rotated about the

// origin. Test if its abs() goes past the lengthOver2.

// This method simplifies the compare to a simple <=0 .

// Since the point, which is an element of the spinning

// shrinking square, has been x-lated to the origin, all the

// points in the spinning shrinking square are inside of...

// -lengthOver2,-lengthOver2... lengthOver2,lengthOver2

490
Image Effects with DirectX 9 Pixel Shaders

Section IV — Image Space

//

// Since all the coords are symmetric...and since they are

// bound by lengthOver2, we can simplify the comparison by

// taking the absolute value of the coords.

// If the abs value of either x or y is greater than lengthOver2,

// then this point is considered outside the rotating square.

rotatedCoords = abs(rotatedCoords);

if(lengthOver2 <= rotatedCoords.x ||

lengthOver2 <= rotatedCoords.y)

{ // the current pixel is outside of the box.

c = tex2D(productImage, In.texCoord);

}

else

{ // the current pixel is inside of the box.

float3 scaledCoords = 0;

//===//

// offset of edge of square = (1-length) /2 ... or

// (0.5 - lengthOver2)

// compute distance current pixel is IN from square’s left

// edge (tex - (0.5 - lengthOver2))

//

// new tex is (dist from square edge)/(distance from image edge)

//

//

//===//

//

// 1-d 1

// (texcoord - ---) * ---

// 2 d

//

//==//

scaledCoords.xy = (In.texCoord + (lengthOver2 - 0.5)) *

(1.0/length);

// now xlate , rotate, xlate to get the new coords

scaledCoords.xy -= 0.5;

scaledCoords.xy = mul(scaledCoords, rotMat) + 0.5 ;

c = tex2D(inputImage, scaledCoords);

}

return c;

}

Spice Transitions from Pixelan Software, LLC

Rather than animate the transition, sometimes it is best to simply dissolve from
one image into another based on either an algorithm or some map. Pixelan Soft-
ware, LLC provides some interesting transition products that do exactly that.
Very cool effects can be achieved by using cleverly created transition maps, allow-
ing the pixel shader to be very short. The algorithm uses two maps, one for the

Image Effects with DirectX 9 Pixel Shaders
491

Section IV — Image Space

transition effect and one to help blending. The transitions, called spices, can be
used as plug-ins to a number of video editing tools. See the Pixelan web site for
more details.

The spice transition algorithm:

For each texel

Sample image1, image2, and transition map

LUTcoord = transition map sample + time // time = [-1, 1]

Sample LUTblender based on LUTcoord

Result = lerp between image1 and image2 based on LUTblender

Return Result

Figure 6 shows three transition maps. As time increases, the light areas are the
first to transition between the images, while the dark areas are last. Figure 7
shows the lookup table (LUT) that is used to linearly interpolate (lerp) between
the two images. The gray area in the middle ensures that the edge transitions are
not too harsh.

What is particularly useful about this approach is that you can create many
interesting effects by changing the transition maps. More transition maps are
available on the CD in the VideoShader application (see Figure 8).

However, these are just a few possible transition effects. Just about any tran-
sition effect that is currently available today in the television or movie industry
can be done inside of a pixel shader.

492
Image Effects with DirectX 9 Pixel Shaders

Section IV — Image Space

Figure 6: Three spice transition maps. As time increases, the light areas are the first to
transition between the two images while the dark areas are the last. As time decreases,
the light areas transition last and the dark areas transition first.

Figure 7: Lookup table (LUT) used for transitioning between two images. The gray
area in the center keeps the edges from making hard noticeable transitions.

A spice transition:

//--//

// ImageFade20.hlsl

//

// Performs a wipe transition between 2 images.

//

// Marwan Y. Ansari - ATI Research, Inc. - 2002

//--

sampler inputImage;

sampler ProductImage;

sampler WipeTransition; // Transition map

sampler LUT; // Lookup table

float4 Timers;

struct PS INPUT

{

float2 texCoord0:TEXCOORD0;

};

float4 main(PS INPUT In) : COLOR

{

float4 c = .5;

float4 currFrameSample;

float4 targetSample;

float4 transitionSample;

float4 lutSample;

float2 lutCoord;

float timeScalar;

currFrameSample = tex2D(inputImage, In.texCoord0);

targetSample = tex2D(ProductImage, In.texCoord0);

transitionSample = tex2D(WipeTransition, In.texCoord0);

Image Effects with DirectX 9 Pixel Shaders
493

Section IV — Image Space

Figure 8: Spice transitions using the maps shown in Figure 6 over time.

timeScalar = Timers.w;

// .7 just slows the transition down.

// Saturate ensures that we clamp from 0 to 1.

lutCoord = saturate(transitionSample + .7* timeScalar);

lutSample = tex2D(LUT, lutCoord);

c = lerp(targetSample, currFrameSample, lutSample);

return c;

}

Distortion Effects

The effects discussed so far have dealt with blending between images for scene
transitions. They were based on time and the spatial position of the current pixel
shader coordinate or on the value of a transition map at a pixel location. Other
techniques involve directly affecting the image by distorting it. Distorting the
image is a common effect in gaming as well as in the movie industry.

Distortion effects executed fully in the pixel shader can be useful when the
application does not want to or cannot create the extra geometry to perturb the
image. This section shows how, in some cases, environment mapping could be
used to fake geometry and even animation.

For example, the ripple effect discussed here uses no normal maps and no
extra geometry to create the ripples. They are all generated inside the pixel
shader based on a time value.

Fun House Mirror

The first distortion effect mimics the fun house mirror that you might see at a
carnival. A fun house mir-
ror is simply a mirror
with a curve in it. When
you look into it, instead of
seeing a 1:1 reflection of
yourself, you see a dis-
torted image due to the
curves in the material.

Rather than actually
rendering the curvy
geometry in real time, we
use a normal map that
was generated using
ATI’s Normal Mapper
Tool (available for

494
Image Effects with DirectX 9 Pixel Shaders

Section IV — Image Space

Figure 9: Fun house mirror effects

download on the ATI developer web site).
The normal map used here is 16-bit per component and contains only the x

and y components. The z component (assumed to be positive) can be derived from
x and y using the following relation:

� �z x y� � �1 2 2

Computing this third component costs three instructions in a ps.2.0 shader. How-
ever, the savings of writing 32 bytes per normal map pixel vs. writing 64 bytes is
significant. Conversely, with this approach we are able to store a 16-bit per com-
ponent normal map in the same footprint as an 8-8-8-8 texture, gaining much-
needed precision.

The fun house mirror algorithm:

For each texel

Fetch normal from Normal map

Compute third component (this step could be optional)

Derive per-vertex eye vector using camera position

Compute reflection vector

Sample from cube map based on reflection vector

Return Sample

As you can see, this is simple cube mapping, except that rather than using geome-
try to compute the surface normal, we use a normal map. This method is particu-
larly effective when used with live video, as the interactivity is what makes the
effect interesting.

Since we are dealing with a single image rather than a full 3D environment,
we need to discuss how exactly we populate the cube map. Only one face of the
cube map (the positive z face) is populated with the target image, while the rest of
the image is initialized to blue.

Also, when we compute the normal in the shader, we add a “fudgeFactor”
component. This has nothing to do with the actual algorithm. It is strictly to over-
come an issue with the normal map used that caused the normals to point outside
the positive z face. This is strictly an aesthetic issue, not an algorithmic one.
fudgeFactor was found by trial and error until the final image was acceptable. The
VideoShader application allows you to edit the shader files using any text editor
and reload the new shader without having to restart the application. See the docu-
mentation in the VideoShader directory for more information.

A fun house shader using a cube map:

//---//

// FunHouseCubeShader.hlsl

//

// Renders the image with fun house mirror effect

// using a cube map.

//

// Marwan Y. Ansari - ATI Research, Inc. - 2002

//---

sampler normalMap;

Image Effects with DirectX 9 Pixel Shaders
495

Section IV — Image Space

sampler cubeTexture;

float3x3 viewMatrix; // World view matrix

struct PS INPUT

{ float2 texCoord0:TEXCOORD0;

float3 texCoord4:TEXCOORD4; //interpolated pos in obj space.

};

float4 main(PS INPUT In) : COLOR

{

float4 fudgeFactor = {0, -0.00001, 0.21, 0.0};

float4 c = .5;

float2 normalCoord = In.texCoord0;

float3 normal =0, reflection =0, xformedEye;

normalCoord.y = 1.0 -normalCoord.y;//Texture is upside down

normal = tex2D(normalMap, normalCoord);

// the normals are coming in on two components,

// we need to derive the third component k = sqrt(i^2 + j^2)

normal.z = sqrt(1.0f –((normal.x * normal.x) +

(normal.y * normal.y)));

normal += fudgeFactor;

//derive per-vertex eye vector using camera position

//Use the (-untransformed position) as a camera in obj space

//and x-form it to view space. Resultant vector taken as

//vector from camera to current position.

xformedEye.xyz = mul(-In.texCoord4, viewMatrix);

xformedEye.xyz = normalize(xformedEye);

// Compute viewer's reflection vector

reflection.xyz = dot(normal, xformedEye) * 2 * normal –

(dot(normal,normal) * xformedEye);

// Flip the right and left so that it acts like a mirror.

reflection.x = -reflection.x;

// sample the cube map

c = texCUBE(cubeTexture, reflection);

return c;

}

Shower Door

3D graphics applications commonly combine environment mapping with bump
mapping to achieve a bumpy-shiny effect (EMBM). EMBM can also be used
to give the impression of looking through glass of varying thicknesses as in Fig-
ure 10.

For this effect, we first compute the eye vector and perturb it by a noise map
that is generated offline. Finally, we use the perturbed vector to sample into our

496
Image Effects with DirectX 9 Pixel Shaders

Section IV — Image Space

environment map. Since the effect is only applied to a single image, we perform a
cube map lookup.

Shower door effect algorithm:

For each texel

Derive per-vertex eye vector using camera position

Sample noise map

Add noise sample to eye vector

Compute reflection vector

Sample from texture map based on reflection vector

Return sample

The shower door effect:

//---//

// BumpVideo20.hlsl

//

// EMBM the video image.

//

// Marwan Y. Ansari - ATI Research, Inc. - 2003

//---

sampler inputImage;

sampler noiseMap;

float3x3 viewMatrix;

struct PS INPUT

{

float2 texCoord0:TEXCOORD0;

float3 texCoord4:TEXCOORD4; // vertex position

float3 texCoord6:TEXCOORD6; // normal

};

float4 main(PS INPUT In) : COLOR

{

Image Effects with DirectX 9 Pixel Shaders
497

Section IV — Image Space

Figure 10: The shower door effect is created by using a noise
texture to perturb the normals used in environment mapping.

float4 c = 0.5;

float3 normal = In.texCoord6;

float3 xformedEye = 0;

float3 reflection = 0;

//derive per-vertex eye vector using camera position

xformedEye.xyz = mul(-In.texCoord4, viewMatrix);

xformedEye.xyz = normalize(xformedEye);

// Multiply by .25 to decrease the effect of the normal map

normal.xyz += tex2D(noiseMap, In.texCoord0) * .25;

// Compute viewer's reflection vector

reflection.xyz = dot(normal, xformedEye) * 2 * normal –

(dot(normal,normal) * xformedEye);

// perform cube map lookup to just one face because

// I know there is only one face.

reflection.xy *= 1.0/ reflection.z;

reflection.xy = (-.5*reflection) + .5;

// reflect about the X

reflection.x = 1-reflection.x;

c = tex2D(inputImage, reflection);

return c;

}

Ripple

The above shaders show how environment mapping and bump mapping can be
used to simulate geometric perturbations. With a little more effort, we can simu-
late more interesting effects, such as ripples. Figure 11 shows two ripples affect-
ing an image over time. This is a common effect used in the film industry.

Though manipulating vertex information to simulate a ripple effect is com-
monplace in computer graphics, the interesting notion here is that all the compu-
tations are done in the pixel shader. No vertex information other than the normal
is required with this method.

The overall ripple shader algorithm:

For each texel

Compute the normal for ripple one at this point in time

498
Image Effects with DirectX 9 Pixel Shaders

Section IV — Image Space

Figure 11: The two ripple centers are colored magenta and fade as the ripple fades. These five
images show, in left to right order, the ripples’ dissipation after they have fully propagated. (See
Color Plate 23.)

Compute the normal for ripple two at this point in time

Combine ripples one and two with the vertex normal

Derive per-vertex eye vector using camera position

Compute reflection vector

Sample from map based on reflection vector

Return Sample

The algorithm for computing the ripple normal:

(Calling function passes in ripple center, time left on ripple, and

current texel position)

Compute wave radius

Compute the vector from ripple center to current texel (direction vector)

If current texel is inside ripple

Look up sine value of current pixel based on frequency

Compute ripple effect as sine * height * decreasing time

Result = Direction vector * ripple effect

Return Result

The interesting piece of the algorithm is the function to compute the ripple’s
normal. In the ps 2.0 shader model, we can compute two ripples in a single pixel
shader using the method described here. There are methods that allow for an
arbitrary number of ripples, but they require writing to an extra buffer and are left
as an exercise for the reader.

We first compute the ripple’s radius based on the amount of time elapsed
since the ripple was started. The radius of the ripple is its time multiplied by the
ripple’s speed. In this shader, speed is a constant. Then we compute the distance
and direction vector from the ripple center to the current texel location.

Next, since we want the ripple to propagate out from a central point, we can
test if the current texel has been affected by the ripple yet. This is easily done by
comparing the distance (from the current texel to the ripple center) to the wave
radius. If the distance is less than the wave radius, then this texel is part of the
ripple.

Now that we know this texel is affected by the ripple, we need to compute
exactly what effect the ripple will have. The ripple we use is based on a sine
wave. Rather than computing the sine value inside the shader, it is more efficient
to use a lookup sine table stored in a texture. Computing the texture coordinates
for the sine texture is done by multiplying the ripple frequency by the distance
from the ripple center. After the sine value is retrieved, it must be multiplied by
the ripple height and its remaining time. Multiplying by the remaining time
dampens the ripple to 0 as the ripple runs out. The only step remaining is multi-
plying the ripple effect by the direction vector (from the ripple center to the cur-
rent texel). This constructs a normal that is pointed in the correct direction from
the ripple center.

It should be noted that the ripple normals only have values in the x and y
components, while the z component is zero. After combining the two ripple nor-
mals with the vertex normal, the z component of the combined normal is equal to
the z component of the vertex normal.

After the combined normal is computed, the remaining steps are just envi-
ronment mapping. For more information on environment mapping see Real-Time

Rendering [Möller99].

Image Effects with DirectX 9 Pixel Shaders
499

Section IV — Image Space

The ripple shader:

//---//

// TwoRipple20.hlsl

//

// Creates 2 ripples in the image and propagates them out over

// time.

//

// Marwan Y. Ansari - ATI Research, Inc. - 2002

// Many thanks to Chris Brennan (ATI Research) for his help.

//---//

sampler inputImage;

sampler sinTexture;

float3x3 viewMatrix;

float4 UserPoint1; // first click position

float4 UserPoint2; // second click position

float4 Pt1Time;

float4 Pt2Time;

struct PS INPUT

{

float2 texCoord0:TEXCOORD0; // current location

float3 texCoord4:TEXCOORD4; // position in obj space

float3 texCoord6:TEXCOORD6; // Normal

};

float3 ComputeRippleNormal(float2 CurrLocation,

float4 RippleCenter, float4 PtTime)

{

float4 ptModulator;

float3 ptDistance =0;

float3 ptDirectionVector =0;

float2 ptsSin =0;

float2 sinCoords = 0;

float3 ripple=0;

float distanceToCenter;

float freqTweak = 4.0;

float waveSpeedTweak = 9.4;

float waveHeightTweak = .125;

float waveRadius;

float isInsideWave;

ptModulator = PtTime * 0.5 ; // time/2 to slow it a bit.

// y ranges from 0 to 0.5

waveRadius = ptModulator.y * waveSpeedTweak;

ptDistance.xy = (RippleCenter - CurrLocation);

ptDirectionVector = normalize(ptDistance);

// As time goes on... waveRadius increases

500
Image Effects with DirectX 9 Pixel Shaders

Section IV — Image Space

// b/c waveAge increases.

isInsideWave = waveRadius –

sqrt(dot(ptDistance,ptDistance));

if(isInsideWave > 0) // Allows the ripples to grow from RippleCenter.

{ // Otherwise, all pixels would be affected by

// the ripple at time 0.

// mul -waveRadius by freq to get sin coord

// make sinCoords.x negative so we start with a trough

// instead of a crest.

sinCoords.x = -isInsideWave * freqTweak;

ptsSin = tex2D(sinTexture, sinCoords); // Get sin value

// Keep in mind that ptModulator.x ranges from -0.5 to .5

// ...it decreases over time. mul by 1/8 just to tweak...

// then dampen the ripple effect with time..

ptsSin *= waveHeightTweak * ptModulator.x;

ripple = ptsSin.x * ptDirectionVector;

}

return ripple;

}

float4 main(PS INPUT In) : COLOR

{

float4 c = .5;

float3 xformedEye;

float3 reflection =0;

float3 combinedNormal;

float3 ripple1=0, ripple2 =0;

ripple1 = ComputeRippleNormal(In.texCoord0,

UserPoint1,

Pt1Time);

ripple2 = ComputeRippleNormal(In.texCoord0,

UserPoint2,

Pt2Time);

// build normal for environment mapping by adding ripples

// vertex shader is sending texCoord6 in negated, we must

// also negate it.

combinedNormal = (ripple1 + ripple2) - In.texCoord6;

//derive per-vertex eye vector using camera position

xformedEye.xyz = mul(-In.texCoord4, viewMatrix);

xformedEye.xyz = normalize(xformedEye);

// Compute viewer's reflection vector

reflection.xyz =dot(combinedNormal, xformedEye) *

2 * combinedNormal -

(dot(combinedNormal,combinedNormal) * xformedEye);

Image Effects with DirectX 9 Pixel Shaders
501

Section IV — Image Space

// perform cube map lookup to just one face because I

// know there is only one face.

reflection.xy *= 1.0/reflection.z;

reflection.xy = (-.5*reflection) + .5;

// sample the reflection map

c = tex2D(inputImage, reflection);

return c;

}

As you can see, it is easy to simulate geometric perturbations using environment
mapping in the pixel shader. As long as the normal is computable procedurally, it
can be stored in a texture or both.

Posterization

So far in this chapter we have discussed transition and distortion effects that are
applied to images. With the growing popularity of non-photorealistic rendering
(NPR) in real-time computer graphics, we have also looked into image-space NPR
techniques. In this section, we discuss the use of a Kuwahara filter to generate an
NPR look. We discuss two Kuwahara kernels (5×5 and 7×7). The 5×5 kernel is
simpler to implement and only requires two passes. The 7×7 kernel is harder to
implement and must be broken into four passes. As the kernel size increases, it
becomes more complicated to apply.

Kuwahara (5×5 filter size)

The Kuwahara filter is a non-linear
edge preserving smoothing opera-
tion [Young]. The filter is centered
at the current texel and relies on
sampling the neighboring texels to
compute the new value for the
current texel.

This filter operates on a given
5×5 region by breaking it into four
sub-regions that overlap by a sin-
gle pixel in the horizontal and
vertical direction. Our implemen-
tations here are based on 5×5 and
7×7 square regions, as shown in
Figure 12.

502
Image Effects with DirectX 9 Pixel Shaders

Section IV — Image Space

Figure 12: The 5×5 kernel has four 3×3 sub-
regions. Here, two of those sub-regions have
been broken out to emphasize the one-pixel-
wide overlap.

The sub-region size is determined using the following method described in
[Young]:

Given a square kernel of length k, sub-regions are of size j×j, where:

j
k

�
� 1
2

So given our 5×5 kernel, our sub-regions are:

j

j j

�
�

�

� � �

5 1
2

3

3 3

Again, in this implementation, we use square kernels, but other sizes and shapes
can be computed by applying this formula to the length and width.

For each sub-region, the mean color and sample variance (referred to in this
article simply as variance) are computed. Once all four mean/variance pairs are
computed, the variances are compared. The lowest variance is found and its
matching mean is taken as the color for the current pixel. So, the color for the
current texel is selected based on which of the four areas has the smallest change
in color.

This effect requires two passes to implement. The first pass renders not into
the frame buffer but rather into a renderable texture. The second pass uses the
renderable texture from the first pass as its input.

The algorithm for a 5×5 Kuwahara kernel:

First pass

For each texel

Sample 3×3 region around this texel and find the mean.

Compute the variance of this 3×3 region.

Store the mean as rgb, store the variance in the alpha.

Return the mean/variance as a texel. (Stores into

renderable texture)

Second Pass (use first pass as input)

For each texel

Sample the 4 texels that are diagonal from this texel.

Compare the texels’ variances (alpha) finding the lowest.

Return the mean associated with the lowest variance.

The first pass computes the mean color by sampling the current texel and its
eight neighbors. The sampling is achieved by storing the pixel width (1/width) and
pixel height (1/height) offsets into a set of constant registers (see the “Some
Review and Some Notes about This Article” section earlier in this article). These
offsets are individually added to this texel’s location and then used as new texture
coordinates.

After the nine samples are taken (one for each texel in the 3×3 sub-region),
the texels are summed component-wise, and the total is divided by 9 (the number
of samples). For example, if we had two pixels, {r1, g1, b1} and { r2, b2, g2}, after
summing component-wise, the result would be {r1 + r2, g1 + g2 , b1 + b2}. The
final result of the mean is:

Image Effects with DirectX 9 Pixel Shaders
503

Section IV — Image Space

r r g g b b1 9 1 9 1 9

9 9 9
� ��

�

�

�
�

� ��

�

�

�
�

� ��

�

�

�
�

...
,

...
,

...�
�
�

�
�
�

Computing the variance is just as straightforward. The variance is defined as:

� � � �v
N

sample r mean r sample g mean g samplei i i� � � � � �	2 2 21
. . . . � �. .b mean b

i

N

�
�

�
2

1

. . .where v is the variance and 	2 is the squared standard deviation [Weisstein].
As you can see, it is also possible to get the standard deviation this way by

taking the square root of the variance and storing it. It should be noted, however,
that there is the possibility of artifacts appearing due to the quantizing of the stan-
dard deviation (). Recall that 	’s range is [0,1] and that 	2 will logically be at the
lower end of that scale. Since we store 	2 into an 8-bit value, it is possible that it
will be quantized to the same value as some other 	2, even though the values are
slightly different. There are two solutions to this issue. The first is to use higher
precision render targets. The other is to take the square root of 	2 inside the
shader, since that operation can be done at floating-point precision. In our imple-
mentation, we did not need to find the standard deviation, so this issue is just
something that you may want to keep in mind.

Once the mean and variance are computed, we store them in the output pixel
with the mean replicated into the RGB components and the variance stored in
alpha. The result is that this pass creates a mean/variance map, which is used by
the next pass. Each texel in the mean/variance map contains the mean and vari-
ance of the corresponding 3×3 area in the original image.

In the second pass, we only need to compare the variances for the regions of the
Kuwahara filter to find the lowest. To get the variances, we simply sample the
four pixels of the mean/variance map that lie on a diagonal to the current pixel. If
this texel is at u,v, then we want to sample the mean-variance map at:

u + (1/width), v + (1/height)

u + (1/width), v – (1/height)

u – (1/width), v + (1/height)

u – (1/width), v – (1/height)

504
Image Effects with DirectX 9 Pixel Shaders

Section IV — Image Space

Figure 13: The centers for the four 3x3 sub-regions in a Kuwahara filter
are diagonal from the current texel location in the mean/variance map.

See Figure 13. The texture-wrapping mode should be set to CLAMP in order to
prevent edges from interfering with each other. After sampling these values, it is
trivial to compare the variances and store the mean.

This technique is excellent for posterizing images. However, since the filters
are so small (5×5 in this case), the effect is very tiny after just one iteration is
applied. We found that in order to get interesting results, we need to run the 5×5
Kuwahara kernel a total of four times. That makes four filters at two passes per
filter for a total of eight passes. This will vary, however, with image size.

Finally, after all the passes have been done, we can add a last touch to the
image. In order to get a nice NPR effect, we need to add black outlines to the
image to highlight the different color regions the way comic books or cartoons do.

An easy and effective way of doing this is to use an edge detection filter. In
the article “Advanced Image Processing Using DirectX 9 Shaders,” we discussed
the Canny edge detection filter. We have found that although the Canny edge
detection filter is impressive, its thin edges are not adequate for outlining. The
Sobel edge detection filter gives rather thick edges, however, and is perfect for
the kind of outlining we wanted to aesthetically complement the Kuwahara filter.

For a full discussion of the theory behind the Sobel edge detection filter, see
[Jain95] or [Gonzalez92]. For a two-pass implementation of the filter, see
[Mitchell02], or for a single-pass implementation, see the VideoShader application
on the CD.

By modifying the Sobel edge detector to combine the resultant edges with
the posterized scene, we can achieve our thick outlines. After the Sobel edge
detector finds the edges,
we subtract the result
from one and threshold it
based on user input. This
way the user can select
what he or she perceives
as enough edges or out-
lines interactively.

See Figure 14 for the
output of the 5×5
Kuwahara filter with
Sobel outlines. The filter
was run four times over
the image with a fifth
pass to add the outlines.

The following com-
putes the mean and vari-
ance of a 3×3 area for the
5×5 Kuwahara filter:

//---

// MeanVarianceGeneric.hlsl

//

// Get the mean and variance of the 3x3 area around this pixel.

Image Effects with DirectX 9 Pixel Shaders
505

Section IV — Image Space

Figure 14: A 5x5 Kuwahara filter plus outlines based on
the Sobel edge detection filter has been applied to the
image for real-time posterization. (See Color Plate 24.)

//

// Marwan Y. Ansari - ATI Research, Inc. - 2002

//---

sampler inputImage;

float2 sampleOffsets[8];

struct PS INPUT

{

float2 texCoord:TEXCOORD0;

};

float4 main(PS INPUT In) : COLOR

{

int i =0;

float4 c = .5;

float2 texCoords[9];

float4 texSamples[9];

float4 total = 0;;

float4 mean;

float variance;

// get the coords ready for sampling 3x3 region

for(i =0; i < 8; i++)

{

texCoords[i] = In.texCoord + sampleOffsets[i];

}

texCoords[8] = In.texCoord;

// sample the 3x3 and add up the total

for(i=0; i <9; i++)

{

texSamples[i] = tex2D(inputImage, texCoords[i]);

total += texSamples[i];

}

// compute the mean.

mean = total / 9.0;

total =0;

// Compute the (squared) variance

for(i=0; i < 9 ; i++)

{

total += (texSamples[i]-mean)*(texSamples[i]-mean);

}

// we don’t need the root...so don’t bother...

// but we need to add the r, g, and bs together.

variance = dot(total,1.0/9.0);

c.xyz = mean; // store mean into rgb.

c.a = variance; // store variance into alpha.

return c;

}

This finds the lowest variance for a 5×5 filter:

//---

// MeanVarianceSelectionGeneric.hlsl

506
Image Effects with DirectX 9 Pixel Shaders

Section IV — Image Space

//

// Select the color based on the lowest variance.

//

// Marwan Y. Ansari - ATI Research, Inc. - 2002

//---

sampler inputImage;

float2 sampleOffsets[8];

struct PS INPUT

{

float2 texCoord:TEXCOORD0;

};

float4 main(PS INPUT In) : COLOR

{

float2 sampleCoords[4];

float4 s0, s1, s2, s3;

float4 lowestVariance, lowestVariance2;

float s0a,s1a,s2a,s3a,la,l2a;

sampleCoords[0] = In.texCoord + sampleOffsets[0];//up left

sampleCoords[1] = In.texCoord + sampleOffsets[2];//up right

sampleCoords[2] = In.texCoord + sampleOffsets[5];//dn left

sampleCoords[3] = In.texCoord + sampleOffsets[7];//dn right

s0 = tex2D(inputImage, sampleCoords[0]);

s1 = tex2D(inputImage, sampleCoords[1]);

s2 = tex2D(inputImage, sampleCoords[2]);

s3 = tex2D(inputImage, sampleCoords[3]);

s0a = s0.a; s1a = s1.a;

s2a = s2.a; s3a = s3.a;

// Compare first 2 samples

if(s0a < s1a)

{

lowestVariance = s0;

la = s0a;

}

else

{

lowestVariance = s1;

la = s1a;

}

// Compare second 2 samples

if(s2a < s3a)

{

lowestVariance2 = s2;

l2a = s2a;

}

else

{

lowestVariance2 = s3;

Image Effects with DirectX 9 Pixel Shaders
507

Section IV — Image Space

l2a = s3a;

}

// Compare the winners of the 2 previous compares.

if(l2a < la)

{

lowestVariance = lowestVariance2;

}

return lowestVariance;

}

Kuwahara (7×7 filter size)

Next we discuss the implementation of a 7×7 Kuwahara filter, which, due to its
large area, must be performed in four passes. Recall that a Kuwahara filter breaks
an area into four sub-regions, as shown previously. Hence, a 7×7 filter breaks into
four 4×4 regions.
� The algorithm for 7×7 Kuwahara

First Pass — input is input image.

Compute the mean for the 4×4 around this texel.

Store result to a mean map.

Second Pass — input is input image and mean map

Compute the partial variance of the 4×4 sub-region by computing

the variance of the 3×3 area around the current texel.

Store to partial variance map

Third Pass — input is input image, mean map, and partial variance map

Compute the partial variance of the 4×4 sub-region by computing

the partial variance for the remaining L-shaped region.

Combine both partial variances into a final variance.

Store into a final mean/variance map.

Fourth Pass — input is mean/variance map.

Sample the four 4x4 sub-region centers.

Select the mean/variance pair with the lowest variance.

The first pass of our four-pass 7×7 Kuwahara filter is solely dedicated to comput-
ing the mean for each texel in the image. Inside the shader, this is done in two
steps. The first step computes the offsets for the 3×3 area around the current
texel and fetches the texture samples for them. Next, those nine samples are
summed. The offsets for the remaining L-shaped region (see Figure 15) are then
computed, and those seven texels are also sampled and added to the total. Finally,
we divide the sum by 16 and store it to the mean map.

The next two passes of this effect are dedicated to computing the variance.
Due to the high number of instructions needed to compute the variance across a
4×4 region, we must compute the variances in two passes (passes two and three
of this effect).

The second pass computes the partial variance of the 4×4 sub-region by
computing the variance of the 3×3 region surrounding the current texel. This is
performed in the same way that the 5×5 Kuwahara was performed. Figure 15
shows where the 3×3 region is located inside the 4×4 sub-region. The partial
variance is stored to a partial variance map and is used in the next pass.

508
Image Effects with DirectX 9 Pixel Shaders

Section IV — Image Space

The third pass computes the partial variance for the remaining area of the 4×4
sub-region. The seven pixels that create the L-shaped region on one side of the
3×3 area surrounding the current texel (see Figure 16) are sampled. Their partial
variance is then combined with the partial variance from the previous pass to
compute the final variance for the 4×4 sub-region. As before, the mean is repli-
cated across RGB and the variance is stored in alpha, creating a final mean/vari-
ance map for this 4×4 sub-region.

The fourth and final pass of our 7×7 Kuwahara filter implementation happens
exactly in the same way as the final pass of the 5×5 Kuwahara filter with the

Image Effects with DirectX 9 Pixel Shaders
509

Section IV — Image Space

Figure 15: The variance for the 7×7 Kuwahara filter is implemented by calculating the
variance of the 3×3 area and the L-shaped area in two separate passes. The 3×3
region’s variance is computed first, and the L-shaped region is computed next. The
“current texel location” is the location of the ouput texel for this 4×4 sub-region.

Figure 16: The mean, both partial variances, and the final mean/variance results are all
stored in the same positions relative to the current texel location in each 4x4 sub-region.

exception that the four texel samples are not direct diagonals of the current texel.
Rather, they are located at:

u – (1/width), v + (1/height) // up and to the left

u + (2* 1/width), v + (1/height) // up and to the right

u – (1/width), v – (2* 1/width) // down and to the left

u + (2* 1/width), v – (2* 1/width) // down and to the right

The reason for this odd offsetting may not seem clear at first. Remember in the
prior steps that the current texel has always been three rows over and three rows
down from the top-left corner of the 4×4 sub-region. That texel holds the correct
mean/variance for the 4×4 sub-region, and we must be careful to get our sample
point from the correct location. Figure 16 shows the relative locations.

Now that the 7×7
Kuwahara has been
applied, we can finalize
the posterizing effect by
adding one more pass to
perform the Sobel out-
lines as discussed
above. As you can see in
Figure 17, we achieve a
very nice posterizing
effect on images using
this method.

The benefit to
using the 7×7
Kuwahara kernel over
the 5×5 kernel is that
you get better
posterization with fewer
passes. The 5×5 kernel
required four passes of
the entire filter (eight passes total) to achieve good results. The 7×7 kernel only
requires two passes (eight passes total) to achieve a better result. They may
require the same number of passes over the image, but the 7×7 requires fewer
full kernel passes. By performing fewer kernel passes, the edge gradients are
better maintained and you get nicer outlines while still posterizing based on
larger sub-regions. So for the same number of passes and roughly the same
amount of work, you can get better posterization using a larger kernel.

The following computes the mean of a 4×4 area for the 7×7 Kuwahara:

//--

// Mean4x4.hlsl

//

// Get the Mean of the 4x4 area around a pixel

//

// Marwan Y. Ansari - ATI Research, Inc. - 2002

510
Image Effects with DirectX 9 Pixel Shaders

Section IV — Image Space

Figure 17: A 7×7 Kuwahara filter plus outlines based on the
Sobel edge detection filter has been applied to the image
for real-time posterization. The 7×7 filter’s advantage over
the 5×5 filter is better posterization for about the same
number of instructions. (See Color Plate 25.)

//--

sampler inputImage;

float2 sampleOffsets[8];

struct PS INPUT

{

float2 texCoord:TEXCOORD0;

};

float4 main(PS INPUT In) : COLOR

{

int i =0;

float4 c = .5;

float2 texCoords[9];

float4 texSamples[9];

float4 total = 0;;

float4 mean;

for(i =0; i < 8; i++)

{

texCoords[i] = In.texCoord + sampleOffsets[i];

}

texCoords[8] = In.texCoord;

for(i=0; i <9; i++)

{

texSamples[i] = tex2D(inputImage, texCoords[i]);

total += texSamples[i];

}

// OK now get the mean for the remaining seven.

//

// 6 0 1 2

// 4 * * *

// 3 * X * X= this texel

// 5 * * *

for(i =0; i < 3; i++)

{ // creates top row

texCoords[i] = texCoords[i] + sampleOffsets[1];

}

// creates side samples

texCoords[3].x += sampleOffsets[3].x;

texCoords[5].x += sampleOffsets[3].x;

texCoords[4] = texCoords[3] + sampleOffsets[0];

texCoords[6] = texCoords[4] + sampleOffsets[0];

for(i=0; i <7; i++)

{

total += texSamples[i];

}

mean = total / 16.0;

c.xyz = mean;

c.a = 0.0;

Image Effects with DirectX 9 Pixel Shaders
511

Section IV — Image Space

return c;

}

A variance over a 3×3 area just for a 7×7 Kuwahara:

//--

// Variance3x3.hlsl

//

// Get the partial variance of the 4x4 area by getting the 3x3

// area around this pixel.

//

// Marwan Y. Ansari - ATI Research, Inc. - 2002

//--

sampler inputImage;

sampler meanMap;

float2 sampleOffsets[8];

struct PS INPUT

{

float2 texCoord:TEXCOORD0;

};

float4 main(PS INPUT In) : COLOR

{

int i =0;

float4 c = .5;

float2 texCoords[9];

float4 texSamples[9];

float4 total = 0;;

float4 mean;

float variance;

for(i =0; i < 8; i++)

{

texCoords[i] = In.texCoord + sampleOffsets[i];

}

texCoords[8] = In.texCoord;

for(i=0; i <9; i++)

{

texSamples[i] = tex2D(inputImage, texCoords[i]);

}

// Sample mean from the mean map

mean = tex2D(meanMap,In.texCoord);

total =0;

for(i=0; i < 9 ; i++)

{

total += (texSamples[i]-mean)*(texSamples[i]-mean);

}

// Store the partial variance; we will pick this up in the next pass.

c.xyz = total;

return c;

}

512
Image Effects with DirectX 9 Pixel Shaders

Section IV — Image Space

A variance over an L-shaped area for a 4×4 area for a 7×7 Kuwahara:

//--

// Variance LShaped.hlsl

//

// Get the variance of the L-shaped region for a 4x4 area for a 7x7 Kuwahara.

//

// Marwan Y. Ansari - ATI Research, Inc. - 2002

//--

sampler inputImage;

sampler meanMap;

sampler variance3x3Map;

float2 sampleOffsets[8];

struct PS INPUT

{

float2 texCoord:TEXCOORD0;

};

float4 main(PS INPUT In) : COLOR

{

int i =0;

float4 c = .5;

float2 texCoords[7];

float4 texSamples[7];

float variance, xOffset,yOffset;

float4 total = 0;

float4 v3x3, vLShaped, mean;

xOffset = sampleOffsets[0].x *2;

yOffset = sampleOffsets[0].y *2;

// Compute sample offsets for the L-shape.

// 0 1 2 3

// 4 * * *

// 5 * X * X= this texel

// 6 * * *

texCoords[0].x = In.texCoord.x + xOffset;

texCoords[0].y = In.texCoord.y + yOffset; // 0

texCoords[1].x = In.texCoord.x + sampleOffsets[0].x;

texCoords[1].y = In.texCoord.y + yOffset; // 1

texCoords[2].x = In.texCoord.x ;

texCoords[2].y = In.texCoord.y + yOffset; // 2

texCoords[3].x = In.texCoord.x - sampleOffsets[0].x;;

texCoords[3].y = In.texCoord.y + yOffset; // 3

texCoords[4].x = In.texCoord.x + xOffset;

texCoords[4].y = In.texCoord.y + sampleOffsets[0].y; // 4

texCoords[5].x = In.texCoord.x + xOffset;

Image Effects with DirectX 9 Pixel Shaders
513

Section IV — Image Space

texCoords[5].y = In.texCoord.y ; // 5

texCoords[6].x = In.texCoord.x + xOffset;

texCoords[6].y = In.texCoord.y - sampleOffsets[0].y; // 6

// Sample the L-shape.

for(i=0; i <7; i++)

{

texSamples[i] = tex2D(inputImage, texCoords[i]);

}

// Sample mean map.

mean = tex2D(meanMap,In.texCoord);

total =0;

// Compute the the partial variance for the L-shape.

for(i=0; i < 7 ; i++)

{

total += (texSamples[i]-mean)*(texSamples[i]-mean);

}

// Sample the partial result from a prior pass.

v3x3 = tex2D(variance3x3Map, In.texCoord);

total += v3x3; // Sum the two partials and finalize variance.

variance = dot(total, 1.0/16.0);

c.xyz = mean; // store mean as rgb.

c.a = variance; // store variance as alpha.

return c;

}

A variance selection for a 7×7 area:

//---

// MeanVarianceSelection7x7.hlsl

//

// Select the color based on the lowest variance.

//

// Marwan Y. Ansari - ATI Research, Inc. - 2002

//---

sampler inputImage;

float2 sampleOffsets[8];

struct PS INPUT

{

float2 texCoord:TEXCOORD0;

};

float4 main(PS INPUT In):COLOR

{

int i =0;

float2 sampleCoords[4];

float4 s0, s1, s2, s3;

float4 lowestVariance, lowestVariance2;

514
Image Effects with DirectX 9 Pixel Shaders

Section IV — Image Space

float s0a,s1a,s2a,s3a,la, l2a;

sampleCoords[0] = In.texCoord + sampleOffsets[0]; //up left

sampleCoords[1] = In.texCoord + sampleOffsets[2] + sampleOffsets[1]; //up right

sampleCoords[2] = In.texCoord + sampleOffsets[5] + sampleOffsets[6]; //dn left

sampleCoords[3] = In.texCoord + sampleOffsets[7] + sampleOffsets[7]; //dn right

s0 = tex2D(inputImage, sampleCoords[0]);

s1 = tex2D(inputImage, sampleCoords[1]);

s2 = tex2D(inputImage, sampleCoords[2]);

s3 = tex2D(inputImage, sampleCoords[3]);

s0a = s0.a; s1a = s1.a;

s2a = s2.a; s3a = s3.a;

// Compare first two samples

if(s0a < s1a)

{

lowestVariance = s0;

la = s0a;

}

else

{

lowestVariance = s1;

la = s1a;

}

// Compare second two samples

if(s2a < s3a)

{

lowestVariance2 = s2;

l2a = s2a;

}

else

{

lowestVariance2 = s3;

l2a = s3a;

}

// Compare the winners of the two previous compares.

if(l2a < la)

{

lowestVariance = lowestVariance2;

}

return lowestVariance;

}

Image Effects with DirectX 9 Pixel Shaders
515

Section IV — Image Space

Using Sobel edge detection to create outlines:

//--

// SobelOutlines.hlsl

//

// Compute edges using Sobel operators, and then recomposite the

// edges onto the image as outlines.

//

// Marwan Y. Ansari - ATI Research, Inc. - 2002

//--

sampler inputImage;

float2 sampleOffsets[8];

float4 UserInput;

struct PS INPUT

{

float2 texCoord:TEXCOORD0;

};

float4 main(PS INPUT In) : COLOR

{

int i =0;

float4 c = .5;

float2 texCoords;

float4 texSamples[8];

float4 vertGradient;

float4 horzGradient;

for(i =0; i < 8; i++)

{

// add sample offsets

texCoords = In.texCoord + sampleOffsets[i];

// take sample

texSamples[i] = tex2D(inputImage, texCoords);

// convert to b&w

texSamples[i] = dot(texSamples[i], .333333f);

}

// Vertical gradient

vertGradient = -(texSamples[0] + texSamples[5] + 2*texSamples[3]);

vertGradient += (texSamples[2] + texSamples[7] + 2*texSamples[4]);

// Horizontal gradient

horzGradient = -(texSamples[0] + texSamples[2] + 2*texSamples[1]);

horzGradient += (texSamples[5] + texSamples[7] + 2*texSamples[6]);

// we could approximate by adding the abs value...

// but we have the horsepower

c = 1- sqrt(horzGradient*horzGradient + vertGradient*vertGradient) ;

// Threshold the edge value to keep only good edges.

if(c.x < UserInput.z)

{

c = 0;

}

516
Image Effects with DirectX 9 Pixel Shaders

Section IV — Image Space

// combine Sobel edge with current image.

c *= tex2D(inputImage, In.texCoord);

return c;

}

Combining Effects Using the VideoShader Application

The techniques presented in this chapter were developed using live and recorded
video fed to Direct3D via the Microsoft Video Mixing Renderer (VMR). The sam-
ple app, VideoShader, demonstrates the use of Direct3D and the VMR, with the
above filters and several others implemented using HLSL. Source for the sample
application and all of the shaders is available on the companion CD as well as the
ATI Developer Relations web site (www.ati.com/developer).

The effects that we have discussed in this chapter are excellent stand-alone
effects. However, you may want to concatenate the effects to get a greater distor-
tion or transition between distorted and undistorted images, etc.

The VideoShader application has a set of combined shader effects mapped to
the F keys and the number keys. Adding effects is done when the application is
running in windowed mode. By right-clicking on the left window pane, a menu
appears with a list of shaders that you may insert. You can choose to insert your
chosen effect before or after the shader that you right-clicked on.

Conclusion

This article discussed three classes of image effects that are possible with mod-
ern hardware: transitions, distortions, and posterizations. All can run in real time
on today’s DirectX 9 hardware and are relatively easy to implement. Since all of
them run in image space, no extra geometry is needed to get some really cool
results. We hope that this article has persuaded you to try out some of these
effects in your own work.

Acknowledgments

Thanks to Jason Mitchell and Evan Hart for their help in writing this chapter.
Thanks also to Chris Brennan, David Gosselin, and Chris Oat (all from ATI
Research) who helped in various stages of getting the effects implemented for the
VideoShader application.

Special thanks to Jason Mitchell for giving me the idea to implement the
Kuwahara filter and to Larry Seiler of ATI Research for his ideas on optimizing
the 5×5 Kuwahara filter.

Finally, many thanks to Muhammad Haggag at Ain Shams University, Egypt,
for his help in proofreading this chapter.

Image Effects with DirectX 9 Pixel Shaders
517

Section IV — Image Space

References

ATI Developer web site, http://www.ati.com/devrel

Pixélan Software, LLC, http://www.pixelan.com

[Gonzalez92] Gonzalez, Rafael C. and Richard E. Woods, Digital Image Processing,
Addison-Wesley, 1992.

[Jain95] Jain, Ramesh and Rngachar Kasturi, et al., Machine Vision, McGraw Hill,
1995.

[Mitchell02] Mitchell, Jason L., “Image Processing with 1.4 Pixel Shaders in
Direct3D,” Direct3D ShaderX: Vertex and Pixel Shader Tips and Tricks, Wolfgang
Engel, ed., Wordware Publishing, 2002, pp. 258-269.

[Mitchell04] Mitchell, Jason L. and Craig Peeper, “Introduction to the DirectX
High Level Shading Language,” Shader X2: Introduction & Tutorials with DirectX

9, Wolfgang Engel, ed., Wordware Publishing, 2004, pp. 1-61.

[Möller99] Möller, Tomas and Eric Haines, Real-Time Rendering, A.K. Peters,
Ltd., 1999.

[Weisstein] Weisstein, Eric, “Eric Weisstein’s World of Mathematics,”
http://mathworld.wolfram.com/Variance.html.

[Young] Young, I.T., J.J. Gerbrands, and L.J. van Vliet, “Image Processing Funda-
mentals — Smoothing Operations,” http://www.ph.tn.tudelft.nl/Courses/FIP/
noframes/fip-Smoothin.html.

518
Image Effects with DirectX 9 Pixel Shaders

Section IV — Image Space

Using Pixel Shaders to
Implement a Mosaic Effect Using

Character Glyphs

Roger Descheneaux and Maurice Ribble

Introduction

A mosaic is a picture made by setting small pieces of glass or colored tiles onto a
surface. Individually, the small pieces look nothing like the picture, but when
assembled into an image and viewed from a distance, they form a cohesive whole
that accurately represents the intent of the image.

The technique described here uses a post-processing pixel shader that takes
a screen image and converts it into a mosaic. Rather than using glass or tiles to
form the mosaic, we use window-aligned rectangles containing images of various
intensities. While this technique is appropriate for use with any images, in our
example we use character glyphs to represent the screen image as a sequence of
letters and numbers. The difference in brightness between the various glyphs can
be viewed as forming a monochromatic image. Here is an example of an image
processed using this technique:

The teapot on the left is the original image, while the teapot on the right is the
result of post-processing this image and converting it into character glyphs. This
technique occurs entirely in hardware. It can be performed in a single-pass pixel
shader, though in the following example we use several passes for the sake of
simplicity.

519

Algorithm Overview

The original image is divided into a series of image-aligned blocks. Each block is
the size of one glyph in the character set to be rendered. We compute the inten-
sity of the color in this block by downsampling the image using a linear texture fil-
ter to compute the pixel averages. We then rescale the image to its original size,
replacing the original pixel color with the average color for each pixel block.

We then use a pixel shader to replace each pixel in the original image with
one pixel from the character set to be rendered. The pixel chosen is based on the
intensity of the block in the downsampled image to which the pixel belongs and
the offset of the pixel within the pixel block.

Sample Program

// Step 1: Draw the image to the back buffer.

glViewport (0, 0, width, height);

glDisable(GL FRAGMENT PROGRAM ARB);

glDisable(GL TEXTURE 2D);

glClear(GL COLOR BUFFER BIT | GL DEPTH BUFFER BIT);

glMatrixMode(GL MODELVIEW);

glLoadIdentity();

glRotatef(angle, 1.0, 1.0, 1.0);

// Draw the base image first. We'll convert it later as a

// postprocessing step.

glEnable(GL LIGHTING);

glEnable(GL DEPTH TEST);

glColor3f(1.0, 1.0, 0.0);

glutSolidTeapot(0.5);

glDisable(GL LIGHTING);

glDisable(GL DEPTH TEST);

glFlush();

// Step 2: Downsample the image.

glActiveTextureARB(GL TEXTURE0 ARB);

glEnable(GL TEXTURE 2D);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MAG FILTER, GL LINEAR);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MIN FILTER, GL LINEAR);

glLoadIdentity();

// Step 2a: Copy the screen to a texture.

glCopyTexSubImage2D(GL TEXTURE 2D, 0, 0, 0, 0, 0, texImageWidth, texImageHeight);

// Step 2b: Draw the image back to the screen at half its previous resolution.

glViewport (0, 0, texImageWidth / 2, texImageHeight / 2);

glBegin(GL QUADS);

glTexCoord2f(0.0, 0.0);

520
Using Pixel Shaders to Implement a Mosaic Effect Using Character Glyphs

Section IV — Image Space

glVertex2f(-1.0, -1.0);

glTexCoord2f(1.0, 0.0);

glVertex2f(1.0, -1.0);

glTexCoord2f(1.0, 1.0);

glVertex2f(1.0, 1.0);

glTexCoord2f(0.0, 1.0);

glVertex2f(-1.0, 1.0);

glEnd();

// Step 3. Repeat the process to get it to 1/4 its original size.

glCopyTexSubImage2D(GL TEXTURE 2D, 0, 0, 0, 0, 0, texImageWidth / 2, texImageHeight / 2);

glViewport (0, 0, texImageWidth / 4, texImageHeight / 4);

glBegin(GL QUADS);

glTexCoord2f(0.0, 0.0);

glVertex2f(-1.0, -1.0);

glTexCoord2f(0.5, 0.0);

glVertex2f(1.0, -1.0);

glTexCoord2f(0.5, 0.5);

glVertex2f(1.0, 1.0);

glTexCoord2f(0.0, 0.5);

glVertex2f(-1.0, 1.0);

glEnd();

// Step 4: Now 1/8th.

glCopyTexSubImage2D(GL TEXTURE 2D, 0, 0, 0, 0, 0, texImageWidth / 4, texImageHeight / 4);

glViewport (0, 0, texImageWidth / 8, texImageHeight / 8);

glBegin(GL QUADS);

glTexCoord2f(0.0, 0.0);

glVertex2f(-1.0, -1.0);

glTexCoord2f(0.25, 0.0);

glVertex2f(1.0, -1.0);

glTexCoord2f(0.25, 0.25);

glVertex2f(1.0, 1.0);

glTexCoord2f(0.0, 0.25);

glVertex2f(-1.0, 1.0);

glEnd();

// Now perform one more pass to scale the image. We have to change

// the aspect ratio of the downsampled image to match the aspect

// ratio of the font, so each block of the character in the font

// matches the same color in the downsampled image. The font is

// 8x10 pixels. This means that we have to scale the Y direction

// of the rendering somewhat so that ten pixels in height correspond

// to one pixel in this final texture image.

glCopyTexSubImage2D(GL TEXTURE 2D, 0, 0, 0, 0, 0, texImageWidth / 8, texImageHeight / 8);

glViewport (0, 0, texImageWidth / 8, texImageHeight / 8 / 1.25);

glBegin(GL QUADS);

glTexCoord2f(0.0, 0.0);

glVertex2f(-1.0, -1.0);

glTexCoord2f(0.125, 0.0);

glVertex2f(1.0, -1.0);

glTexCoord2f(0.125, 0.125);

Using Pixel Shaders to Implement a Mosaic Effect Using Character Glyphs
521

Section IV — Image Space

glVertex2f(1.0, 1.0);

glTexCoord2f(0.0, 0.125);

glVertex2f(-1.0, 1.0);

glEnd();

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MAG FILTER, GL NEAREST);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MIN FILTER, GL NEAREST);

glCopyTexSubImage2D(GL TEXTURE 2D, 0, 0, 0, 0, 0, texImageWidth / 8, texImageHeight / 8);

glViewport (0, 0, texImageWidth, texImageHeight);

glBegin(GL QUADS);

glTexCoord2f(0.0, 0.0);

glVertex2f(-1.0, -1.0);

glTexCoord2f(0.125, 0.0);

glVertex2f(1.0, -1.0);

glTexCoord2f(0.125, 0.125 / 1.25);

glVertex2f(1.0, 1.0);

glTexCoord2f(0.0, 0.125 / 1.25);

glVertex2f(-1.0, 1.0);

glEnd();

// Copy the final downsampled image into our texture.

glCopyTexSubImage2D(GL TEXTURE 2D, 0, 0, 0, 0, 0, texImageWidth, texImageHeight);

// These scaling factors are used to match texels in the

// downsampled image with pixels in the original screen image.

scaleW = 1.0 * width / texImageWidth;

scaleH = 1.0 * height / texImageHeight;

// Now activate the fragment program and re-render the scene using

// the original image as a texture source.

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MAG FILTER, GL NEAREST);

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MIN FILTER, GL NEAREST);

glEnable(GL FRAGMENT PROGRAM ARB);

glViewport (0, 0, width, height);

glBegin(GL QUADS);

glTexCoord2f(0.0, 0.0);

glMultiTexCoord2fARB(GL TEXTURE1 ARB, 0.0, 0.0);

glVertex2f(-1.0, -1.0);

glTexCoord2f(scaleW, 0.0);

glMultiTexCoord2fARB(GL TEXTURE1 ARB, 1.0 * width / 8.0, 0.0);

glVertex2f(1.0, -1.0);

glTexCoord2f(scaleW, scaleH);

glMultiTexCoord2fARB(GL TEXTURE1 ARB, 1.0 * width / 8.0, 1.0 * height / 10.0);

glVertex2f(1.0, 1.0);

glTexCoord2f(0.0, scaleH);

glMultiTexCoord2fARB(GL TEXTURE1 ARB, 0.0, 1.0 * height / 10.0);

glVertex2f(-1.0, 1.0);

glEnd();

// Display the final image.

glDisable(GL FRAGMENT PROGRAM ARB);

522
Using Pixel Shaders to Implement a Mosaic Effect Using Character Glyphs

Section IV — Image Space

glutSwapBuffers();

}

Explanation of the Sample Program

The first step of the process is to determine the average intensity of each charac-
ter cell in the image. To do this, we downsample the image a number of times,
which depends on the size of the font being used. In this example, we’re using a
font that is eight pixels wide by ten pixels high, so we downsample the image four
times using a linear texture filter. This creates a texture in which each texel rep-
resents an 8x10 section of the original image containing the average intensity for
that 8x10 section of the image. We then upsample the image using this average
image as the source, creating a final texture that has a size equal to the original
processed image but contains values in each 8x10 region that correspond to the
average value of that 8x10 region on the original image.

Finally, we use that block image as the source texture of a final copy with the
pixel shader enabled, which will replace each pixel with the corresponding pixel in
an appropriate character.

When we render the font, we pass in two sets of texture coordinates. The
first set of texture coordinates ranges from 0.0 to 1.0, encompassing the entire
image. The second set of texture coordinates ranges from the width of the
image/8, the font width, and the height of the image/10, the font height. Later we
take the fractional part of this index, which will repeat every eight pixels in the x
direction and every ten pixels in the y direction.

The code containing the font itself is not included here in the interest of
saving space, but it consists of a single texture, which is 512 pixels wide and 16
pixels high. The image in the texture is a series of 8x10 characters arranged hori-
zontally from left to right with the darkest characters in the leftmost part of the
image and the brightest characters in the rightmost part of the image.

Sample Pixel Shader

!!ARBfp1.0

Constants used by the program.

This first constant is the scale factor to convert an RGB

value to a black-and-white value.

PARAM grayScale = {0.30, 0.59, 0.11, 1.0};

This constant converts S, T coordinates in character space

to coordinates in font string space. See below for details.

The values here are 1/number of characters in the font

and the ratio of the character height to the font height-

in this case, 1/64 and 10/16.

PARAM charScale = {0.015625, 0.625, 0.0, 0.0};

This constant is the number of characters in the glyph

array. It is used in the operation that computes the

beginning of a glyph in the s-direction.

Using Pixel Shaders to Implement a Mosaic Effect Using Character Glyphs
523

Section IV — Image Space

PARAM numChars = {64.0, 0.0, 0.0, 0.0};

This is the inverse of the constant above. It's used to

convert the beginning of the character back into the

glyph array space.

PARAM recipChars = program.local[2];

TEMP blockOffset;

TEMP sColor;

TEMP charOffset;

TEMP charCoords;

Interpolants.

ATTRIB tc = fragment.texcoord[0];

ATTRIB cc = fragment.texcoord[1];

OUTPUT oColor = result.color;

Look up the pixel color for this character block.

TEX sColor, tc, texture[0], 2D;

Compute its intensity

DP3 blockOffset, sColor, grayScale;

Round it to the s-coordinate of the beginning of the

nearest character to the computed intensity value.

MUL blockOffset, blockOffset, numChars;

FLR blockOffset, blockOffset;

MUL blockOffset, blockOffset, recipChars;

Using the second set of texture coordinates, find the

offset of this pixel within the character block. After

this operation, both X and Y will be in the range 0-1,

where 0 is the bottom left-most part of a character

and 1 is the upper right-most part.

FRC charOffset, cc;

Multiply this number in the 0-1 range by the fraction

that represents a single pixel within the glyph array.

In the x direction, this is 1/the number of characters in

the font. In the y direction, it's the ratio of the font

height to the height of the texture it's in.

Add the result to the start of the glyph in the glyph

array. The result is the coordinate of the texel with

which this pixel should be replaced.

MAD charCoords, charOffset, charScale, blockOffset;

TEX oColor, charCoords, texture[1], 2D;

END;

The pixel shader has two parts. First, it determines the s-coordinate offset into
the texture, which is the list of characters sorted from darkest to lightest. It does
this by multiplying the intensity of the pixel by the number of characters in the
font, taking the floor of that value and then dividing by the number of characters
in the font, quantizing it so that the intensity value now falls on a coordinate that
is the leftmost part of a character within the font texture.

The second part of the pixel shader adds the coordinates of the glyph within
the glyph array to the start of the glyph array. It then performs a lookup into the
glyph array and replaces the pixel on the screen with a texel from the glyph array.

524
Using Pixel Shaders to Implement a Mosaic Effect Using Character Glyphs

Section IV — Image Space

Conclusion

The effect described above can be used to replace any block of an image with a
rectangular glyph based on the intensity of that area of the image. Various
improvements to the algorithm are possible. For example, the entire operation
could be performed in a single pass by adding instructions to the pixel shader that
compute the intensity value, rather than using the texture unit to downsample the
image.

The effect above is also not limited to text glyphs. It can be used to render
any image using a series of other images. For example, it could be used to draw a
picture of a person with a mosaic of scenes from that person’s life.

Neither is the effect limited to grayscale images. While grayscale is suitable
for the rendering of character glyphs, lookups based on color are also possible —
for example, using 3D textures, it would be possible to sort the image by the
intensities of the different color components.

Acknowledgments

Thanks are due to Marwan Ansari for giving us the original idea for performing
image processing using pixel shaders and for encouraging us to publish this work.

Using Pixel Shaders to Implement a Mosaic Effect Using Character Glyphs
525

Section IV — Image Space

Mandelbrot Set Rendering

Emil Persson

Introduction

With the arrival of DirectX 9 level hardware, a whole new world of possibilities
has opened up in graphics. One such possibility that the new floating-point pixel
shaders have opened is the ability to evaluate advanced mathematical operations
without significant precision loss or with limited range. The kind of applications
that one tends to think of first where the capabilities of DirectX 9 shaders can be
beneficial is often various lighting scenarios, atmospheric effects, animation, etc.
These are all very interesting topics to dive deep into, but there’s another dimen-
sion that these shaders open up that may not have crossed our minds the first
time we learned about the new shaders. For the first time, we can utilize pixel
shaders to visualize the wonderful world of fractals.

The Mandelbrot Fractal

Probably the most famous and well-known fractal is the Mandelbrot set. The
Mandelbrot set basically consists of the complex number that after an infinite
number of iterations of a simple formula is still within close range of the origin.
While the higher math behind all this and all its implications is something that
interests only a select few, the graphical art that you can produce with such a
series is something that can amaze just about everyone.

How does one visualize the Mandelbrot set? Easy — you simply take a com-
plex number, evaluate a function on this number, and get a new number. Then
repeat this a sufficient number of times. The classical iteration looks like this:

Z Z Ci i� � �1
2

Here C is the original number and Zi is the number that we are working with. We
begin by setting Z0 to C. Expanding this formula into real and imaginary parts of
the complex number, we get these two formulas:

X X Y C

Y X Y C
i i i x

i i i y

�

�

� � �

� �
1

2 2

1 2

526

The X is the real part, and Y is the imaginary part. Now we only need to do this
math in a pixel shader. The first thing that we need to do is pass the constant C to
the pixel shader. Where do we get C from, and what is it really? As we want to
visualize the Mandelbrot set, we want to view every point in the XY plane that
belongs to the Mandelbrot set, as these are clearly different from the pixel that
doesn’t belong to the set. This means that we are interested in those points in the
XY plane that, after an infinite amount of iterations of the formulas above, is still
close to the origin. So what we pass as C is basically the position of a point in the
XY plane. We will define a subset of the plane (for instance, the rectangle (–2, –2)
– (2, 2)) and draw this range as a quad covering the whole viewport. C is basically
the position, and thus we will pass it as a texture coordinate, which will be inter-
polated over the surface. The Mandelbrot set definition declares that we need to
loop the equations above an infinite number of times in order to decide whether a
point is within the set or not. Obviously, this is impossible to do, so usually one
just loops it a sufficient number of times and then decides if we are still close to
the origin. If we are, then we assume that we are part of the Mandelbrot set, a
fairly reasonable assumption.

An iteration of the formulas above can be done in three instructions. C is
passed in texture coordinates t0, r0 contains our Z in its x and y components, and
r2 is a temporary register. The implementation will look like this:

mad r2.xy, r0.x, r0, t0
mad r1.x, –r0.y, r0.y, r2.x
mad r1.y, r0.x, r0.y, r2.y

As you can see, the result ends up in another register, r1. This is because both
the x and y components of the previous value are needed in the evaluation of the
new value, so we can’t overwrite any of them. So we write the results to r1
instead. In the next iteration, we can do the same thing again but with r0 and r1
reversed such that the next result ends up in r0 again. Then we only need to take
these two iterations and cut and paste them until we reach the limit of the hard-
ware. A Radeon 9700, for instance, accepts pixel shaders of at most 64 ALU
instructions. This means that we can get, at most, 21 iterations, but probably
fewer in reality because we probably prefer to do something cool with the end
result before we write it to the frame buffer. In the code for this article, we end up
with 19 iterations.

Visualizing It

We’ve done our 19 iterations — now what? Well, we need to transform it into
something meaningful for the eye. There are billions of ways to do this, and which
one we choose is arbitrary and can be based on our subjective preference. For all
this to be meaningful though, we need to make the pixels that end up in the
Mandelbrot set visually different from those that didn’t. Traditionally, when one
renders Mandelbrot sets on the CPU, people have used whatever number of loops
it took until we ended up at a distance larger than two from the origin. This is
then used to look up a color from a palette. Unfortunately, this kind of information

Mandelbrot Set Rendering
527

Section IV — Image Space

is not available to us. As of publication, there’s no support for data-based branch-
ing in the pixel shaders in any hardware available on the market, so we can’t count
loops. All the information that we have is the final position after all our iterations.
This is sufficient, however, and we map this distance to a color. A large distance
means that it’s not in the Mandelbrot set, while a small distance means that it
most likely is. To get some nice coloration, we use the distance as a texture coor-
dinate and look up the color from a texture with a dependent texture read. This
texture is one-dimensional and contains a color spectrum not too different looking
from a rainbow, except that it softly fades to black to the right. The distance can
be anywhere from zero to very high, so instead of just mapping it directly, we use
a similar formula as when one maps high dynamic range images into the 0…1
interval with exposure control. We use the following formula:

R cd� � �1 2

R is our resulting color, and d is our distance. Instead of bothering with taking the
square root in order to find the distance, we just use the squared distance; mind
you, this final step is no exact science — it is better classified as art. The constant
c is just an arbitrary constant that says how far from the origin a point can be
without mapping to our black edge of the texture. We select it purely on subjec-
tive grounds; I have found that something around 8 will suit us well. The final
implementation is pretty straightforward:

def c0, 0.0, 1.0, 8.0, 0.0

...

mov r1.z, c0.x

dp3 satr0, r1, r1

mul r0.x, r0.x, c0.z

exp r0.x, –r0.x

sub r0, c0.y, r0.x

texld r0, r0, s0

mov oC0, r0

First we fill r1.z with a zero so we can use the dot product instruction without
reading uninitialized components. You may wonder why we use a dp3_sat;
shouldn’t we use dp3? Well, we should. Unfortunately, in practice some imple-
mentations seem to have problems raising numbers to high negative numbers;
this can create some noisy artifacts. However, as 2–8 is already a very small num-
ber, there is no visual difference if we clamp it. We should now have a nice colored
Mandelbrot before our eyes.

528
Mandelbrot Set Rendering

Section IV — Image Space

Real-Time Depth of Field
Simulation

Guennadi Riguer, Natalya Tatarchuk, and John Isidoro

Introduction

Photorealistic rendering attempts to generate computer images with quality
approaching that of real-life images. Quite often, computer-rendered images look
almost photorealistic, but they are missing something subtle — something that
makes them look synthetic or too perfect. Depth of field is one of those very
important visual components of real photography that makes images look “real.”
In “real-world” photography or cinematography, the physical properties of the
camera cause some parts of the scene to be blurred, while maintaining sharpness
in other areas. While blurriness sometimes can be thought of as an imperfection
and undesirable artifact that distorts original images and hides some of the scene
details, it can also be used as a tool to provide valuable visual clues and guide a
viewer’s attention to important parts of the scene. Using depth of field effectively
can improve photorealism and add an artistic touch to rendered images. Figure 1
shows a simple scene rendered with and without depth of field.

Figure 1: A scene rendered with and without depth of field

Recent developments in the field of programmable graphics hardware allow us to
simulate complex visual effects such as depth of field in real time. This article
presents two real-time implementations of the depth of field effect using DirectX
9 class hardware. The High Level Shading Language (HLSL) from Microsoft is
used to simplify shader development.

529

With depth of field No depth of field

Camera Models and Depth of Field

Computer images rendered with conventional methods look too sharp and lack
the defects and artifacts of real cameras. Without these defects, it is hard to trick
the eye into believing the images were captured by a real camera. Better camera
models become even more important when computer-generated images have to
be combined with ones produced by a real camera. The visual discrepancy mostly
comes from the difference between physical cameras and the camera models nor-
mally used in computer graphics. Computer graphics generally implicitly use a
pinhole camera model, while real cameras use lenses of finite dimensions.

Pinhole Camera Model

In the pinhole camera, light rays scattered from objects pass though an infinitely
small pinhole lens. Only a single ray emanating from each point in the scene is
allowed to pass though the pinhole. All rays going in other directions are ignored.
Because only a single ray passes though the pinhole, only a single ray hits the
imaging plane at any given point. This creates an image that is always in focus.
Figure 2 illustrates the pinhole camera in action.

Thin Lens Camera Model

In the real world, all lenses have finite dimensions and let through rays coming
from multiple different directions. As a result, parts of the scene are sharp only if
they are located at or near a specific focal distance. For a lens with focal length f, a
sharp image of a given object is produced at the imaging plane offset from the lens
by v, when the object is at the distance u from the lens. This is described by a thin
lens equation:

1 1 1
u v f

� �

The distance from the image plane to the object in focus can be expressed as:

zfocus = u + v

Figure 3 demonstrates how the thin lens camera works.

530
Real-Time Depth of Field Simulation

Section IV — Image Space

Figure 2: Pinhole camera

Multiple rays scattered from a given point on an object will pass through the lens,
forming the cone of light. If the object is in focus, all rays will converge at a single
point on the image plane. However, if a given point on an object in the scene is
not near the focal distance, the cone of light rays will intersect the image plane in
an area shaped like a conic section. Typically, the conic section is approximated by
a circle called the circle of confusion.

The circle of confusion diameter b depends on the distance of the plane of
focus and lens aperture setting a (also known as the f-stop). For a known focus
distance and lens parameters, the size of the circle of confusion can be calculated
as:

� �
� �

b
D f z z

z z f

focus

focus

�
� �

�
, where D is a lens diameter

D
f

a
�

Any circle of confusion greater than the smallest point a human eye can resolve
contributes to the blurriness of the image that we see as depth of field.

Overview of Depth of Field Techniques

A number of techniques can be used to simulate depth of field in rendered scenes.
One technique used in offline rendering employs distributed ray tracing. For each
image point, multiple rays are shot through the lens. Coming from a single point
of the image plane, these rays focus on the single point of the object if it is at the
focal point. If the object is not in focus, the rays get scattered into the environ-
ment, which contributes to blurring. Because the rays accurately sample the sur-
rounding environment, this method produces the most realistic depth of field
effect, lacking many artifacts produced by other methods. The quality, however,
comes at a cost, and this technique is unacceptable for real-time rendering.

Another method involves the accumulation buffer. The accumulation buffer
integrates images from multiple render passes. Each of the images is rendered
from a slightly different position and direction within the virtual lens aperture.
While less complex than ray tracing, this method is also quite expensive because
images have to be rendered many times to achieve good visual results.

Real-Time Depth of Field Simulation
531

Section IV — Image Space

Figure 3: Thin lens camera

A cheaper and more reasonable alternative for real-time implementation is
the post-processing method. Usually, this method involves two-pass rendering.
On the first pass, the scene is rendered with some additional information, such as
depth. On the second pass, some filter is run on the result of the first pass to blur
the image. This article presents two variations of this general post-processing
approach. Each version has some strengths and weaknesses and can produce
high-quality photorealistic depth of field effects on DirectX 9 graphics hardware.

Depth of Field Implementation via Simulation

of Circle of Confusion

The first implementation that we present is an extension to the post-processing
method proposed by Potmesil and Chakravarty in [Potmesil83]. On the first pass,
we render the scene, outputting the color as well as the information necessary to
blur the image. On the second pass, we filter the image from the first pass with a
variable-sized filter kernel to simulate the circle of confusion. A blurriness factor
computed on the first pass controls the size of the filter kernel used in the second
pass. Special measures are taken to eliminate the leaking of color of objects in
focus onto backgrounds that have been blurred.

Pass One: Scene Rendering

First, the whole scene is rendered by outputting depth and blurriness factor, which
is used to describe how much each pixel should be blurred, in addition to the
resulting scene rendering color. This can be accomplished by rendering the scene
to multiple buffers at one time. DirectX 9 has a useful feature called Multiple Ren-
der Targets (MRT) that allows simultaneous shader output into the multiple
renderable buffers. Using this feature gives us the ability to output all of the data
channels (scene color, depth, and blurriness factor) in our first pass. One of the
MRT restrictions on some hardware is the requirement for all render surfaces to
have the same bit depth while allowing use of different surface formats. Guided by
this requirement, we can pick the D3DFMT_A8R8G8B8 format for the scene color
output and the two-channel texture format D3DFMT_G16R16 format for the depth
and blurriness factor. As shown in Figure 4, both formats are 32 bits per pixel and
provide us with enough space for the necessary information at the desired
precision.

532
Real-Time Depth of Field Simulation

Section IV — Image Space

Figure 4: Pixel shader output for a scene rendering pass

Scene Rendering Vertex Shader

The vertex shader for the scene rendering pass is just a regular vertex shader
with one little addition: It outputs scene depth in the camera space. This depth
value is later used in the pixel shader to compute blurriness factor.

An example of a simple scene vertex shader is shown below:

///

float3 lightPos; // light position in model space

float4 mtrlAmbient;

float4 mtrlDiffuse;

matrix matWorldViewProj;

matrix matWorldView;

///

struct VS INPUT

{

float4 vPos: POSITION;

float3 vNorm: NORMAL;

float2 vTexCoord: TEXCOORD0;

};

struct VS OUTPUT

{

float4 vPos: POSITION;

float4 vColor: COLOR0;

float fDepth: TEXCOORD0;

float2 vTexCoord: TEXCOORD1;

};

///

VS OUTPUT scene shader vs(VS INPUT v)

{

VS OUTPUT o = (VS OUTPUT)0;

float4 vPosWV;

float3 vNorm;

float3 vLightDir;

// Transform position

o.vPos = mul(v.vPos, matWorldViewProj);

// Position in camera space

vPosWV = mul(v.vPos, matWorldView);

// Output depth in camera space

o.fDepth = vPosWV.z;

// Compute diffuse lighting

vLightDir = normalize(lightPos - v.vPos);

Real-Time Depth of Field Simulation
533

Section IV — Image Space

vNorm = normalize(v.vNorm);

o.vColor = dot(vNorm, vLightDir) * mtrlDiffuse + mtrlAmbient;

// Output texture coordinates

o.vTexCoord = v.vTexCoord;

return o;

}

Scene Rendering Pixel Shader

The pixel shader of the scene rendering pass needs to compute the blurriness fac-
tor and output it along with the scene depth and color. To abstract from the differ-
ent display sizes and resolutions, the blurriness is defined to lie in the [0..1]
range. A value of zero means the pixel is perfectly sharp, while a value of one cor-
responds to the pixel of the maximal circle of confusion size. The reason behind
using the [0..1] range is twofold. First, the blurriness is not expressed in terms of
pixels and can scale with resolution during the post-processing step. Second, the
values can be directly used as sample weights when eliminating “bleeding”
artifacts.

For each pixel of a scene, this shader computes the circle of confusion size
based on the formula provided in the preceding discussion of the thin lens model.
Later in the process, the size of the circle of confusion is scaled by the factor cor-
responding to the size of the circle in pixels for a given resolution and display size.
As a last step, the blurriness value is divided by a maximal desired circle of confu-
sion size in pixels (variable maxCoC) and clamped to the [0..1] range. Sometimes it
might be necessary to limit the circle of confusion size (through the variable
maxCoC) to reasonable values (i.e., ten pixels) to avoid sampling artifacts caused by
an insufficient number of filter taps.

An example of a scene pixel shader that can be compiled to the ps 2.0 shader
model is shown below:

///

float focalLen;

float Dlens;

float Zfocus;

float maxCoC;

float scale;

sampler TexSampler;

float sceneRange;

///

struct PS INPUT

{

float4 vColor: COLOR0;

float fDepth: TEXCOORD0;

float2 vTexCoord: TEXCOORD1;

};

534
Real-Time Depth of Field Simulation

Section IV — Image Space

struct PS OUTPUT

{

float4 vColor: COLOR0;

float4 vDoF: COLOR1;

};

///

PS OUTPUT scene shader ps(PS INPUT v)

{

PS OUTPUT o = (PS OUTPUT)0;

// Output color

o.vColor = v.vColor * tex2D(TexSampler, v.vTexCoord);

// Compute blur factor based on the CoC size scaled and

// normalized to the [0..1] range

float pixCoC = abs(Dlens * focalLen * (Zfocus - v.fDepth) /

(Zfocus * (v.fDepth - focalLen)));

float blur = saturate(pixCoC * scale / maxCoC);

// Depth/blurriness value scaled to the [0..1] range

o.vDoF = float4(v.fDepth / sceneRange, blur, 0, 0);

return o;

}

Pass Two: Post-processing

During the post-processing pass, the results of the previous rendering are pro-
cessed, and the color image is blurred based on the blurriness factor computed in
the first pass. Blurring is performed using a variable-sized filter representing the
circle of confusion. To perform image filtering, a simple screen-aligned quadrilat-
eral is drawn, textured with the results of the first pass. Figure 5 shows the
quad’s texture coordinates and screen positions for a render target of W×H
dimensions. The quad corner positions are shifted by –0.5 pixels to properly align
texels to pixels.

Real-Time Depth of Field Simulation
535

Section IV — Image Space

Figure 5: Texture coordinates and vertex positions for screen space quad

This vertex shader is designed for a vs 1.1 compilation target.

//

float4 viewportScale;

float4 viewportBias;

//

struct VS INPUT

{

float4 vPos: POSITION;

float2 vTexCoord: TEXCOORD;

};

struct VS OUTPUT

{

float4 vPos: POSITION;

float2 vTexCoord: TEXCOORD0;

};

//

VS OUTPUT dof filter vs(VS INPUT v)

{

VS OUTPUT o = (VS OUTPUT)0;

// Scale and bias viewport

o.vPos = v.vPos * viewportScale + viewportBias;

// Pass through the texture coordinates

o. vTexCoord = v.vTexCoord;

return o;

}

Post-processing Pixel Shader

The filter kernel in the post-processing step has 13 samples — a center sample
and 12 outer samples, as shown in Figure 6. The number of samples was dictated
by practical reasons of real-time implementation and represents the maximum
number of samples that can be processed by a 2.0 pixel shader in a single pass.

The center tap is aligned with the pixel being filtered, while the outer taps
are sampled from nearby pixels. The filter uses stochastic sampling, and the outer
samples are aligned in the filter according to a Poisson disk distribution. Other
sample patterns can be used to achieve specific artistic results, as presented later
in the “Bokeh” section.

536
Real-Time Depth of Field Simulation

Section IV — Image Space

The filter size is computed per-pixel from the blurriness value of the center sam-
ple and the maximum allowable circle of confusion size. Figure 7 shows the rela-
tionship between blurriness and filter kernel size.

The post-processing pixel shader computes filter sample positions based on 2D
offsets stored in the filterTaps array and the size of the circle of confusion. The
2D offsets are locations of taps for the filter of one pixel in diameter. The follow-
ing code shows how these values can be initialized in the program, according to
the render target resolution.

void SetupFilterKernel()

{

// Scale tap offsets based on render target size

FLOAT dx = 0.5f / (FLOAT)dwRTWidth;

FLOAT dy = 0.5f / (FLOAT)dwRTHeight;

D3DXVECTOR4 v[12];

v[0] = D3DXVECTOR4(-0.326212f * dx, -0.40581f * dy, 0.0f, 0.0f);

v[1] = D3DXVECTOR4(-0.840144f * dx, -0.07358f * dy, 0.0f, 0.0f);

v[2] = D3DXVECTOR4(-0.695914f * dx, 0.457137f * dy, 0.0f, 0.0f);

v[3] = D3DXVECTOR4(-0.203345f * dx, 0.620716f * dy, 0.0f, 0.0f);

v[4] = D3DXVECTOR4(0.96234f * dx, -0.194983f * dy, 0.0f, 0.0f);

v[5] = D3DXVECTOR4(0.473434f * dx, -0.480026f * dy, 0.0f, 0.0f);

v[6] = D3DXVECTOR4(0.519456f * dx, 0.767022f * dy, 0.0f, 0.0f);

v[7] = D3DXVECTOR4(0.185461f * dx, -0.893124f * dy, 0.0f, 0.0f);

v[8] = D3DXVECTOR4(0.507431f * dx, 0.064425f * dy, 0.0f, 0.0f);

v[9] = D3DXVECTOR4(0.89642f * dx, 0.412458f * dy, 0.0f, 0.0f);

v[10] = D3DXVECTOR4(-0.32194f * dx, -0.932615f * dy, 0.0f, 0.0f);

v[11] = D3DXVECTOR4(-0.791559f * dx, -0.59771f * dy, 0.0f, 0.0f);

Real-Time Depth of Field Simulation
537

Section IV — Image Space

Figure 6: Depth of field filter kernel

Figure 7: Relationship between blurriness and filter size

// Set array of offsets

pEffect->SetVectorArray("filterTaps", v, 12);

}

Once sample positions are computed, the filter averages color from its samples to
derive the blurred color. When the blurriness value is close to zero, all samples
come from the same pixel and no blurring happens. As the blurriness factor
increases, the filter will start sampling from more and more neighboring pixels,
thus increasingly blurring the image. All images are sampled with D3DTEXF_LINEAR

filtering. Using linear filtering is not very accurate on the edges of objects where
depth might abruptly change; however, it produces better overall quality images
in practice.

One of the problems commonly associated with all post-filtering methods is
leaking of color from sharp objects onto the blurry backgrounds. This results in
faint halos around sharp objects, as can be seen on the left side of Figure 8. The
color leaking happens because the filter for the blurry background will sample
color from the sharp object in the vicinity due to the large filter size. To solve this
problem, we will discard the outer samples that can contribute to leaking accord-
ing to the following criteria: If the outer sample is in focus and it is in front of the
blurry center sample, it should not contribute to the blurred color. This can intro-
duce a minor popping effect when objects go in or out of focus. To combat sample
popping, the outer sample blurriness factor is used as a sample weight to fade out
its contribution gradually. The right side of Figure 8 shows a portion of a scene
fragment with color leaking eliminated.

Figure 8: Elimination of color leaking

Below, we show a depth of field pixel shader that implements the concepts dis-
cussed above. This shader can be compiled to the 2.0 pixel shader model.

//

#define NUM DOF TAPS 12

float maxCoC;

float2 filterTaps[NUM DOF TAPS];

538
Real-Time Depth of Field Simulation

Section IV — Image Space

Sharp objects without color leakingLeaking of sharp objects

//

struct PS INPUT

{

float2 vTexCoord: TEXCOORD;

};

//

float4 dof filter ps(PS INPUT v) : COLOR

{

// Start with center sample color

float4 colorSum = tex2D(SceneColorSampler, v.vTexCoord);

float totalContribution = 1.0f;

// Depth and blurriness values for center sample

float2 centerDepthBlur = tex2D(DepthBlurSampler, v.vTexCoord);

// Compute CoC size based on blurriness

float sizeCoC = centerDepthBlur.y * maxCoC;

// Run through all filter taps

for (int i = 0; i < NUM DOF TAPS; i++)

{

// Compute sample coordinates

float2 tapCoord = v.vTexCoord + filterTaps[i] * sizeCoC;

// Fetch filter tap sample

float4 tapColor = tex2D(SceneColorSampler, tapCoord);

float2 tapDepthBlur = tex2D(DepthBlurSampler, tapCoord);

// Compute tap contribution based on depth and blurriness

float tapContribution =

(tapDepthBlur.x > centerDepthBlur.x) ?

1.0f : tapDepthBlur.y;

// Accumulate color and sample contribution

colorSum += tapColor * tapContribution;

totalContribution += tapContribution;

}

// Normalize color sum

float4 finalColor = colorSum / totalContribution;

return finalColor;

}

Now that we have discussed our implementation, which models the circle of con-
fusion with a variable-sized stochastic filter kernel, we can describe an implemen-
tation that is based on a separable Gaussian filter.

Real-Time Depth of Field Simulation
539

Section IV — Image Space

Depth of Field Rendering by Blurring

with Separable Gaussian Filter

This separable Gaussian filter approach differs from the previous approach of sim-
ulating depth of field in two ways. First, it does not utilize multiple render targets
for outputting depth information. Second, to simulate the blurring that occurs in
depth of field, we apply a Gaussian filter during the post-processing stage instead
of simulating the circle of confusion of a physical camera lens.

Implementation Overview

In this method, we first render the scene at full resolution to an offscreen buffer,
outputting depth information for each pixel to the alpha channel of that buffer. We
then downsample this fully rendered scene into an image one-fourth the size (half
in x and half in y) of the original. Next, we perform blurring of the downsampled
scene in two passes by running the image through two passes of a separable
Gaussian filter — first along the x axis and then along the y axis. On the final pass,
we blend between the original full resolution rendering of our scene and the
blurred post-processed image based on the distance of each pixel from the speci-
fied focal plane stored in the downsampled image. The intermediate filtering
results are stored in 16-bit per-channel integer format (D3DFMT_A16B16G16R16) for
extra precision. Let’s discuss this method in more detail, going step by step
through the different rendering passes and shaders used.

Pass One: Scene Rendering

During the scene rendering pass, we render the scene to the full resolution
offscreen buffer, computing color information and a depth falloff value for each
pixel. The depth falloff value will determine how much each pixel will be blurred
during the subsequent post-processing stage. The distance from the focal plane is
output to the alpha channel of the offscreen buffer.

Scene Rendering Vertex Shader

We compute the depth falloff value and the distance from the focal plane in the
vertex shader. First, we determine the distance of each vertex from the focal
plane in view space. We output scaled to the [0..1] range distance from the focal
plane into the texture coordinate interpolator. This is illustrated in the following
vertex shader, compiled to vertex shader target vs 1.1:

///

float3 lightPos; // light position in model space

float4 mtrlAmbient;

float4 mtrlDiffuse;

matrix matWorldViewProj;

matrix matWorldView;

540
Real-Time Depth of Field Simulation

Section IV — Image Space

float fFocalDistance;

float fFocalRange;

///

struct VS INPUT

{

float4 vPos: POSITION;

float3 vNorm: NORMAL;

float2 vTexCoord: TEXCOORD0;

};

struct VS OUTPUT

{

float4 vPos: POSITION;

float4 vColor: COLOR0;

float fBlur: TEXCOORD0;

float2 vTexCoord: TEXCOORD1;

};

///

VS OUTPUT scene shader vs(VS INPUT v)

{

VS OUTPUT o = (VS OUTPUT)0;

float4 vPosWV;

float3 vNorm;

float3 vLightDir;

// Transform position

o.vPos = mul(v.vPos, matWorldViewProj);

// Position in camera space

vPosWV = mul(v.vPos, matWorldView);

// Normalized distance to focal plane in camera space,

// used as a measure of blurriness for depth of field

o.fBlur = saturate(abs(vPosWV.z - fFocalDistance) / fFocalRange);

// Compute diffuse lighting

vLightDir = normalize(lightPos - v.vPos);

vNorm = normalize(v.vNorm);

o.vColor = dot(vNorm, vLightDir) * mtrlDiffuse + mtrlAmbient;

// Output texture coordinates

o.vTexCoord = v.vTexCoord;

return o;

}

Real-Time Depth of Field Simulation
541

Section IV — Image Space

Scene Rendering Pixel Shader

In the pixel shader, we render our scene as desired. The alpha channel receives
the blurriness value expressed as the distance from the focal plane. This pixel
shader is designed to be compiled into a ps 2.0 target.

///

sampler TexSampler;

///

struct PS INPUT

{

float4 vColor: COLOR0;

float fBlur: TEXCOORD0;

float2 vTexCoord: TEXCOORD1;

};

///

float4 scene shader ps(PS INPUT v) : COLOR

{

float3 vColor;

// Output color

vColor = v.vColor * tex2D(TexSampler, v.vTexCoord);

// Output blurriness in alpha

return float4(vColor, v.fBlur);

}

Pass Two: Downsampling

To downsample the full resolution image, we simply render a quad one-fourth the
size of the original image while sampling from the original image and outputting it
to the smaller offscreen buffer. The alpha channel of the downsampled image
receives a blurriness value computed as the scaled distance from the focus plane
for each pixel. This information will be used during post-processing to control the
amount of blurring applied to the downsampled image as well as to blend between
a blurred image of the scene and the original rendering to simulate the effect of
depth of field.

Downsampling Vertex Shader

In this simple vertex shader, we transform the vertices into clip space and propa-
gate incoming texture coordinates to the pixel shader. Note that at this point, the
incoming model must be a screen-aligned quad of dimensions one-fourth the size
of the original image.

542
Real-Time Depth of Field Simulation

Section IV — Image Space

//

matrix matWorldViewProj;

//

struct VS OUTPUT

{

float4 vPos: POSITION;

float2 vTex: TEXCOORD0;

};

//

VS OUTPUT main(float4 Pos: POSITION, float2 Tex: TEXCOORD0)

{

VS OUTPUT o = (VS OUTPUT)0;

// Output transformed vertex position:

o.vPos = mul(matWorldViewProj, Pos);

// Propagate texture coordinate to the pixel shader

o.vTex = Tex;

return o;

}

Downsampling Pixel Shader

In the pixel shader for the downsampling pass, we sample the original scene ren-
dering using texture coordinates from the smaller screen-aligned quad and store
the results in an offscreen render target. This pixel shader can be compiled to ps
1.4 or above.

//

sampler renderTexture;

//

float4 main(float2 Tex: TEXCOORD0) : COLOR

{

// Downsample rendered scene:

return tex2D(renderTexture, Tex);

}

Post-processing for Simulation of Depth of Field

One of the most frequently used filters for performing smoothing of an image is
the Gaussian filter (see Figure 9). Typically, the filter is applied in the following
way:

Real-Time Depth of Field Simulation
543

Section IV — Image Space

F

P C

S

ij ij

j

n

i

n

� ��

��
11

. . .where F is the filtered value
of the target pixel, P is a pixel
in the 2D grid, C is a coefficient
in the 2D Gaussian matrix, n is
the vertical/horizontal dimen-
sions of the matrix, and S is the
sum of all values in the
Gaussian matrix.

Once a suitable kernel has
been calculated, Gaussian
smoothing can be performed
using standard convolution methods. The convolution can in fact be performed
fairly quickly since the equation for the 2D isotropic Gaussian is separable into x

and y components. Thus, the 2D convolution can be performed by first convolving
with a 1D Gaussian in the x direction and then convolving with another 1D
Gaussian in the y direction. This allows us to apply a larger size filter to the input
image in two successive passes of 1D filters. We perform this operation by ren-
dering into a temporary buffer and sampling a line (or a column, for y axis filter-
ing) of texels in each of the passes.

The size of the downsampled buffer determines the size of texels used for
controlling sampling points for the Gaussian filter taps. This can be precomputed
as a constant to the shader ahead of time. The following is an example of how the
filter tap offset can be computed.

void SetupFilterKernel()

{

// Scale tap offsets based on render target size

FLOAT dx = 1.0f / (FLOAT)dwRTWidth;

FLOAT dy = 1.0f / (FLOAT)dwRTHeight;

D3DXVECTOR4 v[7];

v[0] = D3DXVECTOR4(0.0f, 0.0f, 0.0f, 0.0f);

v[1] = D3DXVECTOR4(1.3366f * dx, 0.0f, 0.0f, 0.0f);

v[2] = D3DXVECTOR4(3.4295f * dx, 0.0f, 0.0f, 0.0f);

v[3] = D3DXVECTOR4(5.4264f * dx, 0.0f, 0.0f, 0.0f);

v[4] = D3DXVECTOR4(7.4359f * dx, 0.0f, 0.0f, 0.0f);

v[5] = D3DXVECTOR4(9.4436f * dx, 0.0f, 0.0f, 0.0f);

v[6] = D3DXVECTOR4(11.4401f * dx, 0.0f, 0.0f, 0.0f);

// Set array of horizontal offsets for X-pass

m pEffect->SetVectorArray("horzTapOffs", v, 7);

v[0] = D3DXVECTOR4(0.0f, 0.0f, 0.0f, 0.0f);

v[1] = D3DXVECTOR4(0.0f, 1.3366f * dy, 0.0f, 0.0f);

544
Real-Time Depth of Field Simulation

Section IV — Image Space

Figure 9: Gaussian filter kernel

v[2] = D3DXVECTOR4(0.0f, 3.4295f * dy, 0.0f, 0.0f);

v[3] = D3DXVECTOR4(0.0f, 5.4264f * dy, 0.0f, 0.0f);

v[4] = D3DXVECTOR4(0.0f, 7.4359f * dy, 0.0f, 0.0f);

v[5] = D3DXVECTOR4(0.0f, 9.4436f * dy, 0.0f, 0.0f);

v[6] = D3DXVECTOR4(0.0f, 11.4401f * dy, 0.0f, 0.0f);

// Set array of vertical offsets for Y-pass

m pEffect->SetVectorArray("vertTapOffs", v, 7);

}

Pass Three: Separable Gaussian Filtering in X Axis

First, we perform Gaussian filter blurring along the x axis of the downsampled
image. For each pixel in the downsampled image, we sample n texture samples
dynamically along the x axis in the following manner:

The center sample and the inner taps of the filter are done with interpolated
texture coordinates, which are computed in the vertex shader. To compute the
offsets for the first seven samples, we use input texture coordinates and the
precomputed tap offsets based on the image resolution.

In the pixel shader, we sample the image for the center tap and the first six
inner taps, using nearest filtering for the center sample and bilinear sampling for
the inner samples.

The pixel shader code derives the texture coordinates for the outer samples
based on precomputed deltas from the location of the center sample. The outer
samples are fetched via dependent reads, as texture coordinates are derived in the
pixel shader itself.

All samples are weighted based on the predefined weight thresholds and
blurriness values and added together. This results in a weighted sum of 25 texels
from the source image, which is large enough to allow us to create a convincing
blurring effect for simulating depth of field without violating the maximum num-
ber of instructions for the 2.0 pixel shader.

Note that the output of this pass is directed to a separate offscreen buffer. At
this point we have used three separate offscreen render targets: one to output
results of the full scene rendering, one to output results of the downsampling
pass, and one to output the results of Gaussian blurring.

Real-Time Depth of Field Simulation
545

Section IV — Image Space

Figure 10: Samples for applying 1D Gaussian filter

Vertex Shader for X Axis of Separable Gaussian Filter

This vertex shader is designed for a vs 1.1 compilation target.

//

float4 viewportScale;

float4 viewportBias;

// Offsets 0-3 used by vertex shader, 4-6 by pixel shader

float2 horzTapOffs[7];

//

struct VS INPUT

{

float4 vPos: POSITION;

float2 vTexCoord: TEXCOORD;

};

struct VS OUTPUT TEX7

{

float4 vPos: POSITION;

float2 vTap0: TEXCOORD0;

float2 vTap1: TEXCOORD1;

float2 vTap2: TEXCOORD2;

float2 vTap3: TEXCOORD3;

float2 vTap1Neg: TEXCOORD4;

float2 vTap2Neg: TEXCOORD5;

float2 vTap3Neg: TEXCOORD6;

};

//

VS OUTPUT TEX7 filter gaussian x vs(VS INPUT v)

{

VS OUTPUT TEX7 o = (VS OUTPUT TEX7)0;

// Scale and bias viewport

o.vPos = v.vPos * viewportScale + viewportBias;

// Compute tap coordinates

o.vTap0 = v.vTexCoord;

o.vTap1 = v.vTexCoord + horzTapOffs[1];

o.vTap2 = v.vTexCoord + horzTapOffs[2];

o.vTap3 = v.vTexCoord + horzTapOffs[3];

o.vTap1Neg = v.vTexCoord - horzTapOffs[1];

o.vTap2Neg = v.vTexCoord - horzTapOffs[2];

o.vTap3Neg = v.vTexCoord - horzTapOffs[3];

return o;

}

546
Real-Time Depth of Field Simulation

Section IV — Image Space

Pixel Shader for X Axis of Separable Gaussian Filter

This pixel shader is fine-tuned to compile for a ps 2.0 compilation target.

//

// Thresholds for computing sample weights

float4 vThresh0 = {0.1, 0.3, 0.5, -0.01};

float4 vThresh1 = {0.6, 0.7, 0.8, 0.9};

sampler renderTexture;

// Offsets 0-3 used by vertex shader, 4-6 by pixel shader

float2 horzTapOffs[7];

//

struct PS INPUT TEX7

{

float2 vTap0: TEXCOORD0;

float2 vTap1: TEXCOORD1;

float2 vTap2: TEXCOORD2;

float2 vTap3: TEXCOORD3;

float2 vTap1Neg: TEXCOORD4;

float2 vTap2Neg: TEXCOORD5;

float2 vTap3Neg: TEXCOORD6;

};

//

float4 filter gaussian x ps(PS INPUT TEX7 v) : COLOR

{

// Samples

float4 s0, s1, s2, s3, s4, s5, s6;

float4 vWeights4;

float3 vWeights3;

// Acumulated color and weights

float3 vColorSum;

float fWeightSum;

// Sample taps with coordinates from VS

s0 = tex2D(renderTexture, v.vTap0);

s1 = tex2D(renderTexture, v.vTap1);

s2 = tex2D(renderTexture, v.vTap2);

s3 = tex2D(renderTexture, v.vTap3);

s4 = tex2D(renderTexture, v.vTap1Neg);

s5 = tex2D(renderTexture, v.vTap2Neg);

s6 = tex2D(renderTexture, v.vTap3Neg);

// Compute weights for first 4 samples (including center tap)

// by thresholding blurriness (in sample alpha)

vWeights4.x = saturate(s1.a - vThresh0.x);

vWeights4.y = saturate(s2.a - vThresh0.y);

Real-Time Depth of Field Simulation
547

Section IV — Image Space

vWeights4.z = saturate(s3.a - vThresh0.x);

vWeights4.w = saturate(s0.a - vThresh0.w);

// Accumulate weighted samples

vColorSum = s0 * vWeights4.x + s1 * vWeights4.y +

s2 * vWeights4.z + s3 * vWeights4.w;

// Sum weights using DOT

fWeightSum = dot(vWeights4, 1);

// Compute weights for three remaining samples

vWeights3.x = saturate(s4.a - vThresh0.x);

vWeights3.y = saturate(s5.a - vThresh0.y);

vWeights3.z = saturate(s6.a - vThresh0.z);

// Accumulate weighted samples

vColorSum += s4 * vWeights3.x + s4 * vWeights3.y +

s6 * vWeights3.z;

// Sum weights using DOT

fWeightSum += dot(vWeights3, 1);

// Compute tex coords for other taps

float2 vTap4 = v.vTap0 + horzTapOffs[4];

float2 vTap5 = v.vTap0 + horzTapOffs[5];

float2 vTap6 = v.vTap0 + horzTapOffs[6];

float2 vTap4Neg = v.vTap0 - horzTapOffs[4];

float2 vTap5Neg = v.vTap0 - horzTapOffs[5];

float2 vTap6Neg = v.vTap0 - horzTapOffs[6];

// Sample the taps

s0 = tex2D(renderTexture, vTap4);

s1 = tex2D(renderTexture, vTap5);

s2 = tex2D(renderTexture, vTap6);

s3 = tex2D(renderTexture, vTap4Neg);

s4 = tex2D(renderTexture, vTap5Neg);

s5 = tex2D(renderTexture, vTap6Neg);

// Compute weights for three samples

vWeights3.x = saturate(s0.a - vThresh1.x);

vWeights3.y = saturate(s1.a - vThresh1.y);

vWeights3.z = saturate(s2.a - vThresh1.z);

// Accumulate weighted samples

vColorSum += s0 * vWeights3.x + s1 * vWeights3.y +

s2 * vWeights3.z;

// Sum weights using DOT

fWeightSum += dot(vWeights3, 1);

// Compute weights for 3 samples

vWeights3.x = saturate(s3.a - vThresh1.x);

548
Real-Time Depth of Field Simulation

Section IV — Image Space

vWeights3.y = saturate(s4.a - vThresh1.y);

vWeights3.z = saturate(s5.a - vThresh1.z);

// Accumulate weighted samples

vColorSum += s3 * vWeights3.x + s4 * vWeights3.y +

s5 * vWeights3.z;

// Sum weights using DOT

fWeightSum += dot(vWeights3, 1);

// Divide weighted sum of samples by sum of all weights

vColorSum /= fWeightSum;

// Color and weights sum output scaled (by 1/256)

// to fit values in 16 bit 0 to 1 range

return float4(vColorSum, fWeightSum) * 0.00390625;

}

Pass Four: Separable Gaussian Filtering in Y Axis

In the next pass, we perform a similar operation but with blurring along the y axis.
The input to this pass is the image that we just blurred along the x axis. The out-
put of this pass is directed to an offscreen render target (blurredXYTexture),
which is going to be used during final image compositing.

Vertex Shader for Y Axis of Separable Gaussian Filter

In the vertex shader we again compute the first set of texture sample offsets to be
used in the pixel shader for sampling the pre-blurred image. This vertex shader
uses exactly the same approach as the vertex shader in the previous pass but with
different offset values. This particular vertex shader is designed for a vs 1.1 com-
pilation target.

//

float4 viewportScale;

float4 viewportBias;

// Offsets 0-3 used by vertex shader, 4-6 by pixel shader

float2 vertTapOffs[7];

//

struct VS INPUT

{

float4 vPos: POSITION;

float2 vTexCoord: TEXCOORD;

};

struct VS OUTPUT TEX7

{

float4 vPos: POSITION;

float2 vTap0: TEXCOORD0;

Real-Time Depth of Field Simulation
549

Section IV — Image Space

float2 vTap1: TEXCOORD1;

float2 vTap2: TEXCOORD2;

float2 vTap3: TEXCOORD3;

float2 vTap1Neg: TEXCOORD4;

float2 vTap2Neg: TEXCOORD5;

float2 vTap3Neg: TEXCOORD6;

};

//

VS OUTPUT TEX7 filter gaussian y vs(VS INPUT v)

{

VS OUTPUT TEX7 o = (VS OUTPUT TEX7)0;

// Scale and bias viewport

o.vPos = v.vPos * viewportScale + viewportBias;

// Compute tap coordinates

o.vTap0 = v.vTexCoord;

o.vTap1 = v.vTexCoord + vertTapOffs[1];

o.vTap2 = v.vTexCoord + vertTapOffs[2];

o.vTap3 = v.vTexCoord + vertTapOffs[3];

o.vTap1Neg = v.vTexCoord - vertTapOffs[1];

o.vTap2Neg = v.vTexCoord - vertTapOffs[2];

o.vTap3Neg = v.vTexCoord - vertTapOffs[3];

return o;

}

Pixel Shader for Y Axis of Separable Gaussian Filter

Similar to processing the image in the previous pass, we again sample the first
seven samples along the y axis using interpolated texture offsets and combine
these samples using appropriate kernel weights. Then we compute the next six
offset coordinates and sample the image using dependent texture reads. Finally,
we combine all weighted samples and output the value into an offscreen buffer.
This pixel shader is compiled to a ps 2.0 target.

//

float4 vWeights0 = {0.080, 0.075, 0.070, 0.100};

float4 vWeights1 = {0.065, 0.060, 0.055, 0.050};

sampler blurredXTexture;

// Offsets 0-3 used by vertex shader, 4-6 by pixel shader

float2 vertTapOffs[7];

//

struct PS INPUT TEX7

{

float2 vTap0: TEXCOORD0;

550
Real-Time Depth of Field Simulation

Section IV — Image Space

float2 vTap1: TEXCOORD1;

float2 vTap2: TEXCOORD2;

float2 vTap3: TEXCOORD3;

float2 vTap1Neg: TEXCOORD4;

float2 vTap2Neg: TEXCOORD5;

float2 vTap3Neg: TEXCOORD6;

};

//

float4 filter gaussian y ps(PS INPUT TEX7 v) : COLOR

{

// Samples

float4 s0, s1, s2, s3, s4, s5, s6;

// Accumulated color and weights

float4 vColorWeightSum;

// Sample taps with coordinates from VS

s0 = tex2D(blurredXTexture, v.vTap0);

s1 = tex2D(blurredXTexture, v.vTap1);

s2 = tex2D(blurredXTexture, v.vTap2);

s3 = tex2D(blurredXTexture, v.vTap3);

s4 = tex2D(blurredXTexture, v.vTap1Neg);

s5 = tex2D(blurredXTexture, v.vTap2Neg);

s6 = tex2D(blurredXTexture, v.vTap3Neg);

// Modulate sampled color values by the weights stored

// in the alpha channel of each sample

s0.rgb = s0.rgb * s0.a;

s1.rgb = s1.rgb * s1.a;

s2.rgb = s2.rgb * s2.a;

s3.rgb = s3.rgb * s3.a;

s4.rgb = s4.rgb * s4.a;

s5.rgb = s5.rgb * s5.a;

s6.rgb = s6.rgb * s6.a;

// Aggregate all samples weighting them with predefined

// kernel weights, weight sum in alpha

vColorWeightSum = s0 * vWeights0.w +

(s1 + s4) * vWeights0.x +

(s2 + s5) * vWeights0.y +

(s3 + s6) * vWeights0.z;

// Compute tex coords for other taps

float2 vTap4 = v.vTap0 + vertTapOffs[4];

float2 vTap5 = v.vTap0 + vertTapOffs[5];

float2 vTap6 = v.vTap0 + vertTapOffs[6];

float2 vTap4Neg = v.vTap0 - vertTapOffs[4];

float2 vTap5Neg = v.vTap0 - vertTapOffs[5];

float2 vTap6Neg = v.vTap0 - vertTapOffs[6];

// Sample the taps

Real-Time Depth of Field Simulation
551

Section IV — Image Space

s0 = tex2D(blurredXTexture, vTap4);

s1 = tex2D(blurredXTexture, vTap5);

s2 = tex2D(blurredXTexture, vTap6);

s3 = tex2D(blurredXTexture, vTap4Neg);

s4 = tex2D(blurredXTexture, vTap5Neg);

s5 = tex2D(blurredXTexture, vTap6Neg);

// Modulate sampled color values by the weights stored

// in the alpha channel of each sample

s0.rgb = s0.rgb * s0.a;

s1.rgb = s1.rgb * s1.a;

s2.rgb = s2.rgb * s2.a;

s3.rgb = s3.rgb * s3.a;

s4.rgb = s4.rgb * s4.a;

s5.rgb = s5.rgb * s5.a;

// Aggregate all samples weighting them with predefined

// kernel weights, weight sum in alpha

vColorWeightSum += (s1 + s3) * vWeights1.x +

(s1 + s4) * vWeights1.y +

(s2 + s5) * vWeights1.z;

// Average combined sample for all samples in the kernel

vColorWeightSum.rgb /= vColorWeightSum.a;

// Account for scale factor applied in previous pass

// (blur along the X axis) to output values

// in 16 bit 0 to 1 range

return vColorWeightSum * 256.0;

}

Figure 11 shows the result of applying the 25×25 separable Gaussian to the
downsampled image:

552
Real-Time Depth of Field Simulation

Section IV — Image Space

Figure 11: 25×25 Gaussian blurred image

Pass Five: Compositing the Final Output

In the final pass, we create a composite image of the actual scene rendering with
the Gaussian blurred image using the distance from the focal plane information
that is stored in the alpha channel of the original image. The two offscreen render
targets are used to sample that information (in our example, renderTexture is
used to sample from full-scene rendering pass results, and blurredXYTexture con-
tains results of applying Gaussian filtering to the downsampled image). All tex-
tures are sampled using interpolated texture coordinates.

Vertex Shader for Final Composite Pass

In this vertex shader, we simply transform the vertices and propagate the texture
coordinate to the pixel shader. The vertex shader is designed to compile to vs 1.1
target.

//

float4 viewportScale;

float4 viewportBias;

//

struct VS INPUT

{

float4 vPos: POSITION;

float2 vTex: TEXCOORD;

};

struct VS OUTPUT

{

float4 vPos: POSITION;

float2 vTex: TEXCOORD0;

};

//

VS OUTPUT final pass vs(VS INPUT v)

{

VS OUTPUT o = (VS OUTPUT)0;

// Scale and bias viewport

o.vPos = v.vPos * viewportScale + viewportBias;

// Propagate texture coordinate to the pixel shader

o.vTex = v.vTex;

return o;

}

Real-Time Depth of Field Simulation
553

Section IV — Image Space

Pixel Shader for Final Composite Pass

In this pixel shader, we actually do the compositing of the final image. In the pixel
shader we retrieve the depth falloff distance stored in the downsampled image’s
alpha channel. This focal plane distance is used as a blending weight to blend
between the post-processed Gaussian-blurred blurred image and the original full
resolution scene rendering. This pixel shader is designed to compile to a ps 1.4
target or above.

//

sampler blurredXYTexture;

sampler renderTexture;

//

float4 final pass ps(float2 Tex: TEXCOORD0) : COLOR

{

// Sample Gaussian-blurred image

float4 vBlurred = tex2D(blurredXYTexture, Tex);

// Sample full-resolution scene rendering result

float4 vFullres = tex2D(renderTexture, Tex);

// Interpolate between original full-resolution and

// blurred images based on blurriness

float3 vColor = lerp(vFullres, vBlurred, vFullres.a);

return float4(vColor, 1.0);

}

Figure 12 shows the result of the final compositing stage.

The images for Figures 11
and 12 are taken from a
screen saver from the ATI
Radeon 9700 demo suite,
which you can download
from http://www.ati.com/
developer/screen-
savers.html.

554
Real-Time Depth of Field Simulation

Section IV — Image Space

Figure 12: Final composite image for depth of field effect

Bokeh

Different lenses with the same apertures and focal distances produce slightly dif-
ferent out-of-focus images. In photography, the “quality” of an out-of-focus or
blurred image is described by the Japanese term “bokeh.” While this term is
mostly familiar to photographers, it is relatively new to computer graphics
professionals.

The perfect lens should have no spherical aberration and should focus incom-
ing rays in a perfect cone of light behind the lens. In such a camera, if the image is
not in focus, each blurred point is represented by a uniformly illuminated circle of
confusion. All real lenses have some degree of spherical aberration, and always
have non-uniform distribution of light in the light cone and thus in the circle of
confusion. The lens’ diaphragm and number of shutter blades can also have some
effect on the shape of the circle of confusion. “Bokeh,” which is a Japanese
phoneticization of the French word bouquet, describes this phenomenon and is a
subjective factor, meaning that there is no objective way to measure people’s
reaction to this phenomenon. What might be considered “bad” bokeh under cer-
tain circumstances can be desirable for some artistic effects and vice versa.

To simulate different lens bokehs, one can use filters with different distribu-
tions and weightings of filter taps. Figure 13 demonstrates part of the same scene
processed with blur filters of the same size but with different filter taps distribu-
tions and weightings.

Real-Time Depth of Field Simulation
555

Section IV — Image Space

“Good” bokeh “Bad” bokeh

Rectangular diaphragm Triangle-shaped diaphragm

Figure 13: Real-time lens bokeh

Summary

This article presented two different real-time implementations of a depth of field
effect using a DirectX 9 class programmable graphics hardware. Simulating depth
of field is very important for creating convincing visual representations of our
world on the computer screen. It can also be used in artistic ways to generate
more cinematic-looking visual effects. See Color Plate 26 for examples of the
techniques discussed in this article.

References

[Potmesil83] Potmesil, Michael and Indranil Chakravarty, “Modeling motion blur
in computer-generated images,” SIGGRAPH Proceedings of the 10th Annual
Conference on Computer Graphics and Interactive Techniques, 1983.

556
Real-Time Depth of Field Simulation

Section IV — Image Space

Section VSection V

Shadows

557

Soft Shadows

by Flavien Brebion

Robust Object ID Shadows

by Sim Dietrich

Reverse Extruded Shadow Volumes

by Renaldas Zioma

Soft Shadows

Flavien Brebion

Presentation

In recent years, dynamic real-time shadowing has slowly replaced in the program-
mer’s heart (if not in the implementation) the old, fake static techniques used for
ages in games and other applications, but although this has improved the quality
and realism of scenes, it is still far from being perfect. One of these techniques,
commonly referred to as shadow volumes or stencil shadows, has a very plastic
look because of its hard, sharp edges. In this article I propose a technique to fake
real-time soft shadows that is an extension of the shadow volumes algorithm. By
no means do I claim it is perfect or physically correct, but it gives decent results
at interactive frame rates on DirectX 8 ps_1_4/DirectX 9-generation hardware.

Standard Shadowing Algorithms

There are a number of algorithms currently used for shadowing.

Per-vertex Shadowing

APIs such as DirectX or OpenGL implement their lighting equation per-vertex,
but this does not handle shadowing. To handle shadows, one idea is to precalcu-
late all the light contributions per-vertex and store it into a single color that is
used later as a modulation factor. Although very fast, this technique requires the
scene to be heavily tesselated, and the calculations are too slow to be done in real
time. Consequently, the lights or occluders cannot move.

Lightmapping

Another popular technique is called lightmapping. This was used in the Quake and
Unreal engines and derivatives a few years ago (and still are, to some extent).
This is basically an extension of the per-vertex lighting to store the light’s contri-
butions per texel instead of per vertex. The lighting is also precalculated but
embedded into small resolution textures called lightmaps. These lightmaps are
modulated with the textures later on, giving a pretty realistic look and feel to the
scene. Although they no longer rely on heavy tesselation, they require a lot of
texture memory and still cannot be used for dynamic lights. It is still possible to

559

generate many lightmaps per light (for example, to light/unlight a room), but this
technique is inherently static.

Shadow Mapping

Shadow maps are more and more often used for real-time dynamic shadowing.
Their concept is extremely simple: A depth buffer is rendered from the light’s
point of view, and the Z values are compared with the depth buffer normally com-
puted from the viewer’s point of view by projecting the light’s buffer onto the
scene. This effectively means that for a given pixel, the comparison result tells if
the pixel is visible from the light or not. Unfortunately, shadow maps suffer from a
number of problems like aliasing (due to the limited resolution or bits precision of
the light’s depth buffer) and Z-fighting (due to the projection of the light’s depth
buffer onto the scene’s geometry) and require a hardware Z-comparison test. Last
but not least, omni-directional lights are hard to support since an omni-light’s
point of view is a 360° sphere. It is still possible to use a cube map instead, but
that means a six-times performance cost penalty. On the other hand, shadow maps
do not generate any additional geometry or excessive fillrate needs.

Projected Shadows

The idea behind projected shadows is to generate an object’s shadow into a
shadow texture and to project it from the light’s point of view to blend it over the
scene. To avoid wasting one pass to project the shadow on the scene, it is possible
to locate the subset of the scene where the shadow is lying. However, self-shad-
owing and omni-lights are not easily supported.

Stencil Shadows

With the addition of hardware-accelerated stencil buffers to consumer video cards,
the technique known as shadow volumes has become more and more widely used.
Lightmapping was static and needed the light maps to be precomputed; stencil
shadows, on the other hand, are fully dynamic: The light or the scene’s objects
can move in real time with no restrictions. Shadow volumes generally use the
stencil buffer to simulate a simple form of ray-casting (although it is also possible
to use the color or alpha buffer to simulate the stencil buffer) to count, for each
ray passing through a pixel of the screen, the number of times it intersects the
shadow volumes, the definition of a shadow volume being a half-space formed by a
light and an occluding triangle.

Shadow volumes (also commonly called stencil shadows) are not easy to
implement. They suffer from many problems, two of which are the viewer-
inside-volume problem and the heavy fillrate. The first problem appears as soon
as the viewer enters the shadow volume; in that case, the intersection counter
simulated by the stencil is messed up, and some shadowed areas appear lit while
some lit areas appear shadowed. It is possible to fix that by capping the shadow
volume to the near clipping plane, but it is not convenient due to the high CPU
workload. Another possibility is to cast a ray from the viewer to the light and
determine if it hits an occluder; however, the test is only valid for the single pixel

560
Soft Shadows

Section V — Shadows

that is located at the center of the screen, and artifacts can still occur when half
the screen is inside the shadow volume while the other half is outside. Bill
Bilodeau and Mike Songy [1] and John Carmack [2] (who arrived at the same
approach independently) were the first to propose a modification of the basic
shadow volumes algorithm by pushing the problem away to the far clipping plane
instead. It is then possible to either limit the shadow volume length (in the case of
attenuated lights) or tweak the projection matrix to push the far plane to infinity,
which completely solves the problem since there is no longer any possible
intersection.

The second problem with stencil shadows is that they generate a lot of new
polygons to display; not only do new vertices have to be generated and trans-
formed, but the polygons also have to be rasterized. Even if we disable color ren-
dering and Z-buffering, since we just need to increase/decrease the stencil values,
it still has a heavy cost. One solution, which is based on the fact that given two
adjacent triangles in a mesh, their respective shadow volume contributions in the
stencil buffer cancel each other, is to calculate the silhouette of the whole mesh
on the CPU and generate a single, huge shadow volume for it, effectively decreas-
ing the number of polygons to be displayed. This greatly improves the perfor-
mance, but new vertices still have to be generated (by extruding the silhouette
edges) and transformed. Fortunately, with the advent of vertex shaders, this step
can be completely off-loaded to the GPU processor. For further details about the
stencil shadows algorithm and its problems and solutions, please see “The The-
ory of Stencil Shadow Volumes” in ShaderX2: Introductions & Tutorials with

DirectX 9.
Brotman and Balder [3] implemented real-time soft shadows in 1984 by jit-

tering multiple shadow volumes; Instead of rendering one shadow volume for the
light in black, they render n shadow volumes from n lights, all randomly displaced
around the original light’s center, and sum up their contributions. Unfortunately,
this is not very practical since more than ten samples generally have to be used to
obtain good results (Cass Everitt and Mark J. Kilgard [4] from nVidia have imple-
mented it with a cluster of 12 lights), which means an effective fillrate cost
increase of a factor of ten on an algorithm that is already fillrate intensive.

Overview of the Soft Shadows Algorithm

The real-time models previously described generally work for point lights, spot-
lights (projected shadows, shadow maps), or for perfect point, omnidirectionnal
lights (shadow volumes, shadow maps). As a result, none of them effectively sim-
ulate the effect of a non-perfect light source (that is, a volumetric light source). In
reality, no light is a point; even the sun in the sky has a visible radius causing pen-

umbras. Perfect point lights generate sharp/hard shadows, but if we want to
enhance the realism and quality of real-time computer-rendered scenes, we need
a way to fake the soft shadows caused by volumetric lights. Figure 1 shows an
example of a volumetric light as seen from the viewpoints A, B, and C. If you cast
an infinite amount of rays from the light to the point, some of them might hit an
occluder, while some of them might reach the point. When 100% of the light
reaches the point, we say the point is completely visible from the light (point A).

Soft Shadows
561

Section V — Shadows

When 0% of the light reaches the
point, we say the point is com-
pletely shadowed by the light
(point C). We define the penumbra
as the set of points that receive
more than 0% of the light rays but
less than 100%; that is, all the
points that are partially visible from
the light (point B). Although this
model is not perfectly accurate, it
provides a good basis to start
developing our soft shadows
technique.

The idea behind the soft shad-
ows algorithm is simple and works
as an extension of the shadow vol-
umes algorithm. We render the
shadowed areas from screen-space
to a texture, which we call the
shadow map (not to be confused with the shadowing technique of the same name
described in the “Shadow Mapping” section); pixels can basically take two values:
0 if the pixel is lit or 1 if it is shadowed. As the shadow volume algorithm works
with a perfect point light source, no other values at that time are possible. Now, if
we had a way to generate the penumbra area in that texture, we could just apply a
blurring filter of the pixels of the penumbra near the inner contour to obtain a
nice, smooth transition between completely shadowed pixels (0% of light
received, texel value of 1) and completely lit pixels (100% of light received, texel
value of 0). This is obviously not a physically accurate solution but would greatly
help to enhance the visual quality of the scene and lessen that “plastic” look.

In reality, there are many types of volumetric lights. For the sake of simplic-
ity, we are going to simulate a single, simple type of volumetric light: the spheri-
cal light, which is defined as a center point and an emission radius. As the shadow
volumes algorithm does not work with spherical lights but with point lights, we
need a way to locate the penumbra of a spherical light by using shadow volumes
only. It’s a tough task, but not impossible. Figure 2 shows a possible solution; a
shadow volume is generated from a standard point light, located at the position of
the spherical light. This volume defines the inner contour of the penumbra, which
we call the inner volume. This process is using a vertex shader to optimize the
shadow volumes calculation and is described in the “Standard Shadowing Algo-
rithms” section. After that, a second volume is generated from a jittered point
light. Jittering is the action of moving the position of the point light source by a
small vector for each vertex of the scene. This jittering process is described in
the “Outer Volume by Jittering the Point Light Source” section. Figure 3 shows a
simple point light compared to a spherical light and a jittered point light. This new
volume is called the outer volume and defines the outer contour of the penumbra.

562
Soft Shadows

Section V — Shadows

Figure 1: A volumetric light causing soft
shadows. Point A receives 100% of the light
(fully lit); point B receives around 60% of the
light (partially lit) and is in the light’s
penumbra; point C receives no light at all (it is
completely hidden by the occluder) and is in
the occluder’s shadow.

The inner and outer volumes are next rendered to the shadow map, each in one
color component channel. For instance, the inner volume is stored in the red com-
ponent, while the outer volume is stored in the green component. Other compo-
nents (blue and alpha) are simply ignored. The blurring process uses this shadow
map both as input and output recursively and needs to know which pixels are in
the penumbra and which are not (hence the decomposition of the inner and outer
areas into different channels). There is more on this in the section “Blurring the
Penumbra.”

After this blurring step, we can use a pixel shader to modulate the scene with
a lightmap, obtained from the shadow map. This quite straightforward step is
described in the section “Using the Shadow Map,” followed by miscellaneous con-
siderations in the section “Other Considerations.”

Penumbra Generation

The first step to our algorithm is to determine the inner and outer volumes form-
ing the penumbra. The inner volume is generated by using the shadow volumes
algorithm with a point light located at the same position as the considered spheri-
cal light. Let’s first see an overview of the shadow volumes algorithm and how it
could be implemented in hardware by using vertex shaders. This vertex shader is
later modified for the outer volume to support a jittering coefficient, which indi-
cates how far the light has to be displaced.

Inner Volume Using Hardware Stencil Shadows

To generate a shadow volume for a simple point light, we use the Z-fail technique.
The silhouette is first generated on the CPU by looking at which faces are visible
from the point light’s position and which are not. For each triangle, the plane
equation is used to determine if the light is on the positive side (front-facing trian-

gle) or the negative one (back-facing triangle). The algorithm looks like this:

Soft Shadows
563

Section V — Shadows

Figure 2: Inner and outer volumes for an
area light

Figure 3: A point light source L (left) is defined as a
position P. A sphere light source L' (middle) is defined
as a position and a radius. A jittered light source L''
(right) is a point light source whose center is displaced
(jittered) by a vector of length R around P.

For each triangle T,
Let a, b, c and d be the coefficients of the plane equation for T;
the normal N of the plane is then (a, b, c)
Let L be the light’s position vector,
Triangle is front-facing if (N dot L) + d > 0

End For

Silhouette edges are then computed by looking at which edges are shared between
two triangles that are not both on the same side in respect to the light’s position:

For each triangle T,
For each triangle T' that is adjacent to T,

Let E be the edge defined by T and T',
E is a silhouette edge when T is front-facing the light and T' is back-facing,
OR when T is back-facing and T' is front-facing.

End For
End For

This information (silhouette edges, front-facing triangles,
and back-facing triangles) are enough to generate the
shadow volumes. Front-facing triangles are left
untouched; they form the near capping

of the volume. Back-facing trian-
gles are extruded away from the
light; they form the far capping.
Finally, a quadrilateral is gener-
ated from a silhouette edge and
its extruded equivalent. These
form the sides of the volume.
This process is shown in Figure
4 for a simple occluder
quadrilateral.

To perform these operations
in a vertex shader, we cannot gen-
erate any new vertices. The idea
is to do the extrusion (which is
the process of moving a vertex
from the near capping to the far capping) in the vertex shader by associating an
extrusion weight to each vertex and duplicating the vertex buffer; the original ver-
tex buffer contains all the vertices with a weight of 0, and the duplicated buffer
contains the same vertices but with a weight of 1 to indicate that they have to be
extruded away from the light. The light position itself is passed as a shader con-
stant. Since the shadow volume is not lit or textured, all we need for our vertex
format is a triplet for the position and a single coefficient. We then append these
two buffers together, as shown in Figure 5.

564
Soft Shadows

Section V — Shadows

Figure 4: The shadow volume generated from an
occluder O is formed by the near capping (V0, V1,
V2, V3), the far capping (V0', V1', V2', V3'), and
the four sides (V0, V0', V1', V1; V1, V1', V2', V2;
V2, V2', V3', V3; V3, V3', V0', V0).

Figure 5: Simple vertex buffer format for shadow volume extrusion in a vertex shader

As a result, we end up with a vertex buffer of size 2N (N being the original vertex
buffer size for the whole mesh) that is completely static. Note that it is possible to
use different streams to avoid the vertex buffer duplication if memory is a con-
cern. But how do we form the shadow volume now, since it is different for every
frame? One solution is to use a dynamic index buffer. We build the shadow vol-
umes by referencing the vertices with an extrusion weight of 0 (for near capping)
or by referencing the vertices with an extrusion weight of 1 (for far capping). So,
for example, the side V0, V0', V1', V1 of the shadow volume shown in Figure 4 is
formed by appending the indices 0, 4, 1, 1, 4, 5 (assuming we are working with tri-
angle lists) to the index buffer. The following algorithm shows how to build the
indices for shadow volumes:

Reset dynamic index array I for shadow volumes of mesh.
For each triangle T of the mesh,

Let N be the number of vertices in the mesh (the vertex buffer has a length of
2N vertices),

Let V0, V1, and V2 be the mesh indices of the vertices of the triangle T,
If T is back-facing the light,

/// one triangle for the far capping
Append the indices (V0 + N), (V1 + N) and (V2 + N) to I

Else
/// one triangle for the near capping
Append the indices V0, V1 and V2 to I,

/// now form the shadow volume sides from the silhouette edges
If edge defined by V0-V1 is a silhouette edge,

Append the indices V0, V1, (V0 + N), (V1 + N) to I
Else if edge defined by V1-V2 is a silhouette edge,

Append the indices V1, V2, (V1 + N), (V2 + N) to I,
Else if edge defined by V2-V0 is a silhouette edge,

Append the indices V2, V0, (V2 + N), (V0 + N) to I
End If

End If
End For

So now that we have generated the shadow
volume vertices (statically) and indices
(dynamically, or semi-statically, if the light
does not move every frame), we still need to
perform the extrusion in a vertex shader.
This is not very hard; the vertex shader just
translates the vertex away from the light
by a distance that is dependent on the extru-
sion weight. The extrusion distance is a
constant equal to the light attenuation
radius; that is, the radius is the distance at
which the light is no longer contributing
anything to the scene. The different steps
performed by the vertex shader are
described in Figure 6.

Soft Shadows
565

Section V — Shadows

Figure 6: The steps performed by the
vertex shader for shadow volumes ex-
trusion. L is light’s position (constant),
D is radius (constant), V is incoming
vertex’s position, and E is vertex’s ex-
trusion weight (generally 0 or 1).

The following is the vertex shader’s code for these steps:

vs.1.1

; Constants used the shader:

; c1.x: light radius

; c4-c7: world-view-projection matrix

; c20: light position in object space

dcl position0 v0

dcl blendweight0 v3

; step 1: calculate M

sub r8, v0, c20

; step 2: normalize M, result is M'

dp3 r8.w, r8, r8

rsq r8.w, r8.w

mul r8.xyz, r8.xyz, r8.w

; step 3: G = D * M'

mul r8, r8, c1.x

; step 4: G' = E * G

mul r8, r8, v3.x

; step 5: V' = V + G'

add r8, r8, v0

; r8.w is no longer correct, fix it

mov r8.w, v0.w

; transform vertex:

m4x4 oPos, r8, c4

Rendering the shadow volume is not very hard, and you can easily find a lot of
information on that topic. The stencil buffer is first cleared to a constant (to avoid
wrapping issues, assuming we have eight stencil bits, we use the reference value
128). Texture-mapping, Gouraud shading, and Z-buffer writes are all disabled, but
we keep the Z-buffer test. We also disable writing to the color buffer, since we are
only interested in the stencil values. We set up the stencil test to always pass and
the stencil operation to increment on pixels that fail on the Z-buffer test.
Back-face culling is enabled for clockwise triangles. Then, the shadow volumes
are rendered using the extrusion vertex shader. Once this is done, we reverse the
back-face culling order to counterclockwise and the stencil operation to decre-
ment on the failed Z-buffer test, and we render the shadow volumes again. Note
that rendering the shadow volumes can be collapsed to a single pass using the
two-sided stencil test and operations if the hardware supports it.

566
Soft Shadows

Section V — Shadows

Outer Volume by Jittering the Point Light Source

The outer volume is a bit different from the inner volume. To generate the inner
volume, we have been using the shadow volumes algorithm without any slight
modification. The outer volume, however, requires us to jitter the point light
source (that is, for each vertex in the scene, to move the light
source in order to simulate a volumetric light). We call the
jittering vector the vector used to translate the light
source per vertex. It has a direction and a length. We
can use the radius of the spherical light as the
length, but what about its direction? If we choose
a constant direction, the penumbra does not
exactly match the inner shadow, depending
on where the occluder is compared to
the light position. Another idea is to
move the light toward the object
center, but depending on the
shape of the object, the
same problem appears. Now
let’s consider the problem
from another angle: The
outer volume looks very
similar to the inner volume
as it would be generated
from a “bigger” object, as
demonstrated in Figure 7.
Maybe we can inflate the
object to generate the outer
volume from a point light
source. Let’s see what hap-
pens when we try to do that.

The first problem is to generate the inflated object. Parker, Shirley, and Smits
[5], who found a similar problem in their own technique, proposed using a trans-
formation that is natural to the object (such as, for a sphere, a bigger sphere).
Unfortunately, they do not propose a solution for an arbitrary mesh, as there is no
information about its nature. One idea is to average all the normals for all the ver-
tices of the object (independent of the angle between the faces or other condi-
tions) and expand all the vertices in the direction pointed out by the normals, as
demonstrated for a cube in Figure 8 (as shown on the following page).

The real problem with that approach is when you start to consider the situa-
tion in which an inflated face intersects another face, as demonstrated in Figure 9.
In that case, shadowing artifacts appear.

These situations should be prevented. One idea is to use CSG operations to
remove the vertices that lie inside the object’s mesh and then clean up the mesh
to keep it two-manifold (as required by the Z-fail stencil algorithm). It is also pos-
sible to ignore the problem if it is rare due to the nature of the object or if the

Soft Shadows
567

Section V — Shadows

Figure 7: By using a simple point light L, we can generate
an inner volume from an occluder object and an outer
volume from the inflated object. The penumbra is defined
by the outer area excluding the inner one.

inflation distance is pretty small compared to the object’s size (in which case the
artifacts are small or unnoticeable).

If we try to use this inflated object with the stencil shadows algorithm from a
point light source, the generated outer volume is incorrect. First of all, the same
depth values from the Z-buffer cannot be reused for the inner and outer volumes;
shadow volumes require the Z-test to be enabled, but the vertices from the
inflated object differ from the vertices of the normal object. Since the inner vol-
ume uses the normal object and the outer volume uses the inflated object, their
vertices don’t match. As a result, we have to reset the Z-buffer by rendering the
scene once again between the inner and outer volume passes. It gets even worse
if you start to consider multiple lights because this means you have to reset the
Z-buffer not one time for the whole scene but two times per light.

Assuming we can live with this performance drop induced by not using the
same vertices to render the inner and outer volumes, we still have another prob-
lem. Indeed, as the vertices don’t match, the penumbra near the occluder doesn’t
match either, which is not correct, as seen in Figure 10. Compare with Figure 2,
which is what we actually want.

So what choices do we have left? Remember that when we were speaking of
jittering the light, we needed a direction and a length. We proposed to use
the emission radius of the spherical light as the length, but we were unsure about
the direction, as a constant vector wouldn’t work. But what would happen if we
used the direction of the inflation vector as our jittering direction? Figures 11 and
12 show that by actually using the inverse direction of the inflation vector, we can

568
Soft Shadows

Section V — Shadows

Figure 8: Side view of a simple cube with its face normals (left), same cube
with averaged normals (middle), and inflated cube along the normals (right)

Figure 9: Problems with the inflating algorithm when face intersection occurs while
inflating the mesh. Here we have the original object (left) with its inflation vectors
(middle) and the object after inflation (right).

create an outer volume that has all the wanted properties. The vector N is the
inflation vector for the vertex V. When extruding that vertex V away from the
light, instead of using the center of the light P, we use jitter P by N'. N' is found by
normalizing the inflation vector, negating it, and then multipying it by R (the
radius of the spherical light).

This jittering operation is different for every vertex of the considered occluder(s),
since the inflation vector N is different for every vertex V.

To implement that on top of our current shadow volume vertex shader, we
only need one more piece of information: the normalized inflation vector N. Con-
sequently, the vertex format for shadow volume vertices has to be updated (see
Figure 13).

Soft Shadows
569

Section V — Shadows

Figure 10: Using an inflated object results
in a near-correct but still invalid outer
volume near the original occluder vertices.

Figure 11: Using the inflation vector N at the
vertex V to jitter the light’s position P by a vector N'

Figure 12: Side view of the jittering process for two vertices of a box occluder

The vertex shader only needs minor additions:

; constants:

; c3.x contains the jittering distance

; c20 contains the light position P

; declare the inflation vector

dcl normal0 v4

; jitter light position in r1

mul r1, v4, c3.x

sub r1, c20, r1

The jittering distance is equal to the radius of the spherical light if we are in the
outer volume generation pass or to 0 for the inner volume pass. That way, we can
use the same shader for both inner and outer volume passes. The complete
shadow volume extrusion vertex shader code becomes:

vs.1.1

; Constants used in the shader:

; c1.x: light attenuation radius

; c3.x: light emission radius (radius of spherical light)

; c4-c7: world-view-projection matrix

; c20: light position in object space

dcl position0 v0

dcl blendweight0 v3

dcl normal0 v4

; jitter the light

mul r1, v4, c3.x

sub r1, c20, r1

; step 1: calculate M

sub r8, v0, r1

; step 2: normalize M, result is M'

dp3 r8.w, r8, r8

rsq r8.w, r8.w

mul r8.xyz, r8.xyz, r8.w

570
Soft Shadows

Section V — Shadows

Figure 13: Extended vertex buffer format to jitter the light while doing shadow
volume extrusions

; step 3: G = D * M'

mul r8, r8, c1.x

; step 4: G' = E * G

mul r8, r8, v3.x

; step 5: V' = V + G'

add r8, r8, v0

; r8.w is no longer correct, fix it

mov r8.w, v0.w

; transform vertex:

m4x4 oPos, r8, c4

Blurring the Penumbra

The initialization step of the blurring algorithm starts by rendering the inner vol-
ume to the red component of the shadow map and the outer volume to the green
component of the shadow map. As the result of the shadow volumes algorithm
can be seen as a boolean (inside shadow or outside shadow), we encode it as a
color component with a value of 0 when the pixel is outside the shadow or a value
of 1 (or 255) when the pixel is inside the shadow. Since there are two volumes
(inner and outer), there are four possible combinations. One of them is actually
not possible (full red, no green), since the outer shadow completely covers the
inner shadow. Three combinations remain, as seen in Figure 14.
� No red, no green: both outside inner and outer shadows; pixel receives 100%

of the light
� No red, full green: inside outer shadow but outside inner shadow; in

penumbra
� Full red, full green: inside inner shadow; pixel receives 0% of the light

Blue and alpha components have no particular significance and are ignored.

Soft Shadows
571

Section V — Shadows

Figure 14: Contents of the color buffer of the shadow map after
a typical penumbra generation

To render the shadow map, we enable render-to-texture, clear the background
color to black, and initialize the depth and stencil buffers. First, we render the
inner volume as described in the “Inner Volume Using Hardware Stencil
Shadows” section by using a point light source with the shadow volumes algo-
rithm. The result of this pass is restricted to the stencil buffer, so the next thing
to do is output it to the red component of the shadow map. To do that, we just
apply a simple red quadrilateral covering the viewport with the stencil test
enabled. The same process is done for the green component with the outer vol-
ume; the stencil buffer is cleared again (but not the Z-buffer since the vertices
haven’t changed since the previous pass), the outer volume is rendered to the
stencil buffer as described in the “Outer Volume by Jittering the Point Light
Sources” section, and then a green quadrilateral is rendered with the stencil test
enabled. At that point, the contents of the shadow map should be similar to what
is seen in Figure 14. Here is a summary of the whole algorithm:

Enable render-to-texture for a NxN texels shadow map,
Clear color buffer to black, clear Z-buffer and stencil,
Render scene to the Z-buffer to prepare stencil shadows,
Render inner shadow volumes to the stencil buffer,
Enable stencil test, enable color mask (write to red only),
Display a red full-screen quadrilateral for pixels in inner shadow,
Clear stencil again,
Render outer shadow volumes by jittering the light with the inflation vectors,
Enable stencil test, enable color mask (write to green only),
Display a green full-screen quadrilateral for pixels in outer shadow,
Clean up states

The last step is to blur the pixels near the inner contour of the penumbra. The
idea here is to apply a blur filter to the red component of the shadow map but
allow reads or writes to texels that have full green values only (that is, texels
inside the penumbra or the inner shadow). This should result in a nice, soft blur
of the shadow around the penumbra without messing up the texels that are not
shadowed. It is important to note that the blur is only applied to the red component;

the green component is left unchanged.

First of all, let’s see how blurring can be
implemented in hardware without any read
or write restriction. Blurring a texture works
for a given texel by sampling neighboring
texels of this texture and averaging their
color value (see Figure 15). Since it is not
possible to sample the same texture many
times on the same texture unit sampler
(except with dependent texture reads, but
you don’t want to do that for obvious perfor-
mance reasons), what we actually do is bind
the same texture to different texture unit
samplers. Then it is all a matter of offsetting
the texture coordinates by a small value for
each sampler.

572
Soft Shadows

Section V — Shadows

Figure 15: A simple four-tap blurring
filter. The black dot R represents the
center texel; the A, B, C, and D dots
represent four possible neighboring
texels. They all have a weight of 1,
hence the resulting texel is the
average of its neighbors.

No vertex shader is needed, since the
offsets can be precomputed directly. In Fig-
ure 16 a three-tap filter is used to show the
texture coordinate offsets; a texture A is
bound on unit 0 with an offset of (U +
0.025, V – 0.1); a texture B is bound on unit
1 with an offset of (U – 0.1, V + 0.025); a
texture C is bound on unit 2 with an offset
of (U + 0.1, V + 0.1). The following pixel
shader code shows how to sample four tex-
tures and average them.

ps 1 4

; weight for each sample

def c0, 0.25, 0.25, 0.25, 0.25

; simple 4-tap blur : sample 4 times

texld r0, t0

texld r1, t1

texld r2, t2

texld r3, t3

; weight r0

mul r0, r0, c0

; weight r1, sum up into r0

mad r0, r1, c0, r0

; weight r2, sum up into r0

mad r0, r2, c0, r0

; weight r3, sum up into r0

mad r0, r3, c0, r0

; now in r0 we’ve got 0.25 * t0 + 0.25 * t1 + 0.25 * t2 + 0.25 * t3

; which is the same as (t0 + t1 + t2 + t3) / 4

For our soft shadow algorithm, we use a
custom blur filter using six taps (hence
using six texture units). The taps are
more or less arranged in a circle, as seen
in Figure 17.

Now that we’ve seen how to imple-
ment a simple blur, we need to include
the read and write restrictions so that we
only blur texels near the penumbra. First,
let’s say that we are sampling a texel that
is outside the outer shadow; its contribu-
tion should be ignored. One way is to

Soft Shadows
573

Section V — Shadows

Figure 16: A three-tap filter and the
texture offsets. The gray square
represents the UV-space of the filtered
texture output. The three input
textures UV-space are all offset
compared to the gray one.

Figure 17: The simple six-tap blur filter
that we use for smoothing up our
shadow map

keep track of the weights and only perform a blur between the texels that are
inside the outer shadow. For example, say that in Figure 17, only the R, A, and B
taps are inside the outer shadow; then we’d sum up the R, A, and B taps’ contri-
butions each with a weight of 1/3 only. Unfortunately, this is not practical, since
you’d have to use an additional counter register to keep track of the total weight
and divide the final result by it. Instead, it is possible to keep a constant weight of
1/6 by replacing the taps to ignore by the center tap’s contribution, which is
always valid. Thus, in our example we’d sum up the A and B taps’ contributions
once and the R tap’s contribution four times (one normally, plus C, D, and E
ignored), always using a weight of 1/6. Here is the algorithm:

result = 0
For each tap in [R, A, B, C, D, E] do
If tap is inside outer shadow,

result = result + current tap’s contribution / 6
else

result = result + R tap’s contribution / 6
End If

End Foreach

Note that testing whether a tap is inside the outer shadow basically means sam-
pling the tap and testing if the green component is 1. The write restriction is no
more complex. We only want to blur the red channel of texels that are inside the
outer shadow, and we have an easy way to do that — by multiplying the computed
result by the green component of the center tap. Thus, if the center tap is outside
the outer shadow, the result is 0, independent of the neighboring texels’ contribu-
tion. Otherwise, the contributions are not modified:

result = result * [If R tap is in outer shadow then 1 else 0]

The whole algorithm becomes:

If R tap is in outer shadow,
result = 0
For each tap in [R, A, B, C, D, E] do

If tap is inside outer shadow,
result = result + current tap’s contribution / 6

else
result = result + R tap’s contribution / 6

End If
End Foreach
Else

Result = 0
End If
Output.red = Result
Output.green = R tap’s green component

To implement this algorithm with pixel shader 1.4, we need a way to do the “tap is
in outer shadow” test. The green component of a texel of the shadow map deter-
mines if that texel is inside (values of 1) or outside (values of 0) the outer shadow,
so with the cnd instruction we can perform the test and conditionally move the
considered tap’s contribution or the black tap’s contribution. We also need to
weight and accumulate (with a mad instruction) the contributions into a register
used as the result, which means we need to use at least 12 instructions — six for

574
Soft Shadows

Section V — Shadows

the conditional moves plus six for the accumulations. This exceeds the maximum
instruction count for a ps_1_4 phase, so we would have to use two phases. Fortu-
nately, it is possible to accumulate the result into an alpha component and collapse
the instructions to form pairs, as a color operation followed by an alpha operation
counts as a single instruction in the ps_1_4 model. With this trick, it is possible to
only use a unique phase with six texture samples. The following is the code for
that pixel shader:

; Pixel shader version 1.4

ps 1 4

; weight constant for each incoming texture's contribution

def c0, 0.1666, 0.1666, 0.1666, 0.1666

; sample the 6 textures. t0 is at the center of the pixel;

; all other textures are sampled with an offset.

texld r0, t0

texld r1, t1

texld r2, t2

texld r3, t3

texld r4, t4

texld r5, t5

; stores in r1.r either r0.r or r1.r, depending on the

; value of r1.g. This is a conditional mov. In the meantime,

; we'll weight the contribution of r0.r in the alpha

; component of r0 and add it to the result.

cnd r1.r, r1.g, r1.r, r0.r

+mul r0.a, r0.r, c0.z

; basically does the same for r2 and the contribution of

; r1.r. As you notice, there's a 1-instruction "delay"

; between calculating the contribution of a texture and

; weighting and adding it to the final result.

cnd r2.r, r2.g, r2.r, r0.r

+mad r0.a, r1.r, c0.z, r0.a

; same here, but for r3's contribution and weighting r2.

cnd r3.r, r3.g, r3.r, r0.r

+mad r0.a, r2.r, c0.z, r0.a

; same here, but for r4's contribution and weighting r3.

cnd r4.r, r4.g, r4.r, r0.r

+mad r0.a, r3.r, c0.z, r0.a

; same here, but for r5's contribution and weighting r4.

cnd r5.r, r5.g, r5.r, r0.r

+mad r0.a, r4.r, c0.z, r0.a

; we need a final weighting due to the 1-instruction "delay."

; this is done here, by weighting r5 and adding it up to

; the final result, r0.

Soft Shadows
575

Section V — Shadows

mad r0.r, r5.r, c0.z, r0.a

; this final one is masking the result depending on the

; value of r0.g; do not forget that the green component is

; always either 0 or 1. We basically only allow writing

; when the center pixel is from the penumbra or the inner

; shadow:

mul r0.r, r0.r, r0.g

; that's it! note that r0.g hasn't been modified at all

; by the shader; in summary, all the red components of the

; offset textures have been blurred by an average filter

; and the green component untouched (blurring doesn't affect

; the penumbra/shadowed areas)

To get a nice blur, this process has to be repeated a certain number of times (I
found three or four to give pretty good results, but it is a performance trade-off).
As it is not possible to render to the shadow map with the same shadow map
input, a double (or more) buffer scheme has to be used, as seen in Figure 18.

Using the Shadow Map

After the last blurring step, the shadow map’s red component contains values in
the [0, – 1] range that correspond to the intensity of light received by the pixel. To
use the shadow map, we only need to project the shadow map onto the scene
using a standard screen-space projection; that is, we directly use the screen-space
coordinates of a vertex as input for the texture coordinates. We can implement
any custom lighting equation in a pixel shader and modulate the light’s contribu-
tion by the red component of the shadow map.

As you are completely free to use any lighting equation, the soft shadows
method can be used for per-vertex lighting or per-pixel lighting with bump map-
ping or specular lighting (or anything else). Multiple lights can be collapsed into
one pass; for example, if we use per-vertex lighting and six texture units, we can
use one texture for the diffuse map and five shadow maps for five soft-shadowed
lights and sum up the contributions of each light in a pixel shader. The following
are the vertex and pixel shaders to perform the projection and access the shadow
map:

vs.1.1

; constants :

; c0.y : 0.5

; c4-c7 : world-view-projection matrix

576
Soft Shadows

Section V — Shadows

Figure 18: The complete blurring process pipeline

dcl position0 v0

dcl texcoord0 v2

; screen-space coordinates of vertex:

m4x4 r10, v0, c4

; generate texture coordinates for projection:

mov r6, r10

mov r6.z, r6.w

; r6.x = (x/z) * 0.5 + 0.5 = (x * 0.5 + 0.5 * z) / z

mul r6.x, r6.x, c0.y

mad r6.x, r6.z, c0.y, r6.x

; r6.y = 1 – (y/z) * 0.5 + 0.5 = (1 * z – y * 0.5 + 0.5 * z) / z

mul r6.y, r6.y, c0.y

mad r6.y, r6.z, c0.y, -r6.y

; outputs :

mov oPos, r10

mov oT0, v2

mov oT1, r6

ps 1 4

; sample t0 (diffuse map) and t1 (shadow map)

texld r0, t0

texld r1, t1 dw.xyw

; r1.r is the light contribution. Use 1-r1.r because values in the shadow map range

; from 0 (lit) to 1 (shadowed), and we want the contrary.

mul r0, r0, 1-r1.r

Other Considerations

The Z-fail shadow volume algorithm requires the scene meshes to be two-mani-
fold and form closed volumes. For a given edge, there must be two — no less and
no more — adjacent triangles. It is possible to tweak the geometry to handle
non-closed meshes, but it is not obvious. This is something to keep in mind when
trying to implement the CSG simplifications for intersecting faces when inflating
objects, as after the CSG operation, the meshes have to remain two-manifold.

It is recommended that you keep a 1:1 ratio between the screen resolution
and the shadow map size when possible, although you can decrease the shadow
map size to increase performances. It is important to note that when using
shadow maps smaller than the screen resolution, the shadow information can
“melt” together and you can see “halos” appear around objects. This can be seen
around the cat’s legs and the temple columns in the demo on the companion CD.
This is generally not too bad until you reach 1:4 ratios, like using a 256x256
shadow map for a 1024x768 screen. Aliasing also becomes visible when you start

Soft Shadows
577

Section V — Shadows

moving; shadows near the occluders, which should be sharp, are quickly blurred.
On the other hand, there is a four times fillrate and pixel shading rate difference
when reducing by two the size of a shadow map, so it is a trade-off.

One idea to save fillrate or pixel shading rate is to keep the stencil test
enabled when blurring the shadow map. Unfortunately, this requires clearing the
color buffer of the shadow map to black anyway (since this area is not written due
to the stencil test), so in the end, there is no performance improvement.

To improve the blurring filter, it is possible to enable bilinear filtering on the
shadow map inputs. However, this causes the green channel to be filtered too,
which leads to a natural blur after a few blurring steps. To avoid that, as the green
channel has to be preserved, filtering always has to be disabled for the center tap.

You might have to play with the shadow map offsets to ensure that the
incoming and outgoing pixel positions do match on screen in order to avoid the
shadow map being shifted by a few pixels after each blurring step.

Results

A demo is available on the companion CD. It requires DirectX 9 with a vertex
shader 1.1 and pixel shader 1.4 compatible video card and at least six texture units
(Radeon 8500 and up, GeForce fx and up). It shows a 6,000-triangle temple scene
with six lights, two of which are casting real-time soft shadows. It runs at around
10 to 15 frames per second on a Radeon 8500 with a 512x512 shadow map and a
four-step blur process. On a Radeon 9700, performance increases up to 30 frames
per second. The stencil shadows algorithm could be optimized, and no culling of
any sort is being done. Art is courtesy of Daniel Cornibert (danielcornibert@
hotmail.com). Figures 19 and 20 show some scenes from the demo.

578
Soft Shadows

Section V — Shadows

Figure 19: Screen shot taken from the soft shadows demo. This 6,000-triangle temple
scene features six lights, two of which are casting spherical soft shadows, and runs at
up to 35 fps on a Radeon 9700. The two lights are animated. (See Color Plate 27.)

References

[1] Bilodeau, Bill and Mike Songy, “Real Time Shadows,” Creativity 1999, Cre-
ative Labs Inc. Sponsored game developer conferences, Los Angeles, California,
and Surrey, England, May 1999.

[2] Carmack, John, unpublished correspondence, 2000.

[3] Brotman, Lynne and Norman Badler, “Generating Soft Shadows with a Depth
Buffer Algorithm,” IEEE Computer Graphics and Applications, October 1984, pp.
5-12.

[4] Everitt, Cass and Mark J. Kilgard, “Practical and Robust Stenciled Shadow
Volumes for Hardware-Accelerated Rendering,” March 2002.

[5] Parker, S., P. Shirley, and B. Smits, “Single Sample Soft Shadows,” Tech. Rep.
UUCS-98-019, Computer Science Department, University of Utah, October 1998.

Soft Shadows
579

Section V — Shadows

Figure 20: Another screen shot from the temple scene, with a different viewpoint.
The white dot near the cattaur (a cross between a cat and a centaur) shows the
main light’s position. (See Color Plate 27.)

Robust Object ID Shadows

Sim Dietrich

Shadows are still an active area of research in real-time graphics. The two most
popular approaches are shadow volumes and depth-based shadows, often called
shadow maps.

Currently in wide use by newer graphics engines, shadow volumes can cost
huge amounts of fillrate and cannot be cached from frame to frame. Also, shadow
volumes are a vertex geometry-based approach, so any geometry created from
texel or pixel manipulation, such as alpha testing, won’t work with them.

Depth-Based Shadows

Texture or z-buffer-based approaches such as depth-based shadows handle all
geometry types equally. In addition, they are view independent, so they can be
cached to save fillrate. However, that very view independence causes various
forms of aliasing artifacts [Stamminger02].

Projected shadow techniques rely on rendering the light’s view of the scene
into a texture or z-buffer, referred to here as the light view texture. This texture is
then projected back onto the scene for each camera-visible pixel, and the depth
from the light of each pixel is compared to the depth stored in the shadow map.

If the depth stored in the light view texture is closer to the light than the
depth computed for the pixel under question, that pixel is deemed shadowed.

One form of aliasing that arises when using shadow maps is that of depth
aliasing. The depth function in the light view texture is discontinuous because
there is only a single depth value for each texel. If the view texture is magnified
from the scene camera’s point of view, the depth value calculated for the pixel will
differ from the value looked up in the texture. This is due to resampling the depth
function at two different frequencies.

This form of aliasing can be reduced by applying a bias to the depth calcula-
tion by adjusting the light’s depth function either at the shadow creation or
shadow testing phase to ensure there is some minimum distance between a
shadow caster and receiver. The magnitude of this bias dictates the size of the
smallest distance that can be supported between shadow caster and receiver.

However, since the polygon may be at an arbitrary slope with respect to the
light, a scalar bias is not sufficient [Wang94]. Instead, z-based approaches can use
the new DirectX 9 renderstate D3DRS_DEPTHBIAS, which allows for greater
biases at greater polygon slopes.

580

In the diagram at right, the dotted line represents
the true polygon depth, while the stair-step pat-
tern represents the depth stored in the light view
texture. Depending on exactly where the true
polygon depth is sampled, it will appear in front of
or behind the depth stored in the light view tex-
ture. A depth bias can effectively move either the
stair-step line or the continuous line apart to try to
avoid aliasing artifacts.

Texture-Based Depth Shadows

Not all graphics hardware supports true z-based shadows, which allow use of a
z-buffer as a texture, so shader authors must rely on manipulating textures
instead in order to encode depth [Dietrich01]. Because the polygonal depth bias is
applied post-pixel shader, this renders the depth bias useless for texture-based
shadow approaches. Scalar biases can still be used, but different scenes will
require varying biases, making this shadow technique less general.

One way around this challenging depth aliasing problem is to avoid using
depth entirely. Instead of storing depth in the light view texture, object IDs can be
stored [Hourcade85].

Each object that can cast or receive shadows is assigned a unique object ID
and rendered to the light view texture. Next, the object ID texture is projected
back onto the scene, and each rendered object tests whether its object ID
matches the projected object ID. If so, then that part of the object is nearest to
the light and is not shadowed. If not, that must mean there is some other object at
least partially blocking the light from this pixel.

By getting rid of the depth term, the depth aliasing problems go away com-
pletely. Object ID shadows do not require a depth bias at all.

There are a few remaining problems, however — how to assign object IDs
and accounting for projection aliasing. One approach for assigning object IDs is to
assign them per object or character, but that prevents the object or character from
casting shadows onto itself. In order to achieve self-shadowing, another approach
is to assign IDs per animation bone or model segment [Vlachos01]. An extension
of this approach would assign a separate object ID for every triangle in the scene,
including world geometry. Any of these approaches can work, but all share a com-
mon problem with object ID-based shadows — projection aliasing.

Let’s say that we have a simple scene with a flat floor and a vertical wall that
meet at a corner. Let’s further assume that these two sections get assigned differ-
ent object IDs, and the light is shining directly at the floor/wall junction (see Fig-
ure 2).

In this case, a naïve object ID shadowing algorithm would produce self-shad-
owing errors along the boundary between the wall and floor.

Robust Object ID Shadows
581

Section V — Shadows

Figure 1: Depth aliasing

This happens due to the fact that we start
with a line rasterized at some resolution and
orientation on the screen. During the shadow
testing pixel shader, the point at the center of
each pixel is projected back to the light view
texture, and point sampling takes place to look
up an object ID along another line in texture
space of a differing resolution and orientation.
These two lines in screen space and texture
space will always almost line up, but rarely
will they line up perfectly.

Since rasterization snaps to the nearest
pixel center, any aliasing error can only be up
to half a pixel wide. So, if we sample a 2x2 pixel area, thereby band-limiting the
signal so that a single-pixel object ID difference is ignored, we can safely elimi-
nate this form of aliasing.

This can be accomplished by sampling a 2x2 area in the light view texture
and only applying shadowing in the case when all four samples agree that the
pixel is in shadow [Dietrich01].

An easy way to achieve this for simple scenes is to restrict oneself to sorted
8-bit object IDs and use bilinear filtering [Vlachos01]. However, for scenes any
more complex, 8 bits won’t be enough for the more than 256 objects.

The following is a shader that can handle 228 different object IDs on ps.1.1
hardware using DirectX 8.1 or higher. The large number of object IDs is impor-
tant in cases where the shadowing technique will be used for both characters and
world geometry. Two-hundred sixty million is enough IDs that any size level can
be handled without having to sort or intelligently assign IDs. Simply avoiding
duplicate IDs for various geometry pieces is enough.

One pass is required to pass down the object ID (typically stored in each
vertex for API call efficiency) into the light view texture.

Pass 1: To Light View Texture
ps.1.1

// Just output the Object ID, stored across 7 bits each of

// R, G, B, & A from diffuse iterator

mov r0, v0

Two passes are required to test each object for shadowing, but the results are
guaranteed not to suffer from projection or depth aliasing.

Both passes use the same pixel and vertex shader to sample two of the object
IDs in the 2x2 texel region. The results of each pass are written to Dest Alpha as
1 for Lit and 0 for Shadowed.

That way, no matter if one or both achieve a result of Lit, the final result will
be marked as Lit, preventing self-shadowing artifacts on object ID boundaries.

582
Robust Object ID Shadows

Section V — Shadows

Figure 2: Varying object IDs along
object boundaries

Following the second shadow test, the lighting can be additively blended into
the scene, based on Dest alpha:

DestColor = SrcColor * DestAlpha + DestColor

Passes 2 and 3: To Back Buffer
ps.1.1

tex t0 // fetch id0

tex t1 // fetch id1

// grab 1st ID & compare

sub x4 r0, v0, t0 // diff0 * 8

add x4 r0, r0, r0 // diff0 * 64

dp3 x4 sat t0.rgb, r0, r0 // square diff0, sum * 64

+

mul x4 sat r0.a, r0.a, r0.a // sum * 64

// grab 2nd ID & compare

sub x4 r1, v0, t1 // diff0 * 8

add x4 r1, r1, r1 // diff1 * 64

dp3 x4 sat t1.rgb, r1, r1 // square diffs, sum * 64

+

mul x4 sat t1.a, r1.a, r1.a

add x4 sat t1.rgb, t1, t1.a // sum * 64 * 4 = 256

+

add x4 sat r0.a, r0.a, t0.b // sum * 64 * 4 = 256

add sat r0, 1-r0.a, 1-t1 // reverse & add results of

// both id checks

// r0 now contains 1 for lit, 0 for shadowed

The main concept behind the shader is to perform two ID checks in parallel.
Because the object IDs are not sorted by depth from the light but simply assigned
at preprocess time, the difference between two IDs may be positive, negative, or
zero.

The repeated _x4 scaling is used to try to force a possibly small difference in
IDs, like 2 / 255, to be scaled all the way to –1, 0, or 1.

The dp3-based squaring is used as an absolute value, making negative differ-
ences count as positive differences. This is important so that during the summing
up of the R, G, B, and A channels, negative differences don’t cancel out positive
ones.

In order to make this shader work, the object IDs must be allocated so that
none of the R, G, B, or A channels differ by only an LSB. This basically means
allocating IDs in twos on a per-channel basis.

Allocating IDs by twos for each color channel ensures that the minimum dif-
ference in any non-zero subtraction result is two. This allows us to shave off

Robust Object ID Shadows
583

Section V — Shadows

another “scale up by 2” instruction, which would have forced this to a three-pass
approach.

Undersampling

This set of shaders completely solves the projection aliasing problem, but one
problem still remains, which is inherent in all object ID shadowing methods:
undersampling.

If a triangle in the scene projects to a very thin or small area in the light’s
view texture, such that it doesn’t cross a pixel center and thus fails to be
rasterized at all, the entire triangle will appear in shadow because some other
nearby object ID is found in the light view texture instead during the shadow test-
ing phase.

One can reduce this problem by not giving every triangle in a finely tessel-
lated mesh its own object ID. Smaller triangles will undersample more often.
Increasing the resolution of the light view texture decreases the occurrence of
undersampling artifacts.

Undersampling is most common on silhouette edges with respect to the light
and can be hidden to some degree by adjusting the lighting equation from N dot L
to something like (N dot L)2, which causes lighting on silhouettes to fade out
more quickly.

Undersampling also occurs with depth-based shadows but is less serious
because a depth bias can correct it to some degree.

Mipmapped Object IDs

One idea to work around object ID undersampling is to utilize mipmapping to
select the object IDs.

Rather than store object IDs in the vertices of each triangle or mesh section,
one can store them in a texture. Point sampling should be used to fetch the appro-
priate ID. The mipmaps for the object ID texture are constructed so that when
sections that share the same object ID start to become thin or small and are at
risk for undersampling, neighboring object ID sections are merged together. This
allows a gradual lessening of shadow detail in a more controlled manner.

584
Robust Object ID Shadows

Section V — Shadows

Figure 3: Mipmapped object IDs

The largest mipmap level contains areas of varying object ID. Each triangle in the
shadow casting or receiving mesh has texture coordinates referencing one of
these areas of constant object ID. The texture coordinates must be created such
that they don’t reference a neighboring object ID section.

The next smaller object ID mipmap is simply a smaller version of the first,
whereas the next two mipmap levels show how the object ID sections are merged
so that the smaller sections are sub-sumed into the larger sections. Eventually
there is only a single object ID remaining, at which point the mesh will not
self-shadow.

These mipmaps cannot be used in the traditional manner, however, because
while they work fine from the light’s point of view, when creating the light view
texture one would have to write a complicated ps.2.0+ pixel shader in order to
reproduce the mipmap selection from the light’s point of view during the shadow
testing phase.

One could instead simply choose a mipmap level for an entire mesh or mesh
section. Unfortunately, that reduces batch sizes because it would require switch-
ing the LOD bias and mipmap clamping state in between each object draw call.

Object ID LOD

Rather than using mipmapping to solve the problem, one can simply use the con-
cept of geometric LOD. When constructing discrete geometric LODs, one must
generate object IDs to store in each vertex of every triangle of the mesh. The
LOD algorithm used to reduce geometry will automatically simplify the mesh, and
the object ID-creation algorithm is run on the resulting lower-polygon mesh.

This is still not a great solution for many applications, however. One reason is
that not all geometry in the level may have LODs generated for it, such as the
world geometry.

Another reason is that neither the mipmap nor LOD approach completely
solves the problem of undersampling; rather, each approach reduces the fre-
quency of errors.

Combining Object and Geometric LOD

Another approach to reducing object ID aliasing is to have a two-dimensional LOD
table. One axis would represent distance from the shadowing light, and the other
axis would represent distance from the scene camera. The camera distance axis
would choose a mesh of a certain level of geometric complexity. The light dis-
tance axis would select a texture map that corresponds to a lower number of
unique object IDs for the mesh.

Object ID Allocation for Convex Regions

Yet another approach that helps reduce undersampling problems is to identify
convex areas or volumes of a mesh and make the entire convex section share the
same object ID. This works because a convex mesh cannot shadow itself.

Robust Object ID Shadows
585

Section V — Shadows

A simple version of this approach allocates object IDs via plane equations.
Since two coplanar triangles can never shadow each other, no matter if they are
adjacent or disjoint, one can give all coplanar triangles the same object ID. This is
very effective in reducing object ID aliasing with world geometry because an
entire floor or wall can share the same object ID, no matter how finely tessellated.
Actually, each of the four walls and floor of a rectangular room could share the
same ID, since they form a convex region, but this may be a hard case to detect in
practice if not using a BSP for world geometry.

Summary

For a large class of applications that aren’t tessellated enough for undersampling
to cause significant problems, object ID shadows remain a viable alternative to
depth-based approaches, given an efficient and robust method of achieving them,
such as those presented above.

References

[Dietrich01] Dietrich, D. Sim, “Practical Priority Buffer Shadows,” Game Pro-

gramming Gems 2, Charles River Media, 2001, pp. 481-487.

[Hourcade85] Hourcade, J.C and A. Nicolas, “Algorithms for Antialiased Cast
Shadows,” Computers and Graphics, vol. 9, no. 3, 1985, pp. 259-265.

[Stamminger02] Stamminger, Mark and George Drettakis, “Perspective Shadow
Maps,” http://www-sop.inria.fr/reves/publications/data/2002/SD02/
PerspectiveShadowMaps.pdf.

[Vlachos01] Vlachos, Alex, David Gosselin, and Jason Michtell, “Self-Shadowing
Characters,” Game Programming Gems 2, Charles River Media, 2001, pp.
421-423.

[Wang94] Wang, Y. and S. Molnar, “Second-Depth Shadow Mapping,”
http://www.cs.unc.edu/~molnar/Papers/Shadow.ps.

586
Robust Object ID Shadows

Section V — Shadows

Reverse Extruded Shadow
Volumes

Renaldas Zioma

Introduction

This article suggests a solution for dealing with shadowing artifacts that uses
stenciled shadow volumes and allows proper self-shadowing while using occluder
geometry, which is separate from the visible geometry. Occluder geometry can be
simplified, improved for shadow volume extrusion in vertex shader, and real-time
animated. This solution is derived and adopted for the stenciled shadow volumes
from the work of Yulan Wang and Steven Molnar on shadow mapping [1].

The reverse extruded shadow volumes technique relies on a correct illumi-
nation model to hide shadowing artifacts. Breaking the illumination model, for
example, when using a darkening approach (when light is subtracted in shadowed
areas) [2], may produce artifacts on the polygons facing away from the light
source and requires special treatment. The simple case of a darkening approach
with one light source is discussed later.

Why Separate Occluder and Visible Geometry?

There are many scenarios when it’s useful to have a separate geometry for
shadow volume construction. You may have to add extra triangles along sharp
edges and possibly extra vertices at the same position but with different normals,
since normals in a visible mesh are used for lighting calculations and shadow vol-
ume extrusion needs face normals instead [3]. Maybe you have to remove unnec-
essary triangles to reduce occluder mesh complexity. Or you may go even further
and reduce the number of bone influences per vertex in the animated occluder to
gain some more speed (if the shadowing algorithm is not already fillrate bound).

Problems and Solutions

Separate occluder geometry is very useful for improving visual quality of the
shadow or gaining some performance increase; however, when applied with the
conventional shadow volume extrusion algorithm, it suffers from unacceptable
lighting artifacts — harsh shadows appear on the lighted side of the visible

587

geometry. This is caused by occluder geometry protruding from the visible geom-
etry or ambiguities in depth values (z-fighting).

There are a number of ad hoc solutions that can be used to reduce such shadow-
ing artifacts; however, as we see later, they are not very robust.
� Fit occluder mesh within the visible mesh [3]

This solution works only for static geometry. In the case of dynamically modi-
fied geometry, even if all vertices of the occluder mesh are kept inside the
visible mesh, there is no way to ensure that the occluder mesh isn’t
protruding.

� Inset vertices of the occluder mesh along their normals

This reduces protruding of the occluder mesh during the animations — but at
the expense of smaller shadows. It also requires careful hand-tuning for each
animation. However, there is another bad thing about this solution: It may
break depending on the distance between the viewer and geometry, since
depth buffer isn’t linear (post-perspective divide means non-linear distribu-
tion) and the vertices are inset constantly (actual bias in depth buffer units
will vary over the frustum) [4].

588
Reverse Extruded Shadow Volumes

Section V — Shadows

Figure 1: Shadowing artifacts on the lighted side of the visible geometry [8]

Figure 2: “Fitted within” mesh before and after bending

� Add bias to polygons of visible mesh in post-perspective space

To add an offset to polygons in post-perspective space, the ZBIAS state in
DirectX 8 (Tom Forsyth suggests near and far plane shifting as a better solu-
tion to ZBIAS [5], however) and the DEPTHBIAS and SLOPESCALE-
DEPTHBIAS states in DirectX 9 are available. While this solution overcomes
the non-linear distribution problem, it doesn’t solve the problems listed ear-
lier. Also, it introduces even more hand-tuning — a trade-off between elimi-
nating shadowing artifacts and shadows that are too far away to be realistic.

The algorithm becomes more and more complex. It requires more hand-tuned
parameters or introduces new restrictions. This encourages attacking the prob-
lem from another perspective and searching for more robust solutions.

Let’s leave stenciled shadow volumes for a bit and look at another shadowing
solution — shadow maps (light’s depth buffers). The cleverness of shadow map-
ping is that the depth buffer generated by rendering a scene from the light is a
precomputed light visibility test over the light’s view volume. The visibility test
is of the form:

p
z
<= shadow_map(p

x
, p

y
),

. . .where p is a point in the light’s clip space [6].
Importantly, both shadowing solutions use volumes: stenciled shadow vol-

ume solution in the form of extruded geometry and shadow mapping solution in
the form of a depth buffer. Both solutions use these volumes to partition space
into two regions for a particular light: a shadowed region and unshadowed region.

Naturally, while implementing the shadow mapping technique, one may
notice similar shadowing artifacts and similar ways to solve this problem. The
shadow mapping algorithm, introduced by Lance Williams [7], requires a polygon
offset to avoid self-shadowing artifacts. Usually, this is done by adding a small bias
amount to the shadow map projection matrix in DirectX 8 [6] or using the
DEPTHBIAS and SLOPESCALEDEPTHBIAS states, introduced in DirectX 9,
while rendering occluder
geometry. However, these
solutions have similar disad-
vantages as earlier discussed
for ad hoc solutions for sten-
ciled shadow volumes.

Yulan Wang and Steven
Molnar pointed out the non-
robustness of these solutions
and introduced another tech-
nique for shadow mapping to
reduce the need for a polygon
offset [1]. Their technique
works by rendering only back
faces into the shadow map,
relying on the observation
that back-face z-values and

Reverse Extruded Shadow Volumes
589

Section V — Shadows

Figure 3: Polygons facing away from the light are
casting shadows.

front-face z-values are likely far enough apart to not falsely self-shadow [6]. This
allows transferring the artifacts from the front faces to the back faces. Artifacts on
the back faces do not matter because they are already known to be in shadow and
can be hidden by the illumination model.

If this technique works for shadow mapping, when the right parameters for
correct illumination and suitable back-face and front-face z-values are chosen, it
might work just as well for stenciled shadow volumes.

Bringing Shadow Mapping Wisdom to Shadow Volumes

The conventional shadow volume extrusion algorithm treats polygons facing the
light source as light occluders (shadow casters). Polygons that are facing away
from the light source are projected to infinity in order to form a shadow volume.

Once again, notice the similarity to the conventional shadow map technique
when the front faces are used to fill the depth buffer, forming the “front” of the
shadow volume, which in turn is extending to infinity.

Here is the conventional shadow volume extrusion algorithm (L is a light’s
direction, N is a normal of the occluder polygon):
� If L.N < 0, project vertex to infinity (or just far enough) along the normal.
� Leave other vertices unchanged.

Now let’s try to apply Wang and Molnar’s wisdom to stenciled shadow volumes.
Instead of using polygons facing the light source as shadow casters, we could just
use the polygons facing away from the light source instead; in other words, we
need to reverse the conventional shadow volume extrusion technique.

Here is the reverse shadow volume extrusion algorithm:
� If L.N > 0, project vertex to infinity (or just far enough) along the normal.
� Leave other vertices unchanged.

590
Reverse Extruded Shadow Volumes

Section V — Shadows

Figure 4: Reversed and conventional shadow volume extrusion

What does this technique do? It’s the same as Wang and Molnar described it for
shadow mapping — it doesn’t reduce the shadowing ambiguities but transfers
them from polygons that face the light source to polygons that are facing away
from the light source. Since these polygons are always in shadow by definition,
the illumination model will hide these artifacts automatically.

Implementation of Reverse Shadow Volume Extrusion

The following code illustrates the reverse shadow volume extrusion algorithm
implemented as a vertex shader. The first part of the vertex shader calculates the
direction to the light and then normalizes it.

#define POSITION v0.xyz

#define NORMAL v3.xyz

#define WORLD VIEW PROJ c0

#define LIGHT c4.xyz // light position in object space

#define EXTRUDE c5.x // extrusion offset

#define LN THRESHOLD c5.y

vertexshader vs =

#ifndef DX9

decl {

stream 0;

float v0[3]; // position

float v3[3]; // normal

}

#endif

asm {

vs.1.1

#ifdef DX9

dcl position POSITION

dcl normal NORMAL

#endif

add r0.xyz, LIGHT, -POSITION // r0: L

dp3 r0.w, r0.xyz, r0.xyz // r0.w: |L|^2

rsq r0.w, r0.w // r0.w: 1/|L|

mul r0.xyz, r0.xyz, r0.www // r0.xyz: normalize(L)

Reverse Extruded Shadow Volumes
591

Section V — Shadows

Figure 5: Shadowing artifacts on the lighted side, without light, and hidden by the light

The following part of the shader calculates the dot product between the occluder
normal and the direction to the light in order to decide if the occluder polygon is
facing the light or not. If the dot product is greater than or equal to the threshold
(the threshold usually equals 0), the polygon is considered as facing the light and
should be projected away from the light. The result of the sge instruction, which
equals 1 if the polygon is facing the light and 0 otherwise, is used as a mask for
the projection distance.

Also, please note that the new vertex shader differs from the conventional
shadow volume extrusion vertex shader only in one instruction. Instead of the
slt instruction, it uses the sge instruction.

dp3 r0.w, r0.xyz, NORMAL // r0.w: L . N

sge r0.w, r0.w, LN THRESHOLD // r0.w: 1.0f if frontface!

// r0.w: 0.0f if backface

mul r0.w, r0.w, EXTRUDE // r0.w: extrusion coefficient

The final part of the shader makes the actual extrusion of the vertex by adding
projection distance to the vertex position. The work of the shader is finished with
the transform of the vertex position to the projection space by the world-view-
projection matrix.

mad r0.xyz, -r0.xyz, r0.www, POSITION // r0.xyz: extruded vertex

mov r0.w, v0.w

m4x4 oPos, r0, WORLD VIEW PROJ // vertex to projection space

};

Shadows via Darkening

If the shadowing approach when light is subtracted in shadowed areas is used, the
reverse shadow volume extrusion technique may produce artifacts on the poly-
gons that are facing away from the light.

This happens because such an approach is actually breaking the illumination
model, and the reverse shadow volume technique relies on the right lighting cal-
culations to hide the artifacts. The light may be subtracted from the polygons that
were not in light, resulting in regions that are darker than the ambient term. In
order to fix this problem for the single light source, the ambient term must be
added to the frame buffer only after the darkening pass.

Analysis

The reverse shadow volume extrusion technique has the following strengths:
� The reverse shadow volume extrusion technique provides an easy way to

use separate occluder and visible geometry for stencil shadows.
� The reverse shadow volume extrusion technique allows proper self-shadow-

ing using stencil shadows.

592
Reverse Extruded Shadow Volumes

Section V — Shadows

� It’s more robust than ad-hoc solutions for conventional shadow volume
extrusion and does not introduce fragile algorithms and hand-tuned
parameters.

� It’s easy to migrate from conventional shadow volume extrusion to the
reverse — the magic is done only in one instruction.

The reverse shadow volume extrusion technique has the following weaknesses:
� A closed mesh is required for shadow generation. Actually, if the vertex

shader has already been used for shadow volume extrusion, it requires a
closed mesh in any case. If the occluder mesh isn’t closed, then the pre-pro-
cessing step must generate a closed mesh. Notice that visible mesh can not
be closed, since it is not involved in shadow volume extrusion at all.

� A correct illumination model is required. Since shadowing approach via dark-
ening is breaking the illumination model, special treatment is needed when
such an approach is used to avoid the artifacts on the polygons facing away
from the light.

� The occluder geometry must be sufficiently sized — back faces should not
protrude or z-fight with the front faces.

Summary

The reverse shadow volume extrusion technique introduces an easy way to use
separate occluder and visible geometry and allows proper self-shadowing with the
stenciled shadow volumes approach.

References

[1] Wang, Yulan and Steven Molnar, “Second-Depth Shadow Mapping,” UNC-CS
Technical Report TR94-019, 1994.

[2] Dietrich, Sim, “Shadow Techniques,” GDC 2001.

[3] Everitt, Cass and Mark J. Kigard, “Optimized Stencil Shadow Volumes,”
GDC 2003.

[4] Kilgard, Mark J., “Shadow Mapping with Today’s OpenGL Hardware,”
CEDEC 2001.

[5] Forsyth, Tom, “Why ZBIAS is not a good thing,” http://tomsdxfaq.blog-
spot.com/.

[6] Everitt, Cass, Ashu Rege, and Cem Cebenoyan, “Hardware Shadow Mapping,”
http://developer.nvidia.com/docs/IO/1830/ATT/shadow_mapping.pdf.

[7] Williams, Lance, “Casting Curved Shadows on Curved Surfaces,” Computer

Graphics, SIGGRAPH ’78 proceedings, pp. 270-274.

[8] Pranckevicius, Aras, “Reverse extruded shadow volumes,” http://www.gim.
ktu.lt/nesnausk/nearaz/texts/revext.html.

Reverse Extruded Shadow Volumes
593

Section V — Shadows

Section VISection VI

3D Engine and Tools
Design

595

Shader Abstraction

by Tom Forsyth

Post-Process Fun with Effects Buffers

by Tom Forsyth

Shaders under Control (Codecreatures Engine)

by Oliver Hoeller

Shader Integration in the Gamebryo Graphics
Engine

by Scott Sherman, Dan Amerson, Shaun Kime,

and Tim Preston

Vertex Shader Compiler

by David Pangerl

Shader Disassembler

by Jean-Sebastian Luce

Shader Abstraction

Tom Forsyth

The Problems

There are many problems that crop up when writing any sort of graphics engine,
whether aimed just at the PC platform or at multiple platforms, including con-
soles. The big one is almost always scalability, specifically the scalability of the
shaders used for rendering the scene. Even when aiming at a single console plat-
form, scalability is still important for allowing maximum detail in foreground areas
while not spending time rendering this detail in the background, where it is not
visible. When developing for multiple platforms or a sensible range of PC hard-
ware, scalability becomes extremely important.

Various conventional solutions exist, none of them ideal. A brief list of the
possible cases and their traditional solutions follows:

Multiple PC cards — TSS, PS1.1, PS1.3, PS1.4; FFP, VS1.1; P/VS 2.0,
P/VS3.01

� Use the lowest common denominator. Ugly.
� Fix a high “minimum spec.” Reduces your possible market.
� Two or three versions of the low-level engine. Large coder, artist, and QA

time.

Multiple platforms — PC, XB, PS2, GC

� Multiple and completely separate engines. Lots of coder time. Artists author
multiple versions.

� Shared API layer. Essentially the lowest-common-denominator solution
again.

Scalability within scenes according to distance

� Mesh Level of Detail (VIPM, static LoD) can help but only geometry, not
fillrate.

� Fade stuff out (litter, incidental objects, texture layers) — looks rather
strange.

597

1 TSS is TextureStateState, a reference to the SetTextureStageState call used to set up this style of pixel
blending. FFP is the fixed-function pipeline — the transform and light part of Direct3D that was replaced
by vertex shaders. PS is pixel shader. VS is vertex shader. P/VS is both pixel and vertex shader.

A Single Solution?

The solution proposed in this article is to abstract shaders. In many ways, this is
just a combination of some of the above ideas, but it is much more thorough than
the solutions above and affects the design of the entire engine. The abstraction of
shaders means that the models (and therefore the artists that authored those
models) specify a description of an ideal shader, but then in code the shader is
allowed to degrade gracefully in quality according to both platform and distance
from the camera.

This concept is not new. Features like detail textures have been optional
extras for some time in many games, enabled only on higher-end systems, but
they essentially work from the lowest common denominator upward by attempt-
ing to artificially add detail. This gives a much poorer quality result than working
the other way — allowing artists to author high and scale down.

With the advent of some very complex shader models such as anisotropic
BRDFs2, self-shadowing bump maps, and displacement mapping, the gap between
the lowest acceptable quality of shaders and the highest possible grows even
wider. Adding a few noise functions over the top of a texture map fails to impress
people any more, and the alternative is to discard the lower-end systems, which
make up a large proportion of the market.

There is a small speed cost associated with this flexibility. However, the extra
cost of this abstraction is matched by the considerable advantages — and the
run-time speed difference is small, and in many cases the abstraction allows other
optimizations to be applied that more than counteract the slight overhead.

Essentially, the idea is for the artists to design objects with the highest
superset of features available. They model and describe objects with as much
shader detail as they have time and resources for, without worrying too much
about which target platforms can render the data they produce or how much of the
scene will be rendered with all that data. Naturally, some judgment is required to
balance time spent producing super-detailed shader information against the likely
benefit, but the artists are not tied rigidly to the target platform(s) in the usual
way.

For simplicity, I usually refer to the different types of PC cards as different
platforms. The only difference between the two cases is that on the PC, the
choice of “platform” is not known until game installation or start of day, while on
the console it can be determined at compile time. However, the methods used do
not add any performance penalty for this relatively late decision and the only
slowdown is at load time, but even then it is small compared to the time taken to
retrieve mesh and texture data from the hard drive.

598
Shader Abstraction

Section VI — 3D Engine and Tools Design

2 Bidirectional Reflectance Distribution Functions

The Material

The core concept in this abstraction is the Material3. Frequently implemented as a
C++ class, this is a black box that wraps up all the rendering details from the rest
of the engine. Mesh data, textures, lighting, position, orientation, animation, and
so on are fed into the Material and out come pixels on the screen. This data can
be fed in when exporting from the various content creation stages and intermedi-
ate formats stored on the hard drive, CD, or DVD, or it can be fed in at run time
for dynamic objects such as sprites, HUD, font draws, particle systems, and so on.
Either way, there are a few well-defined input formats that are shared by all Mate-
rials, but the details of rendering and the internal data stored on the hard drive,
CD, or DVD are all private to the specific Material.

The shared input interface allows a single mesh with complex shader data to
be fed to a wide range of Materials with different rendering styles, and the Mate-
rial deals with the details of efficient rendering at a certain quality and speed
level. Because all the intermediate information (such as vertex buffers, shaders,
texture formats, and content) is private to the Material, each Material can be indi-
vidually optimized for particular situations and platforms without worrying about
breaking any other parts of the code. In this way, the huge complexity of a
multi-format highly scalable rendering system are kept manageable by reducing
as many interdependencies as possible.

Materials are generally both subclassed (using virtual C++ classes) and
instanced. A subclass is used when there is a different style of rendering — a dif-
ferent number of passes, different types of inputs (e.g., lighting info, shadow buff-
ers, environment maps), and so on. A different instance is used when the code is
the same but the details are different — for example, different render states or
pixel or vertex shaders. Essentially, any time there is an “if” in the rendering
function that tests data determined at start of day, it is probably time to use a dif-
ferent class rather than an instance.

A Simple Static Material

To help make a few of these ideas concrete, here is a very simple implementation
of a static Material class. A static Material is used for meshes that do not have
their mesh data changed by the CPU at run time — positions, texture coordi-
nates, vertex coloring, and so on are purely determined at export time. However,
this does include cases where data is generated by the GPU — animation, chang-
ing lighting conditions, environment mapping, and so on. This covers most
meshes that are output from a 3D art package. The opposite is a dynamic class,
such as a particle system or a font draw — these will be addressed later4. To keep
it simple, this engine does not yet have any textures or animation:

Shader Abstraction
599

Section VI — 3D Engine and Tools Design

3 To make it clear when I am talking about the code construct, I capitalize the M when talking about it, as
opposed to a “material,” which is usually used as a way of referring to the properties of a particular surface.
The concepts overlap but are not always identical.

class Material

{

private:

MaterialDescriptor desc;

Material (const MaterialDescriptor &md);

virtual ~Material();

public:

static Material *FindOrCreate (const MaterialDescriptor &md);

virtual void *Export (size t &SizeOfDataInBytes,

const FatVertex *pVertices,

const u32 *pIndices,

int iNumVerts, int iNumTris) = 0;

virtual void Render (const void *pExportedData,

const Matrix43 &orientation) = 0;

};

// And some derived classes would be:

class MaterialUnlit : Material;

class MaterialLit : Material;

class MaterialLitShiny : Material;

Note that Material is a base class and cannot be created directly. It can only be
used as a template and interface for the other Materials derived from this class
that implement specific rendering methods. However, the Material class is the
interface that the rest of the engine uses; it does not (except in very specific cir-
cumstances) need to know about any of the derived Material classes. The follow-
ing sections describe each part of this class.

MaterialDescriptor

MaterialDescriptor is a relatively large inefficient structure with various combina-
tions of flags and enums that specifies the properties of a certain Material. The
flags say things like “this material has a diffuse texture,” “this material is shiny,”
“this material has vertex colors in the mesh data,” and so on. This structure is
used to uniquely identify a Material, and no two Materials will have the same
MaterialDescriptor, even if they are different derived classes.

Material::FindOrCreate()

To ensure that no two Materials will have the same descriptor, the engine is not
allowed to create Materials itself. What the engine does when it needs a new
Material is create the appropriate descriptor and pass this to the Material::Find-
OrCreate() function. This will either return an existing Material or create a new
one; it keeps an internal list of all existing Materials. This function is a simple
version of a “class factory,” where all the classes it can create are derived from
Material, but the actual type (MaterialUnlit, MaterialLit, MaterialShiny) is deter-
mined by the descriptor that is fed in. Although searching through the list of

600
Shader Abstraction

Section VI — 3D Engine and Tools Design

4 Note that on some platforms, the distinction is a little more precise; see “Dynamic Materials” later for
more.

existing Materials and trying to match up the MaterialDescriptor is relatively
slow (it can be sped up by hashing the descriptor as a quick test), this is only done
when new objects and new materials are created, which is usually only at start of
day or appropriate intervals, such as loading new levels. In practice, it is not a
speed problem.

Material::Export()

The Export function is called by the developer when converting data from the for-
mat output by art packages into data to be written to the distribution media (CD,
DVD, archive, WAD file, etc.). For each mesh that is placed in the game, a Mate-
rialDescriptor is created that describes its rendering properties, FindOrCreate is
used to find the specific Material that will do the rendering, and then the mesh
data is sent to the Export() method of this Material.

The input vertex format — FatVertex — is shared across all Materials and
frequently contains space for all the possible required data (such as tangent vec-
tors, multiple texture coordinate sets, vertex colors, and so on), even if most
Materials do not use or require this data. Similarly, the index data is in a standard
format. Indexed triangle lists with 32-bit indices are very common because they
are simple for content packages and load/save routines to use, but again the for-
mat is up to the application. Whether the target platform prefers indexed or
non-indexed data, lists, strips, fans, or quads does not affect the input to Export
— any expanding, reordering, splitting, etc. is handled internally by the Mate-
rial::Export() call, since only it knows the rendering specifics.

The Export function takes all the mesh data (and texture data, which has
been omitted for simplicity for now) and processes it into a hardware-friendly
form that it can easily use at run time. This usually involves stripping or reorder-
ing the triangles for efficiency, reindexing them if needed, removing all the data in
the FatVertex that is either not needed or cannot be used (for example, tangent-
space data for a Material that cannot render bump maps), compressing the data for
the target platform, and so on. The final processed data is packed into a single
continuous chunk of bytes in whatever format the Material requires and passed
back as the result of Material::Export(). The size of the data is written to SizeOf-
DataInBytes. Of course, any sort of data-packaging method may be used — STL
vectors of bytes and so on are also handy.

It is then the mesh’s responsibility to write this data to the distribution media
in a place where it can load it again later. The mesh will also write out the Mate-
rialDescriptor that it used to find the Material.

Note that the same mesh data (FatVertices and indices) may be fed to almost
any Material’s Export() method. If data is provided that is not used by the Mate-
rial’s rendering style, it is either ignored or incorporated in some sensible manner
to try to approximate the desired effect. For example, feeding a shininess map to a
Material that only renders using vertex specular will probably make it look at the
map, take the average shininess value, and use that as its overall shininess. Alter-
natively, if the Material uses a per-vertex shininess value, it may sample the shin-
iness map at each of the mesh vertices. If there are two possible ways to process

Shader Abstraction
601

Section VI — 3D Engine and Tools Design

the data from input format to rendering format, the mesh can choose which to use
by sending a standard set of flags to the Export() function.

If data is missing that the Material would normally require, it must be able to
cope and generate default “NULL” data. For example, if a Material renders with a
diffuse texture but is passed mesh data with no texture, it needs to generate a
small pure white texture to use so that the same visual effect is seen on-screen.
This is inefficient and should normally be flagged as a bad thing; ideally the mesh
should have selected a different Material by specifying in the MaterialDescriptor
that it did not have a diffuse texture. However, this should not be a fatal error, and
the code should be able to cope and use sensible defaults. These cases do happen
because, as can be seen later, Material::FindOrCreate() does not necessarily
return the Material that was asked for.

Material::Render()

When the mesh is loaded while the game is running (for example, when loading a
level that the mesh is in), it loads the MaterialDescriptor that it saves, calls Mate-
rial::FindOrCreate(), and stores the Material* it gets back. It can then throw the
bulky MaterialDescriptor away, since it doesn’t need it any more — it has a
pointer to the Material singleton instead. The mesh also loads the big chunk of
data returned by Export(). It still doesn’t know what is in this data, but it does

know that if it passes the data to Material::Render() along with its current orienta-
tion, the mesh will appear on the screen.

The Render() call knows what format the data is in because this is the same
Material class that created the data during the Export() call, so it can use the data
directly to render the mesh on-screen in the most efficient way possible.

Scalability

Each Material instance has exactly one rendering style with one quality level on
one target platform. A Material that renders on a PS2 will not render on an Xbox,
and vice versa, although there may be two Materials that render using the same
techniques and produce the same pixel output. Making the target platform (again,
counting different classes of PC cards as different platforms) part of the Mate-
rialDescriptor allows the export phase to be explicit about which targets it is
exporting to. It can create two otherwise identical Materials, one for each plat-
form, and call Material::Export() on both with the same mesh data. They can then
do completely different things to transform the data into native formats for the
target hardware, such as stripping, batching, and data format conversion.

Note that although the export phase can call Material::Export() on Materials
that are destined for PS2 and Xbox, it cannot normally call the Material::Render()
method on these Materials because that will only work on the target platform
itself. One possible exception is that on a PC compile, these Materials may render
some sort of emulation of the target hardware. This allows artists to preview how
their data will look on various platforms without needing a full export cycle each
time or needing a console development station at every desk. However, in the

602
Shader Abstraction

Section VI — 3D Engine and Tools Design

case of consoles, it is extremely hard to get the outputs looking identical, since
one is on a high-resolution monitor and one is usually outputting to a television.

Each Material knows how to downgrade itself in quality, with the assumption
that this method will be quicker to render. If one of the targets is the PC, Mate-
rials will also know how to downgrade themselves to require less sophisticated
hardware — for example, to use a lower pixel or vertex shader version number, or
to drop back to the TextureStageState pipe or the fixed-function texture and light-
ing pipeline. These are exposed by the methods Material::FindQuicker() and
Material::FindSimpler() that both either return a different Material (via an inter-
nal call to FindOrCreate) or return NULL if there is no quicker or simpler way to
render the data.

At export time, a mesh will call Material::FindOrCreate() with its desired
MaterialDescription. This will find the highest-quality Material available, which
should render the mesh with all its data on-screen. The mesh calls Export() and
saves the data produced. It then keeps calling FindQuicker() and/or FindSimpler()
and exporting more data each step of the way for each of the Materials until one
or both return NULL for the quicker/simpler versions of the Material.

At run time, the same process is carried out to load the different versions of
the mesh but this time calling Import() on each Material. FindOrCreate() finds the
highest-detail Material, the mesh calls Import() on that, and then goes down the
chain of Materials returned by successive FindQuicker() calls, importing each in
turn.

Note that on the PC target there is no need to call FindSimpler() at run time.
The initial FindOrCreate() call will have returned a Material that is valid for the
current hardware capabilities. Once the highest-detail Material is returned, it
guarantees that any FindQuicker() results will also be valid on the same platform.
A FindQuicker() call should never return a Material that uses more hardware
resources than the current Material. In some cases, especially when dealing with
the legacy DX7 TextureStageState and fixed-function pipeline interfaces, this can
get fairly tricky; in practice, what usually ends up happening is that there is a
generic, single-texture LoD chain of Materials, a generic dual-texture chain, and
also several chains specifically targeted at certain common chipsets. If the chipset
detected is not one of those specifically supported, then the generic single- or
dual-texture chain is used as appropriate. In theory there are various capability
bits that can be checked for bits of functionality, but because of driver bugs, in
practice it is safest to simply identify the card directly. If identification fails, use a
generic “safe” feature set that seems to work on all known cards. Achieving good
DX7 compatibility is a huge topic and outside the scope of this article, but using
this Material system keeps the implementation relatively simple and easy to
modify.

In some cases, the fact that each Material performs its own export call can
produce duplicate data. For example, a Material that handles three vertex lights
can degrade to a Material that only handles one vertex light, and the mesh data
stored by each is usually the same — it is only the vertex shader that changes. To
avoid this, when Material::Export() is called, it exports the data to a memory
buffer rather than a file and compares the contents against all other previously

Shader Abstraction
603

Section VI — 3D Engine and Tools Design

exported mesh buffers. If it finds a match, it uses the existing file rather than
duplicating the data. Using a suitable hash function such as a CRC keeps this com-
parison fast. The export is performed multiple times, but the extra time taken is
not usually much, and this method removes any dependencies between the differ-
ent Export() calls for different Materials — all it checks is whether their final out-
put data is identical or not. This keeps maintenance problems to a minimum and
maintains flexibility.

A further quality improvement is if each Material not only knows which other
Material is a version of itself that is quicker to render but also knows how to
smoothly downgrade itself visually to match that Material. For example, a Mate-
rial that renders a diffuse and detail texture will fade the detail texture to nothing,
and it then visually matches the simpler Material without a detail texture. This is
done by adding an argument to the Material::Render() method that controls the
Level of Detail (LoD). A value of 1.0 renders the Material with full detail. An LoD
value of 0.0 renders the Material with reduced detail, making it visually identical
to calling Material::FindQuicker()->Render() with an LoD version of 1.0. This
allows the mesh to gradually degrade the current Material that it is using until it
can then swap to using the quicker Material but avoiding any sudden pop. These
sudden pops attract the eye of the player and are very distracting, whereas a
smooth change is far harder to notice.

For continuous worlds that do not have any discrete boundaries, such as land-
scapes, each mesh (where a “mesh” is a section of landscape) cannot be given a
single LoD value; otherwise, seams will appear between parts of the landscape. In
this case, the LoD value will be calculated by the Material independently at each
vertex. However, the calling program can still calculate the highest possible LoD
for each mesh and call the appropriate Material for that LoD. This does compli-
cate the system, but in practice continuous landscape engines are highly special-
ized anyway — these Materials are likely to always be used through a different
set of interfaces designed specifically for landscape rendering.

In some cases, there may be Materials that do not do a transition themselves
but link to a Material that can. This allows rendering to usually use Materials that
do not transition (and therefore may execute faster), but when going from one to
the other, it goes via a Material that can transition but executes slightly slower.
The idea is that few things in the scene are using the transitional Materials at any
one time, so performance is retained but without the visually objectionable pop-
ping of a sudden change. In practice, this is rarely necessary, as most effects
(detail maps, bump maps) can be faded out with little speed impact.

Data-Hiding and Maintenance

Because almost all Material classes, whatever their descriptor, can be fed the
same mesh data at export time and use the same external interfaces, it is easy to
keep them isolated from each other. This means that the most common rendering
cases can be separated out into their own separate Material and minutely opti-
mized without breaking all the other Materials. All the less-common shader
effects or combinations can be done by far more general Materials that may

604
Shader Abstraction

Section VI — 3D Engine and Tools Design

handle a lot of the cases by rendering more complex shaders and inserting
dummy black or white colors or textures or constant factors of 0 or 1. Additionally,
quite late in the project more Materials can be added that optimize the commonly
used cases without changing any other Materials. This allows optimization to be
done right up to the last moment without the fear of having broken some obscure
combination of shader features, since that combination will still use well-tested
general-purpose Materials.

This idea of starting with general cases that work everywhere (although per-
haps not optimally) and specializing as the project goes on and the common
requirements are better understood is a powerful one. It allows the engine to sup-
port a huge range of features without committing programmer time to optimizing
every possible combination of supported features and without producing exponen-
tially uglier code as the number of special cases increases.

Implementation Details

In practice, life is a little more complex. In addition to a Material::Export()
method, there is usually a Material::Import() method that actually takes the large
chunk of data. This method will create things like D3D vertex and index buffers,
fill them with the data from the large chunk of data, then store the buffer pointers
in a smaller chunk of data, which it will then hand back to the mesh. The large
chunk of data can now be freed. It is this smaller chunk of data that the mesh
passes to the Material::Render() method.

Along with the Material::Import() method, there is a Material::DeleteIm-
portedData() method that is used to clean up the mesh data (for example, when
loading a different level where this mesh is not used). This takes this same chunk
of data as passed to Material::Render(), releases the vertex and index buffers, and
frees the remaining memory.

Material::Export() also takes a number of miscellaneous mesh properties,
such as overall shininess, overall diffuse color, bump map bumpiness factor, etc.
These are frequently passed in either as an array of floats or Vec4s — the array is
always a standard size, and data is in a standard offset within that array — or as a
structure or class5. Again, this data is of a standard format across all Materials and
can be passed to any Material::Export() call, and it will be interpreted correctly.
The values that are used by the Material will also be stored in the big chunk of
data that Material::Export() returns.

When created, Materials will bolt together and compile any shaders or render
state blocks that they need. In our engine, this step has been separated out into a
“validation” stage — the theory being that you can hang onto a shader and use
Material::Validate (create shaders) and Material::Invalidate (free shaders) at will.
This just lets us do some more memory management without worrying about ref-
erence counting and other annoying bookkeeping, but it is purely a style thing.

Shader Abstraction
605

Section VI — 3D Engine and Tools Design

5 Although a structure or class is more sophisticated and makes for more readable code, in practice we use
an array of Vec4s, since it can be indexed with a number rather than a name.

Dynamic Materials

A dynamic Material is essentially the same as a static Material except that its
mesh data changes at run time. These are used for rendering items such as
heads-up displays, scores, text fonts, particle systems, diagrammatic items like
arrows and aiming reticles, incidental effects such as tracer trails, and decal
effects such as bullet holes and footprints.

It is worth noting that the difference between static and dynamic Materials is
fairly subtle on platforms such as the GameCube and PCs without hardware trans-
form and lighting or animation capability. In these cases, the CPU performs the
role of a GPU vertex unit and changes mesh data at run time. The distinction is
whether the data is generated by relatively higher-level shared code (either
cross-platform or cross-Material), as in the case of font and particle drawing, or if
the routines are low level and specific to the Material, which is the case for ani-
mation and lighting. Essentially, a dynamic Material exposes its mesh format out-
side the Material, while a static Material does not.

To allow this, these meshes have a second Material::Render() method that
takes pointers to various mesh structures — vertices and indices and so on. This
interface can simply take the same arguments as the Material::Export() call, but
using a wide format such as a FatVertex is usually inefficient. The usual way to
deal with this is to have part of the MaterialDescriptor define the input data for-
mat. For static Materials, this entry is left as “none,” but for dynamic Materials,
this is explicitly and precisely defined.

Some Materials may have a common input format that can be driven by the
same code on all target platforms, with a small bit of run-time manipulation to get
it into a format usable by the hardware. A common example is the status display
— it usually consists of a small number of elements with simple render tech-
niques and is identical across all platforms. To keep code simple, a common for-
mat can be used, meaning that code written on one platform automatically works
on the others.

Other cases may have very target-specific formats and be used only in code
used on that platform; a common example is the particle system code, which
although dynamic needs to be very fast. The common code for particle systems is
usually at quite a high level to take advantage of hardware and CPU quirks, and
the actual use of the Material::Render() method is buried deep in platform-specific
code.

Textures

So far, the discussion of Materials has avoided textures in detail. One way to inte-
grate them is to treat them like any other mesh data. They are fed in some stan-
dard form (for example, a linear 32-bit ARGB array) to Material::Export(), and the
export code manipulates and combines the data to produce a given number of
hardware textures in various formats. For example, a diffuse texture and an opac-
ity texture (a grayscale map where white=opaque and black=transparent) would

606
Shader Abstraction

Section VI — 3D Engine and Tools Design

be fed in, and in most cases the Material would combine them into a single ARGB
texture with the opacity map in the alpha channel. This texture then gets put into
the big chunk of data returned by Material::Export(), and at run time the actual
textures are created.

In practice this is not sensible. A lot of source textures are shared between
many different meshes (for example, tarmac road textures, brickwork, tree and
bush leaves, and so on), and this naïve export method removes the ability to share
the hardware versions of the textures because each Material is by design isolated
from other Materials. Removing the sharing uses a lot of memory and slows
everything down.

One way to do this is to keep the texture export process separate from Mate-
rials. So if the artist uses the same image in two places, the same hardware tex-
ture is used, and both Material renderers must be able to use that hardware
texture.

For simple Materials, this can work. But for more complex shaders, it is use-
less. A good example is with bump mapping. Typically, artists will provide a dif-
fuse (unlit) texture and a grayscale heightfield bump map. There are three
different styles of rendering.

The simplest is no bump map. The bump map is prelit at export time from
some “standard” lighting direction (usually above the object), and this lighting is
combined with the unlit diffuse texture to produce a single prelit diffuse texture.

The next method is emboss bump mapping. In the most common implemen-
tation, the bump map height is put in the alpha channel of a texture, and the unlit
diffuse texture is placed in the RGB channels.

The third method is normal-map bump mapping. In this, the bump map
heightfield is processed to find the gradients of the heightfield, and those are used
to produce a normal map — a map of vectors where the XYZ of each normal is
held in the RGB channels of a texture. The unlit diffuse texture is put into a sec-
ond texture’s RGB channels. The alpha channels of both maps are unused.

These three methods all require the source textures to be processed in some
way, and two of them require that the two source images be combined so that, for
example, using the same bump map with a different diffuse texture would require
a different hardware texture.

To solve these conflicting requirements — wanting the Material to decide
how to process its textures and yet letting textures be shared between otherwise
unrelated Materials — Mucky Foot uses a class called a TextureSource. This class
only exists in the exporter side of things, not on the target platforms, and each
TextureSource describes a hardware texture. It does this not by storing pixels
directly but by storing the processing steps that a Material has applied to a num-
ber of source images (TGAs, JPGs, etc.) to obtain the final hardware texture. All
TextureSources share a common base class:

class TextureSource

{

private:

TextureSource();

virtual ~TextureSource();

Shader Abstraction
607

Section VI — 3D Engine and Tools Design

public:

virtual const Image *GenerateImage (void) = 0;

virtual String GenerateName (void) = 0;

};

Some TextureSources directly describe images stored on disk:

class TextureSourceTGA : public TextureSource

{

public:

TextureSourceTGA (String sFilename);

};

Others describe an image in terms of an operation on other images:

class TextureSourceNormalMap : public TextureSource

{

private:

TextureSource *ptsSource;

public:

TextureSourceNormalMap (TextureSource *ptsSource);

};

class TextureSourceAlphaColourCombine : public TextureSource

{

private:

TextureSource *ptsAlphaSource, *ptsColourSource;

public:

TextureSourceAlphaColourCombine (TextureSource *ptsAlphaSource,

TextureSource *ptsColourSource);

};

These classes are created like so:

TextureSource *ptsBumpmap = new TextureSourceTGA (“bumpy.tga”);

TextureSource *ptsDiffuse = new TextureSourceTGA (“colours.tga”);

TextureSource *ptsNormal = new TextureSourceNormalMap (ptsBumpmap);

TextureSource *ptsEmboss = new TextureSourceAlphaColourCombine (ptsBumpmap, ptsDiffuse);

TextureSources may be chained together indefinitely, sometimes producing
chains like this:

TextureSource *ptsNormal = new TextureSourceNormalMap (

new TextureSourceChangeContrast (2.0f,

new TextureSourceInvert (

new TextureSourceToGrayscale (

new TextureSourceTGA (“brick.tga”)))));

The TextureSource::GenerateImage() method returns an image (which is just a
raw 32-bit ARGB linear format with a width and height) that is the actual result of
the TextureSource. This image is cached so that GenerateImage can be called
multiple times without redoing all the image generation work, which is why the
result is a const Image*. For the TextureSourceTGA class, GenerateImage simply
loads the TGA off disk and writes the data into its cached Image. For the

608
Shader Abstraction

Section VI — 3D Engine and Tools Design

TextureSourceNormalMap class, GenerateImage() first calls ptsSource->Gen-
erateImage() and processes the returned Image as a heightfield to create its own
Image — a normal map. Similarly, TextureSourceAlphaColourCombine calls
ptsAlphaSource->GenerateImage() and ptsColourSource->GenerateImage(),
takes the alpha channel from the first and the color channels from the second, and
combines them into its own ARGB Image, which it returns.

So using these, the Material::Export() call is passed in a set of Texture-
Sources — almost always just TextureSourceTGA classes referring to raw tex-
ture artwork used on the mesh. The Material then processes these as it wants by
creating new TextureSources, using the passed-in TextureSources as arguments
to the constructors. These new processed TextureSources are then returned in a
list by Material::Export() to tell the mesh what texture data the Material::Ren-
der() call is going to require. The exact number of TextureSources returned is up
to the Material::Export() call, and the order they are returned in must match the
order in which they are passed to the Material::Render() call.

Each of the TextureSources returned by Material::Export() then gets the
GenerateImage() method called on them, and the resulting Image is processed
into a hardware texture format and exported to the final target platform. As with
the large contiguous chunk of data returned by Material::Export(), the main
engine code does not know or care what data is inside those TextureSources.

Except in one respect. The main engine would like to know if that same data
is used by any other meshes, so it can generate and load only one texture and
pass it to all the meshes that need it. The way we do this is by calling Texture-
Source::GenerateName(), which returns a text string that describes the chain of
TextureSource calls, usually something like “NormMap(Contrast(2.0,Invert(Grey
(TGA(“brick.tga”))))).” The strings for every exported texture in the world are
kept; if two strings match, the outputs must be the same, and only one texture is
created. Another way to do this would be to hash the contents and formats of
hardware textures and compare the hashes. If the hashes match, a closer check is
made on the individual texels; if they match, then the two can be merged into a
single texture. This involves a lot more data checking and is slower but more
aggressive. For example, “NormMap(Contrast(2.0,Grey(Invert(TGA(“brick.
tga”)))))” describes exactly the same data, but it is a different string. It may be
worth doing this aggressive check every now and again.

Note that this addresses the same problem as multiple Materials producing
identical mesh data, but from the other end. The reasons for this are pragmatic —
there is a lot more reuse of texture data than there is of mesh data; the operations
performed on texture data are more tightly defined and shared by many Materials;
and the time taken to produce texture images is far longer than for mesh data, so
an early duplication check is far more important.

So two calls have changed now that textures have been added.

virtual void *Material::Export (size t &SizeOfDataInBytes,

std::list<TextureSource*> &lptsOutputTextures,

TextureSource *ptsInputTextures[],

const FatVertex *pVertices,

const u32 *pIndices,

Shader Abstraction
609

Section VI — 3D Engine and Tools Design

int iNumVerts, int iNumTris) = 0;

virtual void Material::Render (const void *pExportedData,

Texture *ptexTextures[],

const Matrix43 &orientation) = 0;

Note that the array ptsInputTextures[] is always a fixed size, and the indexes are
defined using a global enum or similar so that, for example, ptsInputTextures[0] is
always the diffuse texture (if any exists), while ptsInputTextures[5] is always the
bump map texture (if any exists).

However, the same is not true of ptexTextures[]; this array has the same
number of elements as the returned list lptsOutputTextures, and the two have a
one-to-one correlation (each TextureSource gets GenerateImage() called to get its
Image, which is then turned into a platform-specific hardware Texture). Note that
the Material::Render() call does not need to know how large ptexTextures[] is —
it already knows because of the sort of Material it is.

Animation

When rendering an animated mesh, the animated skeleton is passed as yet
another argument to the Material::Render() call in a standard form, and the Mate-
rial deals with all the details of rendering with that set of bones. Similar process-
ing can be performed by Material::Export() on the skeleton of the mesh, but it is
usually not necessary and simplifies the code if there is a single shared format for
skeleton and animation data.

Whether a mesh is animated or not is also a flag in the MaterialDescriptor,
since animated meshes require a different sort of vertex processing and lighting
pipeline to non-animated meshes.

Lighting

Lighting for a mesh must usually be generated at run time (with the exception of
radiosity-style lightmaps). This causes problems because as the mesh moves
around or the environment changes with gameplay, different numbers and types of
lighting (spot, directional, etc.) will affect the mesh. One solution is for each
Material to always use a fixed number of lights of each type. For example, a cer-
tain Material will always use two directional lights —no more and no less. This is
acceptable for some situations, but if there are infrequent cases where more lights
would give a better result, it would be useful to spend a small amount of time to
do this. In the case where there is only one light affecting an object, it is a waste
of performance to always use two (and set the second light to black, for example).

One solution is for each mesh to create an array of Materials that are all the
same, except each is capable of doing a different number of lights and/or combina-
tion of lights. However, this rapidly produces a huge number of combinations
(e.g., up to four lights of three types requires an array of 256 materials6). Although
many of these may reference the same material, a pointer to the material and the
chunk of data it requires has added 4 KB to every mesh and a potentially massive

610
Shader Abstraction

Section VI — 3D Engine and Tools Design

amount of exported mesh data. The other disadvantage is that the mesh has no
knowledge of whether certain combinations are easy to reduce to simpler cases
because it does not know anything about the specific platform capabilities.

A good example case is when using a relatively complex function, such as
Spherical Harmonics7 (SH), to perform vertex lighting but standard dot3 to do
per-pixel lighting. This case assumes all lights are directional for ease of illustra-
tion. Typically only zero, one, or two lights shining on an object will have dot3
lighting (usually the brightest), and the others will be done using SH.

For a mesh without a bump map or on a platform with no bump map support,
there is no per-pixel lighting at all, so all lights are encoded in the SH lighting, and
the same Material can be used for any number of lights.

If the mesh has a bump map, it will use a different Material. On DX7-class
hardware, the Material will want to apply the single brightest light as a bump-
mapped light and encode the rest into SH. So there are two cases — no lights (or
only ambient lights) and one or more lights.

On DX8-class hardware with pixel shaders, it is cheap and effective to bump
map two lights. So now there are three cases — zero, one, or two bump-mapped
lights. Additionally, there may be a threshold where turning off the second
bump-mapped light gives a speed increase at very little loss of quality, and this
threshold will be controlled by some combination of light brightness and mesh
Level of Detail. The point is that this judgment is very specific to the rendering
method used.

The mesh itself doesn’t really want to have to deal with this sort of complex-
ity every frame to decide which Material to use. It may end up doing a lot of work,
only to have the particular Material not use the results at all (in the above case of
hardware with no bump map support). The solution we found was to allow the
Material itself to look at the lighting context and make judgment calls internally.
This may mean switching vertex or pixel processing pipelines according to the
number and type of lights, but that fits within what Materials are allowed to do.
The mesh sets up the lighting system with pertinent instance-specific informa-
tion, such as its position, size, and current animation state, and then it is the
Material that asks how many and what sort of lights are affecting the mesh. It
then uses that information to decide which shaders to use, puts the light data into
the correct shader constants, and renders the mesh.

Another advantage is that optimizing lighting selection code in a single Mate-
rial affects all meshes that use that Material; there is no need to change mesh
code in multiple places to take advantage of this. This means the routines used
can be extremely specific to that single Material. This is important if it is a fre-
quently used Material — hand-tuning that one case may give useful speed or
quality increases. Again, these improvements can be made late in the project, and

Shader Abstraction
611

Section VI — 3D Engine and Tools Design

6 Counting a disabled light as a fourth “type,” and without wasting CPU effort for each mesh at run time to
reorder the incident lights, this requires 4*4*4*4 = 256 combinations.

7 SH lighting is roughly equivalent to sampling a low-res cubic environment map but done in the vertex
shader and using cunning math rather than textures. Many more details can be found by Googling for
“Spherical Harmonic Irradiance,” but the important point here is that it captures the environment lighting
well, and is the same cost no matter how many lights are in that environment.

since the changes are localized, the chance of adding unnoticed bugs in obscure
cases is reduced.

Batching and Sorting

It has always been the case that some type of sorting of draw order is beneficial.
The obvious example is sorting all alpha-blended objects, so they are drawn after
all opaque objects, and then drawing them from back to front. Also helpful is sort-
ing opaque objects by texture and/or shader. As shaders (both pixel and vertex)
become larger, the benefit from this sorting grows. Also helpful is to sort opaque
objects in a very rough front-to-back order, since this allows the Z-buffer to reject
as many pixels as possible without shading them or writing them to the frame
buffer.

Another sorting order is needed when using various forms of shadow buffer
or reflection rendering. To reduce the amount of video memory needed, the usual
method is to use only one or two render target textures, render the required
information (shadow or reflection) to them, then render all the materials that use
these, and repeat with the next shadow or reflection until the scene is complete.
This requires the rendering to be sorted by which render target it uses. On
lower-end hardware or in the distance, this type of rendering cannot be done, and
a generic prerendered environment map or “blob shadow” texture will be used
instead. No special sorting is required here; indeed, this type of sorting can slow
down the rendering unnecessarily.

These examples illustrate that the criteria for sorting the drawing order of
objects is yet again determined directly by the Material and not by the object
itself. The way to do this is to change the relevant Material::Render() method so
that it just wraps up the inputs to the call (textures, orientation, etc.) into a conve-
nient data structure and adds it to a list. At the end of this phase, the lists are
sorted according to the requirements of the Material(s) and replayed in order —
this time actually rendering the data to the screen. Although this storage and tra-
versal of lists takes CPU cycles and memory bandwidth, it is usually a savings
overall because the expensive states of the graphics pipeline (texture, shader,
etc.) are changed less often than when drawn in an arbitrary order.

Where this batching and sorting turns out not to be a savings in practice, it is
easy to leave those Material::Render() methods doing actual immediate render-
ing. This is usually only true for a few special cases, such as rendering fonts and
particle systems, both of which are typically batched well at a higher level.

Conclusion

Abstracting shaders and referencing them by desired rendering style rather than
by actual rendering style allows excellent scalability for multiple platforms and
multiple PC graphics cards without authoring multiple versions of artwork or sac-
rificing quality on the high end or speed and compatibility on the low end.

612
Shader Abstraction

Section VI — 3D Engine and Tools Design

Using encapsulation or data hiding allows the implementation of individual
Materials to be hidden from the rest of the engine and from each other, increasing
code robustness and adaptability and allowing programmers to focus their optimi-
zation efforts on only the most common cases.

While the changes to a traditional game engine are major, once made, the
system is robust, understandable, and flexible, again using the principles of data
hiding and letting each Material decide what its inputs are going to be and what
rendering schemes it will use, rather than forcing everything into the same
system.

Shader Abstraction
613

Section VI — 3D Engine and Tools Design

Post-Process Fun with
Effects Buffers

Tom Forsyth

Previous Work

Hardware is now becoming powerful enough that framebuffer post-processing
effects can supplement pure polygon rendering. These effects treat the world not
as geometric shapes but as an image to manipulate.

The most common current example is depth of field blur. Examples include
samples from many graphics card manufacturers and the “Depth Of Field”
DirectX 9 sample1 and in games such as Splinter Cell2 and others. The frame-
buffer is successively blurred to another surface3, then parts of that blurred ver-
sion are blended back onto the framebuffer to simulate parts that are out of focus.

Another common example is heat haze or distortion, as in Jak and Daxter4 or
Metroid Prime5. Here, rendered objects do not directly change the color of the
framebuffer; they move pixels in the framebuffer around — either by only a few
pixels to cause a heat-haze effect or by large amounts of the screen to give a
“raindrops on glass” effect.

Overview

The idea behind this article is to generalize many of these effects into a unified
framework where multiple effects can be added, tried out, and combined at run
time without replicating shared code and keeping optimal speed and memory use
when only a few of the effects are visible.

Multiple back buffers are created, all of which are texture render targets. The
“main” buffer is the size of the screen and has the standard RGB scene rendered
to it. The other buffers are called effects buffers. Various objects and particle sys-
tems render to them instead of (or in addition to) rendering to the main buffer.

614

1 DepthOfField sample demo, DirectX9 SDK, available from http://msdn.microsoft.com/directx

2 Tom Clancy’s Splinter Cell by Ubisoft — full of frame post-processing features, notably the Xbox version
(http://www.splintercell.com/)

3 In practice many implementations blur the image inside the pixel shader and use the result immediately,
rather than rendering the blurred version to a separate surface, but the principle is the same.

4 Jak and Daxter by Naughty Dog (http://www.naughtydog.com/)

5 Metroid Prime by Retro Studios (http://www.metroidprime.com/)

Once the main scene and the effects buffers are rendered, they are all com-
bined together using various texture-processing passes and rendered to the real
back buffer, which is then presented. The values in the effects buffers are not usu-
ally colors, but they determine how much of a particular effect is done to the main
buffer. For example, a high value in the “blur” effects buffer makes the main
buffer very blurry at that pixel, while a low value leaves it sharp and unfiltered.

The Z-buffer is shared between all buffers. Usually, to make sure effects are
occluded properly, the main buffer scene is rendered with standard Z-buffer set-
tings, and then the effects buffers are rendered to with Z-tests turned on but
Z-writes turned off. This ensures that the effects are properly occluded by solid
objects so that effects such as a heat-haze hidden behind a solid wall do not affect
the wall itself. Not writing to the Z-buffer means that effects do not sort perfectly
between themselves, but in practice most effects renders use additive blending,
which is commutative, or the incorrect sorting is hard to see, or the objects can
be rendered in back-to-front order to fix the problem.

Rendering Structure

Traditional rendering engines go through each object in the list of objects in the
world and compare them against the viewing frustum. If they are visible, they are
rendered immediately.

This system is rather different because the effects buffers must be rendered
after the main buffer so that they respect the Z-buffer information, and preferably
all the objects for a single effect should be rendered together to reduce the num-
ber of render target and state changes.

To do this, each effect has a list of objects (meshes, particle systems, etc.)
that produce or influence that effect. The lists are cleared at the start of each
frame. The order of operations then becomes:
� Search the list of objects in the world for those visible.
� For each visible object, for each effect it uses, add it to that effect’s list.
� Optionally sort each effect’s list.
� For each effect, change to its rendering buffer and render all the objects in its

list.
� Finally, combine all rendering buffers together to make the final image.

Of course, some sort of hierarchy or volume-query device is used for efficiency
instead of checking every object in the world against the frustum. Many engines
already have a lot of this structure in place for other reasons, but the use of
effects buffers makes it even more integral to the rendering process.

Note that each object can contribute to multiple effects channels. For exam-
ple, a flame particle system is partially rendered to the main buffer as visible
flames but also rendered to both the blur and distortion buffers to get the heat-
haze effect. For this reason, when an object adds itself to an effect’s list, it uses
some form of ID or a unique callback address, so when it is later called for render-
ing, it knows which effect style to render.

Post-Process Fun with Effects Buffers
615

Section VI — 3D Engine and Tools Design

Dynamic Allocation

Conceptually, each effect has an independent buffer to which it renders. This
buffer may be anywhere from one to four channels in size. For example, a sin-
gle-channel effect, such as blur, could be allocated a render target with an A8 or
L8 format. However, in practice all render targets are 32-bit ARGB buffers, and
the four channels are shared out dynamically between any effects passes that are
currently active (active means that there is something on-screen that produces
this effect).

Allocating dynamically allows the minimum number of render targets to be
used so that if no objects of a particular effect type are in the visible frustum, no
rendering is performed for them and the number of buffers used can be reduced.
This does complicate the writing of shaders to some extent, but the advantage is
that multiple effects may be scattered around the environment at whim (or even
subject to the player’s actions — moving objects about and so on) with near-opti-
mal rendering speed at all times.

To partially simplify matters, effects that require more than a single channel
are always allocated the same color channels — usually RG, RGB, or ARGB,
according to their design. These are allocated first. After this initial phase, any
single-channel effects are allocated from the remaining free channels of the ren-
der targets. It is usually relatively simple to allow single-channel effects to change
channels at run time using write masks and swizzling. Where exceptions exist,
they can be restricted to certain channels during allocation, though it may lead to
inefficient use of memory. Because there are typically many more single-channel
effects than multi-channel effects, this order of allocation works well.

As mentioned, render targets could be allocated one-per-effect of the correct
size. However, support for these buffer types is more limited, especially as render
targets. Since the target is frequently PS 1.1-style hardware, the number of inde-
pendent texture reads for the final combining pass is limited and has an effect on
speed. Using only two texture reads instead of three or four, even if the number of
bytes read is the same, usually has speed benefits from better texture cache use
and allowing more parallelism. In addition, the SetRenderTarget call in DirectX is
notoriously slow on some graphics cards (though slowly improving over time),
and reducing the number of these calls is a big speed boost. Changing the write
mask (D3DRS_COLORWRITEENABLE) is usually much faster than changing
the render target.

One case where the allocation scheme needs to be modified slightly is feed-
back effects in channels. If the channel is not cleared between frames, dynamic
allocation needs to be modified so that the same channel and target are used each
time. This is easily done in code, though it can lead to inefficient allocation in
some cases. If the feedback has a maximum number of frames that it will persist
for before fading away, the channel can be turned off that many frames after the
last object that is using that effect has moved out of the frustum.

616
Post-Process Fun with Effects Buffers

Section VI — 3D Engine and Tools Design

Alpha-blended Objects

Traditionally, all solid objects need to be rendered first in rough front-to-back
order. Then all alpha-blended objects must be rendered in back-to-front order,
usually without writing to the Z-buffer. This partitioning into two phases is some-
times ugly and hacked together. The effect-buffer rendering scheme introduces
the concept of multiple passes and channels as a first-class feature, which means
it can be used to do this partitioning with a lot more elegance.

The two passes (opaque and alpha-blended) are made into separate “effects,”
but both allocated the same RGB channel to render to. Since the opaque pass is
always rendered before all other effects passes and nearly all effects passes will
use alpha-blending and not write to the Z-buffer, this handles the alpha-blended
parts of the scene automatically. Additionally, since all objects are added to their
respective effect buffer in a list before any are rendered, it is simple to insert a
sorting phase on each effect’s list. This can sort strictly back-to-front for the
alpha-blended pass and other effects passes that require strict sorting and in
whatever order is optimal for the opaque part — sorted by shader and texture,
then rough front-to-back order, and so on.

Note that many objects render in both passes. The opaque parts of the object
are rendered in the first pass using a high alpha-test value and alpha-blending dis-
abled and the translucent parts rendered in the second pass using a low alpha-test
value and alpha-blending enabled. This also reduces the need to self-sort complex
self-intersecting objects, such as trees and bushes, which can normally be very
costly in CPU cycles.

Different Sizes of Effects Buffers

One possible option is to use an effects buffer smaller than the standard back
buffer in order to save fillrate and memory use. For many effects, this reduced
resolution is sufficient; effects such as distortion and blur work perfectly well
when halved in resolution in each direction, and in some cases the softer edges
may be a desired effect. However, this does mean the effects buffer cannot simply
share the existing Z-buffer. Two possibilities exist, depending on platform capabili-
ties or application requirements.

First, the main buffer is rendered to a full-sized buffer to set up the Z-buffer.
Then a shrink-blit is done from the Z-buffer to the smaller-sized Z-buffer used by
the effect rendering. This shrink does not necessarily have to filter correctly (or
at all), so frequently the hardware can be spoofed into performing this shrink-blit
by pretending the contents are simply pixel or texel data and disabling filtering.
This smaller Z-buffer is then used when rendering effects to reject pixels hidden
by solid parts of the scene. Although this shrink-blit is not reliably or efficiently
possible on PC cards, this method works well on most consoles.

Alternatively, the effect buffers can ignore the standard Z-buffer but set aside
one of the channels where any rendering always writes depth into (8 bits is usu-
ally sufficient for this purpose). When doing the post-process pass to combine the

Post-Process Fun with Effects Buffers
617

Section VI — 3D Engine and Tools Design

main buffer and the effects buffers, this 8-bit channel is used to reject effect texels
further away than the main buffer’s Z value. For example, under DirectX this
would be done using the texm3x2depth (PS 1.3) or texdepth (PS 1.4) instructions
or by writing to the oDepth register (PS 2.0+). However, this has the problem
that only one depth value can be stored, so a distant effect (behind a solid object)
that is covered by a close effect (in front of the solid object) will still be rendered.
These artifacts may be few or subtle enough to be acceptable for the reduction in
fillrate.

Multiple Render Targets

DX9 exposes the concept of multiple render targets. Up to four render targets can
be written to by a single draw call. This potentially removes the need to render
objects multiple times, once for each effect. However, the savings are only useful
in some situations.

First, most objects are only rendered to one of the buffers. Very few render
the same triangles to multiple buffers, and where they do (for example, the dis-
placement and blur values are frequently used together), it is easy to ensure that
these channels are placed in the same buffer (RG and alpha channels in this case)
and both rendered at once.

Using MRTs is also dogged by implementation problems. First, all render
targets must be updated; the “texkill” instruction affects them all or none of
them. The channel write masks are always respected, but if two effects need to
use pixel-by-pixel kills on different pixels, they cannot be rendered in the same
pass. Second, alpha-blending with MRTs is not well supported by hardware, which
makes many effects impossible because most require additive blending. PS 3.0
requires that alpha-blending work on all render target formats and when using
MRT, but in PS 2.0, this capability is modified by caps bits and is often missing.

On the other hand, some hardware prefers that four texture targets are bound
as different outputs, and then the color write masks are used to completely turn
some of those targets off for different renders. The alternative is multiple
SetRenderTarget calls, which can be slow, especially if the Z-buffer needs to be
shared between all the renders. At the time of publication, there is little or no
hardware to test on to compare relative speeds of the various techniques, but it is
worth noting the possibilities for the future.

Auto-gen Mipmapping

Many graphics cards can automatically calculate mipmaps of render target tex-
tures with very little speed impact. This is much easier than generating mipmap
levels manually by successive render target changes and shrinking. Although this
is all that most drivers are actually doing internally for auto-gen mipmapping, they
can take advantage of any hardware quirks and the reduced API call overhead. In
some cases, there is specialized hardware that performs the mipmapping opera-
tion, making it virtually free.

618
Post-Process Fun with Effects Buffers

Section VI — 3D Engine and Tools Design

Because of this, it is worth looking at using this facility when performing blur
processing. While simply using the lower mipmap levels raw can produce obvious
and objectionable bilinear filtering artifacts, combining them with samples from
larger mipmap levels can remove these artifacts while using fewer passes and/or
samples than the more conventional single-layer filter kernels.

Specific Effects

A few common examples are given here as an illustration, and most are shown in
action in the demo. However, the number of effects is huge, particularly odd
game-specific ones such as magical, supernatural, or alien.

Saturation and Desaturation

One effect channel can control the amount of saturation a pixel receives. Com-
plete desaturation is otherwise known as converting to grayscale, and it is easy to
create in a pixel shader by doing a dot-product between the main buffer color and
a “grayscale vector,” which is usually something like (0.299, 0.587, 0.114)6. When
the result of the dot-product is replicated to the RGB channels, this represents
the fully unsaturated color. Simply interpolating between this and the main buffer
color allows gradual desaturation of the color. It is the interpolation factor used
that is stored in the effect buffer. Interpolating away from this grayscale produces
a more saturated color with more vibrant colors. Note that in PS 1.x, the inter-
polant of the “lerp” instruction can be clamped to the range [0-1] before use7.
Therefore, if interpolations outside this range are used, it is better to explicitly
use a subtract instruction followed by a multiply-add to do the interpolation.

Any linear color transformation can be performed using the same technique
— again, both toward and away from the post-transform result as desired. This
can be used to perform “film grading” of images, and using an effect buffer to con-
trol it allows selected areas to be graded differently. For example, the lighting on a
character’s face may be accentuated, while the lighting on the background is
muted to concentrate attention. Desaturation can portray illness or death without
having to directly change the rendering style or the textures used. There are
obvious applications for magical effects using particle systems that “suck the life”
out of the surroundings. Subtle effects like these were used extensively in the
Lord of the Rings: The Fellowship of the Ring8.

Blur and Depth of Field

As a single channel effect, this holds a value going from 0 (no blur) to 1 (a heavy
blur). Two classes of the effect can render into this buffer.

Post-Process Fun with Effects Buffers
619

Section VI — 3D Engine and Tools Design

6 This vector is the Y vector of the RGB to the YIQ conversion matrix. Depending on whether you are
working in gamma-corrected or linear space, these values may change slightly.

7 Not in all implementations, but in some common ones, so it is worth noting this restriction

8 Lord of the Rings: The Fellowship of the Ring — Special Extended DVD Edition, the section titled “Digital
Grading”

The first is three-dimensional objects that cause blurring of the image
beyond them. Heat haze above hot surfaces and flames produces blur (as well as
the separate distortion effect), and these are usually rendered using particle sys-
tems that add values into this buffer. Frosted or dirty glass can also render
additively into this buffer to blur objects behind them; these are rendered as
objects that are the shape of the glass itself.

The second class is the depth-of-field simulation of a camera lens. A particu-
lar distance from the camera is chosen as the current focal length, and objects in
front of or behind this depth will be blurred the further that they are from the
depth. One way to do this is to render the entire opaque scene a second time,
writing values corresponding to depth information into this buffer. This is done in
many sample applications. The problem is that rendering the scene a second time
is expensive in geometry throughput. One way around this is to ensure that this
channel is the alpha channel of the main buffer and render both depth and color
together. However, this clashes with the fake HDR rendering effect, which would
also like to do this, and in many cases, there is a much simpler method available.

Depth is already rendered to the Z-buffer, and it is useful to be able to use
this information. Some consoles can read the Z-buffer directly as pixel informa-
tion, and with cunning scaling or lookup tables, this can be transformed into a
depth-blur value. Alternatively, a simple method that works well is to wait until
the Z-buffer is set up by the opaque pass and then render fullscreen planes at vari-
ous distances using Z-testing. Because the depth of field blur is usually fairly sub-
tle, having only eight or 16 different values (and therefore eight or 16 different
planes) is enough. For objects further than the depth of focus, planes are rendered
using additive blending at successively closer distances and lower blur values
using a less-than Z-test but no Z-writes. Each pass sets a bit in the stencil buffer,
and pixels are only rendered where the stencil buffer is clear. Using the stencil
buffer ensures that each pixel is only shaded once and by the furthest “blur plane”
that is still in front of the solid object at that pixel.

Although this requires rendering many fullscreen planes, this does not usu-
ally consume huge amounts of fillrate, since more cards have very fast Z-buffer
rejection and most of the pixels in these planes will be rejected.

To blur objects closer than the focal depth, the same trick is used but by ren-
dering planes close to the camera, moving away to the focal plane, and using a
greater-than Z-test. In this way, the objects closest to the camera have the earlier
planes render to the effect buffer and are the most blurred.

The actual blurring can be done in a variety of ways. Some very intricate and
high-quality methods are available; see some of the graphics card manufacturer
demos for examples on various bits of hardware. However, a common one that
works on a wide variety of hardware is to apply a blur filter to the main buffer and
then for each pixel blend between the blurred version and the unblurred main
buffer according to the value in this buffer.

Fake High Dynamic Range Rendering

Any really shiny or inherently bright objects render a low-contrast version of
themselves to this single-channel effect to approximate the “extra brightness”

620
Post-Process Fun with Effects Buffers

Section VI — 3D Engine and Tools Design

that they have. This extra brightness cannot be seen directly in the framebuffer
because of the limited range of an integer framebuffer, but the extra is rendered
into this channel.

In the back buffer composition pass, the main buffer is scaled by this effects
channel, then blurred, and then added back onto the main buffer. Dark and nor-
mal-brightness objects write 0 to this channel, so they will be dark in this blurred
version. Bright objects write positive values, and these will be blurred and added
back. This simulates the “bloom” that over-bright images produce in both camera
lenses and the human eye, and this bloom is very effective at conveying the
“extra brightness” that the limited gamut of the monitor and framebuffer cannot
directly convey.

For inherently bright objects such as the sun or light sources like fires or
lamp bulbs, the value written to the effects buffer is a fixed value, depending on
the object’s brightness. For very shiny objects, their environment map is ren-
dered as both RGB values and this extra brightness. Shiny objects simply modu-
late the extra brightness channel by their shininess and write it to the effects
channel. This allows sunlight to bloom off shiny objects, such as chrome or car
paint.

Note that the main buffer must be modulated by the extra brightness before

being blurred; a bright object will produce a light bloom that covers a dark area.
This is different from the depth of field effect, which usually needs to avoid this
effect to look good. Additionally, the size of the blur filter for depth of field is usu-
ally much smaller than for this bloom effect. Therefore, the two blur passes can-
not usually be combined into one.

As well as a general glow effect, the filter used can be all sorts of odd shapes,
notably “star” filters, which blur the image in only a few discrete directions. This
filter was used to extreme effect in Wreckless9.

Because so many objects can write to this effect buffer in common scenes
(notably anything even slightly shiny), it is common to put this buffer in the alpha
channel of the main buffer and combine rendering of the two into a single pass.
This can be tricky if the destination alpha channel is used for other rendering
effects, but if these effects are used purely for opaque multi-pass texturing tricks,
it is still possible, as long as the last pass always writes the extra brightness value
to the channel.

Distortion

This effect displaces pixels from the main buffer to the screen with the X and Y
screen offsets stored in two channels. This can be used for a heat-haze shimmer
effect with particle systems, as seen in Jak and Daxter, or with larger distortions
to produce water-droplet-on-glass effects, as seen in Metroid Prime, or with glass
objects to simulate refraction of light through them.

Post-Process Fun with Effects Buffers
621

Section VI — 3D Engine and Tools Design

9 Wreckless, also called DOUBLE S.T.E.A.L. Masaki Kawase’s GDC2003 talk on this is available at
http://www.daionet.gr.jp/~masa/.

The two effect channels store vertical and horizontal offset data, and in the
final combiner, they are usually used as inputs to the “texbem” pixel shader
instruction to look up offset data into the main buffer.

There are two problems here. First, texbem in PS 1.1 takes signed values
(where 0x00 represents a value of 0.0), rather than the more usual offset values
(where 0x80 represents a value of 0.0). Fortunately, PS 1.2 and above allow the
_bx2 modifier on texbem that converts offset data to signed data before use, as
when it is used with the dot3 instruction.

The other related problem is that when rendering data to the effect buffer,
ideally an object should be able to use a blend that either decreases or increases
the offset values as necessary so that accumulating offsets would work as
expected, especially for multiple heat-haze particle systems. Some sort of additive
blend would be ideal, but since the data is offset, a standard additive blend can
only ever increase the data, never decrease it. By changing the D3DRS_BLEND-
OP operation from D3DBLENDOP_ADD to D3DBLENDOP_SUBTRACT, a ren-
der pass can subtract data, but this change cannot be performed every pixel.
Ideally, an “add bias” blend would be used, where buffer=buffer+texture–0.5,
much like the D3DTOP_ADDSIGNED operation in the TextureStageState pipe-
line or the pixel-shader equivalent of using the _bias modifier on one of the argu-
ments, but no such alpha-blend exists.

A simple solution that can work well in some cases is to blend between the
two values using a SRCALPHA:INVSRCALPHA10 blend rather than adding them.
Although this is dependent on the rendering order of objects (unlike using proper
addition) and is not at all correct (except in a few special cases), it can look con-
vincingly good and has the advantage of not requiring multiple passes.

A more correct solution is to render twice — once using D3DBLEND-
OP_ADD with a ONE:ONE blend, clamping negative texture values to zero, and
once using D3DBLENDOP_REVSUBTRACT, inverting the texture and again
clamping negative values to zero. This is the most flexible and accurate but
requires two rendering passes of each object. It can also hit saturation problems.
Within a single object or particle system, the positive offsets may balance the
negative ones to give a net result of no change. However, if the initial value is 0.5
and all the positive offsets are rendered first to give an offset to +0.7, the result
can saturate to 1.0, when in fact it should be 1.2. Then the negative ones are ren-
dered and cause an offset of –0.7. Without saturation, this would give the initial
value of 0.5, but because of saturation, the actual result is 0.3. This is usually not a
very noticeable effect; when distortions of the image become large enough to sat-
urate, they are typically so large that only a general idea of what they are doing is
visually perceptible, and the errors caused by saturation are hidden.

Because many objects and special effects render to both the blur and
distortion fields, such as heat-haze and frosted glass, these two channels are fre-
quently dynamically assigned so that they are in the same render target and

622
Post-Process Fun with Effects Buffers

Section VI — 3D Engine and Tools Design

10 I use the convention that an A:B blend means that D3DRS_SRCBLEND=D3DBLEND_A,
D3DRS_DESTBLEND= D3DBLEND_B. This convention is now incomplete because it does not include
the D3DRS_BLENDOP function, which was added in DX7, but it is nevertheless a useful shorthand, which
many understand.

rendered to at the same time. In many cases, it may be worth combining them
properly to make a single, three-channel effect. This means that depth of field
rendering needs to know about the distortion channels and leave them alone, but
this is an easy fix.

Edge Detection

For cartoon-style effects, performing edge detection on various bits of data can
produce some very nice images. Edge detection can be performed purely on final
framebuffer color information. However, the results are hard to predict in some
cases and can pick up strange details and miss others. To be properly effective,
edge detection needs to be performed on more user-defined data. The easiest
way to provide this data is in a separate effects channel. These values are not nec-
essarily linear values — all that matters is whether two are sufficiently different
to produce an edge or similar enough not to. By simply assigning two polygons a
“different enough” value, an edge is automatically produced. These values can
come from textures, vertex colors, shading, or a combination of all three, which
means that cartoon edges do not need to match geometry edges — a common
problem with some techniques.

G-buffers

Geometry buffers are an interesting extension of having multiple output buffers.
Instead of performing shading while rendering the geometry, the idea is to simply
rasterise and Z-reject the raw geometric data and write that to a variety of buffers.
Data such as depth (which along with screen position produces a world position),
normal, material ID, and surface-local position (otherwise known as texture
co-ordinates) are written to the G-buffers, and all texture compositing, lookups,
and shading are performed once per screen pixel.

The advantage is that shading is performed once and only once on each
screen pixel, allowing much more complex shaders (n) and larger depth complex-
ity (m) but getting O(n+m) cost rather than O(nm) with traditional methods.

While a true G-buffer has many problems, such as dealing with translucency
and large amounts of temporary storage, some of the concepts can be useful when
designing special effects.

One example of this is the cartoon shader demo produced by ATI11 that
recorded material ID, depth, and normal and from those fields produced some
impressive images.

Feedback

Sometimes feedback can be very useful in rendering special effects. It can pro-
duce interesting and complex patterns without requiring complex geometry or
multiple rendering passes by using frame-to-frame image coherence. Examples

Post-Process Fun with Effects Buffers
623

Section VI — 3D Engine and Tools Design

11 The “table with cheese and wine” demo from Real-Time 3D Scene Postprocessing presented at GDC 2003
— available from http://www.ati.com/developer/

include smoke, fire, fog, and others. In the game Blade212, we used a feedback
effect on sprays of blood from sword or gunshot wounds. A simple low-cost parti-
cle system was used for the blood droplets, but they were rendered to an off-
screen buffer. This buffer was not cleared each frame, just darkened, and while
doing so, it was distorted by rendering it as a mesh to itself. The result was then
blended over the framebuffer at the end of each frame. The visual effect was that
the cheap particle system was given size and persistence and became more like a
stream with volume than a group of particles. Producing the same effect purely
with geometry every frame would have taken roughly ten times the fillrate and
vertex processing.

The crucial thing is that only the blood should be used in feedback, whereas
previous effects, such as motion blur, have performed feedback on the entire
screen, which has limited application. Also note that the good thing about blood is
that it is a single color. We only used a single channel (the destination alpha chan-
nel of the framebuffer, which was otherwise unused) for the intensity of the blood;
when blending it back to the framebuffer, it was tinted red. At the same time, the
intensity was oversaturated so that while the values in the effect buffer faded lin-
early to zero with time, the visual effect was not linear; it spent a while at full
brightness followed by a fairly abrupt fade to nothing. This helped increase the
apparent volume of the “stream” of blood. Very tasteful.

The Demo

The demo shows the use of a couple of these effects. The most important thing
demonstrated is the dynamic allocation of channels in render targets, with each
effect dynamically enabled/disabled according to toggles. In practice, these would
be according to what objects are visible in the viewing frustum, and the intent is
to minimize the average memory required for render targets and the average
fillrate used to render the objects and combine the final image.

The demo also demonstrates the use of the callback system for rendering
objects, the simple way that the previously special case of rendering alpha-
blended objects last now fits easily into the more general framework, and the way
that sorting each effect by different criteria is simple to add.

Conclusion

Many single effects have been previously demonstrated using secondary buffers
or the alpha channel of an ARGB render target. A method has been shown for uni-
fying the common features of many of these post-processing effects to apply them
together in the same frame, use the minimum amount of run-time memory and
fillrate to do so, and apply them selectively only to parts of the frame that require
them.

624
Post-Process Fun with Effects Buffers

Section VI — 3D Engine and Tools Design

12 Blade2 by Mucky Foot, published by Activision on PS2 and Xbox. The technique described here was only
implemented on the Xbox version.

Shaders under Control
(Codecreatures Engine)

Oliver Hoeller

Introduction

Today, shaders can’t be ignored by modern 3D engine design. There are new
aspects in the design of a 3D engine that weren’t considered in early engine
architectures.

I would like to mention some points here beginning from the base architec-
ture used in the Codecreatures engine (e.g., Codecreatures benchmark), which
are important in complex environments.

The following aspects are described in this article:
� Multiple passes per object to map surface effects with several render passes
� Various shadow effects including scene rendering used for stencil shadows

and dynamic reflections on surfaces (water, mirrors, shining structures)
� Seamless worlds with large ranges of visibility and expanded indoor areas, as

well as the administration of resources like textures, materials, and meshes

Essential Base Architecture of a Modern 3D Engine

Here is a simplified structural overview of a modular 3D engine.

The next sections describe all systems represented in Figure 1.

625

Figure 1: Modular engine architecture overview

Subsystems

The lowest levels of all are the subsystems. They are thin wrappers for 3D APIs,
such as OpenGL or DirectX. Primarily this wrapper serves to abstract different
APIs.

Scene and Resource Management

This field is mostly underestimated. With complex scenes, it is accordingly impor-
tant to have cache systems, organized as least recently used caches to handle
data-intensive resources, for example.

Another underestimated topic is the enormous memory consumption of
meshes. To gain flexibility in storage of meshes, they are put into streams, which
don’t match later with the desired hardware format. For this reason, it is meaning-
ful that these hardware-abstracted meshes operate over an appropriate cache. If
the engine uses non-visual relevant systems like collision (e.g., collision meshes),
it can operate with the same cache systems.

Some aspects should be mentioned with the hardware-bound format of cer-
tain mesh data. The number of texture coordinate pairs in the flexible vertex for-
mat structure plays an important role. Also, “standard” deviating flexible vertex
formats, which contain position, normals (diffuse, specular), and texture coordi-
nate pairs, should be considered. Texture coordinate pairs are usually assigned to
a specific texture type. For example:

Stage#0: Diffusetexture
Stage#1: Detailtexture
State#2-n: Lightmap per-pixel light, bump map, environmentmaps, etc.

The engine-specific interleaved vertex streams are converted from the resource
system into the desired API (DirectX)-compliant vertex format before the render
pipeline starts rendering the scene. In most cases, cache-friendly structures have
a size of 32 or 64 bytes.

We use a directed acyclic (scene) graph to organize the scene content
hierachically. Each object instances in the scene graph can be referenced using a
unique value (such as a string name).

Visibility Determination System

In principle this system is composed of several stages that accomplish different
optimizations in the view cone for the current camera. It is concerned with
(object) culling, HSD (hidden surface determination), and HOD (hidden object
determination), as well as an optimal representation of the still existing scene and
its visible scene objects.

I don’t want to introduce all of the stages here, but I refer to some important
requirements that a modern render pipeline must accomplish. This system should
be able to create arbitrary so-called frustum databases. These databases contain
the excerpt of all optimizing stages of our render pipeline, thus all the objects that
are still visible from the view cone (frustum) of used cameras.

626
Shaders under Control (Codecreatures Engine)

Section VI — 3D Engine and Tools Design

The distribution in databases that contain the optimized camera-adapted data
stream are crucial for different things because new shader effects can often con-
sist of multipass effects (see the section titled “Material System”).

Frustum Processor

The function of the frustum processor (FP) is to reference existing data objects
like meshes and/or textures through the resource system to convert these
resources into an optimal format for hardware.

The optimized format for meshes is stored into one large vertex buffer or in
various individual vertex buffers, depending on mesh type and size. Summarizing
the adjusted materials and/or the choice of appropriate sort criteria (textures,
shaders, z-depth, etc.) is important because these criteria concern how fast these
objects can be rendered by hardware (bandwidth, texture state/shader state
switches, occlusion culling).

Per-object Multipass Technique

A characteristic of the frustum processor is the multiple rendering of objects.
How often an object must be rendered is determined by the specified material,
which exports a function that returns an appropriate number of passes to render.

The render target used by the frustum processor can be changed transpar-
ently by the material system, which provides an available render target texture.
The combination of textures, as well as their administration for mix and frame
textures is completely directed by the material system.

Material System

With help from the material system, effects can be combined over arbitrary tex-
ture passes. It uses the ability of the frustum processor to utilize the object

Shaders under Control (Codecreatures Engine)
627

Section VI — 3D Engine and Tools Design

Figure 2: A multistage render pipeline with frustum databases

multipass technique. The frustum proccessor is informed about the number of
necessary render passes.

The material system thereby supports the following steps, which can be
blended accordingly:
� Illumination stage (lightmap, vertex/pixel light, dynamic shadows)
� Object stage (diffuse and detail texture, etc.)
� Environment stage (environment maps, etc.)

The material system needs this render-to-texture feature, called per-object
multipass rendering, to map the object stage pass (mentioned above). For a case
in which hardware can’t mix the object material in one pass and it is not possible
to blend this object in the frame buffer, this technique is used. The material sys-
tem also contains surface or effect shaders, which are edited and used here. With
support of the scene multipass technique (described in the following section), it is
possible, for example, to implement in your game night-vision goggles or other
“complete scene visual effects.” Your material system can contain extra data and
shaders to achieve this effect. A further interesting field is a material level of
detail technique, which can be used in larger outdoor scenarios. To save rendering
time, the material system can use different representations of shaders in a cur-
rent material that is mapped onto a distant object.

Per-scene Multipass Technique

This technique, in contrast to the similar per-object multipass technique, enables
rendering entire scenery to a texture surface.

This render-to-texture feature is set up in this situation to request current
dynamic camera views of the scene (possible with certain criteria filtered and pro-
viding still existing objects with a special master material), which is then ren-
dered to a texture and finally used as resource. This feature can be used with

628
Shaders under Control (Codecreatures Engine)

Section VI — 3D Engine and Tools Design

Figure 3: Workflow per scene/object render passes

dynamic per-pixel illumination, during conversion of reflection and refraction
effects (e.g., crystal sculptures, polished surfaces, or water), as well as real-time
actualization of cube maps.

An appropriate frustum database that can be processed through the frustum
processor must be created first. Infinite recursions must be prevented here. This
can be made possible (e.g., over a frame-oriented reference counter or in a simple
way) so that this problem is recognized by the material itself. It disables this fea-
ture, since it has activated the process.

Current Drawbacks

There are different problems to solve; some are mentioned here.
The frustum processor can have problems finding an optimal sorting for the

scene objects, which must be drawn. We can also prepare precompiled optimi-
zations like summarizing similar materials to reduce draw calls into the API to
minimize render state changes. Unfortunately, there exists no reasonable univer-
sal solution that is sufficient for both indoor and outdoor scenarios.

These techniques described above that are used by per-object/scene
multipass rendering have a serious restriction that concerns performance stalls
and memory consumption. There is at present no way to render directly on com-
pressed textures, so appropriate render target textures for those multipass tech-
niques must be present in an uncompressed format.

Additional render target textures with different resolutions should possess
their own depth buffer (for performance reasons). However, these depth buffers
require additional memory on the graphic card; this type of texture resides on the
graphic card and isn’t paged out.

The intelligent administration of these textures is necessary because these
resources otherwise need a lot of memory on the graphic card. These textures
should (if they are used longer for effects that rarely or never change) be created
during application starts (stored permanently in memory) or even compressed at
run time. But compressing textures during run time can cause performance
problems.

In addition, hardware stalls are possible if render target textures are needed
too early. This means that if these targets are not filled by graphics hardware
immediately but after utilization of hardware, all state changes are collected and
executed. The difference between scene setup and drawing a scene can amount to
three or four frames here. An early access (a Lock() function on a surface — e.g.,
for compression or similar immediate accesses, like SetTexture and a resulting
draw call after scene setup) to this texture can cause unwanted stalls in graphics
hardware.

Shaders under Control (Codecreatures Engine)
629

Section VI — 3D Engine and Tools Design

Summary

Today’s engine architecture designs differ substantially from earlier designs,
which have reduced possibilities regarding geometry and pixel pipeline and were
strongly dependent on the fixed-function system of graphics API.

The potential with DirectX 9 or appropriate OpenGL extensions makes it
possible to intervene in geometry setup as well as the rasterizing pipeline. As
described above, you have to consider many things in modern engine design to
take advantage of the available API functions.

Outlook

The development concerning shaders and their flexibility and possibilities are at
the beginning of development at the present time. Shader programs will become
more extensive and more flexible in the future, the number of pixel pipelines will
increase, and graphics hardware will be able to process more texture stages per
pass.

The goal is to equip environments with better materials so that they work
more realistically and/or correspond optimally to the conception of the designer.
Improved HOD algorithms and refined shadow techniques would be conceivable.

Some basic features, however, should be implemented because they were so
far neglected. These include:
� Rendering on compressed textures
� Status queries for rendering processes like render-to-texture (e.g., IsBusy,

etc.)

630
Shaders under Control (Codecreatures Engine)

Section VI — 3D Engine and Tools Design

Shader Integration in the
Gamebryo Graphics Engine

Scott Sherman, Dan Amerson, Shaun Kime, and Tim Preston

Introduction

As can be seen from the results shown in many of the other articles in this book,
well-written, creative pixel and vertex shaders can generate incredible visual
impact. However, an often-overlooked aspect of shaders is their integration into a
larger-scale graphics/rendering engine. As a provider of 3D graphics runtimes and
tools, we at NDL have grappled with this issue directly. The framework, support
code, and tools required to ensure that shaders can reach their full potential in a
general game engine can be extensive. Every aspect of both game engine design
and game development workflow comes into play, covering the gamut of shader
integration with artist tools, loading of vertex and pixel shaders into the engine,
shader asset management, and even shader parameter animation.

Above and beyond basic shader integration, today’s game developers require
the ability to customize their own shaders, requiring any shader-engine integra-
tion to be as flexible as it is complete. When designing the integration with NDL’s
Gamebryo (a very general, “genre-agnostic” engine), this flexibility requirement
proved quite difficult to satisfy in a way that was both complete and easy to use.

This article discusses the approach that NDL took for integrating shaders in
the latest release of our 3D graphics engine and toolkit, Gamebryo. We start out
with a short history of shader support in our engine, discussing the original prob-
lems we anticipated and our attempt to solve them. A list of requirements deter-
mined as a result of our original system is presented, followed by in-depth
coverage of the current system. The article concludes with a case study discuss-
ing the development of a sample application, Eturnum, which demonstrates the
power of the new system.

The Past

The Initial Problem

When programmable shaders entered the development scene, much excitement
and fanfare heralded the impressive graphics effects that were then possible on
the new hardware. While many developers scrambled to take advantage of this

631

powerful new capability and improve the visual appeal of their games, initial
acceptance of shaders in 3D games was nowhere near universal. Despite the best
intentions of developers and hardware manufacturers alike, shaders did not have
the immediate, intended effects on the look and feel of most games. Initially, this
was often blamed on the lack of an installed base of shader-capable hardware.
However, we felt (and later saw, through interactions with our customers) that
there were other factors involved in this lack of shader usage.

The first stumbling block to shader integration is that in the most basic
sense, shaders are just problem-specific, hardware-specific pieces of code. As an
example, consider the case where a game is being developed with full shader sup-
port. To take advantage of the latest hardware, the team will need to write
shaders to the most recent specifications.

However, legacy hardware will require support. The same shaders will have
to be implemented for this older hardware, and a method for handling the effect
without hardware shader support must also be developed. As you can see, the
number of shader programs required can quickly add up. This situation is different
than the case where customer hardware in general will have differing hardware
capabilities, such as the number of textures per pass, available stages, and the
like. Multitexturing capabilities, for example, can be handled far easier by having
fixed-function effects fall back to multipass solutions on older hardware. When
forming the passes for a fixed-function run, some simple capability checks and
predefined blending rules allow for the same code to run on many hardware con-
figurations. Pixel and vertex shaders, however, require a completely different ver-
sion of the code to take full advantage of the hardware that the application is
running on. Many developers were not ready to sacrifice the engines that they
had developed in exchange for writing and optimizing hundreds of assembly pro-
grams to accomplish the same task. The feeling is similar to the time when devel-
opers had to write to graphic-card-specific APIs to get the results they wanted.

Another large inhibitor to widespread adoption is the integration of shaders
with the art pipeline. Without a clean flexible framework supporting them,
shaders essentially require the developer to hard-code data values placed into
registers. This takes the creativity out of the hands in which it belongs: the art-
ist’s. This situation can lead to a large drain on your programmer productivity, as
they will lose cycles while tweaking values in the shader code for the artist.

Finally, we believe that one reason for the lack of shader adoption is the set of
available sample shaders. Oddly enough, the problem is not a lack of such sample
shaders but rather the sheer number of different shader frameworks upon which
these sample shaders are based. While this sounds contradictory, a large number
of sample shaders were available everywhere from hobbyist web sites to the
actual graphics card manufacturers, all implemented using completely different
frameworks and assumptions. The available samples use DirectX effect files, the
nVidia Effects Browser, ATI RenderMonkey, and even homebrew “editors” —
most taking wildly different approaches to integrating shaders. No provider sup-
plied a clear way to integrate their particular format into an actual game; their
examples were very specific to the framework that they provided for viewing the
effects.

632
Shader Integration in the Gamebryo Graphics Engine

Section VI — 3D Engine and Tools Design

The NetImmerse Solution

Gamebryo is a cross-platform 3D graphics engine and game toolkit that evolved
from NDL’s previous product, NetImmerse. The versatility of the engine is evi-
dent in the number of genres in which it has been utilized, including MMORPGs,
role-playing, racing, and space combat.

Since Gamebryo originated from the NetImmerse engine, it is appropriate to
give a short discussion on the shader system that NetImmerse contained, cover-
ing the problems and stumbling blocks that occurred with the system. The first
version of shader integration, presented in NetImmerse 4.0, was known as the
Configurable Texture Pipeline. It would have been more aptly named the
Configurable Rendering Pipeline, as it allowed for developers to completely cus-
tomize the rendering of objects with NetImmerse.

The original system functioned by supplying a class interface, the
ConfigurableTextureData (CTD) class, through which the engine set up and exe-
cuted the passes required for rendering an object. Most of the functions returned
a code to the renderer allowing for sections of the pipeline to be skipped. For
example, when the derived class would set a pixel shader on a pass, the function
could return a value to the renderer, indicating it should not set the pixel shader.
These return values provided complete customizability of the rendering pipeline.
A derived class could simply skip a single step of the default rendering path all the
way up to completely bypassing NetImmerse rendering an object at all.

While the system was quite powerful with respect to what could be accom-
plished with it, there were several problems with it. The base implementation of
the class was the default rendering pipeline, which in hindsight was a mistake.
The default pipeline of NetImmerse (and Gamebryo as well) is rather powerful,
allowing for high-level representations of both dynamic and static effects to be
applied to rendered objects and handled by the engine seamlessly. For example,
multiple projected lights and shadows, fog and environment maps, and numerous
other visual effects can be applied to an object. This system allowed a large
amount of flexibility with respect to applying various effects to an object but added
several member functions and variables that were not required to override the
pipeline. This increased complexity ultimately led to confusion when developers
were first starting out deriving their own custom implementations, and some did
not have the time to invest in learning how to use the system effectively.

Another side effect of the base class being the default pipeline was that
implementing simple shader programs (for example, a single-pass effect that uti-
lized a vertex and pixel shader) required quite a bit of code to be written, proving
to be more complex than necessary. A “simple” pipeline would require developers
to implement six virtual functions that composed the rendering path. Since the
default pipeline was so complex, it was difficult to leverage any of the base func-
tionality of the class for simple operations. To accomplish relatively easy tasks,
these functions typically had to be replaced completely in the derived CTD. This
was a design oversight that, while providing a powerful interface to rendering,
made their usage much more difficult and time consuming.

Shader Integration in the Gamebryo Graphics Engine
633

Section VI — 3D Engine and Tools Design

CTD usage was complicated further by the fact that the only way to access
the functionality of the system was programmatically. There were no capabilities
for streaming the classes to and from files, so assigning any CTD-derived class to
an object required the application to do so “by hand” at run time. This omission
prevented adding an easy way to integrate them into the art pipeline, which in
turn hampered productivity, as the assets could only be viewed in the game itself
or a modified viewer that contained the required derived classes.

With respect to supporting available formats, the system left that in the
hands of the developer. Unfortunately, this typically would require that the
derived class handle every aspect of rendering an object. In short, the system
required far too much development for too little return.

Requirements of a Shader System

Once the CTD system was in the field, the issues listed above and others arose,
which led to the compilation of a list of requirements for the next version of the
system. The major issues that we felt should be addressed are presented here,
with a brief description of each.

Ease of Use without Sacrificing Power or Flexibility

First and foremost, the system should be easy to use out of the box while still
allowing more advanced users to implement any effect they can devise. It should
take minimal time and, if possible, no source code compilation to apply a simple
vertex and/or pixel shader program to a rendered object, but it should not “hand-
cuff” developers by requiring they follow a strict implementation model. This will
allow developers to utilize the system at a level at which they are both capable of
and comfortable with.

Art Pipeline Integration

The system should allow shader support to be integrated directly into the art
development pipeline. The system should also expose “editable” parameters to
allow the artist to experiment to obtain the desired look. This is a key element of
any shader system, as it keeps visually creative control in the hands of the artist
and allows for asset viewers to display the object exactly as it appears in-game,
reducing the model/export/view iterations.

Simple Access to Shader Collections

The system should provide a way for shader authors to easily distribute new and
updated shaders to the rest of the development team. This will streamline the
development process, allowing for quick integration of new shader assets. Shader
collection support also aids in the integration of shader support in the art pipeline,
as the art tools can work with a known interface.

634
Shader Integration in the Gamebryo Graphics Engine

Section VI — 3D Engine and Tools Design

Support Industry Standard Formats

The system should support as many viable shader file formats that are currently
available as possible. This includes formats such as DirectX effect files, nVidia’s
CgFX files, and ATI RenderMonkey files. Doing so will allow the shader author to
work in a format with which he is most comfortable. Supporting these formats
also makes it easier to integrate samples gleaned from this book and other
sources into a team’s palette of shaders. The capability to leverage existing tools,
such as RenderMonkey, is also gained with this approach.

Data-driven Support

The system should allow for rendering effects via a data-driven method. This
means that it should be possible to integrate new shaders with no code compila-
tion required. This aspect of the system could involve a script-based format that
allows for text files to be written “describing” the effect. Another alternative
would be to have an external shader editing application generate a binary file that
contains the details of the rendering task.

A Unified Rendering Path

The system should have a well-defined interface for the way the renderer displays
any geometric object. All objects, whether using a custom shader or the default
pipeline, should be processed in the same manner by the renderer. There should
not be two paths through the rendering pipeline; objects with a shader should fol-
low the same pipeline as those without one. The interface must also supply suffi-
cient low-level access such that the users can completely replace the default
rendering pipeline by deriving from the interface class if they wish to. Providing
the developer with a precise definition of what the renderer expects during each
phase of displaying an object will allow for this. Finally, the interface should be as
straightforward as possible, with a family of derived classes to increase the sup-
plied functionality in logical increments. This will allow for developers to select
their level of integration, easing the task of developing shaders while not restrict-
ing what can be accomplished.

The Gamebryo Shader System

With these requirements in mind, work began on the next implementation
of shader integration in NDL’s technology. The Gamebryo Shader System pro-
vides the classes and framework required to implement vertex and pixel shader
support with all the power of the previous system, while providing alternative,
more accessible methods for accomplishing the same tasks. The system is also
fully integrated into the art pipeline, including support for custom coded shaders
supplied by developers to be used with no tool modifications.

Shader Integration in the Gamebryo Graphics Engine
635

Section VI — 3D Engine and Tools Design

Within the context of Gamebryo, we use slightly different terminology than
DirectX for shader-related components, so a short list of definitions may be help-
ful here.
� shader: An abstract representation of a complete rendering effect to apply to

an object. A shader is a complete visual effect that is applied when rendering
an object in the engine, including all passes and render states that are
required to achieve said effect.

� shader programs: Vertex and pixel shaders in Gamebryo. This naming con-
vention is intended to specify them with more relevance to their func-
tion/purpose. A shader can utilize numerous shader programs — one vertex
and/or one pixel shader program per pass required to achieve the effect. In
general, both pixel and vertex shaders are referred to as shader programs
when they are not identified specifically as either a pixel or a vertex shader.

� shader library: A collection of shaders encapsulated in a DLL and/or static
library package. The Xbox version of the shader system only supports static
libraries, as DLLs are not available on the platform.

Providing a DLL version is required for use in the art tools, so the system
does not have to be recompiled to support new libraries. It can also refer to
the interface functions defined for accessing the collection.

� binary shader: An interface to a completely data-driven implementation of a
visual effect. This term can also refer to actual data representing a
data-driven shader.

System Components

The Gamebryo Shader System contains several low-level classes that aid in the
implementation and utilization of shaders in the pipeline. As any engine will con-
tain a similar set of classes, we will not describe them in detail. The classes are
straightforward, providing a direct representation of the hardware settings of the
device when rendering. They cover render state and texture stage settings, pixel
and vertex shaders, constant register mapping, and passes that make up a render-
ing effect, providing the building blocks used in the construction of the Gamebryo
rendering pipeline.

Ease of Use without Sacrificing Power or Flexibility

The primary goal of the Gamebryo Shader System is to allow for developers to
add shaders to their applications with minimal start-up time while still allowing
for more advanced users to have complete control over the rendering pipeline if
they desire. To allow developers to quickly prototype shaders, we supply a
text-based format, the NDL Shader Format (NSF). We also support the use of
existing “external” formats such as DirectX effect files, should shader authors opt
for utilizing them in their development. CgFX and RenderMonkey support is also
being added to provide developers with a wide selection of industry-supported
shader formats. As shader authors generate more advanced effects that require
capabilities beyond any of these formats, they can move to deriving their own

636
Shader Integration in the Gamebryo Graphics Engine

Section VI — 3D Engine and Tools Design

shader interface classes from a number of supplied interfaces, ranging from a
bare-bones interface class up to deriving from the default pipeline used by the
engine. These derived classes may be grouped into a shader library for easy inte-
gration into both their application and the art pipeline.

Art Pipeline Integration

Why Integration Is Important

Art pipeline integration essentially requires shaders to be present in every step
along the art pipeline. Integration does not mean writing shader code, although
certainly some artists with a programming slant could do a good job of it. Art pipe-
line integration simply means exposing “editable” values to your artists and
allowing them to preview the content in your engine throughout the pipeline. Any
value that is not a required hard-coded shader constant is a great candidate to be
an artist-adjustable value. For example, writing a toon shader usually involves an
indirect texture lookup into a one-dimensional texture. This texture is a perfect
candidate for an editable value. Often you’ll be surprised with what an artist can
accomplish when allowed to play with the parameters.

Artists using Gamebryo have the option to generate art content inside of
either 3ds max or Maya, and our suite of plug-ins and tools converts the content
into the Gamebryo format. Additionally, artists have the ability to view how their
art will look inside the art package in a separate preview window. It is absolutely
critical for the art pipeline integration to give instant feedback to the artist. This
feedback is doubly necessary for shaders. Artists are used to seeing their options
and playing around with them to achieve the visual result that they want. This is
how most artists build a mental model of their art package. Often, nontraditional
rendering effects require a fair bit of experimentation and tweaking to build a valid
mental model. Rendering pipeline equations simply won’t suffice. If the artist can
tweak a few parameters and then preview what effect those changes had, he will
feel more comfortable working with shaders and become productive with them
significantly faster.

How We Integrated Shaders in the Art Pipeline

Adding additional, dynamic user interface items to any application can prove to be
quite difficult. Unfortunately, this is precisely what was required for integration
with the art package. Luckily, 3ds max and Maya both provide a simple mecha-
nism for adding these items — “custom attributes” in Max and “extra attributes”
in Maya. For the purposes of this discussion, we simply refer to both as custom
attributes. In both art packages, custom attributes add additional data structures
and optional user interface widgets that extend the normal meaning of objects.
For instance, you could add a gradient ramp texture for a toon shader to a mate-
rial. A custom attribute containing the texture and all of the GUI for editing that
texture can be applied with a little bit of MEL or MAXScript. Furthermore, the
underlying mechanisms for animation in the art package are automatically sup-
ported in the scripting language. Therefore, keyframe animation of values comes

Shader Integration in the Gamebryo Graphics Engine
637

Section VI — 3D Engine and Tools Design

essentially “for free” with this approach. Supporting custom attributes and their
keyframed values in the exporter is fairly straightforward.

Shaders and their descriptions are loaded at application startup by the
Gamebryo plug-ins. All of the known shaders are available to the artist in Max’s
Gamebryo Shader or Maya’s NiMultiShader. A drop-down list allows artists to
select the shader that they wish to use. Descriptions of the overall shader, its
attributes, supported pixel and vertex shader versions, and descriptions of each
technique are available at the press of a button. Once the user applies the selected
shader to the object, custom attributes are dynamically generated and applied to
the current object. Artists can then edit these attributes just like any other attrib-
ute in the art package. For example, colors can be edited through the standard
color picker. Textures can be edited through the standard user interface widgets.
Animation of each shader attribute is as simple as animating anything else in Max
or Maya.

See Figure 1 for an example of the shader parameter interface in 3D Studio
MAX and Figure 2 for an example of the Maya interface.

This familiar user interface gets
the artist up and running with
shaders very quickly, but familiarity
alone is not enough. We have found
that shaders are often developed in
a very iterative fashion. Program-
mers move effects from vertex
code to pixel code, requiring different user interface widgets or artists asking pro-
grammers for more attributes to modify. Luckily, the custom attribute solution in
both packages supports redefining custom attributes. As long as the attribute
names don’t change, their values, including all keyframes, can be transferred to
the new definition. New attributes are filled in with their default values. These

638
Shader Integration in the Gamebryo Graphics Engine

Section VI — 3D Engine and Tools Design

Figure 1: The 3D Studio MAX artist
interface

Figure 2: The Maya artist interface

features are an incredible help to the artists in the development of a game. With-
out such features, artists would have to redo art assets any time the shader
changed. We augment this process by auto-detecting whenever the shader
changes by comparing its attribute definition in the Max or Maya file to the defini-
tion loaded at application startup. If the definitions are different, the user is noti-
fied and he can choose to upgrade his art assets or leave them as is.

Simple Access to Shader Collections

No matter how flexible or powerful a shader system is, if it does not supply an
easy way to update the development team with new shaders, production can
potentially be hindered during their integration into the application. To provide
shader authors with a simple mechanism for supplying new and updated shaders
to the rest of the development team, the Gamebryo Shader System takes a shader

library approach. A shader library is an interface for accessing a collection of
shaders via a static or dynamically linked library that contains the code for the
shader(s).

To utilize the shader library system, the application simply registers a library
with the system. When a call is made to attach a shader to an object, either by the
file streaming system or the application itself, each registered library will be
checked for the presence of the requested shader. If a library contains the shader,
it will be retrieved and registered with the system using a reference counting sys-
tem. A function in the shader class itself is then called to allow any special pro-
cessing of the geometry that it may require, such as generating tangent space
data if it is not already present in the geometric object. Applications may register
as many libraries as they wish, allowing for shaders to be grouped into libraries by
concepts such as level, unit type, spells, or any category that makes sense for the
application.

For integration into the art tool chain, the shader library interface also con-
tains a description mechanism. The supplied description contains a short descrip-
tion of the library itself as well as a description for each shader that it holds. The
shader descriptions hold information on the various implementations of the
shader, its requirements in terms of hardware and platform, and the attributes
that it utilizes. These descriptions provide the means for exposing artist-editable
shader parameters to the modeling tools, as well as comments to aid the artist by
describing what a given shader does and what its parameters are used for.

Gamebryo ships with a shader library, NSBShaderLib, for recognizing and
loading NDL Shader Binary (NSB) files. This format is a binary data representa-
tion of a visual effect to apply to a rendered object and is described in more detail
later in this chapter. When registered with the system, the library will search a
given directory, optionally recursing subfolders, identifying all NSB files contained
within, and adding them to an internal list. When a particular shader is requested
for attachment to a geometric object, the library will search this list. If the shader
exists in the library but has not yet been loaded, the most appropriate implemen-
tation for the hardware is instantiated based on the capabilities of the system and
the requested shader versions and returned.

Shader Integration in the Gamebryo Graphics Engine
639

Section VI — 3D Engine and Tools Design

Support Industry Standard Formats

To allow shader authors to work with the format that they are most comfortable
with, the Gamebryo Shader System contains support for DirectX effect files,
nVidia’s CgFX files, and ATI’s RenderMonkey files. Classes derived from our
base shader interface were written to encapsulate the functionality required to
utilize these formats. Some requirements for how they are authored were defined
to ease the integration of these file types into the engine, such as identifying art-
ist-editable values via annotations in DirectX effect files or using the grouping fea-
ture in ATI’s RenderMonkey files to represent different implementations of the
same effect. These should not hinder developers but do add an additional burden
on those wishing to take full advantage of our system when using “external”
formats.

By providing the support framework for a particular format in the form of a
shader library, developers can easily integrate those shaders simply by registering
the library with the shader system. This approach also allows NDL to handle inte-
grating new formats without requiring the delivery of a full source code update to
our customers. This adds significant expandability to the system, allowing for add-
ing support for future updates and advances as simply as possible.

To give an example of the benefit of this type of shader library approach to
external formats, just by deriving a shader class that implements the D3DXEffect
interface and packaging it in a shader library, support for the DX9 FX file format
was added with no code changes to the renderer. Other “industry standard” for-
mats are each given their own shader library to handle accessing them. This will
allow developers to select which formats, including their own custom ones, they
wish to support in their applications simply by registering the corresponding
library.

Data-driven Support

In an effort to simplify using the system and provide a rapid prototyping capabil-
ity, Gamebryo shader integration was designed to provide data-driven support.
When we speak of data-driven shaders, we mean allowing for a shader to be uti-
lized with no source code compilation required. To accomplish this feature, data-
driven shaders contain a list of passes which in turn contain render state and tex-
ture stage state settings, as well as the pixel and vertex shader programs and
their corresponding constant register settings required to obtain the desired
effect. One method that supplies this type of support is the previously mentioned
binary shader format (NSB). NSB files are supported via a shader library, much
like the DX9 effects support, and provide developers with the ability to quickly
and easily add shaders to their game.

A key component for supplying data-driven shaders is a class that maps data
values to shader constant registers.

640
Shader Integration in the Gamebryo Graphics Engine

Section VI — 3D Engine and Tools Design

Constant Register Mapping

To allow for mapping data values to shader constant registers, Gamebryo provides
the constant mapping class. Two derived classes provide specific implementations
for pixel shader and vertex shader constants. Each class consists of a map of
entries representing the data and the register(s) to which it is mapped.

Support is included for several data source mappings to a given set of regis-
ters. A constant type maps a constant data value, such as the Taylor Series coeffi-
cients. A predefined type maps one of a set of Gamebryo-defined values. Each
derived shader constant map class contains specific values for that usage type.
For example, the vertex shader-specific class defines mappings for the World-
ViewProjection transform and the diffuse material color. This data will be auto-
matically updated and set on the device when the object is being rendered. A
per-object attribute type maps a data value (or attribute) attached to the rendered
object. This mapping allows for a single shader to achieve different visual results
by having parameters differ for each object being rendered. The global attribute,
similar to the per-object attribute, maps a data value from a global table of param-
eters. This mapping is helpful for setting values such as lighting parameters.
Global attributes do require the application to update them as necessary. Finally,
there is the operator type that allows the shader author to perform a mathematical
operation on two other entries and map the result to the shader constant regis-
ter(s). This mapping is useful for using the CPU to reduce shader instruction
count and potentially the number of constant registers utilized. For example,
transforming the light position to object space can be done once per object, as
opposed to once per vertex, since the result is the same for all vertices in the
mesh.

Entries include support for a number of data types, including Boolean values,
vectors of one to four unsigned integers, vectors of one to four floats, 3x4 or 4x4
matrices, four floating-point component color values, and texture images.

Constant register mapping is a key feature of the engine, allowing for truly
data-driven shaders. Creating a constant map greatly simplifies updating and set-
ting shader constant register values for a pass. This automatic mapping of con-
stant registers also eliminates one of the primary reasons most shader integration
approaches require custom C++ code.

Binary Shaders and the NDL Shader Format

To facilitate a completely data-driven approach to implementing shaders, NDL
developed a set of libraries that allow for text-based representations of shaders.
Two libraries were created to support developers taking this approach to including
shaders in their application.

The first library, NiBinaryShaderLib, implements a shader-derived class,
NiBinaryShader, which has been extended to allow for directly setting groups of
device states and pass configurations to implement a visual effect. This class
removes the need for developers to write C++ code to implement shaders in the
Gamebryo Shader System. By simply providing different data for the various class
members, a wide range of effects can be achieved.

Shader Integration in the Gamebryo Graphics Engine
641

Section VI — 3D Engine and Tools Design

An abstract, platform-independent representation of this data is also supplied
in this library via the class NSBShader. These shaders can be streamed to and
from storage devices and written to NDL Shader Binary (NSB) files. Due to dif-
ferences in enumeration values between Xbox, DX8, and DX9-based D3D imple-
mentations, a format that could be stored and subsequently used on all platforms
was required, with the conversion code occurring at load time. The class also sup-
ports the concept of multiple implementations, which are different methods for
achieving the same visual effect. This system is similar to Techniques in the
DirectX effect file format. At load time, the system will search the implementa-
tions of an effect and return the most appropriate version, taking the system hard-
ware and the requested versions into account to form the decision.

The second library that Gamebryo provides is a utility library, NSFParserLib,
which parses NDL Shader Format files and generates the corresponding NSB
files. The NDL Shader Format (NSF) is a text-based file format that allows devel-
opers to write shaders in a simple language and apply them to objects with no
C++ code to write and no compilation required. Shader authors can define both
global and per-object attributes, which in turn can be mapped to shader constant
registers. All device settings can be defined in the file, including render states,
texture stage settings, and pixel and vertex shader programs. The format is simi-
lar to the DirectX effect files, allowing multiple implementations of the same
shader to provide legacy hardware support. The library operates by searching a
given file directory, optionally recursing its subfolders, looking for NSF files.
When found, the file will be parsed, and its corresponding NSB file will be written.

NOTE The binary shader library was separated from the parser library to
allow for developers to implement their own text-based formats without having
to also develop an underlying binary representation.

The NSBShaderLib library used in conjunction with the NSFParserLib provides a
complete system for rapid prototyping of shaders within applications or the tool
chain. The application can simply run the NSFParser on all NSF files, generating
the corresponding NSB files for all those found. Then by registering the NSB-
ShaderLib, both existing NSB files and newly generated ones will be available for
applying to rendered objects.

A Unified Rendering Path

A common path through the rendering pipeline is key to allowing shader develop-
ers to fully understand what is happening “under the hood” with their creations.
A clean, consistent interface must exist that provides all the functionality required
to allow not only the application of shader programs to rendered objects but also
for the definition of a complete rendering pipeline through which the data will
flow. The interface should be completely clear as to what the developer needs to
implement in order to achieve the desired effect. As described previously, the
original CTD system failed quite severely at this particular goal.

642
Shader Integration in the Gamebryo Graphics Engine

Section VI — 3D Engine and Tools Design

At the lowest level, the Gamebryo Shader System contains a class, NiShader,
which is simply a name and implementation number for a shader. This interface is
provided to minimize cross-platform compilation issues as well as keep the door
open for future expansion to our other supported platforms. The heart of D3D-
based shader integration in Gamebryo is an interface class derived from this,
appropriately named NiD3DShaderInterface.

NiD3DShaderInterface

NiD3DShaderInterface defines how the engine renders geometric objects. It is
the lowest level that a developer can derive from, giving them complete power to
achieve what they wish to accomplish. This power also means the developer has
complete responsibility for properly setting up the hardware for the rendering of
the object. The concept is the same as the original CTD system design, with a bit
more structure to the interface functions.

An Initialize function is called when a shader is created, allowing for any
class-specific initialization required, such as registering shader programs and
other one-time tasks. Pre- and post-process functions are called before and after
any other processing of a rendered object is exposed to allow for any specialized
setup and shutdown code required by the class. A function to update the pipeline
is called once per rendered object to allow for the formation of passes based on
higher-level static and dynamic effects. A derived class does not have to form the
passes each time the object is rendered, but the approach is permitted.

For each pass on a rendered object, a call is made to configure the current
pass on the hardware. A function for setting up the required transformations is
also called. Typically, the calculation would be performed on the first pass and
cached for subsequent passes. It is possible for an implementation to perform
per-pass modifications to the results if needed. A call is then made to set optional
shader programs and their corresponding constant registers. The final per-pass
call is to prepare the geometry for rendering, which ensures that the geometry is
packed in the format required for rendering. If the geometry has not been packed
at this point, this function is expected to do so, as well as set the stream sources
and indices.

Two additional functions exist in the interface: one to indicate to the shader
that a new rendered object is being processed and another to indicate to the
shader that the renderer is ready to begin the next pass.

These functions correspond to the steps that occur during the rendering of
geometry in the Gamebryo engine. By defining this level of interaction, develop-
ers know exactly what is expected by the pipeline and can implement whatever
effect they wish with minimal reworking of their ideas to fit within our frame-
work. This interface replicates and extends the level of interaction that develop-
ers were permitted with the previous system, thus meeting one of our major
design goals to provide the same power and flexibility of the original system.

Shader Integration in the Gamebryo Graphics Engine
643

Section VI — 3D Engine and Tools Design

The Shader Interface Extended

The system also provides additional classes to ease the integration of shaders in
the engine. We opted to build these classes in a manner that supplies developers
with increasing levels of functionality to aid in shader-based development. The
default rendering pipeline is also implemented as a shader interface-based class.

NiD3DShader

NiD3DShader is derived from NiD3DShaderInterface, adding additional function-
ality and members to aid in the implementation of shader-based effects. It
includes a definition of how to pack the geometry, an optional group of global ren-
der states that are set once for the entire effect (considered “global” states for the
shader, such as setting the depth test to enabled), optional global shader constant
register mappings for both vertex and pixel shader programs, and an array of pass
instances that make up the complete rendering effect.

The NiD3DShader class provides an interface for implementing shader-based
effects without requiring large amounts of code to be written. The derived class
can simply fill in the members of the class with the appropriate settings and let
the base implementation take care of the rendering details.

NiD3DDefaultShader

NiD3DDefaultShader implements the default rendering pipeline for the
Gamebryo engine and is derived from the NiD3DShader class. It analyzes
the platform-independent static and dynamic effects applied to the object and con-
structs the appropriate passes to achieve the complete effect. If a shader instance
is not present on an object being rendered in Gamebryo, the default shader is
used.

Deriving from the NiD3DDefaultShader class allows a developer to extend
the pipeline that ships with Gamebryo in a number of ways. One could extend the
existing pipeline to implement a new rendering technique that has not been incor-
porated into the engine yet. Another would be to alter the functionality provided
(for example, the pipeline implements projected lights by modulating them, but a
developer could derive from the class and implement projected lights as additive).
One suggested usage is to implement “fast path” shaders, which remove sections
of the construction step for effects that the developer will not be using. For exam-
ple, if the game does not use projected lights, the part of the pipeline that ana-
lyzes and sets up projected lights could be removed, resulting in a faster path
through the renderer while maintaining all the functionality with respect to other
effects.

This three-tiered approach to the shader classes supplies a well-defined
structure in which shaders can be developed. Depending on their needs, develop-
ers can opt for any of the interfaces that will provide them with their required
level of access to the rendering pipeline. Figure 3 shows the options for deriving
classes that the original CTD system presented to developers.

644
Shader Integration in the Gamebryo Graphics Engine

Section VI — 3D Engine and Tools Design

As you can see from this diagram, developers had limited options for shader sup-
port; there is only one “entry point” for deriving their shader classes. Compound
this with the fact that the interface was quite muddled with functionality for
implementing the default pipeline, none of which was required for implementing
shaders, and it is understandable why so many problems arose with its usage.

The Gamebryo system derivation options are displayed in Figure 4.

The new system presents developers with far more options for what level they
may derive from, from implementing shaders with no C++ code required to com-
pletely overriding the rendering of objects. The underlying interface to the ren-
dering is much more clearly defined, laying out the functionality they are required
to provide at each step. This makes the task of developing shaders far easier
when using the Gamebryo engine.

Case Study: Eturnum

To understand the reasoning behind the design goals outlined in this chapter, it is
helpful to consider a case study of a sample application. This section discusses dif-
ferent aspects and issues that arose in developing NDL’s shader-driven demo for
GDC 2003, Eturnum. We examine each of the six design goals and how Eturnum
reinforced the applicability of those goals. Finally, we explore some of the lessons
learned with Eturnum, paying particular attention to areas that still require
improvement.

Shader Integration in the Gamebryo Graphics Engine
645

Section VI — 3D Engine and Tools Design

Figure 3: Class diagram for the NetImmerse shader system

Figure 4: Class diagram for the Gamebryo shader system

About Eturnum

The original idea for Eturnum was to showcase the Gamebryo Shader System by
placing a highly detailed character in a realistic scene. In addition to showing high
polygon throughput and performance, the demo renders almost every surface
with a custom shader. These shaders implement a variety of fairly common pixel
and vertex shader effects, such as dot3 bump mapping, palettized skinning, and
thin film interference.

Design Goals

Since the final goal of Eturnum was to demonstrate the power of the Gamebryo
Shader System, it makes sense to examine how the development of the demo
reinforced the previously stated design goals.

Unified Rendering Path

Because all objects in Gamebryo take the same path through the renderer, we
were able to leverage some utility out of the default, fixed-function pipeline in the
development of Eturnum. Generally, neither art assets nor shader code exist at
the beginning of a project. It is unsatisfactory to stall either aspect of development
to wait for the other. Since the Gamebryo Shader System was designed with a
unified rendering path in mind, it was possible to begin designing art assets for
Eturnum that would later have shaders attached to them. Unifying the rendering
path meant that no work would be lost when shaders were applied. All the param-
eters for materials, textures, etc. carried directly over from the default pipeline
shader to the custom shaders written for Eturnum.

Data-driven Support

Shaders for Eturnum were developed using NSF files. As stated previously, NSF
files contain information for a rendering effect in a script file, much like Micro-
soft’s DirectX effects files. Using NSF files allowed rapid, data-driven iteration to
occur on the shaders. This rapid feedback cycle produced more refined shaders
without consuming significant amounts of time rebuilding programs. The NSF
files were parsed at run time, making changes to the NSF files instantly apparent
in the application.

Industry Standard Formats

The Gamebryo Shader System is designed to be compatible with major industry
standards while still adding information specific to Gamebryo where necessary.
With this fact in mind, effects for Eturnum were often built initially in ATI’s
RenderMonkey program. Although the library to directly import RenderMonkey
XML files directly into Gamebryo was not complete at the time the demo was
authored, translating the information from a RenderMonkey file to NSF was triv-
ial given the compatible setup of the Gamebryo Shader System.

646
Shader Integration in the Gamebryo Graphics Engine

Section VI — 3D Engine and Tools Design

Simple Access to Shader Collections

Parsing the NSF files at run time for Eturnum provided a strong, data-driven
shader model for the application. Additionally, it fulfilled another requirement for
the shader system — providing simple access to shader collections for all mem-
bers of the development team. Throughout Eturnum, the shaders for each mem-
ber of the development team could be updated with a simple text file that was
parsed at run time.

Art Pipeline Integration

The Gamebryo plug-ins for 3ds max and Maya both support the use of shader
libraries at run time, and they ship with libraries to parse NSF files and load the
associated NSB files. This fact was invaluable to the development of Eturnum. It
was possible for artists to create
the assets, assign shaders to assets,
and preview those assets before
even considering exporting for use
in the application. Additionally, the
use of custom attributes to hold
shader parameters in both plug-ins
allowed the artists rather than the
programmers to modify shader
effects.

Ease of Use without Sacrificing Power or Flexibility

Of all the design requirements for the Gamebryo Shader System, generating an
easy-to-use system without limiting the creativity of artists and programmers
was the most difficult and the most important. In the end, the system showed its
strength by demonstrating just this capability in the development of Eturnum.
For our alien, the initial shader effect implemented matrix palette skinning with a
base map and two per-vertex directional lights. This effect was satisfactory, but
the demo called for more. We needed to add a warp effect to the alien for use
when he teleports in and out of the temple. Because the system was designed to
allow almost any imaginable effect, the warp effect was easily coded with a change
to the NSF file and changes to the accompanying shader programs.

Once the alien was teleporting into the temple, however, the art staff wanted
per-pixel lighting and dot3 bump mapping on the character. Again, these features
were not a problem to add since the system was designed for easy use and power-
ful expansion. Changes to the NSF file were instantly recognized in the art pack-
ages, and the art team did not have to redesign any art to fit the new shaders.
Additional custom attributes in the art packages were transparently added and set
to default values without disrupting the art production pipeline in the slightest.

Shader Integration in the Gamebryo Graphics Engine
647

Section VI — 3D Engine and Tools Design

Figure 5: The original artist interface

Lessons Learned

Although the development of Eturnum reinforced the design goals of the
Gamebryo Shader System, some important lessons were learned regarding the
shader system and shader-driven development in general.

First, although distributing NSF files to our art staff allowed easy access to
shaders, this solution was still not optimal. It was always possible that a single
NSF file out of the group was not synchronized. Ideally, all shaders would be col-
lected into a single file that represented the current database for use in the appli-
cation. Much like a source control database, this file would always contain the
most current version of all the shader effects.

We also found that understandable, artist-editable parameters must be avail-
able in the art development packages to provide the necessary customizability
and creativity. An initial version of the warp effect used hard-coded values to con-
trol the waves of color that washed over our character. When the shader was
changed to use the custom attributes shown in Figure 5, artists had the ability to
control the effect but also had difficulty understanding how the various numerical
parameters affected the shader. To address this confusion, the effect was changed
to use a texture map for the effect rather than numeric inputs. For this texture,
the U coordinate of lookups was calculated from the normal dotted with the view
vector and the V coordinate
was the current value of the
WarpAlpha parameter. When
presented with this change,
one artist stayed three extra
hours to play with the effect
because he was having so
much fun with it.

Wrap-Up and Future Plans

A fully configurable and programmable pipeline can provide huge benefits to a
game’s overall visual impact. Such a pipeline allows the flexibility for very cre-
ative effects but cannot stand alone. For artists to create these effects, they must
be provided with an environment that makes the authoring of shader-driven
assets simple and understandable. During the development of Eturnum, we dis-
covered that a programmer-centric interface to shaders was not enough to enable
the full abilities of the artist efficiently. The Gamebryo tools team created an art-
ist-centric integration that leveraged the user interface components provided by
the SDKs of the art tools themselves, ensuring that the controls looked and
behaved in ways that were familiar to the artist. This increased the artist’s
shader-tweaking productivity significantly, an important factor as project mile-
stones approached.

The Gamebryo Shader System was designed with a clear set of requirements
that we at NDL felt were needed to provide a complete shader solution to our
developers. The system met or exceeded most of the goals we set, but like any

648
Shader Integration in the Gamebryo Graphics Engine

Section VI — 3D Engine and Tools Design

Figure 6: The more artist-friendly interface

software development project, additional features are in the process of being inte-
grated or are planned for future integration. These include:
� Allowing the constant mapping technique for per-object and global attributes

to be used for other values, such as render state and texture stage settings
� Adding shader constant register management to minimize SetShader-

Constant calls
� High-level shader language support is currently only available via the

DirectX effect, RenderMonkey, and CgFX support. A method for supporting
this in the NDL Shader Format should also be developed.

� Implementing a method for integrating render-to-texture effects into the
data-driven system

� Adding a WAD-type system for packaging binary shaders as well as their
associated pixel and vertex shader files

� Developing analysis tools that analyze a scene with the default pipeline and
generate custom, per-object shaders that contain only the effects required to
render them

� Developing and supporting a cross-platform shader language that provides
support on all Gamebryo platforms

Due to the constant advancement of graphics hardware, shader integration is
never truly complete in a graphics engine. While the Gamebryo Shader System is
full-featured with respect to our list of requirements, we are looking forward to its
continued development.

Shader Integration in the Gamebryo Graphics Engine
649

Section VI — 3D Engine and Tools Design

Vertex Shader Compiler

David Pangerl

Introduction

The Vertex Shader Compiler (VSC) is a free, C-based, DirectX vertex shader (VS)
compiler. It is a high-level programming language (HLPL) for the DirectX VS
assembler programming. The result of the VSC is an optimized VS assembler
with the additional run-time information. This article describes what VSC can do
for a VS programmer and how it can be used for simpler and efficient high-level
writing of vertex shaders.

Current Features

The VSC is a fast, robust, and stable compiler. It was designed to divide the ver-
tex shader pipeline into several parts. It has a powerful plug-in system, built-in
optimization, and a precompiler. Its features include:
� Compilation of a program provided via string or file
� Same code for different mesh vertex types
� Function swapping
� Fast compilation
� Good optimization
� Handling register restrictions
� VS array support
� Small and simple C++ code (~3300 lines) with a very simple interface

VSC License

The VSC is copyrighted by ZootFly. This library is free software. You can redis-
tribute it and/or modify it under the terms of the BSD-style license, which is
included in this library in the file licence_bsd.txt.

650

Concept

DirectX Vertex Shader Assembler

The DirectX VS assembler is a direct way of programming the vertex processing.
It is very powerful and useful, although using it requires knowledge from a variety
of fields:
� Basic assembler knowledge
� Instruction specifications (DirectX documentation)
� Instruction restrictions (DirectX documentation)
� Register usage (DirectX documentation)
� Register per instruction restrictions (DirectX documentation)

Even the simplest function (length, sin, cos, etc.) requires a lot of assembler
instructions. It also requires a slightly different approach than the HLPL. Further-
more, the maintenance, debugging, and upgrades of the assembler code are very
hard and demanding tasks.

This is why we decided to develop a custom HLPL, which eliminates all the
tedious tasks of assembler programming.

Language

The VSC language is based on the C syntax with some simplifications and modifi-
cations, as shown in the following example:

//first.cvs

#include <standard.hvs>

float sqr(float a)

{

return a*a;

}

void vsmain(float param)

{

out.Pos=m4x4(in.Pos * sqr(param) + 10, FinalMatrix.x);

}

Because of the DirectX VS assembler specifics, there are some architectural dif-
ferences from classic C:
� All functions are compiled inline (due to no stack).
� All function parameters are treated as references.
� Only float and vector types are supported (the VS register consists of four

floats).

Vertex Shader Compiler
651

Section VI — 3D Engine and Tools Design

� There are no if, while, for, and switch statements (DirectX 8 VS has no
branching instructions; this will be implemented in DirectX 9 VS).

Furthermore, some simplifications have been made due to the relative simplicity
of the VS programs:
� No scopes
� No user-defined types and structures
� Much simpler precompiler

The nature of VS leads to some grammar additions:
� VS input and output structure definition
� Plug-in introduction
� Constant register reservation introduction

Types
� The float type is IEEE single-precision (32 bits) floating point.
� A vector is a structure of four floats (see the following C definition of a vector

structure).

struct vector {

float x;

float y;

float z;

float w;

};

Variables

Local variables can be defined at any point in the program as in C++. The VSC
doesn’t support global variables.

Constants

The VSC supports two types of constants: float and vector constants. Float con-
stants are defined by a single float number. Vector constants are defined as an
array of one to four float numbers in brackets. Note the following examples:

// float constant

float a=10;

float b=1.234;

//

a=a*0.5+b*0.2;

// vector constants

vector x=(1);

vector y=(1,1,1,0);

//

x=in.Pos + (0,1,0);

652
Vertex Shader Compiler

Section VI — 3D Engine and Tools Design

The constant definition table contains additional data exported with the program
assembly, as shown below. It can be used to set the constants within a user
program.

//Result of first.cvs with constant definition table export (first.vs)

vs.1.1

mov r0.x, c4.x // max reg per ins. salvage

mul r0.y, c4.x, r0.x

mad r0, inPos, r0.y, c5.x // | (o2.1)

m4x4 outPos, r0, c0 // assignment| (o1.1)

// Plugin: FinalMatrix::x=c0

// Plugin: FinalMatrix::y=c1

// Plugin: FinalMatrix::z=c2

// Plugin: FinalMatrix::w=c3

// Constant: c5=(10.000,?,?,?)

Functions

All functions in the VSC are compiled in-line. All function parameters are treated
as references (modifying the parameter within a function will modify the value of
the variable that was passed to the function).

The program entry function is vsmain. Parameters can be passed to the
vsmain function, as shown below.

//vsmain.cvs

output vertexshader {

vector Pos;

};

void vsmain(float a, vector b)

{

out.Pos=a*b;

}

Here is the output:

vs.1.0

// vsmain parameter assignment:

// parameter 'a'=c0.x.

// parameter 'b'=c1.

mov r0, c1 // max reg per ins. salvage

mul outPos, c0.x, r0 // assignment||max reg per ins. salvage (o1 failed) (o1.1)

All DirectX VS instructions and macros are added as VSC functions, as shown in
the following table:

Functions

add(anytype a, anytype b)

dp3(anytype a, anytype b)

dp4(anytype a, anytype b)

dst(anytype a, anytype b)

Vertex Shader Compiler
653

Section VI — 3D Engine and Tools Design

Functions

exp(anytype a)

expp(anytype a)

frc(anytype a)

lit(anytype a)

log(anytype a)

logp(anytype a)

m3x2(anytype a, anytype b)

m3x3(anytype a, anytype b)

m3x4(anytype a, anytype b)

m4x3(anytype a, anytype b)

m4x4(anytype a, anytype b)

mad(anytype a, anytype b, anytype c)

max(anytype a, anytype b)

min(anytype a, anytype b)

mov(anytype a, anytype b)

mul(anytype a, anytype b)

rcp(anytype a)

rsq(anytype a)

sge(anytype a, anytype b)

slt(anytype a, anytype b)

sub(anytype a, anytype b)

VSC also supports some comparison expressions:

Syntax Description

(a>=b?c) Returns c if a>=b; otherwise returns 0.

(a<b?c) Returns c if a<b; otherwise returns 0.

(a>=b?c:d) Returns c if a>=b; otherwise returns d.

(a<b?c:d) Returns c if a<b; otherwise returns d.

Input and Output Definition

The VSC input and output definition provides VS with information on the VS
input vertex structure and output vertex structure. The program input is defined
as the predefined variable in and the program output is defined as the predefined
variable out. Input and output variable members are accessible as C struc-
ture/class members. All output members are write only, while all input members
are read only.

Here is the input/output structure grammar:

input definition : input vertexshader ‘{‘ member list ‘}’ ‘;’

output definition : output vertexshader ‘{‘ member list ‘}’ ‘;’

member list : member

| member ‘;’ member list

member : type name

type : float

| vector

654
Vertex Shader Compiler

Section VI — 3D Engine and Tools Design

Here is an example of the input/output structure definition:

output vertexshader {

vector Pos; // vertex position

vector DColor; // diffuse color

vector SColor; // specular color

float PointSize; // sprite point size

float Fog; // fog value

vector Tex0; // texture [0..7] coordinates

vector Tex1;

vector Tex2;

vector Tex3;

vector Tex4;

vector Tex5;

vector Tex6;

vector Tex7;

};

input vertexshader {

vector Pos;

vector Normal;

vector Color;

vector Tex0;

vector Tex1;

vector Tex2;

vector Tex3;

};

Plug-ins

Plug-ins are the VSC substitutes for structures in the C language. They are the
main link between the VS and the main program and are used to provide the VS
with the main program data (i.e., object matrix, camera matrix, final matrix, light-
ing information, soft binding, etc.) and to manipulate the constants in the VS.

There are two types of plug-ins: simple and radical. The simple plug-in
optimizes its variable space usage. It reserves space in the VS constant variable
space only for those variables that are actually used, while the radical plug-in
reserves the constant space for all the plug-in variables defined in the plug-in, if
any of them is being used (see the first .cvs example in the “Constants” section).

All of the plug-in variables are read-only.

Here is the plug-in grammar:

plugin definition : [radical] plugin ‘(‘ argument list ‘)’ ‘;’

argument list : argument

| argument ‘,’ argument list

argument : type name array definition

array definition :

| ‘[‘ number ‘]’

type : float

| vector

Vertex Shader Compiler
655

Section VI — 3D Engine and Tools Design

This is an example of a plug-in:

// plugins.cvs

input vertexshader {

vector Pos;

};

output vertexshader {

vector Pos;

vector DColor;

};

radical plugin FinalMatrix(vector x, vector y, vector z, vector w);

plugin Light(vector Color, vector Direction, float Range);

void vsmain()

{

out.Pos=m4x4(in.Pos, FinalMatrix.x);

out.DColor=Light.Color;

}

The radical plug-in FinalMatrix reserves constant space for all variables x, y, z,
and w, while the simple plug-in Light reserves constant space only for the variable
Color that is used in the shader (see below).

vs.1.0

m4x4 outPos, inPos, c0 // assignment| (o1.1)

mov outDColor, c4 // assignment

// Plugin: FinalMatrix::x=c0

// Plugin: FinalMatrix::y=c1

// Plugin: FinalMatrix::z=c2

// Plugin: FinalMatrix::w=c3

// Plugin: Light::Color=c4

Reservation of Constant Registers

The VSC allows you to reserve temporary and constant registers. This is useful
when you want to use the VSC output with user modifications. Below are exam-
ples of the constant reservation grammar and the use of the constant reservation:

define reservation : reserve register type ‘(‘ reserve register list ‘)’ ‘;’

register list : register

| register ‘,’ register list

register : number

: number ‘.’ ‘.’ number

: number ‘,’ register

register type : temp

| const

reserve const (10,11,12,20..30); // reserve register c10, c11, c12, and c20 through c30

reserve temp (0..4); // reserve register r0, r1, r2, r3, and r4

656
Vertex Shader Compiler

Section VI — 3D Engine and Tools Design

Arrays

The VSC supports arrays as plug-in variables (see the “Plug-ins” section). As the
array parameter type, only vector type can be used.

Here is an example:

// softbind.cvs

input vertexshader {

vector JointIndex;

vector JointWeight;

//

vector PosOffset0;

vector PosOffset1;

};

output vertexshader {

vector Pos;

};

plugin Skeleton(vector mat[78]); // max 26 bones per one mesh

void vsmain()

{

vector t=in.JointIndex*768; // 256 * 3 (3 vectors per matrix)

//

out.Pos=m4x3(in.PosOffset0, Skeleton.mat[t.x]) * in.JointWeight.x +

m4x3(in.PosOffset1, Skeleton.mat[t.y]) * in.JointWeight.y;

}

Precompiler

The VSC has a simple built-in precompiler, which uses the grammar shown in the
following table:

Grammar Description

#include ‘“’ filename ’”’ The file “filename” is inserted. File uses the search path
from the source file directory.

#include ‘<’ filename ‘>’ The file “filename” is inserted. File uses the include
search path.

#define name Define precompiler variable name

#undefine name Undefine precompiler variable name

#O0 Set optimization level 0 (no optimization)

#O1 Set optimization level 1

#O2 Set optimization level 2

#On Set optimization level Max

#ifdef name statements
[#else statements] #endif

If precompiler variable name exists, statements will be
compiled; otherwise, if else statements exist, they will be
compiled.

#ifndef name statements [
#else statements] #endif

If precompiler variable name doesn’t exist, statements
will be compiled; otherwise, if else statements exist, they
will be compiled.

Vertex Shader Compiler
657

Section VI — 3D Engine and Tools Design

Function Swapping

The VS program is required to do several VS calculations, like matrix transforma-
tions, lighting, etc. To write a specific VS, we need to write a VS for all the combi-
nations of different transformations and lighting methods.

The number of shaders we have to write for each new shader is multiplied by
the number of different transformation methods (normal transformation, soft
binding, wobbly effect, teleport effect, etc.) and different lighting methods (ambi-
ent light, directional light, light with attenuation, light map, etc.).

For example, we have transformations T1 and T2, lighting methods L1 and L2,
and we want to write a VS to do effect E. We need to write VS T1+L1+E,
T1+L2+E, T2+L1+E, T2+L2+E.

With the VSC, you can divide the VS pipeline and avoid a large number of
required shaders.

In the transformation example below, you can see an instance of how to use
function swapping for dividing transformation types. First, we introduce the vir-
tual function vstransfrom. This function will transform the input position and nor-
mal. Then we write all the different transformations we need.

At compile time, we specify the appropriate function swap: If we want a nor-
mal transformation, we specify vstransform, vstransform_normal; however, if we
want a wobbly effect, we specify vstransform, vstransform_wobbly (see included
file compileall.bat).

// transformation.cvs

// softbind.cvs

input vertexshader {

vector Pos;

vector Normal;

};

output vertexshader {

vector Pos;

vector Normal;

};

// normal mesh vertex type transformation

void vstransform normal(vector pos,vector nor)

{

pos=in.Pos;

nor=in.Normal;

}

void vstransform wobly(vector pos, vector nor)

{

pos=in.Pos * in.Pos;

nor=in.Normal * 2;

}

658
Vertex Shader Compiler

Section VI — 3D Engine and Tools Design

radical plugin FinalMatrix(vector x, vector y, vector z, vector w);

void vsmain()

{

// position and normal transformation

vector pos,nor;

vstransform(pos, nor);

// transform position into world space

out.Pos=m4x4(pos, FinalMatrix.x);

}

Optimization

VSC uses very simple optimization techniques, described in this section.
Although they are simple, they produce very optimized assembler code.

Register Scope Optimization

Within the register A scope (the register scope starts at the instruction at which
register A has been set and ends at the instruction that overwrites it with a new
value), all occurrences of register A are replaced with register B.

Instruction Register 1 Register 2 Register 3

Mov A B

ins1 * A *

ins2 * * A

. . . is replaced with:

Instruction Register 1 Register 2 Register 3

ins1 * B *

ins2 * * B

A set instruction (all instructions except mov) followed by the mov instruction
into the target register are replaced with the set instruction directly to the target
register (if the target register scope allows it).

Instruction Register 1 Register 2 Register 3

ins1 A * *

Mov B A

. . . is replaced with:

Instruction Register 1 Register 2 Register 3

ins1 B * *

All instructions for setting the registers that are not used are removed (output
registers are excluded).

Vertex Shader Compiler
659

Section VI — 3D Engine and Tools Design

Additional Optimizations

The combination of multiplication and addition is replaced with a single
instruction.

Instruction Register 1 Register 2 Register 3

Mul A B C

add D A E

. . . is replaced with:

Instruction Register 1 Register 2 Register 3 Register 4

mad D B C E

And:

Instruction Register 1 Register 2 Register 3

mul A B C

add D E A

. . . is replaced with:

Instruction Register 1 Register 2 Register 3 Register 4

mad D B C E

VSC Standard Library

The VSC provides a small set of built-in functions to simplify VS programming.
These functions are similar to the C standard library functions and include mathe-
matical, geometric, and VSC functions.

Mathematical Functions

Table 1 lists the mathematical functions provided in the VSC Standard Library.
The list includes functions useful in trigonometry, exponentiation, and rounding.
Functions change the parameters only where noted.

Table 1: Mathematical functions

Function Description

float abs(float a) Absolute value of a.

float acos(float a) Arccosine of x in range [–1,1]; result is in range
[–pi/2,pi/2].

float all(vector x) Returns 0 if any component of x is equal to 0;
returns 1 otherwise.

float any(vector x) Returns 1 if any component of x is equal to 1;
returns 0 otherwise.

float asin(float a) Arcsine of a in range [–1,1]; result is in range
[0,pi].

float atan(float a) Arctangent of a in range [–pi/2,pi/2].

float atan2(float a, float b) Arctangent of b/a in range [–pi,pi].

660
Vertex Shader Compiler

Section VI — 3D Engine and Tools Design

Function Description

float ceil(float a) Smallest integer not less than a.

float clamp(float a, float b, float c) a clamped to the range [b,c] as follows:
Returns b if a < b. Returns c if a > c. Otherwise
returns a.

float cos(float a) Cosine of a in range [–pi,pi].

float cross(vector x, vector y) Cross product of x and y.

float exp(float a) Exponential function e^a.

float exp2(float a) Exponential function 2^a.

float floor(float a) Largest integer not greater than a.

float fmod(float a, float b) Reminder of a/b with the same sign as a. b
must not be equal to 0.

float frac(float a) Fractional part of a.

float ldexp(float a, float b) a * 2^b.

float lerp(float a, float b, float f) (1–f)*a + f*b.

float log(float a) Natural logarithm ln(a). a must be greater than
0.

float log2(float a) Base 2 logarithm of a. a must be greater than
0.

float log10(float a) Base 10 logarithm of a. a must be greater than
0.

float max(float a, float b) Maximum of a and b.

float min(float a, float b) Minimum of a and b.

float pow(float a, float b) a^b.

float round(float a) Closest integer to a.

float rsqrt(float a) Reciprocal square root of a.

float sign(float a) Returns 1 if a > 0. Returns –1 if a< 0.
Otherwise returns 0.

float sin(float a) Sine of a in range [–pi,pi].

float sqrt(float a) Square root of a. a must be greater than 0.

void fsplit(float a, float b, float c) Splits a into integral part b and fractional part c.

void sincos(float a, float sin, float cos) sin is set to sin(a), and cos is set to cos(a).

Geometric Functions

Table 2 lists the geometric functions provided in the VSC Standard Library.

Table 2: Geometric functions

Function Description

float distance(vector x, vector y) Euclidean distance between points x and y.

float length(vector x) Euclidean length of vector x.

float normalize(vector x) Returns a vector of length 1 that points in the
same direction as vector x.

vector reflect(vector n, vector i) Returns reflection vector for surface normal n
and eye to position vector direction i.

Vertex Shader Compiler
661

Section VI — 3D Engine and Tools Design

VSC Functions

Table 3 lists the VSC functions provided in the VSC Standard Library.

Table 3: VSC functions

Function Description

vector bumpmapuv(vector lightdir) Bump map vector calculation for uv output.

vector bumpmapcolor(vector lightdir) Bump map vector calculation for color output.

vector light(vector pos,
vector normal,
vector lightpos,
vector lightcolor)

Simple lighting calculation.

vector lightadvanced
(vector pos,
vector normal,
vector lightpos,
vector lightcolor,
vector lightrange)

Advanced lighting calculation with light fallout.

vector lightattenuation
(vector pos,
vector normal,
vector lightpos,
vector lightcolor,
vector tex0,
vector tex1)

Lighting calculation with texture attenuation
lookup. Function returns the texture uv for
stage0 int tex0 and texture uv for stage1 in
tex1.

Examples

This section includes example programs written in VSC.

Lighting

Lighting shaders:
� Light attenuation
� Per-pixel specularity

Light attenuation:

#include <standard.hvs>

void vsmain()

{

// position transformation

vector pos,nor;

vstransform(pos, nor);

// std output

out.Pos=m4x4(pos, FinalMatrix.x);

// attenuation texture coordinates

lightattenuation(pos, nor, SelectedLight.Pos, SelectedLight.Color,

662
Vertex Shader Compiler

Section VI — 3D Engine and Tools Design

SelectedLight.Range, out.Tex0, out.Tex1)

// light intensity

out.DColor=light(pos, nor, SelectedLight.Pos, SelectedLight.Color);

// base texture for alpha

#ifdef inTex0

out.Tex2=in.Tex0;

#endif

}

Per-pixel specularity:

#include <standard.hvs>

void vsmain()

{

vector pos,nor;

vstransform(pos, nor);

// std output

out.Pos=m4x4(pos, FinalMatrix.x);

//

vector lightdir=normalize(SpecularLight.Pos - pos);

vector half =normalize(normalize(CameraMatrix.Pos - pos) + lightdir);

//

out.DColor.xyzw=SpecularLight.Color;

// color cube normal color

out.Tex0=bumpmapuv(half);

//

#ifdef inLightMapUV

out.Tex1=in.LightMapUV;

#else

out.Tex1=(0,0,0,0);

#endif

}

Base Shaders

Base shaders:
� bump mapping
� multi-texture blending

Bump mapping:

#include <standard.hvs>

void vsmain()

{

// position transformation

vector pos,nor;

vstransform(pos, nor);

Vertex Shader Compiler
663

Section VI — 3D Engine and Tools Design

// std output

out.Pos=m4x4(pos, FinalMatrix.x);

#ifdef inTex1

out.Tex0=in.Tex1;

#else

out.Tex0=in.Tex0;

#endif

// normal map

vector lightdir=normalize(SelectedLight.Pos - pos);

out.Tex1=bumpmapuv(lightdir);

// attenuation texture coordinates

lightattenuation(pos, nor, SelectedLight.Pos, SelectedLight.Color,

SelectedLight.Range, out.Tex2, out.Tex3)

// light color

out.SColor=SelectedLight.Color;

}

Multi-texture blending:

#include <standard.hvs>

void vsmain()

{

vector pos,nor;

vstransform(pos, nor);

out.Pos=m4x4(pos, FinalMatrix.x);

// define color

out.DColor=in.Color.zwxy;

out.SColor=in.Color.xyzw;

// define as many texure outputs as given

#ifdef inTex1

out.Tex0=in.Tex0;

out.Tex1=in.Tex1;

out.Tex2=in.Tex1;

#else

out.Tex0=in.Tex0;

out.Tex1=in.Tex0;

out.Tex2=in.Tex0;

#endif

}

Effects

Effects:
� Volumetric shadows

Volumetric shadows:

664
Vertex Shader Compiler

Section VI — 3D Engine and Tools Design

#include <standard.hvs>

void vsmain(float projectionlength)

{

// in Tex0.x is plane D parameter

// test if face normal is facing towards light

vector pos,nor;

vstransform(pos, nor);

//

vector lightdir=pos - Light1.Pos;

lightdir=normalize(lightdir);

float test=dp3(nor, lightdir).x;

pos.xyz=pos + (test < 0 ? lightdir*projectionlength);

//

out.Pos=m4x4(pos, FinalMatrix.x);

}

Gallery

The following figures demonstrate the VSC example programs.

Vertex Shader Compiler
665

Section VI — 3D Engine and Tools Design

Acknowledgments

I am very grateful to Gregor Grlj for proofreading. I am also thankful to Helena
Smigoc and Mladen Zagorac for lecturing.

666
Vertex Shader Compiler

Section VI — 3D Engine and Tools Design

Shader Disassembler

Jean-Sebastian Luce

NOTE In this article, the word “shader” refers to programs for both the
vertex and pixel pipelines.

Microsoft DirectX 9 introduces a new shading language, High Level Shading Lan-
guage (HLSL), which is much easier to use compared to shader assembler. How-
ever, since the video driver understands nothing but shader byte code, both HLSL
and assembler shader code have to be respectively compiled and assembled by
the DirectX runtime. Unlike shader assembler, shader byte code is not “readable”
by humans. This article gives a solution for converting shader byte code (back)
into assembly instructions.

A Shader Disassembler: What Is It Useful For?

Although HLSL has many benefits for the programmer, its main drawback is that
generated code is not always as optimal as hand-written assembly code. Some-
times, when coding in HLSL, if the programmer forgets to use fully vectorized
operations, a non-optimal binary program can still result. For instance, the follow-
ing code scales a 2D vector by two uniform constants:

struct VS OUTPUT {float4 Position : POSITION; float2 Tc0 : TEXCOORD0;};

vs 1 1 VS OUTPUT vsMain(float4 Position : POSITION, uniform float4x4 ObjectPrCamera,

uniform float ScaleU, uniform float ScaleV)

{

VS OUTPUT Output = (VS OUTPUT) 0;

Output.Position = mul(Position, ObjectPrCamera);

Output.Tc0.x = Position.x*ScaleU;

Output.Tc0.y = Position.y*ScaleV;

return Output;

}

This results in the HLSL compiler generating the equivalent of the following
assembly:

vs 1 1

dcl position0 v0

m4x4 oPos, v0, c0; c0-c3 = ObjectPrCamera

mul oT0.x, v0.x, c4.x; c4 = ScaleU

667

mul oT0.y, v0.y, c5.x; c5 = ScaleV

An obvious improvement is to scale by a 2D vector instead of two scalar
constants:

struct VS OUTPUT {float4 Position : POSITION; float2 Tc0 : TEXCOORD0;};

vs 1 1 VS OUTPUT vsMain(float4 Position : POSITION, uniform float4x4 ObjectPrCamera,

uniform float2 ScaleUV)

{

VS OUTPUT Output = (VS OUTPUT) 0;

Output.Position = mul(Position, ObjectPrCamera);

Output.Tc0 = Position*ScaleUV;

return Output;

}

. . .which is compiled to the following (note that one less instruction is generated):

vs 1 1

dcl position0 v0

m4x4 oPos, v0, c0 ; c0-c3 = ObjectPrCamera

mul oT0.xy, v0, c4 ; c4 = ScaleUV

Moreover, early pixel shader hardware (ps_1_x) is very limited in its capabilities
compared to later versions (few address operations and arithmetic instructions,
small number of available instruction slots). Therefore, HLSL coding for these
platforms should be done with care. Even ps_2_0-compliant hardware has impor-
tant limitations (like the lack of arbitrary swizzling), which can force the compiler
to use more instruction slots. An HLSL programmer should at least know the lim-
itations of the target platform, and getting a look at the generated assembly would
be helpful in writing optimal code. For this reason, reading and checking the gen-
erated shader assembly of an HLSL program is important. In the DirectX 9 SDK,
the only way to view the assembly code generated by the HLSL compiler is to
use the external compiler fxc.exe with the -Fc flag. Because this tool is not suited
to be called from another program, and since we can get clearer assembly, as we
see later in the “Disassembler Integration and Customization” section, let’s
implement a vertex/pixel shader disassembler. In addition, this disassembler can
be used to view shaders where you don’t have the source assembly.

Shader Byte Code Description

To understand how a shader byte code disassembler works, we start by describ-
ing the byte code itself: the elements of the byte code (called tokens) and their
formatting. The DirectX 9 shader byte code is simpler than, for instance, the
80x86 code; instructions are always made of 32-bit aligned, little-endian byte-
ordered tokens.

The first token in a compiled shader program is always a version token, corre-
sponding to vs_x_y and ps_x_y assembler instructions.

668
Shader Disassembler

Section VI — 3D Engine and Tools Design

Version Token

Bits 31-16 Bits 15-8 Bits 7-0

• 0xFFFF=pixel pipeline
• 0xFFFE=vertex pipeline

major version minor version

For 1_x vertex and pixel shader targets, the minor version field contains a sub-
version. For instance, 0xFFFF0103 is a version token meaning ps_1_3. But for
DirectX 9 targets (>=2_0), the minor version has another meaning:

0x00: normal target (for instance, 0xFFFF0200 means ps_2_0)
0x01: extended target (for instance, 0xFFFF0201 means ps_2_x)
0xFF: software target (for instance, 0xFFFF02FF means ps_2_sw)

Each assembler instruction generates one instruction token (even if this instruc-
tion is a macro like “m4x4,” which uses four instruction slots in the graphic chip),
containing the following information:

Instruction Token

Bit 31 Bit 30 Bit 29 Bit 28 Bits 27-14 Bits 23-16 Bits 15-0

0 Co-issue 0 Predicate Tokens count
(excluding this
one)

Specific
controls

Operation
code

The co-issue bit has meaning only on pixel shader versions earlier than 2_0. When
this bit is set, the corresponding instruction is executed simultaneously with the
preceding instruction. The two instructions can be paired only if they are exe-
cuted concurrently in the RGB and alpha pipes.

The predicate bit has meaning only on vertex and pixel shader versions 2_0
and later. When this bit is set, the value of the predicate register (p0) is used to
control, at run time, the instruction write per component. For instance:

if p0=(true, true, false, false)
"(p0) add r1, r2, r3” only writes r1.xy.

When the predicate bit is set, an extra predicate source token is inserted between
the destination token and the first source token. This extra token describes the
predicate register used and is formatted like the source register token, which will
be seen later.

The specific controls field has meaning only for the ifc, breakc, and setp
instructions, with values from 1 to 6 corresponding to gt, eq, ge, lt, ne, and le,
respectively.

The operation code value is one of the values in the D3DSHADER_IN-
STRUCTION_OPCODE_TYPE enum and is defined for all vertex and pixel
assembler instructions (for instance, the nop operation code is 0, and mov is 1).

Depending on the precise operation that an instruction token specifies
(defined by the operation code field), destination/source parameter tokens can follow
the instruction token. For example, if the instruction token specifies an add opera-
tion, one destination and two source parameter tokens would follow. The follow-
ing table outlines the description of the parameter token:

Shader Disassembler
669

Section VI — 3D Engine and Tools Design

Destination Parameter Token

Bit 31 Bits
30-28

Bits
27-24

Bits 23-20 Bits
19-16

Bits
15-14

Bit 13 Bits 12-11 Bits 10-0

1 Register
type (1)

Shift
scale

Result
modifier

Write
mask

0 Relative
addressing

Register
type (2)

Register
number

In the destination parameter token, the register type is split into two parts: (1) =
bits 0-2 and (2) = bits 3 and 4. The final value is one of those defined in the
D3DSHADER_PARAM_REGISTER_TYPE enum. Using this field, we can deter-
mine if the register is a constant, a temporary, a texture, etc. This field is used
with the register number field to get the full register name (for instance, c21).

There are a few special cases for register type/index:
� The registers an and tn share the same register type value (i.e., D3DSPR_

ADDR=D3DSPR_TEXTURE), since addressing and texture registers are
valid only in the vertex and pixel pipelines, respectively.

� The registers oPos, oFog, and oPts have the same type D3DSPR_RASTOUT
but are distinguished by the register number, ranging from 0 to 2.

� Similarly, the registers vPos and vFace have the same type D3DSPR_MISC-
TYPE but are distinguished by register numbers 0 and 1.

� The relative addressing bit is meaningful only on vertex shader versions 3_0
and later.

� The write mask field contains a bit per destination channel, set to 1 if the
component is written to (bit 16=X, bit 17 = Y, …).

The final two fields modify certain instructions rather than the destination regis-
ter itself.
� The shift scale field is a 4-bit signed scale (0x00=none, 0x01=_x2,

0x0F=_d2, for instance mul_x2 r0, r1, t0).
� The result modifier field can be a combination of _sat, _pp (partial precision),

and _centroid.

The format of the source parameter token is similar to the destination parameter
token, with the exception that the write mask, result modifier, and shift scale are
replaced by swizzle and source modifiers.

Source Parameter Token

Bit 31 Bits 30-28 Bits 27-24 Bits 23-16 Bits 15-14 Bit 13 Bits 12-11 Bits 10-0

1 Register
type (1)

Source
modifier

Swizzle 0 Relative
addressing

Register
type (2)

Register
number

� The register type field works identically to the field in the destination parame-
ter token.

� The source modifier field is one of the values in the D3DSHADER_PARAM_
SRCMOD_TYPE enum.

670
Shader Disassembler

Section VI — 3D Engine and Tools Design

� The swizzle field contains (for each of the four destination components) two
bits selecting the source component (0=X, 1=Y, 2=Z, and 3=W). For
instance, if bits 17-16 hold 0x1, this means that the source component Y is
swizzled into the destination component X.

� The relative addressing flag has meaning for all vertex shader versions and
pixel shader versions 3_0 and later. Relative addressing enables constant reg-
ister index selection at run time, depending on the value of an address regis-
ter (a0 or aL) component. The actual constant register index selected is the
sum of the token’s constant register number and the (run-time) value of the
address register component. For instance:

mov r0, c16[a0.x]

copies the value of the constant register n “16+a0.x” into r0.
On the vs_1_1 target, only a0.x is available. On vs_2_0 and ps_3_0 or

later targets, a0.x/y/z/w and aL are available.

When relative addressing is enabled and when the shader version is at least 2_0
(vs_1_1 always implicitly uses the unique address register a0.x), a relative-
addressing token follows this parameter token.

Relative-Addressing Token

Bit 31 Bits 30-28 Bits 27-20 Bits 19-16 Bits 15-14 Bit 13 Bits 12-11 Bits 10-0

1 Register
type (1)

Unused Component
index

0 Unused Register
type (2)

Register
number

The special assembler instructions def, defi, and defb, respectively, require float-
ing-point number, integer, or Boolean source parameters, which represent imme-
diate values written in the assembly.

The assembler instruction dcl is followed by a special parameter token giving
(in addition to the register type and number) a usage and usage index, or a texture
type (for a sampler register).

A comment token may also be used by the compiler to store debug informa-
tion (we read it only to compute the jump offset to the next instruction token).

Comment token

Bit 31 Bits 30-16 Bits 15-0

0 Length in DWORD count (not
including the comment token)

0xFFFE

An end token (identified by the value 0x0000FFFF) terminates the shader byte
code stream.

Additional information about DirectX 9 shader byte code can be found at [1].

Shader Disassembler
671

Section VI — 3D Engine and Tools Design

Disassembly Algorithm

Since each instruction is followed by one or more parameter tokens before reach-
ing the next instruction token, to disassemble the shader byte code, all we have to
do is parse each instruction token and then, depending on the instruction found,
parse its expected parameter tokens, output the disassembly, and loop for the
next instruction.

The first thing to do with a new token is check it against the special tokens
(namely, the version token, comment tokens, and the end token). If we are not
processing one of those tokens, we have to check the operation code of the
instruction. Then we come to the first difficult part of the task; there are a lot of
different instructions with various prototypes (type and number of arguments of
the instruction).

To solve that issue, we use C preprocessor macros. If you read the Dx9-
ShaderBCode_Instr.h file, you’ll notice that (almost) every instruction is
described by a line giving its OpCode_ID (for instance, D3DSIO_NOP) and then
its parameters (RegSrc/Dst for source/destination register, Real/Bool/Integer for
immediate values). A switch is done on the opcode, and for each instruction, the
macros expand the parameters with calls to instruction/parameters disassembly
methods. A few instruction opcodes have to be handled in a specific way because
they have a unique syntax (like the dcl instruction) or a behavior that depends on
the vertex/pixel shader target version (like texcoord/texcrd and tex/texld).

We now look, in further detail, at how each instruction is disassembled. First,
the CatInstr method outputs the instruction name in lowercase, appends an
optional specific control text for some comparison instructions (ifc, breakc, and
setp), and then appends an optional shift text and a destination modifier text (both
are taken from the next destination parameter token, if applicable).

Then, the destination and source parameters are disassembled by the
CatParamRegSrc and CatParamRegDst methods. These two methods are based
upon the CatRegister method, which outputs the register name and an optional
index. CatParamRegSrc begins to write the start of a possible source modifier (for
example, negation or bias), followed by the register name, an optional address
text with the right swizzle (in this case, an address register token would follow
the current source parameter token), and the end of the modifier if necessary.
Finally, a swizzle specifier (“.x” will be written for “.xxxx”) is finally added.
CatParamRegDst is simpler, since only a write mask has to be appended to the
register.

CoIssue and Predicated instruction modifiers are handled before the OpCode
switch. The predicated case is the more difficult one, since the predicate register
token is inserted between the first and second parameter tokens (InstrToken,
Param1Token, PredicateToken, Param2Token, . . .), so the idea is to jump over the
predicate token in order to make the following instruction disassembly work.

672
Shader Disassembler

Section VI — 3D Engine and Tools Design

Disassembler Integration and Customization

This disassembler is easily integrated with C++ code; as an example, in the
DisAsm.cpp file, only one DisAssemble call is required, passing the byte code
data as input parameters. The disassembly is returned in an allocated string (valid
until another DisAssemble call).

In addition, symbol information taken from constant tables (for example, the
fact that the constant ObjectPrCamera uses c0 to c3 registers) can be incorpo-
rated to help in understanding the assembly.

A callback method pointer can be set to override constant and sampler regis-
ter name disassembly. This callback is called with the register index and a “user
data” in parameters. If the user returns a valid string pointer, the constant will be
displayed as “cMyConstantName” or “sMySamplerName” in the output asm
(returning 0 selects the normal register name, which is defined by the DirectX
shader assembler reference as when no callback is installed). Here is a sample of
how to implement a constant name callback:

struct SConstantTable {

D3DXCONSTANT DESC*Constants;

Natural Count;

};

const char* GetRegisterNameC(Natural iRegister, void* UserData)

{

SConstantTable* Table = (SConstantTable*) UserData;

for (Natural i=0; i<Table->Count; i++)

{

const D3DXCONSTANT DESC & Constant = Table->Constants[i];

if (Constant.RegisterSet!=D3DXRS FLOAT4)

continue;

Integer iRegisterRel = iRegister-Constant.RegisterIndex;

if (iRegisterRel<0 || iRegisterRel>=Constant.RegisterCount)

continue;

char Name[128];

if (Constant.RegisterCount==1)

strcpy(Name, Constant.Name);

else

sprintf(Name, "%s %d", Constant.Name, iRegisterRel);

return Name;

}

return Null; // index out of bounds

}

SConstantTable Table; // to fill

CDx9ShaderDisasm::UserData = & Table;

CDx9ShaderDisasm::CallbackGetRegisterNameC = & GetRegisterNameC;

The input and ouput (vs_3_0 only) registers can be displayed using their
declaration semantic (usage and usage index) rather than their register index
(again, this helps in understanding the assembly). There is a special case for the
vs_3_0 output register since several semantics can be linked to the same register.

Shader Disassembler
673

Section VI — 3D Engine and Tools Design

In this case, we get back to the register index naming convention to remove any
ambiguity. Because these registers cannot be understood by DirectX assembler,
there is the possibility of disabling this (enabled by default) semantic register
naming behavior by changing two booleans’ values (one for the input registers
and one for the output registers).

References

[1] Direct3D Driver Shader Codes (MSDN Library, Direct3D DDK)
http://msdn.microsoft.com/library/default.asp? url=/library/en-us/graphics/
hh/graphics/d3denum-9o6f.asp.

674
Shader Disassembler

Section VI — 3D Engine and Tools Design

Color Plate 1. A PVS optimized scene (See page 26.)

Color Plate 2. Planet with cloud cover, noise texture, ocean, and per-pixel lighting (See page 38.)

C
o
lo

r
P
la

te
3
.
Th

e
co

n
te

n
ts

o
f

th
e

p
o
si

ti
o
n

a
n
d

n
o
rm

a
l
m

a
p

M
R
Ts

a
s

w
e
ll

a
s

th
e

fi
n
a
l
re

su
lt

in
w

ir
e
fr

a
m

e
a
n
d

so
lid

m
o
d
e

(S
e
e

p
a
g
e

5
6
.)

Color Plate 5. (left) The images in Figures 1, 4, and 5 in the “Hemisphere Lighting with Radiosity
Maps” article were created along the zoomed-in section on this 2048x512 radiosity map. (See page
116.)

Color Plate 4. (left) Diffuse (dot3) sunlight plus radiosity hemisphere lookup. (right) With the
addition of specular and Fresnel contributions, using a static cube map holding an image of
typical surroundings. (See page 113.)

Color Plate 7. The complete lighting model, combining a base texture, radiosity hemisphere,
Fresnel cube map, and dot3 sunlight. (See page 121.)

Color Plate 6. These images show the hemisphere lighting on its own, using a single DXT1 for-
mat radiosity map that encodes both shadow and ground color information. (See page 117.)

Color Plate 10. Screen shot from the water demo illustrating
advanced water and sky dome effects (See pages 208 and 249.)

Color Plate 9. Screen shot from the water demo illustrating advanced
water and sky dome effects (See pages 208 and 249.)

Color Plate 8. Rendering drop of water (See page 202.)

Color Plate 11. Position data (See page 253.)

Color Plate 12. Normal data (See page 255.)

Color Plate 14. The blue cone shapes represent the areas where the lights affect the scene, i.e., the
pixels on which the pixel shader will be executed. (See page 266.)

Color Plate 13. Diffuse data (See page 255.)

Color Plate 16. A screen shot from the Animusic demo shows motion blur via geometry and shading
distortion. (See page 299.)

Color Plate 15. Final render using deferred shading from demo (See page 269.)

A
B

C
D

E
F

G
H

I
J

K

A
tr

a
n
sl

u
ce

n
t
a
n
d

ir
id

e
sc

e
n
t
m

a
te

ri
a
l
co

m
p
u
te

d
in

a
si

n
g
le

p
a
ss

w
it
h

2
.0

p
ix

e
l
sh

a
d
e
r.

Th
e

d
if
fu

se
ill

u
m

in
a
ti
o
n

is
co

m
p
u
te

d
b
y

m
o
d
u
la

ti
n
g

b
a
se

te
xt

u
re

(C
)

w
it
h

co
m

b
in

e
d

sc
a
tt
e
re

d
(A

)
a
n
d

d
if
fu

se
(B

)
ill

u
m

in
a
ti
o
n

co
n
tr

ib
u
ti
o
n
s.

R
e
su

lt
in

g
d
if
fu

se
co

lo
r

is
p
re

-m
u
lt
ip

lie
d

b
y

in
ve

rs
e

a
lp

h
a

(F
)

to
si

m
u
la

te
co

rr
e
ct

a
lp

h
a
-b

le
n
d
in

g
in

a
si

n
g
le

p
a
ss

w
it
h
o
u
t
cl

a
m

p
in

g
sp

e
cu

la
r

h
ig

h
lig

h
ts

.
T o

co
m

p
u
te

ir
id

e
sc

e
n
ce

co
n
tr

ib
u
ti
o
n

(J
)

to
th

e
fi
n
a
l
im

a
g
e
,

w
e

co
m

p
u
te

g
lo

ss
y

sp
e
cu

la
r

h
ig

h
lig

h
ts

(G
)

a
n
d

co
m

b
in

e
th

e
m

w
it
h

ir
id

e
sc

e
n
ce

va
lu

e
s

(H
)

re
su

lt
in

g
fr

o
m

a
p
p
ly

in
g

a
n

ir
id

e
sc

e
n
ce

m
a
p
.
Th

e
re

su
lt
in

g
sp

e
cu

la
r

ir
id

e
sc

e
n
t

sh
a
d
in

g
is

co
m

b
in

e
d

w
it
h

p
re

-b
le

n
d
e
d

tr
a
n
sl

u
ce

n
t

d
if
fu

se
sh

a
d
in

g
(I

)
to

a
ch

ie
ve

fi
n
a
l
vi

su
a
l
e
ff

e
ct

(K
).

(I
m

a
g
e
s

co
u
rt

e
sy

o
f

N
a
ta

ly
a

Ta
ta

rc
h
u
k

a
n
d

C
h
ri

s
B
re

n
n
a
n
,
A
TI

Te
ch

n
o
lo

g
ie

s
In

c.
)

C
o
lo

r
P
la

te
1
7

Color Plate 19. Result of a hand-drawn image as input in a 3D scene (See page 346.)

Color Plate 18. Stereoscopic rendering in hardware (See page 336.)

C
o
lo

r
P
la

te
2
0
.

A
re

a
l-
ti
m

e
im

p
le

m
e
n
ta

ti
o
n

o
f

Pa
u
l
D

e
b
e
ve

c’
s

R
e
n
d
e
ri

n
g

w
it
h

N
a
tu

ra
l
Li

g
h
t
a
n
im

a
ti
o
n

u
si

n
g

th
e

se
p
a
ra

b
le

G
a
u
ss

ia
n

fi
lt
e
r.

(S
e
e

p
a
g
e

4
5
1
.)

Figure 5 (See page 475.) Figure 6 (See page 476.)

Figure 4 (See page 474.)Figure 3 (See page 473.)

Figure 2 (See page 471.)Figure 1 (See page 471.)

Color Plate 21

Figure 12 (See page 479.)Figure 11 (See page 479.)

Figure 7 (See page 478.) Figure 8 (See page 478.)

Figure 9 (See page 478.) Figure 10 (See page 478.)

Color Plate 22

C
o
lo

r
P
la

te
2
3
.
Th

e
tw

o
ri

p
p
le

ce
n
te

rs
a
re

co
lo

re
d

m
a
g
e
n
ta

a
n
d

fa
d
e

a
s

th
e

ri
p
p
le

fa
d
e
s.

Th
e
se

fi
ve

im
a
g
e
s

sh
o
w

,
in

le
ft

to
ri

g
h
t
o
rd

e
r,

th
e

ri
p
p
le

s’
d
is

si
p
a
ti
o
n

a
ft

e
r

th
e
y

h
a
ve

fu
lly

p
ro

p
a
g
a
te

d
.
(S

e
e

p
a
g
e

4
9
8
.)

C
o
lo

r
P
la

te
2
4
.
A

5
x5

K
u
w

a
h
a
ra

fi
lt
e
r

p
lu

s
o
u
tl
in

e
s

b
a
se

d
o
n

th
e

S
o
b
e
l
e
d
g
e

d
e
te

ct
io

n
fi
lt
e
r

h
a
s

b
e
e
n

a
p
p
lie

d
to

th
e

im
a
g
e

fo
r

re
a
l-
ti
m

e
p
o
st

e
ri

za
ti
o
n
.

(S
e
e

p
a
g
e

5
0
5
.)

C
o
lo

r
P
la

te
2
5
.
A

7
×

7
K
u
w

a
h
a
ra

fi
lt
e
r

p
lu

s
o
u
tl
in

e
s

b
a
se

d
o
n

th
e

S
o
b
e
l
e
d
g
e

d
e
te

ct
io

n
fi
lt
e
r

h
a
s

b
e
e
n

a
p
p
lie

d
to

th
e

im
a
g
e

fo
r

re
a
l-
ti
m

e
p
o
st

e
ri

za
ti
o
n
.
Th

e
7
×

7
fi
lt
e
r’

s
a
d
va

n
ta

g
e

o
ve

r
th

e
5
×

5
fi
lt
e
r

is
b
e
tt
e
r

p
o
st

e
ri

za
ti
o
n

fo
r

a
b
o
u
t
th

e
sa

m
e

n
u
m

b
e
r

o
f

in
st

ru
ct

io
n
s.

(S
e
e

p
a
g
e

5
1
0
.)

Example of the wireframe for the real-time depth of field simulation using post-processing
techniques described in the article “Real-Time Depth of Field Simulation.” Courtesy of ATI
Technologies, Inc. (See page 556.)

Color Plate 26

Example of real-time depth of field simulation using post-processing techniques described in the
article "Real-Time Depth of Field Simulation." Courtesy of ATI Technologies, Inc. (See page 556.)

Another screen shot from the temple scene, with a different viewpoint. The white dot near the
cattaur (a cross between a cat and a centaur) shows the main light's position. (See page 578.)

Color Plate 27

Screen shot taken from the soft shadows demo. This 6,000-triangle temple scene features six
lights, two of which are casting spherical soft shadows, and runs at up to 35 fps on a Radeon
9700. The two lights are animated. (See page 578.)

Index
2D noise function, 34
2D shapes, using to optimize shad-

ing passes, 266-268
3D noise function, 34

A

above-water scene, creating,
213-215

acceleration, calculating, 69-70
accumulated voxels, 163-164
accumulation buffer, using for depth

of field, 531
active stereo, 324
adaptive displacement mapping, 82
address registers, avoiding, 390
aliasing, 142-144, 580
alpha-blended objects, 617
alpha blending, 426, 617
alpha testing, 425
ambient component, 135-136
anaglyph, 335, 338

implementing, 335
arbitrarily high specular exponent,

150-151
arithmetic interpolation, 155
array-of-structures data, 386
arrays in VSC, 657
art pipeline integration, 637-639
aspect ratio, setting, 326
asynchronous notification, 59-61
attentuation, 135
attribute buffer, 253-255

building pass, 255-257
extending, 261
shading pass, 258-260
specular calculation, 261

B

backface culling, 418-419
base shaders, 663-664
basis, 329
basis functions, 235
bilinear filtering, 321
billboards, 107

aligning, 107-109
binary shaders, 636, 641-642
bits, reclaiming, 5-6
Blinn shading, 149-150

implementing, 151-152, 154,
155

blur effect, 619-620
blurriness factor, 532

bokeh, 555
break instructions, using to

early-exit, 392
bump map, 136
bump mapping, 607

implementing, 663-664
butterfly operations, 459-460

implementing, 460-461

C

camera,
models, 530-531
setting for stereoscopic render-

ing, 329
transforming, 331-332

camera lens, focus of, 555
Canny edge detection filter,

444-446
implementing, 446-449

car paint effect, 293
base color, 294-295
clear coat, 295-296
implementing, 296-298

cartoon rendering, 474-476
Cg,

using for drops of water effect,
203-206

using for sun effects, 127-130
using to render planets, 33-39

character glyph, using for mosaic
effect, 519-520

ChromaDepth, 337, 338
implementing, 337-338

circle of confusion, 531
simulating, 532-539

clipping, 420
cloth animation,

implementing, 45-55
implementing with shaders,

44-56
initializing, 44-45
normals, 53-54
overview of, 56
rendering, 54-55
setting constraints, 52-53
setting positions, 48-51

cloth model, 40-44
cloth, simulating, 40-57
cluster galaxy, 123

rendering, 123-124
Codecreatures engine, 625

collision, determining interactions
in, 66-71

collision detection, 58
using cube map, 61
visibility test, 59-61
z test, 59-61

collision map, 63, 65
creating, 63-66

color remapping, 467
color space, 440

conversion, 471
ColorCode 3-D, 336, 338

using to reduce ghosting,
336-337

comment token, 671
compression, 234-235

implementing, 237-238
normal map, 185-186

compression transform data type,
6-7

conditional data, arranging, 392
conditionals,

eliminating, 391
using to early-exit, 392

conjugate gradients algorithm,
374-375, 378

constant mapping class, 641
constant register mapping, 641
constant registers, reserving in

VSC, 656
constants,

defining, 388
in VSC, 652-653
named, 433
reasons for naming, 432

constants file, creating, 433-434
constraints, handling, 45-47
contrast, enhancing, 286
control statements, eliminating,

397
CPU vs. GPU performance,

377-379
cube map,

filtering floating-point, 320-321
floating-point, 319
using floating-point, 320
using for collision detection, 61

D

darkening, using for shadows, 592
data type, compression transform,

6-7

675

data types, DirectX 9, 4-5
decals, using, 190
decimation in time algorithm,

457-458
deferred shading, 251

advantages of, 251-252
optimizing, 260-262, 263-268
using shadows with, 261-262

dependency chains, 389
minimizing, 389

depth aliasing, 102-103, 580-581
depth-based shadows, 580-581
depth buffer,

clearing, 427
setting, 327

depth buffering, drawbacks to,
169-170

depth of field, 529
simulating using circle of con-

fusion, 532-539
simulating using separable

Gaussian filter, 540-554
techniques, 531-532

depth, calculating, 91-92, 329-330
depth of field effect, 619-620
depth peeling, 263
desaturation effect, 619
destination masks, using, 389
destination parameter token, 670
detail map, creating, 214-215
diffuse component, 132-133
diffuse lighting, 132
diffuse object, lighting, 227
Direct3D texture formats, 172
DirectX 9,

data types, 4-5
new features in, 3-7

DirectX vertex shader assembler,
651

disassembly algorithm, 672
Discrete Fourier Transform, 457
displacement compression, 7-12,

83-84
displacement effects, 472-474
displacement map, 73

pre-filtering, 8
tools for creating, 79-82

displacement mapping, 7-8, 56, 73,
283
advantages of, 73-74
disadvantages of, 74-75
faking, 283-284
requirements for using, 75

distortion effects, 494-502,
621-623

distributed ray tracing, using for
depth of field, 531

dithering, 102-104
downsampling, 542

drops of water,
animating, 201
magnification of, 202

drops of water effect, 201-202
algorithm, 203
implementing, 203-206

DXT5 format, 187-188
DXTC, 185

advantages of, 188
disadvantages of, 188-189
using for normal map compres-

sion, 185-186
dynamic allocation, 616
dynamic compilation technique,

423
dynamic Material, 606

E

edge detection, 443-449, 623
effects, 619-624
effects buffers, 614-615

sizing, 617-618
endo-stereo, 328
engine architecture, 625-629

problems with, 629
enumeration, defining, 433-434
Eturnum case study, 645-648
exo-stereo, 328
explicit textures, 190
extrusion, 564

F

falloff, 135
far capping, 564
far viewpoint, 197
Fast Fourier Transforms, 457-458

implementing, 458-462
using, 461-463

feedback effect, 623-624
filter kernels, 138
filtering, 197 see also Canny edge

detection filter and separable
filtering techniques
bilinear, 321

float constants in VSC, 652-653
floating-point cube maps, 319

filtering, 320-321
using, 320

floating-point numbers, problems
with conversion, 420-421

floating-point precision, using to
simulate blending operations,
173-174

floating-point render target, creat-
ing, 172-173

floating-point textures, 172
setting as render target, 173
using blending equation, 176

fog,
implementing, 349-351

integrating, 349
layered, 348
vertical, 348

fog density, calculating, 349
Fourier Transform, 457
fractals, 526

creating, 33-35
frame buffer,

post-processing, 465
reading from, 426

frequency domain, 457
Fresnel term, using for contrast

enhancement, 286
frustum processor, 627
fun house mirror distortion,

494-495
implementing, 495-496

function swapping, 658-659
functions in VSC, 653-654

G

galaxy effects, 123
Gamebryo engine, 631, 633
Gamebryo Shader System, 635

components of, 636
features, 636-642
future of, 648-649

Gaussian filter, using to smooth
image, 543-545

geocentric positions, 241
geometric functions in VSC, 661
geometry,

buffers, 623
compression and vertex

shaders, 3-12
distorting, 300-301
textures, 44

geo-mipmapping, 24
geomorphing, 18-19, 24-25, 27-30

frame rates, 30-31
ghost removal, 336
giantism, 330
gloss, 134, 150
GPU,

rendering planets on, 33-39
using to calculate collision

detection, 58
vs. CPU performance, 377-379

graphics engine, problems with
scalability, 597

grayscale, converting to, 466
ground color map, 115

generating, 115-116

H

hair strands, generating, 273-276
half vector, 150
hatching, 340

implementing, 341-342
methods, 340-341

676
Index

using to light illustrations,
345-346

varying line style of, 343-345
with specular highlights, 345

heightfield displacement map,
76-77

hemisphere lighting, 113-114
implementing, 118-121
optimizing, 122

high dynamic range rendering, fak-
ing, 620-621

HLSL, drawbacks to using, 667
HLSL shaders

butterfly operations, 460
Canny edge detection filter,

446-449
floating-point cube map filter-

ing, 322-323
fun house mirror distortion,

495-496
HSV-to-RGB transformation,

442-443
Kuwahara filter (5x5), 505-508
Kuwahara filter (7x7), 510-517
left-right slide, 484-485
left-right squeeze transition,

486-487
RGB-to-HSV transformation,

440-441
ripple distortion, 500-502
separable Gaussian filter,

451-452
separable median filter, 454-456
shower door distortion,

497-498
spice transitions, 493-494
spin and shrink away transition,

489-491
HLSL vertex shader, compression,

237-238
HSL color space, 443
HSV color space, 440
HSV-to-RGB transformation,

implementing, 442-443
hue, 440
hyper-threading, 386-387

I

iFFT, 285
image effects, types of, 481
image processing, 439-440
imposters and voxel objects,

170-171
indirect lighting, 135
inner volume, 562-563

generating, 563-566
input texture, reading, 174-175
input/output in VSC, 654-655
instruction token, 669
interface, importance of, 642-643

interpolation,
arithmetic, 155
texture-encoded, 154

interpolator, setting up, 418
inverse Fast Fourier Transforma-

tions, see iFFT
Inverse Fourier Transform, 457
iridescence, 309

simulating, 315-317
irradiance environment maps, 226

implementing, 230-231

J

jittering, 562
using to generate outer volume,

567-571

K

Kuwahara filter (5x5), 502-505
implementing, 505-508

Kuwahara filter (7x7), 508-510
implementing, 510-517

L

layered fog, 348
left-right slide transition, 483-484

implementing, 484-485
left-right squeeze transition,

485-486
implementing, 486-487

level of detail, see LOD
light attenuation, implementing,

662-663
light space interpolation, 157-158
light view texture, 580
lighting, 610-612

normal, 12
shaders, 662-663

lightmap,
applying to terrain, 22-24
combining with material, 23-24
creating, 19-20

lightmapping, 559-560
lilliputism, 330
linear basis, 11

using, 11-12
linear complementarity problem,

375-377
lit voxels, 165-166
LOD, 18
lookup table,

setting up, 14
setting up index scale in, 17
setting up offset constant in, 17
using with vertex shaders,

13-16
loops, performance considerations

of, 51-52
low-polygon base mesh, 75

M

macros, using, 388
magnification effect, 202
Mandelbrot set, 526-527

visualizing, 527-528
material,

applying to terrain, 23-24
combining with lightmap, 23-24

Material class,
dynamic, 606
scalability of, 602-604
static, 599-602, 606
textures, 606-610
using to animate mesh, 610
using to implement shader

abstraction, 599-602
material system, 628-629
Material::DeleteImportedData()

function, 605
Material::Export() function,

601-602, 605
Material::FindOrCreate() function,

600-601
Material::Import() function, 605
Material::Render() function, 602
MaterialDescriptor, 600
mathematical functions in VSC,

660-661
matrix, 353

mapping to texture image,
354-355

offset, 333
storing elements of, 345-355
texture, 353-354

matrix operations, 355
addition, 358-359
assignment, 355-357
miscellaneous, 373-374
multiplication, 359-367
transposed multiplication,

367-373
mesh,

lighting, 610-612
rendering, 610

mesh reduction, 81-82
Meshuggah, 270

effects in, 270-291
meso-stereo, 328
MET (multi-element texture), 253
mipmapping, 8, 197, 618-619

object IDs, 584-585
model space, 254

defining pixel normals in, 254
modular 3D engine architecture,

625-629
moon,

positioning, 240-241
rendering, 244-246

mosaic, 519
mosaic effect, 519

Index
677

implementing, 520-523
motion blur, 299-300

implementing, 302-304,
306-308

simulating, 300-302
MRT (multiple render target), 252,

618
bandwidth requirements,

263-265
using, 252-253

MRT configuration, 263-265
optimized, 266

multi-element texture, see MET
multifractal, creating, 33-34
multiple render target, see MRT
multiple simple loops technique,

423
multi-texture blending, imple-

menting, 664

N

named constants, 433
near capping, 564
negative thickness, 104
NetImmerse engine, 633

problems with, 633-634
NiBinaryShaderLib, 641
NiD3DDefaultShader class,

644-645
NiD3DShader class, 644
NiD3DShaderInterface class, 643
noise function,

using in sun shader, 127-128
using to create fractal, 33-35
using to texture planet, 36-37

nonmaxima suppression, 445
normal decompression, 294
normal map, 136

creating, 138
preparing with green channel,

187
rendering, 82-84
using with displacement map-

ping, 76-77
normal map compression, using

DXTC for, 185-186
normalized half vector, 150
normalized reflected eye vector,

150
normalized specular bump map-

ping, 155-156
shaders, 156, 157-158, 159
with per-pixel power, 159

normals,
calculating, 165-166
optimizing generation of,

166-169
precision of, 255

N-Patches, 9
using, 9-10

NSBShaderLib, 639
NSFParserLib, 642
Nyquist theorem, 13

O

object ID, 581
allocation, 585-586
LOD, 585
mipmap, 584-585
passing, 582-584
shadows, 581
using mipmapping to select,

584-585
occluder geometry, 587-588
ocean scene, 285

implementing, 286-289
offset map, 192
offset textures, 191
optimizations

calculating normals, 166-169
deferred shading, 260-262,

263-268
hemisphere lighting, 122
ray tracing, 184
rendering thick volumes,

104-105
sky dome, 248-249
software vertex processing,

387-394
terrain rendering, 25-27
VSC, 659-660
water simulation, 223-224

outer volume, 562-563
generating, 567-571

output registers, writing to, 389

P

parallax, 328
parallel cameras, 329
particle, 107

emitter, 107
system, 107

particle effects, implementing,
110-112

pass, 482
passive stereo, 324-325
patches, 18

calculating tessellation level of,
20-21

connecting, 21
using PVS with, 25-27

path volume, 62
generating, 62-63
using to determine area of col-

lision, 63-66
pattern-based procedural textures,

190
pencil sketch effect, 476-479
penumbra, 561

blurring, 571-576

generating, 563-571
Perlin noise function, using to cre-

ate fractal, 34-35
per-pixel

Fresnel reflection, 216-219
specular level, 150
specular power, 150, 152-153

per-pixel specularity, implement-
ing, 663

per-vertex shadowing, 559
Phong illumination,

fragment-level, 136-137
implementing, 139-142
model, 131-132

Phong shading, 149-150
pinhole camera, 530
pixel

diffuse color, 255
mask check, 425
normal vector, 253-255
position, 253

pixel shaders
accessing shadow map, 577
accumulated voxels, 163-164
anaglyph, 335
attribute buffer building pass,

256-257
blurring penumbra, 575-576
car paint effect, 296-298
circle of confusion simulation,

534-535, 538-539
cloth animation, 45, 49-51,

52-53, 53-54
color remapping, 467
displacement mapping, 284
downsampling, 643
ghost removal, 336-337
grayscale conversion, 466
hair, 276
hemisphere lighting, 120-121
layered fog, 349-350
mapping volume texture coor-

dinates, 268
matrix addition, 358-359
matrix assignment, 357
matrix multiplication, 364-367
matrix transposed multiplica-

tion, 371-273
mosaic effect, 523-524
motion blur, 306-307
normalized specular bump

mapping, 156, 158
normalized specular bump

mapping with per-pixel
power, 159

ocean scene, 289
optimizing normal generation,

167-169
passing object ID to back

buffer, 583

678
Index

passing object ID to lighting
view texture, 582

pencil sketch effect, 477
Phong illumination, 140-142
ray tracing, 178-182
reading input texture, 174-175
reflection and refraction, 279
rendering objects as thick vol-

umes, 95, 96-97, 98, 101-102
sampling and averaging tex-

tures, 573
saturation filter, 471-472
separable Gaussian filter, 542,

547-549, 550-552, 554
shading pass, 259-260
shadow mapping, 145-148
single-stroke textures, 344-345
sky dome, 248
solid voxels, 165
specular bump mapping, 151,

154, 155
sprite positioning, 199-200
sun surface, 281
translucency and iridescence,

312-313
underwater scene, 211
using to process image,

439-440
water simulation, 221-223

planets,
creating cloud layer for, 37
generating geometry for, 33-35
lighting, 37-38
rendering, 33-39
texturing, 35-37

plug-ins in VSC, 655-656
point, calculating inside a triangle,

9
pointillism, 346-347
polynomial texture maps, 232-233
posterization, 502-517
post-processing, 439

using for depth of field, 531
post-processing filter, setting up,

469-470
Potentially Visible Set, see PVS
precision, limitations of, 196
precompiler in VSC, 657
precomputed radiance transfer, see

PRT
predicates, using, 391
pre-ps_1_4 hardware, specular

bump mapping on, 149-160
pre-sample displacement mapping,

82-83
prioritized stroke textures, 340-341
procedural textures, 190
profiling, 392-394
projected Jacobi algorithm, 376,

378

projected shadows, 560
projection aliasing, 581-582
PRT (precomputed radiance trans-

fer), 232, 233-234
using, 236-237

ps_2_0 shaders, 402-405
PVS (Potentially Visible Set), 25

using to reduce number of
patches, 25-27

Q

quad rendering, 467
quad shading, see deferred shading

R

radial blur,
rendering, 281-283
using to render volumetric

beams, 279-283
radiosity maps, 115

generating, 115-116
rasterizer, setting up, 418
ray casting, for volumetric lighting

effect, 289-290
ray tracing, 177, 184

disadvantages of, 177
distributed, 531
optimizing, 184
pixel shader, 178-182
vertex shader, 177-178,

182-184
reference textures, 191-192
reflected eye vector, 150
reflection,

adding to water scene, 216-219
calculating for soft objects,

276-279
reflection map, rendering, 213-214
refraction,

calculating for soft objects,
276-279

implementing, 182
relative-addressing token, 671
render targets,

multiple, 618
outputting to, 427
sizing, 470

render texture, 466
rendering order, 615
rep instruction, using, 390
resource management, 626
reverse extruded shadow volumes

technique, 587
reverse shadow volume extrusion,

590-591
advantages of, 592-593
disadvantages of, 593
implementing, 591-592

RGB color space, 440

RGB-encoded values, decoding,
95-97

RGB-encoding, 92-95
RGB-to-HSV transformation,

implementing, 440-441
ripple distortion, 498-499

implementing, 500-502
run-time intrinsics, 403

using, 403-404

S

saturation, 440
saturation effect, 619
saturation filter, implementing,

471-472
scalability,

of Material class, 602-604
problems with in graphics

engine, 597
scan conversion, 421
scanline loop, implementing, 423
scanline rendering, 423-427
scene management, 626
scramble phase, 458-459
screen space texture coordinates,

mapping, 267-268
screen-alignment, 107-109
separable filtering techniques,

449-450
separable Gaussian filter, 450-451,

545-555
implementing, 451-452,

540-554
separable median filter, 452-454

implementing, 454-457
shader, 636
shader abstraction, 598

implementing with Material
class, 599-602

shader byte code, 668-671
shader disassembler,

customization of, 673-674
integration of, 673
reasons for using, 667-668

shader emulation, implementing,
405-411

shader integration, drawbacks to,
632

shader library, 636, 639
using, 639

shader programs, 636
shader system, requirements of,

634-635
shader values, parsing, 434-436
shaders,

integrating into art pipeline,
637-639

using latest version, 388
shading distortion, 304-306
shading, deferred, 251-252

Index
679

shadow map, 562
using, 576

shadow mapping, 144, 560
implementing, 144-148

shadow volume extrusion algo-
rithm, 590

shadow volumes, 62, 560-561
shadowing, 116-117

using darkening for, 592
shadowing algorithms, 559-563
shadowing artifacts,

preventing, 567-568
reducing, 588-590

shadows,
adding to scene, 144
and voxel objects, 171
using with deferred shading,

261-262
shininess, 133
shower door distortion, 496-497

implementing, 497-498
silhouette edges, calculating, 564
single complex loop technique, 423
sky dome,

implementing, 246-248
optimizing, 248-249
rendering, 241-243
requirements of, 240

Sobel edge detection, creating out-
lines with, 516-517

Sobel filter, using, 138
soft objects, rendering, 276-279
soft shadows, 561

algorithm, 561-563
SoftD3D,

future of, 428-431
rasterizer implementation, 422
reasons for developing,

413-416
software shaders, 396
software vertex processing, 383

optimizing, 387-394
reasons to use, 384

SoftWire, 398
advantages of, 399-400
macro support, 401-402
using, 398-399
vs. x86 shaders, 402

solid voxels, 164-165
sorting, 612
source parameter token, 670-671
source swizzle masks, using, 389
spatial domain, 457
specular bump mapping

on pre-ps_1_4 hardware,
149-160

shaders, 150-151, 154, 155
specular component, 133-134
specular highlights, hatching with,

345

spherical harmonics, 227-230,
235-236

spice transitions, 491-493
implementing, 493-494

spilling, 404
spin and shrink away transition,

487-489
implementing, 489-491

spiral galaxy, 124
rendering, 124-126

spring model for cloth animation,
40-44

sprites, see also texture sprites
overlapping, 196
positioning, 192-194, 197-200
rotating, 195-196
scaling, 195-196

SSE, 385-386
stacked quads, 170
star effect, implementing, 14-16
start-of-day tessellation, 84
static Material, 599-602, 606
stencil shadows, 144, 560-561

using to generate inner vol-
ume, 563-566

stereo,
active, 324
passive, 324-325

stereo scene, compositing,
333-334

stereo window, 332-333
stereoscopic camera, setting up,

325-328
stereoscopic rendering, 324-325
stereoscopic rendering methods,

335
comparing, 338

stereoscopy, 325
stream processing, 417-418
stream, setting up, 416-471
Streaming SIMD Extensions, see

SSE
stroke colors, 346
stroke-lookup textures, 343

implementing, 344-345
structure-of-arrays data, 386
sun,

positioning, 240-241
rendering, 243-244
rendering surface of, 279-281

sun effects, 127
sun texture, generating, 128-130
surface basis, 7, 8
surface bumping, 215-216
swap chain, setting up, 469-470

T

tangent space, 137-138, 254
defining pixel normals in,

254-255

temporary register usage, mini-
mizing, 389-390

terrain,
applying lightmap to, 22-24
applying material to, 23-24

terrain mesh, creating, 19-20
terrain rendering, 18

optimizations for, 25-27
problems with, 19

terrain triangulation, 19
tessellation calculation, 27-30
tessellation level, calculating for

patch, 20-21
texture blending, 423-424
texture coordinates, mapping to

screen space, 267-268
texture formats, 172
texture image, mapping to matrix,

354-355
texture mapping,

problems with unique, 80-81
unique, 76

texture space, see tangent space
texture sprites, 191 see also sprites

disadvantages of, 196-197
implementing, 197-200
using, 191-196

texture-based depth shadows,
581-584

texture-dependent reads, 466
texture-encoded interpolation, 154
textures, 190

explicit, 190
floating-point, 172
offset, 191
pattern-based procedural, 190
procedural, 190
reference, 191-192
using with Material, 606-610

thick volumes,
handling intersection of,

100-102
implementing, 94-102
optimizing, 104-105
rendering, 89-91
rendering in free space, 97-100

thickness,
calculating, 91-92
negative, 104

thin lens camera, 530-531
thresholding scheme, 341

implementing for hatching,
341-342

tile, 191
tokens, 668-669
topocentric positions, 241
transformation map, 195
transition effects, 483-494
transitioning, 290-291

680
Index

translucency, 309
calculating, 313-315

translucent pixels, working with,
262-263

triangles, setting up, 421-423
triangulation, 19
t-vertices, 21
tweening, 27-30
types in VSC, 652

U

undersampling, 584
mipmapping to select object

IDs, 584-585
reducing, 584-586

underwater scene,
creating, 209-212
pixel shader, 211
projecting, 212-213
vertex shader, 210-211

unique texture mapping, 76
problems with, 80-81

V

value, 440
value noise, 36-37
variables in VSC, 652
vector constants in VSC, 652-653
vector space, 137
version token, 668-669
vertex assembly, 419
vertex format, defining, 138-139
vertex pointer arrays, using, 420
vertex processing, 417-418
vertex shader 3.0, 3
Vertex Shader Compiler, see VSC
vertex shaders

accessing shadow map, 576-577
attribute buffer building pass,

255-256
ChromaDepth, 337-338
circle of confusion simulation,

533-534, 536
cloth animation, 45, 47, 48-49,

54-55
downsampling, 542-543
hair, 274-276
hemisphere lighting, 118-120
irradiance environment maps,

230-231
layered fog, 349-350
mapping volume texture coor-

dinates, 267-268
matrix assignment, 357
matrix multiplication, 363-364
matrix transposed multiplica-

tion, 370-371
motion blur, 302-304
normalized specular bump map-

ping, 157-158

ocean scene, 286-288
particle effects, 110-112
Phong illumination, 139-140
ray tracing, 177-178, 182-184
reflection and refraction,

278-279
rendering inner volume, 566
rendering objects as thick vol-

umes, 94, 95, 99
rendering outer volume, 570
reverse shadow volume extru-

sion, 591-592
separable Gaussian filter,

540-541, 546, 549-550, 553
shadow mapping, 145-148
shadow volume extrusion,

570-571
sky dome, 246-248
specular bump mapping,

150-151
star effect, 14-16
sun surface, 280
translucency and iridescence,

311-312
underwater scene, 210-211
volume rendering, 180-181
voxel rendering, 162
water simulation, 219-221

vertex shaders,
and geometry compression,

3-12
using lookup tables with, 13-16

vertex stream declaration format,
changes to, 3
limitations of, 3-4

vertex stream splitting, 416-417
vertex texturing, 55-56
vertex tweening, 27-30
vertical fog, 348
view transformation matrix, using

to align billboards, 108-109
viewport, setting, 326
virtual register allocation, 403-404
visibility determination system,

626-627
visibility test, for collision detec-

tion, 59-61
visible geometry, 587-588
vnoise function, using in sun

shader, 127-128
volume, rendering, 180-181
volumes, see thick volumes
volumetric beams, rendering with

radial blur, 279-283
volumetric lighting via ray casting,

289-290
volumetric lights, 562
volumetric shadows, implementing,

664-665
voxel data, generating, 171

voxel objects, 161
and imposters, 170-171
and shadows, 171

voxels,
accumulated, 163-164
lit, 165-166
rendering, 161-162
solid, 164-164

VSC (Vertex Shader Compiler),
650
examples, 662-666
features of, 650
functions, 662
input/output structure, 654-655
optimizing, 659-660
plug-ins, 655-656

VSC language, 651-657
vs. C syntax, 651-652

VSC Standard Library, 660-662
VTune Analyzer 7.0, 392-394

W

water simulation,
adding reflection to, 216-219
adding waves to, 215-219
creating above-water scene,

213-215
creating underwater scene,

209-213
implementing, 219-223
optimizing, 223-224
overview of, 208
requirements for, 207
simulating depth, 210-212

waves, adding to water scene,
215-219

wet areas texture, 201-202
world space, 137
world space pixel normal vector,

253
world space pixel positions, 253

calculating, 253

X

x86 shaders, 396-402
disadvantages of, 401
vs. SoftWire, 402

Z

z test, for collision detection, 59-61
Z-buffer, 615
Z-fail shadow volume algorithm,

577-578
zoom effect, 270

implementing, 271-273
Z-testing, 425

Index
681

Looking

Check out Wordware’s market-

featuring the following new

Visit us online at www.wordware.com for more information.

Official Butterfly.net Game
Developer’s Guide
1-55622-044-8 • $59.95
6 x 9 • 500 pp.

Strategy Game Programming
with DirectX 9.0
1-55622-922-4 • $59.95
6 x 9 • 560 pp.

Introduction to 3D Game Programming
with DirectX 9.0
1-55622-913-5 • $49.95
6 x 9 • 424 pp.

Essential LightWave 3D 7.5
1-55622-226-2 • $44.95
6 x 9 • 424 pp.

LightWave 3D 7.5 Lighting
1-55622-354-4 • $69.95
6 x 9 • 496 pp.

ShaderX2: Introductions &
Tutorials with DirectX 9
1-55622-902-X • $44.95
6 x 9 • 384 pp.

Learn FileMaker Pro 6
1-55622-974-7 • $39.95
6 x 9 • 504 pp.

FileMaker Pro 6 Developer’s Guide
to XML/XSL
1-55622-043-X • $49.95
6 x 9 • 416 pp.

Advanced FileMaker Pro 6 Web
Development
1-55622-860-0 • $59.95
6 x 9 • 464 pp.

Advanced 3D Game Programming
with DirectX 9.0
1-55622-968-2 • $59.95
6 x 9 • 552 pp.

Game Development and Production
1-55622-951-8 • $49.95
6 x 9 • 432 pp.

for more?

leading Game Developer ’s Library

releases and backlist titles.

Games That Sell!
1-55622-950-X • $34.95
6 x 9 • 336 pp.

Direct3D ShaderX: Vertex and Pixel
Shader Tips and Tricks
1-55622-041-3 • $59.95
7½ x 9¼ • 520 pp.

Game Design Foundations
1-55622-973-9 • $39.95
6 x 9 • 400 pp.

Modeling a Character in 3DS Max
1-55622-815-5 • $44.95
7½ x 9¼ • 544 pp.

Game Design: Theory and Practice
1-55622-735-3 • $49.95
7½ x 9¼ • 608 pp.

Advanced Linux 3D Graphics
Programming
1-55622-853-8 • $59.95
7½ x 9¼ • 640 pp.

Vector Game Math Processors
1-55622-921-6 • $59.95
6 x 9 • 528 pp.

Java 1.4 Game Programming
1-55622-963-1 • $59.95
6 x 9 • 672 pp.

DirectX 9 Audio Exposed: Interactive
Audio Development
1-55622-288-2 • $59.95
6 x 9 • 568 pp.

Use the following coupon code for online specials: Shader9887

About the CD
The companion CD contains examples and source code discussed in the arti-
cles. There are folders for each section and subfolders for each article within
the sections, although there may not be an example for some articles. Many
folders include a readme.txt document that explains the examples, contains
instructions, and lists hardware requirements.

Simply place the CD in your CD drive and select the folder for which you
would like to see the example.

� Warning: By opening the CD package, you accept the terms and
conditions of the CD/Source Code Usage License Agreement on the
following page.

Additionally, opening the CD package makes this book nonreturnable.

CD/Source Code Usage License Agreement
Please read the following CD/Source Code usage license agreement before opening the CD and
using the contents therein:
1. By opening the accompanying software package, you are indicating that you have read and

agree to be bound by all terms and conditions of this CD/Source Code usage license
agreement.

2. The compilation of code and utilities contained on the CD and in the book are copyrighted
and protected by both U.S. copyright law and international copyright treaties, and is owned
by Wordware Publishing, Inc. Individual source code, example programs, help files,
freeware, shareware, utilities, and evaluation packages, including their copyrights, are
owned by the respective authors.

3. No part of the enclosed CD or this book, including all source code, help files, shareware,
freeware, utilities, example programs, or evaluation programs, may be made available on a
public forum (such as a World Wide Web page, FTP site, bulletin board, or Internet news
group) without the express written permission of Wordware Publishing, Inc. or the author of
the respective source code, help files, shareware, freeware, utilities, example programs, or
evaluation programs.

4. You may not decompile, reverse engineer, disassemble, create a derivative work, or other-
wise use the enclosed programs, help files, freeware, shareware, utilities, or evaluation
programs except as stated in this agreement.

5. The software, contained on the CD and/or as source code in this book, is sold without war-
ranty of any kind. Wordware Publishing, Inc. and the authors specifically disclaim all other
warranties, express or implied, including but not limited to implied warranties of merchant-
ability and fitness for a particular purpose with respect to defects in the disk, the program,
source code, sample files, help files, freeware, shareware, utilities, and evaluation programs
contained therein, and/or the techniques described in the book and implemented in the
example programs. In no event shall Wordware Publishing, Inc., its dealers, its distributors,
or the authors be liable or held responsible for any loss of profit or any other alleged or
actual private or commercial damage, including but not limited to special, incidental, conse-
quential, or other damages.

6. One (1) copy of the CD or any source code therein may be created for backup purposes. The
CD and all accompanying source code, sample files, help files, freeware, shareware, utilities,
and evaluation programs may be copied to your hard drive. With the exception of freeware
and shareware programs, at no time can any part of the contents of this CD reside on more
than one computer at one time. The contents of the CD can be copied to another computer,
as long as the contents of the CD contained on the original computer are deleted.

7. You may not include any part of the CD contents, including all source code, example pro-
grams, shareware, freeware, help files, utilities, or evaluation programs in any compilation of
source code, utilities, help files, example programs, freeware, shareware, or evaluation pro-
grams on any media, including but not limited to CD, disk, or Internet distribution, without
the express written permission of Wordware Publishing, Inc. or the owner of the individual
source code, utilities, help files, example programs, freeware, shareware, or evaluation
programs.

8. You may use the source code, techniques, and example programs in your own commercial or
private applications unless otherwise noted by additional usage agreements as found on the
CD.

� Warning: By opening the CD package, you accept the terms and conditions
of the CD/Source Code Usage License Agreement.

Additionally, opening the CD package makes this book nonreturnable.

	ShaderX Shader Programming Tips & Tricks With DirectX 9
	Contents
	Preface
	About the Authors
	Introduction
	Section I-Geometry Manipulation Tricks
	Using Vertex Shaders for Geometry Compression
	Using Lookup Tables in Vertex Shaders
	Terrain Geomorphing in the Vertex Shader
	3D Planets on the GPU
	Cloth Animation with Pixel and Vertex Shader 3.0
	Collision Shaders
	Displacement Mapping

	Section II - Rendering Techniques
	Rendering Objects as Thick Volumes
	Screen-aligned Particles with Minimal VertexBuffer Locking
	Hemisphere Lighting with Radiosity Maps
	Galaxy Textures
	Turbulent Sun
	Fragment-level Phong Illumination
	Specular Bump Mapping on Pre-ps_1_4 Hardware
	Voxel Rendering with PS_3_0
	Simulating Blending Operations on Floating-point Render Targets
	Rendering Volumes in a Vertex & Pixel Program by Ray Tracing
	Normal Map Compression
	Drops of Water and Texture Sprites
	Advanced Water Effects
	Efficient Evaluation of Irradiance Environment Maps
	Practical Precomputed Radiance Transfer
	Advanced Sky Dome Rendering
	Deferred Shading with Multiple Render Targets
	Meshuggah's Effects Explained
	Layered Car Paint Shader
	Motion Blur Using Geometry and Shading Distortion
	Simulation of Iridescence and Translucency on Thin Surfaces
	Floating-point Cube Maps
	Stereoscopic Rendering in Hardware Using Shaders
	Hatching, Stroke Styles, and Pointillism
	Layered Fog
	Dense Matrix Algebra on the GPU

	Section III - Software Shaders and Shader Programming Tips
	Software Vertex Shader Processing
	x86 Shaders–ps_2_0 Shaders in Software
	SoftD3D: A Software-only Implementation of Microsoft's Direct3D API
	Named Constants in Shader Development

	Section IV - Image Space
	Advanced Image Processing with DirectX 9 Pixel Shaders
	Night Vision: Frame Buffer Post-processing with ps.1.1 Hardware
	Non-Photorealistic Post-processing Filters in MotoGP 2
	Image Effects with DirectX 9 Pixel Shaders
	Using Pixel Shaders to Implement a Mosaic Effect Using Character Glyphs
	Mandelbrot Set Rendering
	Real-Time Depth of Field Simulation

	Section V - Shadows
	Soft Shadows
	Robust Object ID Shadows
	Reverse Extruded Shadow Volumes

	Section VI - 3D Engine and Tools Design
	Shader Abstraction
	Post-Process Fun with Effects Buffers
	Shaders under Control (Codecreatures Engine)
	Shader Integration in the Gamebryo Graphics Engine
	Vertex Shader Compiler
	Shader Disassembler

	Index

