

TypeScript: Modern
JavaScript Development

Leverage the features of TypeScript to boost
your development skills and create captivating

web applications

A course in three modules

BIRMINGHAM - MUMBAI

TypeScript: Modern JavaScript Development
Copyright © 2016 Packt Publishing

All rights reserved. No part of this course may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this course to ensure the accuracy
of the information presented. However, the information contained in this course
is sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this course.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this course by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Published on: December 2016

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.
ISBN 978-1-78728-908-6

www.packtpub.com

Credits

Authors
Remo H. Jansen

Vilic Vane

Ivo Gabe de Wolff

Reviewers
Liviu Ignat

Jakub Jedryszek

Andrew Leith Macrae

Brandon Mills

Ivo Gabe de Wolff

Wander Wang

Matthew Hill

Content Development Editor
Rohit Kumar Singh

Graphics
Jason Monteiro

Production Coordinator
Shraddha Falebhai

[i]

Preface
It wasn’t a long time ago that many JavaScript engineers or, most of the time, web
frontend engineers, were still focusing on solving detailed technical issues, such
as how to lay out specific content cross-browsers and how to send requests cross-
domains.

At that time, a good web frontend engineer was usually expected to have notable
experience on how detailed features can be implemented with existing APIs. Only
a few people cared about how to write application-scale JavaScript because the
interaction on a web page was really simple and no one wrote ASP in JavaScript.

However, the situation has changed tremendously. JavaScript has become the
only language that runs everywhere, cross-platform and cross-device. In the main
battlefield, interactions on the Web become more and more complex, and people are
moving business logic from the backend to the frontend. With the growth of the Node.
js community, JavaScript is playing a more and more important roles in our life.

TypeScript is indeed an awesome tool for JavaScript. Unfortunately, intelligence is
still required to write actually robust, maintainable, and reusable code. TypeScript
allows developers to write readable and maintainable web applications. Editors can
provide several tools to the developer, based on types and static analysis of the code.

What this learning path covers
Module 1, Learning TypeScript, introduces many of the TypeScript features in a simple
and easy-to-understand format. This book will teach you everything you need to
know in order to implement large-scale JavaScript applications using TypeScript.
Not only does it teach TypeScript’s core features, which are essential to implement a
web application, but it also explores the power of some tools, design principles, best
practices, and it also demonstrates how to apply them in a real-life application.

Preface

[ii]

Module 2, TypeScript Design Patterns, is collection of the most important patterns you
need to improve your applications’ performance and your productivity. Each pattern
is accompanied with rich examples that demonstrate the power of patterns for a
range of tasks, from building an application to code testing.

Module 3, TypeScript Blueprints, shows you how to use TypeScript to build clean web
applications. You will learn how to use Angular 2 and React. You will also learn how
you can use TypeScript for servers, mobile apps, command-line tools, and games.
You will also learn functional programming. This style of programming will improve
your general code skills. You will see how this style can be used in TypeScript.

What you need for this learning path
You will need the TypeScript compiler and a text editor. This learning path explains
how to use Atom, but it is also possible to use other editors, such as Visual Studio
2015, Visual Studio Code, or Sublime Text.

You also need an Internet connection to download the required references and
online packages and libraries, such as jQuery, Mocha, and Gulp. Depending on
your operating system, you will need a user account with administrative privileges
in order to install some of the tools used in this learning path. Also to compile
TypeScript, you need NodeJS. You can find details on how you can install it in the
first chapter of the third module.

Who this learning path is for
This learning path is for the intermediate-level JavaScript developers aiming to learn
TypeScript to build beautiful web applications and fun projects. No prior knowledge
of TypeScript is required but a basic understanding of jQuery is expected. This
learning path is also for experienced TypeScript developer wanting to take their
skills to the next level, and also for web developers who wish to make the most of
TypeScript.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this course—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the course’s title in the subject of your message.

Preface

[iii]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt course, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this course from your account at
http://www.packtpub.com. If you purchased this course elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT t0the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the course in the Search box.
5. Select the course for which you’re looking to download the code files.
6. Choose from the drop-down menu where you purchased this course from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
course’s webpage at the Packt Publishing website. This page can be accessed by
entering the course’s name in the Search box. Please note that you need to be logged
in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

The code bundle for the course is also hosted on GitHub at https://github.com/
PacktPublishing/TypeScript-Modern-JavaScript-Development. We also have
other code bundles from our rich catalog of books, videos, and courses available at
https://github.com/PacktPublishing/. Check them out!

Preface

[iv]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our courses—maybe a mistake in the text
or the code—we would be grateful if you could report this to us. By doing so, you
can save other readers from frustration and help us improve subsequent versions
of this course. If you find any errata, please report them by visiting http://www.
packtpub.com/submit-errata, selecting your course, clicking on the Errata
Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the course in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this course, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

i

Module 1: Learning TypeScript

Chapter 1: Introducing TypeScript 1
The TypeScript architecture 2
TypeScript language features 4
Putting everything together 26
Summary 27

Chapter 2: Automating Your Development Workflow 29
A modern development workflow 29
Prerequisites 30
Source control tools 33
Package management tools 38
Task runners 43
Test runners 53
Synchronized cross-device testing 55
Continuous Integration tools 58
Scaffolding tools 59
Summary 61

Chapter 3: Working with Functions 63
Working with functions in TypeScript 64
Asynchronous programming in TypeScript 83
Summary 98

Chapter 4: Object-Oriented Programming with TypeScript 99
SOLID principles 100
Classes 101
Interfaces 104
Association, aggregation, and composition 105
Inheritance 107
Generic classes 115

ii

Table of Contents

Generic constraints 118
Applying the SOLID principles 123
Namespaces 127
Modules 129
Circular dependencies 136
Summary 138

Chapter 5: Runtime 139
The environment 140
The runtime 141
The this operator 144
Prototypes 148
Closures 158
Summary 164

Chapter 6: Application Performance 165
Prerequisites 166
Performance and resources 166
Performance metrics 167
Performance analysis 169
Performance automation 186
Exception handling 189
Summary 191

Chapter 7: Application Testing 193
Software testing glossary 194
Prerequisites 196
Testing planning and methodologies 200
Setting up a test infrastructure 203
Creating test assertions, specs, and suites with Mocha and Chai 213
Test spies and stubs with Sinon.JS 220
Creating end-to-end tests with Nightwatch.js 227
Generating test coverage reports 228
Summary 230

Chapter 8: Decorators 231
Prerequisites 231
Annotations and decorators 232
Summary 249

Chapter 9: Application Architecture 251
The single-page application architecture 252
The MV* architecture 258
Common components and features in the MV* frameworks 259

iii

Table of Contents

Choosing an application framework 273
Writing an MVC framework from scratch 274
Summary 299

Chapter 10: Putting Everything Together 301
Prerequisites 302
The application's requirements 302
The application's data 303
The application's architecture 304
The application's file structure 305
Configuring the automated build 307
The application's layout 310
Implementing the root component 310
Implementing the market controller 312
Implementing the NASDAQ model 314
Implementing the NYSE model 316
Implementing the market view 316
Implementing the market template 319
Implementing the symbol controller 320
Implementing the symbol view 323
Implementing the chart model 325
Implementing the chart view 327
Testing the application 330
Preparing the application for a production release 330
Summary 332

Module 1

Learning TypeScript

Exploit the features of TypeScript to develop and maintain captivating web
applications with ease

[1]

Introducing TypeScript
This book focuses on TypeScript's object-oriented nature and how it can help you
to write better code. Before diving into the object-oriented programing features of
TypeScript, this chapter will give you an overview of the history behind TypeScript
and introduce you to some of the basics.

In this chapter, you will learn about the following concepts:

• The TypeScript architecture
• Type annotations
• Variables and primitive data types
• Operators
• Flow control statements
• Functions
• Classes
• Interfaces
• Modules

Introducing TypeScript

[2]

The TypeScript architecture
In this section, we will focus on the TypeScript's internal architecture and its original
design goals.

Design goals
In the following points, you will find the main design goals and architectural
decisions that shaped the way the TypeScript programming language looks
like today:

• Statically identify JavaScript constructs that are likely to be errors. The
engineers at Microsoft decided that the best way to identify and prevent
potential runtime issues was to create a strongly typed programming language
and perform static type checking at compilation time. The engineers also
designed a language services layer to provide developers with better tools.

• High compatibility with the existing JavaScript code. TypeScript is a superset
of JavaScript; this means that any valid JavaScript program is also a valid
TypeScript program (with a few small exceptions).

• Provide a structuring mechanism for larger pieces of code. TypeScript
adds class-based object orientation, interfaces, and modules. These features
will help us structure our code in a much better way. We will also reduce
potential integration issues within our development team and our code
will become more maintainable and scalable by adhering to the best
object-oriented principles and practices.

• Impose no runtime overhead on emitted programs. It is common to
differentiate between design time and execution time when working with
TypeScript. We use the term design time code to refer to the TypeScript code
that we write while designing an application; we use the terms execution
time code or runtime code to refer to the JavaScript code that is executed after
compiling some TypeScript code.
TypeScript adds features to JavaScript but those features are only available
at design time. For example, we can declare interfaces in TypeScript but
since JavaScript doesn't support interfaces, the TypeScript compiler will
not declare or try to emulate this feature in the output JavaScript code.
The Microsoft engineers provided the TypeScript compiler with mechanisms
such as code transformations (converting TypeScript features into plain
JavaScript implementations) and type erasure (removing static type notation)
to generate really clean JavaScript code. Type erasure removes not only the
type annotations but also all the TypeScript exclusive language features such
as interfaces.

Chapter 1

[3]

Furthermore, the generated code is highly compatible with web browsers
as it targets the ECMAScript 3 specification by default but it also supports
ECMAScript 5 and ECMAScript 6. In general, we can use the TypeScript
features when compiling to any of the available compilation targets,
but there are some features that will require ECMAScript 5 or higher
as the compilation target.

• Align with the current and future ECMAScript proposals. TypeScript is not
just compatible with the existing JavaScript code; it will also potentially be
compatible with future versions of JavaScript. The majority of Typescript's
additional features are based on the future ECMAScript proposals; this
means many TypeScript files will eventually become valid JavaScript files.

• Be a cross-platform development tool. Microsoft released TypeScript under
the open source Apache license and it can be installed and executed in all
major operating systems.

TypeScript components
The TypeScript language is internally divided into three main layers. Each of these
layers is, in turn, divided into sublayers or components. In the following diagram,
we can see the three layers (green, blue, and orange) and each of their internal
components (boxes):

In the preceding diagram, the acronym VS refers to Microsoft's Visual
Studio, which is the official integrated development environment for
all the Microsoft products (including TypeScript). We will learn more
about this and the other IDEs in the next chapter.

Introducing TypeScript

[4]

Each of these main layers has a different purpose:

• The language: It features the TypeScript language elements.
• The compiler: It performs the parsing, type checking, and transformation of

your TypeScript code to JavaScript code.
• The language services: It generates information that helps editors and

other tools provide better assistance features such as IntelliSense or
automated refactoring.

• IDE integration: In order to take advantages of the TypeScript features,
some integration work is required to be done by the developers of the IDEs.
TypeScript was designed to facilitate the development of tools that help to
increase the productivity of JavaScript developers. As a result of these efforts,
integrating TypeScript with an IDE is not a complicated task. A proof of this
is that the most popular IDEs these days include a good TypeScript support.

In other books and online resources, you may find references to the term
transpiler instead of compiler. A transpiler is a type of compiler that takes
the source code of a programming language as its input and outputs the
source code into another programming language with more or less the
same level of abstraction.

We don't need to go into any more detail as understanding how the TypeScript
compiler works is out of the scope of this book; however, if you wish to learn more
about this topic, refer to the TypeScript language specification, which can be found
online at http://www.typescriptlang.org/.

TypeScript language features
Now that you have learned about the purpose of TypeScript, it's time to get our
hands dirty and start writing some code.

Before you can start learning how to use some of the basic TypeScript building
blocks, you will need to set up your development environment. The easiest and
fastest way to start writing some TypeScript code is to use the online editor
available on the official TypeScript website at http://www.typescriptlang.org/
Playground, as you can see in the following screenshot:

http://www.typescriptlang.org/
http://www.typescriptlang.org/Playground
http://www.typescriptlang.org/Playground

Chapter 1

[5]

In the preceding screenshot, you will be able to use the text editor on the left-hand
side to write your TypeScript code. The code is automatically compiled to JavaScript
and the output code will be inserted in the text editor located on the right-hand side
of the screen. If your TypeScript code is invalid, the JavaScript code on the right-
hand side will not be refreshed.

Alternatively, if you prefer to be able to work offline, you can download and install the
TypeScript compiler. If you work with Visual Studio, you can download the official
TypeScript extension (version 1.5 beta) from https://visualstudiogallery.msdn.
microsoft.com/107f89a0-a542-4264-b0a9-eb91037cf7af. If you are working
with Visual Studio 2015, you don't need to install the extension as Visual Studio 2015
includes TypeScript support by default.

If you use a different code editor or you use the OS X or Linux operating systems,
you can download an npm module instead. Don't worry if you are not familiar with
npm. For now, you just need to know that it stands for Node Package Manager and
is the default Node.js package manager.

https://visualstudiogallery.msdn.microsoft.com/107f89a0-a542-4264-b0a9-eb91037cf7af
https://visualstudiogallery.msdn.microsoft.com/107f89a0-a542-4264-b0a9-eb91037cf7af

Introducing TypeScript

[6]

There are TypeScript plugins available for many popular
editors such as Sublime https://github.com/Microsoft/
TypeScript-Sublime-Plugin and Atom https://atom.
io/packages/atom-typescript.

In order to be able to use npm, you will need to first install Node.js in your
development environment. You will be able to find the Node.js installation
files on the official website at https://nodejs.org/.

Once you have installed Node.js in your development environment, you will be able
to run the following command in a console or terminal:

npm install -g typescript

OS X users need to use the sudo command when installing global (-g) npm packages.
The sudo command will prompt for user credentials and install the package using
administrative privileges:

sudo npm install -g typescript

Create a new file named test.ts and add the following code to it:

var t : number = 1;

Save the file into a directory of your choice and once you have saved the file open
the console, select the directory where you saved the file, and execute the following
command:

tsc test.ts

The tsc command is a console interface for the TypeScript compiler. This command
allows you to compile your TypeScript files into JavaScript files. The compiler features
many options that will be explored in the upcoming chapters of this book.

In the preceding example, we used the tsc command to transform the test.ts file
into a JavaScript file.

If everything goes right, you will find a file named test.js in the same directory in
which the test.ts file was located. Now, you know how to compile your TypeScript
code into JavaScript and we can start learning about the TypeScript features.

You will be able to learn more about editors and other tools in
Chapter 2, Automating Your Development Workflow.

https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://atom.io/packages/atom-typescript
https://atom.io/packages/atom-typescript
https://nodejs.org/

Chapter 1

[7]

Types
As we have already learned, TypeScript is a typed superset of JavaScript. TypeScript
added optional static type annotations to JavaScript in order to transform it into a
strongly typed programming language. The optional static type annotations are used
as constraints on program entities such as functions, variables, and properties so that
compilers and development tools can offer better verification and assistance (such as
IntelliSense) during software development.

Strong typing allows the programmer to express his intentions in his code, both to
himself and to others in the development team.

Typescript's type analysis occurs entirely at compile time and adds no runtime
overhead to program execution.

Optional static type notation
The TypeScript language service is really good at inferring types, but there are
certain cases where it is not able to automatically detect the type of an object or
variable. For these cases, TypeScript allows us to explicitly declare the type of a
variable. The language element that allows us to declare the type of a variable is
known as optional static type notation. For a variable, the type notation comes
after the variable name and is preceded by a colon:

var counter; // unknown (any) type
var counter = 0; // number (inferred)
var counter : number; // number
var counter : number = 0; // number

As you can see, the type of the variable is declared after the name, this style of
type notation is based on type theory and helps to reinforce the idea of types being
optional. When no type annotations are available, TypeScript will try to guess the
type of the variable by examining the assigned values. For example, in the second
line in the preceding code snippet, we can see that the variable counter has been
identified as a numeric variable because the numeric value 0 was assigned as its
value. This process in which types are automatically detected is known as Type
inference, when a type cannot be inferred the especial type any is used as the
type of the variable.

Introducing TypeScript

[8]

Variables, basic types, and operators
The basic types are the Boolean, number, string, array, void types, and all user
defined Enum types. All types in TypeScript are subtypes of a single top type called
the Any type. The any keyword references this type. Let's take a look at each of these
primitive types:

Data Type Description

Boolean Whereas the string and number data types can have a virtually unlimited
number of different values, the Boolean data type can only have two.
They are the literals true and false. A Boolean value is a truth value;
it specifies whether the condition is true or not.

var isDone: boolean = false;

Number As in JavaScript, all numbers in TypeScript are floating point values.
These floating-point numbers get the type number.

var height: number = 6;

String You use the string data type to represent text in TypeScript. You include
string literals in your scripts by enclosing them in single or double quotation
marks. Double quotation marks can be contained in strings surrounded
by single quotation marks, and single quotation marks can be contained in
strings surrounded by double quotation marks.

var name: string = "bob";
name = 'smith';

Array TypeScript, like JavaScript, allows you to work with arrays of values.
Array types can be written in one of the two ways. In the first, you use the
type of the elements followed by [] to denote an array of that element type:

var list:number[] = [1, 2, 3];

The second way uses a generic array type, Array:
var list:Array<number> = [1, 2, 3];

Enum An enum is a way of giving more friendly names to sets of numeric values.
By default, enums begin numbering their members starting at 0, but you can
change this by manually setting the value of one to its members.

enum Color {Red, Green, Blue};
var c: Color = Color.Green;

Chapter 1

[9]

Data Type Description

Any The any type is used to represent any JavaScript value. A value of the any
type supports the same operations as a value in JavaScript and minimal
static type checking is performed for operations on any values.

var notSure: any = 4;
notSure = "maybe a string instead";
notSure = false; // okay, definitely a boolean

The any type is a powerful way to work with existing JavaScript, allowing
you to gradually opt in and opt out of type checking during compilation.
The any type is also handy if you know some part of the type, but perhaps
not all of it. For example, you may have an array but the array has a mix of
different types:

var list:any[] = [1, true, "free"];
list[1] = 100;

Void The opposite in some ways to any is void, the absence of having any type
at all. You will see this as the return type of functions that do not return
a value.

function warnUser(): void {
 alert("This is my warning message");
}

JavaScript's primitive types also include undefined and null. In JavaScript, undefined
is a property in the global scope that is assigned as a value to variables that have
been declared but have not yet been initialized. The value null is a literal (not a
property of the global object). It can be assigned to a variable as a representation of
no value.

var TestVar; // variable is declared but not initialized
alert(TestVar); // shows undefined
alert(typeof TestVar); // shows undefined

var TestVar = null; // variable is declared and value null is
assigned as value
alert(TestVar); // shows null
alert(typeof TestVar); // shows object

In TypeScript, we will not be able to use null or undefined as types:

var TestVar : null; // Error, Type expected
var TestVar : undefined; // Error, cannot find name undefined

Since null or undefined cannot be used as types, both the variable declarations in
the preceding code snippet are invalid.

Introducing TypeScript

[10]

Var, let, and const
When we declare a variable in TypeScript, we can use the var, let, or const
keywords:

var mynum : number = 1;
let isValid : boolean = true;
const apiKey : string = "0E5CE8BD-6341-4CC2-904D-C4A94ACD276E";

Variables declared with var are scoped to the nearest function block (or global, if
outside a function block).

Variables declared with let are scoped to the nearest enclosing block (or global if
outside any block), which can be smaller than a function block.

The const keyword creates a constant that can be global or local to the block in
which it is declared. This means that constants are block scoped. You will learn
more about scopes in Chapter 5, Runtime.

The let and const keywords have been available since the
release of TypeScript 1.4 but only when the compilation target
is ECMAScript 6. However, they will also work when targeting
ECMAScript 3 and ECMAScript 5 once TypeScript 1.5 is released.

Union types
TypeScript allows you to declare union types:

var path : string[]|string;
path = '/temp/log.xml';
path = ['/temp/log.xml', '/temp/errors.xml'];
path = 1; // Error

Union types are used to declare a variable that is able to store a value of two or more
types. In the preceding example, we have declared a variable named path that can
contain a single path (string), or a collection of paths (array of string). In the example,
we have also set the value of the variable. We assigned a string and an array of
strings without errors; however, when we attempted to assign a numeric value, we
got a compilation error because the union type didn't declare a number as one of the
valid types of the variable.

Chapter 1

[11]

Type guards
We can examine the type of an expression at runtime by using the typeof or
instanceof operators. The TypeScript language service looks for these operators
and will change type inference accordingly when used in an if block:

var x: any = { /* ... */ };
if(typeof x === 'string') {
 console.log(x.splice(3, 1)); // Error, 'splice' does not exist
on 'string'
}
// x is still any
x.foo(); // OK

In the preceding code snippet, we have declared an x variable of type any. Later, we
check the type of x at runtime by using the typeof operator. If the type of x results
to be string, we will try to invoke the method splice, which is supposed to a member
of the x variable. The TypeScript language service is able to understand the usage of
typeof in a conditional statement. TypeScript will automatically assume that x must
be a string and let us know that the splice method does not exist on the type string.
This feature is known as type guards.

Type aliases
TypeScript allows us to declare type aliases by using the type keyword:

type PrimitiveArray = Array<string|number|boolean>;
type MyNumber = number;
type NgScope = ng.IScope;
type Callback = () => void;

Type aliases are exactly the same as their original types; they are simply alternative
names. Type aliases can help us to make our code more readable but it can also lead
to some problems.

If you work as part of a large team, the indiscriminate creation of aliases can lead
to maintainability problems. In the book, Maintainable JavaScript, Nicholas C. Zakas,
the author recommends to avoid modifying objects you don't own. Nicholas was
talking about adding, removing, or overriding methods in objects that have not
been declared by you (DOM objects, BOM objects, primitive types, and third-party
libraries) but we can apply this rule to the usage of aliases as well.

Introducing TypeScript

[12]

Ambient declarations
Ambient declaration allows you to create a variable in your TypeScript code that will
not be translated into JavaScript at compilation time. This feature was designed to
facilitate integration with the existing JavaScript code, the DOM (Document Object
Model), and BOM (Browser Object Model). Let's take a look at an example:

customConsole.log("A log entry!"); // error

If you try to call the member log of an object named customConsole, TypeScript will
let us know that the customConsole object has not been declared:

// Cannot find name 'customConsole'

This is not a surprise. However, sometimes we want to invoke an object that has not
been defined, for example, the console or window objects.

console.log("Log Entry!");
var host = window.location.hostname;

When we access DOM or BOM objects, we don't get an error because these objects
have already been declared in a special TypeScript file known as declaration files.
You can use the declare operator to create an ambient declaration.

In the following code snippet, we will declare an interface that is implemented by the
customConsole object. We then use the declare operator to add the customConsole
object to the scope:

interface ICustomConsole {
 log(arg : string) : void;
}
declare var customConsole : ICustomConsole;

Interfaces are explained in greater detail later in the chapter.

We can then use the customConsole object without compilation errors:

customConsole.log("A log entry!"); // ok

TypeScript includes, by default, a file named lib.d.ts that provides interface
declarations for the built-in JavaScript library as well as the DOM.

Declaration files use the file extension .d.ts and are used to increase the TypeScript
compatibility with third-party libraries and run-time environments such as Node.js
or a web browser.

Chapter 1

[13]

We will learn how to work with declaration files in Chapter 2, Automating
Your Development Workflow.

Arithmetic operators
There following arithmetic operators are supported by the TypeScript programming
language. In order to understand the examples, you must assume that variable A
holds 10 and variable B holds 20.

Operator Description Example
+ This adds two operands A + B will give 30

- This subtracts the second operand from the first A - B will give -10
* This multiplies both the operands A * B will give 200
/ This divides the numerator by the denominator B / A will give 2
% This is the modulus operator and remainder after

an integer division
B % A will give 0

++ This is the increment operator that increases the
integer value by 1

A++ will give 11

-- This is the decrement operator that decreases the
integer value by 1

A-- will give 9

Comparison operators
The following comparison operators are supported by the TypeScript language. In
order to understand the examples, you must assume that variable A holds 10 and
variable B holds 20.

Operator Description Example
== This checks whether the values of two operands are equal

or not. If yes, then the condition becomes true.
(A == B) is
false. A == "10"
is true.

=== This checks whether the value and type of two operands
are equal or not. If yes, then the condition becomes true.

A === B is
false. A ===
"10" is false.

!= This checks whether the values of two operands are equal
or not. If the values are not equal, then the condition
becomes true.

(A != B) is true.

Introducing TypeScript

[14]

Operator Description Example
> This checks whether the value of the left operand is

greater than the value of the right operand; if yes, then
the condition becomes true.

(A > B) is false.

< This checks whether the value of the left operand is
less than the value of the right operand; if yes, then the
condition becomes true.

(A < B) is true.

>= This checks whether the value of the left operand is
greater than or equal to the value of the right operand; if
yes, then the condition becomes true.

(A >= B) is
false.

<= This checks whether the value of the left operand is less
than or equal to the value of the right operand; if yes,
then the condition becomes true.

(A <= B) is
true.

Logical operators
The following logical operators are supported by the TypeScript language. In order
to understand the examples, you must assume that variable A holds 10 and variable
B holds 20.

Operator Description Example
&& This is called the logical AND operator. If both the

operands are nonzero, then the condition becomes true.
(A && B) is true.

|| This is called logical OR operator. If any of the two
operands are nonzero, then the condition becomes true.

(A || B) is true.

! This is called the logical NOT operator. It is used to
reverse the logical state of its operand. If a condition is
true, then the logical NOT operator will make it false.

!(A && B) is false.

Bitwise operators
The following bitwise operators are supported by the TypeScript language. In order
to understand the examples, you must assume that variable A holds 2 and variable B
holds 3.

Operator Description Example
& This is called the Bitwise AND operator. It performs

a Boolean AND operation on each bit of its integer
arguments.

(A & B) is 2

| This is called the Bitwise OR operator. It performs
a Boolean OR operation on each bit of its integer
arguments.

(A | B) is 3.

Chapter 1

[15]

Operator Description Example
^ This is called the Bitwise XOR operator. It performs a

Boolean exclusive OR operation on each bit of its integer
arguments. Exclusive OR means that either operand one
is true or operand two is true, but not both.

(A ^ B) is 1.

~ This is called the Bitwise NOT operator. It is a unary
operator and operates by reversing all bits in the
operand.

(~B) is -4

<< This is called the Bitwise Shift Left operator. It moves all
bits in its first operand to the left by the number of places
specified in the second operand. New bits are filled with
zeros. Shifting a value left by one position is equivalent
to multiplying by 2, shifting two positions is equivalent
to multiplying by 4, and so on.

(A << 1) is 4

>> This is called the Bitwise Shift Right with sign operator.
It moves all bits in its first operand to the right by the
number of places specified in the second operand.

(A >> 1) is 1

>>> This is called the Bitwise Shift Right with zero operators.
This operator is just like the >> operator, except that the
bits shifted in on the left are always zero,

(A >>> 1) is 1

One of the main reasons to use bitwise operators in languages such as
C++, Java, or C# is that they're extremely fast. However, bitwise operators
are often considered not that efficient in TypeScript and JavaScript.
Bitwise operators are less efficient in JavaScript because it is necessary
to cast from floating point representation (how JavaScript stores all of its
numbers) to a 32-bit integer to perform the bit manipulation and back.

Assignment operators
The following assignment operators are supported by the TypeScript language.

Operator Description Example
= This is a simple assignment operator that assigns values

from the right-side operands to the left-side operand.
C = A + B will
assign the value
of A + B into C

+= This adds the AND assignment operator. It adds the
right operand to the left operand and assigns the result
to the left operand.

C += A is
equivalent to C
= C + A

Introducing TypeScript

[16]

Operator Description Example
-= This subtracts the AND assignment operator. It

subtracts the right operand from the left operand and
assigns the result to the left operand.

C -= A is
equivalent to C
= C - A

*= This multiplies the AND assignment operator. It
multiplies the right operand with the left operand and
assigns the result to the left operand.

C *= A is
equivalent to C
= C * A

/= This divides the AND assignment operator. It divides
the left operand with the right operand and assigns the
result to the left operand.

C /= A is
equivalent to C
= C / A

%= This is the modulus AND assignment operator. It takes
the modulus using two operands and assigns the result
to the left operand.

C %= A is
equivalent to C
= C % A

Flow control statements
This section describes the decision-making statements, the looping statements, and
the branching statements supported by the TypeScript programming language.

The single-selection structure (if)
The following code snippet declares a variable of type Boolean and name isValid.
Then, an if statement will check whether the value of isValid is equal to true. If the
statement turns out to be true, the Is valid! message will be displayed on the screen.

var isValid : boolean = true;

if(isValid) {
 alert("is valid!");
}

The double-selection structure (if…else)
The following code snippet declares a variable of type Boolean and name isValid.
Then, an if statement will check whether the value of isValid is equal to true. If
the statement turns out to be true, the message Is valid! will be displayed on the
screen. On the other side, if the statement turns out to be false, the message Is NOT
valid! will be displayed on the screen.

var isValid : boolean = true;

if(isValid) {
 alert("Is valid!");

Chapter 1

[17]

}
else {
 alert("Is NOT valid!");
}

The inline ternary operator (?)
The inline ternary operator is just an alternative way of declaring a double-selection
structure.

var isValid : boolean = true;
var message = isValid ? "Is valid!" : "Is NOT valid!";
alert(message);

The preceding code snippet declares a variable of type Boolean and name isValid.
Then it checks whether the variable or expression on the left-hand side of the operator
? is equal to true.

If the statement turns out to be true, the expression on the left-hand side of the
character will be executed and the message Is valid! will be assigned to the
message variable.

On the other hand, if the statement turns out to be false, the expression on the
right-hand side of the operator will be executed and the message, Is NOT valid!
will be assigned to the message variable.

Finally, the value of the message variable is displayed on the screen.

The multiple-selection structure (switch)
The switch statement evaluates an expression, matches the expression's value to a
case clause, and executes statements associated with that case. A switch statement
and enumerations are often used together to improve the readability of the code.

In the following example, we will declare a function that takes an enumeration
AlertLevel. Inside the function, we will generate an array of strings to store e-mail
addresses and execute a switch structure. Each of the options of the enumeration is
a case in the switch structure:

enum AlertLevel{
 info,
 warning,
 error
}

Introducing TypeScript

[18]

function getAlertSubscribers(level : AlertLevel){
 var emails = new Array<string>();
 switch(level){
 case AlertLevel.info:
 emails.push("cst@domain.com");
 break;
 case AlertLevel.warning:
 emails.push("development@domain.com");
 emails.push("sysadmin@domain.com");
 break;
 case AlertLevel.error:
 emails.push("development@domain.com");
 emails.push("sysadmin@domain.com");
 emails.push("management@domain.com");
 break;
 default:
 throw new Error("Invalid argument!");
 }
 return emails;
}

getAlertSubscribers(AlertLevel.info); // ["cst@domain.com"]
getAlertSubscribers(AlertLevel.warning); //
["development@domain.com", "sysadmin@domain.com"]

The value of the level variable is tested against all the cases in the switch. If the variable
matches one of the cases, the statement associated with that case is executed. Once the
case statement has been executed, the variable is tested against the next case.

Once the execution of the statement associated to a matching case is finalized, the
next case will be evaluated. If the break keyword is present, the program will not
continue the execution of the following case statement.

If no matching case clause is found, the program looks for the optional default
clause, and if found, it transfers control to that clause and executes the associated
statements.

If no default clause is found, the program continues execution at the statement
following the end of switch. By convention, the default clause is the last clause,
but it does not have to be so.

Chapter 1

[19]

The expression is tested at the top of the loop
(while)
The while expression is used to repeat an operation while a certain requirement
is satisfied. For example, the following code snippet, declares a numeric variable i.
If the requirement (the value of i is less than 5) is satisfied, an operation takes place
(increase the value of i by 1 and display its value in the browser console). Once
the operation has completed, the accomplishment of the requirement will be
checked again.

var i : number = 0;
while (i < 5) {
 i += 1;
 console.log(i);
}

In a while expression, the operation will take place only if the requirement is satisfied.

The expression is tested at the bottom of the loop
(do…while)
The do-while expression is used to repeat an operation until a certain requirement
is not satisfied. For example, the following code snippet declares a numeric variable
i and repeats an operation (increase the value of i by 1 and display its value in
the browser console) for as long as the requirement (the value of i is less than 5)
is satisfied.

var i : number = 0;
do {
 i += 1;
 console.log(i);
} while (i < 5);

Unlike the while loop, the do-while expression will execute at least once regardless
of the requirement value as the operation will take place before checking if a certain
requirement is satisfied or not.

Introducing TypeScript

[20]

Iterate on each object's properties (for…in)
The for-in statement by itself is not a bad practice; however, it can be misused, for
example, to iterate over arrays or array-like objects. The purpose of the for-in
statement is to enumerate over object properties.

var obj : any = { a:1, b:2, c:3 };
for (var key in obj) {
 console.log(key + " = " + obj[key]);
}

// Output:
// "a = 1"
// "b = 2"
// "c = 3"

The following code snippet will go up in the prototype chain, also enumerating the
inherited properties. The for-in statement iterates the entire prototype chain, also
enumerating the inherited properties. When you want to enumerate only the object's
own properties (the ones that aren't inherited), you can use the hasOwnProperty
method:

for (var key in obj) {
 if (obj.hasOwnProperty(prop)) {
 // prop is not inherited
 }
}

Counter controlled repetition (for)
The for statement creates a loop that consists of three optional expressions, enclosed
in parentheses and separated by semicolons, followed by a statement or a set of
statements executed in the loop.

for (var i: number = 0; i < 9; i++) {
 console.log(i);
}

The preceding code snippet contains a for statement, it starts by declaring the
variable i and initializing it to 0. It checks whether i is less than 9, performs the two
succeeding statements, and increments i by 1 after each pass through the loop.

Chapter 1

[21]

Functions
Just as in JavaScript, TypeScript functions can be created either as a named function
or as an anonymous function. This allows us to choose the most appropriate
approach for an application, whether we are building a list of functions in an
API or a one-off function to hand over to another function.

// named function
function greet(name? : string) : string {
 if(name){
 return "Hi! " + name;
 }
 else
 {
 return "Hi!";
 }
}

// anonymous function
var greet = function(name? : string) : string {
 if(name){
 return "Hi! " + name;
 }
 else
 {
 return "Hi!";
 }
}

As we can see in the preceding code snippet, in TypeScript we can add types to each
of the parameters and then to the function itself to add a return type. TypeScript can
infer the return type by looking at the return statements, so we can also optionally
leave this off in many cases.

There is an alternative function syntax, which uses the arrow (=>) operator after the
function’s return type and skips the usage of the function keyword.

var greet = (name : string) : string => {
 if(name){
 return "Hi! " + name;
 }
 else
 {
 return "Hi! my name is " + this.fullname;
 }
};

Introducing TypeScript

[22]

The functions declared using this syntax are commonly known as arrow functions.
Let's return to the previous example in which we were assigning an anonymous
function to the greet variable. We can now add the type annotations to the greet
variable to match the anonymous function signature.

var greet : (name : string) => string = function(name : string) :
string {
 if(name){
 return "Hi! " + name;
 }
 else
 {
 return "Hi!";
 }
};

Keep in mind that the arrow function (=>) syntax changes the way the
this operator works when working with classes. We will learn more
about this in the upcoming chapters.

Now you know how to add type annotations to force a variable to be a function with
a specific signature. The usage of this kind of annotations is really common when we
use a call back (functions used as an argument of another function).

function sume(a : number, b : number, callback : (result:number)
=> void){
 callback(a+b);
}

In the preceding example, we are declaring a function named sume that takes two
numbers and a callback as a function. The type annotations will force the callback
to return void and take a number as its only argument.

We will focus on functions in Chapter 3, Working with Functions.

Classes
ECMAScript 6, the next version of JavaScript, adds class-based object orientation
to JavaScript and, since TypeScript is based on ES6, developers are allowed to use
class-based object orientation today, and compile them down to JavaScript that
works across all major browsers and platforms, without having to wait for the next
version of JavaScript.

Chapter 1

[23]

Let's take a look at a simple TypeScript class definition example:

class Character {
 fullname : string;
 constructor(firstname : string, lastname : string) {
 this.fullname = firstname + " " + lastname;
 }
 greet(name? : string) {
 if(name)
 {
 return "Hi! " + name + "! my name is " + this.fullname;
 }
 else
 {
 return "Hi! my name is " + this.fullname;
 }
 }
}

var spark = new Character("Jacob","Keyes");
var msg = spark.greet();
alert(msg); // "Hi! my name is Jacob Keyes"
var msg1 = spark.greet("Dr. Halsey");
alert(msg1); // "Hi! Dr. Halsey! my name is Jacob Keyes"

In the preceding example, we have declared a new class Character. This class has
three members: a property called fullname, a constructor, and a method greet.
When we declare a class in TypeScript, all the methods and properties are public
by default.

You'll notice that when we refer to one of the members of the class (from within
itself) we prepend the this operator. The this operator denotes that it's a member
access. In the last lines, we construct an instance of the Character class using a new
operator. This calls into the constructor we defined earlier, creating a new object with
the Character shape, and running the constructor to initialize it.

TypeScript classes are compiled into JavaScript functions in order to achieve
compatibility with ECMAScript 3 and ECMAScript 5.

We will learn more about classes and other object-oriented programming
concepts in Chapter 4, Object-Oriented Programming with TypeScript.

Introducing TypeScript

[24]

Interfaces
In TypeScript, we can use interfaces to enforce that a class follow the specification in
a particular contract.

interface LoggerInterface{
 log(arg : any) : void;
}

class Logger implements LoggerInterface{
 log(arg){
 if(typeof console.log === "function"){
 console.log(arg);
 }
 else
 {
 alert(arg);
 }
 }
}

In the preceding example, we have defined an interface loggerInterface and a
class Logger, which implements it. TypeScript will also allow you to use interfaces
to declare the type of an object. This can help us to prevent many potential issues,
especially when working with object literals:

interface UserInterface{
 name : string;
 password : string;
}

var user : UserInterface = {
 name : "",
 password : "" // error property password is missing
};

We will learn more about interfaces and other object-oriented
programming concepts in Chapter 4, Object-Oriented Programming
with TypeScript.

Chapter 1

[25]

Namespaces
Namespaces, also known as internal modules, are used to encapsulate features and
objects that share a certain relationship. Namespaces will help you to organize your
code in a much clearer way. To declare a namespace in TypeScript, you will use the
namespace and export keywords.

namespace Geometry{
 interface VectorInterface {
 /* ... */
 }
 export interface Vector2dInterface {
 /* ... */
 }
 export interface Vector3dInterface {
 /* ... */
 }
 export class Vector2d implements VectorInterface,
 Vector2dInterface {
 /* ... */
 }
 export class Vector3d implements VectorInterface,
 Vector3dInterface {
 /* ... */
 }
}

var vector2dInstance : Geometry.Vector2dInterface = new
Geometry.Vector2d();
var vector3dInstance : Geometry.Vector3dInterface = new
Geometry.Vector3d();

In the preceding code snippet, we have declared a namespace that contains
the classes vector2d and vector3d and the interfaces VectorInterface,
Vector2dInterface, and Vector3dInterface. Note that the first interface is
missing the keyword export. As a result, the interface VectorInterface will not be
accessible from outside the namespace's scope.

In Chapter 4, Object-Oriented Programming with TypeScript, we'll be
covering namespaces (internal modules) and external modules and
we'll discuss when each is appropriate and how to use them.

Introducing TypeScript

[26]

Putting everything together
Now that we have learned how to use the basic TypeScript building blocks
individually, let's take a look at a final example in which we will use modules,
classes, functions, and type annotations for each of these elements:

module Geometry{
 export interface Vector2dInterface {
 toArray(callback : (x : number[]) => void) : void;
 length() : number;
 normalize();
 }
 export class Vector2d implements Vector2dInterface {
 private _x: number;
 private _y : number;
 constructor(x : number, y : number){
 this._x = x;
 this._y = y;
 }
 toArray(callback : (x : number[]) => void) : void{
 callback([this._x, this._y]);
 }
 length() : number{
 return Math.sqrt(this._x * this._x + this._y * this._y);
 }
 normalize(){
 var len = 1 / this.length();
 this._x *= len;
 this._y *= len;
 }
 }
}

The preceding example is just a small portion of a basic 3D engine written in
JavaScript. In 3D engines, there are a lot of mathematical calculations involving
matrices and vectors. As you can see, we have defined a module Geometry that
will contain some entities; to keep the example simple, we have only added the
class Vector2d. This class stores two coordinates (x and y) in 2d space and performs
some operations on the coordinates. One of the most used operations on vectors is
normalization, which is one of the methods in our Vector2d class.

Chapter 1

[27]

3D engines are complex software solutions, and as a developer, you are much more
likely to use a third-party 3D engine than create your own. For this reason, it is
important to understand that TypeScript will not only help you to develop large-scale
applications, but also to work with large-scale applications. In the following code
snippet, we will use the module declared earlier to create a Vector2d instance:

var vector : Geometry.Vector2dInterface = new
Geometry.Vector2d(2,3);
vector.normalize();
vector.toArray(function(vectorAsArray : number[]){
 alert(' x :' + vectorAsArray[0] + ' y : '+ vectorAsArray[1]);
});

The type checking and IntelliSense features will help us create a Vector2d instance,
normalize its value, and convert it into an array to finally show its value on screen
with ease.

Summary
In this chapter, you have learned about the purposes of TypeScript. You have also
learned about some of the design decisions made by the TypeScript engineers at
Microsoft.

Towards the end of this chapter, you learned a lot about the basic building blocks of
a TypeScript application .You started to write some TypeScript code for the first time
and you can now work with type annotations, variables and primitive data types,
operators, flow control statements, functions, and classes.

In the next chapter, you will learn how to automate your development workflow.

[29]

Automating Your
Development Workflow

After taking a first look at the main TypeScript language features, we will now
learn how to use some tools to automate our development workflow. These tools
will help us to reduce the amount of time that we usually spend on simple and
repetitive tasks.

In this chapter, we will learn about the following topics:

• An overview of the development workflow
• Source control tools
• Package management tools
• Task runners
• Test runners
• Integration tools
• Scaffolding tools

A modern development workflow
Developing a web application with high quality standards has become a
time-consuming activity. If we want to achieve a great user experience, we will need
to ensure that our applications can run as smoothly as possible on many different web
browsers, devices, Internet connection speeds, and screen resolutions. Furthermore,
we will need to spend a lot of our time working on quality assurance and performance
optimization tasks.

Automating Your Development Workflow

[30]

As developers, we should try to minimize the time spent on simple and repetitive
tasks. This might sound familiar as we have been doing this for years. We started by
writing build scripts (such as makefiles) or automated tests and today, in a modern
web development workflow, we use many tools to try to automate as many tasks as
we can. These tools can be categorized into the following groups:

• Source control tools
• Package management tools
• Task runners
• Test runners
• Continuous integration tools
• Scaffolding tools

Prerequisites
You are about to learn how to write a script, which will automate many tasks in your
development workflow; however, before that, we need to install a few tools in our
development environment.

Node.js
Node.js is a platform built on V8 (Google's open source JavaScript engine). Node.js
allows us to run JavaScript outside a web browser. We can write backend and
desktop applications using JavaScript with Node.js.

We are not going to write server-side JavaScript applications but we are going to
need Node.js because many of the tools used in this chapter are Node.js applications.

If you didn't install Node.js in the previous chapter, you can visit https://nodejs.
org to download the installer for your operating system.

Atom
Atom is an open source editor developed by the GitHub team. The open source
community around this editor is really active and has developed many plugins
and themes. You can download Atom from https://atom.io/.

https://nodejs.org
https://nodejs.org
https://atom.io/

Chapter 2

[31]

Once you have completed the installation, open the editor and go to the preferences
window. You should be able to find a section within the preferences window to
manage packages and another to manage themes just like the ones that we can
see in the following screenshot:

The Atom user interface is slightly different from the other
operating systems. Refer to the Atom documentation at
https://atom.io/docs if you need additional help to
manage packages and themes.

We need to search for the atom-typescript package in the package management
section and install it. We can additionally visit the themes section and install a theme
that makes us feel more comfortable with the editor.

We will use Atom instead of Visual Studio because Atom is
available for Linux, OS X, and Windows, so it will suit most readers.
Unfortunately, we will not cover Visual Studio Code because it was
announced when this book was about to be published. Visual Studio
Code is a lightweight IDE developed by Microsoft and available for
free for Windows, OS X, and Linux. You can visit https://code.
visualstudio.com/ if you wish to learn more about it.
If you want to work with Visual Studio, you will be able to find
the extension to enable Typescript support in Visual Studio
at https://visualstudiogallery.msdn.microsoft.
com/2d42d8dc-e085-45eb-a30b-3f7d50d55304.

https://atom.io/docs
https://code.visualstudio.com/
https://code.visualstudio.com/
https://visualstudiogallery.msdn.microsoft.com/2d42d8dc-e085-45eb-a30b-3f7d50d55304
https://visualstudiogallery.msdn.microsoft.com/2d42d8dc-e085-45eb-a30b-3f7d50d55304

Automating Your Development Workflow

[32]

One of the highest rated themes is called seti-ui and is particularly useful because
it uses a really good set of icons to help us to identify each file in our application.
For example, the gulpfile.js or bower.json files (we will learn about these files
later) are just JavaScript and JSON files but the seti-ui theme is able to identify
that they are the Gulp and Bower configuration files respectively and will display
their icons accordingly.

We can install this theme by opening the console of our operating system and
running the following commands:

cd ~/.atom/packages
git clone https://github.com/jesseweed/seti-ui --depth=1

You need to install Git to be able to run the preceding command.
You will find some information about the Git installation later on
in this chapter.

Chapter 2

[33]

Once we have installed the theme and TypeScript plugin, we will need to close the
Atom editor and open it again to make the changes effective. If everything goes well,
we will get a confirmation message in the top-right corner of the editor window.

Git and GitHub
Towards the end of this chapter, we will learn how to configure a continuous
integration build server. The build server will observe changes in our application's
code and ensure that the changes don't break the application.

In order to be able to observe the changes in the code, we will need to use a source
control system. There are a few source control systems available. Some of the most
widely used ones are Subversion, Mercurial and Git.

Source control systems have many benefits. First, they enable multiple developers to
work on a source file without any work being overridden.

Second, source control systems are also a good way of keeping previous copies of a
file or auditing its changes. These features can be really useful, for example, when
trying to find out when a new bug was introduced for the first time.

While working through the examples, we will perform some changes to the source
code. We will use Git and GitHub to manage these changes. To install Git, go to
http://git-scm.com/downloads and download the executable for your operating
system. Then, go to https://github.com/ to create a GitHub account. While
creating the GitHub account, you will be offered a few different subscription plans,
the free plan offers everything we need to follow the examples in this chapter.

Source control tools
Now that we have installed Git and created a GitHub account, we will use GitHub to
create a new code repository. A repository is a central file storage location. It is used
by the source control systems to store multiple versions of files. While a repository
can be configured on a local machine for a single user, it is often stored on a server,
which can be accessed by multiple users.

http://git-scm.com/downloads
https://github.com/

Automating Your Development Workflow

[34]

GitHub offers free source control repositories for open source
projects. GitHub is really popular within the open source
community and many popular projects are hosted on GitHub
(including TypeScript). However, GitHub is not the only option
available and you can use a local Git repository or another
source control service provider such as Bitbucket. If you wish
to learn more about these alternatives, refer to the official
Git documentation at https://git-scm.com/doc or the
BitBucket website at https://bitbucket.org/.

To create a new repository on GitHub, log in to your GitHub account and click on
the link to create a new repository, which we can find in the top-right corner of the
screen.

A web form similar to the one in the following screenshot will then appear.
This form contains some fields, which allow us to set the repository's name,
description, and privacy settings.

https://git-scm.com/doc
https://bitbucket.org/

Chapter 2

[35]

We can also add a README.md file, which uses markdown syntax and is used to add
whatever text we want to the repository's home page on GitHub. Furthermore, we
can add a default .gitignore file, which is used to specify files that we would like
to be ignored by Git and therefore not saved into the repository.

Last but not least, we can also select a software license to cover our source code.
Once we have created the repository, we will navigate to our profile page on GitHub,
find the repository that we have just created, and go to the repository's page. On the
repository's page, we will be able to find the clone URL at the bottom-right corner of
the page.

We need to copy the repository's clone URL, open a console, and use the URL as an
argument of the git clone command:

git clone https://github.com/user-name/repository-name.git

Sometimes the Windows command-line interface is not able to find
the Git and Node.js commands.
The easiest way to get around this issue is to use the Git console
(installed with Git) rather than using the Windows command line.
If you want to use the Windows console, you will need to manually
add the Git and Node installation paths to the Windows PATH
environment variable.
Also, note that we will use the UNIX path syntax in all the
examples.
If you are working with OS X or Linux, the default command-line
interface should work fine.

Automating Your Development Workflow

[36]

The command output should look similar to this:

Cloning into 'repository-name'...

remote: Counting objects: 3, done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 3 (delta 2), reused 0 (delta 0), pack-reused 0

Unpacking objects: 100% (3/3), done.

Checking connectivity... done.

We can then move inside the repository by using the change directory command (cd)
and use the git status command to check the local repository's status:

cd repository-name

git status

On branch master

Your branch is up-to-date with 'origin/master'.

nothing to commit, working directory clean

We will use GitHub throughout this book. However, if you want to
use a local repository, you can use the Git init command to create
an empty repository.
Refer to the Git documentation at http://git-scm.com/docs/
git-init to learn more about the git init command and
working with a local repository.

The git status command is telling us that there are no changes in our working
directory. Let's open the repository folder in Atom and create a new file called
gulpfile.js. Now, run the git status command again, and we will see that
there are some new untracked files:

On branch master

Your branch is up-to-date with 'origin/master'.

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 gulpfile.js

nothing added to commit but untracked files present (use "git add" to
track)

http://git-scm.com/docs/git-init
http://git-scm.com/docs/git-init

Chapter 2

[37]

The files in the Atom project explorer are displayed using a
color code, which will help us to identify whether a file is new,
or has changed since we cloned the repository.

When we make some changes, such as adding a new file or changing an existing
file, we need to execute the git add command to indicate that we want to add that
change to a snapshot:

git add gulpfile.js

git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: gulpfile.js

Now that we have staged the content we want to snapshot, we have to run the git
commit command to actually record the snapshot. Recording a snapshot requires a
commentary field, which can be provided using the git commit command together
with its -m argument:

git commit -m "added the new gulpfile.js"

If everything has gone well, the command output should be similar to the following:

[master 2a62321] added the new file gulpfile.js

 1 file changed, 1 insertions(+)

 create mode 100644 gulpfile.js

To share the commit with other developers, we need to push our changes to the
remote repository. We can do this by executing the git push command:

git push

The git push command will ask for our GitHub username and password and
then send the changes to the remote repository. If we visit the repository's page on
GitHub, we will be able to find the recently created file. We will return to GitHub
later in this chapter to configure our continuous integration server.

Automating Your Development Workflow

[38]

If you are working in a large team, you might encounter some file
conflicts when attempting to push some changes to the remote
repository. Resolving a file conflict is out of the scope of this book;
however, if you need further information about Git, you will find
an extensive user manual at https://www.kernel.org/pub/
software/scm/git/docs/user-manual.html.

Package management tools
Package management tools are used for dependency management, so that we no
longer have to manually download and manage our application's dependencies. We
will learn how to work with three different package management tools: Bower, npm,
and tsd.

npm
The npm package manager was originally developed as the default Node.js package
management tool, but today it is used by many tools. Npm uses a configuration file,
called package.json, to store references to all the dependencies in our application.
It is important to remember that we will normally use npm to install dependencies
that we will use on the server side, in a desktop application, or with development
tools.

Before we install any packages, we should add a package.json file to our project.
We can do it by executing the following command:

npm init

The npm init command will ask for some basic information about our project,
including its name, version, description, entry point, test command, Git repository,
keywords, author and license.

Refer to the official npm documentation at https://docs.npmjs.
com/files/package.json if you are unsure about the purposes
of some of the package.json fields mentioned earlier.

The npm command will then show us a preview of the package.json file that is
about to be generated and ask for our final confirmation.

Remember that you need to have Node.js installed to be able to
use the npm command tool.

https://www.kernel.org/pub/software/scm/git/docs/user-manual.html
https://www.kernel.org/pub/software/scm/git/docs/user-manual.html
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/files/package.json

Chapter 2

[39]

After creating the project's package.json file, run the npm install command to
install our first dependency. The npm install command takes the name of one or
multiple dependencies separated by a single space as an argument and a second
argument to indicate the scope of the installation.

The scope can be:

• A dependency at development time (testing frameworks, compilers, and so on)
• A dependency at runtime (a web framework, database ORMs, and so on)

We will use the gulp-typescript npm package to compile our TypeScript code; so,
let's install it as a development dependency (using the --save-dev argument):

npm install gulp-typescript --save-dev

To install a global dependency, we will use the -g argument:

npm install typescript -g

We might need administrative privileges to install packages with
global scope in our development environment, as we already learned
in the previous chapter.
Also, note that npm will not add any entries to our package.json
file when installing packages with global scope but it is important that
we manually add the right dependencies to the devDependencies
and peerDependencies sections in the package.json file to
guarantee that the continuous integration build server will resolve
all our project's dependencies correctly. We will learn about the
continuous integration build server in detail later in this chapter.

To install a runtime dependency, use the --save argument:

npm install jquery --save

JQuery is probably the most popular JavaScript framework or library
ever created. It is used to facilitate the usage of some browser APIs
without having to worry about some vendor-specific differences
in the APIs. JQuery also provides us with many helpers that will
help us reduce the amount of code necessary to perform tasks such
as selecting an HTML node within the tree of nodes in an HTML
document.
It is assumed that the readers of this book have a good understanding
of JQuery. If you need to learn more about JQuery, refer to the official
documentation at https://api.jquery.com/.

https://api.jquery.com/

Automating Your Development Workflow

[40]

Once we have installed some dependencies in the package.json file, the contents
should look similar to this:

{
 "name": "repository-name",
 "version": "1.0.0",
 "description": "example",
 "main": "index.html",
 "scripts": {
 "test": "test"
 },
 "repository": {
 "type": "git",
 "url": "https://github.com/username/repository-name.git"
 },
 "keywords": [
 "typescript",
 "demo",
 "example"
],
 "author": "Name Surname",
 "contributors": [],
 "license": "MIT",
 "bugs": {
 "url": "https://github.com/username/repository-name/issues"
 },
 "homepage": "https://github.com/username/repository-name",
 "engines": {},
 "dependencies": {
 "jquery" : "^2.1.4"
 },
 "devDependencies": {
 "gulp-typescript": "^2.8.0"
 }
}

Some fields in the package.json file must be configured manually.
To learn more about the available package.json configuration
fields, visit https://docs.npmjs.com/files/package.json.
The versions of the npm packages used throughout this book may
have been updated since the publication of this book. Refer to the
packages documentation at https://npmjs.com to find out
potential incompatibilities and learn about new features.

https://docs.npmjs.com/files/package.json

Chapter 2

[41]

All the npm packages will be saved under the node_modules directory. We should
add the node_modules directory to our .gitignore file as it is recommended to
avoid saving the application's dependencies into source control. We can do this by
opening the .gitignore file and adding a new line that contains the name of the
folder (node_modules).

The next time we clone our repository, we will need to download all our dependencies
again, but to do so, we will only need to execute the npm install command without
any additional parameters:

npm install

The package manager will then search for the package.json file and install all the
declared dependencies.

If, in the future, we need to find an npm package name, we will be
able to use the npm search engines at https://www.npmjs.com
in order to find it.

Bower
Bower is another package management tool. It is really similar to npm but it was
designed specifically to manage frontend dependencies. As a result, many of the
packages are optimized for its usage in a web browser.

We can install Bower by using npm:

npm install -g bower

Instead of the package.json file, Bower uses a configuration file named bower.
json. We can use the majority of the npm commands and arguments in Bower.
For example, we can use the bower init command to create the initial bower
configuration file:

bower init

The initial configuration file is quite similar to the package.json
file. Refer to the official documentation at http://bower.io/
docs/config/ if you want to learn more about the bower.json
configuration fields.

We can also use the bower install command to install a package:

bower install jquery

http://bower.io/docs/config/
http://bower.io/docs/config/

Automating Your Development Workflow

[42]

Furthermore, we can also use the install scope arguments:

bower install jquery --save

bower install jasmine --save-dev

All the Bower packages will be saved under the bower_components directory.
As you have already learned, it is recommended to avoid saving your application's
dependencies in your remote repository, so you should also add the bower_
components directory to your .gitignore file.

tsd
In the previous chapter, we learned that TypeScript by default includes a file
lib.d.ts that provides interface declarations for the built-in JavaScript objects
as well as the Document Object Model (DOM) and Browser Object Model (BOM)
APIs. The TypeScript files with the extension .d.ts are a special kind of TypeScript
file known as type definition files or declaration files.

The type definition files usually contain the type declarations of third-party libraries.
These files facilitate the integration between the existing JavaScript libraries and
TypeScript. If, for example, we try to invoke the JQuery in a TypeScript file, we will
get an error:

$.ajax({ / **/ }); // cannot find name '$'

To resolve this issue, we need to add a reference to the JQuery type definition file in
our TypeScript code, as shown in the following line of code:

///<reference path="jquery.d.ts">

Fortunately, we don't need to create the type definition files because there is an
open source project known as DefinitelyTyped that already contains type definition
files for many JavaScript libraries. In the early days of TypeScript development,
developers had to manually download and install the type definition files from the
DefinitelyTyped project website, but those days are gone, and today we can use a
much better solution known as tsd.

The tsd acronym stands for TypeScript Definitions and it is a package manager
that will help us to manage the type definition files required by our TypeScript
application. Just like npm and bower, tsd uses a configuration file named tsd.json
and stores all the downloaded packages under a directory named typings.

Run the following command to install tsd:

npm install tsd -g

Chapter 2

[43]

We can use the tsd init command to generate the initial tsd.json file and the tsd
install command to download and install dependencies:

tsd init // generate tsd.json

tsd install jquery --save // install jquery type definitions

You can visit the DefinitelyTyped project website at https://github.com/
borisyankov/DefinitelyTyped to search for tsd packages.

Task runners
A task runner is a tool used to automate tasks in the development process. The
task can be used to perform a wide variety of operations such as the compilation
of TypeScript files or the compression of JavaScript files. The two most popular
JavaScript task runners these days are Grunt and Gulp.

Grunt started to become popular in early 2012 and since then the open source
community has developed a large number of Grunt-compatible plugins.

On the other hand, Gulp started to become popular in late 2013; therefore, there
are less plugins available for Gulp, but it is quickly catching up with Grunt.

Besides the number of plugins available, the main difference between Gulp and
Grunt is that while in Grunt we will work using files as the input and output of our
tasks, in Gulp we will work with streams and pipes instead. Grunt is configured
using some configuration fields and values. However, Gulp prefers code over
configuration. This approach makes the Gulp configuration somehow more
minimalistic and easier to read.

In this book, we will work with Gulp; however, if you want to learn
more about Grunt, you can do so at http://gruntjs.com/.

In order to gain a good understanding of Gulp, we can use the project that we have
already created and add some extra folders and files to it. Alternatively, we can start
a new project from scratch. We will configure some tasks, which will reference paths,
folders, and files numerous times, so the following directory tree structure should
help us understand each of these tasks:

├── LICENSE
├── README.md
├── index.html
├── gulpfile.js
├── karma.conf.js

https://github.com/borisyankov/DefinitelyTyped
https://github.com/borisyankov/DefinitelyTyped
http://gruntjs.com/

Automating Your Development Workflow

[44]

├── tsd.json
├── package.json
├── bower.json
├── source
│ └── ts
│ └── *.ts
├── test
│ └── main.test.ts
├── data
│ └── *.json
├── node_modules
│ └── ...
├── bower_components
│ └── ...
└── typings
 └── ...

A copy of a finished example project is provided in the companion
source code. The code is provided to help you follow the content.
You can use the finished project to help improve the understanding
of the concepts discussed in the rest of this chapter.

Let's start by installing gulp globally with npm:

npm install -g gulp

Then install gulp in our package.json devDependencies:

npm install --save-dev gulp

Create a JavaScript file named gulpfile.js inside the root folder of our project,
which should contain the following piece of code:

var gulp = require('gulp');

gulp.task('default', function() {
 console.log('Hello Gulp!');
});

And, finally, run gulp (we must execute this command from where the gulpfile.js
file is located):

gulp

Chapter 2

[45]

We have created our first Gulp task, which is named default. When we run the
gulp command, it will automatically try to search for the gulpfile.js file in the
current directory, and once found, it will try to find the default task.

Checking the quality of the TypeScript code
The default task is not performing any operations in the preceding example, but we
will normally use a Gulp plugin in each task. We will now add a second task, which
will use the gulp-tslint plugin to check whether our TypeScript code follows a
series of recommended practices.

We need to install the plugin with npm:

npm install gulp-tslint --save-dev

We can then load the plugin in to our gulpfile.js file and add a new task:

var tslint = require('gulp-tslint');
gulp.task('lint', function() {
 return gulp.src([
 './source/ts/**/**.ts', './test/**/**.test.ts'
]).pipe(tslint())
 .pipe(tslint.report('verbose'));
});

We have named the new task lint. Let's take a look at the operations performed by
the lint task, step by step:

1. The gulp src function will fetch the files in the directory located at
./source/ts and its subdirectories with the file extension .ts. We
will also fetch all the files in the directory located at ./test and its
subdirectories with the file extension .test.ts.

2. The output stream of the src function will be then redirected using the pipe
function to be used as the tslint function input.

3. Finally, we will use the output of the tslint function as the input of the
tslint.report function.

Now that we have added the lint task, we will modify the gulpfile.js file to
indicate that we want to run lint as a subtask of the default task:

gulp.task('default', ['lint']);

Automating Your Development Workflow

[46]

Many plugins allow us to indicate that some files should be ignored
by adding the exclamation symbol (!) before a path. For example, the
path !path/*.d.ts will ignore all files with the extension .d.ts;
this is useful when the declaration files and source code files are
located in the same directory.

Compiling the TypeScript code
We will now add two new tasks to compile our TypeScript code (one for the
application's logic and one for the application's unit tests).

We will use the gulp-typescript plugin, so remember to install it as a
development dependency using the npm package manager, just as we did
previously in this chapter:

npm install -g gulp-typescript

We can then create a new gulp-typescript project object:

var ts = require('gulp-typescript');
var tsProject = ts.createProject({
 removeComments : true,
 noImplicitAny : true,
 target : 'ES3',
 module : 'commonjs',
 declarationFiles : false
});

It has been announced that the gulp-typescript plugin will soon support
the usage of a special JSON file named tsconfig.json. This file is
used to store the TypeScript compiler configuration. When the file is
available, it is used by the compiler during the compilation process.
The tsconfig.json file is useful because it prevents us from having
to write all the desired compiler parameters when using its console
interface. Refer to the gulp-typescript documentation, which can be
found at https://www.npmjs.com/package/gulp-typescript,
to learn more about this feature.

https://www.npmjs.com/package/gulp-typescript

Chapter 2

[47]

In the preceding code snippet, we have loaded the TypeScript compiler as a
dependency and then created an object named tsProject, which contains the
settings to be used by the TypeScript compiler during the compilation of our code.
We are now ready to compile our application's source code:

gulp.task('tsc', function() {
return gulp.src('./source/ts/**/**.ts')
 .pipe(ts(tsProject))
 .js.pipe(gulp.dest('./temp/source/js'));
});

The tsc task will fetch all the .ts files in the directory located at ./source/ts
and its subdirectories and pass them as a stream to the TypeScript compiler. The
compiler will use the compilation settings passed as the tsProject argument and
then save the output JavaScript files into the path ./temp/sources/js.

We also need to compile some unit tests written in TypeScript. The tests are located
in the test folder and we want the output JavaScript files to be stored under temp/
test. Using the same project configuration object in a different task and with
different input files can result in bad performance and unexpected behavior; so we
need to initialize another gulp-typescript project object. This time we will name the
object tsTestProject:

var tsTestProject = ts.createProject({
 removeComments : true,
 noImplicitAny : true,
 target : 'ES3',
 module : 'commonjs',
 declarationFiles : false
});

The tsc-test task is almost identical to the tsc task, but instead of compiling the
application's code, it will compile the application's tests. Since the source and test
are located in different directories, we have used different paths in this task:

gulp.task('tsc-tests', function() {
 return gulp.src('./test/**/**.test.ts')
 .pipe(ts(tsTestProject))
 .js.pipe(gulp.dest('./temp/test/'));
});

We will update the default task once more in order to perform the new tasks:

gulp.task('default', ['lint', 'tsc', 'tsc-tests']);

Automating Your Development Workflow

[48]

Optimizing a TypeScript application
When we compile our Typescript code, the compiler will generate a JavaScript file
for each compiled TypeScript file. If we run the application in a web browser, these
files won't really be useful on their own because the only way to use them would be
to create an individual HTML script tag for each one of them.

Alternatively, we could follow two different approaches:

• We could use a tool, such as the RequireJS library, to load each of those files
on demand using AJAX. This approach is known as asynchronous module
loading. To follow this approach, we will need to change the configuration
of the TypeScript compiler to use the asynchronous module definition
(AMD) notation.

• We could configure the TypeScript compiler to use the CommonJS module
notation and use a tool, such as Browserify, to trace the application's modules
and dependencies and generate a highly optimized single file, which will
contain all the application's modules.

In this book, we will use the CommonJS method because it is highly integrated with
Browserify and Gulp.

If you have never worked with AMD or CommonJS modules before,
don't worry too much about it for now. We will focus on modules in
Chapter 4, Object-Oriented Programming with TypeScript.

We can find the application's root module (named main.ts in our example) in the
companion code. This file contains the following code:

///<reference path="./references.d.ts" />

import { headerView } from './header_view';
import { footerView } from './footer_view';
import { loadingView } from './loading_view';

headerView.render();
footerView.render();
loadingView.render();

The preceding import statements are used to access the contents of
some external modules. We will learn more about external modules
in Chapter 4, Object-Oriented Programming with TypeScript.

Chapter 2

[49]

When compiled (using the CommonJS module notation), the output JavaScript code
will look like this:

var headerView = require('./header_view');
var footerView = require('./footer_view');
var loadingView = require('./loading_view');
headerView.render();
footerView.render();
loadingView.render();

As we can see in the first three lines, the main.js file depends on the other three
JavaScript files: header_view.js, footer_view.js, and loading_view.js. If we
check the companion code, we will see that these files also have some dependencies.

We will normally refer to these dependencies as modules. Importing a module
allows us to use the public parts (also known as the exported parts) of a module
from another module.

Browserify is able to trace the full tree of dependencies and generate a
highly optimized single file, which will contain all the application's modules
and dependencies.

We will now add two new tasks to our automated build (gulpfile.js). In the first
one, we will configure Browserify to trace the dependencies of our application's
modules. In the second one, we will configure Browserify to trace the dependencies
of our application's unit tests.

We need to install some packages before implementing the new task:

npm install browserify vinyl-transform gulp-uglify gulp-sourcemaps

We can then import the modules and write some initialization code:

Var browserify = require('browserify'),
 transform = require('vinyl-transform'),
 uglify = require('gulp-uglify'),
 sourcemaps = require('gulp-sourcemaps');

var browserified = transform(function(filename) {
 var b = browserify({ entries: filename, debug: true });
 return b.bundle();
});

In the preceding code snippet, we have loaded the required plugins and declared
a function named browserified, which is required for compatibility reasons.
The browserified function will transform a regular Node.js stream into a Gulp
(buffered vinyl) stream.

Automating Your Development Workflow

[50]

Let's proceed to implement the actual task:

gulp.task('bundle-js', function () {
 return gulp.src('./temp/source/js/main.js')
 .pipe(browserified)
 .pipe(sourcemaps.init({ loadMaps: true }))
 .pipe(uglify())
 .pipe(sourcemaps.write('./'))
 .pipe(gulp.dest('./dist/source/js/'));
});

The task we just defined will take the file main.js as the entry point of our application
and trace all the application's modules and dependencies from this point. It will then
generate one single stream containing a highly optimized JavaScript.

We will then use the uglify plugin to minimize the output size. The reduced file
size will reduce the application's loading time, but will make it harder to debug.
We will also generate a source map file to facilitate the debugging process.

Uglify removes all line breaks and whitespaces and reduces the length
of some variable names. The source map files allow us to map the
reduced file to its original code while debugging.
A source map provides a way of mapping code within a compressed
file back to its original position in a source file. This means we can
easily debug an application even after its assets have been optimized.
The Chrome and Firefox developer tools both ship with built-in
support for source maps.

The bundle-test task is really similar to the previous task. This time, we will
avoid using uglify and source maps because usually we won't need to optimize the
download times of our unit tests. As you can see, we don't have a single entry point
because we will allow the existence of multiple entry points (each entry point will
be liked to a collection of automated tests known as test suite. Don't worry if you are
not familiar with this term, as we will learn more about it in Chapter 7, Application
Testing):

gulp.task('bundle-test', function () {
 return gulp.src('./temp/test/**/**.test.js')
 .pipe(browserified)
 .pipe(gulp.dest('./dist/test/'));
});

Finally, we have to update the default task to also perform the new tasks:

gulp.task('default', ['lint', 'tsc', 'tsc-tests', 'bundle-js',
'bundle-test']);

Chapter 2

[51]

We have created a task to compile the TypeScript files into JavaScript
files. The JavaScript files are stored in a temporary folder and a second
task bundles all the JavaScript files into a single file. In a real corporate
environment, it is not recommended to store files temporarily when
working with Gulp. We can perform all these operations with one
single task by passing the output stream of an operation as the input of
the following operation. However, in this book, we will try to split the
tasks to facilitate the understanding of each task.

If we try to execute the default task after adding these changes, we will probably
experience some issues because the tasks are executed in parallel by default. We
will now learn how to control the task's execution order to avoid this kind of issue.

Managing the Gulp tasks' execution order
Sometimes we will need to run our tasks in a certain order (for example, we need
to compile our TypeScript into JavaScript before we can execute our unit tests).
Controlling the tasks' execution order can be challenging since in Gulp all the
tasks are asynchronous by default.

There are three ways to make a task synchronous:

• Passing in a callback
• Returning a stream
• Returning a promise

Refer to Chapter 3, Working with Functions to learn more about
the usage callbacks and promises.

Let's take a look at the first two ways (we will not cover the usage of promises in
this chapter):

// Passing a callback (cb)
gulp.task('sync', function (cb) { // note the cb argument
 // setTimeout could be any async task
 setTimeout(function () {
 cb(); // note the cb usage here
 }, 1000);
});

// Returning a stream
gulp.task('sync', function () {

Automating Your Development Workflow

[52]

 return gulp.src('js/*.js') // note the return keyword here
 .pipe(concat('script.min.js')
 .pipe(uglify())
 .pipe(gulp.dest('../dist/js');
});

Now that we have a synchronous task, we can combine it with the task dependency
notation to manage the execution order:

gulp.task('secondTask', ['sync'], function () {
 // this task will not start until
 // the sync task is all done!
});

In the preceding code snippet, the secondTask task will not start until the sync task is
done. Now, let's imagine that there is a third task named thirdTask. We will write the
following code snippet hoping that it will execute the sync task before the thirdTask
task and finally the default task, but it will in fact run the sync task and thirdTask
task in parallel:

gulp.task('default', ['sync', 'thirdTask'], function () {
 // do stuff
});

Fortunately, we can install the run-sequence Gulp plugin via npm, which will allow
us to have better control over the task execution order:

var runSequence = require('run-sequence');
gulp.task('default', function(cb) {
 runSequence(
 'lint', // lint
 ['tsc', 'tsc-tests'], // compile
 ['bundle-js','bundle-test'], // optimize
 'karma' // test
 'browser-sync', // serve
 cb // callback
);
});

The preceding code snippet will run in the following order:

1. lint.
2. tsc and tsc-tests in parallel.
3. bundle-js and bundle-test in parallel.
4. karma.
5. browser-sync.

Chapter 2

[53]

The Gulp development team announced plans to improve the
management of the task execution order without the need for
external plugins when this book was about to be published. Refer
to the Gulp documentation and release notes on future releases to
learn more about it. The documentation can be found at https://
github.com/gulpjs/gulp/blob/master/docs/README.md.

Test runners
A test runner is a tool that allows us to automate the execution of our application's
unit tests.

Unit testing refers to the practice of testing certain functions and
areas (units) of our code. This gives us the ability to verify that our
functions work as expected. It is assumed that the reader has some
understanding of the unit test process, but the topics explored
here will be covered in a much higher level of detail in Chapter 7,
Application Testing.

We can use a test runner to automatically execute our application's test suites in
multiple browsers instead of having to manually open each web browser in order
to execute the tests.

We will use a test runner known as Karma. Karma is compatible with multiple unit
testing frameworks, but we will use the Mocha testing framework together with two
libraries: Chai (an assertion library) and Sinon (a mocking framework).

You don't need to worry too much about these libraries right now
because we will focus on their usage in Chapter 7, Application Testing.

Let's start by using npm to install the testing framework that we are going to use:

npm install mocha chai sinon --save-dev

We will continue by installing the karma test runner and some dependencies:

npm install karma karma-mocha karma-chai karma-sinon karma-coverage
karma-phantomjs-launcher gulp-karma --save-dev

https://github.com/gulpjs/gulp/blob/master/docs/README.md
https://github.com/gulpjs/gulp/blob/master/docs/README.md

Automating Your Development Workflow

[54]

After installing all the necessary packages, we have to add a new Gulp task to the
gulpfile.js file. The new task will run the application's unit tests using Karma:

Var karma = require("gulp-karma");

gulp.task('karma', function(cb) {
 gulp.src('./dist/test/**/**.test.js')
 .pipe(karma({
 configFile: 'karma.conf.js',
 action: 'run'
 }))
 .on('end', cb)
 .on('error', function(err) {
 // Make sure failed tests cause gulp to exit non-zero
 throw err;
 });
});

In the preceding code snippet, we are fetching all the files with the extension
.test.js under the directory located at ./dist/test/ and all its subdirectories.
We will then pass the files to the Karma plugin together with the location of the
karma.conf.js file, which contains the Karma configuration. We will create a new
JavaScript file named karma.conf.js in the project's root directory and copy the
following code into it:

module.exports = function (config) {
 'use strict';
 config.set({
 basePath: '',
 frameworks: ['mocha', 'chai', 'sinon'],
 browsers: ['PhantomJS'],
 reporters: ['progress', 'coverage'],
 plugins : [
 'karma-coverage',
 'karma-mocha',
 'karma-chai',
 'karma-sinon',
 'karma-phantomjs-launcher'
],
 preprocessors: {
 './dist/test/*.test.js' : ['coverage']
 },
 port: 9876,
 colors: true,
 autoWatch: false,
 singleRun: false,
 logLevel: config.LOG_INFO
 });
};

Chapter 2

[55]

The configuration file tells Karma about the application's base path, frameworks
(Mocha, Chai, and Sinon.JS), browsers (PhantomJS), plugins, and reporters that
we want to use during the tests' execution. PhantomJS is a headless web browser,
it is useful because it can execute the unit test without actually having to open a
web browser.

We should run the tests in real web browsers along with PhantomJS
before doing a production deployment. There are Karma plugins, such
as karma-firefox-launcher and karma-chrome-launcher,
which will allow us to run the unit tests in the browsers of our choice.

Karma uses the progress reporter by default to let us know the status of the test
execution process. We added the coverage reporter as well because we want to have
an idea of what percentage of our application's code has been tested with unit tests.
After adding the coverage reporter and running our unit tests we will be able to find
the coverage report under a folder named coverage, which should be located in the
same directory where the karma.conf.js file was located.

If we look at the Karma configuration documentation at http://karma-runner.
github.io/0.8/config/configuration-file.html, we will notice that we are
missing the files field in our karma.conf.js file. We didn't indicate the location of
our unit tests because the Gulp task will pass the stream, which contains the unit
tests', files to Karma, and then the Karma task is executed.

Synchronized cross-device testing
We will add one last task to the gulpfile.js file, which will allow us to run
our application in a web browser. We need to install the browser-sync package
by using npm:

npm install -g browser-sync

We will then create two new tasks. These tasks are just used to group a few tasks into
one main task. We are doing this because sometimes we want to refresh a webpage
to see the effect of changing some TypeScript code and we need to run a number of
tasks (compilation, bundling, and so on) before we can actually see the changes in a
web browser. By grouping all these tasks into higher-level tasks, we can save some
time and make our configuration files more readable:

gulp.task('bundle', function(cb) {
 runSequence('build', [

http://karma-runner.github.io/0.8/config/configuration-file.html
http://karma-runner.github.io/0.8/config/configuration-file.html

Automating Your Development Workflow

[56]

 'bundle-js', 'bundle-test'
], cb);
});

gulp.task('test', function(cb) {
 runSequence('bundle', ['karma'], cb);
});

The preceding two tasks are used to group all the build-related tasks into a
higher-level task (named bundle) and to group all the test-related tasks into
a higher-level task (named test).

After installing the package and implementing the preceding two tasks, we can
add a new Gulp task to the gulpfile.js file:

var browserSync = require('browser-sync');
gulp.task('browser-sync', ['test'], function() {
 browserSync({
 server: {
 baseDir: "./dist"
 }
 });

 return gulp.watch([
 "./dist/source/js/**/*.js",
 "./dist/source/css/**.css",
 "./dist/test/**/**.test.js",
 "./dist/data/**/**",
 "./index.html"
], [browserSync.reload]);
});

In this task, we are configuring BrowserSync to host in the local web server all the
static files under the dist directory. We then use the gulp watch function to indicate
that, if the content of any of the files under the dist directory changes, BrowserSync
should automatically refresh our web browser.

When some changes are detected, the test task is invoked. Because the test task
invokes the bundle tasks, any changes will trigger the entire process (build and
test) before refreshing the webpage and displaying the new files in a web browser.

BrowserSync is a really powerful tool, it allows us to test in one device and
automatically repeat our actions (clicks, scrolls, and so on) on as many devices as we
want. It will also allow us to debug our applications remotely, which can be really
useful when we are testing an application on mobile devices.

Chapter 2

[57]

Synchronizing devices is really simple. If we run the browser-sync task,
the application will be launched in the default web browser. If we look at
the console output, we will see that the application is running in one URL
(http://localhost:3000) and the BrowserSync tools are available in a
second URL (http://localhost:3001):

[BS] Access URLs:

 Local: http://localhost:3000

 External: http://192.168.241.17:3000

 UI: http://localhost:3001

 UI External: http://192.168.241.17:3001

[BS] Serving files from: ./dist

If we open another tab in our browser pointing to the BrowserSync tools URL
(http://localhost:3001, in the example), we will access the BrowserSync tools
user interface:

We can use the BrowserSync tools user interface to access the remote debugging
options and device synchronization options. To synchronize a new device, we just
need to use a phone or tablet connected to the same local area network and open the
indicated external URL in the device's web browser.

If you wish to learn more about BrowserSync, visit the official project documentation
at http://www.browsersync.io/docs/.

http://www.browsersync.io/docs/

Automating Your Development Workflow

[58]

Continuous Integration tools
Continuous Integration (CI) is a development practice that helps to prevent
potential integration issues. Software integration issues refers to the difficulties that
may arise during the practice of combining individually tested software components
into an integrated whole. Software is integrated when components are combined into
subsystems or when subsystems are combined into products.

Components may be integrated after all of them are implemented and tested, as in a
waterfall model or a big bang approach. On the other hand, CI requires developers to
commit their code daily into a remote code repository. Each commit is then verified
by an automated build, allowing teams to detect integration issues earlier.

In this chapter, we have created a remote code repository and an automated build,
but we haven't configured a tool to observe our commits and run the automate build
accordingly. We need a CI server. There are many options when it comes to choosing
a CI server, but exploring these options is out of the scope of this book. We will work
with Travis CI because it is highly integrated with GitHub and is free for open source
projects and learning purposes.

To configure Travis CI, we need to visit the website https://travis-ci.org and
log in using our GitHub credentials. Once we have logged in, we will be able to see
a list of our public GitHub repositories and will also be able to enable the CI.

To finish the configuration, we need to add a file named travis.yml to our
application's root directory, which contains the Travis CI configuration:

language: node_js

node_js:

 - "0.10""

There are many other available TravisCI configuration options.
Refer to http://docs.travis-ci.com/ to learn more about
the available options.

After completing these two small configuration steps, Travis CI will be ready to
observe the commits to our remote code repository.

https://travis-ci.org
http://docs.travis-ci.com/

Chapter 2

[59]

If the build works in the local development environment, but fails
in the CI server, we will have to check the build error log and try to
figure out what went wrong. Chances are that the software versions
in our environment will be ahead of the ones in the CI server and
we will need to indicate to Travis CI that a dependency needs to be
installed or updated. We can find the Travis CI documentation at
http://docs.travis-ci.com/user/build-configuration/
to learn how to resolve this kind of issue.

Scaffolding tools
A scaffolding tool is used to autogenerate the project structure, build scripts, and
much more. The most popular scaffolding tool these days is Yeoman. Yeoman uses
an internal command known as yo, a package manager, and a task runner of our
choice to generate projects based on templates.

The project templates are known as generators and the open source community has
already published many of them, so we should be able to find one that more or less
suits our needs. Alternatively, we can write and publish our own Yeoman generator.

We will now create a new project to showcase how Yeoman can help us to save
some time. Yeoman will generate the package.json and bower.json files and
automatically install some dependencies for us.

The yo command can be installed using npm:

npm install -g yo

After installing the yo command, we will need to install at least one generator.
We need to find a generator for the kind of project that we wish to create.

We are going create a new project using Gulp as the task runner and
TypeScript to showcase the usage of Yeoman. We can use a generator called
generator-typescript. The list of available generators can be found online
at http://yeoman.io/generators/.

We can install a generator by using npm:

npm install -g generator-typescript

After installing the generator, we can use it with the help of the yo command:

yo typescript

http://docs.travis-ci.com/user/build-configuration/
http://yeoman.io/generators/

Automating Your Development Workflow

[60]

If, for example, we also wanted to use Sass, we could use the generator-gulp-sass-
typescript generator instead:

npm install -g generator-gulp-sass-typescript

Some of the generators are interactive and will allow us to select whether we want to
add some optional third-party libraries to the project or not. Let's run the generator
to see what it looks like:

yo generator-gulp-sass-typescript

The screen that is displayed contains a series of steps to guide us through the process
of creating a new project, which includes Gulp as the task runner, Sass as the CSS
preprocessor, and TypeScript as the programming language:

Chapter 2

[61]

After executing the generator, the project template will generate a directory tree
similar to the following one:

├── app
│ ├── index.html
│ ├── sass
│ │ └── styles.scss
│ ├── scripts
│ │ └── main.js
│ ├── styles
│ │ └── styles.css
│ └── ts
│ └── main.ts
├── bower.json
├── bower_components
│ └── ...
├── gulpfile.js
├── node_modules
│ └── ...
└── package.json

The bower.json, package.json, and gulpfile.js files (the Gulp task runner
configuration) are autogenerated and will save us a considerable amount of time.

It is never a good idea to let a tool generate some code for us if we
don't really understand what that code does. While in the future you
should definitely consider using Yeoman to generate a new project,
it is recommended to gain a good understanding of task and test
runners before using a scaffolding tool.

Summary
In this chapter, you learned how to work with a source control repository and how
to use Gulp to manage the tasks in an automated build. The automated build helps
us to validate the quality of the TypeScript code, compile it, test it, and optimize it.
You also learned how to install third-party packages and TypeScript type definitions
for those third-party components.

Towards the end of the chapter, you learned how to use the automated build and a
continuous integration server to reduce the impact of potential integration issues.

In the next chapter, you will learn about functions.

[63]

Working with Functions
In Chapter 1, Introducing TypeScript, we took a first look at the usage of functions.
Functions are the fundamental building block of any application in TypeScript,
and they are powerful enough to deserve the dedication of an entire chapter to
explore their potential.

In this chapter, we will learn to work with functions in depth. The chapter is divided
into two main sections. In the first section, we will start with a quick recap of some
basic concepts and then move onto some less commonly known function features
and use cases. The first section includes the following concepts:

• Function declaration and function expressions
• Function types
• Functions with optional parameters
• Functions with default parameters
• Functions with rest parameters
• Function overloading
• Specialized overloading signature
• Function scope
• Immediately invoked functions
• Generics
• Tag functions and tagged templates

Working with Functions

[64]

The second section focuses on TypeScript asynchronous programming capabilities
and includes the following concepts:

• Callbacks and higher order functions
• Arrow functions
• Callback hell
• Promises
• Generators
• Asynchronous functions (async and await)

Working with functions in TypeScript
In this section, we will focus on the declaration and usage of functions, parameters,
and arguments. We will also introduce one of the most powerful features of
TypeScript: Generics.

Function declarations and function
expressions
In the first chapter, we introduced the possibility of declaring functions with (named
function) or without (unnamed or anonymous function) explicitly indicating its name,
but we didn't mention that we were also using two different types of function.

In the following example, the named function greetNamed is a function declaration
while greetUnnamed is a function expression. Ignore the first two lines, which
contain two console log statements, for now:

console.log(greetNamed("John"));
console.log(greetUnnamed("John"));

function greetNamed(name : string) : string {
 if(name) {
 return "Hi! " + name;
 }
}

var greetUnnamed = function(name : string) : string {
 if(name){
 return "Hi! " + name;
 }
}

Chapter 3

[65]

We might think that these preceding functions are really similar, but they will
behave differently. The interpreter can evaluate a function declaration as it is being
parsed. On the other hand, the function expression is part of an assignment and will
not be evaluated until the assignment has been completed.

The main cause of the different behavior of these functions
is a process known as variable hoisting. We will learn more
about the variable hoisting process later in this chapter.

If we compile the preceding TypeScript code snippet into JavaScript and try to
execute it in a web browser, we will observe that the first alert statement will work
because JavaScript knows about the declaration function and can parse it before the
program is executed.

However, the second alert statement will throw an exception, which indicates that
greetUnnamed is not a function. The exception is thrown because the greetUnnamed
assignment must be completed before the function can be evaluated.

Function types
We already know that it is possible to explicitly declare the type of an element in our
application by using the optional type declaration annotation:

function greetNamed(name : string) : string {
 if(name) {
 return "Hi! " + name;
 }
}

In the preceding function, we have specified the type of the parameter name (string)
and its return type (string). Sometimes, we will need to not just specify the types of
the function elements, but also the function itself. Let's take a look at an example:

var greetUnnamed : (name : string) => string;

greetUnnamed = function (name : string) : string {
 if(name){
 return "Hi! " + name;
 }
}

Working with Functions

[66]

In the preceding example, we have declared the variable greetUnnamed and its type.
The type of greetUnnamed is a function type that takes a string variable called name
as its only parameter and returns a string after being invoked. After declaring the
variable, a function, whose type must be equal to the variable type, is assigned to it.

We can also declare the greetUnnamed type and assign a function to it in the same line
rather than declaring it in two separate lines like we did in the previous example:

var greetUnnamed : (name : string) => string = function(name : string)
: string {
 if(name){
 return "Hi! " + name;
 }
}

Just like in the previous example, the preceding code snippet also declares a variable
greetUnnamed and its type. We will assign a function to this variable in the same line
in which it is declared. The assigned function must be equal to the variable type.

In the preceding example, we have declared the type of
the greetUnnamed variable and then assigned a function
as its value. The type of the function can be inferred from
the assigned function, and for this reason, it is unnecessary
to add a redundant type annotation. We have done this to
facilitate the understanding of this section, but it is important
to mention that adding redundant type annotations can make
our code harder to read, and it is considered bad practice.

Functions with optional parameters
Unlike JavaScript, the TypeScript compiler will throw an error if we attempt to
invoke a function without providing the exact number and type of parameters that
its signature declares. Let's take a look at a code sample to demonstrate it:

function add(foo : number, bar : number, foobar : number) : number {
 return foo + bar + foobar;
}

Chapter 3

[67]

The preceding function is called add and will take three numbers as parameters:
named foo, bar, and foobar. If we attempt to invoke this function without providing
exactly three numbers, we will get a compilation error indicating that the supplied
parameters do not match the function's signature:

add(); // Supplied parameters do not match any signature
add(2, 2); // Supplied parameters do not match any signature
add(2, 2, 2); // returns 6

There are scenarios in which we might want to be able to call the function without
providing all its arguments. TypeScript features optional parameters in functions
to help us to increase the flexibility of our functions. We can indicate to TypeScript
that we want a function's parameter to be optional by appending the character ? to
its name. Let's update the previous function to transform the required parameter
foobar into an optional parameter:

function add(foo : number, bar : number, foobar? : number) : number {
 var result = foo + bar;
 if(foobar !== undefined){
 result += foobar;
 }
 return result;
}

Note how we have changed the foobar parameter name into foobar?, and how
we are checking the type of foobar inside the function to identify if the parameter
was supplied as an argument to the function or not. After doing these changes, the
TypeScript compiler will allow us to invoke the function without errors when we
supply two or three arguments to it:

add(); // Supplied parameters do not match any signature
add(2, 2); // returns 4
add(2, 2, 2); // returns 6

It is important to note that the optional parameters must always be located after the
required parameters in the function's parameters list.

Working with Functions

[68]

Functions with default parameters
When a function has some optional parameters, we must check if an argument has
been passed to the function (just like we did in the previous example).

There are some scenarios in which it would be more useful to provide a default value
for a parameter when it is not supplied than to make it an optional parameter. Let's
rewrite the add function (from the previous section) using the inline if structure:

function add(foo : number, bar : number, foobar? : number) :
number {
 return foo + bar + (foobar !== undefined ? foobar : 0);
}

There is nothing wrong with the preceding function, but we can improve its
readability by providing a default value for the foobar parameter instead of
flagging it as an optional parameter:

function add(foo : number, bar : number, foobar : number = 0) :
number {
 return foo + bar + foobar;
}

To indicate that a function parameter is optional, we just need to provide a default
value using the = operator when declaring the function's signature. The TypeScript
compiler will generate an if structure in the JavaScript output to set a default value
for the foobar parameter if it is not passed as an argument to the function:

function add(foo, bar, foobar) {
 if (foobar === void 0) { foobar = 0; }
 return foo + bar + foobar;
}

Void 0 is used by the TypeScript compiler to check if a variable is equal to undefined.
While most developers use the undefined variable, most compilers use void 0.

Just like optional parameters, default parameters must be always located after any
required parameters in the function's parameter list.

Chapter 3

[69]

Functions with rest parameters
We have seen how to use optional and default parameters to increase the
number of ways that we can invoke a function. Let's return one more time
to the previous example:

function add(foo : number, bar : number, foobar : number = 0) :
number {
 return foo + bar + foobar;
}

We have seen how to make possible the usage of the add function with two or three
parameters, but what if we wanted to allow other developers to pass four or five
parameters to our function? We would have to add two extra default or optional
parameters. And what if we wanted to allow them to pass as many parameters as
they may need? The solution to this possible scenario is the use of rest parameters.
The rest parameter syntax allows us to represent an indefinite number of arguments
as an array:

function add(...foo : number[]) : number {
 var result = 0;
 for(var i = 0; i < foo.length; i++){
 result += foo[i];
 }
 return result;
}

As we can see in the following code snippet, we have replaced the function parameters
foo, bar, and foobar with just one parameter: foo. Note that the name of the
parameter foo is preceded by an ellipsis (a set of three periods—not the actual ellipsis
character). A rest parameter must be of an array type or we will get a compilation error.
We can now invoke the add function with as many parameters as we may need:

add(); // returns 0
add(2); // returns 2
add(2,2); // returns 4
add(2,2,2); // returns 6
add(2,2,2,2); // returns 8
add(2,2,2,2,2); // returns 10
add(2,2,2,2,2,2); // returns 12

Although there is no specific limit to the theoretical maximum number of arguments
that a function can take, there are, of course, practical limits. These limits are entirely
implementation-dependent and, most likely, will also depend exactly on how we are
calling the function.

Working with Functions

[70]

JavaScript functions have a built-in object called the arguments object. This object is
available as a local variable named arguments. The arguments variable contains an
object similar to an array, which contains the arguments used when the function
was invoked.

The arguments object exposes some of the methods and properties
provided by a standard array, but not all of them. Refer to the complete
reference at https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Functions/arguments to learn
more about its peculiarities.

If we examine the JavaScript output, we will notice that TypeScript iterates the
arguments object in order to add the values to the foo variable:

function add() {
 var foo = [];
 for (var _i = 0; _i < arguments.length; _i++) {
 foo[_i - 0] = arguments[_i];
 }
 var result = 0;
 for (var i = 0; i < foo.length; i++) {
 result += foo[i];
 }
 return result;
}

We can argue that this is an extra, unnecessary iteration over the function's
parameters. Even though is hard to imagine this extra iteration becoming a
performance issue, if you think that this could be a problem for the performance
of your application, you may want to consider avoiding using rest parameters
and use an array as the only parameter of the function instead:

function add(foo : number[]) : number {
 var result = 0;
 for(var i = 0; i < foo.length; i++){
 result += foo[i];
 }
 return result;
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments

Chapter 3

[71]

The preceding function takes an array of numbers as its only parameter.
The invocation API will be a little different from the rest parameters, but we
will effectively avoid the extra iteration over the function's argument list:

add(); // Supplied parameters do not match any signature
add(2); // Supplied parameters do not match any signature
add(2,2); // Supplied parameters do not match any signature
add(2,2,2); // Supplied parameters do not match any signature

add([]); // returns 0
add([2]); // returns 2
add([2,2]); // returns 4
add([2,2,2]); // returns 6

Function overloading
Function overloading or method overloading is the ability to create multiple
methods with the same name and a different number of parameters or types.
In TypeScript, we can overload a function by specifying all function signatures
of a function, followed by a signature known as the implementation signature.
Let's take a look at an example:

function test(name: string) : string; // overloaded signature
function test(age: number) : string; // overloaded signature
function test(single: boolean) : string; // overloaded signature
function test(value: (string | number | boolean)) : string; { //
implementation signature
 switch(typeof value){
 case "string":
 return `My name is ${value}.`;
 case "number":
 return `I'm ${value} years old.`;
 case "boolean":
 return value ? "I'm single." : "I'm not single.";
 default:
 console.log("Invalid Operation!");
 }
}

Working with Functions

[72]

You might not be familiar with the syntax used in some of the
strings in the preceding code snippet. This syntax is known as
Template Strings. Template strings are enclosed by the back-
tick (` `) character instead of double or single quotes. Template
strings can contain placeholders. These are indicated by the dollar
sign and curly braces (${expression}). The expressions in the
placeholders and the text between them get passed to a function.
The default function just concatenates the parts into a single string.

As we can see in the preceding example, we have overloaded the function test
three times by adding a signature that takes a string as its only parameter, another
function that takes a number, and a final signature that takes a Boolean as its unique
parameter. It is important to note that all function signatures must be compatible; so
if, for example, one of the signatures tries to return a number while another tries to
return a string, we will get a compilation error.

The implementation signature must be compatible with all the overloaded
signatures, always be the last in the list, and take any or a union type as the
type of its parameters.

Invoking the implementation signature directly will cause a compilation error:

test("Remo"); // returns "My name is Remo."
test(26); // returns "I'm 26 years old.";
test(false); // returns "I'm not single.";
test({ custom : "custom" }); // error

Specialized overloading signatures
We can use a specialized signature to create multiple methods with the same name and
number of parameters but a different return type. To create a specialized signature, we
must indicate the type of function parameter using a string. The string literal is used to
identify which of the function overloads is invoked:

interface Document {
 createElement(tagName: "div"): HTMLDivElement; // specialized
 createElement(tagName: "span"): HTMLSpanElement; // specialized
 createElement(tagName: "canvas"): HTMLCanvasElement; //
 specialized
 createElement(tagName: string): HTMLElement; // non-specialized
}

In the preceding example, we have declared three specialized overloaded signatures
and one non-specialized signature for the function named createElement.

Chapter 3

[73]

When we declare a specialized signature in an object, it must be assignable to at
least one non-specialized signature in the same object. This can be observed in the
preceding example, as the createElement property belongs to a type that contains
three specialized signatures, all of which are assignable to the non-specialized
signature in the type.

When writing overloaded declarations, we must list the non-specialized signature last.

Remember that, as seen in Chapter 1, Introducing TypeScript, we
can also use union types to create a method with the same name
and number of parameters but a different type.

Function scope
Low-level languages such as C have low-level memory management features.
In programming languages with a higher level of abstraction such as TypeScript,
values are allocated when variables are created and automatically cleared from
memory when they are not used anymore. The process that cleans the memory
is known as garbage collection and is performed by the JavaScript runtime
garbage collector.

The garbage collector generally does a great job, but it is a mistake to assume that it
will always prevent us from facing a memory leak. The garbage collector will clear
a variable from the memory whenever the variable is out of the scope. Is important
to understand how the TypeScript scope works so we understand the lifecycle of
the variables.

Some programming languages use the structure of the program source code to
determine what variables we are referring to (lexical scoping), while others use
the runtime state of the program stack to determine what variable we are referring
to (dynamic scoping). The majority of modern programing languages use lexical
scoping (including TypeScript). Lexical scoping tends to be dramatically easier to
understand for both humans and analysis tools than dynamic scoping.

While in most lexical scoped programming languages, variables are scoped to a
block (a section of code delimited by curly braces {}), in TypeScript (and JavaScript),
variables are scoped to a function:

function foo() : void {
 if(true){
 var bar : number = 0;
 }

Working with Functions

[74]

 alert(bar);
}

foo(); // shows 0

The preceding function named foo contains an if structure. We have declared a
numeric variable named bar inside the if structure, and later we have attempted
to show the value of the variable bar using the alert function.

We might think that the preceding code sample would throw an error in the fifth
line because the bar variable should be out of the scope when the alert function is
invoked. However, if we invoke the foo function, the alert function will be able to
display the variable bar without errors because all the variables inside a function
will be in the scope of the entire function body, even if they are inside another block
of code (except a function block).

This might seem really confusing, but it is easy to understand once we know that,
at runtime, all the variable declarations are moved to the top of a function before
the function is executed. This behavior is called hoisting.

TypeScript is compiled to JavaScript and then executed—this means
that a TypeScript application is a JavaScript application at runtime, and
for this reason, when we refer to the TypeScript runtime, we are talking
about the JavaScript runtime. We will learn in depth about the runtime
in Chapter 5, Runtime.

So, before the preceding code snippet is executed, the runtime will move the
declaration of the variable bar to the top of our function:

function foo() : void {
 var bar :number;
 if(true){
 bar= 0;
 }
 alert(bar);
}

This means that we can use a variable before it is declared. Let's take a look at an
example:

function foo2() : void {
 bar = 0;
 var bar : number;
 alert(bar);
}

foo2();

Chapter 3

[75]

In the preceding code snippet, we have declared a function foo2, and in its body, we
have assigned the value 0 to a variable named bar. At this point, the variable has not
been declared. In the second line, we are actually declaring the variable bar and its
type. In the last line, we are displaying the value of bar using the alert function.

Because declaring a variable anywhere inside a function (except another function) is
equivalent to declaring it at the top of the function, the foo2 function is transformed
into the following at runtime:

function foo2() : void {
 var bar : number;
 bar = 0;
 alert(bar);
}

foo2();

Because developers with a Java or C# background are not used to the function scope,
it is one of the most criticized characteristics of JavaScript. The people in charge of
the development of the ECMAScript 6 specification are aware of this and, as a result,
they have introduced the keywords let and const.

The let keyword allows us to set the scope of a variable to a block (if, while, for…)
rather than a function block. We can update the first example in this section to
showcase how let works:

function foo() : void {
 if(true){
let bar : number = 0;
bar = 1;
 }
 alert(bar); // error
}

The bar variable is now declared using the let keyword and, as a result, it is only
accessible inside the if block. The variable is not hoisted to the top of the foo function
and cannot be accessed by the alert function outside the if statement.

While variables defined with const follow the same scope rules as variables declared
with let, they can't be reassigned:

function foo() : void {
 if(true){
 const bar : number = 0;
 bar = 1; // error

Working with Functions

[76]

 }
 alert(bar); // error
}

If we attempt to compile the preceding code snippet, we will get an error because
the bar variable is not accessible outside the if statement (just like when we used
the let keyword), and a new error occurs when we try to assign a new value to the
bar variable. The second error is caused because it is not possible to assign a value
to a constant variable once the variable has already been initialized.

Immediately invoked functions
An immediately invoked function expression (IIFE) is a design pattern that produces
a lexical scope using function scoping. IIFE can be used to avoid variable hoisting from
within blocks or to prevent us from polluting the global scope. For example:

var bar = 0; // global

(function() {
 var foo : number = 0; // in scope of this function
 bar = 1; // in global scope
 console.log(bar); // 1
 console.log(foo); // 0
})();

console.log(bar); // 1
console.log(foo); // error

In the preceding example, we have wrapped the declaration of two variables
(foo and bar) with an IIFE. The foo variable is scoped to the IIFE function and
is not available in the global scope, which explains the error when trying to access
it in the last line.

We can also pass a variable to the IIFE to have better control over the creation of
variables outside its own scope:

var bar = 0; // global

(function(global) {
 var foo : number = 0; // in scope of this function
 bar = 1; // in global scope
 console.log(global.bar); // 1
 console.log(foo); // 0
})(this);

Chapter 3

[77]

console.log(bar); // 1
console.log(foo); // error

This time, the IIFE takes the this operator as its only argument, which points to the
global scope, because we are not invoking the this operator from within a function.
Inside the IIFE, the this operator is passed as a parameter named global. We can
then achieve much better control over the objects we want to declare in the global
scope (bar) and those we don't (foo).

Furthermore, IIFE can help us to simultaneously allow public access to methods
while retaining privacy for variables defined within the function. Let's take a look
at an example:

class Counter {
 private _i : number;
 constructor() {
 this._i = 0;
 }
 get() : number {
 return this._i;
 }
 set(val : number) : void {
 this._i = val;
 }
 increment() : void {
 this._i++;
 }
}
var counter = new Counter();
console.log(counter.get()); // 0
counter.set(2);
console.log(counter.get()); // 2
counter.increment();
console.log(counter.get()); // 3
console.log(counter._i); // Error: Property '_i' is private

By convention, TypeScript and JavaScript developers usually name
private variables with names preceded by an underscore (_).

We have defined a class named Counter that has a private numeric attribute named
_i. The class also has methods to get and set the value of the private property _i.
We have also created an instance of the Counter class and invoked the methods set,
get, and increment to observe that everything is working as expected. If we attempt
to access the _i property in an instance of Counter, we will get an error because the
variable is private.

Working with Functions

[78]

If we compile the preceding TypeScript code (only the class definition) and examine
the generated JavaScript code, we will see the following:

var Counter = (function () {
 function Counter() {
 this._i = 0;
 }
 Counter.prototype.get = function () {
 return this._i;
 };
 Counter.prototype.set = function (val) {
 this._i = val;
 };
 Counter.prototype.increment = function () {
 this._i++;
 };
 return Counter;
})();

This generated JavaScript code will work perfectly in most scenarios, but if we execute
it in a browser and try to create an instance of Counter and access its property _i, we
will not get any errors because TypeScript will not generate runtime private properties
for us. Sometimes we will need to write our functions in such a way that some
properties are private at runtime, for example, if we release a library that will be used
by JavaScript developers. We can use IIFE to simultaneously allow public access to
methods while retaining privacy for variables defined within the function:

var Counter = (function () {
 var _i : number = 0;
 function Counter() {
 }
 Counter.prototype.get = function () {
 return _i;
 };
 Counter.prototype.set = function (val : number) {
 _i = val;
 };
 Counter.prototype.increment = function () {
 _i++;
 };
 return Counter;
})();

Chapter 3

[79]

In the preceding example, everything is almost identical to TypeScript's generated
JavaScript, except that the variable _i before was an attribute of the Counter class,
and now it is an object in the Counter closure.

Closures are functions that refer to independent (free) variables. In other
words, the function defined in the closure remembers the environment
(variables in the scope) in which it was created. We will discover more
about closures in Chapter 5, Runtime.

If we run the generated output in a browser and try to invoke the _i property directly,
we will notice that the property is now private at runtime:

var counter = new Counter();
console.log(counter.get()); // 0
counter.set(2);
console.log(counter.get()); // 2
counter.increment();
console.log(counter.get()); // 3
console.log(counter._i); // undefined

In some cases, we will need to have really precise control over scope
and closures, and our code will end up looking much more like
JavaScript. Just remember that, as long as we write our application
components (classes, modules, and so on) to be consumed by
other TypeScript components, we will rarely have to worry about
implementing runtime private properties. We will look in depth at
the TypeScript runtime in Chapter 5, Runtime.

Generics
Andy Hunt and Dave Thomas formulated the don't repeat yourself (DRY)
principle in the book The Pragmatic Programmer. The DRY principle aims to reduce
the repetition of information of all kinds. We will now take a look at an example
that will help us to understand what generics functions are and how they can help
us follow the DRY principle.

We will start by declaring a really simple User class:

class User {
 name : string;
 age : number;
}

Working with Functions

[80]

Now that we have our User class in place, let's write a function named getUsers
that will request a list of users via AJAX:

function getUsers(cb : (users : User[]) => void) : void {
 $.ajax({
 url: "/api/users",
 method: "GET",
 success: function(data) {
 cb(data.items);
 },
 error : function(error) {
 cb(null);
 }
 });
}

We will use jQuery in this example. Remember to create a package.
json file and install the jQuery package using npm. You will also
need to install the jQuery type definitions file using tsd. Refer to
Chapter 1, Introducing Typescript and Chapter 2, Automating Your
Development Workflow if you need additional help.

The getUsers function takes a function as a parameter that will be invoked if the
AJAX request has been successful. It can be invoked as follows:

getUsers(function(users : User[]){
 for(var i; users.length; i++){
 console.log(users[i].name);
 }
});

Now let's imagine that we need an almost identical operation. But this time, we will
use an Order entity instead:

class Order {
 id : number;
 total : number;
 items : any[]
}

The getOrders function is almost identical to the getUsers function. It uses a
different URL and it will pass an array of Orders instead of a User array:

function getOrders(cb : (orders : Order[]) => void) : void {
 $.ajax({

Chapter 3

[81]

 url: "/api/orders",
 method: "GET",
 success: function(data) {
 cb(data.items);
 },
 error : function(error) {
 cb(null);
 }
 });
}

getOrders(function(orders : Orders[]){
 for(var i; orders.length; i++){
 console.log(orders[i].total);
 }
});

We can use generics to avoid this kind of repetition. Generic programming is a
style of computer programming in which algorithms are written in terms of types
to be specified later. These types are then instantiated when needed for specific
types provided as parameters. We are going to write a generic function named
getEntities that takes two parameters:

function getEntities<T>(url : string, cb : (list : T[]) => void) :
void {
 $.ajax({
 url: url,
 method: "GET",
 success: function(data) {
 cb(data.items);
 },
 error : function(error) {
 cb(null);
 }
 });
}

We have added angle brackets (<>) after the name of our functions to indicate that it
is a generic function. Enclosed in the angle brackets is the character T, which is used to
refer to a type. The first parameter is named url and is a string; the second parameter
is a function named cb, which takes a parameter list of type T as its only parameter.

Working with Functions

[82]

We can now use this generic function to indicate what type T will represent:

getEntities<User>("/api/users",function(users : Users[]) {
 for(var i; users.length; i++) {
 console.log(users[i].name);
 }
});

getEntities<Order>("/api/orders", function(orders : Orders[]) {
 for(var i; orders.length; i++) {
 console.log(orders[i].total);
 }
});

Tag functions and tagged templates
We have already seen how to work with template strings such as the following:

var name = 'remo';
var surname = jansen;
var html = `<h1>${name} ${surname}</h1>`;

However, there is one use of template strings that we deliberately skipped because it
is closely related to the use of a special kind of function known as tag function.

We can use a tag function to extend or modify the standard behavior of template
strings. When we apply a tag function to a template string, the template string
becomes a tagged template.

We are going to implement a tag function named htmlEscape. To use a tag function,
we must use the name of the function followed by a template string:

var html = htmlEscape `<h1>${name} ${surname}</h1>`;

A tag template must return a string and take the following arguments:

• An array which contains all the static literals in the template string (<h1> and
</h1> in the preceding example) is passed as the first argument.

• A rest parameter is passed as the second parameter. The rest parameter
contains all the values in the template string (name and surname in the
preceding example).

We now know the signature of a tag function.

tag(literals : string[], ...values : any[]) : string

Chapter 3

[83]

Let's implement the htmlEscape tag function:

function htmlEscape(literals, ...placeholders) {
 let result = "";
 for (let i = 0; i < placeholders.length; i++) {
 result += literals[i];
 result += placeholders[i]
 .replace(/&/g, '&')
 .replace(/"/g, '"')
 .replace(/'/g, ''')
 .replace(/</g, '<')
 .replace(/>/g, '>');
 }
 result += literals[literals.length - 1];
 return result;
}

The preceding function iterates through the literals and values and ensures that the
HTML code is escaped from the values to avoid possible code injection attacks.

The main benefit of using a tagged function is that it allows us to create custom
template string processors.

This feature will be available in the TypeScript 1.6 release.

Asynchronous programming in
TypeScript
Now that we have seen how to work with functions, we will explore how we can use
them, together with some native objects, to write asynchronous applications.

Callbacks and higher-order functions
In TypeScript, functions can be passed as arguments to another function. The function
passed to another as an argument is known as a callback. Functions can also be
returned by another function. The functions that accept functions as parameters
(callbacks) or return functions as an argument are known as higher-order functions.
Callbacks are usually anonymous functions.

var foo = function() { // callback
 console.log('foo');

Working with Functions

[84]

}

function bar(cb : () => void) { // higher order function
 console.log('bar');
 cb();
}

bar(foo); // prints 'bar' then prints 'foo'

Arrow functions
In TypeScript, we can declare a function using a function expression or an arrow
function. An arrow function expression has a shorter syntax compared to function
expressions and lexically binds the value of the this operator.

The this operator behaves a little differently in TypeScript compared to other
languages. When we define a class in TypeScript, we can use the this operator
to refer to the class's own properties. Let's take a look at an example:

class Person {
name : string;
 constructor(name : string) {
 this.name = name;
 }
 greet() {
 alert(`Hi! My name is ${this.name}`);
 }
}
var remo = new Person("Remo");
remo.greet(); // "Hi! My name is Remo"

We have defined a Person class that contains a property of type string called name.
The class has a constructor and a method greet. We have created an instance named
remo and invoked the method named greet, which internally uses the this operator
to access the remo property's name. Inside the greet method, the this operator
points to the object that encloses the greet method.

We must be careful when using the this operator because in some scenarios it can
point to the wrong value. Let's add an extra method to the previous example:

class Person {
name : string;
 constructor(name : string) {
 this.name = name;
 }

Chapter 3

[85]

 greet() {
 alert(`Hi! My name is ${this.name}`);
 }
 greetDelay(time : number) {
 setTimeout(function() {
 alert(`Hi! My name is ${this.name}`);
 }, time);
 }
}
var remo = new Person("remo");
remo.greet(); // "Hi! My name is remo"
remo.greetDelay(1000); // "Hi! My name is "

In the greetDelay method, we perform an almost identical operation to the one
performed by the greet method. This time the function takes a parameter named
time, which is used to delay the greet message.

In order to delay the message, we use the setTimeout function and a callback.
As soon as we define an anonymous function (the callback), the this keyword
changes its value and starts pointing to the anonymous function. This explains
why the name remo is not displayed by the greetDelay message.

As mentioned, an arrow function expression lexically binds the value of the this
operator. This means that it allows us to add a function without altering the value
of this operator. Let's replace the function expression from the previous example
with an arrow function:

class Person {
 name : string;
 constructor(name : string) {
 this.name = name;
 }
 greet() {
 alert(`Hi! My name is ${this.name}`);
 }
 greetDelay(time : number) {
 setTimeout(() => {
 alert(`Hi! My name is ${this.name}`);
 }, time);
 }
}

var remo = new Person("remo");
remo.greet(); // "Hi! My name is remo"
remo.greetDelay(1000); // "Hi! My name is remo"

Working with Functions

[86]

By using an arrow function, we can ensure that the this operator still points to the
Person instance and not to the setTimeout callback. If we execute the greetDelay
function, the name property will be displayed as expected.

The following piece of code was generated by the TypeScript compiler. When
compiling an arrow function, the TypeScript compiler will generate an alias for
the this operator named _this. The alias is used to ensure that the this operator
points to the right object.

Person.prototype.greetDelay = function (time) {
 var _this = this;
 setTimeout(function () {
 alert("Hi! My name is " + _this.name);
 }, time);
};

Callback hell
We have seen that callbacks and higher order functions are two powerful and flexible
TypeScript features. However, the use of callbacks can lead to a maintainability issue
known as callback hell. We will now write a real-life example to showcase what a
callback hell is and how easily we can end up dealing with it.

Remember that you can find the complete source code for this
demo in the companion source code.

We are going to need handlebars and jQuery libraries, so let's install these two
libraries and their respective type definition files using npm and tsd. We can then
import their type definitions:

///<reference path="../typings/handlebars/handlebars.d.ts" />

///<reference path="../typings/jquery/jquery.d.ts" />

To make our code easier to read, we will create an alias for the callback type:

type cb = (json : any) => void;

Now we need to declare our View class. The View class has some properties that
allow us to set the following properties:

• Container: The DOM selector where we want our view to be inserted
• Template URL: The URL that will return a handlebars template

Chapter 3

[87]

• Service URL: The URL of a web service that will return some JSON data
• Arguments: The data to be send to the service

We can see the View class implementation as follows:

class View {
 private _container : string;
 private _templateUrl : string;
 private _serviceUrl : string;
 private _args : any;
 constructor(config){
 this._container = config.container;
 this._templateUrl = config.templateUrl;
 this._serviceUrl = config.serviceUrl;
 this._args = config.args;
 }
 //...

After defining the class constructor and its properties, we will add a private method
named _loadJson to our class. This method takes the service URL, the arguments, a
success callback, and an error callback as its arguments. Inside the method, we will
send a jQuery AJAX request using the service URL and argument settings:

 private _loadJson(url : string, args : any, cb : cb, errorCb :
 cb) {
 $.ajax({
 url: url,
 type: "GET",
 dataType: "json",
 data: args,
 success: (json) => {
 cb(json);
 },
 error: (e) => {
 errorCb(e);
 }
 });
 }
 //...

Working with Functions

[88]

Handlebars is a library that allows us to compile and render HTML
templates in a browser. These templates help with JSON-to-HTML
transformations. We will mention this library later a couple of times,
but don't worry if you have never used it before; this section is not
about handlebars.
This section is about a set of tasks and how we can control the
execution flow of those tasks using callbacks. If you want to learn
more about handlebars, visit http://handlebarsjs.com/.

This function is almost identical to the previous one, but instead of loading some
JSON, we will load a handlebars template:

 private _loadHbs(url : string, cb : cb, errorCb : cb) {
 $.ajax({
 url: url,
 type: "GET",
 dataType: "text",
 success: (hbs) => {
 cb(hbs);
 },
 error: (e) => {
 errorCb(e);
 }
 });
 }
 //...

This function takes a handlebar template code as input and tries to compile it using
the handlebars compile function. Just like in the previous example, we use callbacks,
which will be invoked after the success or failure of the operation:

 private _compileHbs(hbs : string, cb : cb, errorCb : cb) {
 try
 {
 var template = Handlebars.compile(hbs);
 cb(template);
 }
 catch(e) {
 errorCb(e);
 }
 }
 //...

http://handlebarsjs.com/

Chapter 3

[89]

In this function, we take the already compiled template and the already loaded JSON
data and put them together to transform JSON into HTML following the template
formatting rules. Just like in the previous example, we use callbacks that will be
invoked after the success or failure of the operation:

 private _jsonToHtml(template : any, json : any, cb : cb, errorCb
 : cb) {
 try
 {
 var html = template(json);
 cb(html);
 }
 catch(e) {
 errorCb(e);
 }
 }
 //...

The following function takes the HTML generated by the _jsonToHtml function and
appends it to a DOM element:

 private _appendHtml = function (html : string, cb : cb, errorCb
 : cb) {
 try
 {
 if($(this._container).length === 0) {
 throw new Error("Container not found!");
 }
 $(this._container).html(html);
 cb($(this._container));
 }
 catch(e) {
 errorCb(e);
 }
 }
 //...

Now that we have a few functions that use callbacks, we will use all of them together
in one single function named render. The render method controls the execution
flow of the tasks, and executes them in the following order:

1. Loads the JSON data.
2. Loads the template.
3. Compiles the template.

Working with Functions

[90]

4. Transforms JSON into HTML.
5. Appends HTML to the DOM.

Each task takes a success callback, which invokes the following tasks in the list if it is
successful, and an error callback, which is invoked when something goes wrong:

 public render (cb : cb, errorCb : cb) {
 try
 {
 this._loadJson(this._serviceUrl, this._args, (json) => {
 this._loadHbs(this._templateUrl, (hbs) => {
 this._compileHbs(hbs, (template) => {
 this._jsonToHtml(template, json, (html) => {
 this._appendHtml(html, cb);
 }, errorCb);
 }, errorCb);
 }, errorCb);
 }, errorCb);
 }
 catch(e){
 errorCb(e);
 }
 }
}

In general, you should try to avoid nesting callbacks like in the preceding example
because it will:

• Make the code harder to understand
• Make the code harder to maintain (refactor, reuse, and so on)
• Make exception handling more difficult

Promises
After seeing how the use of callbacks can lead to some maintainability problems,
we will now look at promises and how they can be used to write better asynchronous
code. The core idea behind promises is that a promise represents the result of an
asynchronous operation. Promise must be in one of the three following states:

• Pending: The initial state of a promise
• Fulfilled: The state of a promise representing a successful operation
• Rejected: The state of a promise representing a failed operation

Chapter 3

[91]

Once a promise is fulfilled or rejected, its state can never change again. Let's take a
look at the basic syntax of a promise:

function foo() {
 return new Promise((fulfill, reject) => {
 try
 {
 // do something
 fulfill(value);
 }
 catch(e){
 reject(reason);
 }
 });
}

foo().then(function(value){ console.log(value); })
 .catch(function(e){ console.log(e); });

A try…catch statement is used here to showcase how we can
explicitly fulfill or reject a promise. The try…catch statement is not
really needed in a Promise function because when an error is thrown
in a promise, the promise will automatically be rejected.
The preceding code snippet declares a function named foo that
returns a promise. The promise contains a method named then,
which accepts a function to be invoked when the promise is fulfilled.
Promises also provide a method named catch, which is invoked
when a promise is rejected.

We will now return to the callback hell example and make some changes in the code
to use promises instead of callbacks.

Just like before, we are going to need handlebars and jQuery; so let's import their
type definitions. In addition, this time, we will also need the declarations of a library
known as Q:

///<reference path="../typings/handlebars/handlebars.d.ts" />
///<reference path="../typings/jquery/jquery.d.ts" />
///<reference path="../typings/q/q.d.ts" />

We will use the Promise object from a library instead of the native
object because the libraries implement fallbacks so our code can
work in old browsers. We will use a promises library known as Q
(version 1.0.1) in this example. If you want to learn more about it,
visit https://github.com/kriskowal/q.

https://github.com/kriskowal/q

Working with Functions

[92]

The class name has changed from View to ViewAsync but everything else is still
identical to the previous example:

class ViewAsync {
 private _container : string;
 private _templateUrl : string;
 private _serviceUrl : string;
 private _args : any;
 constructor(config) {
 this._container = config.container;
 this._templateUrl = config.templateUrl;
 this._serviceUrl = config.serviceUrl;
 this._args = config.args;
 }
 //...

Many developers append the word Async to the name of a function
as a code convention, which is used to indicate that a function is an
asynchronous function.

We will use our first promise in the function _loadJsonAsync. This function was
named _loadJson in the callback example. We have removed the callbacks for
success and error previously declared in the function signature. Finally, we have
wrapped the function with a promise object and invoked the resolve and reject
methods when the promise succeeds or fails respectively.

 private _loadJsonAsync(url : string, args : any) {
 return Q.Promise(function(resolve, reject) {
 $.ajax({
 url: url,
 type: "GET",
 dataType: "json",
 data: args,
 success: (json) => {
 resolve(json);
 },
 error: (e) => {
 reject(e);
 }
 });
 });
 }
 //...

Chapter 3

[93]

We will then refactor (rename, remove callbacks, wrap logic with a promise,
and so on) each of the class functions (_loadHbsAsync, compileHbsAsync,
and _appendHtmlAsync):

 private _loadHbsAsync(url : string) {
 return Q.Promise(function(resolve, reject) {
 $.ajax({
 url: url,
 type: "GET",
 dataType: "text",
 success: (hbs) => {
 resolve(hbs);
 },
 error: (e) => {
 reject(e);
 }
 });
 });
 }
 private _compileHbsAsync(hbs : string) {
 return Q.Promise(function(resolve, reject) {
 try
 {
 var template : any = Handlebars.compile(hbs);
 resolve(template);
 }
 catch(e) {
 reject(e);
 }
 });
 }
 private _jsonToHtmlAsync(template : any, json : any) {
 return Q.Promise(function(resolve, reject) {
 try
 {
 var html = template(json);
 resolve(html);
 }
 catch(e) {
 reject(e);
 }
 });
 }

Working with Functions

[94]

 private _appendHtmlAsync(html : string, container : string) {
 return Q.Promise((resolve, reject) => {
 try
 {
 var $container : any = $(container);
 if($container.length === 0) {
 throw new Error("Container not found!");
 }
 $container.html(html);
 resolve($container);
 }
 catch(e) {
 reject(e);
 }
 });
 }
 //...

The RenderAsync method (previously named render) will present some
significant differences.

In the following function, we start by wrapping the function's logic with a promise,
invoke the function _loadJsonAsync, and assign its return value to the variable
getJson. If we return to the _loadJsonAsync function, we will notice that the return
type is a promise. Therefore, the getJson variable is a promise that once fulfilled will
return the JSON data required to render our view.

This time, we will invoke the then method, which belongs to the promise returned
by the _loadHbsAsync method. This will allow us to pass the output of the function
_loadHbsAsync to _compileHbsAsync when the promise's state changes to fulfilled.

 public renderAsync() {
 return Q.Promise((resolve, reject) => {
 try
 {
 // assign promise to getJson
 var getJson = this._loadJsonAsync(this._serviceUrl,
 this._args);

 // assign promise to getTemplate
 var getTemplate = this._loadHbsAsync(this._templateUrl)
 .then(this._compileHbsAsync);

 // execute promises in parallel
 Q.all([getJson, getTemplate]).then((results) => {

Chapter 3

[95]

 var json = results[0];
 var template = results[1];

 this._jsonToHtmlAsync(template, json)
 .then((html : string) => {
 return this._appendHtmlAsync(html, this._container);
 })
 .then(($container : any) => { resolve($container); });
 });
 }
 catch(error) {
 reject(error);
 }
 });
 }
}

Once we have declared the getJson and getTemplate variables (each containing
a promise as a value) we will use the all method from the Q library to execute the
getJson and getTemplate promises in parallel.

Q's all method takes a list of promises and a callback as input. Once all the promises
in the list have been fulfilled, the callback is invoked and an array named results
is passed to the fulfilment callback. The array contains the results of each of the
promises in the same order that they were passed to the all method.

Inside Q's all method callback, we will use the loaded JSON and the compiled
template and arguments when invoking the _jsonToHtmlAsync promise. We will
finally use the then method to call the _appendHtmlAsync method and resolve
the promise.

As observed in the example, using promises gives us better control over the execution
flow of each of the operations in our render method. Remember that you can use four
different types of asynchronous flow control:

• Concurrent: The tasks are executed in parallel. We saw this in the example
when we used the all method in the getJson and getTemplate promises.

• Series: A group of tasks is executed in sequence but the preceding tasks do
not pass arguments to the next task.

• Waterfall: A group of tasks is executed in sequence and each task passes
arguments to the next task. This approach is useful when the tasks have
dependencies on each other. In the preceding example, we find this
asynchronous flow control approach when the _loadHbsAsync promise
passes its output to the _compileHbsAsync promise.

Working with Functions

[96]

• Composite: This is any combination of the previous concurrent, series, and
waterfall approaches. The render method in the example uses a combination
of all the asynchronous flow control approaches in this list.

Generators
If we invoke a function in TypeScript, we can assume that once the function starts
running, it will always run to completion before any other code can run. This has
been the case until now. However, a new kind of function which may be paused in
the middle of execution—one or many times—and resumed later, allowing other
code to run during these paused periods, is about to arrive in TypeScript and ES6.
These new kinds of functions are known as generators.

A generator represents a sequence of values. The interface of a generator object is
a just an iterator. The next()function can be invoked until it runs out of values.

We can define the constructor of a generator by using the function keyword
followed by an asterisk (*). The yield keyword is used to stop the execution of
the function and return a value. Let's take a look at an example:

function *foo() {
 yield 1;
 yield 2;
 yield 3;
 yield 4;
 return 5;
}

var bar = new foo();
bar.next(); // Object {value: 1, done: false}
bar.next(); // Object {value: 2, done: false}
bar.next(); // Object {value: 3, done: false}
bar.next(); // Object {value: 4, done: false}
bar.next(); // Object {value: 5, done: true}
bar.next(); // Object { done: true }

As you can see, this iterator has five steps. The first time we call next, the function
will be executed until it reaches the first yield statement, and then it will return the
value 1 and stop the execution of the function until we invoke the generator's next
method again. As we can see, we are now able to stop the function's execution at a
given point. This allows us to write infinite loops without causing a stack overflow
as in the following example:

function* foo() {
 var i = 1;

Chapter 3

[97]

 while (true) {
 yield i++;
 }
}

var bar = new foo();
bar.next(); // Object {value: 1, done: false}
bar.next(); // Object {value: 2, done: false}
bar.next(); // Object {value: 3, done: false}
bar.next(); // Object {value: 4, done: false}
bar.next(); // Object {value: 5, done: false}
bar.next(); // Object {value: 6, done: false}
bar.next(); // Object {value: 7, done: false}
// ...

Generators will open possibilities for synchronicity as we can call a generator's next
method after some asynchronous event has occurred.

Asynchronous functions – async and await
Asynchronous functions are a TypeScript feature that is scheduled to arrive with
the upcoming TypeScript releases. An asynchronous function is a function that is
expected to be invoked in a synchronous operation. Developers can use the await
keyword to wait for the function results without blocking the normal execution of
the program.

Asynchronous functions will be implemented using promises when targeting ES6,
and promise fallbacks when targeting ES3 and ES5.

Using asynchronous functions generally helps to increase the readability of a piece
of code when compared with the use of promises; but technically we can achieve
the same features using both promises and synchronous code.

Let's take a sneak-peek at this upcoming feature:

var p: Promise<number> = /* ... */;

async function fn(): Promise<number> {
 var i = await p;
 return 1 + i;
}

Working with Functions

[98]

The preceding code snippet declares a promise named p. This promise is the piece of
code that will wait to be executed. While waiting, the program execution will not be
blocked because we will wait from an asynchronous function named fn. As we can
see, the fn function is preceded by the async keyword, which is used to indicate to
the compiler that it is an asynchronous function.

Inside the function, the await keyword is used to suspend execution until p is
settled. As we can see, the syntax is much more minimalistic and cleaner than it
would be if we used the promises API (then and catch methods and callbacks).

Refer to the TypeScript roadmap to learn more about the stages
of development of this feature.

Summary
In this chapter, we saw how to work with functions in depth. We started with a
quick recap of some basic concepts and then moved to some lesser known function
features and use cases.

Once we saw how to work with functions, we focused on the usage of callbacks,
promises, and generators to take advantage of the asynchronous programming
capabilities of Typescript.

In the next chapter, we will look at how to work with classes, interfaces, and other
object-oriented programming features of the TypeScript programming language.

[99]

Object-Oriented
Programming with TypeScript

In the previous chapter, we explored the use of functions and some asynchronous
techniques. In this chapter, we will see how to group our functions in reusable
components, such as classes or modules. This chapter is divided into two main
sections. The first part will cover the following topics:

• SOLID principles
• Classes
• Association, aggregation, and composition
• Inheritance
• Mixins
• Generic classes
• Generic constraints
• Interfaces

In the second part, we will focus on the declaration and use of namespaces and
external modules. The second part will cover the following topics:

• Namespaces (internal modules)
• External modules
• Asynchronous module definition (AMD)
• CommonJS modules
• ES6 modules
• Browserify and universal module definition (UMD)
• Circular dependencies

Object-Oriented Programming with TypeScript

[100]

SOLID principles
In the early days of software development, developers used to write code with
procedural programing languages. In procedural programming languages, the
programs follow a top-to-bottom approach and the logic is wrapped with functions.

New styles of computer programming, such as modular programming or
structured programming, emerged when developers realized that procedural
computer programs could not provide them with the desired level of abstraction,
maintainability, and reusability.

The development community created a series of recommended practices and
design patterns to improve the level of abstraction and reusability of procedural
programming languages, but some of these guidelines required a certain level of
expertise. In order to facilitate adherence to these guidelines, a new style of computer
programming known as object-oriented programming (OOP) was created.

Developers quickly noticed some common OOP mistakes and came up with five
rules that every OOP developer should follow to create a system that is easy to
maintain and extend over time. These five rules are known as the SOLID principles.
SOLID is an acronym introduced by Michael Feathers, which stands for the
following principles:

• Single responsibility principle (SRP): This principle states that a software
component (function, class, or module) should focus on one unique task
(have only one responsibility).

• Open/closed principle (OCP): This principle states that software entities
should be designed with application growth (new code) in mind (should
be open to extension), but the application growth should require the fewer
possible number of changes to the existing code (be closed for modification).

• Liskov substitution principle (LSP): This principle states that we should
be able to replace a class in a program with another class as long as both
classes implement the same interface. After replacing the class, no other
changes should be required, and the program should continue to work
as it did originally.

• Interface segregation principle (ISP): This principle states that we should
split interfaces that are very large (general-purpose interfaces) into smaller
and more specific ones (many client-specific interfaces) so that clients will
only need to know about the methods that are of interest to them.

• Dependency inversion principle (DIP): This principle states that entities
should depend on abstractions (interfaces) as opposed to depending on
concretion (classes).

Chapter 4

[101]

In this chapter, we will see how to write TypeScript code that adheres to these
principles so that our applications are easy to maintain and extend over time.

Classes
We should already be familiar with the basics about TypeScript classes, as we have
declared some of them in previous chapters. So we will now look at some details and
OOP concepts through examples. Let's start by declaring a simple class:

class Person {
 public name : string;
 public surname : string;
 public email : string;
 constructor(name : string, surname : string, email : string){
 this.email = email;
 this.name = name;
 this.surname = surname;
 }
 greet() {
 alert("Hi!");
 }
}

var me : Person = new Person("Remo", "Jansen",
"remo.jansen@wolksoftware.com");

We use classes to represent the type of an object or entity. A class is composed
of a name, attributes, and methods. The class in the preceding example is named
Person and contains three attributes or properties (name, surname, and email) and
two methods (constructor and greet). Class attributes are used to describe the
object's characteristics, while class methods are used to describe its behavior.

A constructor is a special method used by the new keyword to create instances
(also known as objects) of our class. We have declared a variable named me,
which holds an instance of the Person class. The new keyword uses the Person
class's constructor to return an object whose type is Person.

A class should adhere to the single responsibility principle (SRP). The Person class
in the preceding example represents a person, including all their characteristics
(attributes) and behaviors (methods). Now let's add some email as validation logic:

class Person {
 public name : string;
 public surname : string;

Object-Oriented Programming with TypeScript

[102]

 public email : string;
 constructor(name : string, surname : string, email : string) {
 this.surname = surname;
 this.name = name;
 if(this.validateEmail(email)) {
 this.email = email;
 }
 else {
 throw new Error("Invalid email!");
 }
 }
 validateEmail() {
 var re = /\S+@\S+\.\S+/;
 return re.test(this.email);
 }
 greet() {
 alert("Hi! I'm " + this.name + ". You can reach me at " +
 this.email);
 }
}

When an object doesn't follow the SRP and it knows too much (has too many
properties) or does too much (has too many methods), we say that the object is a
God object. The Person class here is a God object because we have added a method
named validateEmail that is not really related to the Person class's behavior.

Deciding which attributes and methods should or should not be part of a class
is a relatively subjective decision. If we spend some time analyzing our options,
we should be able to find a way to improve the design of our classes.

We can refactor the Person class by declaring an Email class, responsible for e-mail
validation, and use it as an attribute in the Person class:

class Email {
 public email : string;
 constructor(email : string){
 if(this.validateEmail(email)) {
 this.email = email;
 }
 else {
 throw new Error("Invalid email!");
 }
 }
 validateEmail(email : string) {
 var re = /\S+@\S+\.\S+/;

Chapter 4

[103]

 return re.test(email);
 }
}

Now that we have an Email class, we can remove the responsibility of validating the
emails from the Person class and update its email attribute to use the type Email
instead of string:

class Person {
 public name : string;
 public surname : string;
 public email : Email;
 constructor(name : string, surname : string, email : Email){
 this.email = email;
 this.name = name;
 this.surname = surname;
 }
 greet() {
 alert("Hi!");
 }
}

Making sure that a class has a single responsibility makes it easier to see what it
does and how we can extend/improve it. We can further improve our Person and
Email classes by increasing the level of abstraction of our classes. For example,
when we use the Email class, we don't really need to be aware of the existence
of the validateEmail method; so this method could be invisible from outside the
Email class. As a result, the Email class would be much simpler to understand.

When we increase the level of abstraction of an object, we can say that we are
encapsulating the object's data and behavior. Encapsulation is also known as
information hiding. For example, the Email class allows us to use emails without
having to worry about e-mail validation because the class will deal with it for us.
We can make this clearer by using access modifiers (public or private) to flag as
private all the class attributes and methods that we want to abstract from the use
of the Email class:

class Email {
 private email : string;
 constructor(email : string){
 if(this.validateEmail(email)) {
 this.email = email;
 }
 else {
 throw new Error("Invalid email!");
 }

Object-Oriented Programming with TypeScript

[104]

 }
 private validateEmail(email : string) {
 var re = /\S+@\S+\.\S+/;
 return re.test(email);
 }
 get():string {
 return this.email;
 }
}

We can then simply use the Email class without needing to explicitly perform any
kind of validation:

var email = new Email("remo.jansen@wolksoftware.com");

Interfaces
The feature that we will miss the most when developing large-scale web
applications with JavaScript is probably interfaces. We have seen that following
the SOLID principles can help us to improve the quality of our code, and writing
good code is a must when working on a large project. The problem is that if we
attempt to follow the SOLID principles with JavaScript, we will soon realize that
without interfaces, we will never be able to write SOLID OOP code. Fortunately
for us, TypeScript features interfaces.

Traditionally, in OOP, we say that a class can extend another class and implement
one or more interfaces. An interface can implement one or more interfaces and
cannot extend another class or interface. Wikipedia's definition of interfaces in
OOP is as follows:

In object-oriented languages, the term interface is often used to define an abstract
type that contains no data or code, but defines behaviors as method signatures.

Implementing an interface can be understood as signing a contract. The interface is a
contract, and when we sign it (implement it), we must follow its rules. The interface
rules are the signatures of the methods and properties, and we must implement them.

We will see many examples of interfaces later in this chapter.

In TypeScript, interfaces don't strictly follow this definition. The two main
differences are that in TypeScript:

• An interface can extend another interface or class
• An interface can define data and behaviors as opposed to only behaviors

Chapter 4

[105]

Association, aggregation, and
composition
In OOP, classes can have some kind of relationship with each other. Now, we will
take a look at the three different types of relationships between classes.

Association
We call association those relationships whose objects have an independent lifecycle
and where there is no ownership between the objects. Let's take an example of a
teacher and student. Multiple students can associate with a single teacher, and
a single student can associate with multiple teachers, but both have their own
lifecycles (both can be create and delete independently); so when a teacher leaves the
school, we don't need to delete any students, and when a student leaves the school,
we don't need to delete any teachers.

Aggregation
We call aggregation those relationships whose objects have an independent lifecycle,
but there is ownership, and child objects cannot belong to another parent object. Let's
take an example of a cell phone and a cell phone battery. A single battery can belong to
a phone, but if the phone stops working, and we delete it from our database, the phone
battery will not be deleted because it may still be functional. So in aggregation, while
there is ownership, objects have their own lifecycle.

Object-Oriented Programming with TypeScript

[106]

Composition
We use the term composition to refer to relationships whose objects don't have an
independent lifecycle, and if the parent object is deleted, all child objects will also
be deleted.

Let's take an example of the relationship between questions and answers. Single
questions can have multiple answers, and answers cannot belong to multiple
questions. If we delete questions, answers will automatically be deleted.

Objects with a dependent life cycle (answers, in the example) are known as
weak entities.

Sometimes, it can be a complicated process to decide if we should use association,
aggregation, or composition. This difficulty is caused in part because aggregation and
composition are subsets of association, meaning they are specific cases of association.

Chapter 4

[107]

Inheritance
One of the most fundamental object-oriented programming features is its capability
to extend existing classes. This feature is known as inheritance and allows us to create
a new class (child class) that inherits all the properties and methods from an existing
class (parent class). Child classes can include additional properties and methods not
available in the parent class. Let's return to our previously declared Person class.
We will use the Person class as the parent class of a child class named Teacher:

class Person {
 public name : string;
 public surname : string;
 public email : Email;
 constructor(name : string, surname : string, email : Email){
 this.name = name;
 this.surname = surname;
 this.email = email;
 }
 greet() {
 alert("Hi!");
 }
}

This example is included in the companion source code.

Once we have a parent class in place, we can extend it by using the reserved
keyword extends. In the following example, we declare a class called Teacher,
which extends the previously defined Person class. This means that Teacher
will inherit all the attributes and methods from its parent class:

class Teacher extends Person {
 teach() {
 alert("Welcome to class!");
 }
}

Note that we have also added a new method named teach to the class Teacher. If
we create instances of the Person and Teacher classes, we will be able to see that
both instances share the same attributes and methods with the exception of the
teach method, which is only available for the instance of the Teacher class:

var teacher = new Teacher("remo", "jansen", new
Email("remo.jansen@wolksoftware.com"));

Object-Oriented Programming with TypeScript

[108]

var me = new Person("remo", "jansen", new
Email("remo.jansen@wolksoftware.com"));

me.greet();
teacher.greet();
me.teach(); // Error : Property 'teach' does not exist on type
'Person'
teacher.teach();

Sometimes, we will need a child class to provide a specific implementation of
a method that is already provided by its parent class. We can use the reserved
keyword super for this purpose. Imagine that we want to add a new attribute
to list the teacher's subjects, and we want to be able to initialize this attribute
through the teacher constructor. We will use the super keyword to explicitly
reference the parent class constructor inside the child class constructor. We can
also use the super keyword when we want to extend an existing method, such as
greet. This OOP language feature that allows a subclass or child class to provide a
specific implementation of a method that is already provided by its parent classes
is known as method overriding.

class Teacher extends Person {
 public subjects : string[];
 constructor(name : string, surname : string, email : Email, subjects
: string[]){
 super(name, surname, email);
 this.subjects = subjects;
 }
 greet() {
 super.greet();
 alert("I teach " + this.subjects);
 }
 teach() {
 alert("Welcome to Maths class!");
 }
}

var teacher = new Teacher("remo", "jansen", new
Email("remo.jansen@wolksoftware.com"), ["math", "physics"]);

Chapter 4

[109]

We can declare a new class that inherits from a class that is already inheriting from
another. In the following code snippet, we declare a class called SchoolPrincipal
that extends the Teacher class, which extends the Person class:

class SchoolPrincipal extends Teacher {
 manageTeachers() {
 alert("We need to help students to get better results!");
 }
}

If we create an instance of the SchoolPrincipal class, we will be able to access all
the properties and methods from its parent classes (SchoolPrincipal, Teacher,
and Person):

var principal = new SchoolPrincipal("remo", "jansen", new
Email("remo.jansen@wolksoftware.com"), ["math", "physics"]);
principal.greet();
principal.teach();
principal.manageTeachers();

It is not recommended to have too many levels in the inheritance tree. A class
situated too deeply in the inheritance tree will be relatively complex to develop, test,
and maintain. Unfortunately, we don't have a specific rule that we can follow when
we are unsure whether we should increase the depth of inheritance tree (DIT).

We should use inheritance in such a way that it helps us to reduce the complexity
of our application and not the opposite. We should try to keep the DIT between
0 and 4 because a value greater than 4 would compromise encapsulation and
increase complexity.

Mixins
Sometimes, we will find scenarios in which it would be a good idea to declare
a class that inherits from two or more classes simultaneously (known as
multiple inheritance).

Let's take a look at an example. We will not add any code to the methods in this
example because we want to avoid the possibility of getting distracted by it; we should
focus on the inheritance tree:

class Animal {
 eat() {
 // ...
 }
}

Object-Oriented Programming with TypeScript

[110]

We started by declaring a class named Animal, which only has one method named
eat. Now, let's declare two new classes:

class Mammal extends Animal {
 breathe() {
 // ...
 }
}

class WingedAnimal extends Animal {
 fly(){
 // ...
 }
}

We have declared two new classes named WingedAnimal and Mammal. Both classes
inherit from the Animal class.

Now that we have our classes ready, we are going to try to implement a class named
Bat. Bats are mammals and have wings—creating a new class named Bat, which will
extend both the Mammal and WingedAnimal classes, seems logical. However, if we
attempt to do so, we will encounter a compilation error:

// Error: Classes can only extend a single class.
class Bat extends WingedAnimal, Mammal {
 // ...
}

This error is thrown because TypeScript doesn't support multiple inheritance.
This means that a class can only extend one class. The designers of programming
languages such as C# or TypeScript decided to not support multiple inheritance
because it can potentially increase the complexity of applications.

Sometimes, a class inheritance diagram can take a diamond-like shape (as seen in
the following figure). This kind of class inheritance diagram can potentially lead
us to design issue known as the diamond problem.

Chapter 4

[111]

We will not face any problems if we call a method that is exclusive to only one of the
classes in the inheritance tree:

var bat = new Bat();
bat.fly();
bat.eat();
bat.breathe();

The diamond problem takes place when we try to invoke one of the Bat class's parent's
methods, and it is unclear or ambiguous which of the parent's implementations of that
method should be invoked. If we add a method named move to both the Mammal and
the WingedAnimal class and try to invoke it from an instance of Bat, we will get an
ambiguous call error.

Now that we know why multiple inheritance can be potentially dangerous, we will
introduce a feature known as mixin. Mixins are alternatives to multiple inheritance,
but this feature has some limitations.

Object-Oriented Programming with TypeScript

[112]

Let's return to the Bat class example to showcase the usage of mixins:

class Mammal {
 breathe() : string {
 return "I'm alive!";
 }
}

class WingedAnimal {
 fly() : string{
 return "I can fly!";
 }
}

This example is included in the companion source code.

The two classes presented in the preceding example are not much different from the
previous example; we have added some logic to the breathe and fly methods, so
we can have some output to help us to understand this demonstration. Also, note
that the classes no longer extend the Animal class:

class Bat implements Mammal, WingedAnimal {
 breathe : () => string;
 fly : () => string;
}

The Bat class has some important additions. We have used the reserved keyword
implements (as opposed to extends) to indicate that Bat will implement the
functionality declared in both the Mammal and WingedAnimal classes. We have also
added the signature of each of the methods that the Bat class will implement.

We need to copy the following function somewhere in our code to be able to
apply mixins:

function applyMixins(derivedCtor: any, baseCtors: any[]) {
 baseCtors.forEach(baseCtor => {
 Object.getOwnPropertyNames(baseCtor.prototype).forEach(name =>
{
 if (name !== 'constructor') {
 derivedCtor.prototype[name] = baseCtor.prototype[name];
 }
 });
 });
}

Chapter 4

[113]

The preceding function is a well-known pattern and can be
found in many books and online references, including the
official TypeScript handbook.

This function will iterate each property of the parent classes (contained in an array
named baseCtors) and copy the implementation to a child class (derivedCtor).

We only need to declare this function once in our application. Once we have done it,
we can use it as follows:

applyMixins(Bat, [Mammal, WingedAnimal]);

The child class (Bat) will then contain the implementation of each property and
method of the two parent classes (WingedAnimal and Mammal):

var bat = new Bat();
bat.breathe(); // I'm alive!
bat.fly(); // I can fly!

As we said at the beginning of this section, mixins have some limitations. The first
limitation is that we can only inherit the properties and methods from one level in the
inheritance tree. Now we can understand why we removed the Animal class prior to
applying the mixin. The second limitation is that, if two or more of the parent classes
contain a method with the same name, the method that is going to be inherited will be
taken from the last class passed in the baseCtors array to the applyMixins function.
We will now see an example that presents both these limitations.

In order to show the first limitation, we will declare the Animal class:

class Animal {
 eat() : string {
 return "Delicious!";
 }
}

We will then declare the Mammal and WingedAnimal classes, but this time, they will
extend the Animal class:

class Mammal extends Animal {
 breathe() : string {
 return "I'm alive!";
 }
 move() : string {
 return "I can move like a mammal!";
 }
}

Object-Oriented Programming with TypeScript

[114]

class WingedAnimal extends Animal {
 fly() : string{
 return "I can fly!";
 }
 move() : string {
 return "I can move like a bird!";
 }
}

We will then declare a Bat class but we will name it Bat1. This class will implement
both the Mammal and WindgedAnimal classes:

class Bat1 implements Mammal, WingedAnimal {
 eat : () => string;
 breathe : () => string;
 fly : () => string;
 move : () => string;
}

We are ready to invoke the applyMixins function. Notice how we pass Mammal
before WingedAnimal in the array:

applyMixins(Bat1, [Mammal, WingedAnimal]);

We can now create an instance of Bat1, and we will be able to observe that the eat
method has not been inherited from the Animal class due to the first limitation:

var bat1 = new Bat();
bat1.eat(); // Error: not a function

Each of the parent class's methods has been inherited without issues:

bat1.breathe(); // I'm alive!
bat1.fly(); // I can fly!"

Except the move method because according to the second limitation, only the
implementation of the last parent class passed to the applyMixins method
will be implemented. In this case, the implementation is inherited from the
WingedAnimal class:

bat1.move(); // I can move like a bird

To finalize, we will see the effect of switching the order of the parent classes when
invoking the applyMixins method:

class Bat2 implements WingedAnimal, Mammal {
 eat : () => string;
 breathe : () => string;

Chapter 4

[115]

 fly : () => string;
 move : () => string;
}

Notice how we have passed WingedAnimal before Mammal in the array:

applyMixins(Bat2, [WingedAnimal, Mammal]);
var bat2 = new Bat2();
bat2.eat(); // Error: not a function
bat2.breathe(); // I'm alive!
bat2.fly(); // I can fly!
bat2.move() // I can move like a mammal

Generic classes
In the previous chapter, we saw how to work with generic functions. We will now
take a look at how to work with generic classes.

Just like with generic functions, generic classes can help us to avoid the duplication
of code. Let's take a look at an example:

class User {
 public name : string;
 public password : string;
}

This example is included in the companion source code.

We have declared a User class, which contains two properties: name and password.
We will now declare a class named NotGenericUserRepository without using
generics. This class takes a URL via its constructor and has a method named
getAsync. The getAsync method will request a list of users stored in a JSON file
using AJAX:

class NotGenericUserRepository {
 private _url : string;
 constructor(url : string) {
 this._url = url;
 }
 public getAsync() {
 return Q.Promise((resolve : (users : User[]) => void, reject)
 => {
 $.ajax({
 url: this._url,

Object-Oriented Programming with TypeScript

[116]

 type: "GET",
 dataType: "json",
 success: (data) => {
 var users = <User[]>data.items;
 resolve(users);
 },
 error: (e) => {
 reject(e);
 }
 });
 });
 }
}

Once we have finished declaring the NotGenericUserRepository user repository,
we can create an instance and invoke the getAsync method:

var notGenericUserRepository = new NotGenericUserRepository("./demos/
shared/users.json");
notGenericUserRepository.getAsync()
 .then(function(users : User[]){
 console.log('notGenericUserRepository => ', users);
 });

If we also need to request another list of entities different from User, we could end
up duplicating a lot of code. Imagine that we also need to request a list of conference
talks. We could create an entity named Talk and an almost identical repository class:

class Talk {
 public title : string;
 public description : string;
 public language : string;
 public url : string;
 public year : string;
}

class NotGenericTalkRepository {
 private _url : string;
 constructor(url : string) {
 this._url = url;
 }
 public getAsync() {
 return Q.Promise((resolve : (talks : Talk[]) => void, reject)
 => {
 $.ajax({

Chapter 4

[117]

 url: this._url,
 type: "GET",
 dataType: "json",
 success: (data) => {
 var users talks = <Talk[]>data.items;
 resolve(userstalks);
 },
 error: (e) => {
 reject(e);
 }
 });
 });
 }
}

If the number of entities grows, we will continue to repeatedly duplicate code. We
may think that we could use the any type to avoid this problem, but then we would
be losing the security provided by the checking type performed by TypeScript at
compilation time. A much better solution is to create a Generic repository:

class GenericRepository<T> {
 private _url : string;
 constructor(url : string){
 this._url = url;
 }
 public getAsync() {
 return Q.Promise((resolve : (entities : T[]) => void, reject) => {
 $.ajax({
 url: this._url,
 type: "GET",
 dataType: "json",
 success: (data) => {
 var list = <T[]>data.items;
 resolve(list);
 },
 error: (e) => {
 reject(e);
 }
 });
 });
 }
}

Object-Oriented Programming with TypeScript

[118]

The repository code is identical to NotGenericUserRepository, except for the entity
type. We have removed the hardcoded reference to the User and Talk entities and
replaced them with the generic type T. We can now declare as many repositories as
we wish without duplicating a single line of code:

var userRepository = new GenericRepository<User>("./demos/shared/
users.json");
userRepository.getAsync()
 .then((users : User[]) => {
 console.log('userRepository => ', users);
 });

var talkRepository = new GenericRepository<Talk>("./demos/shared/
talks.json");
talkRepository.getAsync()
 .then((talks : Talk[]) => {
 console.log('talkRepository => ', talks);
 });

Generic constraints
Sometimes, we might need to restrict the use of a generic class. Take the generic
repository from the previous section as an example. We have a new requirement:
we need to add some changes to validate the entities loaded via AJAX, and we
will return only the valid entities.

One possible solution is to use the typeof operator to identify the type of the
generic type parameter T within a generic class or function:

// ...
success: (data) => {
 var list : T[];
 var items = <T[]>data.items;
 for(var i = 0; i < items.length; i++){
 if(items[i] instanceof User) {
 // validate user
 }
 if(items[i] instanceof Talk) {
 // validate talk
 }
 }
 resolve(list);
}
// ...

Chapter 4

[119]

The problem is that we will have to modify our GenericRepository class to
add extra logic with each new entity. We will not add the validation rules into
the GenericRepository repository class because a generic class should not be
aware of the type used as the generic type.

A better solution is to add a method named isValid to the entities, which will
return true if the entity is valid:

// ...
success: (data) => {
 var list : T[];
 var items = <T[]>data.items;
 for(var i = 0; i < items.length; i++){
 if(items[i].isValid()) { // error
 // ...
 }
 }
 resolve(list);
}
// ...

The second approach follows the second SOLID principle, the open/close principle, as
we can create new entities and the generic repository will continue to work (open for
extension), but no additional changes to it will be required (closed for modification).
The only problem with this approach is that, if we attempt to invoke an entity's
isValid method inside the generic repository, we will get a compilation error.

The error is thrown because we are allowed to use the generic repository with any
type, but not all types have a method named isValid. Fortunately, this issue can
easily be resolved by using a generic constraint. Constraints will restrict the types
that we are allowed to use as the generic type parameter T. We are going to declare a
constraint, so only types that implement an interface named ValidatableInterface
can be used with the generic method.

Let's start by declaring an interface:

interface ValidatableInterface {
 isValid() : boolean;
}

This example is included in the companion source code.

Object-Oriented Programming with TypeScript

[120]

Now we can proceed to implement the interface. In this case, we must implement the
isValid method:

class User implements ValidatableInterface {
 public name : string;
 public password : string;
 public isValid() : boolean {
 // user validation...
 return true;
 }
}

class Talk implements ValidatableInterface {
 public title : string;
 public description : string;
 public language : string;
 public url : string;
 public year : string;
 public isValid() : boolean {
 // talk validation...
 return true;
 }
}

Now, let's declare a generic repository and add a type constraint so only types derived
from ValidatableInterface will be accepted as the generic type parameter T:

class GenericRepositoryWithConstraint<T extends
ValidatableInterface> {
 private _url : string;
 constructor(url : string){
 this._url = url;
 }
 public getAsync() {
 return Q.Promise((resolve : (talks : T[]) => void, reject) =>
 {
 $.ajax({
 url: this._url,
 type: "GET",
 dataType: "json",
 success: (data) => {
 var items = <T[]>data.items;
 for(var i = 0; i < items.length; i++) {

Chapter 4

[121]

 if(items[i].isValid()) {
 list.push(items[i]);
 }
 }
 resolve(list);
 },
 error: (e) => {
 reject(e);
 }
 });
 });
 }
}

Even though we have used an interface, we used the extends
keyword and not the implements keyword to declare the
constraint in the preceding example. There is no special reason for
that. This is just the way the TypeScript constraint syntax works.

We can then create as many repositories as we want:

var userRepository = new
 GenericRepositoryWithConstraint<User>("./users.json");

userRepository.getAsync()
 .then(function(users : User[]){
 console.log(users);
 });

var talkRepository = new
 GenericRepositoryWithConstraint<Talk>("./talks.json");

talkRepository.getAsync()
 .then(function(talks : Talk[]){
 console.log(talks);
 });

If we attempt to use a class that doesn't implement the ValidatableInterface of
the generic type parameter T, we will get a compilation error.

Object-Oriented Programming with TypeScript

[122]

Multiple types in generic type constraints
We can only refer to one type when declaring a generic type constraint. Let's imagine
that we need a generic class to be constrained, so it only allows types that implement
the following two interfaces:

interface IMyInterface {
 doSomething();
};
interface IMySecondInterface {
 doSomethingElse();
};

We may think that we can define the required generic constraint as follows:

class Example<T extends IMyInterface, IMySecondInterface> {
 private genericProperty : T;
 useT() {
 this.genericProperty.doSomething();
 this.genericProperty.doSomethingElse(); // error
 }
}

However, this code snippet will throw a compilation error. We cannot specify
multiple types when declaring a generic type constraint. However, we can work
around this issue by transforming IMyInterface, IMySecondInterface in
super-interfaces:

interface IChildInterface extends IMyInterface, IMySecondInterface {

}

IMyInterface and IMySecondInterface are now super-interfaces because they
are the parent interfaces of the IChildInterface interface. We can then declare the
constraint using the IChildInterface interface:

class Example<T extends IChildInterface> {
 private genericProperty : T;
 useT() {
 this.genericProperty.doSomething();
 this.genericProperty.doSomethingElse();
 }
}

Chapter 4

[123]

The new operator in generic types
To create a new object within generic code, we need to indicate that the generic
type T has a constructor function. This means that instead of using type:T, we
should use type: { new(): T;} as follows:

function factoryNotWorking<T>(): T {
 return new T(); // compile error could not find symbol T
}

function factory<T>(): T {
 var type: { new(): T ;};
 return new type();
}

var myClass: MyClass = factory<MyClass>();

Applying the SOLID principles
As we have previously mentioned, interfaces are fundamental features when it
comes to following the SOLID principles, and we have already put the first two
SOLID principles into practice.

We have already discussed the single responsibility principle. Now, we will see
real examples of the three remaining principles.

The Liskov substitution principle
The Liskov substitution principle (LSP) states, Subtypes must be substitutable
for their base types. Let's take a look at an example to understand what this means.

We will declare a class named PersistanceService, the responsibility of which
is to persist some object into some sort of storage. We will start by declaring the
following interface:

interface PersistanceServiceInterface {
 save(entity : any) : number;
}

Object-Oriented Programming with TypeScript

[124]

After declaring the PersistanceServiceInterface interface, we can implement it.
We will use cookies as the storage for the application's data:

class CookiePersitanceService implements PersistanceServiceInterface{
 save(entity : any) : number {
 var id = Math.floor((Math.random() * 100) + 1);
 // Cookie persistance logic...
 return id;
 }
}

We will continue by declaring a class named FavouritesController, which has a
dependency on PersistanceServiceInterface:

class FavouritesController {
 private _persistanceService : PersistanceServiceInterface;
 constructor(persistanceService : PersistanceServiceInterface) {
 this._persistanceService = persistanceService;
 }
 public saveAsFavourite(articleId : number) {
 return this._persistanceService.save(articleId);
 }
}

We can finally create an instance of FavouritesController and pass an instance of
CookiePersitanceService via its constructor:

var favController = new FavouritesController(new
CookiePersitanceService());

The LSP allows us to replace a dependency with another implementation as long as
both implementations are based in the same base type; so, if we decide to stop using
cookies as storage and use the HTML5 local storage API instead, we can declare a
new implementation:

class LocalStoragePersitanceService implements
PersistanceServiceInterface{
 save(entity : any) : number {
 var id = Math.floor((Math.random() * 100) + 1);
 // Local storage persistance logic...
 return id;
 }
}

We can then replace it without having to add any changes to the
FavouritesController controller class.

var favController = new FavouritesController(new
LocalStoragePersitanceService());

Chapter 4

[125]

The interface segregation principle
Interfaces are used to declare how two or more software components cooperate
and exchange information with each other. This declaration is known as
application programming interface (API). In the previous example, our interface
was PersistanceServiceInterface, and it was implemented by the classes
LocalStoragePersitanceService and CookiePersitanceService. The interface
was consumed by the FavouritesController class; so we say that this class is a
client of the PersistanceServiceInterface's API.

The interface segregation principle (ISP) states that no client should be forced to
depend on methods it does not use. To adhere to the ISP, we need to keep in mind
that when we declare the API (how two or more software components cooperate
and exchange information with each other) of our application's components, the
declaration of many client-specific interfaces is better than the declaration of one
general-purpose interface. Let's take a look at an example.

If we design an API to control all the elements in a vehicle (engine, radio, heating,
navigation, lights…), we could have one general-purpose interface, which allows
us to control every single element of the vehicle:

interface VehicleInterface {
 getSpeed() : number;
 getVehicleType: string;
 isTaxPayed() : boolean;
 isLightsOn() : boolean;
 isLightsOff() : boolean;
 startEngine() : void;
 acelerate() : number;
 stopEngine() : void;
 startRadio() : void;
 playCd : void;
 stopRadio() : void;
}

This example is included in the companion source code.

If a class has a dependency (client) in the VehicleInterface interface but it only
wants to use the radio methods, we will be facing a violation of the ISP because,
as we have already seen, no client should be forced to depend on methods it does
not use.

Object-Oriented Programming with TypeScript

[126]

The solution is to split the VehicleInterface interface into many client-specific
interfaces so that our class can adhere to the ISP by depending only on the
RadioInterface interface:

interface VehicleInterface {
 getSpeed() : number;
 getVehicleType: string;
 isTaxPayed() : boolean;
 isLightsOn() : boolean;
}

interface LightsInterface {
 isLightsOn() : boolean;
 isLightsOff() : boolean;
}

interface RadioInterface {
 startRadio() : void;
 playCd : void;
 stopRadio() : void;
}

interface EngineInterface {
 startEngine() : void;
 acelerate() : number;
 stopEngine() : void;
}

The dependency inversion principle
The dependency inversion (DI) principle states, Depend upon abstractions. Do not depend
upon concretions. In the previous section, we implemented FavouritesController and
we were able to replace an implementation of PersistanceServiceInterface with
another without having to perform any additional change to FavouritesController.
This was possible because we followed the DI principle, as FavouritesController
has a dependency upon PersistanceServiceInterface (abstractions) rather than
LocalStoragePersitanceService or CookiePersitanceService (concretions).

Chapter 4

[127]

Depending on your background, you may wonder if there are any
Inversion of Control (IoC) containers available for TypeScript. We
can indeed find some IoC containers available online. However,
because Typescript's runtime doesn't support reflection or interfaces,
they can arguably be considered pseudo IoC containers rather than
real IoC containers.
If you want to learn more about inversion of control, I highly
recommend the article, Inversion of Control Containers and the
Dependency Injection pattern, by Martin Fowler, available at
http://martinfowler.com/articles/injection.html.

Namespaces
TypeScript features namespaces (previously known as internal modules).
Namespaces are mainly used to organize our code.

If we are working on a large application, as the code base grows we will need to
introduce some kind of organization scheme to avoid naming collisions and make
our code easier to follow and understand.

We can use namespaces to encapsulate interfaces, classes, and objects that are
somehow related. For example, we could wrap all our application models inside
an internal module named model:

namespace app {
 export class UserModel {
 // ...
 }
}

When we declare a namespace, all its entities are private by default. We can use the
export keyword to declare what parts of our namespace we wish to make public.

We are allowed to nest a namespace inside another. Let's create a file named
models.ts and add the following code snippet to it:

namespace app {
 export namespace models {
 export class UserModel {
 // ...
 }

http://martinfowler.com/articles/injection.html

Object-Oriented Programming with TypeScript

[128]

 export class TalkModel {
 // ...
 }
 }
}

In the preceding example, we have declared a namespace named app, and inside
it, we have declared a public namespace named models, which contains two public
classes: UserModel and TalkModel. We can then call the namespace from another
TypeScript file by indicating the full namespace name:

var user = new app.models.UserModel();
var talk = new app.models.TalkModel();

If an internal module becomes too big, it can be divided into multiple files to increase
its maintainability. If we take the preceding example, we could add more contents to
the internal module named app by referencing it in another file.

Let's create a new file named validation.ts and add the following code to it:

namespace app {
 export namespace validation {
 export class UserValidator{
 // ...
 }

 export class TalkValidator {
 // ...
 }
 }
}

Let's create a file named main.ts and add the following code to it:

var user = new app.models.UserModel();
var talk = new app.models.TalkModel();
var userValidator = new app.validation.UserValidator();
var talkValidator = new app.validation.TalkValidator();

Even though the namespaces' models and validation are in two different files, we
are able to access them from a third file.

Namespace can contain periods. For example, instead of nesting the namespaces
(validation and models) inside the app module, we could have used periods in the
validation and model internal module names:

namespace app.validation {

Chapter 4

[129]

 // ...
}
namespace app.models {
 // ...
}

The import keyword can be used within an internal module to provide an alias for
another module:

import TalkValidatorAlias = app.validation.TalkValidator;
var talkValidator = new TalkValidatorAlias();

Once we have finished declaring our namespaces, we can decide if we want to
compile each one into JavaScript or if we prefer to concatenate all the files into one
single file.

We can use the --out flag to compile all the input files into a single JavaScript
output file:

tsc --out output.js input.ts

The compiler will automatically order the output file based on the reference tags
present in the files. We can then import our files or file using an HTML <script> tag.

Modules
TypeScript also has the concept of external modules or just modules. The main
difference between using modules (instead of namespaces) is that after declaring all
our modules, we will not import them using an HTML <script> tag and we will be
able to use a module loader instead.

A module loader is a tool that allows us to have better control over the module
loading process. This allows us to perform tasks such as loading files asynchronously
or combining multiple modules into a single highly optimized file with ease.

Using the <script> tag is not recommended because when a web browser finds a
<script> tag, it downloads the file using asynchronous requests. We should attempt
to load as many files as possible using asynchronous requests because doing so will
significantly improve the network performance of a web application.

We will discover more about network performance in
Chapter 6, Application Performance.

Object-Oriented Programming with TypeScript

[130]

The JavaScript versions prior to ECMAScript 6 (ES6) don't include native module
support. Developers were forced to develop their own module loaders. The open
source community tried to come up with improved solutions over the years. As
a result, today there are several module loaders available, and each one uses a
different module definition syntax. The most popular ones are as follows:

• RequireJS: RequireJS uses a syntax known as asynchronous module
definition (AMD)

• Browserify: Browserify uses a syntax known as CommonJS.
• SystemJS: SystemJS is a universal module loader, which means that

it supports all the available module syntaxes (ES6, CommonJS, AMD,
and UMD).

Node.js applications also use the CommonJS syntax.

Fortunately, TypeScript allows us to choose which kind of module definition syntax
(ES6, CommonJS, AMD, SystemJS, or UMD) we want to use at runtime.

We can indicate our preference by using the --module flag when compiling:

tsc --module commonjs main.ts // use CommonJS

tsc --module amd main.ts // use AMD

tsc --module umd main.ts // use UMD

tsc --module system main.ts // use SytemJS

While we can select four different module definition syntaxes at runtime. However,
only two are available at design time:

• External module syntax (The default module syntax in the TypeScript
versions prior to 1.5)

• ES6 module syntax (The recommended external module syntax in TypeScript
1.5 or higher)

It is important to understand that we can use one kind of module definition syntax
at design time (ES6, CommonJS, AMD, SystemJS, or UMD) and another at runtime
(external modules or ES6).

Since the release of TypeScript 1.5, it is recommended you use the ECMAScript 6
module definition syntax because it is based on standards, and in the future, we will
be able to use this syntax at both design time and runtime.

Chapter 4

[131]

We will now take a look at each of the available module definition syntaxes.

ES6 modules – runtime and design time
TypeScript 1.5 introduces support for the ES6 module syntax. Let's define an external
module using it:

class UserModel {
 // ...
}
export { UserModel };

We have defined an external module. We don't need to use the namespace keyword,
but we must continue to use the export keyword. We used the export keyword
at the bottom of the module, but it is also possible to use it just before the class
keyword like we did in the internal module example:

export class UserModel {
 // ...
}

We can also export an entity using an alias:

class UserModel {
 // ...
}
export { UserModel as User }; // UserModel exported as User

An export declaration exports all meanings of a name:

interface UserModel {
 // ...
}

class UserModel {
 // ...
}
export { UserModel }; // Exports both interface and function

To import a module, we must use the import keyword as follows:

import { UserModel } from "./models";

The import keyword creates a variable for each imported component. In the
preceding code snippet, a new variable named UserModel is declared and its value
contains a reference to the UserModel class, which was declared and exported in
the models.ts file.

Object-Oriented Programming with TypeScript

[132]

We can use the export keyword to import multiple entities from one module:

class UserValidator {
 // ...
}

class TalkValidator {
 // ...
}

export { UserValidator, TalkValidator };

Furthermore, we can use the import keyword to import multiple entities from a
single module as follows:

import { UserValidator, TalkValidator } from "./validation.ts"

Throughout the rest of this book, we will use the ES6 syntax at
design-time and the CommonJS syntax at runtime.

External modules – design time only
Before TypeScript 1.5, modules were declared using a kind of module syntax known
as external module syntax. This kind of syntax was used at design time (TypeScript
code). However, once compiled into JavaScript, it was transformed and executed
(runtime) into AMD, CommonJS, UMD, or SystemJS modules.

We should try to avoid using this syntax and use the new ES6 syntax instead.
However, we will take a quick look at the external module syntax because we
may have to work on old applications or outdated documentation.

We can import a module using the import keyword:

import User = require("./user_class");

The preceding code snippet declares a new variable named User. The User variable
takes the exported content of the user_class module as its value.

To export a module, we need to use the export keyword. We can apply the export
keyword directly to a class or interface:

export class User {
 // …
}

Chapter 4

[133]

We can also use the export keyword on its own by assigning to it the value that we
desire to export:

class User {
 // …
}
export = User;

External modules can be compiled into any of the available module definition
syntaxes (AMD, CommonJS, SystemJS, or UMD).

AMD modules – runtime only
If we compile the initial external module into an AMD module (using the flag
--compile amd), we will generate the following AMD module:

define(["require", "exports"], function (require, exports) {
 var UserModel = (function () {
 function UserModel() {
 }
 return UserModel;
 })();
 return UserModel;
});

The define function takes an array as its first argument. This array contains a list of
the names of the module dependencies. The second argument is a callback that will
be invoked once all the module dependencies have been loaded. The callback takes
each of the module dependencies as its parameters and contains all the logic from
our TypeScript component. Notice how the return type of the callback matches the
components that we declared as public by using the export keyword. AMD modules
can then be loaded using the RequireJS module loader.

We will not discuss AMD and RequireJS further in this book,
but if you want to learn more about them, you can do so by
visiting http://requirejs.org/docs/start.html.

http://requirejs.org/docs/start.html

Object-Oriented Programming with TypeScript

[134]

CommonJS modules – runtime only
We begin by compiling our external module into a CommonJS module (using the
flag --compile commonjs). We will compile the following code snippet:

class User {
 // …
}
export = User;

As a result, the following CommonJS module is generated:

var UserModel = (function () {
 function UserModel() {
 //…
 }
 return UserModel;
})();
module.exports = UserModel;

As we can see in the preceding code snippet, the CommonJS module definition syntax
is almost identical to the deprecated TypeScript (1.4 or prior) external module syntax.

The preceding CommonJS module can be loaded by a Node.js application without
any additional changes using the import keyword and the require function:

import UserModel = require('./UserModel');
var user = new UserModel();

However, if we attempt to use the require function in a web browser, an exception
will be thrown because the require function is undefined. We can easily solve this
problem by using Browserify.

All that we need to follow is three simple steps:

1. Install Browserify using npm:
npm install -g browserify

2. Use Browserify to bundle all your CommonJS modules into a JavaScript
file that you can import using an HTML <script> tag. We can do this by
executing the following command:
browserify main.js -o bundle.js

In the preceding command, main.js is the file that contains the root module
within our application's dependency tree. The bundle.js file is the output
file that we will be able to import using a HTML script tag.

Chapter 4

[135]

3. Import the bundle.js file using a HTML <script> tag.

If you need more information about Browserify, visit the official
documentation at https://github.com/substack/node-
browserify#usage.

UMD modules – runtime only
If we want to release a JavaScript library or framework, we will need to compile our
TypeScript application into both CommonJS and AMD modules. Our library should
also allow developers to load it directly in a web browser using a HTML script tag.

The web development community has developed the following code snippet to help
us to achieve universal module definition (UMD) support:

(function (root, factory) {
 if (typeof exports === 'object') {
 // CommonJS
 module.exports = factory(require('b'));
 } else if (typeof define === 'function' && define.amd) {
 // AMD
 define(['b'], function (b) {
 return (root.returnExportsGlobal = factory(b));
 });
 } else {
 // Global Variables
 root.returnExportsGlobal = factory(root.b);
 }
}(this, function (b) {
 // Your actual module
 return {};
}));

This code snippet is great, but we want to avoid manually adding it to every single
module in our application. Fortunately, there are a few options available to achieve
UMD support with ease.

The first option is to use the flag --compile umd to generate one UMD module
for each module in our application. The second option is to create one single UMD
module that will contain all the modules in the application using a module loader
known as Browserify.

https://github.com/substack/node-browserify#usage
https://github.com/substack/node-browserify#usage

Object-Oriented Programming with TypeScript

[136]

Refer to the official Browserify project website at
http://browserify.org/ to learn more about Browserify.
Refer to the Browserify-standalone option to learn more
about the generation of one unique optimized file.

SystemJS modules – runtime only
While UMD gives you a way to output a single module that works in both AMD
and CommonJS, SystemJS will allow you to use ES6 modules closer to their native
semantics without requiring an ES6-compatible browser engine.

SytemJS is used by Angular 2.0, which is the upcoming version of a popular web
application development framework.

Refer to the official SytemJS project website at https://github.com/
systemjs/systemjs to learn more about SystemJS.
There is a free list of common module mistakes available online at
http://www.typescriptlang.org/Handbook#modules-
pitfalls-of-modules.

Circular dependencies
A circular dependency is an issue that we can encounter when working with
multiple components and dependencies. Sometimes, it is possible to reach a
point in which one component (A) has a dependency on a second component (B),
which depends on the first component (A). In the following graph, each node is a
component, and we can observe that the nodes circular1.ts and circular2.ts have
a circular dependency. The node named doesNotDependOnAnything.ts doesn't
have dependencies and the node named onlyDependsOnOtherStuff.ts has a
dependency on circular1.ts but doesn't have circular dependencies..

http://browserify.org/
https://github.com/systemjs/systemjs
https://github.com/systemjs/systemjs
http://www.typescriptlang.org/Handbook#modules-pitfalls-of-modules
http://www.typescriptlang.org/Handbook#modules-pitfalls-of-modules

Chapter 4

[137]

The circular dependencies don't need to necessarily involve just two components.
We can encounter scenarios in which a component depends on another component,
which depends on other components, and some of the components in the dependency
tree end up pointing to one of their parent components in the tree.

Identifying a circular dependency is very time consuming. Fortunately, Atom
includes a command-line tool that will generate a dependency tree graph for us
like the preceding one. In order to access the Atom command line, we need to
navigate to View (in the top menu) and then to Toggle Command Palette.

Object-Oriented Programming with TypeScript

[138]

After opening the Toggle Command Palette, we need to type TypeScript:
Dependency View to display the graph:

If you want to learn more about dependency graphs, you can
visit its official documentation at https://github.com/
TypeStrong/atom-typescript/blob/master/docs/
dependency-view.md.

Summary
In this chapter, we saw how to work with classes, interfaces, and modules in depth.
We were able to reduce the complexity of our application by using techniques such
as encapsulation and inheritance.

We were also able to create external modules and manage our application
dependencies using tools such as RequireJS or Browserify.

In the next chapter, we will discuss the TypeScript runtime.

https://github.com/TypeStrong/atom-typescript/blob/master/docs/dependency-view.md
https://github.com/TypeStrong/atom-typescript/blob/master/docs/dependency-view.md
https://github.com/TypeStrong/atom-typescript/blob/master/docs/dependency-view.md

Chapter 5

[139]

Runtime
After completing this book, you will probably be eager to start a new project to put
into practice all your new knowledge. As the new project grows and you develop
more complex features, you might encounter some runtime issues.

We should be able to resolve design-time issues with ease because in the previous
chapter, we looked at the main TypeScript features.

However, we have not learned much about the TypeScript runtime. The good news
is that, depending on your background, you may already know a lot about it, as
the TypeScript runtime is the JavaScript runtime. TypeScript is only used at design
time; the TypeScript code is then compiled into JavaScript and finally executed. The
JavaScript runtime is in charge of the execution. Is important to understand that
we never execute TypeScript code and we always execute JavaScript code. For this
reason, when we refer to the TypeScript runtime, we will, in fact, be talking about
the JavaScript runtime.

When we compile our TypeScript code, we will generate JavaScript code, which will
be executed on the server side (with Node.js) or on the client side (in a web browser).
It is then that we may encounter some challenging runtime issues.

In this chapter, we will cover the following topics:

• The environment
• The event loop
• The this operator
• Prototypes
• Closures

Let's start by learning about the environment.

Runtime

[140]

The environment
The runtime environment is one of the first things that we must consider before
we can start developing a TypeScript application. Once we have compiled our
TypeScript code, it can be executed in many different JavaScript engines. While the
majority of those engines will be web browsers, such as Chrome, Internet Explorer,
or Firefox, we might also want to be able to run our code on the server side or in a
desktop application in environments such as Node.js or RingoJS.

It is important to keep in mind that there are some variables and objects available at
runtime that are environment-specific. For example, we could create a library and
access the document.layers variable. While document is part of the W3C Document
Object Model (DOM) standard, the layers property is only available in Internet
Explorer and is not part of the W3C DOM standard.

The W3C defines the DOM as follows:

The Document Object Model is a platform- and language-neutral interface that
will allow programs and scripts to dynamically access and update the content,
structure and style of documents. The document can be further processed and the
results of that processing can be incorporated back into the presented page.

In a similar manner, we can also access a set of objects known as the Browser Object
Model (BOM) from a web browser runtime environment. The BOM consists of the
objects navigator, history, screen, location, and document, which are properties of
the window object.

You need to realize that the DOM is part of the web browsers but not part of
JavaScript. If we want to run our application in a web browser, we will be able to
access the DOM and BOM. However, in environments like Node.js or RingoJS, they
will not be available, since they are standalone JavaScript environments completely
independent of a web browser. We can also find other objects on the server-side
environments (such as process.stdin in Node.js) that will not be available if we
attempt to execute our code in a web browser.

As if this wasn't enough work, we also need to keep in mind the existence of
multiple versions of these JavaScript environments. We will have to support multiple
browsers and multiple versions of Node.js. The recommended practice when dealing
with this problem is to add logic that looks for the availability of features rather than
the availability of a particular environment or version.

A really good library is available that can help us to implement feature
detection when developing for web browsers. The library is called
Modernizr and can be downloaded at http://modernizr.com/.

http://modernizr.com/

Chapter 5

[141]

The runtime
The TypeScript runtime (JavaScript) has a concurrency model based on an event loop.
This model is quite different to the models in other languages such as C or Java. Before
we focus on the event loop itself, you must understand some runtime concepts.

What follows is a visual representation of some important runtime concepts: heap,
stack, queue, and frame:

We will now look at the role of each of these runtime concepts.

Frames
A frame is a sequential unit of work. In the preceding diagram, the frames are
represented by the blocks inside the stack.

When a function is called in JavaScript, the runtime creates a frame in the stack.
The frame holds that particular function's arguments and local variables. When the
function returns, the frame is popped out of the stack. Let's take a look at an example:

function foo(b){
 var a = 12;
 return a+b+35;
}

function bar(x){

Runtime

[142]

 var m = 4;
 return foo(m*x);
}

After declaring the foo and bar functions, we invoke the bar function:

bar(21);

When bar is executed, the runtime will create a new frame containing the arguments
of bar and all the local variables. The frame (represented as a square in the preceding
diagram) is then added to the top of the stack.

Internally, bar invokes foo. When foo is invoked, a new frame is created and
allocated in the top of the stack. When the execution of foo is finished (foo has
returned), the top frame is removed from the stack. When the execution of bar is
also complete, it is removed from the stack as well.

Now, let's imagine what would happen if the foo function invoked the bar function.
We would create a never-ending function call loop. With each function call, a new
frame would be added to the stack, and eventually, there would be no more space
in the stack, and an error would be thrown. Most developers are familiar with this
error, known as a stack overflow error.

Stack
The stack contains the sequential steps (frames) that a message needs to execute. A
stack is a data structure that represents a simple Last In First Out (LIFO) collection
of objects. Therefore, when a frame is added to the stack, it is always added to the
top of the stack.

Since the stack is a LIFO collection, the event loop processes the frames stored in it
from top to bottom. The dependencies of a frame are added to the top of it in the
stack to ensure that all the dependencies of each of the frames are met.

Queue
The queue contains a list of messages waiting to be processed. Each message is
associated with a function. When the stack is empty, a message is taken out of the
queue and processed. The processing consists of calling the associated function and
adding the frames to the stack. The message processing ends when the stack becomes
empty again.

In the previous runtime diagram, the blocks inside the queue represent the messages.

Chapter 5

[143]

Heap
The heap is a memory container that is not aware of the order of the items stored in
it. The heap contains all the variables and objects currently in use. It may also contain
frames that are currently out of scope but have not yet been removed from memory
by the garbage collector.

The event loop
Concurrency is the ability for two or more operations to be executed simultaneously.
The runtime execution takes place on one single thread, which means that we cannot
achieve real concurrency.

The event loop follows a run-to-completion approach, which means that it will
process a message from beginning to end before any other message is processed.

As we discussed in Chapter 3, Working with Functions, we can use the
yield keyword and generators to pause the execution of a function.

Every time a function is invoked, a new message is added to the queue. If the stack is
empty, the function is processed (the frames are added to the stack).

When all the frames have been added to the stack, the stack is cleared from top
to bottom. At the end of the process, the stack is empty and the next message
is processed.

Web workers can performance background tasks in a different thread.
They have their own queue, heap, and stack.

One of the advantages of the event loop is that the execution order is quite predictable
and easy to follow. Another important advantage of the event loop approach is that
it features non-blocking I/O. This means that when the application is waiting for an
input and output (I/O) operation to finish, it can still process other things, such as
user input.

A disadvantage of this approach is that if a message takes too long to complete, the
application becomes unresponsive. Good practice is to make message processing
short, and if possible, split one message function into several messages functions.

Runtime

[144]

The this operator
In JavaScript, the this operator behaves a little differently than other languages. The
value of the this operator is often determined by the way a function is invoked. Its
value cannot be set by assignment during execution, and it may be different each
time a function is invoked.

The this operator also has some differences when using the
strict and nonstrict modes. To learn more about the strict mode,
refer to https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Strict_mode.

The this operator in the global context
In the global context, the this operator will always point to the global object. In a
web browser, the window object is the global object:

console.log(this === window); // true
this.a = 37;
console.log(window.a); // 37
console.log(this.document === document === window. document); // true

The this operator in a function context
The value of this inside a function depends on how the function is invoked. If we
simply invoke a function in the nonstrict mode, the value of this within the function
will point to the global object:

function f1(){
 return this;
}
f1() === window; // true

However, if we invoke a function in the strict mode, the value of this within the
function's body will point to undefined:

console.log(this); // global (window)

function f2(){
 "use strict";
 return this; // undefined
}
console.log(f2()); // undefined
console.log(this); // window

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

Chapter 5

[145]

However, the value of the this operator inside a function invoked as an instance
method points to the instance. In other words, the value of the this operator within
a function that is part of a class points to that class:

var p = {
 age: 37,
 getAge: function() {
 return this.age; // this points to the class instance (p)
 }
};
console.log(p.getAge()); // 37

In the preceding example, we have used object literal notation to define an object
named p, but the same applies when declaring objects using prototypes:

function Person() {}
Person.prototype.age = 37;
Person .prototype.getAge = function () {
 return this.age;
}
var p = new Person();
p.age; // 37
p.getAge(); // 37

When a function is used as a constructor (with the new keyword), the this operator
points to the object being constructed:

function Person() { // function used as a constructor
 this.age = 37;
}
var p = new Person();
console.log(p.age); // logs 37

The call, apply, and bind methods
All the functions inherit the call, apply, and bind methods from
Function.prototype. We can use these methods to set the value of the this
operator when it is used inside the body of a function.

The call and apply methods are almost identical; both methods allow us to
invoke a function and set the value of the this operator within the function. The
main difference between call and apply is that while apply lets us invoke the
function with arguments as an array and call requires the function parameters
to be listed explicitly.

Runtime

[146]

A useful mnemonic is A (apply) for array and
C (call) for comma.

Let's take a look at an example. We will start by declaring a class named Person. This
class has two properties (name and surname) and one method (greet). The greet
method uses the this operator to access the name and surname instance properties:

class Person {
 public name : string;
 public surname : string;

 constructor(name : string, surname : string) {
 this.name = name;
 this.surname = surname;
 }

 public greet(city : string, country : string) {
 // we use the this operator to access name and surname
 var msg = `Hi, my name is ${this.name} ${this.surname}. `;
 msg += `I'm from ${city} (${country}).`;
 console.log(msg);
 }
}

After declaring the Person class, we will create an instance:

var person = new Person("remo", "jansen");

If we invoke the greet method, it will work as expected:

person.greet.("Seville", "Spain");
// Hi, my name is remo jansen. I'm from Seville (Spain).

Alternatively, we can invoke the method using the call and apply functions. We
have supplied the person object as the first parameter of both functions because we
want the this operator (inside the greet method) to take person as its value:

person.greet.call(person, "seville", "spain");
person.greet.apply(person, ["seville", "spain"]);

If we provide a different value to be used as the value of this, we will not be able to
access the name and surname properties within the greet function:

person.greet.call(null, "seville", "spain");
person.greet.apply(null, ["seville", "spain"]);
// Hi, my name is undefined.I'm from seville spain.

Chapter 5

[147]

The two preceding examples may seem useless because the first one invoked the
function directly and the second one caused an unexpected behavior. The apply and
call methods make sense only when we want the this operator to take a different
value when a function is invoked:

var valueOfThis = { name : "anakin", surname : "skywalker" };
person.greet.call(valueOfThis, "mos espa", "tatooine");
person.greet.apply(valueOfThis, ["mos espa", "tatooine"]);
// Hi, my name is anakin skywalker. I'm from mos espa tatooine.

The bind method can be used to set the value of the this operator (within a
function) regardless of how it is invoked.

When we invoke a function's bind method, it returns a new function with the same
body and scope as the original function, but the this operator (within the body
function) is permanently bound to the first argument of bind, regardless of how the
function is invoked.

Let's take a look at an example. We will start by creating an instance of the Person
class that we declared in the previous example:

var person = new Person("remo", "jansen");

Then, we can use bind to set the greet function to be a new function with the same
scope and body:

var greet = person.greet.bind(person);

If we try to invoke the greet function using bind and apply, just like we did in the
previous example, we will be able to observe that this time the this operator will
always point to the object instance independent of how the function is invoked:

greet.call(person, "seville", "spain");
greet.apply(person, ["seville", "spain"]);
// Hi, my name is remo jansen. I'm from seville spain.

greet.call(null, "seville", "spain");
greet.apply(null, ["seville", "spain"]);
// Hi, my name is remo jansen. I'm from seville spain.

var valueOfThis = { name: "anakin", surname: "skywalker" };
greet.call(valueOfThis, "mos espa", "tatooine");
greet.apply(valueOfThis, ["mos espa", "tatooine"]);
// Hi, my name is remo jansen. I'm from mos espa tatooine.

Runtime

[148]

Using the apply, call, and bind functions is not recommended
unless you really know what you are doing, because they can lead
to complex runtime issues for other developers.

Once we bind an object to a function with bind, we cannot override it:

var valueOfThis = { name: "anakin", surname: "skywalker" };
var greet = person.greet.bind(valueOfThis);
greet.call(valueOfThis, "mos espa", "tatooine");
greet.apply(valueOfThis, ["mos espa", "tatooine"]);
// Hi, my name is remo jansen. I'm from mos espa tatooine.

The use of the bind, apply, and call methods is often
discouraged because it can lead to confusion. Modifying the default
behavior of the this operator can lead to really unexpected results.
Remember to use these methods only when strictly necessary and to
document your code properly to reduce the risk caused by potential
maintainability issues.

Prototypes
When we compile a TypeScript program, all classes and objects become JavaScript
objects. Sometimes, we will encounter our application behaving unexpectedly at
runtime, and we will not be able to identify and understand the root cause of this
behavior without a good understanding of how inheritance works in JavaScript.
This understanding will allow us to have much better control over our application
at runtime.

The runtime inheritance system uses a prototypal inheritance model. In a prototypal
inheritance model, objects inherit from objects, and there are no classes available.
However, we can use prototypes to simulate classes. Let's see how it works.

At runtime, almost every JavaScript object has an internal property called prototype.
The value of the prototype attribute is an object, which contains some attributes
(data) and methods (behavior).

In TypeScript, we can use a class-based inheritance system:

class Person {
 public name : string;
 public surname : string;
 public age : number = 0;
 constructor(name : string, surname : string){
 this.name = name;

Chapter 5

[149]

 this.surname = surname;
 }
 greet() {
 var msg =`Hi! my name is ${this.name} ${this.surname}`;
 msg += `I'm ${this.age}`;
 }
}

We have defined a class named Person. At runtime, this class is declared using
prototypes instead of classes:

var Person = (function () {
 function Person(name, surname) {
 this.age = 0;
 this.name = name;
 this.surname = surname;
 }
 Person.prototype.greet = function () {
 var msg = "Hi! my name is " + this.name +
 " " + this.surname;
 msg += "I'm " + this.age;
 };
 return Person;
})();

The TypeScript compiler wraps the object definition (we will not refer it as the
class definition because technically, it is not a class) with an immediately invoked
function expression (IIFE). Inside the IIFE, we can find a function named Person. If
we examine the function and compare it to the TypeScript class, we will notice that it
takes the same parameters, like the constructor in the TypeScript class. This function
is used to create new instances of the Person class.

After the constructor, we can see the definition of the greet method. As you can see,
the prototype attribute is used to attach the greet method to the Person class.

Instance properties versus class properties
As JavaScript is a dynamic programming language, we can add properties and
methods to an instance of an object at runtime; and they don't need to be part of the
object (class) itself. Let's take a look at an example:

function Person(name, surname) {
 // instance properties
 this.name = name;

Runtime

[150]

 this.surname = surname;
}
var me = new Person("remo", "jansen");
me.email = "remo.jansen@wolksoftware.com";

Here, we defined a constructor function for an object named Person, which takes
two variables (name and surname) as arguments. Then, we have created an instance
of the Person object and added a new property named email to it. We can use a
for…in statement to check the properties of me at runtime:

for(var property in me) {
 console.log("property: " + property + ", value: '" +
 me[property] + "'");
}
// property: name, value: 'remo'
// property: surname, value: 'jansen'
// property: email, value: 'remo.jansen@wolksoftware.com'
// property: greet, value: 'function (city, country) {
// var msg = "Hi, my name is " + this.name + " " +
//this.surname;
// msg += "\nI'm from " + city + " " + country;
// console.log(msg);
// }'

All these properties are instance properties because they hold a value for each new
instance. If, for example, we create a new instance of Person, both instances will hold
their own values:

var hero = new Person("John", "117");
hero.name; // "John"
me.name; // "remo"

We have defined these instance properties using the this operator, because in the
class constructor, the this operator points to the object's prototype. This explains
why we can alternatively define instance properties through the object's prototype:

Person.prototype.name = name; // instance property
Person.prototype.name = surname; // instance property

We can also declare class properties and methods. The main difference is that the
value of class properties and methods is shared between all the instances of an object.
Class properties and methods are sometimes called static properties and methods.

Chapter 5

[151]

Class properties are often used to store static values:

function MathHelper() {
 /* ... */
}

// class property
MathHelper.PI = 3.14159265359;

Class methods are also often used as utility functions that perform calculations upon
supplied parameters and return a result:

function MathHelper() { /* ... */ }

// class method
MathHelper.areaOfCircle = function(radius) {
 return radius * radius * this.PI;
}

// class property
MathHelper.PI = 3.14159265359;

In the preceding example, we have accessed a class attribute (PI) from a class
method (areaOfCircle). We can access class properties from instance methods, but
we cannot access instance properties or methods from class properties or methods.
We can demonstrate this by declaring PI as an instance property instead of a class
property:

function MathHelper() {
 // instance property
 this.PI = 3.14159265359;
}

If we then attempt to access PI from a class method, it will be undefined:

// class method
MathHelper.areaOfCircle = function(radius) {
 return radius * radius * this.PI; // this.PI is undefined
}

MathHelper.areaOfCircle(5); // NaN

Runtime

[152]

We are not supposed to access class methods or properties from instance methods,
but there is a way to do it. We can achieve it using the prototype's constructor
property. We can also demonstrate this as follows:

function MathHelper () { /* ... */ }

// class property
MathHelper.PI = 3.14159265359;

// instance method
MathHelper.prototype.areaOfCircle = function(radius) {
 return radius * radius * this.constructor.PI;
}

var math = new MathHelper ();
console.log(MathHelper.areaOfCircle(5)); // 78.53981633975

We can access PI (the class property) from areaOfCircle (the instance method)
using the prototype's constructor property because this property returns a reference
to the object's constructor.

Inside areaOfCircle, the this operator returns a reference to the object's prototype:

this === MathHelper.prototype //true

We may deduce that this.constructor is equal to MathHelper.prototype.
constructor and, therefore, MathHelper.prototype.constructor is equal to
MathHelper.

Prototypal inheritance
You might be wondering how the extends keyword works. Let's create a new
TypeScript class, which inherits from the Person class, to help you understand it:

class SuperHero extends Person {
 public superpower : string;
 constructor(name : string, surname : string, superpower :
 string){
 super(name, surname);
 this.superpower = superpower;
 }
 userSuperPower() {
 return `I'm using my ${this.superpower}`
 }
}

Chapter 5

[153]

The preceding class is named SuperHero and extends the Person class. It has one
extra attribute (superpower) and method (useSuperPower). If we compile the code,
we will notice the following piece of code:

var __extends = this.__extends || function (d, b) {
 for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
 function __() { this.constructor = d; }
 __.prototype = b.prototype;
 d.prototype = new __();
};

This piece of code is generated by TypeScript. Even though it is a really small
piece of code, it showcases almost every concept contained in this chapter, and
understanding it can be quite challenging. We might need to examine it multiple
times to understand it, but the effort is worth it. Let's take a look at the function.

Before the function expression is evaluated for the first time, the this operator
points to the global object, which does not contain a method named __extends.
This means that the __extends variable is undefined at this point:

console.log(this.__extends); // undefined

When the function expression is evaluated for the first time, the value of the function
expression (an anonymous function) is assigned to the __extends property in the
global scope:

console.log(this.__extends); // extends(n, e, t);

TypeScript generates the function expression once for each TypeScript file containing
the extends keyword. However, the function expression is only evaluated once
(when the __extends variable is undefined). This behavior is implemented in the
first line of code:

var __extends = this.__extends || function (d, b) { // ...

The first time this line of code is executed, the function expression is evaluated.
The value of the function expression is an anonymous function, which is assigned
to the __extends variable in the global scope. As we are in the global scope,
var __extends and this._extends refer to the same variable at this point.

When a new file is executed, the __extends variable is already available in the global
scope and the function expression is not evaluated. This means that the value of the
function expression is only assigned to the __extends variable once.

Runtime

[154]

As you already know, the value of the function expression is an anonymous
function. Let's now focus on it:

function (d, b) {
 for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
 function __() { this.constructor = d; }
 __.prototype = b.prototype;
 d.prototype = new __();
}

This function takes two arguments named d and b. When we invoke it, we should
pass a derived object constructor (d) and a base object constructor (b).

The first line inside the anonymous function iterates each class property and method
from the base class and creates their copy in the derived class:

for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];

When we use a for…in statement to iterate an instance of an object,
it will iterate the object's instance properties. However, if we use a
for…in statement to iterate the properties of an object's constructor,
the statement will iterate its class properties. In the preceding
example, the for…in statement is used to inherit the object's class
properties and methods. To inherit the instance properties, we will
copy the object's prototype.

The second line declares a new constructor function named __, and inside it, the
this operator is used to access its prototype:

function __() { this.constructor = d; }

The prototype contains a special property named constructor, which returns a
reference to the object's constructor. The function named __ and this.constructor
are pointing to the same variable at this point. The value of the derived object
constructor (d) is then assigned to the __ constructor.

In the third line, the value of the prototype object from the base object constructor is
assigned to the prototype of the __ object constructor:

__.prototype = b.prototype;

In the last line, a new __() is invoked, and the result is assigned to the derived class
(d) prototype. By performing all these steps, we have achieved all that we need to
invoke the following:

var instance = new d():

Chapter 5

[155]

Upon doing so, we will get an object that contains all the properties from both the
derived class (d) and the base class (b). Furthermore, the instance of operator will
work as we would expect:

var superHero = new SuperHero();
console.log(superHero instanceof Person); // true
console.log(superHero instanceof SuperHero); // true

We can see the function in action by examining the runtime code that defines the
SuperHero class:

var SuperHero = (function (_super) {
 __extends(SuperHero, _super);
 function SuperHero(name, surname, superpower) {
 _super.call(this, name, surname);
 this.superpower = superpower;
 }
 SuperHero.prototype.userSuperPower = function () {
 return "I'm using my " + superpower;
 };
 return SuperHero;
})(Person);

We can see an IIFE here again. This time, the IIFE takes the Person object constructor
as the argument. Inside the function, we will refer to this argument using the name
_super. Inside the IIFE, the __extends function is invoked and the SuperHero
(derived class) and _super (base class) arguments are passed to it.

In the next line, we can find the declaration of the SuperHero object constructor
and the useSuperPower function. We can use SuperHero as an argument of
__extend before it is declared, because functions declarations are hoisted to the
top of the scope.

Function expressions are not hoisted. When we assign a function to a
variable in a function expression, the variable is hoisted, but its value
(the function itself) is not hoisted.

Inside the SuperHero constructor, the base class (Person) constructor is invoked
using the call method:

_super.call(this, name, surname);

Runtime

[156]

As we discussed previously in this chapter, we can use call to set the value of the
this operator in a function context. In this case, we are passing the this operator,
which points to the instance of SuperHero being created:

function Person(name, surname) {
 // this points to the instance of SuperHero being created
 this.name = name;
 this.surname = surname;
}

The prototype chain
When we try to access a property or method of an object, the runtime will search
for that property or method in the object's own properties and methods. If it is not
found, the runtime will continue searching through the object's inherited properties
by navigating the entire inheritance tree. As a derived object is linked to its base
object through the prototype property, we refer to this inheritance tree as the
prototype chain.

Let's take a look at an example. We will declare two simple TypeScript classes named
Base and Derived:

class Base {
 public method1(){ return 1; };
 public method2(){ return 2; };
}

class Derived extends Base {
 public method2(){ return 3; };
 public method3(){ return 4; };
}

Now, we will examine the JavaScript code generated by TypeScript:

var Base = (function () {
 function Base() {
 }
 Base.prototype.method1 = function () { return 1; };
 ;
 Base.prototype.method2 = function () { return 2; };
 ;
 return Base;
})();

Chapter 5

[157]

var Derived = (function (_super) {
 __extends(Derived, _super);
 function Derived() {
 _super.apply(this, arguments);
 }
 Derived.prototype.method2 = function () { return 3; };
 ;
 Derived.prototype.method3 = function () { return 4; };
 ;
 return Derived;
})(Base);

We can then create an instance of the Derived class:

var derived = new Derived();

If we try to access the method named method1, the runtime will find it in the
instance's own properties:

console.log(derived.method1()); // 1

The instance also has its own property named method2 (with value 2), but there is
also an inherited property named method2 (with value 3). The object's own property
(method2 with value 3) prevents access to the prototype property (method2 with
value 2). This is known as property shadowing:

console.log(derived.method2()); // 3

The instance does not have its own property named method3, but it has a property
named method3 in its prototype:

console.log(derived.method3()); // 4

Both the instance and the objects in the prototype chain (the Base class) don't have a
property named method4:

console.log(derived.method4()); // error

Accessing the prototype of an object
Prototypes can be accessed in three different ways:

• Person.prototype: We can access the prototype of a function directly using
the prototype attribute

• Person.getPrototypeOf(person): We want this function to access the
prototype of an instance of an object we can use the getPrototypeOf
function

Runtime

[158]

• person.__proto__: This is a property that exposes the internal prototype of
the object through which it is accessed

The use of __proto__ is controversial and has been
discouraged by many. It was never originally included in the
ECMAScript language spec, but modern browsers decided to
implement it anyway. Today, the __proto__ property has been
standardized in the ECMAScript 6 language specification and
will be supported in the future, but it is still a slow operation
that should be avoided if performance is a concern.

The new operator
We can use the new operator to generate an instance of Person:

var person = new Person("remo", "jansen");

The runtime does not follow a class-based inheritance model. When we use the new
operator, the runtime creates a new object that inherits from the Person class prototype.

We may conclude that the behavior of the new operator at runtime (JavaScript) is not
really different from the extends keyword at design time (TypeScript).

Closures
Closures are one of the most powerful features available at runtime, but they are
also one of the most misunderstood. The Mozilla developer network defines closures
as follows:

"Closures are functions that refer to independent (free) variables. In other words,
the function defined in the closure 'remembers' the environment in which it
was created."

We understand independent (free) variables as variables that persist beyond the
lexical scope from which they were created. Let's take a look at an example:

function makeArmy() {
 var shooters = []
 for(var i = 0; i < 10; i++) {
 var shooter = function() { // a shooter is a function
 alert(i) // which should alert it's number
 }

Chapter 5

[159]

 shooters.push(shooter)
 }
 return shooters;
}

We have declared a function named makeArmy. Inside the function, we have created
an array of functions named shooters. Each function in the shooters array will
alert a number, the value of which was set from the variable i inside a for statement.
We will now invoke the makeArmy function:

var army = makeArmy();

The army variable should now contain the array of functions shooters. However,
we will notice a problem if we execute the following piece of code:

army[0](); // 10 (expected 0)
army[5](); // 10 (expected 5)

The preceding code snippet does not work as expected because we made one of the
most common mistakes related to closures. When we declared the shooter function
inside the makeArmy function, we created a closure without knowing it.

The reason for this is that the functions assigned to shooter are closures; they
consist of the function definition and the captured environment from the makeArmy
function's scope. Ten closures have been created, but each one shares the same single
environment. By the time the shooter functions are executed, the loop has run its
course and the i variable (shared by all the closures) has been left pointing to the last
entry (10).

One solution in this case is to use more closures:

function makeArmy() {
 var shooters = []
 for(var i = 0; i < 10; i++) {
 (function(i){
 var shooter = function() {
 alert(i);
 }
 shooters.push(shooter)
 })(i);
 }
 return shooters;
}

var army = makeArmy();
army[0](); // 0
army[5](); // 5

Runtime

[160]

This works as expected. Rather than the shooter functions sharing a single
environment, the immediately invoked function creates a new environment for
each one, in which i refers to the corresponding value.

Static variables with closures
In the previous section, we saw that when a variable is declared in a closure context
it can be shared between multiple instances of a class, or in other words, the variable
behaves as a static variable.

We will now see how we can create variables and methods that behave like static
variables. Let's start by declaring a TypeScript class named Counter:

class Counter {
 private static _COUNTER = 0;
 constructor() {}
 private _changeBy(val) {
 Counter._COUNTER += val;
 }
 public increment() {
 this._changeBy(1);
 }
 public decrement() {
 this._changeBy(-1);
 }
 public value() {
 return Counter._COUNTER;
 }
}

The preceding class contains a static member named _COUNTER. The TypeScript
compiler transforms it into the following resulting code:

var Counter = (function () {
 function Counter() {
 }
 Counter.prototype._changeBy = function (val) {
 Counter._COUNTER += val;
 };
 Counter.prototype.increment = function () {
 this._changeBy(1);
 };
 Counter.prototype.decrement = function () {
 this._changeBy(-1);
 };

Chapter 5

[161]

 Counter.prototype.value = function () {
 return Counter._COUNTER;
 };
 Counter._COUNTER = 0;
 return Counter;
})();

As you can observe, the static variable is declared by the TypeScript compiler as
a class property (as opposed to an instance property). The compiler uses a class
property because class properties are shared across all instances of a class.

Alternatively, we could write some JavaScript (remember that all valid JavaScript is
valid TypeScript) code to emulate static properties using closures:

var Counter = (function() {
 // closure context
 var _COUNTER = 0;

 function changeBy(val) {
 _COUNTER += val;
 }

 function Counter() {};

 Counter.prototype.increment = function() {
 changeBy(1);
 };
 Counter.prototype.decrement = function() {
 changeBy(-1);
 };
 Counter.prototype.value = function() {
 return _COUNTER;
 };
 return Counter;
})();

The preceding code snippet declares a class named Counter. The class has some
methods used to increment, decrement, and read the variable named _COUNTER.
The _COUNTER variable itself is not part of the object prototype.

The Counter constructor function is part of a closure. As a result, all the instances of
the Counter class will share the same closure context, which means that the context
(the variable counter and the function changeBy) will behave as a singleton.

Runtime

[162]

The singleton pattern requires an object to be declared as a static variable
to avoid the need to create its instance whenever it is required. The object
instance is, therefore, shared by all the components in the application. The
singleton pattern is frequently used in scenarios where it is not beneficial,
which introduces unnecessary restrictions in situations where a unique
instance of a class is not actually required, and introduces global states
into an application.

So, you now know that it is possible to use closures to emulate static variables:

var counter1 = new Counter();
var counter2 = new Counter();
console.log(counter1.value()); // 0
console.log(counter2.value()); // 0
counter1.increment();
counter1.increment();
console.log(counter1.value()); // 2
console.log(counter2.value()); // 2 (expected 0)
counter1.decrement();
console.log(counter1.value()); // 1
console.log(counter2.value()); // 1 (expected 0)

Private members with closures
We have seen that the closure function can access variables that persist beyond
the lexical scope from which they were created. These variables are not part of the
function prototype or body, but they are part of the closure function context.

As there is no way to directly access the context of a closure function, the context
variables and methods can be used to emulate private members. The main advantage
of using closures to emulate private members (instead of the TypeScript private
access modifier) is that closures will prevent access to private members at runtime.

TypeScript avoids emulating private properties at runtime. The TypeScript compiler
will throw an error at compilation time if we attempt to access a private member.

However, TypeScript avoids the use of closures to emulate private members to
improve the application performance. If we add or remove an access modifier to
or from one of our classes, the resulting JavaScript code will not change at all. This
means that private members of a class become public members at runtime.

Chapter 5

[163]

However, it is possible to use closures to emulate private properties at runtime. Just
like when we emulated a static variable using closures, we can only achieve this kind
of advanced control over the behavior of closures by writing pure JavaScript. Let's
take a look at an example:

function makeCounter() {

 // closure context
 var _COUNTER = 0;
 function changeBy(val) {
 _COUNTER += val;
 }

 function Counter() {};

 Counter.prototype.increment = function() {
 changeBy(1);
 };
 Counter.prototype.decrement = function() {
 changeBy(-1);
 };
 Counter.prototype.value = function() {
 return _COUNTER;
 };
 return new Counter();
};

The preceding class is almost identical to the class that we previously declared to
demonstrate how to emulate static variables at runtime using closures.

This time, a new closure context is created every time we invoke the makeCounter
function, so each new instance of Counter will remember an independent context
(counter and changeBy):

var counter1 = makeCounter();
var counter2 = makeCounter();
console.log(counter1.value()); // 0
console.log(counter2.value()); // 0
counter1.increment();
counter1.increment();
console.log(counter1.value()); // 2
console.log(counter2.value()); // 0 (expected 0)
counter1.decrement();
console.log(counter1.value()); // 1
console.log(counter2.value()); // 0 (expected 0)

Runtime

[164]

Since the context cannot be accessed directly, we can say that the variable counter
and the changeBy function are private members:

console.log(counter1.counter); // undefined
counter1.changeBy(2); // changeBy is not a function
console.log(counter1.value()); // 1

Summary
In this chapter, we discovered how to understand the runtime, which allows us not
only to resolve runtime issues with ease but also to be able to write better TypeScript
code. A deep understanding of closures and prototypes will allow you to develop
some complex features that it would have not been possible to develop without
this knowledge.

In the next chapter, we will focus on performance, memory management, and
exception handling.

[165]

Application Performance
In this chapter, we will take a look at how can we manage available resources in an
efficient manner to achieve great performance. You will understand the different types
of resource, performance factors, performance profiling and automation.

The chapter begins by introducing some core performance concepts, such as
latency or bandwidth, and continues by showcasing how to measure and monitor
performance as part of the automated build process.

As we discussed in previous chapters, we can use TypeScript to generate JavaScript
code that can be executed in many different environments (web browsers, Node.
js, mobile devices, and so on). In this chapter, we will explore performance
optimization, which is mainly applicable to the development of web applications.
The following topics will be covered in this chapter:

• Performance and resources
• Aspects of performance
• Memory profiling
• Network Profiling
• CPU and GPU profiling
• Performance testing
• Performance recommendations
• Performance automation

Application Performance

[166]

Prerequisites
Before we get started, we need to install Google Chrome because we will use its
developer tools to perform web performance analysis.

Performance and resources
Before we get our hands dirty doing some performance analysis, monitoring, and
automation, we must first spend some time understanding some core concepts and
aspects about performance.

A good application is one that has a set of desirable characteristics, which includes
functionality, reliability, usability, reusability, efficiency, maintainability, and
portability. Over the course of this book so far, we have understood a lot about
maintainability and reusability. In this chapter, we will focus on performance,
which is closely related to reliability and maintainability.

The term performance refers to the amount of useful work accomplished compared
to the time and resources used. A resource is a physical (CPU, RAM, GPU, HDD,
and so on) or virtual (CPU times, RAM regions, files, and so on) component with
limited availability. As the availability of a resource is limited, each resource is
shared between processes. When a process finishes using a resource, it must release
the resource before any other process can use it. Managing available resources in an
efficient manner will help to reduce the time other processes spend waiting for the
resources to become available.

When we work on a web application, we need to keep in mind that the following
resources will have limited availability:

• Central Processing Unit (CPU): This carries out the instructions of a
computer program by performing the basic arithmetic, logical, control,
and input/output (I/O) operations specified by the instructions.

• Graphics Processor Unit (GPU): This is a specialized processor is used in
the manipulation and alteration of memory to accelerate the creation of
images in a frame buffer intended for output to a display. The GPU is
used when we create applications that use the WebGL API or when we
use some CSS3 animations.

• Random Access Memory (RAM): This allows data items to be read and
written in approximately the same amount of time regardless of the order in
which data items are accessed. When we declare a variable, it will be stored
in RAM memory; when the variable is out of the scope, it will be removed
from RAM by the garbage collector.

Chapter 6

[167]

• Hard Disk Drive (HDD) and Solid State Drive (SSD): Both of these are
data storage devices used to store and retrieve information. When developing
client-side web applications, we will not have to worry about these resources
really often because these applications don't usually extensively use persistent
data storage. However, we should keep in mind that, whenever we store an
object in a persistent manner (cookies, local storage, IndexedDB, and so on),
the performance of our application will be affected by the availability of the
HDD or SSD.

• Network throughput: This determines how much actual data can be sent
per unit of time across a network. The network throughput is determined
by factors such as the network latency or bandwidth (we will discuss more
about these factors later in this chapter).

All the resources presented in the preceding list are also limited
when working on a Node.js application or a hybrid application.
However, it is not really common to extensively use the GPU while
working on a Node.js application, but it is a possible scenario.

Performance metrics
As performance is influenced by the availability of multiple types of physical and
virtual device, we can find a few different performance metrics (factors to measure
performance). Some popular performance metrics include availability, response
time, processing speed, latency, bandwidth, and scalability. These measurement
mechanisms are usually directly related to one of the general resources (CPU, network
throughput, and so on) that were mentioned in the previous section. We will now look
at each of these performance metrics in detail.

Availability
The availability of a system is related to its performance, because if the system is not
available at some stage, we will perceive it as bad performance. The availability can be
improved by improving the reliability, maintainability, and testability of the system.
If the system is easy to test and maintain, it will be easy to increase its reliability.

Application Performance

[168]

The response time
The response time is the amount of time that it takes to respond to a request for a
service. A service here does not refer to a web service; a service can be any unit of
work. The response time can be divided into three parts:

• Wait time: This is the amount of time that the requests will spend waiting for
other requests that took place earlier to be completed.

• Service time: This is the amount of time that it takes for the service (unit of
work) to be completed.

• Transmission time: Once the unit of work has been completed, the response
will be sent back to the requestor. The time that it takes for the response to be
transmitted is known as the transmission time.

Processing speed
Processing speed (also known as clock rate) refers to the frequency at which a
processing unit (CPU or GPU) runs. An application contains many units of work. Each
unit of work is composed of instructions for the processor; usually, the processors
can perform an instruction in each clock tick. Since a few clock ticks are required for
an operation to be completed, the higher the clock rate (processing speed), the more
instructions will be completed.

Latency
Latency is a term we can apply to many elements in a system; but when working on
web applications, we will use this term to refer to network latency. Network latency
indicates any kind of delay that occurs in data communication over the network.

High latency creates bottlenecks in the communication bandwidth. The impact of
latency on network bandwidth can be temporary or persistent, based on the root
cause of the delays. High latency can be caused by problems in the medium (cables
or wireless signals), problems with routers and gateways, and anti-virus, among
other things.

Bandwidth
Just like in the case of latency, whenever we mention bandwidth in this chapter,
we will be referring to the network bandwidth. The bandwidth, or data transfer rate,
is the amount of data that can be carried from one point to another in a given time.
The network bandwidth is usually expressed in bits per second.

Chapter 6

[169]

Network performance can be affected by many factors. Some of these
factors can degrade the network throughput. For example, a high packet
loss, latency, and jitter will reduce the network throughput, while a high
bandwidth will increase it.

Scalability
Scalability is the ability of a system to handle a growing amount of work. A system
with good scalability will be able to pass some performance tests, such as spike or
stress testing.

We will discover more about performance tests (such as spike and stress) later in
this chapter.

Performance analysis
Performance analysis (also known as performance profiling) is the observation and
study of resource usage by an application. We will perform profiling in order to
identify performance issues in our applications. A different performance profiling
process will be carried out for each type of resource using specific tools. We will
now take a look at how we can use Google Chrome's developer tools to perform
network profiling.

Network performance analysis
We are going to start by analyzing network performance. Not so long ago, in order
to be able to analyze the network performance of an application, we would have
had to write a small network logging application ourselves. Today, things are much
easier thanks to the arrival of the performance timing API (http://www.w3.org/
TR/resource-timing/). The performance timing API allows us to access detailed
network timing data for each loaded resource.

http://www.w3.org/TR/resource-timing/
http://www.w3.org/TR/resource-timing/

Application Performance

[170]

The following diagram illustrates the network timing data points that the
API provides:

We can access the performance timing API via the global object:

window.performance

The performance attribute in the global object has some properties (memory,
navigation, and timing) and methods (clearMarks, clearMeasures, and
getEntries). We can use the getEntries function to get an array that contains
the taming data points of each request:

window.performance.getEntries()

Each entity in the array is an instance of PerformanceResourceTiming, which
contains the following information:

{
 connectEnd: 1354.525000002468
 connectStart: 1354.525000002468
 domainLookupEnd: 1354.525000002468
 domainLookupStart: 1354.525000002468
 duration: 179.89400000078604
 entryType: "resource"
 fetchStart: 1354.525000002468
 initiatorType: "link"
 name: "https://developer.chrome.com/static/css/out/site.css"
 redirectEnd: 0
 redirectStart: 0
 requestStart: 1380.8379999827594

Chapter 6

[171]

 responseEnd: 1534.419000003254
 responseStart: 1533.6550000065472
 secureConnectionStart: 0
 startTime: 1354.525000002468
}

Unfortunately, the timing data points in the preceding format may not be really
useful, but there are tools that can help us to analyze them with ease. The first of
these tools is a browser extension called performance-bookmarklet. This extension is
open source and is available for Chrome and Firefox. The extension download links
can be found at https://github.com/micmro/performance-bookmarklet.

In the following screenshot, you can see one of the graphs generated by the
extension. The graphs display the performance typing API information in a much
better way, allowing us to spot performance issues with ease:

Alternatively, you can use the network panel in the Chrome developer tools to
perform network performance profiling. To access the network panel, navigate to
View, Developer, and then Developer Tools:

https://github.com/micmro/performance-bookmarklet

Application Performance

[172]

Windows users can access the developer tools by pressing the F12 key.
OS X users can access it using the Alt + Cmd + I shortcut.

Once the developer tools are visible, you can access the Network tab by clicking
on it:

Clicking on the Network tab will lead you to a screen similar to the one seen here:

As you can observe, the information is presented in a table in which each file loaded
is displayed as a row. On the right-hand side, you can see that one of the columns is
the timeline. The timeline displays the performance timing API in a similar way to
the way that the performance-bookmarklet extension did.

Two important elements in the timeline are the red and blue lines. These lines let
us know when the DOMContentLoaded event is triggered (the blue line), following
which the load event is triggered (the red line):

Chapter 6

[173]

These two events are important because we can examine which requests were
completed when the event was fired to get an idea of which contents were available
for the user when they took place:

• The DOMContentLoaded event is fired when the engine has completed
parsing of the main document

• The load event is fired when all the page's resources have been loaded

If you hover over one of the cells of the timing column, you will be able to see each of
the performance timing API data points:

Application Performance

[174]

It is interesting to know that this developer tool actually reads this information using
the performance timing API. Let's understand the meaning of each of the data points:

Performance timing API data point Description
Stalled/Blocking This is the time the request spent waiting before it

could be sent; there is a maximum number of open
TCP connections for an origin. When the limit is
reached, some requests will display blocking time
rather than stalled time.

Proxy Negotiation This is the time spent negotiating a connection with
a proxy server.

DNS Lookup This is the time spent resolving a DNS address;
resolving a DNS requires a full round-trip to the
DNS server for each domain in the page.

Initial Connection / Connecting This is the time it took to establish a connection.
SSL This is the time spent establishing an SSL connection.
Request Sent / Sending This is the time spent issuing the network request,

typically a fraction of a millisecond.
Waiting (TTFB) This is the time spent waiting for the initial byte to

be received—the time to first byte (TTFB). The TTFB
can be used to find out the latency of a round-trip to
the server in addition to the time spent waiting for
the server to deliver the response.

Content Download / Downloading This is the time taken for the response data to be
received.

Network performance and user experience
Now that you know how we can analyze network performance, it is time to identify the
performance goals we should aim for. Numerous studies have proved that it is really
important to keep loading times as low as possible. The Akamai study, published in
September 2009, interviewed 1,048 online shoppers and found the following:

• 47 percent of people expect a web page to load in two seconds or less
• 40 percent will abandon a web page if it takes more than three seconds to load
• 52 percent of online shoppers claim that quick page loads are important for

their loyalty to a site
• 14 percent will start shopping at a different site if page loads are slow;

23 percent will stop shopping or even walk away from their computer
• 64 percent of shoppers who are dissatisfied with their site visit will go

somewhere else to shop next time

Chapter 6

[175]

You can read the full Akamai study at http://www.akamai.com/
html/about/press/releases/2009/press_091409.html.

From the preceding study conclusions, we should assume that network performance
matters. Our first priority should be to try to improve the loading speed.

If we try to improve the performance of a site to make sure that it loads in less than
two seconds, we might make a common mistake: trying to get the onLoad event to
be triggered in under two seconds.

While triggering the onLoad event as early as possible will probably improve the
network performance of an application, it doesn't mean that the user experience will
be equally improved. The onLoad event is insufficient to determine performance.
We can demonstrate this by comparing the loading performance of the Twitter
and Amazon websites. As you can see in the following screenshot, users have the
opportunity to engage with Amazon much sooner than with Twitter. Even though
the onLoad event is the same on both sites, the user experience is drastically different:

This example demonstrates that to improve the user experience, we must try to
reduce the loading times, but we must also try to load the web contents in such a
way that the user engagement can begin as early as possible. To achieve this, we
should load all the secondary content in an asynchronous manner.

Refer to Chapter 3, Working with Functions to learn more about
asynchronous programming with TypeScript.

http://www.akamai.com/html/about/press/releases/2009/press_091409.html
http://www.akamai.com/html/about/press/releases/2009/press_091409.html

Application Performance

[176]

Network performance best practices and rules
Another easy way to analyze the performance of a web application is by using a
best-practices tool for network performance, such as the Google PageSpeed Insights
application or the Yahoo YSlow application.

Google PageSpeed Insights can be used online or as a Google Chrome extension.
To try this tool, you can visit the online version at https://developers.google.
com/speed/pagespeed/insights/ and insert the URL of the web application that
you want to analyze. In just a few seconds, you will get a report like the one in the
following screenshot:

The report contains some effective recommendations that will help us to improve the
network performance and overall user experience of our web applications. Google
PageSpeed Insights uses the following rules to rate the speed of a web application:

• Avoid landing page redirects
• Enable compression

https://developers.google.com/speed/pagespeed/insights/
https://developers.google.com/speed/pagespeed/insights/

Chapter 6

[177]

• Improve server response time
• Leverage browser caching
• Minify resources
• Optimize images
• Optimize CSS Delivery
• Prioritize visible content
• Remove render-blocking JavaScript
• Use asynchronous scripts

When you use this tool, if you click on the score of each rules, you can see
recommendations and details that will help you to understand what is wrong
and what you need to do to increase the score achieved for one particular rule.

On the other hand, Yahoo YSlow is available as a browser extension, a Node.js
module, and a PhantomJS plugin, among others. We can find the right version for
our needs at http://yslow.org/. When we run YSlow, it will generate a report that
will provide us with a general score and a detailed score of the website, like the one
in the following screenshot:

http://yslow.org/

Application Performance

[178]

YSlow uses the following set of rules to rate the speed of a web application:

• Minimize HTTP requests
• Use a content delivery network
• Avoid empty src or href
• Add an expires or a cache-control header
• Gzip components
• Put stylesheets at the top
• Put scripts at the bottom
• Avoid CSS expressions
• Make JavaScript and CSS external
• Reduce DNS lookups
• Minify JavaScript and CSS
• Avoid redirects
• Remove duplicate scripts
• Configure ETags
• Make AJAX cacheable
• Use GET for AJAX requests
• Reduce the number of DOM elements
• Prevent 404 errors
• Reduce cookie size
• Use cookie-free domains for components
• Avoid filters
• Do not scale images in HTML
• Make favicon.ico small and cacheable

Just like before, when you use this tool, if you click on each of the rules scored you
can see recommendations and details that will help you to understand what is wrong
and what you need to do to increase the score achieved for one particular rule.

If you want to learn more about network performance optimization,
please take a look at the book High Performance Browser Networking
by Ilya Grigorik.

Chapter 6

[179]

GPU performance analysis
The rendering of some elements in web applications is accelerated by the use of the
GPU. The GPU is specialized in the processing of graphics-related instructions
and can, therefore, deliver much better performance than the CPU when it comes
to graphics. For example, CSS3 animations in modern web browsers are accelerated
by the GPU, while the CPU performs JavaScript animations. In the past, the only
way to achieve some animations was via JavaScript. But today, we should avoid
using them when possible and use CSS3 instead because it will help us to achieve
great web performance.

In recent years, access to the GPU has been added to browsers via the WebGL
API. This API allows web developers to create 3D games and other highly visual
applications by using the power of the GPU.

Frames per second (FPS)
We will not go into much detail about the performance of 3D applications because
it is a really extensive field and we could write an entire book talking about it.
However, we will mention an important concept that can be applied to any kind of
web application: frames per second (FPS) or frame rate. When a web application
is displayed on screen, it is done at a number of images (frames) per second. A low
frame rate can be detrimental to the overall user experience when perceived by the
users. A lot of research has been carried out on this topic, and 60 frames per second
seems to be the optimum frame rate for a great user experience.

Whenever we develop a web application, we should take a look at the frame rate and
try to prevent it from dropping below 40 FPS. This is especially important during
animations and user actions.

An open source library called stats.js can help us to see the frame rate while
developing a web application. This library can be downloaded from GitHub at
https://github.com/mrdoob/stats.js/. We need to download the library and
load it in a web page. We can then load the following code snippet by adding a new
file or just execute it in the developer console:

var stats = new Stats();
stats.setMode(1); // 0: fps, 1: ms

// position of the frame rate counter (align top-left)
stats.domElement.style.position = 'absolute';
stats.domElement.style.left = '0px';
stats.domElement.style.top = '0px';

https://github.com/mrdoob/stats.js/

Application Performance

[180]

document.body.appendChild(stats.domElement);

var update = function () {
 stats.begin();
 // monitored code goes here
 stats.end();
 requestAnimationFrame(update);
};
requestAnimationFrame(update);

If everything goes well, we will be able to see the frame rate counter in the top-left
corner of the screen. Clicking on it will switch from the FPS view to the millisecond
(MS) view:

• The FPS view displays the frames rendered in the last second. The higher this
number is, the better.

• The MS view displays the milliseconds needed to render a frame. The lower
this number is, the better.

Some advanced WebGL applications may require an in-depth
performance analysis. For such cases, Chrome provides the
Trace Event Profiling Tool. If you wish to learn more about this
tool, visit the official page at https://www.chromium.org/
developers/how-tos/trace-event-profiling-tool.

CPU performance analysis
To analyze the usage of the processing time, we will take a look at the execution path
of our application. We will examine each of the functions invoked and how long it
takes to complete their execution. We can access all this information by opening the
Chrome developer tools' Profiles tab:

https://www.chromium.org/developers/how-tos/trace-event-profiling-tool
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool

Chapter 6

[181]

In this tab, we can select Collect JavaScript CPU Profile and then click on the Start
button to start recording the CPU usage. Being able to select when we want to start
and stop recording the CPU usage helps us select the specific functions that we want
to analyze. If, for example, we want to analyze a function named foo, all we need
to do is start recording the CPU usage, invoke the foo function and stop recording.
A timeline like the one in the following screenshot will then be displayed:

Application Performance

[182]

The timeline displays (horizontally) the functions invoked in the chronological
order. If the function invokes other functions, the function's call-stack is displayed
vertically. When we hover over one of these functions, we will be able to see its
details in the bottom-left corner of the timeline:

The details include the following information:

• Name: The name of the function.
• Self time: The time spent on the completion of the current invocation of the

function. We will take into account the time spent in the execution of the
statements within the function, not including any functions that it called.

• Total time: The total time spent on the completion of the current invocation
of the function. We will take into account the time spent in the execution of
the statements within the function, including functions that it called.

• Aggregated self time: The time for all invocations of the function across the
recording, not including functions called by this function.

• Aggregated total time: The time for all invocations of the function across the
recording, including functions called by this function.

Chapter 6

[183]

As we saw in the previous chapter, all the JavaScript code is executed in one
single thread at runtime. For this reason, when a function is executed, no other
function will be executed. Sometimes, the execution of a function takes too long
to be completed, and the application becomes unresponsive. We can use the CPU
profile report to identify which functions are consuming too much processing time.
Once we have identified these functions, we can refactor and then to try to improve
the application responsiveness. Some common improvements include using an
asynchronous execution flow when possible and reducing the size of the functions.

Memory performance analysis
When we declare a variable, it is allocated in the RAM. Some time after the variable
is out of the scope, it is cleared from memory by the garbage collector. Sometimes,
we can generate a scenario in which a variable never goes out of scope. If the variable
never goes out of scope, it will never be cleared from memory. This can eventually
lead to some serious memory leaking issues. A memory leak is the continuous loss
of available memory.

When dealing with memory leaks, we can take advantage of the Google Chrome
developer tools to identify the root cause of the problem with ease.

The first thing that we might wonder is whether our application has memory leaks
or not. We can find out by visiting the timeline tab and clicking on the top-left icon to
start recording the resource usage. Once we stop recording, a timeline graph like the
one in the following screenshot will be displayed:

In the timeline, we can select Memory to see the memory usage (Used JS Heap)
over time (the blue line in the image). In the preceding example, we can see a notable
drop towards the end of the line. This is a good sign because it indicates that the
majority of the used memory has been cleared when the page has finished loading.

The memory leaks can also take place after loading; in that case, we can use the
application for a while and observe how the memory usage varies in the graph to
identify the cause of the leak.

Application Performance

[184]

An alternative way to detect memory leaks is by observing the memory allocations.
We can access this information by recording the heap allocations in the Profiles tab:

The report will be displayed after we have recorded some usage of the resources.
We can do this by clicking on the Start and Stop buttons. The memory allocation
report will display a timeline like the one in the following screenshot. Each of
the blue lines is a memory allocation that took place during the recorded period.
The height of the line represents the amount of memory used. As you can see,
the memory is almost cleared completely around the eighth second:

If we click on one of the blue lines, we will be able to navigate through all the variables
that were stored in memory when the allocation took place and examine their values.
It is also possible to take a memory snapshot at any given point from the Profiles tab:

Chapter 6

[185]

This feature is particularly useful when we are debugging and we want to see the
memory usage at a particular breakpoint. The memory snapshot works like the
details view in the previously explained allocations view:

As you can see in the preceding screenshot, the memory snapshot allows us to
navigate through all the variables that were stored in memory when the snapshot
was taken and examine their values.

The garbage collector
Programing languages with a low level of abstraction have low-level memory
management mechanisms. On the other hand, in languages with a higher level
of abstraction, such as C# or JavaScript, the memory is automatically allocated
and freed by a process known as the garbage collector.

The JavaScript garbage collector does a great job when it comes to memory
management, but it doesn't mean that we don't need to care about memory
management.

Application Performance

[186]

Independent of which programming language we are working with, the memory life
cycle pretty much follows the same pattern:

• Allocate the memory you need
• Use the memory (read/write)
• Release the allocated memory when it is not needed any more

The garbage collector will try to release the allocated memory when is not needed any
more using a variation of an algorithm known as the mark-and-sweep algorithm. The
garbage collector performs periodical scans to identify objects that are out of the scope
and can be freed from the memory. The scan is divided in two phases: the first one
is known as mark because the garbage collector will flag or mark the items that can
be freed from the memory. During the second phase, known as sweep, the garbage
collector will free the memory consumed by the items marked in the previous phase.

The garbage collector is usually able to identify when an item can be cleared from
the memory; but we, as developers, must try to ensure that objects get out of scope
when we don't need them any more. If a variable never gets out of the scope, it will
be allocated in memory forever, potentially leading to a severe memory leak issue.

The number of references pointing to an item in memory will prevent it from being
freed from memory. For this reason, most cases of memory leaks can be fixed by
ensuring that there are no permanent references to variables. Here are a few rules
that can help us to prevent potential memory leak issues:

• Remember to clear intervals when you don't need them any more.
• Remember to clear event listeners when you don't need them any more.
• Remember that when you create a closure, the inner function will remember

the context in which it was declared. This means that there will be some extra
items allocated in memory.

• Remember that when using object composition, if circular references are
created, you can end up having some variables that will never be cleared
from memory.

Performance automation
In this section we will understand how we can automate many of the performance
optimization tasks, from concatenation and compression of contents to the automation
of the performance monitoring and performance testing processes.

Chapter 6

[187]

Performance optimization automation
After analyzing the performance of our application, we will start working
on some performance optimizations. Many of these optimizations involve
the concatenation and compression of some of the application's components.
The problem with compressed components is that they are more complicated to
debug and maintain. We will also have to create a new version of the concatenated
and compressed contents every time one of the original components (not
concatenated and not compressed) changes. As these include many highly repetitive
tasks, we can use the task runner Gulp to perform many of these tasks for us. We
can find online plugins that will allow us to concatenate and compress components,
optimize images, generate a cache manifest, and perform many other performance
optimization tasks.

If you would like to learn more about Gulp, refer to
Chapter 2, Automating Your Development Workflow.

Performance monitoring automation
We have seen that we can automate many of the performance optimization tasks
using the Gulp task runner. In a similar way, we can also automate the performance
monitoring process.

In order to monitor the performance of an existing application, we will need to
collect some data that will allow us to compare the application performance over
time. Depending on how we collect the data, we can identify three different types
of performance monitoring:

• Real user monitoring (RUM): This is a type of solution used to capture
performance data from real user visits. The collection of data is performed by
a small JavaScript code snippet loaded in the browser. This type of solution
can help us to collect data and discover performance trends and patterns.

• Simulated browsers: This type of solution is used to capture performance
data from simulated browsers. This is the most economic option, but it is
limited because simulated browsers cannot offer as accurate a representation
of the real user experience.

• Real-browser monitoring: This is used to capture the performance data of
real browsers. This information provides a more accurate representation
of the real user experience, as the data is collected using exactly what a
user would see if they visited the site with the given environment (browser,
geographic location, and network throughput).

Application Performance

[188]

In Chapter 2, Automating Your Development Workflow, we saw how to configure
a Gulp task that used the Karma test runner to execute a test suite in a headless
browser known as PhantomJS.

PhantomJS is a simulated browser that can be configured to generate HTTP
Archive (HAR) files. A HAR file uses a common format for recording HTTP
tracing information. This file contains a variety of information, but for our
purposes, it has a record of each object being loaded by a browser.

There are multiple scripts available online that showcase how to collect the data and
reformat it using the PhantomJS API. One of the examples, netsniff.js, exports
the network traffic in HAR format. The netsniff.js file (and other examples) can
be found at https://github.com/ariya/phantomjs/blob/master/examples/
netsniff.js.

Once we have generated the HAR files, we can use another application to see the
collected performance information on a visual timeline. This application is called
HAR viewer, and it can be found at https://github.com/janodvarko/harviewer.

Alternatively, we could write a custom script or Gulp task to read the HAR files and
break the automated build if the application performance doesn't meet our needs.

It is also possible to configure PhantomJS to run the YSlow performance analysis
report and integrate it with the automated build. To learn more about PhantomJS
and performance monitoring, refer to the official documentation at http://
phantomjs.org/network-monitoring.html.

If you are considering using RUM, take a look at the New Relic
solutions at http://newrelic.com/, or Google Analytics at
http://www.google.com/analytics/.

Performance testing automation
Another way to improve the performance of an application is to write automated
performance tests. These tests can be used to guarantee that the system meets a set
of performance goals. There are multiple types of performance testing, but some of
the most common ones include the following:

• Load testing: This is the most basic form of performance testing. We can use
a load test to understand the behavior of the system under a specific expected
load (number of concurrent users, number of transactions, and duration).
There are multiple types of load testing:

https://github.com/ariya/phantomjs/blob/master/examples/netsniff.js
https://github.com/ariya/phantomjs/blob/master/examples/netsniff.js
https://github.com/janodvarko/harviewer
http://phantomjs.org/network-monitoring.html
http://phantomjs.org/network-monitoring.html
http://newrelic.com/
http://www.google.com/analytics/

Chapter 6

[189]

 ° Stress testing: This is normally used to understand the maximum
capacity limits of an application. This kind of test determines if an
application is able to handle an extreme load by using an extreme
load for an extended period of time.
Stress testing is not really useful when working on a client-side
application. However, it can be really helpful when working on
a Node.js application, since Node.js applications can have many
simultaneous users.

 ° Soak testing: This is also known as endurance testing. This kind of
test is similar to the stress test, but instead of using an extreme load, it
uses the expected load for an extended period of time. It is a common
practice to collect memory usage data during this kind of test to
detect potential memory leaks. This kind of test helps us to detect if
the performance
suffers some kind of degradation after an extended period of time.

 ° Spike testing: This is also similar to the stress test, but instead of
using an extreme time load during an extended time period, it uses
sudden intervals of extreme and expected load. This kind of test
helps us to determine if an application is able to handle dramatic
changes in load.

 ° Configuration testing: This is used to determine the effects of
configuration changes on the performance and behavior of an
application. A common example would be experimenting with
different methods of load balancing.

This kind of test can also be automated by using tools such as JMeter
(http://jmeter.apache.org) or Locust (http://locust.io).

Exception handling
Understanding how to use the available resources in an efficient manner will help
us to create better applications. In a similar manner, understanding how to handle
runtime errors will help us to improve the overall quality of our applications.
Exception handling in TypeScript involves three main language elements.

The Error class
When a runtime error takes place, an instance of the Error class is thrown:

throw new Error();

http://jmeter.apache.org
http://locust.io

Application Performance

[190]

We can create custom errors in a couple of different ways. The easiest way to achieve
it is by passing a string as argument to the Error class constructor:

Throw new Error("My basic custom error");

If we need more customizable and advanced control over custom exceptions, we can
use inheritance to achieve it:

module CustomException {
 export declare class Error {
 public name: string;
 public message: string;
 public stack: string;
 constructor(message?: string);
 }

 export class Exception extends Error {

 constructor(public message: string) {
 super(message);
 this.name = 'Exception';
 this.message = message;
 this.stack = (<any>new Error()).stack;
 }
 toString() {
 return this.name + ': ' + this.message;
 }
 }
}

In the preceding code snippet, we have declared a class named Error. This class
is available at runtime but is not declared by TypeScript, so we will have to do
it ourselves. Then, we have created an Exception class, which inherits from the
Error class.

Finally, we can create customError by inheriting from our Exception class:

class CustomError extends CustomException.Exception {
 // ...
}

The try…catch statements and throw
statements
A catch clause contains statements that specify what to do if an exception is thrown
in the try block. We should perform some operations in the try block, and if they
fail, the program execution flow will move from the try block to the catch block.

Chapter 6

[191]

Additionally, there is an optional block known as finally, which is executed after
both the try and catch (if there was an exception in catch) blocks:

try {
 // code that we want to work
 throw new Error("Oops!");
}
catch (e){
 // code executed if expected to work fails
 console.log(e);
}
finally {
 // code executed always after try or try and catch (when
 errors)
 console.log("finally!");
}

It is also important to mention that in the majority of programming languages,
including TypeScript, throwing and catching exceptions is an expensive operation
in terms of resource consumption. We should use these statements if we need them,
but sometimes it is necessary to avoid them because they can potentially negatively
affect the performance of our applications. Therefore, we should keep in mind that it
is a good idea to avoid the use of try…catch and throw statements in performance-
critical functions and loops.

Summary
In this chapter, we saw what performance is and how the availability of resources can
influence it. We also looked at how to use some tools to analyze the way a TypeScript
application uses available resources. These tools allow us to spot some possible
issues, such as a low frame rate, memory leaks, and high loading times. We have also
discovered that we can automate many kinds of performance optimization task, as
well as the performance monitoring and testing processes.

In the following chapter, we will see how we can automate the testing process of our
TypeScript applications to achieve great application maintainability and reliability.

[193]

Application Testing
In this chapter, we are going to take a look at how to write unit tests for TypeScript
applications. We will see how to use tools and frameworks to facilitate the testing
process of our applications.

The contents of this chapter cover the following topics:

• Setting up a test infrastructure
• Testing planning and methodologies
• How to work with Mocha, Chai, and Sinon.JS
• How to work with test assertions, specs, and suites
• Test spies
• Test stubs
• Testing on multiple environments
• How to work with Karma and PhantomJS
• End-to-end testing
• Generating test coverage reports

We will get started by installing some necessary third-party software dependencies.

Application Testing

[194]

Software testing glossary
Across this chapter, we will use some concepts that may not be familiar to those
readers without previous software testing experience. Let's take a quick look at
some of the most popular testing concepts before we get started.

Assertions
An assertion is a condition that must be tested to confirm that a certain piece of code
behaves as expected or, in other words, to confirm conformance to a requirement.

Let's imagine that we are working as part of one of the Google Chrome development
team and we have to implement the JavaScript Math object. If we are working on the
pow method, the requirement could be something like the following:

"The Math.pow(base, exponent) function should return the base (the base number) to
the exponent (the exponent used to raise the base power—that is, base ^ exponent)."

With this information, we could create the following implementation:

class Math1 {
 public static pow(base: number, exponent: number) {
 var result = base;
 for(var i = 1; i < exponent; i++){
 result = result * base;
 }
 return result;
 }
}

To ensure that the method is correctly implemented, we must test it conforms with
the requirement. If we analyze the requirements closely, we should identify at least
two necessary assertions.

The function should return the base to the exponent:

var actual = Math1.pow(3,5);
var expected = 243;
var asertion1 = (Math1.pow(base1, exponent1) === expected1);

The exponent is not used as the base (or the base is not used as the exponent):

var actual = Math1.pow(5,3);
var expected = 125;
var asertion2 = (Math1.pow(base2, exponent2) === expected2);

Chapter 7

[195]

If both assertions are valid, then our code adheres to the requirements, and we know
that it will work as expected:

var isValidCode = (asertion1 && asertion2);
console.log(isValidCode);

Specs
Spec is a term used by software development engineers to refer to test specifications.
A test specification (not to be confused with a test plan) is a detailed list of all the
scenarios that should be tested, how they should be tested, and so on. We will see
later in this chapter how we can use a testing framework to define a test spec.

Test cases
A test case is a set of conditions used to determine whether one of the features of an
application is working as it was originally established to work. We might wonder
what the difference between a test assertion and a test case is. While a test assertion
is a single condition, a test case is a set of conditions. We will see later in this chapter
how we can use a testing framework to define test cases.

Suites
A suite is a collection of test cases. While a test case should focus on only one test
scenario, a test suite can contain test cases for many test scenarios.

Spies
Spies are a feature provided by some testing frameworks. They allow us to wrap a
method and record its usage (input, output, number of times invoked). When we
wrap a function with a spy, the underlying method's functionality does not change.

Dummies
A dummy object is an object that is passed around during the execution of a test but
is never actually used.

Stubs
A stub is a feature provided by some testing frameworks. Stubs also allow us to
wrap a method to observe its usage. Unlike spies, when we wrap a function with a
stub, the underlying method's functionality is replaced with a new behavior.

Application Testing

[196]

Mocks
Mocks are often confused with stubs. Martin Fowler once wrote the following in an
article titled Mocks Aren't Stubs:

In particular I see them often (mocks) confused with stubs - a common helper to
testing environments. I understand this confusion - I saw them as similar for a
while too, but conversations with the mock developers have steadily allowed a
little mock understanding to penetrate my tortoiseshell cranium. This difference
is actually two separate differences. On the one hand there is a difference in how
test results are verified: a distinction between state verification and behavior
verification. On the other hand is a whole different philosophy to the way testing
and design play together, which I term here as the classical and mockist styles of
Test Driven Development.

Both mocks and stubs provide some sort of input to the test case; but, despite their
similarities, the flow of information from each is very different:

• Stubs provide input for the application under test so that the test can be
performed on something else

• Mocks provide input to the test to decide whether the test should pass or fail

The difference between mocks and stubs will become clearer as we move towards
the end of this chapter.

Test coverage
The term test coverage refers to a unit of measurement, which is used to illustrate
the number of portions of code in an application that have been tested via automated
tests. Test coverage can be obtained by automatically generating test coverage
reports. Towards the end of the chapter, we will see how to create such reports using
a tool called Istanbul (http://gotwarlost.github.io/istanbul/).

Prerequisites
Throughout this chapter, we will use some third-party tools, including some
frameworks and automation tools. We will start by looking at each tool in detail.
Before we get started, we need to use npm to create a package.json file in the
folder that we are going to use to implement the examples in this chapter.

Let's create a new folder named app and run the npm init command inside it to
generate a new package.json file:

npm init

http://gotwarlost.github.io/istanbul/

Chapter 7

[197]

Refer to Chapter 2, Automating Your Development Workflow
for additional help on npm.

Gulp
We will use the Gulp task runner to run some tasks necessary to execute our tests.
We can install Gulp using npm:

npm install gulp -g

If you are not familiar with task runners and continuous
integration build servers, take a look at Chapter 2, Automating
Your Development Workflow.

Karma
Karma is a test runner. We will use Karma to automatically execute our tests. This
is useful because sometimes the execution of the test will not be started by one of
the members of our software development team. Instead, it will be triggered by a
continuous integration build server (usually via a task runner).

Karma can be used with multiple testing frameworks, thanks to the installation of
plugins. Let's install Karma using the following command:

npm install --save-dev karma

We will also install another Karma plugin that facilitates the creation of test
coverage reports:

npm install --save-dev karma-coverage

Istanbul
Istanbul is a tool that identifies which lines of our application are processed during
the execution of the automated test. It can generate reports known as test coverage
reports. These reports can help us to get an idea of the level of testing of a project
because they show which lines of code were not executed and a percentage value
that represents the fraction of the application that has been tested. It is recommended
that a test coverage value of at least 75 percent of the overall application should be
achieved, while many open source projects target a test coverage of 100 percent.

Application Testing

[198]

Mocha
Mocha is a popular JavaScript testing library that facilitates the creation of test suites,
test cases, and test specs. Mocha can be used to test TypeScript in the frontend and
backend, identify performance issues, and generate different types of test reports,
among many other features.

Let's install Mocha and the Karma-Mocha plugin using the following command:

npm install --save-dev mocha karma-mocha

Chai
Chai is a test assertion library that supports test-driven development (TDD) and
behavior-driven development (BDD) test styles.

We will see more about TDD and BDD later in this chapter.

The main goal of Chai is to reduce the amount of work necessary to create a test
assertion and make the test more readable.

We can install Chai and the Karma-Chai plugin using the following command:

npm install --save-dev chai karma-chai

Sinon.JS
Sinon.JS is an isolation framework that provides us with a set of APIs (test spies,
stubs, and mocks) that can help us to test a component in isolation. Testing isolated
software components is difficult because there is a high level of coupling between the
components. A mocking library such as Sinon.JS can help us isolate the components
in order to test individual features.

We can install Sinon.JS and the Karma-Sinon plugin using the following command:

npm install --save-dev sinon karma-sinon

Type definitions
To be able to work with third-party libraries in JavaScript with a good support, we
need to import the type definitions of each library. We will use the tsd package
manager to install the necessary type definitions:

tsd install mocha --save

Chapter 7

[199]

tsd install chai --save

tsd install sinon --save

tsd install jquery - -save

Refer to Chapter 2, Automating Your Development Workflow
for additional help on tsd.

PhantomJS
PhantomJS is a headless browser. We can use PhantomJS to run our tests in a browser
without having to actually open a browser. Being able to do this is useful for a few
reasons; the main one is that PhantomJS can be executed via a command interface,
and it is really easy to integrate with task runners and continuous integration servers.
The second reason is that not having to open a browser potentially reduces the time
required to complete the execution of the tests suites.

We need to install the Karma plugin that will run the test in PhantomJS:

npm install --save-dev phantomjs

npm install --save-dev karma-phantomjs-launcher

Selenium and Nightwatch.js
Selenium is a test runner but it was especially designed to run a particular type of
test known as an end-to-end (E2E) test.

We will learn more about E2E testing later on this chapter, so
we don't need to worry too much about this topic for now.

Though we will see how to use selenium towards the end of the chapter, we can
install it now. We will not work with Selenium directly because we are going to use
another tool (known as Nightwatch.js) for E2E testing, which will automatically run
Selenium for us.

Nightwatch.js is an automated testing framework, written in Node.js for web
applications and websites, which uses the Selenium WebDriver API. It is a complete
browser automation (end-to-end) solution.

Application Testing

[200]

We can install Nightwatch.js and Selenium by executing the following commands:

npm install --save-dev gulp-nightwatch

npm install selenium-standalone -g

selenium-standalone install

The Selenium standalone requires the Java binaries to be installed in the
development environment and accessible through the $PATH variable.
Refer to the official Java documentation at https://www.java.com/
en/download/help/index_installing.xml to learn more about
the Java installation.

Testing planning and methodologies
When it comes to software development, we usually have many choices. Every
time we have to develop a new application, we can choose the type of database,
the architecture, and frameworks that we will use. Not all our choices are about
technologies. For example, we can also choose a software development methodology
such as extreme programming or scrum. When it comes to testing, there are two
major styles or methodologies: test-driven development (TDD) and behavior-driven
development (BDD).

Test-driven development
Test-driven development is a testing methodology that focuses on encouraging
developers to write tests before they write application code. Usually, the process
of writing code in TDD consists of the following basic steps:

1. Write a test that fails.
2. Run the test and ensure that it fails (there is no code at this point so it

should fail).
3. Write the code to make the test pass.
4. Run the test and ensure that it passes.
5. Run all the other tests to ensure that no other parts of the application break.
6. Repeat the process.

The difference between using TDD or not is really a mindset. Many developers don't
like writing tests, so chances are that' if we leave their implementation as the last task
in the development process, the tests will not implemented or the application will
just be partially tested.

https://www.java.com/en/download/help/index_installing.xml
https://www.java.com/en/download/help/index_installing.xml

Chapter 7

[201]

TDD is recommended because it effectively helps you and your team to increase the
test coverage of your applications and, therefore, significantly reduce the number of
potential issues.

Behavior-driven development (BDD)
Behavior-driven development appeared after TDD with the mission of being a
refined version of TDD. BDD focuses on the way tests are described (specs) and
states that the tests should focus on the application requirements and not the test
requirements. Ideally, this will encourage developers to think less about the tests
themselves and more about the application as a whole.

The original article in which the BDD principles were
introduced for the first time by Dan North is available
online at http://dannorth.net/introducing-bdd/.

As we have already seen, Mocha and Chai provide APIs for the TDD and BDD
approaches. Later in this chapter, we will further explore these two approaches.

Recommending one of these methodologies is not trivial because TDD and BDD
are both really good testing methodologies. However, BDD was developed
after TDD with the objective to improve it, so we can argue that BDD has some
additional advantages over TDD. In BDD, the description of a test focuses on what
the application should do and not what the test code is testing. This can help the
developers to identify tests that reflect the behavior desired by the customer. BDD
tests are then used to document the requirements of a system in a way that can be
understood and validated by both the developer and the customer. On the other
hand, TDD tests cannot be understood with ease by the customer.

Tests plans and test types
The term test plan is sometimes incorrectly used to refer to a test specification.
While tests specifications define the scenarios that will be tested and how they
will be tested, the test plan is a collection of all the test specs for a given area.

It is recommended to create an actual planning document because a test plan
can involve many processes, documents, and practices. One of the main goals of
a test plan is to identify and define what kind of test is adequate for a particular
component or set of components in an application.

http://dannorth.net/introducing-bdd/

Application Testing

[202]

Following are the most commonly used test types:

• Unit tests: These are used to test an isolated component. If the component
is not isolated—or in other words, the component has some dependencies—
we will have to use some tools and practices such as mocks or dependency
injection to try to isolate it as much as we can during the test.
If it is not possible to manipulate the component dependencies, we will use
spies to facilitate the creation of the unit tests.
Our main goal should be to achieve the total isolation of a component when
it is tested. A unit test should also be fast, and we should try to avoid input/
output, network usage, and any other operation that could potentially affect
the speed of the test.

• Partial integration tests and full integration tests: These are used to test
a set of components (partial integration test) or the entire application as a
whole (full integration test). In integration, we will normally use known
test data to feed the backend with information that will be displayed in the
frontend. We will then assert that the displayed information is correct.

• Regression tests: These tests are used to verify that an issue has been fixed.
If we are using TDD or BDD, whenever we encounter an issue we should
create a unit test that reproduces the issue, and then change the code. By
doing this, we will be able to run attempts to reproduce past issues and
ensure that everything is still working.

• Performance / Load tests: These tests verify if the application meets our
performance expectations. We can use performance tests to verify that our
application will be able to handle many concurrent users or activity spikes.
To learn more about this type of test, take a look at the previous chapter:
Chapter 6, Application Performance.

• End-to-end (E2E) tests: These tests are not really different from full
integration tests. The main difference is that in an E2E testing session, we will
try to emulate an environment almost identical to the real user environment.
We will use Nightwatch.js and Selenium for this purpose.

• User acceptance tests (UAT): These are used so that the system meets all the
requirements of the end user.

Chapter 7

[203]

Setting up a test infrastructure
As we saw previously in this chapter when we talked about unit tests, usually,
testing requires being able to isolate the individual software component of
our applications.

In order to be able to isolate the components of our application, we will need to
adhere to some principles (such as the dependency inversion principle) that will
help us to increase the level of decoupling between the components.

We will now configure a testing environment using Gulp and Karma and write
some automated test using Mocha and Chai. By the end of this chapter, we will
know how writing unit tests can help us to increase the level of decoupling and
isolation between the components of an application, and how they can lead us to
the development of great applications, especially when it comes to maintainability
and reliability.

Let's get started by creating the folder structure of a new application. We will create
two folders inside the app folder that we created at the beginning of this chapter.

Let's name the first folder source and the second folder test. Here, we can see how
our directory tree should look by the end of the chapter:

├──app
 ├── gulpfile.js
 ├── index.html
 ├── karma.conf.js
 ├── nightwatch.json
 ├── package.json
 ├── source
 │ ├── calculator_widget.ts
 │ ├── demos.ts
 │ ├── interfaces.d.ts
 │ ├── math_demo.ts
 ├── style
 │ └── demo.css
 ├── test
 │ ├── bdd.test.ts
 │ ├── e2e.test.ts
 │ ├── tdd.test.ts
 ├── tsd.json
 └── typings

We are going to develop a really small application to be able to write a unit test. We
are going to write a unit test and an end-to-end test.

Application Testing

[204]

The source code of the entire demo can be found in the
companion code samples.

Once we have completed our application, we will be able to open it in a browser,
where we should see a form like the one in the following screenshot. This form
allows us to find the result of a number (base) to the power of another (exponent).

Building the application with Gulp
We will get started by creating a new gulpfile.js file as we did in Chapter 2,
Automating Your Development Workflow. The first thing that we are going to do
is import all the necessary node modules:

var gulp = require("gulp"),
 browserify = require("browserify"),
 source = require("vinyl-source-stream"),
 buffer = require("vinyl-buffer"),
 run = require("gulp-run"),
 nightwatch = require('gulp-nightwatch'),
 tslint = require("gulp-tslint"),
 tsc = require("gulp-typescript"),
 browserSync = require('browser-sync'),
 karma = require("karma").server,
 uglify = require("gulp-uglify"),
 docco = require("gulp-docco"),
 runSequence = require("run-sequence"),
 header = require("gulp-header"),
 pkg = require(__dirname + "/package.json");

Remember that we need to install all necessary packages by using the
npm package manager. We can take a look at the package.json file
to see all the dependencies and their respective versions.

Chapter 7

[205]

The second thing that we are going to do is to create some tasks to compile
our TypeScript code. Here, we should notice that we are going compile the
application code into the /build/source folder and the application tests into
the /build/test folder:

var tsProject = tsc.createProject({
 removeComments : false,
 noImplicitAny : false,
 target : "ES5",
 module : "commonjs",
 declarationFiles : false
});

gulp.task("build-source", function() {
 return gulp.src(__dirname + "/source/*.ts")
 .pipe(tsc(tsProject))
 .pipe(gulp.dest(__dirname + "/build/source/"));
});

The previous Gulp task compiles the TypeScript files under the source folder into
JavaScript files that will be stored in inside the build/source folder. We should be
able to run the task by executing the following command:

gulp build-source

The preceding command will fail if no source files are available.
You can copy project source files from the companion source code
or continue reading this chapter and create the files as we progress.

We will also declare a second task to compile our unit tests, but the output will be
stored under the build/test folder:

var tsTestProject = tsc.createProject({
 removeComments : false,
 noImplicitAny : false,
 target : "ES5",
 module : "commonjs",
 declarationFiles : false
});

gulp.task("build-test", function() {
 return gulp.src(__dirname + "/test/*.test.ts")
 .pipe(tsc(tsTestProject))
 .pipe(gulp.dest(__dirname + "/build/test/"));
});

Application Testing

[206]

We should be able to run this new task using Gulp by using the following command:

gulp build-test

Once the JavaScript is under the build folder, we need to bundle the external modules
(as we used { module : "commonjs" } in the preceding compiler settings) into
bundled libraries that can be executed in a web browser.

Browserify needs a unique entry point for each library. For this reason, we are going
to create three tasks—one for each bundled library.

We will create a task to bundle the application itself:

gulp.task("bundle-source", function () {
 var b = browserify({
 standalone : 'demos',
 entries: __dirname + "/build/source/demos.js",
 debug: true
 });

 return b.bundle()
 .pipe(source("demos.js"))
 .pipe(buffer())
 .pipe(gulp.dest(__dirname + "/bundled/source/"));
});

Just like we did with the previous Gulp tasks, we can invoke the new task by using
the following command:

gulp bundle-source

We will also create another task to bundle all the unit tests in our application into a
single bundled suite of tests:

gulp.task("bundle-test", function () {

 var b = browserify({
 standalone : 'test',
 entries: __dirname + "/build/test/bdd.test.js",
 debug: true
 });

 return b.bundle()
 .pipe(source("bdd.test.js"))
 .pipe(buffer())
 .pipe(gulp.dest(__dirname + "/bundled/test/"));
});

Chapter 7

[207]

The companion code has tests using both the TDD and BDD styles
in two independent files named tdd.test.ts and bdd.test.ts.
However, in the examples in this chapter, we will only focus on
the BDD style.

We can invoke the new task by using the following command:

gulp bundle-test

Finally, we will create another task to bundle all the E2E tests in the application into
a single bundled E2E test suite:

gulp.task("bundle-e2e-test", function () {

 var b = browserify({
 standalone : 'test',
 entries: __dirname + "/build/test/e2e.test.js",
 debug: true
 });

 return b.bundle()
 .pipe(source("e2e.test.js"))
 .pipe(buffer())
 .pipe(gulp.dest(__dirname + "/bundled/e2e-test/"));
});

We can invoke the new task by using the following command:

gulp bundle-e2e-test

Running the unit test with Karma
We have already covered the basics of Karma in Chapter 2, Automating Your
Development Workflow. We are going to create a task to execute Karma:

gulp.task("run-unit-test", function(cb) {
 karma.start({
 configFile : __dirname + "/karma.conf.js",
 singleRun: true
 }, cb);
});

Application Testing

[208]

The Karma task configuration is really simple because the majority of the configuration
is located in the karma.conf.js file, which is included in the companion code.
Let's take a look at the configuration file:

module.exports = function (config) {
 'use strict';

 config.set({
 basePath: '',
 frameworks: ['mocha', 'chai', 'sinon'],
 browsers: ['PhantomJS'],
 reporters: ['progress', 'coverage'],
 coverageReporter: {
 type : 'lcov',
 dir : __dirname + '/coverage/'
 },
 plugins : [
 'karma-coverage',
 'karma-mocha',
 'karma-chai',
 'karma-sinon',
 'karma-phantomjs-launcher'
],
 preprocessors: {
 '**/bundled/test/bdd.test.js' : 'coverage'
 },
 files : [
 {
 pattern: "/bundled/test/bdd.test.js",
 included: true
 },
 {
 pattern: "/node_modules/jquery/dist/jquery.min.js",
 included: true
 },
 {
 pattern:
 "/node_modules/bootstrap/dist/js/bootstrap.min.js",
 included: true
 }
],

Chapter 7

[209]

 client : {
 mocha : {
 ui : "bdd"
 }
 },
 port: 9876,
 colors: true,
 autoWatch: false,
 logLevel: config.DEBUG
 });
};

If we take a look at the configuration file, we will see that we have configured the
path where the tests are located and the browser that we want to use to run the test
(PhantomJS). Declaring what browser we want to use is not enough; we also need to
install a plugin so Karma can launch that browser.

Since we are going to write test using Mocha, Chai, and Sinon.JS, we have loaded
the plugins to integrate Karma with each of these frameworks. There are many other
popular testing frameworks, and the majority of them are compatible with Karma
via the use of plugins.

Another interesting setting in the preceding configuration file is the client entry.
We use it to configure the options of Mocha and indicate that we are going to use
a BDD testing style.

When Karma executes the Mocha unit tests, it generates an HTML page internally
and adds all the required files indicated in the files field as well as some files
indicated by the plugins field. For the preceding example, Karma will generate an
HTML page that will contain reference (using the <script> tags) to Mocha, Chai,
and Sinon.JS (indicated by the plugins) as well as jQuery, Bootstrap, and the bdd.
test.js file (indicated by the files field).

The companion source code includes the package.json file. We can
use this file to run the npm install command and download all the
third-party dependencies (including jQuery and Bootstrap).

Application Testing

[210]

It is important to understand that only files loaded via the files field will be available
during the test execution, and that all the files will be loaded using a script tag.
Sometimes, we may encounter issues related to missing files or parsing errors (when
a non-JavaScript file is loaded using a script tag). We can have a better control over
the file inclusion process using the settings pattern, included, served, and watched:

Settings Description
pattern The pattern to use to match files.
included If autoWatch is true, all files that have set watched

to true will be watched for changes.
served Should the files be served by Karma's webserver?
watched Should the files be included in the browser using the

<script> tag? We will use false if we want to load
them manually (for example, using RequireJS).

The karma.conf.js file also contains some settings to generate test coverage reports,
but we will skip those for now and focus on them towards the end of the chapter.

Remember that you can find all the details about each field in
the karma.conf.js file at http://karma-runner.github.
io/0.8/config/configuration-file.html.

Running E2E tests with Selenium and
Nightwatch.js
Karma (in combination with Mocha, Chai, and Sinon.JS) is a great tool when it comes
to writing and executing unit tests and partial integration tests. However, Karma is
not the best tool when it comes to writing E2E tests. For this reason, we will write a
collection of E2E tests that will be written and executed using a separate set of tools:
Selenium and Nightwatch.js.

To configure Nightwatch.js, we will start by creating a new Gulp task that will be in
charge of the execution of the E2E tests. We only need to specify the location of an
external configuration file named Nightwatch.js:

gulp.task('run-e2e-test', function(){
 return gulp.src('')
 .pipe(nightwatch({
 configFile: __dirname + '/nightwatch.json'
 }));
});

http://karma-runner.github.io/0.8/config/configuration-file.html
http://karma-runner.github.io/0.8/config/configuration-file.html

Chapter 7

[211]

We are going to focus on Nightwatch.js because it is designed to
work with the majority of frameworks; but if you are working with
AngularJS, I would recommend you to take a look at Protractor.
Protractor is a great E2E testing framework that has a high level of
integration with AngularJS.

The nightwatch.js file contains the entire required configuration necessary to
execute our E2E tests. We need to specify the location of the E2E test suites and
the basic Selenium configuration.

We need to think that Selenium is more or less like Karma; it is a tool that can
execute a unit test in a browser. The main difference is that Selenium allows us to
write tests in a way that simulates much better how a real user would behave. It is
important to understand that Nightwatch.js is not the tool directly in charge of
execution of the test. Nightwatch.js is a framework that helps to write E2E tests
and can communicate with Selenium to execute the tests.

In this case, we will tell Nightwatch.js not to run Selenium for us using
the start_process entry in the nightwatch.json configuration file. The
nightwatch.json file should look as follows:

{
 "src_folders" : ["bundled/e2e-test/"],
 "output_folder" : "reports",
 "selenium" : {
 "start_process" : false
 },
 "test_settings" : {
 "default" : {
 "silent": true,
 "screenshots" : {
 "enabled" : true,
 "path" : "screenshots"
 },
 "desiredCapabilities": {
 "browserName": "chrome",
 "javascriptEnabled" : true,
 "acceptSslCerts" : true
 }
 },
 "phantomjs" : {
 "desiredCapabilities": {
 "browserName": "phantomjs",
 "javascriptEnabled" : true,

Application Testing

[212]

 "acceptSslCerts" : true,
 "phantomjs.binary.path" :
 "./node_modules/phantomjs/bin/phantomjs"
 }
 },
 "chrome" : {
 "desiredCapabilities": {
 "browserName": "chrome",
 "javascriptEnabled": true,
 "acceptSslCerts": true
 }
 }
 }
}

We will run Selenium manually using the selenium-standalone npm package
(we can check the prerequisites section for installation details):

selenium-standalone start

Besides configuring Selenium, we need to configure which web browsers we are
going to use during the execution of our E2E tests and to run the web application
on a web server.

If you wish to learn more about all the available Nightwatch.js
configuration parameters, please visit the official documentation
at http://nightwatchjs.org/guide#settings-file.

Finally, to be able to run the E2E test, we will also need to run the application itself
on a web server. As we saw in Chapter 2, Automating Your Development Workflow, we
can use browserSync for that purpose; so we will add a task to deploy browserSync:

gulp.task('serve', function(cb) {
 browserSync({
 port: 8080,
 server: {
 baseDir: "./"
 }
 });

 gulp.watch([
 "./**/*.js",
 "./**/*.css",
 "./index.html"
], browserSync.reload, cb);
});

http://nightwatchjs.org/guide#settings-file

Chapter 7

[213]

If one test is failing and we don't know what is causing it to fail, we will be able to
test it manually by running the application in a web browser.

It is important to run the tasks in the correct order. We need to open a console or
terminal and start Selenium:

selenium-standalone start

Open another console or terminal and run the following commands:

gulp build-source

gulp build-test

gulp bundle-source

gulp bundle-e2e-test

gulp serve

Finally, open a third console and run the following command:

gulp run-e2e-test

Creating test assertions, specs, and
suites with Mocha and Chai
Now that the test infrastructure is ready, we will start writing a unit test. We need
to remember that we are going to follow the BDD development testing style, which
means that we will write the test before we actually write the code.

We will write a web calculator; because we want to keep it simple, we will only
implement one of its features. After doing some analysis, we have come up with a
design interface that will help us to understand the requirements. We will declare
the following interface in the interfaces.d.ts file:

interface MathInterface {
 PI : number;
 pow(base: number, exponent: number);
}

As we can see, the calculator will allow us to calculate the exponent of a number
and to get the number PI. Now that we know the requirements, we can start writing
some unit tests. Let's create a file named bdd.test.ts and add the following code:

///<reference path="../typings/tsd.d.ts" />
///<reference path="../source/interfaces.d.ts" />

Application Testing

[214]

import { MathDemo } from "../source/math_demo";

var expect = chai.expect;

describe('BDD test example for MathDemo class \n', () => {

 before(function(){ /* invoked once before ALL tests */ });
 after(function(){ /* invoked once after ALL tests */ });
 beforeEach(function(){ /* invoked once before EACH test */ });
 afterEach(function(){ /* invoked once before EACH test */ });

 it('should return the correct numeric value for PI \n', () => {
 var math : MathInterface = new MathDemo();
 expect(math.PI).to.equals(3.14159265359);
 expect(math.PI).to.be.a('number');
 });

 // ...
});

In the preceding code snippet, we have imported the necessary type definition files
and an external module named MathDemo. This external module will declare the
MathDemo class, which will implement the MathInterface that we are about to test.

We can also see a shortcut for expect, so we don't need to write chai.expect every
time we need to invoke expect:

var expect = chai.expect;

Just below the shortcut we can find the first test suite:

describe('BDD test example for MathDemo class \n', () => {

Test suites are declared using the describe() function and are used to wrap a set of
unit tests; and the unit tests themselves are declared using the it() function:

it('should return the correct numeric value for PI \n', () => {

Inside the unit test, we can perform one or more assertions. The Chai assertions
provide easily readable code thanks to the usage of a chainable style:

expect(math.PI).to.equals(3.14159265359);
expect(math.PI).to.be.a('number');

There are cases in which we will notice that we are repeating a certain test initialization
logic across multiple unit tests within a test suite. There are some helper functions that
we can use to avoid code duplication.

Chapter 7

[215]

The before() function will be invoked before any test in the suite case is executed.
The after() function will be executed after all the tests in the test suite have
been executed:

 before(function(){ /* invoked once before ALL tests */ });
 after(function(){ /* invoked once after ALL tests */ });

The beforeEach() function is executed once (before the test is executed) for each
test in the test suite, while the afterEach() function is executed once (after the test
is executed) for each test in the test suite:

 beforeEach(function(){ /* invoked once before EACH test */ });
 afterEach(function(){ /* invoked once before EACH test */ });

If we run the test at this point, it will fail because the feature being tested (PI) is not
implemented. Let's create a file named math_demo.ts and add the following code:

///<reference path="./interfaces.d.ts" />

class MathDemo implements MathInterface{
 public PI : number;

 constructor() {
 this.PI = 3.14159265359;
 }

 //...
}
export { MathDemo };

If we execute the test with Karma, it should pass without errors. It is important to
run the tasks in the correct order. To do this, we need to open a console or terminal
and run the following commands:

gulp build-source

gulp build-test

gulp bundle-source

gulp bundle-test

Finally, we can run the unit tests using the following command:

gulp run-unit-test

Application Testing

[216]

There was another requirement in the MathInterface interface, so we are going to
repeat the entire BDD process once more; but this time, we will test a function named
pow instead of a property. We will start by adding a new test to the test suite that we
have preciously created:

it('should return the correct numeric value for pow \n', () => {
 var math : MathInterface = new MathDemo();
 var result = math.pow(3,5);
 var expected = 243;
 expect(result).to.be.a('number');
 expect(result).to.equal(expected);
 });

As we can see in the previously declared MathInterface interface, the function that
we are going to test is named pow and takes two numeric arguments. So we have
created a test that will create a new instance of MathDemo and invoke its pow method,
passing the numeric values 3 and 5 as arguments. The expected value of calculating
3*3*3*3*3 is 243; for this reason, we have asserted that the pow() function returns a
numeric value and its value is 243.

At this point, the preceding test will fail because the pow method has not been
implemented. Let's return to the math_demo.ts file and implement the pow method:

///<reference path="./interfaces.d.ts" />

class MathDemo implements MathInterface{
 public PI : number;

 constructor() {
 this.PI = 3.14159265359;
 }

 public pow(base: number, exponent: number) {
 var result = base;
 for(var i = 1; i < exponent; i++){
 result = result * base;
 }
 return result;
 }

 // ...
}
 export { MathDemo };

Chapter 7

[217]

If we run the tests again, we will be able to see the number of tests that have been
executed, how many of them have failed, and how long it took to finish the execution
of all the tests:

Executed 2 of 2 SUCCESS (0.007 secs / 0.008 secs)

Testing the asynchronous code
In Chapter 3, Working with Functions, we learned how to work with a synchronous
code; and in Chapter 6, Application Performance, we saw that using asynchronous code
is one of the golden rules of web application performance. We should aim to write
asynchronous code as much as we can, and for this reason, it is important to learn
how to test asynchronous code.

Let's write an asynchronous version of the pow function to demonstrate how we
can test an asynchronous function. We will start with the requirements:

interface MathInterface {
 // ..
 powAsync(base: number, exponent: number, cb : (result : number)
 => void);
}

We need to implement a function named powAsync, which takes two numeric values
as parameters (just like before) and a callback function. The test for the asynchronous
version is almost identical to the test that we wrote for the synchronous function:

 it('should return the correct numeric value for pow (async) \n',
 (done) => {
 var math : MathInterface = new MathDemo();
 math.powAsync(3, 5, function(result) {
 var expected = 243;
 expect(result).to.be.a('number');
 expect(result).to.equal(expected);
 done(); // invoke done() inside your call back or fulfilled
 promises
 });
 });

The main thing that we need to notice is that, this time, the callback passed to the it
method receives an argument named done. The argument is a function that we need
to execute to indicate that the test execution is finished.

Application Testing

[218]

By default, the it method waits for the callback to return, but when testing
asynchronous code, the function may return before the test execution is finished:

public powAsyncSlow(base: number, exponent: number, cb : (result :
number) => void) {
 var delay = 45; //ms
 setTimeout(() => {
 var result = this.pow(base, exponent);
 cb(result);
 }, delay);
 }

When testing asynchronous code, Mocha will consider the test as failed (timeout) if it
takes more than 2,000 milliseconds to invoke the done function. The time limit before
a timeout can be configured, as can be warnings for slow functions.

Mocha recommends that, when a function takes more than 40
milliseconds, we should consider investigating how to improve its
performance. If the function execution takes over 100 milliseconds,
we must investigate. Execution times of over 2,000 milliseconds are
not tolerated by default.

Asserting exceptions
Asserting the types or values of variables is straightforward, as we have been able
to explore in the previous examples; but there is one scenario that perhaps is not as
intuitive as the previous one. This scenario is testing for an exception.

Let's add a new method to the MathInterface interface with the only purpose of
illustrating how to test for an exception:

interface MathInterface {
 // ...
 bad(foo? : any) : void;
}

The bad method throws an exception when it is invoked with a non-numeric
argument:

public bad(foo? : any) {
 if(isNaN(foo)){
 throw new Error("Error!");
 }
 else {
 //...
 }
}

Chapter 7

[219]

In the following test, we can see how we can use Chai's expect API to assert that an
exception is thrown:

it('should throw an exception when no parameters passed \n', () => {
 var math : MathInterface = new MathDemo();
 var throwsF = function() { math.bad(/* missing args */) };
 expect(throwsF).to.throw(Error);
});

If you wish to learn more about assertions, visit the Chai official
documentation available at http://chaijs.com/api/bdd/.

TDD versus BDD with Mocha and Chai
TDD and BDD follow many of the same principles but have some differences in
their style. While these two styles provide the same functionality, BDD is considered
to be easier to read by many of the members of a software development team (not
just developers).

The following table compares the naming and style of suites, tests, and assertions
between the TDD and BBD styles:

TDD BDD
suite describe

setup before

teardown after

suiteSetup beforeEach

suiteTeardown afterEach

test it

assert.equal(math.PI,
3.14159265359);

expect(math.PI).to.equals(3.14159265359);

In the companion code samples, you will find all the examples
in this chapter following both the TDD and BDD styles.

http://chaijs.com/api/bdd/

Application Testing

[220]

Test spies and stubs with Sinon.JS
We have been working on the MathDemo class. We have implemented and tested
its features using unit tests and assertions. Now we are going to create a little
web widget that will internally use the MathDemo class to perform a mathematical
operation. We can think of this new class as a graphical user interface for the
MathDemo class. We need the following HTML:

<div id="widget">
 <input type="text" id="base" />
 <input type="text" id="exponent" />
 <input type="text" id="result" />
 <button id="submit" type="submit">Submit</button>
</div>

In the companion code, the HTML code contains more attributes,
such as CSS classes; but they been have removed here for clarity.

Let's create a file named calculator_widget.ts under the source directory. We
are going to store the HTML code in a string variable located in the scope of the web
widget. The new class will be called CalculatorWidget, and it will implement the
CalculatorWidgetInterface interface:

interface CalculatorWidgetInterface {
 render(id : string);
 onSubmit() : void;
}

We should write the unit test before we implement the CalculatorWidget class,
but this time we will break the BDD rules in an attempt to facilitate the understanding
of stubs and spies:

///<reference path="./interfaces.d.ts" />
///<reference path="../typings/tsd.d.ts" />

var template = 'HTML...';

class CalculatorWidget implements CalculatorWidgetInterface{

 private _math : MathInterface;
 private $base: JQuery;
 private $exponent: JQuery;
 private $result: JQuery;
 private $btn: JQuery;

Chapter 7

[221]

 constructor(math : MathInterface) {
 if(math == null) throw new Error("Argument null exception!");
 this._math = math;
 }

 public render(id : string) {
 $(id).html(template);
 this.$base = $("#base");
 this.$exponent = $("#exponent");
 this.$result = $("#result");
 this.$btn = $("#submit");
 this.$btn.on("click", (e) => {
 this.onSubmit();
 });
 }

 public onSubmit() {
 var base = parseInt(this.$base.val());
 var exponent = parseInt(this.$exponent.val());

 if(isNaN(base) || isNaN(exponent)) {
 alert("Base and exponent must be a number!");
 }
 else {
 this.$result.val(this._math.pow(base, exponent));
 }
 }
}
export { CalculatorWidget };

As we can see, we have defined a variable that contains the HTML that we previously
examined but it is not displayed for brevity. A new class named CalculatorWidget
is also defined together with the class constructor. We can observe that the class has
two properties: a variable named _dom and an implementation of MathInterface
named _math. We are depending on an interface because as we saw in Chapter 4,
Object-Oriented Programming with TypeScript, it is a good practice (dependency
inversion principle) to do so.

Notice that the class constructor takes an implementation of MathInterface as its
only argument. Passing the dependencies of a component via its constructor is also a
good practice and is used to reduce the coupling between components.

Application Testing

[222]

The first method in the class is named render and takes the ID (string) of an HTML
element as its only argument. The ID is used to select the node that matches the ID
using a jQuery selector. Once it has been selected, the HTML that we previously
examined is inserted into the selected node. We can say that the component is in
charge of rendering its own HTML and can be reused easily just by changing its
container. This is how web widgets usually work: they are independent components
that can be considered as reusable standalone applications within a parent application
that is no more than just a collection of web widgets.

After rendering the HTML, the render method creates shortcuts for each component
of the widget's form and initializes a click event listener:

 public render(id : string) {
 $(id).html(template);
 this._dom.$base = $("#base");
 this._dom.$exponent = $("#exponent");
 this._dom.$result = $("#result");
 this._dom.$btn = $("#submit");

 this._dom.$btn.on("click", (e) => {
 this.onSubmit();
 });
 }

When a user clicks on the button with id equals to submit, an event is triggered, and
the event listener invokes the onSubmit function that we can find in the following
code snippet. This function will read the values for base and exponent using the
shortcuts previously declared:

 public onSubmit() {
 var base = parseInt(this._dom.$base.val());
 var exponent = parseInt(this._dom.$exponent.val());

 if(isNaN(base) || isNaN(exponent)) {
 alert("Base and exponent must be a number!");
 }
 else {
 this._dom.$result.val(this._math.pow(base, exponent));
 }
 }
}

Chapter 7

[223]

If the values of the inputs (base and exponent) are not numeric values, an alert
message is displayed to provide the users with error feedback. If the values
are numeric, the pow method of the MathDemo class is invoked, and the result is
assigned to the result field value via one of the previously created shortcuts.

Writing unit tests can become a complex task when the components being tested
are highly coupled with other components. In the previous section, we tried to
follow some good practices such as the dependency inversion principle or injecting
dependencies via the constructor of the dependent; but sometimes, even when using
good practices, we will have to deal with highly coupled code.

Spies, mocks, and stubs can help us to take away some of the pain caused by highly
coupled components. These features can also help us to identify the root cause of an
issue. If we replace all the dependencies of a component with stubs and a test fail,
we will know that the issue is located in the component being tested and not in one
of its dependencies.

For example, the CalculatorWidget class has a dependency on the MathDemo class.
If there is an issue in the calculator website, we will not be able to know if the root
cause of the issue is located in the CalculatorWidget class or the MathDemo class.
However, if we write some unit tests for the CalculatorWidget class in isolation
(replacing its MathDemo dependency with a stub) and some of the tests fail, we will
know for sure that the root cause of the issue is located in the CalculatorWidget
and not in the MathDemo class.

Let's take a look at some test examples.

Spies
We are going to start by taking a look at the use of spies by creating a new test
suite. This time we will use the before() and beforeEach() functions. When the
before() function is invoked (before any unit test is executed), a new HTML node
is created to hold the widget's HTML.

The beforeEach() function is used to reset the container before each test.
This way, we can ensure that a new widget is created for each test in the test suite.
This is a good idea because it will prevent one test from potentially affecting the
results of another.

describe('BDD test example for CalculatorWidget class \n', () => {

 before(function() {
 $("body").append('<div id="widget"/>');
 });

Application Testing

[224]

 beforeEach(function() {
 $("#widget").empty();
 });

Usually, testing frameworks (regardless of the language we are working
with) won't allow us to control the order in which the unit tests and test
suites are executed. The tests can even be executed in parallel by using
multiple threads. For this reason, it is important to ensure that the unit
tests in our test suites are independent of each other.

Now that the test suite is ready, we can create unit tests for the render() and
onSubmit() methods. The test starts by the creation of an instance of MathDemo,
which is then passed to CalculatorWidget constructor to create a new instance
named calculator.

The render method is then invoked to render the widget inside the HTML node
with the ID widget. The HTML node should be available at this stage because it was
created by the before() method. After the widget has been rendered, a value is set
for the inputs with IDs base and exponent.

The test specification (onSubmit should be invoked when #submit is clicked)
should help us understand that we are testing the click event. We are going to use
a spy to observe the onSubmit() function; so, when the button with ID submit is
clicked, the spy will detect that the onSubmit() function was invoked.

To finish the test, we are going to trigger a click event on the button with ID submit
and assert that the onSubmit() function was actually only invoked once:

it('onSubmit should be invoked when #submit is clicked', () => {
 var math : MathInterface = new MathDemo();
 var calculator = new CalculatorWidget(math);
 calculator.render("#widget");
 $('#base').val("2");
 $('#exponent').val("3");

 // spy on onSubmit
 var onSubmitSpy = sinon.spy(calculator, "onSubmit");
 $("#submit").trigger("click");

 // assert calculator.onSubmit was invoked when click on #submit
 expect(onSubmitSpy.called).to.equal(true);
 expect(onSubmitSpy.callCount).to.equal(1);
 expect($("#result").val()).to.equal("8");
});

Chapter 7

[225]

Spies will allow us to perform many operations: from checking how many times a
function has been invoked to checking if it was invoked using the new operator, or if
it was invoked with a set of specific parameters.

The last assertion helps us guarantee that onSubmit() is setting the correct result in
the result input.

All the possible operations are detailed in the Sinon.JS online
documentation found at http://sinonjs.org/docs/#sinonspy.

Stubs
It may look like we have already tested the entire application by now, but that is
usually never the case. Let's analyze what exactly we have tested so far:

• We have tested the entire MathDemo class, and we know that it returns the
correct value when pow is invoked

• We know that the CalculatorWidget class is rendering the HTML correctly
• We know that the CalculatorWidget class is setting up some events and

reading some values from the HTML inputs as expected

So far, we have created some tests for the MathDemo class and the CalculatorWidget
class, but we have forgotten to test the integration between them.

We have been testing using 2 as base and 3 as exponent, but if we wrongly used
the same value as base and exponent, we could have missed one potential issue:
maybe the CalculatorWidget class is passing the arguments in incorrect order
to the MathDemo class when the function pow() is invoked in the body of the
onSubmit() function.

Later on in this chapter, we will see how to generate a kind
of report (a test coverage report) that can help us to identify
areas of our application that have not been tested.

We can test this scenario by isolating the CalculatorWidget class from its
dependency on the MathDemo class. We can achieve this by using a stub.
Let's take a look at the upcoming unit tests to see a stub in action.

http://sinonjs.org/docs/#sinonspy

Application Testing

[226]

At the beginning of the method, a new instance of MathDemo is created, and a stub
is used against its pow method. The stub will replace the pow method with a new
method. The new method will assert that the parameters received are in the
correct order:

it('pass the right args to Math.pow', (done) => {
 var math : MathInterface = new MathDemo();

 // replace pow method with a method for testing
 sinon.stub(math, "pow", function(a, b) {
 // assert that CalculatorWidget.onSubmit invokes
 // math.pow with the right arguments
 expect(a).to.equal(2);
 expect(b).to.equal(3);
 done();
 });

 var calculator = new CalculatorWidget(math);
 calculator.render("#widget");
 $('#base').val("2");
 $('#exponent').val("3");

 $("#submit").trigger("click");
});

Once the stub is ready, a new instance of the CalculatorWidget class is created,
but instead of passing a normal instance of MathDemo as its only argument, we are
injecting the stub. By doing this, we are no longer testing the MathDemo class, and we
are testing the CalculatorWidget class in an isolated environment. This would have
been much more complicated without a design that facilitates replacing the class
dependencies via a constructor injection.

To finish the test, we render the calculator widget, set the value of the inputs with
IDs base and exponent, and trigger a click on the button with ID submit. The event
will invoke the onSubmit function, which will then invoke the pow method. When
the parameters are in the incorrect order, we will be able to be 100 percent sure about
the location of the root cause of this issue: the onSubmit function.

Chapter 7

[227]

Creating end-to-end tests with
Nightwatch.js
Writing an E2E test with Nightwatch.js is an intuitive process. We should be able
to read an E2E test and be able to understand it even if it is the first time that we
encounter one.

If we take a look at the following code snippet, we will see that, once we have
reached the page, the test will wait 1 second for the body of the page to be visible.
The test will then wait 0.1 seconds for some elements to be visible. The elements
can be selected using CSS selectors or XPath syntax. If the elements are visible,
the setValue method will insert 2 in the text input with base as ID and 3 in the
text input with exponent as ID:

var test = {
 'Calculator pow e2e test example' : function (client) {
 client
 .url('http://localhost:8080/')
 .waitForElementVisible('body', 1000)
 .assert.waitForElementVisible('TypeScriptTesting', 100)
 .assert.waitForElementVisible('input#base' ,100)
 .assert.waitForElementVisible('input#exponent', 100)
 .setValue('input#base', '2')
 .setValue('input#exponent', '3')
 .click('button#submit')
 .pause(100)
 .assert.value('input#result', '8')
 .end();
 }
};

export = test;

The test will then find the submit button and trigger an on-click event. After 0.1
seconds, the test asserts that the correct value has been inserted into the text input with
result as ID. We can see each of these steps in the console during the test execution.

We can run the tests using the following command:

gulp run-e2e-test

Remember that we must run the tasks to compile and bundle the E2E
tests as well as run the application in a web server with BrowserSync
and execute Selenium before being able to run E2E tests.

Application Testing

[228]

Generating test coverage reports
Earlier in in this chapter, when we configured Karma, we added some settings
to generate test coverage reports. Let's take a look at the karma.conf.js file to
identify test coverage-related configuration:

module.exports = function (config) {
 'use strict';

 config.set({
 basePath: '',
 frameworks: ['mocha', 'chai', 'sinon'],
 browsers: ['PhantomJS'],
 reporters: ['progress', 'coverage'],
 coverageReporter: {
 type : 'lcov',
 dir : __dirname + '/coverage/'
 },
 plugins : [
 'karma-coverage',
 'karma-mocha',
 'karma-chai',
 'karma-sinon',
 'karma-phantomjs-launcher'
],
 preprocessors: {
 '**/bundled/test/bdd.test.js' : 'coverage'
 },
 files : [
 {
 pattern: "/bundled/test/bdd.test.js",
 included: true
 },
 {
 pattern: "/node_modules/jquery/dist/jquery.min.js",
 included: true
 },
 {
 pattern:
 "/node_modules/bootstrap/dist/js/bootstrap.min.js",
 included: true
 }
],
 client : {
 mocha : {
 ui : "bdd"
 }
 },

Chapter 7

[229]

 port: 9876,
 colors: true,
 autoWatch: false,
 logLevel: config.DEBUG
 });
};

As we can see, we need to set the folder in which the test coverage report will be
stored. We also need to add coverage to the reporter's setting and a new entry
named coverageReport to configure the format of the report.

We cannot forget to install the karma-coverage plugin using npm and adding a
reference in the karma.conf.js under the plugins field. Finally, we need to add
coverage to the preprocessor field:

npm karma-coverage

To generate the report, we just need to execute the Gulp tasks used to run all the
unit tests in the application. We can do so by using the following command:

gulp run-unit-test

Once the execution of the test has been completed, we can open the folder in which
we decided to store the coverage reports and open the available index.html file in
a web browser. The HTML report allows us to navigate to the coverage statistics of
a specific file by clicking on the name of one of the source files.

Application Testing

[230]

The report can help us to identify with ease the parts of our code that have not
been tested (lines are highlighted in red). The test coverage report also calculates
the number of lines tested against the number of lines in the application. As we can
see in the preceding screenshot, only 82.24 percent of the statements are tested in
the example.

If you would like to learn more about all the tools that we have
discussed in this chapter, I highly recommend checking out the
book Backbone.js Testing written by Ryan Roemer.

Summary
In this chapter, we discussed some core testing concepts (including stubs,
spies, suites, and more). We also looked at the test-driven development and
behavior-driven development approaches and how to work with some of the
leading JavaScript testing frameworks, such as Mocha, Chai, Sinon.JS, Karma,
Selenium, and Nightwatch.js.

Towards the end of the chapter we explored how to test across multiple devices
and how to generate test coverage reports.

In the next chapter, we will look at decorators and the metadata reflection API—
two exciting new features introduced by TypeScript 1.5.

[231]

Decorators
In this chapter, you are going to learn about annotations and decorators—the two
new features based on the future ECMAScript 6 specification, but we can use them
today with TypeScript 1.5.

You will learn about the following topics:

• Annotations and decorators:
 ° Class decorators
 ° Method decorators
 ° Property decorators
 ° Parameter decorators
 ° Decorator factory
 ° Decorators with parameters

• The reflection metadata API

Prerequisites
The TypeScript features in this chapter require TypeScript 1.5 or higher. We can
use Gulp as we have done in previous chapters, but we need to ensure that the
latest version of TypeScript is used by the gulp-typescript package. Let's start
by creating a package.json file and installing the required packages:

npm init

npm install --save-dev gulp gulp-typescript typescript

npm install --save reflect-metadata

Decorators

[232]

Once we have installed the packages, we can create a gulpfile.js file and
add a new task to compile our code.

The following code snippet shows the required compiler configuration.
The compilation target must be ES5 and the emitDecoratorMetadata setting
must be set as true. We also need to specify the package that provides the
TypeScript compiler to ensure that the latest version is used:

var gulp = require("gulp"),
 tsc = require("gulp-typescript"),
 typescript = require("typescript");

var tsProject = tsc.createProject({
 removeComments : false,
 noImplicitAny : false,
 target : "es5",
 module : "commonjs",
 declarationFiles : false,
 emitDecoratorMetadata : true,
 typescript: typescript
});

Once the compiler settings are ready, we can write a gulp task using the
gulp-typescript plugin:

gulp.task("build-source", function() {
 return gulp.src(__dirname + "/file.ts")
 .pipe(tsc(tsProject))
 .js.pipe(gulp.dest(__dirname + "/"));
});

Annotations and decorators
Annotations are a way to add metadata to class declarations. The metadata can then
be used by tools such as dependency injection containers.

The annotations API was proposed by the Google AtScript team but annotations are
not a standard. However, decorators are a proposed standard for ECMAScript 7 by
Yehuda Katz, to annotate and modify classes and properties at design time.

Chapter 8

[233]

Annotations and decorators are pretty much the same:

Annotations and decorators are nearly the same thing. From a consumer
perspective we have exactly the same syntax. The only thing that differs is that
we don't have control over how annotations are added as metadata to our code.
A decorator is rather an interface to build something that ends up as annotation.

Over a long term, however, we can just focus on decorators, since those are a real
proposed standard. AtScript is TypeScript and TypeScript implements decorators.

 - "The difference between Annotations and Decorators" by Pascal Precht

We are going to use the following class to showcase how to work with decorators:

class Person {

 public name: string;
 public surname: string;

 constructor(name : string, surname : string) {
 this.name = name;
 this.surname = surname;
 }

 public saySomething(something : string) : string {
 return this.name + " " + this.surname + " says: " + something;
 }
}

There are four types of decorators that can be used to annotate: classes, properties,
methods, and parameters.

The class decorators
The official TypeScript decorator proposal defines a class decorator as follows:

A class decorator function is a function that accepts a constructor function as
its argument, and returns either undefined, the provided constructor function,
or a new constructor function. Returning undefined is equivalent to returning
the provided constructor function.

 - "Decorators Proposal – TypeScript" by Ron Buckton

Decorators

[234]

A class decorator is used to modify the constructor of class in some way. If the
class decorator returns undefined, the original constructor remains the same.
If the decorator returns, the return value will be used to override the original
class constructor.

We are going to create a class decorator named logClass. We can start by
defining the decorator as follows:

function logClass(target: any) {
 // …
}

The class decorator above does not have any logic yet, but we can already apply
it to a class. To apply a decorator, we need to use the at (@) symbol:

@logClass
class Person {
 public name: string;
 public surname: string;
 //...

If we have declared and applied a decorator, a function named __decorate will be
generated by the TypeScript compiler, which will then compile our code in JavaScript.
We are not going to examine the internal implementation of the __decorate function,
but we need to understand that it is used to apply a decorator at runtime. We can see
it in action by examining the JavaScript code that is generated when we compile the
decorated Person class mentioned previously:

var Person = (function () {
 function Person(name, surname) {
 this.name = name;
 this.surname = surname;
 }
 Person.prototype.saySomething = function (something) {
 return this.name + " " + this.surname + " says: " +
 something;
 };
 Person = __decorate([
 logClass
], Person);
 return Person;
})();

Chapter 8

[235]

Now that we know how the class decorator will be invoked, let's implement it:

function logClass(target: any) {

 // save a reference to the original constructor
 var original = target;

 // a utility function to generate instances of a class
 function construct(constructor, args) {
 var c : any = function () {
 return constructor.apply(this, args);
 }
 c.prototype = constructor.prototype;
 return new c();
 }

 // the new constructor behaviour
 var f : any = function (...args) {
 console.log("New: " + original.name);
 return construct(original, args);
 }

 // copy prototype so instanceof operator still works
 f.prototype = original.prototype;

 // return new constructor (will override original)
 return f;
}

The class decorator takes the constructor of the class being decorated as its only
argument. This means that the argument (named target) is the constructor of
the Person class.

The decorator starts by creating a copy of the class constructor, then it defines a
utility function (named construct) that can be used to generate instances of a class.

Decorators are used to add some extra logic or metadata to the decorated element.
When we try to extend the functionality of a function (methods or constructors), we
need to wrap the original function with a new function that contains the additional
logic and invokes the original function.

In the preceding decorator, we added extra logic to log in the console, the name
of the class when a new instance is created. To achieve this, a new class constructor
(named f) was declared. The new constructor contains the additional logic and
uses the construct function to invoke the original class constructor.

Decorators

[236]

At the end of the decorator, the prototype of the original constructor function is
copied to the new constructor function to ensure that the instanceof operator
continues to work when it is applied to an instance of the decorated class. Finally,
the new constructor is returned and some code generated by the TypeScript compiler
uses it to override the original class constructor.

After decorating the class constructor, a new instance is created:

var me = new Person("Remo", "Jansen");

On doing so, the following text appears in the console:

"New: Person"

The method decorators
The official TypeScript decorator proposal defines a method decorator as follows.

A method decorator function is a function that accepts three arguments:
The object that owns the property, the key for the property (a string or a symbol),
and optionally the property descriptor of the property. The function must return
either undefined, the provided property descriptor, or a new property descriptor.
Returning undefined is equivalent to returning the provided property descriptor.

- "Decorators Proposal – TypeScript" by Ron Buckton

The method decorator is really similar to the class decorator but it is used to override
a method, as opposed to using it to override the constructor of a class.

If the method decorator returns a value different from undefined, the returned value
will be used to override the property descriptor of the method.

Note that a property descriptor is an object that can be obtained by
invoking the Object.getOwnPropertyDescriptor() method.

Let's declare a method decorator named logMethod without any behavior for now:

function logMethod(target: any, key: string, descriptor: any) {
 // ...
}

Chapter 8

[237]

We can apply the decorator to one of the methods in the Person class:

//...
@logMethod
public saySomething(something : string) : string {
 return this.name + " " + this.surname + " says: " + something;
}
// ...

The method decorator is invoked using the following arguments:

• The prototype of the class that contains the method being decorated is
Person.prototype

• The name of the method being decorated is saySomething
• The property descriptor of the method being decorated is Object.

getOwnPropertyDescriptor(Person.prototype, saySomething)

Now that we know the value of the decorator parameters, we can proceed to
implement it:

function logMethod(target: any, key: string, descriptor: any) {

 // save a reference to the original method
 var originalMethod = descriptor.value;

 // editing the descriptor/value parameter
 descriptor.value = function (...args: any[]) {

 // convert method arguments to string
 var a = args.map(a => JSON.stringify(a)).join();

 // invoke method and get its return value
 var result = originalMethod.apply(this, args);

 // convert result to string
 var r = JSON.stringify(result);

 // display in console the function call details
 console.log(`Call: ${key}(${a}) => ${r}`);

 // return the result of invoking the method
 return result;
 }

 // return edited descriptor
 return descriptor;
}

Decorators

[238]

Just like we did when we implemented the class decorator, we start by creating
a copy of the element being decorated. Instead of accessing the method via the
class prototype (target["key"]), we will access it via the property descriptor
(descriptor.value).

We then create a new function that will replace the method being decorated.
The new function invokes the original method but also contains some additional
logic used to log in the console, the method name, and the value of its arguments
every time it is invoked.

After applying the decorator to the method, the method name and arguments will
be logged in the console when it is invoked:

var me = new Person("Remo", "Jansen");
me.saySomething("hello!");
// Call: saySomething("hello!") => "Remo Jansen says: hello!"

The property decorators
The official TypeScript decorator proposal defines a property decorator as follows:

A property decorator function is a function that accepts two arguments: The object
that owns the property and the key for the property (a string or a symbol). A property
decorator does not return.

- "Decorators Proposal – TypeScript" by Ron Buckton

A property decorator is really similar to a method decorator. The main differences
are that a property decorator doesn't return a value and that the third parameter
(the property descriptor) is not passed to the property decorator.

Let's create a property decorator named logProperty to see how it works:

function logProperty(target: any, key: string) {
 // ...
}

We can use it in one of the Person class's properties as follows:

class Person {
 @logProperty
 public name: string;
 // ...

Chapter 8

[239]

As we have been doing so far, we are going to implement a decorator that will
override the decorated property with a new property that will behave exactly as the
original one, but will perform an additional task—logging the property value in the
console whenever it changes:

function logProperty(target: any, key: string) {

 // property value
 var _val = this[key];

 // property getter
 var getter = function () {
 console.log(`Get: ${key} => ${_val}`);
 return _val;
 };

 // property setter
 var setter = function (newVal) {
 console.log(`Set: ${key} => ${newVal}`);
 _val = newVal;
 };

 // Delete property. The delete operator throws
 // in strict mode if the property is an own
 // non-configurable property and returns
 // false in non-strict mode.
 if (delete this[key]) {
 Object.defineProperty(target, key, {
 get: getter,
 set: setter,
 enumerable: true,
 configurable: true
 });
 }
}

In the preceding decorator, we created a copy of the original property value and
declared two functions: getter (invoked when we change the value of the property)
and setter (invoked when we read the value of the property) respectively.

In the previous decorator, the return value was used to override the element being
decorated. Because the property decorator doesn't return a value, we can't override
the property being decorated but we can replace it. We have manually deleted the
original property and created a new property using the Object.defineProperty
function and the previously declared getter and setter functions.

Decorators

[240]

After applying the decorator to the name property, we will be able to observe any
changes to its value in the console:

var me = new Person("Remo", "Jansen");
// Set: name => Remo
me.name = "Remo H.";
// Set: name => Remo H.
var n = me.name;
// Get: name Remo H.

The parameter decorators
The official decorator proposal defines a parameter decorator as follows:

A parameter decorator function is a function that accepts three arguments: The
object that owns the method that contains the decorated parameter, the property key
of the property (or undefined for a parameter of the constructor), and the ordinal
index of the parameter. The return value of this decorator is ignored.

Decorators Proposal – TypeScript" by Ron Buckton

Let's create a parameter decorator named addMetadata to see how it works:

function addMetadata(target: any, key : string, index : number) {
 // ...
}

We can apply the property decorator to a parameter as follows:

public saySomething(@addMetadatasomething : string) : string {
 return this.name + " " + this.surname + " says: " + something;
}

The parameter decorator doesn't return, which means that we will not be able to
override the method that contains the parameter being decorated.

We can use parameter decorators to add some metadata to the prototype (target)
class. In the following implementation, we will add an array named log_${key}_
parameters as a class property where key is the name of the method that contains
the parameter being decorated:

function addMetadata(target: any, key : string, index : number) {
 var metadataKey = `_log_${key}_parameters`;
 if (Array.isArray(target[metadataKey])) {
 target[metadataKey].push(index);
 }

Chapter 8

[241]

 else {
 target[metadataKey] = [index];
 }
}

To allow more than one parameter to be decorated, we check whether the new field
is an array. If the new field is not an array, we create and initialize the new field to be
a new array containing the index of the parameter being decorated. If the new field is
an array, the index of the parameter being decorated is added to the array.

A parameter decorator is not really useful on its own; it needs to be combined with
a method decorator, so the parameter decorator adds the metadata and the method
decorator reads it:

@readMetadata
public saySomething(@addMetadata something : string) : string {
 return this.name + " " + this.surname + " says: " + something;
}

The following method decorator works like the method decorator that we
implemented previously in this chapter, but it will read the metadata added by the
parameter decorator and instead of displaying all the arguments passed to the method
in the console when it is invoked, it will only log the ones that have been decorated:

function readMetadata (target: any, key: string, descriptor: any) {

 var originalMethod = descriptor.value;
 descriptor.value = function (...args: any[]) {

 var metadataKey = `_log_${key}_parameters`;
 var indices = target[metadataKey];

 if (Array.isArray(indices)) {

 for (var i = 0; i < args.length; i++) {

 if (indices.indexOf(i) !== -1) {

 var arg = args[i];
 var argStr = JSON.stringify(arg) || arg.toString();
 console.log(`${key} arg[${i}]: ${argStr}`);
 }
 }
 var result = originalMethod.apply(this, args);
 return result;

Decorators

[242]

 }
 }
 return descriptor;
}

If we apply the saySomething method:

var person = new Person("Remo", "Jansen");

person.saySomething("hello!");

The readMetadata decorator will display the value of the parameters that were
added to the metadata (the class property named _log_saySomething_parameters)
in the console by the addMetadata decorator:

saySomething arg[0]: "hello!"

Note that, in the previous example, we used a class property to
store some metadata. Later in this chapter, you will learn how to use
the reflection metadata API; this API has been designed specifically
to generate and read metadata and it is, therefore, recommended to
use it when we need to work with decorators and metadata.

The decorator factory
The official decorator proposal defines a decorator factory as follows:

A decorator factory is a function that can accept any number of arguments, and
must return one of the above types of decorator function.

Decorators Proposal – TypeScript" by Ron Buckton

You learned to implement class, property, method, and parameter decorators. In the
majority of cases, we will consume decorators, not implement them. For example, in
Angular 2.0, we will use an @view decorator to declare that a class will behave as a
View, but we will not implement the @view decorator ourselves.

We can use the decorator factory to make decorators easier to consume. Let's
consider the following code snippet:

@logClass
class Person {

 @logProperty
 public name: string;

Chapter 8

[243]

 public surname: string;

 constructor(name : string, surname : string) {
 this.name = name;
 this.surname = surname;
 }

 @logMethod
 public saySomething(@logParameter something : string) : string {
 return this.name + " " + this.surname + " says: " + something;
 }
}

The problem with the preceding code is that we, as developers, need to know that
the logMethod decorator can only be applied to a method. This might seem trivial
because the decorator naming used above makes it easier for us.

A better solution is to enable developers to use an @log decorator without having to
worry about using the right kind of decorator:

@log
class Person {

 @log
 public name: string;
 public surname: string;

 constructor(name : string, surname : string) {
 this.name = name;
 this.surname = surname;
 }

 @log
 public saySomething(@log something : string) : string {
 return this.name + " " + this.surname + " says: " + something;
 }
}

We can achieve this by creating a decorator factory. A decorator factory is a function
that is able to identify what kind of decorator is required and return it:

function log(...args : any[]) {
 switch(args.length) {
 case 1:
 return logClass.apply(this, args);

Decorators

[244]

 case 2:
 // break instead of return as property
 // decorators don't have a return
 logProperty.apply(this, args);
 break;
 case 3:
 if(typeof args[2] === "number") {
 logParameter.apply(this, args);
 }
 return logMethod.apply(this, args);
 default:
 throw new Error("Decorators are not valid here!");
 }
}

As we can observe in the preceding code snippet, the decorator factory uses the
number and type of arguments passed to the decorator to identify the required
kind of decorator.

Decorators with arguments
We can use a special kind of decorator factory to allow developers to configure the
behavior of a decorator. For example, we could pass a string to a class decorator
as follows:

@logClass("option")
class Person {
// ...

In order to be able to pass some parameters to a decorator, we need to wrap the
decorator with a function. The wrapper function takes the parameters of our
choice and returns a decorator:

function logClass(option : string) {
 return function (target: any) {

 // class decorator logic goes here
 // we have access to the decorator parameters
 console.log(target, option);
 }
}

This can be applied to all the kinds of decorator that you learned about in
this chapter.

Chapter 8

[245]

The reflection metadata API
You learned that decorators can be used to modify and extend the behavior of a
class's methods or properties. You also learned that we can use decorators to add
metadata to the class being decorated.

For less experienced developers, the possibility of adding metadata to a class
might not seem really useful or exciting but it is one of the greatest things that has
happened to JavaScript in the past few years.

As we already know, TypeScript only uses types at design time. However, some
features such as dependency injection, runtime type assertions, reflection, and
testing are not possible without the type information being available at runtime.
This is not a problem anymore because we can use decorators to generate metadata
and that metadata can contain type information. The metadata can then be processed
at runtime.

When the TypeScript team started to think about the best possible way to allow
developers to generate type information metadata, they reserved a few special
decorator names for this purposes.

The idea was that, when an element was decorated using these reserved decorators,
the compiler would automatically add the type information to the element being
decorated. The reserved decorators were the following:

TypeScript compiler will honor special decorator names and will flow additional
information into the decorator factory parameters annotated by these decorators.

@type – The serialized form of the type of the decorator target

@returnType – The serialized form of the return type of the decorator target if it is
a function type, undefined otherwise

@parameterTypes – A list of serialized types of the decorator target's arguments if
it is a function type, undefined otherwise

@name – The name of the decorator target

- "Decorators brainstorming" by Jonathan Turner

Shortly after, the TypeScript team decided to use the reflection metadata API (one of
the proposed ES7 features) instead of the reserved decorators.

Decorators

[246]

The idea is almost identical but instead of using the reserved decorator names, we
will use some reserved metadata keys to retrieve the metadata using the reflection
metadata API. The TypeScript documentation defines three reserved metadata keys:

Type metadata uses the metadata key "design:type".

Parameter type metadata uses the metadata key "design:paramtypes".

Return type metadata uses the metadata key "design:returntype".

- Issue #2577 - TypeScript Official Repository at GitHub.com

Let's see how we can use the reflection metadata API. We need to start by referencing
and importing the required reflect-metadata npm package:

/// <reference path="./node_modules/reflect-metadata/reflect-
metadata.d.ts"/>

import 'reflect-metadata';

We can then create a class for testing purposes. We are going to get the type of one of
the class properties at runtime. We are going to decorate the class using a property
decorator named logType:

class Demo {
 @logType
 public attr1: string;
}

Instead of using a reserved decorator, @type, we need to invoke the Reflect.
getMetadata() method and pass the design:type key. The types are returned as
functions, for example, for the type string, the function String(){} function is
returned. We can use the function.name property to get the type as a string:

function logType(target: any, key: string) {
 var t = Reflect.getMetadata('design:type', target, key);
 console.log(`${key} type: ${t.name}`);
}

If we compile the preceding code and run the resulting JavaScript code in a web
browser, we will be able to see the type of the attr1 property in the console:

'attr1 type: String'

Remember that, in order to run this example,
the reflect-medatada library must be imported.

Chapter 8

[247]

We can apply the other reserved metadata keys in a similar manner. Let's create a
method with many parameters to use the design:paramtypes reserved metadata
key to retrieve the types of the parameters

class Demo {
 @logParamTypes
 public doSomething(
 param1 : string,
 param2 : number,
 param3 : Foo,
 param4 : { test : string },
 param5 : IFoo,
 param6 : Function,
 param7 : (a : number) => void
) : number {

 return 1;
 }
}

This time, we will use the design:paramtypes reserved metadata key, and because
we are querying the types of multiple parameters, the types will be returned as an
array by the Reflect.getMetadata() function:

function logParamTypes(target : any, key: string) {
 var types = Reflect.getMetadata('design:paramtypes', target, key);
 var s = types.map(a => a.name).join();
 console.log(`${key} param types: ${s}`);
}

If we compile and run the preceding code in a web browser, we will be able to see
the types of the parameters in the console:

'doSomething param types: String, Number, Foo, Object, Object,
Function, Function'

The types are serialized and follow some rules. We can see that functions are
serialized as Function, objects literals ({test : string}) and interfaces are
serialized as Object, and so on:

Type Serialized
void undefined
string String
number Number

Decorators

[248]

Type Serialized
boolean Boolean
symbol Symbol
any Object
enum Number
Class C{} C
Object literal {} Object
interface Object

Note that some developers have required the possibility of accessing
the type of interfaces and the inheritance tree of a class via metadata.
This feature is known as complex type serialization and is not
available at the time of writing this book, but the TypeScript team
has already started to work on it.

To conclude, we are going to create a method with a return type and use the
design:returntype reserved metadata key to retrieve the types of the return type:

class Demo {
 @logReturntype
 public doSomething2() : string {
 return "test";
 }
}

Just like in the two previous decorators, we need to invoke the
Reflect.getMetadata() function, passing the design:returntype reserved
metadata key:

function logReturntype(target, key) {
 var returnType = Reflect.getMetadata('design:returntype', target,
 key);
 console.log(`${key} return type: ${returnType.name}`);
}

If we compile and run the preceding code in a web browser, we will be able to see
the types of the return type in the console:

'doSomething2 return type: String'

Chapter 8

[249]

Summary
In this chapter, you learned how to consume and implement the four available types
of decorators (class, method, property, and parameter) and how to create a decorator
factory to abstract developers from the decorator types when they are consumed.

You also learned how to use the reflection metadata API to access type information
at runtime.

In the next chapter, you will learn about the architecture of a TypeScript application.
You will also learn about how to work with some design patterns and how to create
a single-page web application.

Chapter 9

[251]

Application Architecture
In previous chapters, we have covered several aspects of TypeScript, and we should
now feel confident enough to create a small application.

As we know, TypeScript was created by Microsoft to facilitate the creation of
large-scale JavaScript applications. Some TypeScript features such as modules or
classes can facilitate the process of creating large applications, but it is not enough.
We need good application architecture if we want to succeed in the long term.

This chapter is divided into two main parts. In the first part, we are going to look
at the single-page application (SPA) architecture and some design patterns that
will help us create scalable and maintainable applications. This section covers the
following topics:

• The single-page web application architecture
• The MV* architecture
• Models and collections
• Item views and collection views
• Controllers
• Events
• Router and hash navigation
• Mediator
• Client-side rendering and virtual DOM
• Data binding and data flow
• The web component and shadow DOM
• Choosing an MV* framework

Application Architecture

[252]

In the second part of this chapter, we are going to put in to practice many of the
theoretical concepts explored in the first part of this chapter. We are going to develop
a single-page web application framework, from scratch, which will be used to create
an application in Chapter 10, Putting Everything Together.

The single-page application architecture
We are going to start by exploring what single-page applications (SPAs) are
and how they work. Numerous SPA frameworks are available that can help us
develop applications with a good architecture.

We could jump directly into the use of one of these frameworks, but it is always a
good thing to understand how a third-party software component works before we
use it. For this reason, we are going use the first part of this chapter to study the
internal architecture of an SPA. Let's start by understanding what an SPA is.

An SPA is a web application in which all the resources (HTML, CSS, JavaScript, and
so on) are either loaded in one single request, or loaded dynamically without fully
reloading the page. We use the term single-page to refer to this kind of application
because the web page is never fully reloaded after the initial page load.

In the past, the Web was just a collection of static HTML files and hyperlinks;
every time we clicked on a hyperlink, a new page was loaded. This affected web
application performance negatively because many of the contents of the page (for
example, page headers, page footers, side menus, scripts) were loaded again with
each new page.

When AJAX support arrived for web browsers, developers started to load some of
the page content via AJAX requests to avoid unnecessary page reloads and provide
better user experience. AJAX applications and SPAs work in a very similar way. The
significant difference is that AJAX applications load sections of the web application
as HTML. These sections are ready to be appended to the DOM as soon as they finish
loading. On the other hand, SPAs avoid loading the HTML; instead, they load data
and client-side templates. The templates and data are processed and transformed
into HTML in the web browser in a process known as client-side rendering. The
data is usually in XML or JSON format, and there are many available client-side
template languages.

Chapter 9

[253]

Let's compare both approaches in detail. For example, to show a list of clients and
orders in an HTML table using the AJAX application approach, we could load the
initial page containing the list of clients in HTML format, ready to be displayed. In
the table, we would use a row for each client:

<tr>
 <td>Client Name 1</td>
 <td>
 <a href="javascript: void(0);" class="orders_link" data-client-
id="1">
 View Orders

 </td>
 <!-- more columns... -->
</tr>

You don't need to create new folders or files for now. This is a theoretical
example and is not mean to be implemented or executed.

We would also need some JavaScript code to load the client orders via AJAX when a
user clicks on the View Orders link:

$(document).ready(){

 // load and display client orders
 function displayOrders(userId){
 $.ajax({
 method: "GET",
 url: `/client/orders.aspx?id=${userId}`,
 dataType: "html",
 success : function(html) {
 $("#page_container").html(html);
 },
 error : function(e) {
 var msg = "<h1>Sorry, there has been an error!</h1>";
 $("#page_container").html(msg);
 }
 });
 }

 // set click event

Application Architecture

[254]

 $('.orders_link').on('click', function(e) {
 var userId = $(e.currentTarget).data("client-id");
 displayOrders(userId);
 });
}

Refer to the Handlebars.js (http://handlebarsjs.com/) and
JQuery AJAX (http://api.jquery.com/jquery.ajax/)
documentation if you need additional help to understand the
preceding example.

The preceding code snippet waits for the page to finish loading by using a
document-ready event handler. Then it adds an event handler for click events on
elements with a class attribute equal to orders_link.

The event handler takes the user ID from the data-client-id attribute and passes it
to the displayOrders function. The displayOrders function uses an AJAX request
to load the list of orders. The list of orders is in HTML format and can be inserted
into the DOM without changing its format.

In an SPA, the process is very similar. The initial HTML page (containing the list of
clients) is loaded just like in the AJAX application. In SPAs, the navigation to a new
page is also managed by JavaScript events, but it is usually managed by a component
known as Router.

Let's ignore navigation in SPAs for now and focus on the loading and rendering. In
an SPA, we will not load a list of orders in HTML format; we will load it using the
XML or JSON formats. If we use JSON, the response may look like the following one:

{
 "orders" : [
 {
 "order_id" : 32423234,
 "currency" : "EUR",
 "date" : "13-02-2015,
 "items" :[
 { "product_id" : 13223523, "price" : 150.00, "quantity": 2 }
 { "product_id" : 62352355, "price" : 50.00, "quantity": 1 }
]
 },
 {
 "order_id" : 32423786,
 "currency" : "EUR",
 "date": "13-02-2015,

http://handlebarsjs.com/
http://api.jquery.com/jquery.ajax/

Chapter 9

[255]

 "items" :[
 { "product_id" : 13228898, "price" : 60.00, "quantity" : 1 }
]
 }
]
}

We can use an AJAX request almost identical to the one that we used to load HTML
in the AJAX application:

function getOrdersData(userId : number, cb){
 $.ajax({
 method: "GET",
 url: `/api/orders/${userId}`,
 dataType: "json",
 success : function(json) {
 cb(json);
 },
 error : function(e) {
 var msg = "<h1>Sorry, there has been an error!</h1>";
 $("#page_container").html(msg);
 }
 });
}

Before we can show the list of orders in the web browser, we need to transform
it into HTML. To transform the JSON into HTML, we can use a template system.
There are many template systems, but we are going use a Handlebars template
for this example. Let's take a look at the syntax of one of these templates:

{{#each orders}}
 <tr>
 <td>{{order_id}}</td>
 <td>{{date}}</td>
 <td>

 {{#each items}} {{product_id}} x {{quantity}}
 {{/each}}

 </td>
 </tr>
{{/each}}

Application Architecture

[256]

The elements of the Handlebars template language are wrapped with double
brackets ({{ and }}). The preceding template starts with an each flow control
statement. The each statement is used to repeat some instructions for each of the
elements in an array. If we take a look at the JSON response, we will be able to see
that the orders element is an array. The template will repeat the operations between
{{#each orders}} and {{/each}} once for each object in the orders array.

Each repetition creates a new HTML table row. To display the value of one of the
JSON fields in the HTML output, we just need to refer to the field wrapped around
double brackets. For example, when we render the cell containing the order ID, we
use {{order_id}}.

When referring to a JSON field in a template, the field must be in the
current scope. The scope can be explicitly accessed using the this
keyword, for example, {{this.order_id}} is equal to {{order_
id}}. The scope in a template changes when we use some of the available
flow control sentences. For example, the {{#each orders}} statement
assigns the current item in the array to the this keyword.

In order to use a Handlebars template, we need to load and compile it. We can load
the template using a regular AJAX request:

function getOrdersTemplate(cb){
 $.ajax({
 method: "GET",
 url: "/client/orders.hbs",
 dataType: "text",
 success : function(templateSource) {
 var template = Handlebars.compile(source);
 cb(template);
 },
 error : function(e) {
 var msg = "<h1>Sorry, there has been an error!</h1>";
 $("#page_container").html(msg);
 }
 });
}

In the preceding example, we have loaded a template using an AJAX request and
compiled it using the Handlebars compile method.

Chapter 9

[257]

In a real production website, templates are usually precompiled by
the continuous integration build. The templates are then ready to be
used when they finish loading. Precompiling the templates can help
to improve the application's performance.

We have created two functions: one to load the template and compile it and the other
to load the JSON data. The last step is to create a function that puts together the
template and the JSON data to generate the HTML table, which contains the list of
client orders:

function displayOrders(userId){
 getOrdersData(userId, function(data) {
 getOrdersTemplate(data, function(template) {
 var html = template(json);
 $("#page_container").html(html);
 });
 });
}

It may seem like SPAs require much more work and that they could cause poor
performance compared with AJAX applications because there are both more
operations and requests to be performed in the web browser. However, that is far
from the reality. To understand the benefits of SPAs, we need to understand why
they were created in the first place.

The creation of SPAs was highly influenced by two events: the first one is the
exponential increase of the popularity of mobile devices and tablets with Internet
access and powerful hardware. The second event is the improvement of JavaScript
performance that took place during the same period of time.

As mobile devices gained popularity, companies were forced to develop a mobile
version of the same client application. Companies started developing web services to
generate JSON and XML (instead of HTML pages) that could be consumed by each
of these client applications. These web services could be used by all applications,
thus allowing companies to reduce costs.

The problem was that the existing AJAX applications could not take advantage
of the web services without a client-side rendering system. Template systems
such as Mustache (the predecessor of Handlebars) were released for the first time
to solve this problem.

Application Architecture

[258]

One of the main advantages of SPAs is that we need an HTTP API. An HTTP API has
many advantages over an application that renders HTML pages in the server side.
For example, we can write unit tests for a web service with ease because asserting
data is much easier than asserting some user interaction functionality. HTTP APIs
can be used by many client applications, which can reduce costs and open new lines
of business, such as selling the HTTP API as a product.

Another important advantage of SPAs is that because a lot of the work is performed
in the web browser, the server performs fewer tasks and is able to handle a higher
number of requests. Client-side performance is not negatively affected because
personal computers and mobile devices have become really powerful and JavaScript
performance has improved significantly over the last few years.

Network performance in SPAs can be both better and worse when compared to
network performance in AJAX applications. The response formatted in the HTML
format can sometimes be heavier than the data in JSON or XML formats.

The price to pay when using JSON or XML is that but we will perform an extra web
request to fetch the template. We can solve these problems by pre-compiling the
templates, implementing caching mechanisms and joining small template files into
larger template files to reduce the number of requests.

The MV* architecture
As we have seen, many tasks that were traditionally performed on the server side
are performed on the client side in SPAs. This has caused an increase in the size of
JavaScript applications and the need for a better code organization.

As a result, developers have started using in the frontend some of the design
patterns that have been used with success in the backend over the last decade.
Among those, we can highlight the Model-View-Controller (MVC) design pattern
and some of its derivative versions, such as Model-View-ViewModel (MVVM) and
Model-View-Presenter (MVP).

Developers around the world started to share some SPA frameworks that somehow
try to implement the MVC design pattern but do not necessarily follow the MVC
pattern strictly. The majority of these frameworks implement Models and Views, but
since not all of them implement Controllers, we refers to this family of frameworks
as MV*.

We will cover concepts such as MVC, Models, and Views later
in this chapter.

Chapter 9

[259]

We will now look at other architecture principles, design patterns, and components
commonly present in MV* frameworks.

Common components and features in the
MV* frameworks
We have seen that single-page web applications are usually developed using a
family of frameworks known as MV*, and we have covered the basics of some
common SPA architecture principles.

Let's delve further into some components and features that are commonly found in
MV* frameworks.

In this section, we will use some small code snippets from some of the
most popular MV* frameworks. We are not attempting to learn how to
use each of these frameworks, and no previous experience with an MV*
framework is required.
Our goal should be to understand the common components and
features of an MV* framework and not focus on a particular framework.

Models
A model is a component used to store data. The data is retrieved from an HTTP
API and displayed in the view. Some frameworks include a model entity that we, as
developers, must extend. For example, in Backbone.js (a popular MV* framework), a
model must extend the Backbone.Model class:

class TaskModel extends Backbone.Model{
 public created : number;
 public completed : boolean;
 public title : string;
 constructor() {
 super();
 }
}

A model inherits some methods that can help us interact with the web services. For
example, in the case of a Backbone.js model, we can use a method named fetch to set
the values of a model using the data returned by a web service. In some frameworks,
models include logic to retrieve data from an HTTP API, while others include an
independent component responsible for the communication with an HTTP API.

Application Architecture

[260]

In other frameworks, models are plain entities, and it is not necessary to extend or
instantiate one of the framework's classes:

class TaskModel {
 public created : number;
 public completed : boolean;
 public title : string;
}

Collections
Collections are used to represent a list of models. In the previous section, we saw an
example of a model named TaskModel. While this model could be used to represent
a single task in a list of things to do, a collection could be used to represent the list
of tasks.

In the majority of MV* frameworks that support collections, we need to specify the
model of the items of a collection when the collection is declared. For example, in the
case of Backbone.js, the Task collection could look like the following:

class TaskCollection extends Backbone.Collection<TaskModel> {
 public model : TaskModel;
 constructor() {
 this.model = TodoModel;
 super();
 }
}

Just like in the case of models, some frameworks' collections are plain arrays, and we
will not need to extend or instantiate one of the framework's classes. Collections can
also inherit some methods to facilitate interaction with web services.

Item views
The majority of frameworks feature an item view (or just view) component. Views
are responsible for rendering the data stored in the models as HTML. Views usually
require a model, a template, and a container to be passed as a constructor argument,
property, or setting.

• The model and the template are used to generate the HTML, as we
discovered earlier on in this chapter

• The container is usually the selector of one of the DOM elements in the page;
the selected DOM element is then used as a container for the HTML, which is
inserted or appended to it

Chapter 9

[261]

For example, in Marionette.js (a popular MV* framework based on Backbone.js),
a view is declared as follows:

class NavBarItemView extends Marionette.ItemView {
 constructor(options: any = {}) {
 options.template = "#navBarItemViewTemplate";
 super(options);
 }
}

Collection views
A collection view is a special type of view. The relationship between collection views
and views is somehow comparable with the relationship between collections and
models. Collection views usually require a collection, an item view, and a container
to be passed as a constructor argument, property, or setting.

A collection loops through the models in the specified collection, renders each of
them using a specified item view, and then appends the results of the container.

In the majority of frameworks, when a collection view is rendered, an
item view is rendered for each item in the collection; this can sometimes
create a performance bottleneck.
An alternative solution is to use an item view and a model in which one
of its attributes is an array. We can then use the {{#each}} statement
in the view template to render a collection in one single operation, as
opposed to one operation for each item in the collection.

The following code snippet is an example of a collection view in Marionette.js:

class SampleCollectionView extends Marionette.
CollectionView<SampleModel> {
 constructor(options: any = {}) {
 super(options);
 }
}
var view = new SampleCollectionView({
 collection : collection,
 el:$("#divOutput"),
 childView : SampleView
});

Application Architecture

[262]

Controllers
Some frameworks feature Controllers. Controllers are usually in charge of handling
the lifecycle of specific models and their associated views. They are responsible
for instantiating connection models and collections with their respective views
and collection views as well as disposing them before handling the control over
to another controller.

Interaction in MVC applications is organized around controllers and actions.
Controllers can include as many action methods as needed, and an action typically
has one-to-one mapping with user interactions.

We are going to take a look at a small code snippet that uses an MV* framework
known as Chaplin. Just like Marionette.js, Chaplin is a framework based on
Backbone.js. The following code snippet defines a class that inherits from the
base Controller class, which is defined by Chaplin:

class LikesController extends Chaplin.Controller {

 public beforeAction() {
 this.redirectUnlessLoggedIn();
 }

 public index(params) {
 this.collection = new Likes();
 this.view = new LikesView({collection: this.collection});
 }

 public show(params) {
 this.model = new Like({id: params.id});
 this.view = new FullLikeView({model: this.model});
 }
}

In the preceding code snippet, we can see that the controller is named
LikesController, and it has two actions named index and show respectively.
We can also observe a method named beforeAction that is executed by Chaplin
before an action is invoked.

Chapter 9

[263]

Events
An event is an action or occurrence detected by the program that may be handled
by the program. MV* frameworks usually distinguish two kinds of events:

• User events: Applications allow users to interact with it by triggering and
handling user events, such as clicking on a button, scrolling, or submitting
a form. User events are usually handled in a view.

• Application events: The application can also trigger and handle events. For
example, some frameworks trigger an onRender event when a view has been
rendered or an onBeforeRouting event when a controller action is about to
be invoked.

Application events are a good way to adhere to the Open/Close element of the
SOLID principle. We can use events to allow developers to extend a framework
(by adding event handlers) without having to modify the framework itself.

Application events can also be used to avoid direct communication between two
components. We will cover more about them later in this chapter when we focus
on a component known as Mediator.

Router and hash (#) navigation
The router is responsible for observing URL changes and passing the execution flow
to a controller's action that matches the URL.

The majority of frameworks use a combination of a technique known as hash
navigation and the usage of the HTML5 History API to handle changes in the
URL without reloading the page.

In an SPA, the links usually contain the hash (#) character. This character was
originally designed to set the focus on one of the DOM elements on a page, but it is
used by MV* frameworks to navigate without needing to fully reload the web page.

In order to understand this concept, we are going to implement a really basic Router
from scratch. We are going to start by taking a look at how a route—a plain object
used to represent a URL—looks in the majority of MV* frameworks:

class Route {
 public controllerName : string;
 public actionName : string;

Application Architecture

[264]

 public args : Object[];

 constructor(controllerName : string, actionName : string, args :
 Object[]){
 this.controllerName = controllerName;
 this.actionName = actionName;
 this.args = args;
 }
}

The router observes the changes in the web browser's URL. When the URL changes,
the router parses it and generates a new route instance.

A really basic router could look as follows:

class Router {
 private _defaultController : string;
 private _defaultAction : string;

 constructor(defaultController : string, defaultAction : string) {
 this._defaultController = defaultController || "home";
 this._defaultAction = defaultAction || "index";
 }

 public initialize() {

 // observe URL changes by users
 $(window).on('hashchange', () => {
 var r = this.getRoute();
 this.onRouteChange(r);
 });
 }

 // Encapsulates reading the URL
 private getRoute() {
 var h = window.location.hash;
 return this.parseRoute(h);
 }

 // Encapsulates parsing an URL
 private parseRoute(hash : string) {
 var comp, controller, action, args, i;
 if (hash[hash.length - 1] === "/") {
 hash = hash.substring(0, hash.length - 1);
 }

Chapter 9

[265]

 comp = hash.replace("#", '').split('/');
 controller = comp[0] || this._defaultController;
 action = comp[1] || this._defaultAction;

 args = [];
 for (i = 2; i < comp.length; i++) {
 args.push(comp[i]);
 }
 return new Route(controller, action, args);
 }

 private onRouteChange(route : Route) {
 // invoke controller here!
 }
}

In the second part of this chapter, we are going to develop an entire
SPA framework from scratch, and we will use an extended version
of the preceding class.

The preceding class takes the name of the default constructor and the name of the
default action as its constructor arguments. The controller named home and the
action named index are used as the default values when no arguments are passed
to the constructor.

The method named initialize is used to create an event listener for the
hashchange event. Web browsers trigger this event when the window.location.
hash value changes.

For example, let's consider the current URL to be http://localhost:8080. A user
then clicks on the following link:

View Tasks

When the link is clicked, the window.location.hash value will change to "task/
index". The URL in the browser navigation panel will change, but the hash character
will prevent the page from fully reloading. The router will then invoke its getRoute
method to transform the URL into a new instance of the Route class by using the
parseRoute method.

The URL follows the following name convection:

#conrollerName/actionName/arg1/arg2/arg3/argN

Application Architecture

[266]

This means that the task/index URL is transformed into:

new Route("task", "index", []);

The majority of MV* frameworks use the HTML History API to hide
the hash (#) character from the URL, but we will not implement this
feature in our framework.

The instance of the Route class is passed to the onRouteChange method, which is
responsible for invoking the controller that matches the route.

1. Router 2. Controller

We have omitted the implementation of the onRouteChange
method on purpose but will refer to this function in the Mediator
and Dispatcher sections later in this chapter.

This is basically how hash navigation and routers work. As we can expect, in a
real framework, a router has many additional features, but the preceding example
should help us gain a good understanding of how routing works in the majority of
MV* frameworks.

Mediator
Some MV* frameworks introduce a component known as Mediator. The mediator
is a simple object all other modules use to communicate with each other.

The mediator usually implements the publish/subscribe design pattern (also known
as pub/sub). This pattern enables modules to not depend on each other. Instead
of making direct use of other parts of the application, modules communicate
through events.

Modules can listen for and react to events but also publish events of their own to
give other modules the chance to react. This ensures loose coupling of application
modules, while still allowing for ease of information exchange.

Chapter 9

[267]

The mediator can also help us to allow developers to extend our framework (by
subscribing to events) without actually having to modify the framework itself. As
we saw in Chapter 4, Object-Oriented Programming with TypeScript, this is a good
thing because it adheres to the Open/Close principle in the SOLID principles.

We are going to avoid the internal details of how a mediator works for now, but we
can take a look at an example of the public interface of a mediator:

interface IMediator {
 publish(e : IAppEvent) : void;
 subscribe(e : IAppEvent) : void;
 unsubscribe(e : IAppEvent) : void;
}

In the previous section, we omitted the details about how the router invokes a
controller because the framework that we are going to develop will use a mediator:

class Router {
 // ...
 private onRouteChange(route : Route) {
 this.meditor.publish(new AppEvent("app.dispatch", route, null));
 }
}

The preceding code snippet showcases how the router avoids invoking the
controller's action directly, and instead, it publishes an event using a mediator.

1. Router 2. Mediator 3. Controller

Dispatcher
There was something in the previous code snippet that may have caught your
attention: the event name is app.dispatch.

The app.dispatch event refers to an entity known as Dispatcher. This means that
the router is sending an event to the dispatcher and not to a controller:

class Dispatcher {
 // ...
 public initialize() {
 this.meditor.subscribe(
 new AppEvent("app.dispatch", null, (e: any, data? : any) => {
 this.dispatch(data);

Application Architecture

[268]

 })
);
 }

 // Create and dispose controller instances
 private dispatch(route : IRoute) {
 // 1. Dispose previous controller
 // 2. Create instance of new controller
 // 3. Invoke controller action using Mediator
 }
 // ...
}

As we can see in this code snippet, the dispatcher is responsible for the creation of
new controllers and the disposal of old controllers. When a router finishes parsing
a URL, it will pass an instance of the Route class to the dispatcher using a mediator.
The dispatcher then disposes the previous controller creates an instance of the new
controller, and invokes the controller action using a mediator.

1. Router 2. Mediator 3. Dispatcher

4. Controller

Client-side rendering and Virtual DOM
We are already familiar with the basics of client-side rendering. We know client-
side rendering requires a template and some data to generate HTML as output, but
we haven't mentioned some performance details that we need to consider when
selecting an MV* framework.

Manipulating the DOM is one of the main potential performance bottlenecks in
SPAs. For this reason, it is interesting to compare how frameworks render the views
internally before we decide to work with one or another.

Some frameworks render a view whenever the model changes, and there are two
possible ways to know when a model has changed:

• The first one is to check for changes using an interval (this operation is
sometimes referred as a dirty check)

• The second option is to use an observable model

Chapter 9

[269]

The observable approach is much more efficient than using a time interval because
the observable model will only consume processing time when it has actually
changed. On the other hand, the interval will consume processing time even
when the model has not changed.

When to render is important, but we also need to consider how to render.
Some frameworks manipulate the DOM directly and others use an in-memory
representation of the DOM known as Virtual DOM. Virtual DOM is much more
efficient because JavaScript is able to manipulate the in-memory representation
of the DOM much faster than the DOM itself.

User interface data binding
User interface (UI) data binding is a design pattern that aims to simplify
development of graphic UI applications. UI data binding binds UI elements
to an application domain model.

A binding creates a link between two properties such that when one changes, the
other one is updated to the new value automatically. Bindings can connect properties
on the same object, or across two different objects. Most MV* frameworks include
some sort of binding implementation between views and models.

One-way data binding
One-way data binding is a type of UI data binding. This type of data binding only
propagates changes in one direction.

In the majority of MV* frameworks, this means that any changes in the model
are propagated to the view. On the other hand, any changes in the view are not
propagated to the model.

Application Architecture

[270]

Two-way data binding
Two-way binding is used to ensure that any changes to the view are propagated
to the model and any changes in the model are propagated to the view.

Data flow
Some of the latest MV* frameworks have introduced new approaches and
techniques. One of these new concepts is the unidirectional data flow architecture
(introduced by Flux).

This unidirectional data flow architecture is based on the idea that changing the
value of a variable should automatically force recalculation of the values of variables
that depend on its value.

In an MVC application, a controller handles multiple Models and Views. Sometimes,
a View uses more than one model, and when two-way data binding is used, we can
end up with a complicated flow of data to follow. The following diagram illustrates
such a scenario:

Chapter 9

[271]

In this diagram, action does not refer to the actions in a controller.
Action here refers to user or application events.

Dataflow architecture attempts to solve this problem by restricting the flow of
data to one unique channel and direction. By doing so, the flow of data within
the application components becomes much easier to follow. The following
diagram illustrates the flow of data in an application that uses unidirectional
data flow architecture:

Application Architecture

[272]

The preceding diagram illustrates how the data always moves in the same direction.

In Flux's unidirectional data flow architecture, all the actions are directed to the
dispatcher. The dispatcher in Flux is like the dispatcher in our framework, but
instead of passing the execution flow to a controller, it passes the execution flow
to a store.

Stores are in charge of retrieving and manipulating data and can be compared
with Models in MVC. Once the data has been modified in some way, it is passed
to the views.

Views, just like in MVC, are responsible for rendering the data as HTML and handling
user events (actions). If the event requires some data to be modified in some way,
the Views will send an action to the dispatcher instead of manipulating its model, as
would happen in an application with two-way data binding support.

The data always moves in the same direction and in circles, which makes the
execution flow of a large dataflow application much easier to debug and predict
than that of a two-way data binding MVC application.

Web components and shadow DOM
Some frameworks use the term web component to refer to reusable user interface
widgets. Web components allow developers to define custom HTML elements.
For example, we could define a new HTML <map> tag to display a map. Web
components can import their own dependencies and use client-side templates
to render their own HTML using a technology known as shadow DOM.

Shadow DOM allows the browser to use HTML, CSS, and JavaScript within a web
component. Shadow DOM is useful when developing large applications because it
helps to prevent CSS, HTML, and JavaScript conflicts between components.

Some of the existing MV* frameworks (for example, Polymer) can be
used to implement real web components. While other frameworks
(for example, React) use the term web components to refer to reusable
user interface widgets, those components cannot be considered
real web components because they don't use the web components
technology stack (custom elements, HTML templates, shadow DOM
and HTML imports).

Chapter 9

[273]

Choosing an application framework
We can create a SPA from scratch, but usually we pick up an existing framework
before creating our own. One of the main problems of choosing a JavaScript SPA
framework is that there are too many choices.

The latest and greatest JavaScript framework comes around every sixteen minutes.

 - Allen Pike

I would personally recommend considering a framework or another depending on
the features that you think that you will need to achieve your goals.

For example, if we are going to work on an application with not really complex
views and forms, Backbone.js or one of its derivations (Marionette.js, Chaplin, and so
on) should work for us. However, if our application is expected to have many forms
and complex views, Ember.js or AngularJS might be a better option.

If you need some extra help when choosing one framework over
another, you should visit http://todomvc.com. TodoMVC is a project
that offers the same application (a task manager) implemented using
MV* concepts in most of the popular JavaScript MV* frameworks today.

http://todomvc.com

Application Architecture

[274]

Writing an MVC framework from scratch
Now that we have a good idea about the common components of an MV* application
framework, we are going to try to implement our own framework from scratch.

The framework that we are about to develop has not been designed
to be used in a real professional environment. Real MV* frameworks
have thousands of features and have been under intense development
for months and even years before becoming stable.
This framework has been developed not to be the most efficient or
the most maintainable MV* framework available, but to be a good
learning resource.

Our application will feature controllers, templates, views, and models as well as
a router, a mediator, and a dispatcher. Let's take a look at the role of each of these
components in our framework:

• Application: This is the root component of an application. The application
component is in charge of the initialization of all the internal components of
the framework (mediator, router, and dispatcher).

• Mediator: The mediator is in charge of the communication between all the
other components in the application.

• Application Events: Application events are used to send information from
one component to another. An application event is identified by an identifier
known as a topic. The components can publish application events as well as
subscribe and unsubscribe to application events.

• Router: The router observes the changes in the browser URL and creates
instances of the Route class that are then sent to the Dispatcher using an
application event.

• Routes: These are used to represent a URL. The URLs use naming
conventions that can be used to identify which controller and action should
be invoked.

• Dispatcher: The dispatcher receives instances of the Route class, which are
used to identify the required controller. The dispatcher can then dispose the
previous controller and create a new controller instance if necessary. Once
the controller has been initialized, the dispatcher passes the execution flow to
the controller using an application event.

Chapter 9

[275]

• Controllers: Controllers are used to initialize views and models. Once the
views and models are initialized, the controller passes the execution flow to
one or more models using an application event.

• Models: Models are in charge of the interaction with the HTTP API as well
as data manipulation in memory. This involves data formatting as well
as operations such as the addition or deletion of data. Once the Model has
finished manipulating the data, it is passed to one or more views using
an application event.

• Views: Views are in charge of the load and compilation of templates. Once
the template has been loaded, the views wait for data to be sent by the
models. When the data is received, it is combined with the templates to
generate HTML code, which is appended to the DOM. Views are also in
charge of the binding and unbinding of UI events (click, focus, and so on).

The following diagram can help us to understand the interaction between the
available components:

Now that we have a basic idea about the overall architecture of our framework,
let's start a new project.

Application Architecture

[276]

Prerequisites
Just like we have been doing in the previous chapters of this book, it is recommended
to create a new project and configure an automated development workflow
using Gulp.

You can try to create the framework and final application following the steps
described in the following sections, or you can download the companion source code
to get a copy of the finished application.

We are going to start by installing the following runtime dependencies with npm:

npm init

npm install animate.css bootstrap datatables handlebars jquery q --
save

We also need to install the following development dependencies:

npm browser-sync browserify chai gulp gulp-coveralls gulp-tslint
gulp-typescript gulp-uglify karma karma-chai karma-mocha karma-sinon
mocha run-sequence sinon vinyl-buffer vinyl-source-stream --save-dev

Now, let's install the required type definition files using tsd:

tsd init

tsd install jquery bootstrap handlebars q chai sinon mocha
jquery.dataTables highcharts --save

The application uses the following directory tree:

├── LICENSE
├── README.md
├── css
│ └── site.css
├── data
│ ├── nasdaq.json
│ └── nyse.json
├── gulpfile.js
├── index.html
├── karma.conf.js
├── node_modules
├── package.json
├── source
│ ├── app
│ │ └── // Chapter 10
│ └── framework
│ ├── app.ts
│ ├── app_event.ts

Chapter 9

[277]

│ ├── controller.ts
│ ├── dispatcher.ts
│ ├── event_emitter.ts
│ ├── framework.ts
│ ├── interfaces.ts
│ ├── mediator.ts
│ ├── model.ts
│ ├── route.ts
│ ├── router.ts
│ ├── tsconfig.json
│ └── view.ts
├── test
├── tsd.json
└── typings

We will be working on the files located under the source folder during this chapter.
In the next chapter, we will create an application using our framework. Most of the
files of this application will be located under the app folder.

Now that we have a basic idea about the overall architecture of our framework, let's
proceed to implement each of its components.

The final version of the entire framework and application is included in
the companion source code.

Application events
We are going to use application events that allow the communication between two
components. For example, when a model finishes receiving the response of an HTTP
API, the response of the request will be sent from the model to a view using an
application event.

As we saw in Chapter 4, Object-Oriented Programming with TypeScript, one of the
SOLID principles is the dependency inversion principle, which states that we should
not depend upon concretions (classes) and should depend upon abstractions instead
(interfaces). We are going to try to follow the SOLID principles, so let's get started by
creating a new file named interfaces.ts inside the framework folder and declaring
the IAppEvent interface:

interface IAppEvent {
 topic : string;
 data : any;
 handler: (e: any, data : any) => void;
}

Application Architecture

[278]

An application event contains an identifier or topic and some data or an event
handler. We will understand these properties better once we get to publish and
subscribe to some events.

Let's continue by creating a new file named app_event.ts inside the framework
folder and copy the following code into it:

/// <reference path="./interfaces"/>

class AppEvent implements IAppEvent {
 public guid : string;
 public topic : string;
 public data : any;
 public handler: (e: Object, data? : any) => void;

 constructor(topic : string, data : any, handler: (e: any, data? :
any) => void) {
 this.topic = topic;
 this.data = data;
 this.handler = handler;
 }
}
export { AppEvent };

The preceding code snippet declares a class named AppEvent which implements the
IappEvent interface.

Mediator
As we already know, the mediator is a component that implements the pub/
sub design pattern and is used to avoid the direct communication between two
components.

Let's add a new interface to the interfaces.ts file:

interface IMediator {
 publish(e : IAppEvent) : void;
 subscribe(e : IAppEvent) : void;
 unsubscribe(e : IAppEvent) : void;
}

Chapter 9

[279]

As we can see in this code snippet, the IMediator interface exposes the three
methods necessary to implement the publish/subscribe design pattern, as follows:

• publish: This is used to trigger events. When we publish an event, all the
event subscribers receive it.

• subscribe: This is used to subscribe to an event, or in other words, set an
event handler for an event.

• unsubscribe: This is used to unsubscribe to an event, or in other words,
remove an event handler for an event type.

Now, let's proceed to create a new file named mediator.ts under the framework
folder and add the following code to it:

/// <reference path="./interfaces"/>

class Mediator implements IMediator {
 private _$: JQuery;
 private _isDebug;

 constructor(isDebug : boolean = false) {
 this._$ = $({});
 this._isDebug = isDebug;
 }

 public publish(e : IAppEvent) : void {
 if(this._isDebug === true) { console.log(new Date().getTime(),
 "PUBLISH", e.topic, e.data); }
 this._$.trigger(e.topic, e.data);
 }

 public subscribe(e : IAppEvent) : void {
 if(this._isDebug === true) { console.log(new Date().getTime(),
 "SUBSCRIBE", e.topic, e.handler); }
 this._$.on(e.topic, e.handler);
 }

 public unsubscribe(e : IAppEvent) : void {
 if(this._isDebug === true) { console.log(new Date().getTime(),
 "UNSUBSCRIBE", e.topic, e.data); }
 this._$.off(e.topic);
 }
}
export { Mediator };

Application Architecture

[280]

The preceding code snippet declares a class named Mediator, which implements the
IMediator interface. The Mediator constructor has a default (false) parameter that
is used to indicate if we are using the debug mode.

The debug mode is useful because when it is enabled, we will be able to observe
all the calls to the publish, subscribe, and unsubscribe methods of the mediator
without the need to use a debugger. In the following screenshot, we can observe the
kind of information that we can expect to see in the browser console when the debug
mode is enabled:

The publish, subscribe, and unsubscribe methods use the jQuery trigger, on,
and off methods respectively to execute event listeners as well as create and remove
event listeners when requested.

The default constructor also initializes a private property named _$. The value of this
property is just an empty jQuery object in memory. This object is used by jQuery to
add and remove event handlers when the trigger, on, and off method are invoked.

It important to mention that if the mediator is cleared from memory, its _$ property
will also be cleared from memory and all the application event handlers will be lost.
In the following section, we will see how the App class ensures that the mediator is
never cleared from memory.

Chapter 9

[281]

Application
The application class is the root component of an application. The application class
is in charge of the initialization of the main components of an application (router,
mediator, and dispatcher).

We are going to start by declaring a couple of interfaces required by the application
class, so let's add the following interfaces to the interfaces.td file:

interface IAppSettings {
 isDebug : boolean,
 defaultController : string;
 defaultAction : string;
 controllers : Array<IControllerDetails>;
 onErrorHandler : (o : Object) => void;
}

interface IControllerDetails {
 controllerName : string;
 controller : { new(...args : any[]): IController ;};
}

The IAppSettings interface is used to indicate the available application settings.
We can use the application settings to enable the debug mode, set the name of the
default controller and action, set the available controllers, and set a global error
handler. Let's take a look at the actual implementation of the application class:

/// <reference path="./interfaces"/>

import { Dispatcher } from "./dispatcher";
import { Mediator } from "./mediator";
import { AppEvent } from "./app_event";
import { Router } from "./router";

class App {
 private _dispatcher : IDispatcher;
 private _mediator : IMediator;
 private _router : IRouter;
 private _controllers : IControllerDetails[];
 private _onErrorHandler : (o : Object) => void;

 constructor(appSettings : IAppSettings) {
 this._controllers = appSettings.controllers;
 this._mediator = new Mediator(appSettings.isDebug || false);

Application Architecture

[282]

 this._router = new Router(this._mediator,
 appSettings.defaultController, appSettings.defaultAction);
 this._dispatcher = new Dispatcher(this._mediator,
 this._controllers);
 this._onErrorHandler = appSettings.onErrorHandler;
 }

 public initialize() {
 this._router.initialize();
 this._dispatcher.initialize();
 this._mediator.subscribe(new AppEvent("app.error", null, (e:
 any, data? : any) => {
 this._onErrorHandler(data);
 }));
 this._mediator.publish(new AppEvent("app.initialize", null,
 null));
 }
}
export { App };

The preceding code snippet declares a class named App that takes the
implementation of IAppSettings as its only constructor argument. The class
constructor initializes the class properties (dispatcher, mediator, router, controller
and global error handler).

When we create a new application, it automatically creates a new mediator, and it is
passed to both the router and the dispatcher. This means that one unique instance of
the mediator is shared by all the components in the application, or in other words,
the mediator is a singleton: it stays in memory for the entire application lifecycle.

After creating an instance of the App class, we must invoke the initialize method
to start the execution of the application. We will later see that when the router is
initialized, it uses the mediator to subscribe to the app.initialize event.

The initialize method calls the initialize method of some of the application
components (router and dispatcher). It then sets an event handler for global errors
and publishes the app.initialize event.

The mediator then invokes the event handler for the app.initialize event by the
router. This explains how the execution flow is passed from the application class to
the router class.

Chapter 9

[283]

Route
In order to be able to understand the implementation of the router class, we need
to learn about some of its dependencies first. The first of these dependencies is the
Route class.

The Route class implements the Route interface. This interface was previously
explained in this chapter, so we will not go into its details again.

interface IRoute {
 controllerName : string;
 actionName : string;
 args : Object[];
 serialize() : string;
}

We have also included the implementation of the Route class previously in this
chapter, but the method named serialize was omitted on purpose. The serialize
method transforms an instance of the Route class into a URL.

/// <reference path="./interfaces"/>

class Route implements IRoute {
 public controllerName : string;
 public actionName : string;
 public args : Object[];

 constructor(controllerName : string, actionName : string, args :
 Object[]){
 this.controllerName = controllerName;
 this.actionName = actionName;
 this.args = args;
 }

 public serialize() : string {
 var s, sargs;
 sargs = this.args.map(a => a.toString()).join("/");
 s = `${this.controllerName}/${this.actionName}/${sargs}`;
 return s;
 }
}
export { Route };

Application Architecture

[284]

Event emitter
The router also has a dependency in the EventEmitter class. This class is
particularly important because every single component (except the application
component) in the entire framework extends it.

As we already know, all the components use a mediator to communicate with each
other. The mediator is a singleton, which means that every single component in our
application needs to be provided with access to the mediator instance.

The EventEmitter class is used to reduce the amount of boilerplate code that is
necessary to achieve this and to provide developers with some helpers that facilitate
the publication and subscription of multiple application events:

interface IEventEmitter {
 triggerEvent(event : IAppEvent);
 subscribeToEvents(events : Array<IAppEvent>);
 unsubscribeToEvents(events : Array<IAppEvent>);
}

Now, let's create a file named event_emitter.ts under the framework directory
and copy the following code into it:

/// <reference path="./interfaces"/>

import { AppEvent } from "./app_event";

 class EventEmitter implements IEventEmitter{
 protected _metiator : IMediator;
 protected _events : Array<IAppEvent>;

 constructor(metiator : IMediator) {
 this._metiator = metiator;
 }

 public triggerEvent(event : IAppEvent){
 this._metiator.publish(event);
 }

 public subscribeToEvents(events : Array<IAppEvent>) {
 this._events = events;
 for(var i = 0; i < this._events.length; i++) {
 this._metiator.subscribe(this._events[i]);
 }

Chapter 9

[285]

 }

 public unsubscribeToEvents() {
 for(var i = 0; i < this._events.length; i++) {
 this._metiator.unsubscribe(this._events[i]);
 }
 }
 }
 export { EventEmitter };

When the subscribeToEvents method is invoked, the _events property is used to
store the events to which a component is subscribed.

When a component decides to remove its event handlers by using the
unsubscribeToEvents method, we don't need to pass the full list of events
again because the event emitter uses the events property to remember them.

Router
The router observes the URL for changes and generates instances of the Route class
that are then passed to the dispatcher using an application event. The Router class
implements the IRouter interface:

interface IRouter extends IEventEmitter {
 initialize() : void;
}

Let's take a look at the internal implementation of the Router class:

/// <reference path="./interfaces"/>

import { EventEmitter } from "./event_emitter";
import { AppEvent } from "./app_event";
import { Route } from "./route";

class Router extends EventEmitter implements IRouter {
 private _defaultController : string;
 private _defaultAction : string;

 constructor(metiator : IMediator, defaultController : string,
 defaultAction : string) {
 super(metiator);
 this._defaultController = defaultController || "home";
 this._defaultAction = defaultAction || "index";

Application Architecture

[286]

 }

 public initialize() {

 // observe URL changes by users
 $(window).on('hashchange', () => {
 var r = this.getRoute();
 this.onRouteChange(r);
 });

 // be able to trigger URL changes
 this.subscribeToEvents([

 // used to trigger routing on app start
 new AppEvent("app.initialize", null, (e: any, data? : any)
 => {
 this.onRouteChange(this.getRoute());
 }),

 // used to trigger URL changes from other components
 new AppEvent("app.route", null, (e: any, data? : any) => {
 this.setRoute(data); }),
]);
 }

 // Encapsulates reading the URL
 private getRoute() {
 var h = window.location.hash;
 return this.parseRoute(h);
 }

 // Encapsulates writting the URL
 private setRoute(route : Route) {
 var s = route.serialize();
 window.location.hash = s;
 }

 // Encapsulates parsing an URL
 private parseRoute(hash : string) {
 var comp, controller, action, args, i;
 if (hash[hash.length - 1] === "/") {
 hash = hash.substring(0, hash.length - 1);
 }

Chapter 9

[287]

 comp = hash.replace("#", '').split('/');
 controller = comp[0] || this._defaultController;
 action = comp[1] || this._defaultAction;

 args = [];
 for (i = 2; i < comp.length; i++) {
 args.push(comp[i]);
 }
 return new Route(controller, action, args);
 }

 // Pass control to the Dispatcher via the Mediator
 private onRouteChange(route : Route) {
 this.triggerEvent(new AppEvent("app.dispatch", route, null));
 }
}
export { Router };

We have seen this class previously in this chapter, but there are some significant
differences here. This time the Route class extends the EventEmitter class takes
a mediator and the names of the default controller and default action as its
constructor arguments.

The initialize method now includes a call to the subscribeToEvents method,
which is used to add an application event handler for the app.initialize event.
This event is used to ensure that the router parses the URL when the application
launches for the first time. The router observes the URL for changes, but when the
application is launched for the first time, there are no changes in the URL, and the
application does not invoke any controller. The router uses the app.initialize
event handler to solve this problem.

The router is also subscribed to the app.route event. The event handler of this
event uses a method named setRoute to set the browser's URL. The app.route
application event is used to allow other components to navigate to a route.

Finally, we can find the method named parseRoute, which is used to transform a
URL into an instance of the Route class, and the onRouteChange method, which is
used to publish an app.dispatch application event.

Application Architecture

[288]

Dispatcher
The dispatcher is a component used to create and dispose controllers when needed.
Disposing controllers is important because a controller can use a large number of
models and views, which can consume a considerable amount of memory.

If we have many controllers, the amount of memory consumed could become
a performance issue. One of the main goals of the dispatcher is to prevent this
potential issue.

The dispatcher implements the IDispatcher and IEventEmitter interfaces:

interface IDispatcher extends IEventEmitter {
 initialize() : void;
}

Let's take a look at the implementation of the dispatcher class:

/// <reference path="./interfaces"/>

import { EventEmitter } from "./event_emitter";
import { AppEvent } from "./app_event";

class Dispatcher extends EventEmitter implements IDispatcher {
 private _controllersHashMap : Object;
 private _currentController : IController;
 private _currentControllerName : string;

 constructor(metiator : IMediator, controllers :
 IControllerDetails[]) {
 super(metiator);
 this._controllersHashMap = this.getController(controllers);
 this._currentController = null;
 this._currentControllerName = null;
 }

We should be starting to become familiar with how the mediator works at this point.
Every component inherits from the EventEmitter class and uses its methods to
subscribe to some events in the method named initialize.

Later in this chapter, we will be able to observe that some classes (Controllers,
Views, and Models) also have a method named dispose, which is used to unsubscribe
to the methods to which the component subscribed in the initialize method.

 // listen to app.dispatch events
 public initialize() {
 this.subscribeToEvents([

Chapter 9

[289]

 new AppEvent("app.dispatch", null, (e: any, data? : any) => {
 this.dispatch(data);
 })
]);
 }

This hash map is used to be able to find a controller as fast as possible when a new
route needs to be dispatched The following method is used to generate a hash map
that uses the controller name as the key and the controller constructor as values:

private getController(controllers : IControllerDetails[]) : Object {
 var hashMap, hashMapEntry, name, controller, l;

 hashMap = {};
 l = controllers.length;

 if(l <= 0) {
 this.triggerEvent(new AppEvent(
 "app.error",
 "Cannot create an application without at least one
 contoller.",
 null));
 }

 for(var i = 0; i < l; i++) {
 controller = controllers[i];
 name = controller.controllerName;
 hashMapEntry = hashMap[name];
 if(hashMapEntry !== null && hashMapEntry !== undefined) {
 this.triggerEvent(new AppEvent(
 "app.error",
 "Two controller cannot use the same name.",
 null));
 }
 hashMap[name] = controller.controller;
 }
 return hashMap;
 }

The following method is responsible for the creation, initialization, and disposal of
controller instances; the code is commented to facilitate its understanding:

private dispatch(route : IRoute) {
 var Controller =
 this._controllersHashMap[route.controllerName];

 // try to find controller

Application Architecture

[290]

 if (Controller === null || Controller === undefined) {
 this.triggerEvent(new AppEvent(
 "app.error",
 `Controller not found: ${route.controllerName}`,
 null));
 }
 else {
 // create a controller instance
 var controller : IController = new
 Controller(this._metiator);

 // action is not available
 var a = controller[route.actionName];
 if (a === null || a === undefined) {
 this.triggerEvent(new AppEvent(
 "app.error",
 `Action not found in controller: ${route.controllerName}
 - + ${route.actionName}`,
 null));
 }
 // action is available
 else {
 if(this._currentController == null) {
 // initialize controller
 this._currentControllerName = route.controllerName;
 this._currentController = controller;
 this._currentController.initialize();
 }
 else {
 // dispose previous controller if not needed
 if(this._currentControllerName !== route.controllerName) {
 this._currentController.dispose();
 this._currentControllerName = route.controllerName;
 this._currentController = controller;
 this._currentController.initialize();
 }
 }
 // pass flow from dispatcher to the controller
 this.triggerEvent(new AppEvent(
 `app.controller.${this._currentControllerName}
 .${route.actionName}`,
 route.args,
 null
));

Chapter 9

[291]

 }
 }
 }
}
export { Dispatcher };

After disposing the previous controller (if necessary) and creating a new controller,
this controller is initialized. When a controller is initialized, its initialize method
is invoked, and as we know, it is then that a component subscribes to some events.

When the dispatcher publishes the following application event, the controller
is already subscribed to it and the execution flow is passed to the controller's
event handler:

`app.controller.${this._currentControllerName}.
${route.actionName}`

Controller
Controllers are in charge of the initialization and disposal of views and models. Since
controllers must be disposable by the dispatcher, a controller must implement the
dispose method from the IController interface:

interface IController extends IEventEmitter {
 initialize() : void;
 dispose() : void;
}

The models and views are set as properties of the classes that extend the Controller
class. The Controller class itself does not provide us with any functionality, as it is
meant to be implemented by developers when working on an application.

/// <reference path="./interfaces"/>

import { EventEmitter } from "./event_emitter";
import { AppEvent } from "./app_event";

class Controller extends EventEmitter implements IController {

 constructor(metiator : IMediator) {
 super(metiator);
 }

 public initialize() : void {

Application Architecture

[292]

 throw new Error('Controller.prototype.initialize() is abstract you
must implement it!');
 }

 public dispose() : void {
 throw new Error('Controller.prototype.dispose() is abstract you
must implement it!');
 }
}
export { Controller };

Even though it is not forced by the framework, it is recommended you use the
mediator to pass the control to one of the models (not views) from the controller.

Model and model settings
Models are used to interact with a web service and transform the data returned by
it. Models allow us to read, format, update, or delete the data returned by a web
service. Models implement the IModel and IEventEmitter interfaces:

interface IModel extends IEventEmitter {
 initialize() : void;
 dispose() : void;
}

A model needs to be provided with the URL of the web service that it consumes.
We are going to use a class decorator named ModelSettings to set the URL of the
service to be consumed.

We could inject the service URL via its constructor, but it is considered a bad practice
to inject data (as opposed to a behavior) via a class constructor. The decorator
includes some comments to facilitate its understanding:

/// <reference path="./interfaces"/>

import { EventEmitter } from "./event_emitter";

function ModelSettings(serviceUrl : string) {
 return function(target : any) {
 // save a reference to the original constructor
 var original = target;

 // a utility function to generate instances of a class
 function construct(constructor, args) {
 var c : any = function () {

Chapter 9

[293]

 return constructor.apply(this, args);
 }
 c.prototype = constructor.prototype;
 var instance = new c();
 instance._serviceUrl = serviceUrl;
 return instance;
 }

 // the new constructor behaviour
 var f : any = function (...args) {
 return construct(original, args);
 }

 // copy prototype so intanceof operator still works
 f.prototype = original.prototype;

 // return new constructor (will override original)
 return f;
 }
}

In the next chapter, we will be able to apply the decorator as follows:

@ModelSettings("./data/nasdaq.json")
class NasdaqModel extends Model implements IModel {
//...

Let's take a look at the internal implementation of the Model class:

class Model extends EventEmitter implements IModel {

 // the values of _serviceUrl must be set using the ModelSettings
 decorator
 private _serviceUrl : string;

 constructor(metiator : IMediator) {
 super(metiator);
 }

 // must be implemented by derived classes
 public initialize() {
 throw new Error('Model.prototype.initialize() is abstract and
 must implemented.');
 }

 // must be implemented by derived classes

Application Architecture

[294]

 public dispose() {
 throw new Error('Model.prototype.dispose() is abstract and
 must implemented.');
 }

 protected requestAsync(method : string, dataType : string, data) {
 return Q.Promise((resolve : (r) => {}, reject : (e) => {}) => {
 $.ajax({
 method: method,
 url: this._serviceUrl,
 data : data || {},
 dataType: dataType,
 success: (response) => {
 resolve(response);
 },
 error : (...args : any[]) => {
 reject(args);
 }
 });
 });
 }

 protected getAsync(dataType : string, data : any) {
 return this.requestAsync("GET", dataType, data);
 }

 protected postAsync(dataType : string, data : any) {
 return this.requestAsync("POST", dataType, data);
 }

 protected putAsync(dataType : string, data : any) {
 return this.requestAsync("PUT", dataType, data);
 }

 protected deleteAsync(dataType : string, data : any) {
 return this.requestAsync("DELETE", dataType, data);
 }
}
export { Model, ModelSettings };

Just like in the case of the controllers, the initialize and dispose methods
are meant to be implemented by the derived models, so they don't contain any
logic here.

Chapter 9

[295]

The requestAsync method is used to retrieve data from a web service or static file.
As we can see, the method uses the jQuery AJAX API and Q's Promises.

The class also includes the getAsync, postAsync, putAsync, and deleteAsync
methods, which are helpers to perform GET, POST, PUT, and DELETE requests
respectively.

Even though it is not forced by the framework, it is recommended you use the
mediator to pass the control to one of the views from the model.

View and view settings
Views are used to render templates and handle UI events. Just like the rest of the
components in our application, the View class extends the EventEmitter class:

interface IView extends IEventEmitter {
 initialize() : void;
 dispose() : void;
}

A view needs to be provided with the URL of the template that it consumes. We are
going to use a class decorator named ViewSettings to set the URL of the template to
be consumed.

We could inject the template URL via its constructor, but it is considered a bad
practice to inject data (as opposed to a behavior) via a class constructor. The
decorator includes some comments to facilitate its understanding:

/// <reference path="./interfaces"/>

import { EventEmitter } from "./event_emitter";
import { AppEvent } from "./app_event";

function ViewSettings(templateUrl : string, container : string) {
 return function(target : any) {
 // save a reference to the original constructor
 var original = target;

 // a utility function to generate instances of a class
 function construct(constructor, args) {
 var c : any = function () {
 return constructor.apply(this, args);
 }
 c.prototype = constructor.prototype;

Application Architecture

[296]

 var instance = new c();
 instance._container = container;
 instance._templateUrl = templateUrl;
 return instance;
 }

 // the new constructor behaviour
 var f : any = function (...args) {
 return construct(original, args);
 }

 // copy prototype so instanceof operator still works
 f.prototype = original.prototype;

 // return new constructor (will override original)
 return f;
 }
}

In the next chapter, we will be able to apply the decorator as follows:

@ViewSettings("./source/app/templates/market.hbs", "#outlet")
class MarketView extends View implements IView {
//...

Let's take a look at the View class. Just like in the case of the controllers and models,
the initialize and dispose methods are meant to be implemented by the derived
views, so they don't contain any logic here.

class View extends EventEmitter implements IView {

 // the values of _container and _templateUrl must be set using
 the ViewSettings decorator
 protected _container : string;
 private _templateUrl : string;

 private _templateDelegate : HandlebarsTemplateDelegate;

 constructor(metiator : IMediator) {
 super(metiator);
 }

 // must be implemented by derived classes
 public initialize() {
 throw new Error('View.prototype.initialize() is abstract and
 must implemented.');

Chapter 9

[297]

 }

 // must be implemented by derived classes
 public dispose() {
 throw new Error('View.prototype.dispose() is abstract and must
 implemented.');
 }

The view class includes two new methods (named bindDomEvents and
unbindDomEvents) that must be implemented by their derived classes. As we can
guess from their names, these methods should be used to set (bindDomEvents) and
unset (unbindDomEvents) UI event handlers:

 // must be implemented by derived classes
 protected bindDomEvents(model : any) {
 throw new Error('View.prototype.bindDomEvents() is abstract
 and must implemented.');
 }

 // must be implemented by derived classes
 protected unbindDomEvents() {
 throw new Error('View.prototype.unbindDomEvents() is abstract
 and must implemented.');
 }

The following asynchronous methods use promises and are used to load a
template (loadTemplateAsync), compile it (compileTemplateAsync), cache it
(getTemplateAsync), and render it (renderAsync)—all the methods are private
except renderAsync, which is mean to be used by the derived views:

 // asynchroniusly loads a template
 private loadTemplateAsync() {
 return Q.Promise((resolve : (r) => {}, reject : (e) => {}) => {
 $.ajax({
 method: "GET",
 url: this._templateUrl,
 dataType: "text",
 success: (response) => {
 resolve(response);
 },
 error : (...args : any[]) => {
 reject(args);
 }
 });
 });

Application Architecture

[298]

 }

 // asynchroniusly compile a template
 private compileTemplateAsync(source : string) {
 return Q.Promise((resolve : (r) => {}, reject : (e) => {}) => {
 try {
 var template = Handlebars.compile(source);
 resolve(template);
 }
 catch(e) {
 reject(e);
 }
 });
 }
 // asynchroniusly loads and compile a template if not done
 already
 private getTemplateAsync() {
 return Q.Promise((resolve : (r) => {}, reject : (e) => {}) => {
 if(this._templateDelegate === undefined ||
 this._templateDelegate === null) {
 this.loadTemplateAsync()
 .then((source) => {
 return this.compileTemplateAsync(source);
 })
 .then((templateDelegate) => {
 this._templateDelegate = templateDelegate;
 resolve(this._templateDelegate);
 })
 .catch((e) => { reject(e); });
 }
 else {
 resolve(this._templateDelegate);
 }
 });
 }

 // asynchroniusly renders the view
 protected renderAsync(model) {
 return Q.Promise((resolve : (r) => {}, reject : (e) => {}) => {
 this.getTemplateAsync()
 .then((templateDelegate) => {
 // generate html and append to the DOM
 var html = this._templateDelegate(model);

Chapter 9

[299]

 $(this._container).html(html);

 // pass model to resolve so it can be used by
 // subviews and DOM event initializer
 resolve(model);
 })
 .catch((e) => { reject(e); });
 });
 }
}
export { View, ViewSettings };

Framework
The framework file is used to provide access to all the components in the framework
from one single file. This means that when we implement an application using our
framework, we will not need to import a different file for each component:

/// <reference path="./interfaces"/>

import { App } from "./app";
import { Route } from "./route";
import { AppEvent } from "./app_event";
import { Controller } from "./controller";
import { View, ViewSettings } from "./view";
import { Model, ModelSettings } from "./model";

export { App, AppEvent, Controller, View, ViewSettings, Model,
ModelSettings, Route };

Summary
In this chapter, we understood what a single-page web application is, what its
common components are, and what the main characteristics of this architecture are.

We also created our own MV* framework. This practical experience and knowledge
will help us to understand many of the available MV* frameworks.

In the next chapter, we will try to put in practice many of the concepts that we have
learned in this book by creating a full SPA using the framework that we created in
this chapter.

[301]

Putting Everything Together
In this chapter, we are going to put into practice the majority of the concepts that we
have covered in the previous chapters.

We will develop a small single-page web application using the SPA framework that
we developed in Chapter 9, Application Architecture.

This application will allow us to find out how the NASDAQ and NYSE stocks are
doing on a particular day. It will not be a very large application, but it will be big
enough to demonstrate the advantages of working with TypeScript and using a
good application architecture.

We will write some classes and several functions. Some of these functions will be
asynchronous (Chapter 1, Introducing TypeScript; Chapter 3, Working with Functions;
Chapter 4, Object-Oriented Programming with TypeScript; and Chapter 5, Runtime).
We will also consume some decorators provided by our SPA framework
(Chapter 8, Decorators).

To complete the chapter, we will create an automated build to facilitate the
development process (Chapter 2, Automating Your Development Workflow), improve the
application performance (Chapter 6, Application Performance), and ensure that it works
correctly by writing some unit and integration tests (Chapter 7, Application Testing).

In this chapter, we will aim to help you gain confidence with TypeScript and the
SPA architecture. We need to focus on the SOLID principles and the separation of
concerns. Our goal is to create an application that is maintainable and testable, and
an application that can grow over time and which components can be reused in
future applications.

Putting Everything Together

[302]

Prerequisites
In this application, we will use the tools and the directory tree that we created in the
previous chapter. You can use the tsd.json and package.json files included in
the companion source code to install the required npm packages and type definition
files. Refer to the prerequisites section under the Writing an MVC framework from
scratch section in Chapter 9, Application Architecture, for additional information about
the prerequisites of this application.

The application's requirements
We will develop a small application that will allow users to see a list of stock symbols.
A stock symbol represents a company that trades its shares on a stock exchange.

The application home page will display stock symbols from two popular stock
exchanges: NASDAQ (National Association of Securities Dealers Automated
Quotations) and NYSE (New York stock exchange).

As you can see in the following screenshot, the web application requires a top
menu containing links that allow the user to see the stock symbols in one of the
aforementioned stock exchanges. The list of stock symbols will be displayed in a
table, which will include some basic details about the stocks, such as the price of
a share in the last sale or the name or the company:

Chapter 10

[303]

The last column in the table contains some buttons that will allow users to navigate
to a second screen that displays a stock quote. A stock quote is just a summary of the
pricing performance details of the stock for a given period of time.

The stock quote screen will display a line graph that is used by the brokers to see
how the price of the shares (the y axis) has evolved over time (the x axis). We can
display multiple lines to visualize the evolution of the opening price (the price of the
shares at the beginning of the day), the closing price (the price of a share at the end of
the day), the high price (the highest selling price of the share in a given day), and the
low price (the lowest selling price of the share in a given day).

The application's data
As we explained in the previous chapter, we need an application backend that allows
us to query the data from a web browser using AJAX requests in order to develop an
SPA. This means that we are going to need an HTTP API.

We will use a freely available public HTTP API that will allow us to obtain real
stock quote data. For the list of available stock symbols, we will use static JSON files.
These JSON files have been generated by transforming a CSV file available on the
NASDAQ website. The external HTTP API will also provide the line graph data.

Putting Everything Together

[304]

In total, we will be using three sets of data:

• Market data: This data is stored in static JSON files. These files have been
generated from a CSV file provided by the NASDAQ official website and
can be found in the companion example.

• Stock quote data: This has been provided by an external web service.
The external data provider that we will use in this example is a company
called Markit, specializing in financial information services. We will use
their market data API (v2), which is available for free and has been well
documented at http://dev.markitondemand.com/.

• Chart data: This is also provided in a web service by Markit.

The application's architecture
We will develop an SPA using our own framework. As we saw in the previous
chapter, our framework can map a URL with an action in a controller.

Our application will have three main screens. Each screen uses a different URL,
as follows:

• #market/nasdaq displays stocks in the NASDAQ stock market
• #market/nyse displays stocks in the NYSE stock market
• #symbol/quote/{symbol} displays a stock quote for the selected stock symbol

Each of the main URLs mentioned earlier will be implemented as a controller's
action in our application. In the previous chapter, you saw that URLs adhere to the
following naming convention: #controllerName/actionName/arg1/arg2/argN.

If we extrapolate this naming convention to the URLs mentioned in the
preceding list, we can deduce that our application will have two controllers:
MarketController and SymbolController.

The MarketController controller will be implemented using two models and
one view:

• NasdaqModel: This loads a list of NASDAQ stocks from a static JSON file
• NyseModel: This loads a list of NYSE stocks from a static JSON file
• MarketView: This renders the list of either the NASDAQ or NYSE stocks

http://dev.markitondemand.com/

Chapter 10

[305]

Each component communicates with the other using application events and the
mediator. The execution order of the market screen looks as follows:

3. MarketView

2. NasdaqModel

2. NyseModel

1. MarketController

The SymbolController controller will be implemented using two models and
two views:

• QuoteModel: This loads a stock quote for the selected symbol
• ChartModel: This loads symbol performance data points for the last year
• ChartView: This displays stock performance in an interactive chart
• SymbolView: This displays the last price change for the selected symbol

Each component communicates with the other using application events and the
mediator. The execution order of the stock quote screen looks as follows:

1. SymbolController 2. QuoteModel 3. SymbolView 4. ChartModel 5. ChartView

The application's file structure
Presented in this section is the folder structure of the application we are going to
build. In the root directory, you can find the application access point (index.html),
as well as some of the automation tools' configuration files (gulpfile.js, karma.
conf.js, package.json, and so on). You can also observe the typings folder,
which contains some type definition files.

Just as in the previous chapters, the application source code is located under the
source directory. The unit and integration tests are located in the test folder. The
following is the folder structure of the application:

├── LICENSE
├── README.md
├── css
│ └── site.css
├── data
│ ├── nasdaq.json

Putting Everything Together

[306]

│ └── nyse.json
├── gulpfile.js
├── index.html
├── karma.conf.js
├── node_modules
├── package.json
├── source
│ ├── app
│ │ ├── controllers
│ │ │ ├── market_controller.ts
│ │ │ └── symbol_controller.ts
│ │ ├── main.ts
│ │ ├── models
│ │ │ ├── chart_model.ts
│ │ │ ├── nasdaq_model.ts
│ │ │ ├── nyse_model.ts
│ │ │ └── quote_model.ts
│ │ ├── templates
│ │ │ ├── market.hbs
│ │ │ └── symbol.hbs
│ │ └── views
│ │ ├── chart_view.ts
│ │ ├── market_view.ts
│ │ └── symbol_view.ts
│ └── framework
│ └── framework.ts (Chapter 9)
├── test
│ ├── app
│ └── framework
├── tsd.json
└── typings

Under the source directory, you can observe two folders, named app and
framework. We created all the files under the framework directory in the previous
chapter. This time, we will focus on the application, which means we will be working
under the app directory most of the time.

Inside the app directory, you can find some directories named controllers,
models, templates, and views. As you can guess, these directories are used to store
controllers, models, templates, and views respectively.

You can also find the main.ts file inside the app directory. This file is the application's
entry point, but because we are going to use ES6 modules, we are not going to be able
to load this file in a web browser using a <script/> tag.

Chapter 10

[307]

Configuring the automated build
Just as we did in Chapter 2, Automating Your Development Workflow, we need to create
a configuration file to configure the desired Gulp tasks. So let's create a file named
gulpfile.js and import the required Gulp plugins:

var gulp = require("gulp"),
 browserify = require("browserify"),
 source = require("vinyl-source-stream"),
 buffer = require("vinyl-buffer"),
 tslint = require("gulp-tslint"),
 tsc = require("gulp-typescript"),
 karma = require("karma").server,
 coveralls = require('gulp-coveralls'),
 uglify = require("gulp-uglify"),
 runSequence = require("run-sequence"),
 header = require("gulp-header"),
 browserSync = require("browser-sync"),
 reload = browserSync.reload,
 pkg = require(__dirname + "/package.json");

We need to remember that before we can import one of these packages, we must first
install them using npm.

Once the plugins have been imported, we can proceed to write our first task, which is
used to check for some basic name convention rules and to avoid some bad practices
(the TypeScript files are under the source and tests directories):

gulp.task("lint", function() {
 return gulp.src([
 "source/**/**.ts",
 "test/**/**.test.ts"
])
 .pipe(tslint())
 .pipe(tslint.report("verbose"));
});

We also need another task to compile our TypeScript code into JavaScript code. As
we are working with decorators, we need to ensure that we are using TypeScript 1.5
or higher and that the experimentalDecorators compiler settings and target are
configured as in the following code snippet:

var tsProject = tsc.createProject({
 target : "es5",
 module : "commonjs",

Putting Everything Together

[308]

 experimentalDecorators: true,
 typescript: typescript
});

Once we have set up the compiler options, we can proceed to write some tasks.
The first one will compile the application code:

gulp.task("build", function() {
 return gulp.src("src/**/**.ts")
 .pipe(tsc(tsProject))
 .js.pipe(gulp.dest("build/source/"));
});

The second one will compile the unit test and integration test code. We need to use
a new project object to avoid potential runtime issues:

var tsTestProject = tsc.createProject({
 target : "es5",
 module : "commonjs",
 experimentalDecorators: true,
 typescript: typescript
});

gulp.task("build-test", function() {
 return gulp.src("test/**/*.test.ts")
 .pipe(tsc(tsTestProject))
 .js.pipe(gulp.dest("/build/test/"));
});

The two previous tasks should be enough to generate JavaScript, but because we
are using CommonJS modules, we need to write a task to bundle the CommonJS
modules into a package that can be loaded and executed in a web browser. As we
saw in Chapter 2, Automating Your Development Workflow, we will create a few Gulp
tasks that use Browserify for this purpose.

We need a task to bundle the application code:

gulp.task("bundle-source", function () {
 var b = browserify({
 standalone : 'TsStock',
 entries: "build/source/app/main.js",
 debug: true
 });

 return b.bundle()
 .pipe(source("bundle.js"))

Chapter 10

[309]

 .pipe(buffer())
 .pipe(gulp.dest("bundled/source/"));
});

We further need a task to bundle the application's unit tests:

gulp.task("bundle-unit-test", function () {
 var b = browserify({
 standalone : 'test',
 entries: "build/test/bdd.test.js",
 debug: true
 });

 return b.bundle()
 .pipe(source("bdd.test.js"))
 .pipe(buffer())
 .pipe(gulp.dest("bundled/test/"));
});

We need a final task to bundle the application's integration tests:

gulp.task("bundle-e2e-test", function () {
 var b = browserify({
 standalone : 'test',
 entries: "build/test/e2e.test.js",
 debug: true
 });

 return b.bundle()
 .pipe(source("e2e.test.js"))
 .pipe(buffer())
 .pipe(gulp.dest("bundled/e2e-test/"));
});

We will return to the gulpfile.js configuration file later in this chapter to add
some additional tasks that will be in charge of running the application and its
automated tests, as well as some optimizations.

Until now, we have been working on the configuration of an
automated development workflow. From now on, we will focus
on the application components. A component is composed of four
core elements: template, style rules, services, and the component's
logic. You will be able to find the style rules and templates in
the companion code samples, but we will mainly focus on the
TypeScript files (services and the component's logic) here.

Putting Everything Together

[310]

The application's layout
Let's create a new file, named index.html, under the application's root directory.
The following code snippet is an altered version of the real index.html page,
which is included with the companion source code:

 <ul class="nav navbar-nav">

 NASDAQ

 NYSE

 <div id="outlet">
 <!-- HTML GENERATED BY VIEWS GOES HERE -->
 </div>

As you can see in the preceding HTML snippet, the code has two important elements.
The first significant element is the URL of the two links. These links include the hash
character (#), and they will be processed by the application's router.

The second significant element is the element that uses outlet as ID. This node
is used by our framework as a container where the DOM of each new page is
dynamically generated and added to the page.

Implementing the root component
As you saw in the previous chapter, the root component of our custom MVC
framework is the App component. So, let's create a new file, named main.ts,
under the source/app directory.

We can access all the interfaces in the framework by adding a reference to the
source/interfaces.ts as follows:

/// <reference path="../framework/interfaces"/>

We can then access all the components in the framework by importing the
framework/framework.ts file:

import { App, View } from "../framework/framework";

Chapter 10

[311]

Our application will have two controllers. The files don't exist yet but we can
add the two import statements anyway:

import { MarketController } from
"./controllers/market_controller";
import { SymbolController } from
"./controllers/symbol_controller";

At this point, we need to create an object literal that implements the IAppSettings
interface. This object allows us to set some basic configuration, such as the name
of the default controller or action, or a global error handler. However, the most
important field in the object literal is the controller field, which must be an array of
IControllerDetails. If you need additional details about the IControllerDetails,
refer to the previous chapter.

var appSettings : IAppSettings = {
 isDebug : true,
 defaultController : "market",
 defaultAction : "nasdaq",
 controllers : [
 { controllerName : "market", controller : MarketController },
 { controllerName : "symbol", controller : SymbolController }
],
 onErrorHandler : function(e : Object) {
 alert("Sorry! there has been an error please check out the console
for more info!");
 console.log(e.toString());
 }
};

We can then create the App instance and invoke the initialize method to start
executing it:

var myApp = new App(appSettings);
myApp.initialize();

At this point, our code does not compile because we have not defined the
MarketController and SymbolController controllers yet. Let's define our
first controller.

Putting Everything Together

[312]

Implementing the market controller
Let's create a new file named market_controller.ts under the app/controllers
directory. We need to import the Controller and AppEvent entities from the
framework along with some entities that are not available yet (NyseModel,
NasdaqModel and MarketView).

/// <reference path="../../framework/interfaces"/>

import { Controller, AppEvent } from "../../framework/framework";
import { MarketView } from "../views/market_view";
import { NasdaqModel } from "../models/nasdaq_model";
import { NyseModel } from "../models/nyse_model";

In an application that uses our framework, a controller must extend the base
Controller class and implement the IController class:

class MarketController extends Controller implements IController {

We are not forced to declare the views and models used by the controller as its
properties, but it is recommended:

 private _marketView : IView;
 private _nasdaqModel : IModel;
 private _nyseModel : IModel;

It is also recommended that you set the value of all the controller's dependencies
inside the controller constructor:

 constructor(metiator : IMediator) {
 super(metiator);
 this._marketView = new MarketView(metiator);
 this._nasdaqModel = new NasdaqModel(metiator);
 this._nyseModel = new NyseModel(metiator);
 }

Instead of setting the value of all the controller's dependencies
inside the controller constructor, it would be even better to use an
IoC container to automatically inject the controller's dependencies
via its constructor. Though, implementing an IoC container is not
a simple task, it is beyond the scope of this book.

Chapter 10

[313]

We must implement the initialize method. The initialize method is the place
where a controller should do the following:

• Subscribe to one application event for each action available in the controller.
In this case, the controller has two actions (the nasdaq and nyse methods).

• Initialize views by invoking the View.initialize() method. In this case,
there is only one view (marketView).

• Initialize models by invoking the Model.initialize() method. In this case,
there are two models (nasdaqModel and nyseModel).
 public initialize() : void {

 // subscribe to controller action events
 this.subscribeToEvents([
 new AppEvent("app.controller.market.nasdaq", null, (e, args
 : string[]) => { this.nasdaq(args); }),
 new AppEvent("app.controller.market.nyse", null, (e, args :
 string[]) => { this.nyse(args); })
]);

 // initialize view and models events
 this._marketView.initialize();
 this._nasdaqModel.initialize();
 this._nyseModel.initialize();
 }

The dispose method is the opposite of the initialize method. If an event handler
was created in the initialize method, it should be destroyed in the dispose method.
The unsubscribeToEvents helper will unsubscribe all the events that were subscribed
using the subscribeToEvents helper:

 // dispose views/models and stop listening to controller actions
 public dispose() : void {

 // dispose the controller events
 this.unsubscribeToEvents();

 // dispose views and model events
 this._marketView.dispose();
 this._nasdaqModel.dispose();
 this._nyseModel.dispose();
 }

Putting Everything Together

[314]

As you saw in the previous chapter, the dispatcher uses the controller's initialize
and dispose methods to free some memory when it is not needed any more. If we
forget to dispose one of the views used by the controller in its dispose method,
the view could end up staying in memory forever.

The actions of a controller should not perform any kind of data manipulation
(models should be in charge of that) or user interface events management (views
should be in charge of that). Ideally, a controller's actions should only publish one
or more application events so the execution flow goes from the controller to one or
more models.

In the case of the nasdaq action, the controller publishes one of the events to which
the nasdaq model subscribed when the initialize method of NasdaqModel was
invoked:

 // display NASDAQ stocks
 public nasdaq(args : string[]) {
 this._metiator.publish(new AppEvent("app.model.nasdaq.change",
 null, null));
 }

In the case of the nyse action, the controller publishes one of the events to which
the nyse model was subscribed when the initialize method of NyseModel was
invoked:

 // display NYSE stocks
 public nyse(args : string[]) {
 this._metiator.publish(new AppEvent("app.model.nyse.change",
 null, null));
 }
}
export { MarketController };

Implementing the NASDAQ model
Let's create a new file named nasdaq_model.ts under the app/models directory.
We can then import the Model, AppEvent, and ModelSettings from our framework
and declare a new class named NasdaqModel. The new class must extend the base
Model class and implement the IModel interface.

We will also use the ModelSettings decorator to indicate the path of a web service
or static data file. In this case, we will use a static data file, which can be found in the
companion source code:

/// <reference path="../../framework/interfaces"/>

import { Model, AppEvent, ModelSettings } from "../../framework/

Chapter 10

[315]

framework";
@ModelSettings("./data/nasdaq.json")
class NasdaqModel extends Model implements IModel {

 constructor(metiator : IMediator) {
 super(metiator);
 }

The model will subscribe to the app.model.nasdaq.change event when the
initialize method is invoked. This is actually the event that the controller's
action published to pass the execution flow from the controller to the model:

 // listen to model events
 public initialize() {
 this.subscribeToEvents([
 new AppEvent("app.model.nasdaq.change", null, (e, args) => {
 this.onChange(args); })
]);
 }

Just like in the previous controller, the unsubscribeToEvents helper will unsubscribe
all the events that were subscribed using the subscribeToEvents helper:

 // dispose model events
 public dispose() {
 this.unsubscribeToEvents();
 }

This is the event handler of the app.model.nasdaq.change event. The event handler
uses the getAsync method to load the data from the service URL that we previously
specified using the ModelSettings decorator. The getAsync method is inherited
from the base Model class, which we implemented in the previous chapter.

The getAsync method returns a promise; if the promise is fulfilled, the data is
formatted and then passed to a view:

 private onChange(args) : void {
 this.getAsync("json", args)
 .then((data) => {

 // format data
 var stocks = { items : data, market : "NASDAQ" };

 // pass controll to the market view
 this.triggerEvent(new AppEvent("app.view.market.render",
 stocks, null));
 })

Putting Everything Together

[316]

 .catch((e) => {
 // pass control to the global error handler
 this.triggerEvent(new AppEvent("app.error", e, null));
 });
 }
}
export { NasdaqModel };

Implementing the NYSE model
Let's create a new file named nyse_model.ts under the app/models directory.
The NyseModel class is almost identical to the NasdaqModel class, so we will not
go into too much detail:

@ModelSettings("./data/nyse.json")
class NyseModel extends Model implements IModel {
 // ...
}
export { NyseModel };

All we need to do is copy the contents of the nasdaq_model.ts file into the
nyse_model.ts file and replace (case sensitive) nasdaq with nyse.

This kind of code duplication is known as a code smell. A code smell
indicates that something is wrong and we need to refactor (improve)
it. We could avoid a lot of code duplication by using Generic types.
However generic types were not used here because we though that
showcasing the usage of decorators would be more valuable for the
readers of this book.

Implementing the market view
Let's create a new file named market_view.ts under the app/views directory.
We can then import the AppEvent, ViewSettings, and Route components from
our framework and declare a new class named MarketView. The new class must
extend the base View class and implement the IView interface.

We will also use the ViewSettings decorator to indicate the path, a Handlebars
template, and a selector, which is used to find the DOM element that will be used
as the parent node of the view's HTML:

/// <reference path="../../framework/interfaces"/>

import { View, AppEvent,ViewSettings, Route } from "../../framework/
framework";

Chapter 10

[317]

@ViewSettings("./source/app/templates/market.hbs", "#outlet")
class MarketView extends View implements IView {

 constructor(metiator : IMediator) {
 super(metiator);
 }

This view is subscribed to the app.view.market.render event and its handler
invokes the renderAsync method, which has been inherited from the base view
class. This method returns a promise, which is fulfilled if the template passed to
the ViewSettings decorator has been loaded and compiled successfully.

For the promise to be fulfilled, the view must be successfully rendered and appended
to the DOM element that matches the selector passed to the ViewSettings decorator:

 initialize() : void {
 this.subscribeToEvents([
 new AppEvent("app.view.market.render", null, (e, args : any)
 => {
 this.renderAsync(args)
 .then((model) => {
 // set DOM events
 this.bindDomEvents(model);
 })
 .catch((e) => {
 // pass control to the global error handler
 this.triggerEvent(new AppEvent("app.error", e,
 null));
 });
 }),
]);
 }

Just like in the previous controller and model, the unsubscribeToEvents helper will
unsubscribe all the events that were subscribed to using the subscribeToEvents
helper:

 public dispose() : void {
 this.unbindDomEvents();
 this.unsubscribeToEvents();
 }

Putting Everything Together

[318]

Views are responsible for the management of user events. The components in
our framework use the initialize method to subscribe to application events,
and the dispose method to unsubscribe to application events. In the case of user
events, we will use the bindDomEvents method to set the user events, and the
unbindDomEvents method to dispose of them:

 // initializes DOM events
 protected bindDomEvents(model : any) {
 var scope = $(this._container);
 // handle click on "quote" button
 $(".getQuote").on('click', scope, (e) => {
 var symbol = $(e.currentTarget).data('symbol');
 this.getStockQuote(symbol);
 });

 // make table sortable and searchable
 $(scope).find('table').DataTable();
 }

 // disposes DOM events
 protected unbindDomEvents() {
 var scope = this._container;
 $(".getQuote").off('click', scope);
 var table = $(scope).find('table').DataTable();
 table.destroy();
 }

One of the user events observes clicks on the quote buttons. When the event is
triggered, the following event handler is invoked:

 private getStockQuote(symbol : string) {
 // navigate to route using route event
 this.triggerEvent(new AppEvent(
 "app.route",
 new Route("symbol", "quote", [symbol]),
 null));
 }
}

As you can see, this event handler creates a new route and publishes an
app.route event. This will cause the router to navigate to the quote action
in the SymbolController: export { MarketView };

Chapter 10

[319]

Implementing the market template
The template loaded and compiled by MarketView looks as follows:

<div class="panel panel-default fadeInUp animated">
 <div class="panel-body">
 <h2>{{market}}</h2>
 <table class="table table-responsible table-condensed">
 <thead>
 <tr>
 <th>Symbol</th>
 <th>Name</th>
 <th>Last Sale</th>
 <th>Market Capital</th>
 <th>IPO year</th>
 <th>Sector</th>
 <th>industry</th>
 <th>Quote</th>
 </tr>
 </thead>
 <tbody>
 {{#each items}}
 <tr>
 <td><span class="label label-
 default">{{Symbol}}</td>
 <td>{{{Name}}}</td>
 <td>{{LastSale}}</td>
 <td>{{MarketCap}}</td>
 <td>{{IPOyear}}</td>
 <td>{{Sector}}</td>
 <td>{{industry}}</td>
 <td>
 <button class="btn btn-primary btn-sm getQuote"
 data-symbol="{{Symbol}}">
 <span class="glyphicon glyphicon-stats" aria-
 hidden="true">
 Quote
 </button>
 </td>
 </tr>
 {{/each}}
 </tbody>
 </table>
 </div>
</div>

Putting Everything Together

[320]

Implementing the symbol controller
Let's create a new file named symbol_controller.ts under the app/controllers
directory. This file will contain a new controller named SymbolController. The
implementation of this controller is largely similar to the implementation of the
MarketController controller, so we are going to avoid going into too much detail.

The main difference between this controller and the previous controller is that the
new controller uses two new models (QuoteModel and ChartModel) and two new
views (SymbolView and ChartView):

/// <reference path="../../framework/interfaces"/>

import { Controller, AppEvent } from "../../framework/framework";
import { QuoteModel } from "../models/quote_model";
import { ChartModel } from "../models/chart_model";
import { SymbolView } from "../views/symbol_view";
import { ChartView } from "../views/chart_view";

class SymbolController extends Controller implements IController {
 private _quoteModel : IModel;
 private _chartModel : IModel;
 private _symbolView : IView;
 private _chartView : IView;

 constructor(metiator : IMediator) {
 super(metiator);
 this._quoteModel = new QuoteModel(metiator);
 this._chartModel = new ChartModel(metiator);
 this._symbolView = new SymbolView(metiator);
 this._chartView = new ChartView(metiator);
 }

 // initialize views/ models and strat listening to controller
 actions
 public initialize() : void {

 // subscribe to controller action events
 this.subscribeToEvents([
 new AppEvent("app.controller.symbol.quote", null, (e, symbol
 : string) => { this.quote(symbol); })
]);

Chapter 10

[321]

 // initialize view and models events
 this._quoteModel.initialize();
 this._chartModel.initialize();
 this._symbolView.initialize();
 this._chartView.initialize();
 }

 // dispose views/models and stop listening to controller actions
 public dispose() : void {

 // dispose the controller events
 this.unsubscribeToEvents();

 // dispose views and model events
 this._symbolView.dispose();
 this._quoteModel.dispose();
 this._chartView.dispose();
 this._chartModel.dispose();
 }

It is also important to notice that the quote action passes the control to the
QuoteModel model:

 public quote(symbol : string) {
 this.triggerEvent(new AppEvent("app.model.quote.change",
 symbol, null));
 }
}
export { SymbolController };

Implementing the quote model
Let's create a new file named quote_model.ts under the app/models directory.
This is the third model that we have implemented so far. This means that you
should be familiar with the basics already, but there are some minor additions
in this particular model. The first thing that you will notice is that the web service
is no longer a static file:

/// <reference path="../../framework/interfaces"/>

import { Model, AppEvent, ModelSettings } from "../../framework/
framework";

Putting Everything Together

[322]

@ModelSettings("http://dev.markitondemand.com/Api/v2/Quote/jsonp")
class QuoteModel extends Model implements IModel {

 constructor(metiator : IMediator) {
 super(metiator);
 }

 // listen to model events
 public initialize() {
 this.subscribeToEvents([
 new AppEvent("app.model.quote.change", null, (e, args) => {
 this.onChange(args); })
]);
 }

 // dispose model events
 public dispose() {
 this.unsubscribeToEvents();
 }

The second thing that you should notice is that the onChange function invokes a new
function (formatModel) when the promise returned by getAsync is fulfilled:

 private onChange(args) : void {
 // format args
 var s = { symbol : args };
 this.getAsync("jsonp", s)
 .then((data) => {

 // format data
 var quote = this.formatModel(data);

 // pass controll to the market view
 this.triggerEvent(new AppEvent("app.view.symbol.render",
 quote, null));
 })
 .catch((e) => {
 // pass control to the global error handler
 this.triggerEvent(new AppEvent("app.error", e, null));
 });
 }

Chapter 10

[323]

The new function just formats the response of the web services to be displayed in
a user-friendly manner. We could have done this formatting inside the promise
fulfillment callback. Using a separate function makes the code significantly cleaner.

 private formatModel (data) {
 data.Change = data.Change.toFixed(2);
 data.ChangePercent = data.ChangePercent.toFixed(2);
 data.Timestamp = new
 Date(data.Timestamp).toLocaleDateString();
 data.MarketCap = (data.MarketCap / 1000000).toFixed(2) + "M.";
 data.ChangePercentYTD = data.ChangePercentYTD.toFixed(2);
 return { quote : data };
 }
}
export { QuoteModel };

Implementing the symbol view
Let's create a new file named symbol_view.ts under the app/views directory.
The SymbolView view receives the stock data formatted by the QuoteModel model
through the mediator using the app.view.symbol.render event:

/// <reference path="../../framework/interfaces"/>

import { View, AppEvent,ViewSettings } from "../../framework/
framework";

@ViewSettings("./source/app/templates/symbol.hbs", "#outlet")
class SymbolView extends View implements IView {

 constructor(metiator : IMediator) {
 super(metiator);
 }

This view is just like MarketView; it subscribes to some events using the
initialize method, and later disposes of those events using the dispose
method. The SymbolView view can also initialize and dispose of user events
using the bindDomEvents and unbindDomEvents methods.

Putting Everything Together

[324]

However, there is one significant difference between SymbolView and MarketView.
After the promise returned by renderAsync has been fulfilled and the user events
have been initialized, the execution flow is passed to another model via the app.
model.chart.change event. At this point, the stock quote screen is visible but it is
missing the chart.

 initialize() : void {
 this.subscribeToEvents([
 new AppEvent("app.view.symbol.render", null, (e, model :
 any) => {
 this.renderAsync(model)
 .then((model) => {
 // set DOM events
 this.bindDomEvents(model);

 // pass control to chart View
 this.triggerEvent(new
 AppEvent("app.model.chart.change", model.quote.Symbol,
 null));
 })
 .catch((e) => {
 this.triggerEvent(new AppEvent("app.error", e,
 null));
 });
 }),
]);
 }

 public dispose() : void {
 this.unbindDomEvents();
 this.unsubscribeToEvents();
 }

 // initializes DOM events
 protected bindDomEvents(model : any) {
 var scope = $(this._container);
 // set DOM events here
 }

 // disposes DOM events
 protected unbindDomEvents() {
 var scope = this._container;
 // kill DOM events here
 }
}
export { SymbolView };

Chapter 10

[325]

Implementing the chart model
Let's create a new file named chart_model.ts under the app/models directory.
This is the last model that we will implement:

/// <reference path="../../framework/interfaces"/>

import { Model, AppEvent, ModelSettings } from "../../framework/
framework";

@ModelSettings("http://dev.markitondemand.com/Api/v2/InteractiveChart/
jsonp")
class ChartModel extends Model implements IModel {

 constructor(metiator : IMediator) {
 super(metiator);
 }

 // listen to model events
 public initialize() {
 this.subscribeToEvents([
 new AppEvent("app.model.chart.change", null, (e, args) => {
 this.onChange(args); })
]);
 }

 // dispose model events
 public dispose() {
 this.unsubscribeToEvents();
 }

This time, we will need to format both the request and the response. We need to
encode the request parameter because the web service requires a group of settings
that cannot be sent as parameters in the URL without encoding it first.

The onChange method uses the browser's JSON.stringify function to transform
the required web service arguments (a JSON object) into a string. The string is then
encoded using the browser's encodeURIComponent function so it can be used as a
parameter in the URL.

Putting Everything Together

[326]

The response is formatted using a method named formatModel:

 private onChange(args) : void {

 // format args (more info at http://dev.markitondemand.com/)
 var p = {
 Normalized : false,
 NumberOfDays : 365,
 DataPeriod : "Day",
 Elements :[
 { Symbol : args , Type : "price", Params :["ohlc"] }
]
 };
 var queryString = "parameters=" +
 encodeURIComponent(JSON.stringify(p));

 this.getAsync("jsonp", queryString)
 .then((data) => {

 // format data
 var chartData = this.formatModel(args, data);

 // pass controll to the market view
 this.triggerEvent(new AppEvent("app.view.chart.render",
 chartData, null));
 })
 .catch((e) => {
 // pass control to the global error handler
 this.triggerEvent(new AppEvent("app.error", e, null));
 });
 }

This function is used to format the response from dev.markitondemand.com,
so it can be used by Highcharts with ease. Highcharts is a library that allow us to
render graphs on the client side:

 private formatModel(symbol, data) {
 // more info at http://dev.markitondemand.com/
 // and http://www.highcharts.com/demo/line-time-series
 var chartData = {
 title : symbol,
 series : []
 };

Chapter 10

[327]

 var series = [
 { name : "open", data :
 data.Elements[0].DataSeries.open.values },
 { name : "close", data :
 data.Elements[0].DataSeries.close.values },
 { name : "high", data :
 data.Elements[0].DataSeries.high.values },
 { name : "low", data :
 data.Elements[0].DataSeries.low.values }
];

 for(var i = 0; i < series.length; i++) {
 var serie = {
 name: series[i].name,
 data: []
 }

 for(var j = 0; j < series[i].data.length; j++){
 var val = series[i].data[j];
 var d = new Date(data.Dates[j]).getTime();
 serie.data.push([d, val]);
 }

 chartData.series.push(serie);
 }
 return chartData;
 }
}
export { ChartModel };

Implementing the chart view
Let's create a new file named chart_view.ts under the app/views directory. This
is the last view that we will implement. This view is almost identical to the previous
ones, but there is one significant difference. As the chart is rendered by Highcharts
and not Handlebars, we will avoid passing a template URL to the ViewSettings
decorator:

/// <reference path="../../framework/interfaces"/>

import { View, AppEvent,ViewSettings } from "../../framework/
framework";

Putting Everything Together

[328]

@ViewSettings(null, "#chart_container")
class ChartView extends View implements IView {

 constructor(metiator : IMediator) {
 super(metiator);
 }

The ChartView view is subscribed to the app.view.chart.render event. The event
handler is invoked when the ChartModel model has been loaded and formatted,
but since we don't need to render a Handlebars template, we will not invoke the
renderAsync method here (as we did in all the previous views), and we will invoke
a method named renderChart instead:

 initialize() : void {
 this.subscribeToEvents([
 new AppEvent("app.view.chart.render", null, (e, model : any) =>
{
 this.renderChart(model);
 this.bindDomEvents(model);
 }),
]);
 }

 public dispose() : void {
 this.unbindDomEvents();
 this.unsubscribeToEvents();
 }

 // initializes DOM events
 protected bindDomEvents(model : any) {
 var scope = $(this._container);
 // set DOM events here
 }

 // disposes DOM events
 protected unbindDomEvents() {
 var scope = this._container;
 // kill DOM events here
 }

Chapter 10

[329]

The renderChart method uses the Highcharts API (http://api.highcharts.
com/highcharts) to transform the data returned by ChartModel into a nice looking
interactive chart:

 private renderChart(model) {
 $(this._container).highcharts({
 chart: {
 zoomType: 'x'
 },
 title: {
 text: model.title
 },
 subtitle: {
 text : 'Click and drag in the plot area to zoom in'
 },
 xAxis: {
 type: 'datetime'
 },
 yAxis: {
 title: {
 text: 'Price'
 }
 },
 legend: {
 enabled: true
 },
 tooltip: {
 shared: true,
 crosshairs: true
 },
 plotOptions: {
 area: {
 marker: {
 radius: 0
 },
 lineWidth: 0.1,
 threshold: null
 }
 },
 series: model.series
 });
 }
}
export { ChartView };

http://api.highcharts.com/highcharts
http://api.highcharts.com/highcharts

Putting Everything Together

[330]

Testing the application
We can test this application using the same set of tools that we used in the previous
chapters of this book. As you already know, in order to run our unit test, we need to
create a Gulp task like the following one:

gulp.task("run-unit-test", function(cb) {
 karma.start({
 configFile : "karma.conf.js",
 singleRun: true
 }, cb);
});

We have used the Karma test runner, and we need to set its configuration using
the karma.conf.js file. The karma.conf.js file is almost identical to the one that
we used in Chapter 7, Application Testing, and will not be included here for the sake
of brevity.

We also need a task to run some end-to-end tests:

gulp.task('run-e2e-test', function() {
 return gulp.src('')
 .pipe(nightwatch({
 configFile: 'nightwatch.json'
 }));
});

The nightwatch.json file is almost identical the one that we used in Chapter 7,
Application Testing, and thus will not be included here.

Refer to the companion source code to see the content of nightwatch.json and the
karma.conf.js file, as well as some examples of unit tests and E2E tests.

Preparing the application for a
production release
Now that the application has been implemented and tested, we can prepare it for
release in a production environment.

Chapter 10

[331]

In this section, we will implement two Gulp tasks. The first task is used to compress
the output JavaScript code. Compressing the JavaScript code will improve both the
loading and execution performance of our application:

gulp.task("compress", function() {
 return gulp.src("bundled/source/bundle.js")
 .pipe(uglify({ preserveComments : false }))
 .pipe(gulp.dest("dist/"))
});

The second Gulp task that we will implement is used to add a copyright header.
The task uses some of the fields from the npm configuration file (package.json) to
generate a string, which contains the copyright details. The string is then added to
the top of the compressed JavaScript file that was generated by the previous task:

gulp.task("header", function() {

 var pkg = require("package.json");

 var banner = ["/**",
 " * <%= pkg.name %> v.<%= pkg.version %> - <%= pkg.description
 %>",
 " * Copyright (c) 2015 <%= pkg.author %>",
 " * <%= pkg.license %>",
 " * <%= pkg.homepage %>",
 " */",
 ""].join("\n");

 return gulp.src("dist/bundle.js")
 .pipe(header(banner, { pkg : pkg }))
 .pipe(gulp.dest("dist/"));
});

We could also create some extra Gulp tasks to improve the performance of our
application further. For example, we could create a task to generate a cache manifest
(a simple text file that lists the resources the browser should cache for offline access)
to implement client-side caching.

Putting Everything Together

[332]

Summary
In this chapter, we created an MVC application that allowed us to find out how
the NASDAQ and NYSE stocks were doing on a particular day. This application
is a single-page web application, and its architecture makes its components easy
to extend, reuse, maintain, and test.

The application showcases many of the concepts that we covered in the previous
chapters. We created an automated build, and we used many functions, classes,
modules, and other core language features. We also used modules and worked with
some asynchronous functions, and we used some decorators. The automated build
performs some tasks that will help us to improve the application performance and
ensures that it works correctly.

This application is not a very large JavaScript application. However, the application is
large enough to showcase the ways in which TypeScript can help us develop complex
applications that are ready to grow and adapt to changes with ease.

I hope you enjoyed this book and feel eager to learn more about TypeScript.

If you are up for a challenge and you would like to reinforce your TypeScript skills,
try the following:

You can try to achieve 100 percent test coverage in the application that we have
developed over the last two chapters. You can improve our custom SPA the
framework and introduce features such as using an IoC container or using a
unidirectional dataflow.

You can also visit the TodoMVC website (http://todomvc.com/) to find examples
of integration between TypeScript and popular MV* frameworks, such as Ember.js or
Backbone.js, to learn how to use a production-ready SPA framework.

http://todomvc.com/

Module 2

TypeScript Design Patterns

Boost your development efficiency by learning about design patterns in TypeScript

Chapter 1: Tools and Frameworks 7

Installing the prerequisites 7
Installing Node.js 7
Installing TypeScript compiler 8

Choosing a handy editor 9
Visual Studio Code 9

Configuring Visual Studio Code 10
Opening a folder as a workspace 11
Configuring a minimum build task 12

Sublime Text with TypeScript plugin 13
Installing Package Control 14
Installing the TypeScript plugin 14

Other editor or IDE options 14
Atom with the TypeScript plugin 15
Visual Studio 15
WebStorm 16

Getting your hands on the workflow 16
Configuring a TypeScript project 16

Introduction to tsconfig.json 17
Compiler options 18

target 18
module 18
declaration 18
sourceMap 19
jsx 19
noEmitOnError 19
noEmitHelpers 19
noImplicitAny 19
experimentalDecorators* 19
emitDecoratorMetadata* 20
outDir 20
outFile 20
rootDir 20
preserveConstEnums 21
strictNullChecks 21
stripInternal* 21
isolatedModules 21

Adding source map support 21
Downloading declarations using typings 22

Installing typings 22

Module 2: TypeScript Design Patterns

[ii]

Downloading declaration files 23
Option “save” 24

Testing with Mocha and Istanbul 24
Mocha and Chai 24

Writing tests in JavaScript 25
Writing tests in TypeScript 25

Getting coverage information with Istanbul 27
Testing in real browsers with Karma 28

Creating a browser project 28
Installing Karma 30
Configuring and starting Karma 30

Integrating commands with npm 31
Why not other fancy build tools? 31

Summary 32

Chapter 2: The Challenge of Increasing Complexity 33

Implementing the basics 34
Creating the code base 34
Defining the initial structure of the data to be synchronized 35
Getting data by comparing timestamps 35
Two-way synchronizing 36
Things that went wrong while implementing the basics 37

Passing a data store from the server to the client does not make sense 37
Making the relationships clear 38

Growing features 39
Synchronizing multiple items 39

Simply replacing data type with an array 39
Server-centered synchronization 39

Synchronizing from the server to the client 40
Synchronizing from client to server 44

Synchronizing multiple types of data 49
Supporting multiple clients with incremental data 50

Updating the client side 51
Updating server side 55

Supporting more conflict merging 57
New data structures 57
Updating client side 58
Updating the server side 60

Things that go wrong while implementing everything 60
Piling up similar yet parallel processes 61
Data stores that are tremendously simplified 61

Getting things right 62
Finding abstraction 62
Implementing strategies 63

[iii]

Wrapping stores 64
Summary 65

Chapter 3: Creational Design Patterns 66

Factory method 68
Participants 69
Pattern scope 69
Implementation 69
Consequences 72

Abstract Factory 73
Participants 74
Pattern scope 75
Implementation 75
Consequences 79

Builder 79
Participants 80
Pattern scope 81
Implementation 81
Consequences 86

Prototype 86
Singleton 87

Basic implementations 87
Conditional singletons 89

Summary 89

Chapter 4: Structural Design Patterns 90

Composite Pattern 90
Participants 92
Pattern scope 92
Implementation 92
Consequences 94

Decorator Pattern 95
Participants 96
Pattern scope 97
Implementation 97

Classical decorators 97
Decorators with ES-next syntax 100

Consequences 101
Adapter Pattern 101

Participants 103
Pattern scope 103

[iv]

Implementation 103
Consequences 106

Bridge Pattern 106
Participants 106
Pattern scope 107
Implementation 107
Consequences 109

Façade Pattern 110
Participants 111
Pattern scope 112
Implementation 112
Consequences 114

Flyweight Pattern 114
Participants 115
Pattern scope 116
Implementation 116
Consequences 118

Proxy Pattern 118
Participants 119
Pattern scope 120
Implementation 120
Consequences 123

Summary 123

Chapter 5: Behavioral Design Patterns 124

Chain of Responsibility Pattern 124
Participants 127
Pattern scope 128
Implementation 128
Consequences 130

Command Pattern 130
Participants 132
Pattern scope 132
Implementation 133
Consequences 134

Memento Pattern 135
Participants 136
Pattern scope 136
Implementation 136
Consequences 138

[v]

Iterator Pattern 138
Participants 139
Pattern scope 139
Implementation 139

Simple array iterator 140
ES6 iterator 141

Consequences 143
Mediator Pattern 143

Participants 144
Pattern scope 145
Implementation 145
Consequences 147

Summary 148

Chapter 6: Behavioral Design Patterns: Continuous 149

Strategy Pattern 150
Participants 151
Pattern scope 152
Implementation 152
Consequences 154

State Pattern 154
Participants 155
Pattern scope 156
Implementation 156
Consequences 158

Template Method Pattern 158
Participants 159
Pattern scope 160
Implementation 160
Consequences 162

Observer Pattern 162
Participants 166
Pattern scope 167
Implementation 167
Consequences 169

Visitor Pattern 170
Participants 172
Pattern scope 173
Implementation 173
Consequences 176

[vi]

Summary 176

Chapter 7: Patterns and Architectures in JavaScript and TypeScript 178

Promise-based web architecture 178
Promisifying existing modules or libraries 180
Views and controllers in Express 181
Abstraction of responses 184
Abstraction of permissions 186
Expected errors 187

Defining and throwing expected errors 188
Transforming errors 188

Modularizing project 189
Asynchronous patterns 191

Writing predictable code 191
Asynchronous creational patterns 193
Asynchronous middleware and hooks 194
Event-based stream parser 195

Summary 197

Chapter 8: SOLID Principles 198

Single responsibility principle 199
Example 199
Choosing an axis 200

Open-closed principle 201
Example 201
Abstraction in JavaScript and TypeScript 202
Refactor earlier 203

Liskov substitution principle 203
Example 204
The constraints of substitution 205

Interface segregation principle 205
Example 205
Proper granularity 207

Dependency inversion principle 207
Example 207
Separating layers 207

Summary 208

Chapter 9: The Road to Enterprise Application 209

Creating an application 210
Decision between SPA and “normal” web applications 210

[vii]

Taking team collaboration into consideration 211
Building and testing projects 211

Static assets packaging with webpack 212
Introduction to webpack 212
Bundling JavaScript 212
Loading TypeScript 214
Splitting code 216
Loading other static assets 217

Adding TSLint to projects 217
Integrating webpack and tslint command with npm scripts 218

Version control 218
Git flow 219

Main branches 220
Supporting branches 220

Feature branches 220
Release branches 221
Hotfix branches 222

Summary of Git flow 222
Pull request based code review 223

Configuring branch permissions 223
Comments and modifications before merge 223

Testing before commits 224
Git hooks 224
Adding pre-commit hook automatically 224

Continuous integration 225
Connecting GitHub repository with Travis-CI 225

Deployment automation 226
Passive deployment based on Git server side hooks 227
Proactive deployment based on timers or notifications 228

Summary 228

Index 230

1
Tools and Frameworks

We could always use the help of real code to explain the design patterns we'll be discussing.
In this chapter, we'll have a brief introduction to the tools and frameworks that you might
need if you want to have some practice with complete working implementations of the
contents of this book.

In this chapter, we'll cover the following topics:

Installing Node.js and TypeScript compiler
Popular editors or IDEs for TypeScript
Configuring a TypeScript project
A basic workflow that you might need to play with your own implementations of
the design patterns in this book

Installing the prerequisites
The contents of this chapter are expected to work on all major and up-to-date desktop
operating systems, including Windows, OS X, and Linux.

As Node.js is widely used as a runtime for server applications as well as frontend build
tools, we are going to make it the main playground of code in this book.

TypeScript compiler, on the other hand, is the tool that compiles TypeScript source files into
plain JavaScript. It's available on multiple platforms and runtimes, and in this book we'll be
using the Node.js version.

Tools and Frameworks

[8]

Installing Node.js
Installing Node.js should be easy enough. But there's something we could do to minimize
incompatibility over time and across different environments:

Version: We'll be using Node.js 6 with npm 3 built-in in this book. (The major
version of Node.js may increase rapidly over time, but we can expect minimum
breaking changes directly related to our contents. Feel free to try a newer version
if it's available.)
Path: If you are installing Node.js without a package manager, make sure the
environment variable PATH is properly configured.

Open a console (a command prompt or terminal, depending on your operating system) and
make sure Node.js as well as the built-in package manager npm is working:

$ node -v
6.x.x
$ npm -v
3.x.x

Installing TypeScript compiler
TypeScript compiler for Node.js is published as an npm package with command line
interface. To install the compiler, we can simply use the npm install command:

$ npm install typescript -g

Option -g means a global installation, so that tsc will be available as a command. Now
let's make sure the compiler works:

$ tsc -v
Version 2.x.x

You may get a rough list of the options your TypeScript compiler provides
with switch -h. Taking a look into these options may help you discover
some useful features.

Tools and Frameworks

[9]

Before choosing an editor, let's print out the legendary phrase:

Save the following code to file test.ts:1.

 function hello(name: string): void {
 console.log(`hello, ${name}!`);
 }

 hello('world');

Change the working directory of your console to the folder containing the created2.
file, and compile it with tsc:

 $ tsc test.ts

With luck, you should have the compiled JavaScript file as test.js. Execute it3.
with Node.js to get the ceremony done:

 $ node test.js
 hello, world!

Here we go, on the road to retire your CTO.

Choosing a handy editor
A compiler without a good editor won't be enough (if you are not a believer of Notepad).
Thanks to the efforts made by the TypeScript community, there are plenty of great editors
and IDEs ready for TypeScript development.

However, the choice of an editor could be much about personal preferences. In this section,
we'll talk about the installation and configuration of Visual Studio Code and Sublime Text.
But other popular editors or IDEs for TypeScript will also be listed with brief introductions.

Visual Studio Code
Visual Studio Code is a free lightweight editor written in TypeScript. And it's an open
source and cross-platform editor that already has TypeScript support built-in.

You can download Visual Studio Code from h t t p s : / / c o d e . v i s u a l s t u d i o . c o m / and the
installation will probably take no more than 1 minute.

https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/

Tools and Frameworks

[10]

The following screenshot shows the debugging interface of Visual Studio Code with a
TypeScript source file:

Configuring Visual Studio Code
As Code already has TypeScript support built-in, extra configurations are actually not
required. But if the version of TypeScript compiler you use to compile the source code
differs from what Code has built-in, it could result in unconformity between editing and
compiling.

Tools and Frameworks

[11]

To stay away from the undesired issues this would bring, we need to configure TypeScript
SDK used by Visual Studio Code manually:

Press F1, type Open User Settings , and enter. Visual Studio Code will open1.
the settings JSON file by the side of a read-only JSON file containing all the
default settings.
Add the field typescript.tsdk with the path of the lib folder under the2.
TypeScript package we previously installed:

1. Execute the command npm root -g in your console to get the root of
global Node.js modules.

2. Append the root path with /typescript/lib as the SDK path.

You can also have a TypeScript package installed locally with the project,
and use the local TypeScript lib path for Visual Studio Code. (You will
need to use the locally installed version for compiling as well.)

Opening a folder as a workspace
Visual Studio Code is a file- and folder-based editor, which means you can open a file or a
folder and start work.

But you still need to properly configure the project to take the best advantage of Code. For
TypeScript, the project file is tsconfig.json, which contains the description of source files
and compiler options. Know little about tsconfig.json? Don't worry, we'll come to that
later.

Here are some features of Visual Studio Code you might be interested in:

Tasks: Basic task integration. You can build your project without leaving the
editor.
Debugging: Node.js debugging with source map support, which means you can
debug Node.js applications written in TypeScript.
Git: Basic Git integration. This makes comparing and committing changes easier.

Tools and Frameworks

[12]

Configuring a minimum build task
The default key binding for a build task is Ctrl + Shift + B or cmd + Shift + B on OS X. By
pressing these keys, you will get a prompt notifying you that no task runner has been
configured. Click Configure Task Runner and then select a TypeScript build task template
(either with or without the watch mode enabled). A tasks.json file under the .vscode
folder will be created automatically with content similar to the following:

{
 "version": "0.1.0",
 "command": "tsc",
 "isShellCommand": true,
 "args": ["-w", "-p", "."],
 "showOutput": "silent",
 "isWatching": true,
 "problemMatcher": "$tsc-watch"
}

Now create a test.ts file with some hello-world code and run the build task again. You
can either press the shortcut we mentioned before or press Ctrl/Cmd + P, type task tsc ,
and enter.

If you were doing things correctly, you should be seeing the output test.js by the side of
test.ts.

There are some useful configurations for tasking that can't be covered. You may find more
information on the website of Visual Studio Code: h t t p s : / / c o d e . v i s u a l s t u d i o . c o m /.

From my perspective, Visual Studio Code delivers the best TypeScript development
experience in the class of code editors. But if you are not a fan of it, TypeScript is also
available with official support for Sublime Text.

https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/

Tools and Frameworks

[13]

Sublime Text with TypeScript plugin
Sublime Text is another popular lightweight editor around the field with amazing
performance.

The following image shows how TypeScript IntelliSense works in Sublime Text:

The TypeScript team has officially built a plugin for Sublime Text (version 3 preferred), and
you can find a detailed introduction, including useful shortcuts, in their GitHub repository
here: h t t p s : / / g i t h u b . c o m / M i c r o s o f t / T y p e S c r i p t - S u b l i m e - P l u g i n.

There are still some issues with the TypeScript plugin for Sublime Text. It
would be nice to know about them before you start writing TypeScript
with Sublime Text.

https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin

Tools and Frameworks

[14]

Installing Package Control
Package Control is de facto package manager for Sublime Text, with which we'll install the
TypeScript plugin.

If you don't have Package Control installed, perform the following steps:

Click Preferences > Browse Packages…, it opens the Sublime Text packages1.
folder.
Browse up to the parent folder and then into the Install Packages folder, and2.
download the file below into this folder: h t t p s : / / p a c k a g e c o n t r o l . i o / P a c k a g e %
2 C o n t r o l . s u b l i m e - p a c k a g e

Restart Sublime Text and you should now have a working package manager.3.

Now we are only one step away from IntelliSense and refactoring with Sublime Text.

Installing the TypeScript plugin
With the help of Package Control, it's easy to install a plugin:

Open the Sublime Text editor; press Ctrl + Shift + P for Windows and Linux or1.
Cmd + Shift + P for OS X.
Type Install Package in the command palette, select Package Control: Install2.
Package and wait for it to load the plugin repositories.
Type TypeScript and select to install the official plugin.3.

Now we have TypeScript ready for Sublime Text, cheers!

Like Visual Studio Code, unmatched TypeScript versions between the plugin and compiler
could lead to problems. To fix this, you can add the field "typescript_tsdk" with a path
to the TypeScript lib in the Settings – User file.

Other editor or IDE options
Visual Studio Code and Sublime Text are recommended due to their ease of use and
popularity respectively. But there are many great tools from the editor class to full-featured
IDE.

https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package
https://packagecontrol.io/Package%20Control.sublime-package

Tools and Frameworks

[15]

Though we're not going through the setup and configuration of those tools, you might want
to try them out yourself, especially if you are already working with some of them.

However, the configuration for different editors and IDEs (especially IDEs) could differ. It is
recommended to use Visual Studio Code or Sublime Text for going through the workflow
and examples in this book.

Atom with the TypeScript plugin
Atom is a cross-platform editor created by GitHub. It has a notable community with plenty
of useful plugins, including atom-typescript. atom-typescript is the result of the
hard work of Basarat Ali Syed, and it's used by my team before Visual Studio Code. It has
many handy features that Visual Studio Code does not have yet, such as module path
suggestion, compile on save, and so on.

Like Visual Studio Code, Atom is also an editor based on web technologies. Actually, the
shell used by Visual Studio Code is exactly what's used by Atom: Electron, another popular
project by GitHub, for building cross-platform desktop applications.

Atom is proud of being hackable, which means you can customize your own Atom editor
pretty much as you want.

Then you may be wondering why we turned to Visual Studio Code. The main reason is that
Visual Studio Code is being backed by the same company that develops TypeScript, and
another reason might be the performance issue with Atom.

But anyway, Atom could be a great choice for a start.

Visual Studio
Visual Studio is one of the best IDEs in the market. And yet it has, of course, official
TypeScript support.

Since Visual Studio 2013, a community version is provided for free to individual
developers, small companies, and open source projects.

If you are looking for a powerful IDE of TypeScript on Windows, Visual Studio could be a
wonderful choice. Though Visual Studio has built-in TypeScript support, do make sure it's
up-to-date. And, usually, you might want to install the newest TypeScript tools for Visual
Studio.

Tools and Frameworks

[16]

WebStorm
WebStorm is one of the most popular IDEs for JavaScript developers, and it has had an
early adoption to TypeScript as well.

A downside of using WebStorm for TypeScript is that it is always one step slower catching
up to the latest version compared to other major editors. Unlike editors that directly use the
language service provided by the TypeScript project, WebStorm seems to have its own
infrastructure for IntelliSense and refactoring. But, in return, it makes TypeScript support in
WebStorm more customizable and consistent with other features it provides.

If you decide to use WebStorm as your TypeScript IDE, please make sure the version of
supported TypeScript matches what you expect (usually the latest version).

Getting your hands on the workflow
After setting up your editor, we are ready to move to a workflow that you might use to
practice throughout this book. It can also be used as the workflow for small TypeScript
projects in your daily work.

In this workflow, we'll walk through these topics:

What is a tsconfig.json file, and how can you configure a TypeScript project
with it?
TypeScript declaration files and the typings command-line tool
How to write tests running under Mocha, and how to get coverage information
using Istanbul
How to test in browsers using Karma

Configuring a TypeScript project
The configurations of a TypeScript project can differ for a variety of reasons. But the goals
remain clear: we need the editor as well as the compiler to recognize a project and its source
files correctly. And tsconfig.json will do the job.

Tools and Frameworks

[17]

Introduction to tsconfig.json
A TypeScript project does not have to contain a tsconfig.json file. However, most
editors rely on this file to recognize a TypeScript project with specified configurations and
to provide related features.

A tsconfig.json file accepts three fields: compilerOptions, files, and exclude. For
example, a simple tsconfig.json file could be like the following:

{
 "compilerOptions": {
 "target": "es5",
 "module": "commonjs",
 "rootDir": "src",
 "outDir": "out"
 },
 "exclude": [
 "out",
 "node_modules"
]
}

Or, if you prefer to manage the source files manually, it could be like this:

{
 "compilerOptions": {
 "target": "es5",
 "module": "commonjs",
 "rootDir": "src",
 "outDir": "out"
 },
 "files": [
 "src/foo.ts",
 "src/bar.ts"
]
}

Previously, when we used tsc, we needed to specify the source files explicitly. Now, with
tsconfig.json, we can directly run tsc without arguments (or with -w/--watch if you
want incremental compilation) in a folder that contains tsconfig.json.

Tools and Frameworks

[18]

Compiler options
As TypeScript is still evolving, its compiler options keep changing, with new features and
updates. An invalid option may break the compilation or editor features for TypeScript.
When reading these options, keep in mind that some of them might have been changed.

The following options are useful ones out of the list.

target
target specifies the expected version of JavaScript outputs. It could be es5 (ECMAScript
5), es6 (ECMAScript 6/2015), and so on.

Features (especially ECMAScript polyfills) that are available in different compilation targets
vary. For example, before TypeScript 2.1, features such as async/await were available only
when targeting ES6.

The good news is that Node.js 6 with the latest V8 engine has supported most ES6 features.
And the latest browsers have also great ES6 support. So if you are developing a Node.js
application or a browser application that's not required for backward compatibilities, you
can have your configuration target ES6.

module
Before ES6, JavaScript had no standard module system. Varieties of module loaders are
developed for different scenarios, such as commonjs, amd, umd, system, and so on.

If you are developing a Node.js application or an npm package, commonjs could be the
value of this option. Actually, with the help of modern packaging tools such as webpack
and browserify, commonjs could also be a nice choice for browser projects as well.

declaration
Enable this option to generate .d.ts declaration files along with JavaScript outputs.
Declaration files could be useful as the type information source of a distributed
library/framework; it could also be helpful for splitting a larger project to improve
compiling performance and division cooperation.

Tools and Frameworks

[19]

sourceMap
By enabling this option, TypeScript compiler will emit source maps along with compiled
JavaScript.

jsx
TypeScript provides built-in support for React JSX (.tsx) files. By specifying this option
with value react, TypeScript compiler will compile .tsx files to plain JavaScript files. Or
with value preserve, it will output .jsx files so you can post-process these files with other
JSX compilers.

noEmitOnError
By default, TypeScript will emit outputs no matter whether type errors are found or not. If
this is not what you want, you may set this option to true.

noEmitHelpers
When compiling a newer ECMAScript feature to a lower target version of JavaScript,
TypeScript compiler will sometimes generate helper functions such as __extends (ES6 to
lower versions), and __awaiter (ES7 to lower versions).

Due to certain reasons, you may want to write your own helper functions, and prevent
TypeScript compiler from emitting these helpers.

noImplicitAny
As TypeScript is a superset of JavaScript, it allows variables and parameters to have no type
notation. However, it could help to make sure everything is typed.

By enabling this option, TypeScript compiler will give errors if the type of a
variable/parameter is not specified and cannot be inferred by its context.

experimentalDecorators*
As decorators, at the time of writing this book, has not yet reached a stable stage of the new
ECMAScript standard, you need to enable this option to use decorators.

Tools and Frameworks

[20]

emitDecoratorMetadata*
Runtime type information could sometimes be useful, but TypeScript does not yet support
reflection (maybe it never will). Luckily, we get decorator metadata that will help under
certain scenarios.

By enabling this option, TypeScript will emit decorators along with a
Reflect.metadata() decorator which contains the type information of the decorated
target.

outDir
Usually, we do not want compiled files to be in the same folder of source code. By
specifying outDir, you can tell the compiler where you would want the compiled
JavaScript files to be.

outFile
For small browser projects, we might want to have all the outputs concatenated as a single
file. By enabling this option, we can achieve that without extra build tools.

rootDir
The rootDir option is to specify the root of the source code. If omitted, the compiler would
use the longest common path of source files. This might take seconds to understand.

For example, if we have two source files, src/foo.ts and src/bar.ts, and a
tsconfig.json file in the same directory of the src folder, the TypeScript compiler will
use src as the rootDir, so when emitting files to the outDir (let's say out), they will be
out/foo.js and out/bar.js.

However, if we add another source file test/test.ts and compile again, we'll get those
outputs located in out/src/foo.js, out/src/bar.js, and out/test/test.js
respectively. When calculating the longest common path, declaration files are not involved
as they have no output.

Usually, we don't need to specify rootDir, but it would be safer to have it configured.

Tools and Frameworks

[21]

preserveConstEnums
Enum is a useful tool provided by TypeScript. When compiled, it's in the form of an
Enum.member expression. Constant enum, on the other hand, emits number literals directly,
which means the Enum object is no longer necessary.

And thus TypeScript, by default, will remove the definitions of constant enums in the
compiled JavaScript files.

By enabling this option, you can force the compiler to keep these definitions anyway.

strictNullChecks
TypeScript 2.1 makes it possible to explicitly declare a type with undefined or null as its
subtype. And the compiler can now perform more thorough type checking for empty
values if this option is enabled.

stripInternal*
When emitting declaration files, there could be something you'll need to use internally but
without a better way to specify the accessibility. By commenting this code with /**
@internal */ (JSDoc annotation), TypeScript compiler then won't emit them to
declaration files.

isolatedModules
By enabling this option, the compiler will unconditionally emit imports for unresolved files.

Options suffixed with * are experimental and might have already been
removed when you are reading this book. For a more complete and up-to-
date compiler options list, please check out h t t p : / / w w w . t y p e s c r i p t l a n g .

o r g / d o c s / h a n d b o o k / c o m p i l e r - o p t i o n s . h t m l.

Adding source map support
Source maps can help a lot while debugging, no matter for a debugger or for error stack
traces from a log.

To have source map support, we need to enable the sourceMap compiler option in
tsconfig.json. Extra configurations might be necessary to make your debugger work
with source maps.

http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html
http://www.typescriptlang.org/docs/handbook/compiler-options.html

Tools and Frameworks

[22]

For error stack traces, we can use the help of the source-map-support package:

$ npm install source-map-support --save

To put it into effect, you can import this package with its register submodule in your
entry file:

import 'source-map-support/register';

Downloading declarations using typings
JavaScript has a large and booming ecosystem. As the bridge connecting TypeScript and
other JavaScript libraries and frameworks, declaration files are playing a very important
role.

With the help of declaration files, TypeScript developer can use existing JavaScript libraries
with nearly the same experience as libraries written in TypeScript.

Thanks to the efforts of the TypeScript community, almost every popular JavaScript library
or framework got its declaration files on a project called DefinitelyTyped. And there has
already been a tool called tsd for declaration file management. But soon, people realized
the limitation of a single huge repository for everything, as well as the issues tsd cannot
solve nicely. Then typings is gently becoming the new tool for TypeScript declaration file
management.

Installing typings
typings is just another Node.js package with a command-line interface like TypeScript
compiler. To install typings, simply execute the following:

$ npm install typings -g

To make sure it has been installed correctly, you can now try the typings command with
argument --version:

$ typings --version
1.x.x

Tools and Frameworks

[23]

Downloading declaration files
Create a basic Node.js project with a proper tsconfig.json (module option set as
commonjs), and a test.ts file:

import * as express from 'express';

Without the necessary declaration files, the compiler would complain with Cannot find
module express. And, actually, you can't even use Node.js APIs such as process.exit()
or require Node.js modules, because TypeScript itself just does not know what Node.js is.

To begin with, we'll need to install declaration files of Node.js and Express:

$ typings install env~node --global
$ typings install express

If everything goes fine, typings should've downloaded several declaration files and saved
them to folder typings, including node.d.ts, express.d.ts, and so on. And I guess
you've already noticed the dependency relationship existing on declaration files.

If this is not working for you and typings complains with Unable to find
“express” (“npm”) in the registry then you might need to do it the hard
way – to manually install Express declaration files and their dependencies
using the following command:
$ typings install dt~<package-name> –global
The reason for that is the community might still be moving from
DefinitelyTyped to the typings registry. The prefix dt~ tells typings
to download declaration files from DefintelyTyped, and --global
option tells typings to save these declaration files as ambient modules
(namely declarations with module name specified).

typings has several registries, and the default one is called npm (please understand this
npm registry is not the npm package registry). So, if no registry is specified with <source>~
prefix or --source option, it will try to find declaration files from its npm registry. This
means that typings install express is equivalent to typings install
npm~express or typings install express --source npm.

While declaration files for npm packages are usually available on the npm registry,
declaration files for the environment are usually available on the env. registry. As those
declarations are usually global, a --global option is required for them to install correctly.

Tools and Frameworks

[24]

Option “save”
typings actually provides a --save option for saving the typing names and file sources to
typings.json. However, in my opinion, this option is not practically useful.

It's great to have the most popular JavaScript libraries and frameworks typed, but these
declaration files, especially declarations not frequently used, can be inaccurate, which
means there's a fair chance that you will need to edit these files yourself.

It would be nice to contribute declarations, but it would also be more flexible to have
typings m managed by source control as part of the project code.

Testing with Mocha and Istanbul
Testing could be an important part of a project, which ensures feature consistency and
discovers bugs earlier. It is common that a change made for one feature could break another
working part of the project. A robust design could minimize the chance but we still need
tests to make sure.

It could lead to an endless discussion about how tests should be written and there are
interesting code design techniques such as test-driven development (TDD); though there
has been a lot of debates around it, it still worth knowing and may inspire you in certain
ways.

Mocha and Chai
Mocha has been one of the most popular test frameworks for JavaScript, while Chai is a
good choice as an assertion library. To make life easier, you may write tests for your own
implementations of contents through this book using Mocha and Chai.

To install Mocha, simply run the following command, and it will add mocha as a global
command-line tool just like tsc and typings:

$ npm install mocha -g

Chai, on the other hand, is used as a module of a project, and should be installed under the
project folder as a development dependency:

$ npm install chai --save-dev

Tools and Frameworks

[25]

Chai supports should style assertion. By invoking chai.should(), it adds the should
property to the prototype of Object, which means you can then write assertions such as the
following:

'foo'.should.not.equal('bar');
'typescript'.should.have.length(10);

Writing tests in JavaScript
By executing the command mocha, it will automatically run tests inside the test folder.
Before we start to write tests in TypeScript, let's try it out in plain JavaScript and make sure
it's working.

Create a file test/starter.js and save it with the following code:

require('chai').should();

describe('some feature', () => {
 it('should pass', () => {
 'foo'.should.not.equal('bar');
 });

 it('should error', () => {
 (() => {
 throw new Error();
 }).should.throw();
 });
});

Run mocha under the project folder and you should see all tests passing.

Writing tests in TypeScript
Tests written in TypeScript have to be compiled before being run; where to put those files
could be a tricky question to answer.

Some people might want to separate tests with their own tsconfig.json:

src/tsconfig.json
test/tsconfig.json

They may also want to put output files somewhere reasonable:

out/app/
out/test/

Tools and Frameworks

[26]

However, this will increase the cost of build process management for small projects. So, if
you do not mind having src in the paths of your compiled files, you can have only one
tsconfig.json to get the job done:

src/
test/
tsconfig.json

The destinations will be as follows:

out/src/
out/test/

Another option I personally prefer is to have tests inside of src/test, and use the test
folder under the project root for Mocha configurations:

src/
src/test/
tsconfig.json

The destinations will be as follows:

out/
out/test/

But, either way, we'll need to configure Mocha properly to do the following:

Run tests under the out/test directory
Configure the assertion library and other tools before starting to run tests

To achieve these, we can take advantage of the mocha.opts file instead of specifying
command-line arguments every time. Mocha will combine lines in the mocha.opts file
with other command-line arguments given while being loaded.

Create test/mocha.opts with the following lines:

--require ./test/mocha.js
out/test/

As you might have guessed, the first line is to tell Mocha to require ./test/mocha.js
before starting to run actual tests. And the second line tells Mocha where these tests are
located.

And, of course, we'll need to create test/mocha.js correspondingly:

require('chai').should();

Tools and Frameworks

[27]

Almost ready to write tests in TypeScript! But TypeScript compiler does not know how
would function describe or it be like, so we need to download declaration files for
Mocha:

 $ typings install env~mocha --global

Now we can migrate the test/starter.js file to src/test/starter.ts with nearly no
change, but removing the first line that enables the should style assertion of Chai, as we
have already put it into test/mocha.js.

Compile and run; buy me a cup of coffee if it works. But it probably won't. We've talked
about how TypeScript compiler determines the root of source files when explaining the
rootDir compiler option. As we don't have any TypeScript files under the src folder (not
including its subfolders), TypeScript compiler uses src/test as the rootDir. Thus the
compiled test files are now under the out folder instead of the expected out/test.

To fix this, either explicitly specify rootDir, or just add the first non-test TypeScript file to
the src folder.

Getting coverage information with Istanbul
Coverage could be important for measuring the quality of tests. However, it might take
much effort to reach a number close to 100%, which could be a burden for developers. To
balance efforts on tests and code that bring direct value to the product, there would go
another debate.

Install Istanbul via npm just as with the other tools:

 $ npm install istanbul -g

The subcommand for Istanbul to generate code coverage information is istanbul cover.
It should be followed by a JavaScript file, but we need to make it work with Mocha, which
is a command-line tool. Luckily, the entry of the Mocha command is, of course, a JavaScript
file.

To make them work together, we'll need to install a local (instead of global) version of
Mocha for the project:

$ npm install mocha --save-dev

Tools and Frameworks

[28]

After installation, we'll get the file _mocha under node_modules/mocha/bin, which is the
JavaScript entry we were looking for. So now we can make Istanbul work:

$ istanbul cover node_modules/mocha/bin/_mocha

Then you should've got a folder named coverage, and within it the coverage report.

Reviewing the coverage report is important; it can help you decide whether you need to
add tests for specific features and code branches.

Testing in real browsers with Karma
We've talked about testing with Mocha and Istanbul for Node.js applications. It is an
important topic for testing code that runs in a browser as well.

Karma is a test runner for JavaScript that makes testing in real browsers on real devices
much easier. It officially supports the Mocha, Jasmine, and JUnit testing frameworks, but it's
also possible for Karma to work with any framework via a simple adapter.

Creating a browser project
A TypeScript application that runs in browsers can be quite different from a Node.js one.
But if you know what the project should look like after the build, you should already have
clues on how to configure that project.

To avoid introducing too many concepts and technologies not directly related, I will keep
things as simple as possible:

We're not going to use module loaders such as Require.js
We're not going to touch the code packaging process

This means we'll go with separated output files that need to be put into an HTML file with a
script tag manually. Here's the tsconfig.json we'll be playing with; notice that we no
longer have the module option, set:

{
 "compilerOptions": {
 "target": "es5",
 "rootDir": "src",
 "outDir": "out"
 },
 "exclude": [
 "out",

Tools and Frameworks

[29]

 "node_modules"
]
}

Then let's create package.json and install packages mocha and chai with their
declarations:

$ npm init
$ npm install mocha chai --save-dev
$ typings install env~mocha --global
$ typings install chai

And to begin with, let's fill this project with some source code and tests.

Create src/index.ts with the following code:

function getLength(str: string): number {
 return str.length;
}

And create src/test/test.ts with some tests:

describe('get length', () => {
 it('"abc" should have length 3', () => {
 getLength('abc').should.equal(3);
 });

 it('"" should have length 0', () => {
 getLength('').should.equal(0);
 });
});

Again, in order to make the should style assertion work, we'll need to call chai.should()
before tests start. To do so, create file test/mocha.js just like we did in the Node.js
project, though the code line slightly differs, as we no longer use modules:

chai.should();

Now compile these files with tsc, and we've got our project ready.

Tools and Frameworks

[30]

Installing Karma
Karma itself runs on Node.js, and is available as an npm package just like other Node.js
tools we've been using. To install Karma, simply execute the npm install command in the
project directory:

$ npm install karma --save-dev

And, in our case, we are going to have Karma working with Mocha, Chai, and the browser
Chrome, so we'll need to install related plugins:

$ npm install karma-mocha karma-chai karma-chrome-launcher --save-dev

Before we configure Karma, it is recommended to have karma-cli installed globally so
that we can execute the karma command from the console directly:

$ npm install karma-cli -g

Configuring and starting Karma
The configurations are to tell Karma about the testing frameworks and browsers you are
going to use, as well as other related information such as source files and tests to run.

To create a Karma configuration file, execute karma init and answer its questions:

Testing framework: Mocha
Require.js: no
Browsers: Chrome (add more if you like; be sure to install the corresponding
launchers)
Source and test files:

test/mocha.js (the file enables should style assertion)
out/*.js (source files)
out/test/*.js (test files)

Files to exclude: empty
Watch for changes: yes

Now you should see a karma.conf.js file under the project directory; open it with your
editor and add 'chai' to the list of option frameworks.

Almost there! Execute the command karma start and, if everything goes fine, you should
have specified browsers opened with the testing results being logged in the console in
seconds.

Tools and Frameworks

[31]

Integrating commands with npm
The npm provides a simple but useful way to define custom scripts that can be run with the
npm run command. And it has another advantage – when npm run a custom script, it adds
node_modules/.bin to the PATH. This makes it easier to manage project-related
command-line tools.

For example, we've talked about Mocha and Istanbul. The prerequisite for having them as
commands is to have them installed globally, which requires extra steps other than npm
install. Now we can simply save them as development dependencies, and add custom
scripts in package.json:

"scripts": {
 "test": "mocha",
 "cover": "istanbul cover node_modules/mocha/bin/_mocha"
},
"devDependencies": {
 "mocha": "latest",
 "istanbul": "latest"
}

Now you can run test with npm run test (or simply npm test), and run cover with
npm run cover without installing these packages globally.

Why not other fancy build tools?
You might be wondering: why don't we use a build system such as Gulp to set up our
workflow? Actually, when I started to write this chapter, I did list Gulp as the tool we were
going to use. Later, I realized it does not make much sense to use Gulp to build the
implementations in most of the chapters in this book.

There is a message I want to deliver: balance.

Once, I had a discussion on balance versus principles with my boss. The disagreement was
clear: he insisted on controllable principles over subjective balance, while I prefer contextual
balance over fixed principles.

Actually, I agree with him, from the point of view of a team leader. A team is usually built
up with developers at different levels; principles make it easier for a team to build high-
quality products, while not everyone is able to find the right balance point.

However, when the role turns from a productive team member to a learner, it is important
to learn and to feel the right balance point. And that's called experience.

Tools and Frameworks

[32]

Summary
The goal of this chapter was to introduce a basic workflow that could be used by the reader
to implement the design patterns we'll be discussing.

We talked about the installation of TypeScript compiler that runs on Node.js, and had brief
introductions to popular TypeScript editors and IDEs. Later, we spent quite a lot of pages
walking through the tools and frameworks that could be used if the reader wants to have
some practice with implementations of the patterns in this book.

With the help of these tools and frameworks, we've built a minimum workflow that
includes creating, building, and testing a project. And talking about workflows, you must
have noticed that they slightly differ among applications for different runtimes.

In the next chapter, we'll talk about what may go wrong and mess up the entire project
when its complexity keeps growing. And we'll try to come up with specific patterns that can
solve the problems this very project faces.

2
The Challenge of Increasing

Complexity
The essence of a program is the combination of possible branches and automated selections
based on certain conditions. When we write a program, we define what's going on in a
branch, and under what condition this branch will be executed.

The number of branches usually grows quickly during the evolution of a project, as well as
the number of conditions that determine whether a branch will be executed or not.

This is dangerous for human beings, who have limited brain capacities.

In this chapter, we are going to implement a data synchronizing service. Starting by
implementing some very basic features, we'll keep adding stuff and see how things go.

The following topics will be covered:

Designing a multi-device synchronizing strategy
Useful JavaScript and TypeScript techniques and hints that are related, including
objects as maps and the string literal type
How the Strategy Pattern helps in a project

The Challenge of Increasing Complexity

[34]

Implementing the basics
Before we start to write actual code, we need to define what this synchronizing strategy will
be like. To keep the implementation from unnecessary distractions, the client will
communicate with the server directly through function calls instead of using HTTP requests
or Sockets. Also, we'll use in-memory storage, namely variables, to store data on both client
and server sides.

Because we are not separating the client and server into two actual applications, and we are
not actually using backend technologies, it does not require much Node.js experience to
follow this chapter.

However, please keep in mind that even though we are omitting network and database
requests, we hope the core logic of the final implementation could be applied to a real
environment without being modified too much. So, when it comes to performance concerns,
we still need to assume limited network resources, especially for data passing through the
server and client, although the implementation is going to be synchronous instead of
asynchronous. This is not supposed to happen in practice, but involving asynchronous
operations will introduce much more code, as well as many more situations that need to be
taken into consideration. But we will have some useful patterns on asynchronous
programming in the coming chapters, and it would definitely help if you try to implement
an asynchronous version of the synchronizing logic in this chapter.

A client, if without modifying what's been synchronized, stores a copy of all the data
available on the server, and what we need to do is to provide a set of APIs that enable the
client to keep its copy of data synchronized.

So, it is really simple at the beginning: comparing the last-modified timestamp. If the
timestamp on the client is older than what's on the server, then update the copy of data
along with new timestamp.

Creating the code base
Firstly, let's create server.ts and client.ts files containing the Server class and
Client class respectively:

export class Server {
 // ...
}

export class Client {
 // ...

The Challenge of Increasing Complexity

[35]

}

I prefer to create an index.ts file as the package entry, which handles what to export
internally. In this case, let's export everything:

export * from './server';
export * from './client';

To import the Server and Client classes from a test file (assuming src/test/test.ts),
we can use the following codeto s:

import { Server, Client } from '../';

Defining the initial structure of the data to be
synchronized
Since we need to compare the timestamps from the client and server, we need to have a
timestamp property on the data structure. I would like to have the data to synchronize as a
string, so let's add a DataStore interface with a timestamp property to the server.ts
file:

export interface DataStore {
 timestamp: number;
 data: string;
}

Getting data by comparing timestamps
Currently, the synchronizing strategy is one-way, from the server to the client. So what we
need to do is simple: we compare the timestamps; if the server has the newer one, it
responds with data and the server-side timestamp; otherwise, it responds with undefined:

class Server {
 store: DataStore = {
 timestamp: 0,
 data: ''
 };

 getData(clientTimestamp: number): DataStore {
 if (clientTimestamp < this.store.timestamp) {
 return this.store;
 } else {
 return undefined;

The Challenge of Increasing Complexity

[36]

 }
 }
}

Now we have provided a simple API for the client, and it's time to implement the client:

import { Server, DataStore } from './';

export class Client {
 store: DataStore = {
 timestamp: 0,
 data: undefined
 };
 constructor(
 public server: Server
) { }
}

Prefixing a constructor parameter with access modifiers (including
public, private, and protected) will create a property with the same
name and corresponding accessibility. It will also assign the value
automatically when the constructor is called.

Now we need to add a synchronize method to the Client class that does the job:

synchronize(): void {
 let updatedStore = this.server.getData(this.store.timestamp);
 if (updatedStore) {
 this.store = updatedStore;
 }
}

That's easily done. However, are you already feeling somewhat awkward with what we've
written?

Two-way synchronizing
Usually, when we talk about synchronization, we get updates from the server and push
changes to the server as well. Now we are going to do the second part, pushing the changes
if the client has newer data.

The Challenge of Increasing Complexity

[37]

But first, we need to give the client the ability to update its data by adding an update
method to the Client class:

update(data: string): void {
 this.store.data = data;
 this.store.timestamp = Date.now();
}

And we need the server to have the ability to receive data from the client as well. So we
rename the getData method of the Server class as synchronize and make it satisfy the
new job:

synchronize(clientDataStore: DataStore): DataStore {
 if (clientDataStore.timestamp > this.store.timestamp) {
 this.store = clientDataStore;
 return undefined;
 } else if (clientDataStore.timestamp < this.store.timestamp) {
 return this.store;
 } else {
 return undefined;
 }
}

Now we have the basic implementation of our synchronizing service. Later, we'll keep
adding new things and make it capable of dealing with a variety of scenarios.

Things that went wrong while implementing the
basics
Currently, what we've written is just too simple to be wrong. But there are still some
semantic issues.

Passing a data store from the server to the client does
not make sense
We used DataStore as the return type of the synchronize method on Server. But what
we were actually passing through is not a data store, but information that involves data and
its timestamp. The information object just happened to have the same properties as a data
store at this point in time.

The Challenge of Increasing Complexity

[38]

Also, it will be misleading to people who will later read your code (including yourself in the
future). Most of the time, we are trying to eliminate redundancies. But that does not have to
mean everything that looks the same. So let's make it two interfaces:

interface DataStore {
 timestamp: number;
 data: string;
}

interface DataSyncingInfo {
 timestamp: number;
 data: string;
}

I would even prefer to create another instance, instead of directly returning this.store:

return {
 timestamp: this.store.timestamp,
 data: this.store.data
};

However, if two pieces of code with different semantic meanings are doing the same thing
from the perspective of code itself, you may consider extracting that part as a utility.

Making the relationships clear
Now we have two separated interfaces, DataStore and DataSyncingInfo, in server.ts.
Obviously, DataSyncingInfo should be a shared interface between the server and the
client, while DataStore happens to be the same on both sides, but it's not actually shared.

So what we are going to do is to create a separate shared.d.ts (it could also be
shared.ts if it contains more than typings) that exports DataSyncingInfo and add
another DataStore to client.ts.

Do not follow this blindly. Sometimes it is designed for the server and the
client to have exactly the same stores. If that's the situation, the interface
should be shared.

The Challenge of Increasing Complexity

[39]

Growing features
What we've done so far is basically useless. But, from now on, we will start to add features
and make it capable of fitting in practical needs, including the capability of synchronizing
multiple data items with multiple clients, and merging conflicts.

Synchronizing multiple items
Ideally, the data we need to synchronize will have a lot of items contained. Directly
changing the type of data to an array would work if there were only very limited number
of these items.

Simply replacing data type with an array
Now let's change the type of the data property of DataStore and DataSyncingInfo
interfaces to string[]. With the help of TypeScript, you will get errors for unmatched
types this change would cause. Fix them by annotating the correct types.

But obviously, this is far from an efficient solution.

Server-centered synchronization
If the data store contains a lot of data, the ideal approach would be only updating items that
are not up-to-date.

For example, we can create a timestamp for every single item and send these timestamps to
the server, then let the server decide whether a specific data item is up-to-date. This is a
viable approach for certain scenarios, such as checking updates for software extensions. It is
okay to occasionally send even hundreds of timestamps with item IDs on a fast network,
but we are going to use another approach for different scenarios, or I won't have much to
write.

User data synchronization of offline apps on a mobile phone is what we are going to deal
with, which means we need to try our best to avoid wasting network resources.

Here is an interesting question. What are the differences between user
data synchronization and checking extension updates? Think about the
size of data, issues with multiple devices, and more.

The Challenge of Increasing Complexity

[40]

The reason why we thought about sending timestamps of all items is for the server to
determine whether certain items need to be updated. However, is it necessary to have the
timestamps of all data items stored on the client side?

What if we choose not to store the timestamp of data changing, but of data being
synchronized with the server? Then we can get everything up-to-date by only sending the
timestamp of the last successful synchronization. The server will then compare this
timestamp with the last modified timestamps of all data items and decide how to respond.

As the title of this part suggests, the process is server-centered and relies on the server to
generate the timestamps (though it does not have to, and practically should not, be the
stamp of the actual time).

If you are getting confused about how these timestamps work, let's try
again. The server will store the timestamps of the last time items were
synchronized, and the client will store the timestamp of the last successful
synchronization with the server. Thus, if no item on the server has a later
timestamp than the client, then there's no change to the server data store
after that timestamp. But if there are some changes, by comparing the
timestamp of the client with the timestamps of server items, we'll know
which items are newer.

Synchronizing from the server to the client
Now there seems to be quite a lot to change. Firstly, let's handle synchronizing data from
server to client.

This is what's expected to happen on the server side:

Add a timestamp and identity to every data item on the server
Compare the client timestamp with every data item on the server

We don't need to actually compare the client timestamp with every item
on server if those items have a sorted index. The performance would be
acceptable using a database with a sorted index.

Respond with items newer than what the client has as well as a new timestamp.

The Challenge of Increasing Complexity

[41]

And here's what's expected to happen on the client side:

Synchronize with the last timestamp sent to the server
Update the local store with new data responded by the server
Update the local timestamp of the last synchronization if it completes without
error

Updating interfaces

First of all, we have now an updated data store on both sides. Starting with the server, the
data store now contains an array of data items. So let's define the ServerDataItem
interface and update ServerDataStore as well:

export interface ServerDataItem {
 id: string;
 timestamp: number;
 value: string;
}

export interface ServerDataStore {
 items: {
 [id: string]: ServerDataItem;
 };
}

The { [id: string]: ServerDataItem } type describes an object
with id of type string as a key and has the value of type
ServerDataItem. Thus, an item of type ServerDataItem can be
accessed by items['the-id'].

And for the client, we now have different data items and a different store. The response
contains only a subset of all data items, so we need IDs and a map with ID as the index to
store the data:

export interface ClientDataItem {
 id: string;
 value: string;
}

export interface ClientDataStore {
 timestamp: number;
 items: {
 [id: string]: ClientDataItem;
 };
}

The Challenge of Increasing Complexity

[42]

Previously, the client and server were sharing the same DataSyncingInfo, but that's going
to change. As we'll deal with server-to-client synchronizing first, we care only about the
timestamp in a synchronizing request for now:

export interface SyncingRequest {
 timestamp: number;
}

As for the response from the server, it is expected to have an updated timestamp with data
items that have changed compared to the request timestamp:

export interface SyncingResponse {
 timestamp: number;
 changes: {
 [id: string]: string;
 };
}

I prefixed those interfaces with Server and Client for better differentiation. But it's not
necessary if you are not exporting everything from server.ts and client.ts (in
index.ts).

Updating the server side

With well-defined data structures, it should be pretty easy to achieve what we expected. To
begin with, we have the synchronize method, which accepts a SyncingRequest and
returns a SyncingResponse; and we need to have the updated timestamp as well:

synchronize(request: SyncingRequest): SyncingResponse {
 let lastTimestamp = request.timestamp;
 let now = Date.now();
 let serverChanges: ServerChangeMap = Object.create(null);
 return {
 timestamp: now,
 changes: serverChanges
 };
}

For the serverChanges object, {} (an object literal) might be the first
thing (if not an ES6 Map) that comes to mind. But it's not absolutely safe to
do so, because it would refuse __proto__ as a key. The better choice
would be Object.create(null), which accepts all strings as its key.

The Challenge of Increasing Complexity

[43]

Now we are going to add items that are newer than the client to serverChanges:

let items = this.store.items;

for (let id of Object.keys(items)) {
 let item = items[id];
 if (item.timestamp > lastTimestamp) {
 serverChanges[id] = item.value;
 }
}

Updating the client side

As we've changed the type of items under ClientDataStore to a map, we need to fix the
initial value:

store: ClientDataStore = {
 timestamp: 0,
 items: Object.create(null)
};

Now let's update the synchronize method. Firstly, the client is going to send a request
with a timestamp and get a response from the server:

synchronize(): void {
 let store = this.store;
 let response = this.server.synchronize({
 timestamp: store.timestamp
 });
}

Then we'll save the newer data items to the store:

let clientItems = store.items;
let serverChanges = response.changes;

for (let id of Object.keys(serverChanges)) {
 clientItems[id] = {
 id,
 value: serverChanges[id]
 };
}

Finally, update the timestamp of the last successful synchronization:

clientStore.timestamp = response.timestamp;

The Challenge of Increasing Complexity

[44]

Updating the synchronization timestamp should be the last thing to do
during a complete synchronization process. Make sure it's not stored
earlier than data items, or you might have a broken offline copy if there's
any errors or interruptions during synchronizing in the future.

To ensure that this works as expected, an operation with the same change
information should give the same results even if it's applied multiple
times.

Synchronizing from client to server
For a server-centered synchronizing process, most of the changes are made through clients.
Consequently, we need to figure out how to organize these changes before sending them to
the server.

One single client only cares about its own copy of data. What difference would this make
when comparing to the process of synchronizing data from the server to clients? Well, think
about why we need the timestamp of every data item on the server in the first place. We
need them because we want to know which items are new compared to a specific client.

Now, for changes on a client: if they ever happen, they need to be synchronized to the
server without requiring specific timestamps for comparison.

However, we might have more than one client with changes that need to be synchronized,
which means that changes made later in time might actually get synchronized earlier, and
thus we'll have to resolve conflicts. To achieve that, we need to add the last modified time
back to every data item on the server and the changed items on the client.

I've mentioned that the timestamps stored on the server for finding out what needs to be
synchronized to a client do not need to be (and better not be) an actual stamp of a physical
time point. For example, it could be the count of synchronizations that happened between
all clients and the server.

Updating the client side

To handle this efficiently, we may create a separated map with the IDs of the data items that
have changed as keys and the last modified time as the value in ClientDataStore:

export interface ClientDataStore {
 timestamp: number;
 items: {
 [id: string]: ClientDataItem;
 };

The Challenge of Increasing Complexity

[45]

 changed: {
 [id: string]: number;
 };
}

You may also want to initialize its value as Object.create(null).

Now when we update an item in the client store, we add the last modified time to the
changed map as well:

update(id: string, value: string): void {
 let store = this.store;
 store.items[id] = {
 id,
 value
 };
 store.changed[id] = Date.now();
}

A single timestamp in SyncingRequest certainly won't do the job any more; we need to
add a place for the changed data, a map with data item ID as the index, and the changed
information as the value:

export interface ClientChange {
 lastModifiedTime: number;
 value: string;
}

export interface SyncingRequest {
 timestamp: number;
 changes: {
 [id: string]: ClientChange;
 };
}

Here comes another problem. What if a change made to a client data item is done offline,
with the system clock being at the wrong time? Obviously, we need some time calibration
mechanisms. However, there's no way to make perfect calibration. We'll make some
assumptions so we don't need to start another chapter for time calibration:

The system clock of a client may be late or early compared to the server. But it
ticks at a normal speed and won't jump between times.
The request sent from a client reaches the server in a relatively short time.

The Challenge of Increasing Complexity

[46]

With those assumptions, we can add those building blocks to the client-side synchronize
method:

Add client-side changes to the synchronizing request (of course, before sending it1.
to the server):

 let clientItems = store.items;
 let clientChanges: ClientChangeMap = Object.create(null);

 let changedTimes = store.changed;

 for (let id of Object.keys(changedTimes)) {
 clientChanges[id] = {
 lastModifiedTime: changedTimes[id],
 value: clientItems[id].value
 };
 }

Synchronize changes to the server with the current time of the client's clock:2.

 let response = this.server.synchronize({
 timestamp: store.timestamp,
 clientTime: Date.now(),
 changes: clientChanges
 });

Clean the changes after a successful synchronization:3.

 store.changed = Object.create(null);

Updating the server side

If the client is working as expected, it should send synchronizing requests with changes. It's
time to enable the server to handling those changes from the client.

There are going to be two steps for the server-side synchronization process:

Apply the client changes to server data store.1.
Prepare the changes that need to be synchronized to the client.2.

First, we need to add lastModifiedTime to server-side data items, as we mentioned
before:

export interface ServerDataItem {
 id: string;
 timestamp: number;
 lastModifiedTime: number;

The Challenge of Increasing Complexity

[47]

 value: string;
}

And we need to update the synchronize method:

let clientChanges = request.changes;
let now = Date.now();

for (let id of Object.keys(clientChanges)) {
 let clientChange = clientChanges[id];
 if (
 hasOwnProperty.call(items, id) &&
 items[id].lastModifiedTime > clientChange.lastModifiedTime
) {
 continue;
 }
 items[id] = {
 id,
 timestamp: now,
 lastModifiedTime,
 value: clientChange.value
 };
}

We can actually use the in operator instead of hasOwnProperty here
because the items object is created with null as its prototype. But a
reference to hasOwnProperty will be your friend if you are using objects
created by object literals, or in other ways, such as maps.

We already talked about resolving conflicts by comparing the last modified times. At the
same time, we've made assumptions so we can calibrate the last modified times from the
client easily by passing the client time to the server while synchronizing.

What we are going to do for calibration is to calculate the offset of the client time compared
to the server time. And that's why we made the second assumption: the request needs to
easily reach the server in a relatively short time. To calculate the offset, we can simply
subtract the client time from the server time:

let clientTimeOffset = now - request.clientTime;

To make the time calibration more accurate, we would want the earliest
timestamp after the request hits the server to be recorded as “now”. So in
practice, you might want to record the timestamp of the request hitting the
server before start processing everything. For example, for HTTP request,
you may record the timestamp once the TCP connection gets established.

The Challenge of Increasing Complexity

[48]

And now, the calibrated time of a client change is the sum of the original time and the
offset. We can now decide whether to keep or ignore a change from the client by comparing
the calibrated last modified time. It is possible for the calibrated time to be greater than the
server time; you can choose either to use the server time as the maximum value or accept a
small inaccuracy. Here, we will go the simple way:

let lastModifiedTime = Math.min(
 clientChange.lastModifiedTime + clientTimeOffset,
 now
);

if (
 hasOwnProperty.call(items, id) &&
 items[id].lastModifiedTime > lastModifiedTime
) {
 continue;
}

To make this actually work, we need to also exclude changes from the server that conflict
with client changes in SyncingResponse. To do so, we need to know what the changes are
that survive the conflict resolving process. A simple way is to exclude items with timestamp
that equals now:

for (let id of Object.keys(items)) {
 let item = items[id];
 if (
 item.timestamp > lastTimestamp &&
 item.timestamp !== now
) {
 serverChanges[id] = item.value;
 }
}

So now we have implemented a complete synchronization logic with the ability to handle
simple conflicts in practice.

The Challenge of Increasing Complexity

[49]

Synchronizing multiple types of data
At this point, we've hard coded the data with the string type. But usually we will need to
store varieties of data, such as numbers, booleans, objects, and so on.

If we were writing JavaScript, we would not actually need to change anything, as the
implementation does not have anything to do with certain data types. In TypeScript, we
don't need to do much either: just change the type of every related value to any. But that
means you are losing type safety, which would definitely be okay if you are happy with
that.

But taking my own preferences, I would like every variable, parameter, and property to be
typed if it's possible. So we may still have a data item with value of type any:

export interface ClientDataItem {
 id: string;
 value: any;
}

We can also have derived interfaces for specific data types:

export interface ClientStringDataItem extends ClientDataItem {
 value: string;
}

export interface ClientNumberDataItem extends ClientDataItem {
 value: number;
}

But this does not seem to be good enough. Fortunately, TypeScript provides generics, so we
can rewrite the preceding code as follows:

export interface ClientDataItem<T> {
 id: string;
 value: T;
}

Assuming we have a store that accepts multiple types of data items – for example, number
and string – we can declare it as follows with the help of the union type:

export interface ClientDataStore {
 items: {
 [id: string]: ClientDataItem<number | string>;
 };
}

The Challenge of Increasing Complexity

[50]

If you remember that we are doing something for offline mobile apps, you might be
questioning the long property names in changes such as lastModifiedTime. This is a fair
question, and an easy fix is to use tuple types, maybe along with enums:

const enum ClientChangeIndex {
 lastModifiedType,
 value
}

type ClientChange<T> = [number, T];

let change: ClientChange<string> = [0, 'foo'];
let value = change[ClientChangeIndex.value];

You can apply less or more of the typing things we are talking about depending on your
preferences. If you are not familiar with them yet, you can read more here: h t t p : / / w w w . t y p

e s c r i p t l a n g . o r g / h a n d b o o k.

Supporting multiple clients with incremental data
Making the typing system happy with multiple data types is easy. But in the real world, we
don't resolve conflicts of all data types by simply comparing the last modified times. An
example is counting the daily active time of a user cross devices.

It's quite clear that we need to have every piece of active time in a day on multiple devices
summed up. And this is how we are going to achieve that:

Accumulate active durations between synchronizations on the client.1.
Add a UID (unique identifier) to every piece of time before synchronizing with2.
the server.
Increase the server-side value if the UID does not exist yet, and then add the UID3.
to that data item.

But before we actually get our hands on those steps, we need a way to distinguish
incremental data items from normal ones, for example, by adding a type property.

As our synchronizing strategy is server-centered, related information is only required for
synchronizing requests and conflict merging. Synchronizing responses does not need to
include the details of changes, but just merged values.

http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook
http://www.typescriptlang.org/handbook

The Challenge of Increasing Complexity

[51]

I will stop telling how to update every interface step by step as we are
approaching the final structure. But if you have any problems with that,
you can check out the complete code bundle for inspiration.

Updating the client side
First of all, we need the client to support incremental changes. And if you've thought about
this, you might already be confused about where to put the extra information, such as UIDs.

This is because we were mixing up the concept change (noun) with value. It was not a
problem before because, besides the last modified time, the value is what a change is about.
We used a simple map to store the last modified times and kept the store clean from
redundancy, which balanced well under that scenario.

But now we need to distinguish between these two concepts:

Value: a value describes what a data item is in a static way
Change: a change describes the information that may transform the value of a
data item from one to another

We need to have a general type of changes as well as a new data structure for incremental
changes with a numeric value:

type DataType = 'value' | 'increment';

interface ClientChange {
 type: DataType;
}

interface ClientValueChange<T> extends ClientChange {
 type: 'value';
 lastModifiedTime: number;
 value: T;
}

interface ClientIncrementChange extends ClientChange {
 type: 'increment';
 uid: string;
 increment: number;
}

The Challenge of Increasing Complexity

[52]

We are using the string literal type here, which was introduced in
TypeScript 1.8. To learn more, please refer to the TypeScript handbook as
we mentioned before.

Similar changes to the data store structure should be made. And when we update an item
on the client side, we need to apply the correct operations based on different data types:

update(id: string, type: 'increment', increment: number): void;
update<T>(id: string, type: 'value', value: T): void;
update<T>(id: string, type: DataType, value: T): void;
update<T>(id: string, type: DataType, value: T): void {
 let store = this.store;
 let items = store.items;
 let storedChanges = store.changes;
 if (type === 'value') {
 // ...
 } else if (type === 'increment') {
 // ...
 } else {
 throw new TypeError('Invalid data type');
 }
}

Use the following code for normal changes (while type equals 'value'):

let change: ClientValueChange<T> = {
 type: 'value',
 lastModifiedTime: Date.now(),
 value
};

storedChanges[id] = change;

if (hasOwnProperty.call(items, id)) {
 items[id].value = value;
} else {
 items[id] = {
 id,
 type,
 value
 };
}

The Challenge of Increasing Complexity

[53]

For incremental changes, it takes a few more lines:

let storedChange = storedChanges[id] as ClientIncrementChange;

if (storedChange) {
 storedChange.increment += <any>value as number;
} else {
 storedChange = {
 type: 'increment',
 uid: Date.now().toString(),
 increment: <any>value as number
 };
 storedChanges[id] = storedChange;
}

It's my personal preference to use <T> for any casting and as T for non-
any castings. Though it has been used in languages like C#, the as
operator in TypeScript was originally introduced for compatibilities with
XML tags in JSX. You can also write <number><any>value or value as
any as number here if you like.

Don't forget to update the stored value. Just change = to += comparing to updating normal
data items:

if (hasOwnProperty.call(items, id)) {
 items[id].value += value;
} else {
 items[id] = {
 id,
 type,
 value
 };
}

That's not hard at all. But hey, we see branches.

We are writing branches all the time, but what are the differences between branches such as
if (type === 'foo') { ... } and branches such as if (item.timestamp >
lastTimestamp) { ... }? Let's keep this question in mind and move on.

With necessary information added by the update method, we can now update the
synchronize method of the client. But there is a flaw in practical scenarios: a
synchronizing request is sent to the server successfully, but the client failed to receive the
response from the server. In this situation, when update is called after a failed
synchronization, the increment is added to the might-be-synchronized change (identified by
its UID), which will be ignored by the server in future synchronizations. To fix this, we'll

The Challenge of Increasing Complexity

[54]

need to add a mark to all incremental changes that have started a synchronizing process,
and avoid accumulating these changes. Thus, we need to create another change for the
same data item.

This is actually a nice hint: as a change is about information that transforms a value from
one to another, several changes pending synchronization might eventually be applied to
one single data item:

interface ClientChangeList<T extends ClientChange> {
 type: DataType;
 changes: T[];
}

interface SyncingRequest {
 timestamp: number;
 changeLists: {
 [id: string]: ClientChangeList<ClientChange>;
 };
}

interface ClientIncrementChange extends ClientChange {
 type: 'increment';
 synced: boolean;
 uid: string;
 increment: number;
}

Now when we are trying to update an incremental data item, we need to get its last change
from the change list (if any) and see whether it has ever been synchronized. If it has ever
been involved in a synchronization, we create a new change instance. Otherwise, we'll just
accumulate the increment property value of the last change on the client side:

let changeList = storedChangeLists[id];
let changes = changeList.changes;
let lastChange =
 changes[changes.length - 1] as ClientIncrementChange;

if (lastChange.synced) {
 changes.push({
 synced: false,
 uid: Date.now().toString(),
 increment: <any>value as number
 } as ClientIncrementChange);
} else {
 lastChange.increment += <any>value as number;
}

The Challenge of Increasing Complexity

[55]

Or, if the change list does not exist yet, we'll need to set it up:

let changeList = {
 type: 'increment',
 changes: [
 {
 synced: false,
 uid: Date.now().toString(),
 increment: <any>value as number
 } as ClientIncrementChange
]
};

store.changeLists[id] = changeList;

We also need to update synchronize method to mark an incremental change as synced
before starting the synchronization with the server. But the implementation is for you to do
on your own.

Updating server side
Before we add the logic for handling incremental changes, we need to make server-side
code adapt to the new data structure:

for (let id of Object.keys(clientChangeLists)) {
 let clientChangeList = clientChangeLists[id];
 let type = clientChangeList.type;
 let clientChanges = clientChangeList.changes;
 if (type === 'value') {
 // ...
 } else if (type === 'increment') {
 // ...
 } else {
 throw new TypeError('Invalid data type');
 }
}

The change list of a normal data item will always contain one and only one change. Thus
we can easily migrate what we've written:

let clientChange = changes[0] as ClientValueChange<any>;

Now for incremental changes, we need to cumulatively apply possibly multiple changes in
a single change list to a data item:

let item = items[id];

The Challenge of Increasing Complexity

[56]

for (
 let clientChange
 of clientChanges as ClientIncrementChange[]
) {
 let {
 uid,
 increment
 } = clientChange;
 if (item.uids.indexOf(uid) < 0) {
 item.value += increment;
 item.uids.push(uid);
 }
}

But remember to take care of the timestamp or cases in which no item with a specified ID
exists:

let item: ServerDataItem<any>;

if (hasOwnProperty.call(items, id)) {
 item = items[id];
 item.timestamp = now;
} else {
 item = items[id] = {
 id,
 type,
 timestamp: now,
 uids: [],
 value: 0
 };
}

Without knowing the current value of an incremental data item on the client, we cannot
assure that the value is up to date. Previously, we decided whether to respond with a new
value by comparing the timestamp with the timestamp of the current synchronization, but
that does not work anymore for incremental changes.

A simple way to make this work is by deleting keys from clientChangeLists that still
need to be synchronized to the client. And when preparing responses, it can skip IDs that
are still in clientChangeLists:

if (
 item.timestamp > lastTimestamp &&
 !hasOwnProperty.call(clientChangeLists, id)
) {
 serverChanges[id] = item.value;
}

The Challenge of Increasing Complexity

[57]

Remember to add delete clientChangeLists[id]; for normal data items that did not
survive conflicts resolving as well.

Now we have implemented a synchronizing logic that can do quite a lot jobs for offline
applications. Earlier, I raised a question about increasing branches that do not look good.
But if you know your features are going to end there, or at least with limited changes, it's
not a bad implementation, although we'll soon cross the balance point, as meeting 80% of
the needs won't make us happy enough.

Supporting more conflict merging
Though we have met the needs of 80%, there is still a big chance that we might want some
extra features. For example, we want the ratio of the days marked as available by the user in
the current month, and the user should be able to add or remove days from the list. We can
achieve that in different ways, and we'll choose a simple way, as usual.

We are going to support synchronizing a set with operations such as add and remove, and
calculate the ratio on the client.

New data structures
To describe set changes, we need a new ClientChange type. When we are adding or
removing an element from a set, we only care about the last operation to the same element.
This means that the following:

If multiple operations are made to the same element, we only need to keep the1.
last one.
A time property is required for resolving conflicts.2.

So here are the new types:

enum SetOperation {
 add,
 remove
}

interface ClientSetChange extends ClientChange {
 element: number;
 time: number;
 operation: SetOperation;
}

The Challenge of Increasing Complexity

[58]

The set data stored on the server side is going to be a little different. We'll have a map with
the element (in the form of a string) as key, and a structure with operation and time
properties as the values:

interface ServerSetElementOperationInfo {
 operation: SetOperation;
 time: number;
}

Now we have enough information to resolve conflicts from multiple clients. And we can
generate the set by keys with a little help from the last operations done to the elements.

Updating client side
And now, the client-side update method gets a new part-time job: saving set changes just
like value and incremental changes. We need to update the method signature for this new
job (do not forget to add 'set' to DataType):

update(
 id: string,
 type: 'set',
 element: number,
 operation: SetOperation
): void;
update<T>(
 id: string,
 type: DataType,
 value: T,
 operation?: SetOperation
): void;

We also need to add another else if:

else if (type === 'set') {
 let element = <any>value as number;
 if (hasOwnProperty.call(storedChangeLists, id)) {
 // ...
 } else {
 // ...
 }
}

The Challenge of Increasing Complexity

[59]

If there are already operations made to this set, we need to find and remove that last
operation to the target element (if any). Then append a new change with the latest
operation:

let changeList = storedChangeLists[id];
let changes = changeList.changes as ClientSetChange[];

for (let i = 0; i < changes.length; i++) {
 let change = changes[i];
 if (change.element === element) {
 changes.splice(i, 1);
 break;
 }
}

changes.push({
 element,
 time: Date.now(),
 operation
});

If no change has been made since last successful synchronization, we'll need to create a new
change list for the latest operation:

let changeList: ClientChangeList<ClientSetChange> = {
 type: 'set',
 changes: [
 {
 element,
 time: Date.now(),
 operation
 }
]
};

storedChangeLists[id] = changeList;

And again, do not forget to update the stored value. This is a little bit more than just
assigning or accumulating the value, but it should still be quite easy to implement.

The Challenge of Increasing Complexity

[60]

Updating the server side
Just like we've done with the client, we need to add a corresponding else if branch to
merge changes of type 'set'. We are also deleting the ID from clientChangeLists
regardless of whether there are newer changes for a simpler implementation:

else if (type === 'set') {
 let item: ServerDataItem<{
 [element: string]: ServerSetElementOperationInfo;
 }>;
 delete clientChangeLists[id];
}

The conflict resolving logic is quite similar to what we do to the conflicts of normal values.
We just need to make comparisons to each element, and only keep the last operation.

And when preparing the response that will be synchronized to the client, we can generate
the set by putting together elements with add as their last operations:

if (item.type === 'set') {
 let operationInfos: {
 [element: string]: ServerSetElementOperationInfo;
 } = item.value;
 serverChanges[id] = Object
 .keys(operationInfos)
 .filter(element =>
 operationInfos[element].operation ===
 SetOperation.add
)
 .map(element => Number(element));
} else {
 serverChanges[id] = item.value;
}

Finally, we have a working mess (if it actually works). Cheers!

Things that go wrong while implementing
everything
When we started to add features, things were actually fine, if you are not obsessive about
pursuing the feeling of design. Then we sensed the code being a little awkward as we saw
more and more nested branches.

The Challenge of Increasing Complexity

[61]

So now it's time to answer the question, what are the differences between the two kinds of
branch we wrote? My understanding of why I am feeling awkward about the if (type
=== 'foo') { ... } branch is that it's not strongly related to the context. Comparing
timestamps, on the other hand, is a more natural part of a certain synchronizing process.

Again, I am not saying this is bad. But this gives us a hint about where we might start our
surgery from when we start to lose control (due to our limited brain capacity, it's just a
matter of complexity).

Piling up similar yet parallel processes
Most of the code in this chapter is to handle the process of synchronizing data between a
client and a server. To get adapted to new features, we just kept adding new things into
methods, such as update and synchronize.

You might have already found that most outlines of the logic can be, and should be, shared
across multiple data types. But we didn't do that.

If we look into what's written, the duplication is actually minor judging from the aspect of
code texts. Taking the update method of the client, for example, the logic of every branch
seems to differ. If finding abstractions has not become your built-in reaction, you might just
stop there. Or if you are not a fan of long functions, you might refactor the code by splitting
it into small ones of the same class. That could make things a little better, but far from
enough.

Data stores that are tremendously simplified
In the implementation, we were playing heavily and directly with ideal in-memory stores. It
would be nice if we could have a wrapper for it, and make the real store interchangeable.

This might not be the case for this implementation as it is based on extremely ideal and
simplified assumptions and requirements. But adding a wrapper could be a way to provide
useful helpers.

The Challenge of Increasing Complexity

[62]

Getting things right
So let's get out of the illusion of comparing code one character at a time and try to find an
abstraction that can be applied to updating all of these data types. There are two key points
of this abstraction that have already been mentioned in the previous section:

A change contains the information that can transform the value of an item from
one to another
Multiple changes could be generated or applied to one data item during a single
synchronization

Now, starting from changes, let's think about what happens when an update method of a
client is called.

Finding abstraction
Take a closer look to the method update of client:

For data of the 'value' type, first we create the change, including a new value,
and then update the change list to make the newly created change the only one.
After that, we update the value of data item.
For data of the 'increment' type, we add a change including the increment in
the change list; or if a change that has not be synchronized already exists, update
the increment of the existing change. And then, we update the value of the data
item.
Finally, for data of the 'set' type, we create a change reflecting the latest
operation. After adding the new change to the change list, we also remove
changes that are no longer necessary. Then we update the value of the data item.

Things are getting clear. Here is what's happening to these data types when update is
called:

Create new change.1.
Merge the new change to the change list.2.
Apply the new change to the data item.3.

Now it's even better. Every step is different for different data types, but different steps share
the same outline; what we need to do is to implement different strategies for different data
types.

The Challenge of Increasing Complexity

[63]

Implementing strategies
Doing all kind of changes with a single update function could be confusing. And before we
move on, let's split it into three different methods: update for normal values, increase for
incremental values, and addTo/removeFrom for sets.

Then we are going to create a new private method called applyChange, which will take the
change created by other methods and continue with step 2 and step 3. It accepts a strategy
object with two methods: append and apply:

interface ClientChangeStrategy<T extends ClientChange> {
 append(list: ClientChangeList<T>, change: T): void;
 apply(item: ClientDataItem<any>, change: T): void;
}

For a normal data item, the strategy object could be as follows:

let strategy: ClientChangeStrategy<ClientValueChange<any>> = {
 append(list, change) {
 list.changes = [change];
 },
 apply(item, change) {
 item.value = change.value;
 }
};

And for incremental data item, it takes a few more lines. First, the append method:

let changes = list.changes;
let lastChange = changes[changes.length];

if (!lastChange || lastChange.synced) {
 changes.push(change);
} else {
 lastChange.increment += change.increment;
}

The append method is followed by the apply method:

if (item.value === undefined) {
 item.value = change.increment;
} else {
 item.value += change.increment;
}

The Challenge of Increasing Complexity

[64]

Now in the applyChange method, we need to take care of the creation of non-existing
items and change lists, and invoke different append and apply methods based on different
data types.

The same technique can be applied to other processes. Though detailed processes that apply
to the client and the server differ, we can still write them together as modules.

Wrapping stores
We are going to make a lightweight wrapper around plain in-memory store objects with the
ability to read and write, taking the server-side store as an example:

export class ServerStore {
 private items: {
 [id: string]: ServerDataItem<any>;
 } = Object.create(null);
}

export class Server {
 constructor(
 public store: ServerStore
) { }
}

To fit our requirements, we need to implement get, set, and getAll methods (or even
better, a find method with conditions) for ServerStore:

get<T, TExtra extends ServerDataItemExtra>(id: string):
 ServerDataItem<T> & TExtra {
 return hasOwnProperty.call(this.items, id) ?
 this.items[id] as ServerDataItem<T> & TExtra : undefined;
}

set<T, TExtra extends ServerDataItemExtra>(
 id: string,
 item: ServerDataItem<T> & Textra
): void {
 this.items[id] = item;
}

getAll<T, TExtra extends ServerDataItemExtra>():
 (ServerDataItem<T> & TExtra)[] {
 let items = this.items;
 return Object
 .keys(items)

The Challenge of Increasing Complexity

[65]

 .map(id => items[id] as ServerDataItem<T> & TExtra);
}

You may have noticed from the interfaces and generics that I've also torn down
ServerDataItem into intersection types of the common part and extras.

Summary
In this chapter, we've been part of the evolution of a simplified yet reality-related project.
Starting with a simple code base that couldn't be wrong, we added a lot of features and
experienced the process of putting acceptable changes together and making the whole thing
a mess.

We were always trying to write readable code by either naming things nicely or adding
semantically necessary redundancies, but that won't help much as the complexity grows.

During the process, we've learned how offline synchronizing works. And with the help of
the most common design patterns, such as the Strategy Pattern, we managed to split the
project into small and controllable parts.

In the upcoming chapters, we'll catalog more useful design patterns with code examples in
TypeScript, and try to apply those design patterns to specific issues.

3
Creational Design Patterns

Creational design patterns in object-oriented programming are design patterns that are to
be applied during the instantiation of objects. In this chapter, we'll be talking about patterns
in this category.

Consider we are building a rocket, which has payload and one or more stages:

class Payload {
 weight: number;
}

class Engine {
 thrust: number;
}

class Stage {
 engines: Engine[];
}

In old-fashioned JavaScript, there are two major approaches to building such a rocket:

Constructor with new operator
Factory function

For the first approach, things could be like this:

function Rocket() {
 this.payload = {
 name: 'cargo ship'
 };
 this.stages = [
 {
 engines: [
 // ...

Creational Design Patterns

[67]

]
 }
];
}

var rocket = new Rocket();

And for the second approach, it could be like this:

function buildRocket() {
 var rocket = {};
 rocket.payload = {
 name: 'cargo ship'
 };
 rocket.stages = [
 {
 thrusters: [
 // ...
]
 }
];
 return rocket;
}

var rocket = buildRocket();

From a certain angle, they are doing pretty much the same thing, but semantically they
differ a lot. The constructor approach suggests a strong association between the building
process and the final product. The factory function, on the other hand, implies an interface
of its product and claims the ability to build such a product.

However, neither of the preceding implementations provides the flexibility to modularly
assemble rockets based on specific needs; this is what creational design patterns are about.

In this chapter, we'll cover the following creational patterns:

Factory method: By using abstract methods of a factory instead of the constructor
to build instances, this allows subclasses to change what's built by implementing
or overriding these methods.
Abstract factory: Defining the interface of compatible factories and their products.
Thus by changing the factory passed, we can change the family of built products.
Builder: Defining the steps of building complex objects, and changing what's built
either by changing the sequence of steps, or using a different builder
implementation.

Creational Design Patterns

[68]

Prototype: Creating objects by cloning parameterized prototypes. Thus by
replacing these prototypes, we may build different products.
Singleton: Ensuring only one instance (under a certain scope) will be created.

It is interesting to see that even though the factory function approach to creating objects in
JavaScript looks primitive, it does have parts in common with some patterns we are going
to talk about (although applied to different scopes).

Factory method
Under some scenarios, a class cannot predict exactly what objects it will create, or its
subclasses may want to create more specified versions of these objects. Then, the Factory
Method Pattern can be applied.

The following picture shows the possible structure of the Factory Method Pattern applied to
creating rockets:

A factory method is a method of a factory that builds objects. Take building rockets as an
example; a factory method could be a method that builds either the entire rocket or a single
component. One factory method might rely on other factory methods to build its target
object. For example, if we have a createRocket method under the Rocket class, it would
probably call factory methods like createStages and createPayload to get the necessary
components.

Creational Design Patterns

[69]

The Factory Method Pattern provides some flexibility upon reasonable complexity. It allows
extendable usage by implementing (or overriding) specific factory methods. Taking
createStages method, for example, we can create a one-stage rocket or a two-stage rocket
by providing different createStages method that return one or two stages respectively.

Participants
The participants of a typical Factory Method Pattern implementation include the following:

Product: Rocket

Define an abstract class or an interface of a rocket that will be created as
the product.

Concrete product: FreightRocket

Implement a specific rocket product.

Creator: RocketFactory

Define the optionally abstract factory class that creates products.

Concrete creator: FreightRocketFactory

Implement or overrides specific factory methods to build products on demand.

Pattern scope
The Factory Method Pattern decouples Rocket from the constructor implementation and
makes it possible for subclasses of a factory to change what's built accordingly. A concrete
creator still cares about what exactly its components are and how they are built. But the
implementation or overriding usually focuses more on each component, rather than the
entire product.

Implementation
Let's begin with building a simple one-stage rocket that carries a 0-weight payload as the
default implementation:

class RocketFactory {

Creational Design Patterns

[70]

 buildRocket(): Rocket { }
 createPayload(): Payload { }
 createStages(): Stage[] { }
}

We start with creating components. We will simply return a payload with 0 weight for the
factory method createPayload and one single stage with one single engine for the factory
method createStages:

createPayload(): Payload {
 return new Payload(0);
}

createStages(): Stage[] {
 let engine = new Engine(1000);
 let stage = new Stage([engine]);
 return [stage];
}

After implementing methods to create the components of a rocket, we are going to put them
together with the factory method buildRocket:

buildRocket(): Rocket {
 let rocket = new Rocket();
 let payload = this.createPayload();
 let stages = this.createStages();
 rocket.payload = payload;
 rocket.stages = stages;
 return rocket;
}

Now we have the blueprint of a simple rocket factory, yet with certain extensibilities. To
build a rocket (that does nothing so far), we just need to instantiate this very factory and call
its buildRocket method:

let rocketFactory = new RocketFactory();
let rocket = rocketFactory.buildRocket();

Next, we are going to build two-stage freight rockets that send satellites into orbit. Thus,
there are some differences compared to the basic factory implementation.

First, we have a different payload, satellites, instead of a 0-weight placeholder:

class Satellite extends Payload {
 constructor(
 public id: number
) {

Creational Design Patterns

[71]

 super(200);
 }
}

Second, we now have two stages, probably with different specifications. The first stage is
going to have four engines:

class FirstStage extends Stage {
 constructor() {
 super([
 new Engine(1000),
 new Engine(1000),
 new Engine(1000),
 new Engine(1000)
]);
 }
}

While the second stage has only one:

class SecondStage extends Stage {
 constructor() {
 super([
 new Engine(1000)
]);
 }
}

Now we have what this new freight rocket would look like in mind, let's extend the factory:

type FreightRocketStages = [FirstStage, SecondStage];

class FreightRocketFactory extends RocketFactory {
 createPayload(): Satellite { }
 createStages(): FreightRocketStages { }
}

Here we are using the type alias of a tuple to represent the stages sequence
of a freight rocket, namely the first and second stages. To find out more
about type aliases, please refer to h t t p s : / / w w w . t y p e s c r i p t l a n g . o r g / d o c

s / h a n d b o o k / a d v a n c e d - t y p e s . h t m l.

As we added the id property to Satellite, we might need a counter for each instance of
the factory, and then create every satellite with a unique ID:

nextSatelliteId = 0;

createPayload(): Satellite {

https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html
https://www.typescriptlang.org/docs/handbook/advanced-types.html

Creational Design Patterns

[72]

 return new Satellite(this.nextSatelliteId++);
}

Let's move on and implement the createStages method that builds first and second stage
of the rocket:

createStages(): FreightRocketStages {
 return [
 new FirstStage(),
 new SecondStage()
];
}

Comparing to the original implementation, you may have noticed that we've automatically
decoupled specific stage building processes from assembling them into constructors of
different stages. It is also possible to apply another creational pattern for the initiation of
every stage if it helps.

Consequences
In the preceding implementation, the factory method buildRocket handles the outline of
the building steps. We were lucky to have the freight rocket in the same structure as the
very first rocket we had defined.

But that won't always happen. If we want to change the class of products (Rocket), we'll
have to override the entire buildRocket with everything else but the class name. This
looks frustrating but it can be solved, again, by decoupling the creation of a rocket instance
from the building process:

buildRocket(): Rocket {
 let rocket = this.createRocket();
 let payload = this.createPayload();
 let stages = this.createStages();
 rocket.payload = payload;
 rocket.stages = stages;
 return rocket;
}

createRocket(): Rocket {
 return new Rocket();
}

Thus we can change the rocket class by overriding the createRocket method. However,
the return type of the buildRocket of a subclass (for example, FreightRocketFactory)

Creational Design Patterns

[73]

is still Rocket instead of something like FreightRocket. But as the object created is
actually an instance of FreightRocket, it is valid to cast the type by type assertion:

let rocket = FreightRocketFactory.buildRocket() as FreightRocket;

The trade-off is a little type safety, but that can be eliminated using generics. Unfortunately,
in TypeScript what you get from a generic type argument is just a type without an actual
value. This means that we may need another level of abstraction or other patterns that can
use the help of type inference to make sure of everything.

The former option would lead us to the Abstract Factory Pattern.

Type safety could be one reason to consider when choosing a pattern
but usually, it will not be decisive. Please note we are not trying to switch
a pattern for this single reason, but just exploring.

Abstract Factory
The Abstract Factory Pattern usually defines the interfaces of a collection of factory
methods, without specifying concrete products. This allows an entire factory to be
replaceable, in order to produce different products following the same production outline:

Creational Design Patterns

[74]

The details of the products (components) are omitted from the diagram, but do notice that
these products belong to two parallel families: ExperimentalRocket and
FreightRocket.

Different from the Factory Method Pattern, the Abstract Factory Pattern extracts another
part called client that take cares of shaping the outline of the building process. This makes
the factory part focused more on producing each component.

Participants
The participants of a typical Abstract Factory Pattern implementation include the following:

Abstract factory: RocketFactory

Defines the industrial standards of a factory which provide interfaces for
manufacturing components or complex products.

Concrete factory: ExperimentalRocketFactory, FreightRocketFactory

Implements the interfaces defined by the abstract factory and builds concrete
products.

Abstract products: Rocket, Payload, Stage[]

Define the interfaces of the products the factories are going to build.

Concrete products: ExperimentalRocket/FreightRocket,
ExperimentalPayload/Satellite, and so on.

Presents actual products that are manufactured by a concrete factory.

Client:

Arranges the production process across factories (only if these factories
conform to industrial standards).

Creational Design Patterns

[75]

Pattern scope
Abstract Factory Pattern makes the abstraction on top of different concrete factories. At the
scope of a single factory or a single branch of factories, it just works like the Factory Method
Pattern. However, the highlight of this pattern is to make a whole family of products
interchangeable. A good example could be components of themes for a UI implementation.

Implementation
In the Abstract Factory Pattern, it is the client interacting with a concrete factory for
building integral products. However, the concrete class of products is decoupled from the
client during design time, while the client cares only about what a factory and its products
look like instead of what exactly they are.

Let's start by simplifying related classes to interfaces:

interface Payload {
 weight: number;
}

interface Stage {
 engines: Engine[];
}

interface Rocket {
 payload: Payload;
 stages: Stage[];
}

And of course the abstract factory itself is:

interface RocketFactory {
 createRocket(): Rocket;
 createPayload(): Payload;
 createStages(): Stage[];
}

The building steps are abstracted from the factory and put into the client, but we still need
to implement it anyway:

class Client {
 buildRocket(factory: RocketFactory): Rocket {
 let rocket = factory.createRocket();
 rocket.payload = factory.createPayload();
 rocket.stages = factory.createStages();

Creational Design Patterns

[76]

 return rocket;
 }
}

Now we have the same issue we previously had when we implemented the Factory Method
Pattern. As different concrete factories build different rockets, the class of the product
changes. However, now we have generics to the rescue.

First, we need a RocketFactory interface with a generic type parameter that describes a
concrete rocket class:

interface RocketFactory<T extends Rocket> {
 createRocket(): T;
 createPayload(): Payload;
 createStages(): Stage[];
}

And second, update the buildRocket method of the client to support generic factories:

 buildRocket<T extends Rocket>(
 factory: RocketFactory<T>
): T { }

Thus, with the help of the type system, we will have rocket type inferred based on the type
of a concrete factory, starting with ExperimentalRocket and
ExperimentalRocketFactory:

class ExperimentalRocket implements Rocket { }

class ExperimentalRocketFactory
implements RocketFactory<ExperimentalRocket> { }

If we call the buildRocket method of a client with an instance of
ExperimentalRocketFactory, the return type will automatically be
ExperimentalRocket:

let client = new Client();
let factory = new ExperimentalRocketFactory();
let rocket = client.buildRocket(factory);

Before we can complete the implementation of the ExperimentalRocketFactory object,
we need to define concrete classes for the products of the family:

class ExperimentalPayload implements Payload {
 weight: number;
}

Creational Design Patterns

[77]

class ExperimentalRocketStage implements Stage {
 engines: Engine[];
}

class ExperimentalRocket implements Rocket {
 payload: ExperimentalPayload;
 stages: [ExperimentalRocketStage];
}

Trivial initializations of payload and stage are omitted for more compact
content. The same kinds of omission may be applied if they are not
necessary for this book.

And now we may define the factory methods of this concrete factory class:

class ExperimentalRocketFactory
implements RocketFactory<ExperimentalRocket> {
 createRocket(): ExperimentalRocket {
 return new ExperimentalRocket();
 }
 createPayload(): ExperimentalPayload {
 return new ExperimentalPayload();
 }
 createStages(): [ExperimentalRocketStage] {
 return [new ExperimentalRocketStage()];
 }
}

Let's move on to another concrete factory that builds a freight rocket and products of its
family, starting with the rocket components:

class Satellite implements Payload {
 constructor(
 public id: number,
 public weight: number
) { }
}

class FreightRocketFirstStage implements Stage {
 engines: Engine[];
}

class FreightRocketSecondStage implements Stage {
 engines: Engine[];
}

type FreightRocketStages =

Creational Design Patterns

[78]

 [FreightRocketFirstStage, FreightRocketSecondStage];

Continue with the rocket itself:

class FreightRocket implements Rocket {
 payload: Satellite;
 stages: FreightRocketStages;
}

With the structures or classes of the freight rocket family defined, we are ready to
implement its factory:

class FreightRocketFactory
implements RocketFactory<FreightRocket> {
 nextSatelliteId = 0;
 createRocket(): FreightRocket {
 return new FreightRocket();
 }
 createPayload(): Satellite {
 return new Satellite(this.nextSatelliteId++, 100);
 }
 createStages(): FreightRocketStages {
 return [
 new FreightRocketFirstStage(),
 new FreightRocketSecondStage()
];
 }
}

Now we once again have two families of rockets and their factories, and we can use the
same client to build different rockets by passing different factories:

let client = new Client();

let experimentalRocketFactory = new ExperimentalRocketFactory();
let freightRocketFactory = new FreightRocketFactory();

let experimentalRocket =
 client.buildRocket(experimentalRocketFactory);

let freightRocket = client.buildRocket(freightRocketFactory);

Creational Design Patterns

[79]

Consequences
The Abstract Factory Pattern makes it easy and smooth to change the entire family of
products. This is the direct benefit brought by the factory level abstraction. As a
consequence, it also brings other benefits, as well as some disadvantages at the same time.

On the one hand, it provides better compatibility within the products in a specific family.
As the products built by a single factory are usually meant to work together, we can assume
that they tend to cooperate more easily.

But on the other hand, it relies on a common outline of the building process, although for a
well-abstracted building process, this won't always be an issue. We can also parameterize
factory methods on both concrete factories and the client to make the process more flexible.

Of course, an abstract factory does not have to be a pure interface or an abstract class with
no methods implemented. An implementation in practice should be decided based on
detailed context.

Although the Abstract Factory Pattern and Factory Method Pattern have abstractions of
different levels, what they encapsulate are similar. For building a product with multiple
components, the factories split the products into components to gain flexibility. However, a
fixed family of products and their internal components may not always satisfy the
requirements, and thus we may consider the Builder Pattern as another option.

Builder
While Factory Patterns expose the internal components (such as the payload and stages of a
rocket), the Builder Pattern encapsulates them by exposing only the building steps and
provides the final products directly. At the same time, the Builder Pattern also encapsulates
the internal structures of a product. This makes it possible for a more flexible abstraction
and implementation of building complex objects.

Creational Design Patterns

[80]

The Builder Pattern also introduces a new role called director, as shown in the following
diagram. It is quite like the client in the Abstract Factory Pattern, although it cares only
about build steps or pipelines:

Now the only constraint from RocketBuilder that applies to a product of its subclass is
the overall shape of a Rocket. This might not bring a lot of benefits with the Rocket
interface we previously defined, which exposes some details of the rocket that the clients
(by clients I mean those who want to send their satellites or other kinds of payload to space)
may not care about that much. For these clients, what they want to know might just be
which orbit the rocket is capable of sending their payloads to, rather than how many and
what stages this rocket has.

Participants
The participants of a typical Builder Pattern implementation include the following:

Builder: RocketBuilder

Defines the interface of a builder that builds products.

Concrete builder: FalconBuilder

Implements methods that build parts of the products, and keeps track of the
current building state.

Creational Design Patterns

[81]

Director

Defines the steps and collaborates with builders to build products.

Final product: Falcon

The product built by a builder.

Pattern scope
The Builder Pattern has a similar scope to the Abstract Factory Pattern, which extracts
abstraction from a complete collection of operations that will finally initiate the products.
Compared to the Abstract Factory Pattern, a builder in the Builder Pattern focuses more on
the building steps and the association between those steps, while the Abstract Factory
Pattern puts that part into the clients and makes its factory focus on producing components.

Implementation
As now we are assuming that stages are not the concern of the clients who want to buy
rockets to carry their payloads, we can remove the stages property from the general
Rocket interface:

interface Rocket {
 payload: Payload;
}

There is a rocket family called sounding rocket that sends probes to near space. And this
means we don't even need to have the concept of stages. SoundingRocket is going to have
only one engine property other than payload (which will be a Probe), and the only engine
will be a SolidRocketEngine:

class Probe implements Payload {
 weight: number;
}

class SolidRocketEngine extends Engine { }

class SoundingRocket implements Rocket {
 payload: Probe;
 engine: SolidRocketEngine;
}

Creational Design Patterns

[82]

But still we need rockets to send satellites, which usually use LiquidRocketEngine:

class LiquidRocketEngine extends Engine {
 fuelLevel = 0;
 refuel(level: number): void {
 this.fuelLevel = level;
 }
}

And we might want to have the corresponding LiquidRocketStage abstract class that
handles refuelling:

abstract class LiquidRocketStage implements Stage {
 engines: LiquidRocketEngine[] = [];
 refuel(level = 100): void {
 for (let engine of this.engines) {
 engine.refuel(level);
 }
 }
}

Now we can update FreightRocketFirstStage and FreightRocketSecondStage as
subclasses of LiquidRocketStage:

class FreightRocketFirstStage extends LiquidRocketStage {
 constructor(thrust: number) {
 super();
 let enginesNumber = 4;
 let singleEngineThrust = thrust / enginesNumber;
 for (let i = 0; i < enginesNumber; i++) {
 let engine =
 new LiquidRocketEngine(singleEngineThrust);
 this.engines.push(engine);
 }
 }
}

class FreightRocketSecondStage extends LiquidRocketStage {
 constructor(thrust: number) {
 super();
 this.engines.push(new LiquidRocketEngine(thrust));
 }
}

The FreightRocket will remain the same as it was:

type FreightRocketStages =
 [FreightRocketFirstStage, FreightRocketSecondStage];

Creational Design Patterns

[83]

class FreightRocket implements Rocket {
 payload: Satellite;
 stages = [] as FreightRocketStages;
}

And, of course, there is the builder. This time, we are going to use an abstract class that has
the builder partially implemented, with generics applied:

abstract class RocketBuilder<
 TRocket extends Rocket,
 TPayload extends Payload
> {
 createRocket(): void { }
 addPayload(payload: TPayload): void { }
 addStages(): void { }
 refuelRocket(): void { }
 abstract get rocket(): TRocket;
}

There's actually no abstract method in this abstract class. One of the
reasons is that specific steps might be optional to certain builders. By
implementing no-op methods, the subclasses can just leave the steps they
don't care about empty.

Here is the implementation of the Director class:

class Director {
 prepareRocket<
 TRocket extends Rocket,
 TPayload extends Payload
 >(
 builder: RocketBuilder<TRocket, TPayload>,
 payload: TPayload
): TRocket {
 builder.createRocket();
 builder.addPayload(payload);
 builder.addStages();
 builder.refuelRocket();
 return builder.rocket;
 }
}

Be cautious, without explicitly providing a building context, the builder
instance relies on the building pipelines being queued (either
synchronously or asynchronously). One way to avoid risk (especially with
asynchronous operations) is to initialize a builder instance every time you
prepare a rocket.

Creational Design Patterns

[84]

Now it's time to implement concrete builders, starting with SoundingRocketBuilder,
which builds a SoundingRocket with only one SolidRocketEngine:

class SoundingRocketBuilder
extends RocketBuilder<SoundingRocket, Probe> {
 private buildingRocket: SoundingRocket;
 createRocket(): void {
 this.buildingRocket = new SoundingRocket();
 }
 addPayload(probe: Probe): void {
 this.buildingRocket.payload = probe;
 }
 addStages(): void {
 let payload = this.buildingRocket.payload;
 this.buildingRocket.engine =
 new SolidRocketEngine(payload.weight);
 }
 get rocket(): SoundingRocket {
 return this.buildingRocket;
 }
}

There are several notable things in this implementation:

The addStages method relies on the previously added payload to add an
engine with the correct thrust specification.
The refuel method is not overridden (so it remains no-op) because a solid
rocket engine does not need to be refueled.

We've sensed a little about the context provided by a builder, and it could have a significant
influence on the result. For example, let's take a look at FreightRocketBuilder. It could
be similar to SoundingRocket if we don't take the addStages and refuel methods into
consideration:

class FreightRocketBuilder
extends RocketBuilder<FreightRocket, Satellite> {
 private buildingRocket: FreightRocket;
 createRocket(): void {
 this.buildingRocket = new FreightRocket();
 }
 addPayload(satellite: Satellite): void {
 this.buildingRocket.payload = satellite;
 }
 get rocket(): FreightRocket {
 return this.buildingRocket;
 }

Creational Design Patterns

[85]

}

Assume that a payload that weighs less than 1000 takes only one stage to send into space,
while payloads weighing more take two or more stages:

addStages(): void {
 let rocket = this.buildingRocket;
 let payload = rocket.payload;
 let stages = rocket.stages;
 stages[0] = new FreightRocketFirstStage(payload.weight * 4);
 if (payload.weight >= FreightRocketBuilder.oneStageMax) {
 stages[1] = FreightRocketSecondStage(payload.weight);
 }
}

static oneStageMax = 1000;

When it comes to refueling, we can even decide how much to refuel based on the weight of
the payloads:

refuel(): void {
 let rocket = this.buildingRocket;
 let payload = rocket.payload;
 let stages = rocket.stages;
 let oneMax = FreightRocketBuilder.oneStageMax;
 let twoMax = FreightRocketBuilder.twoStagesMax;
 let weight = payload.weight;
 stages[0].refuel(Math.min(weight, oneMax) / oneMax * 100);
 if (weight >= oneMax) {
 stages[1]
 .refuel((weight - oneMax) / (twoMax - oneMax) * 100);
 }
}

static oneStageMax = 1000;
static twoStagesMax = 2000;

Now we can prepare different rockets ready to launch, with different builders:

let director = new Director();

let soundingRocketBuilder = new SoundingRocketBuilder();
let probe = new Probe();
let soundingRocket
 = director.prepareRocket(soundingRocketBuilder, probe);

let freightRocketBuilder = new FreightRocketBuilder();
let satellite = new Satellite(0, 1200);

Creational Design Patterns

[86]

let freightRocket
 = director.prepareRocket(freightRocketBuilder, satellite);

Consequences
As the Builder Pattern takes greater control of the product structures and how the building
steps influence each other, it provides the maximum flexibility by subclassing the builder
itself, without changing the director (which plays a similar role to a client in the Abstract
Factory Pattern).

Prototype
As JavaScript is a prototype-based programming language, you might be using prototype
related patterns all the time without knowing it.

We've talked about an example in the Abstract Factory Pattern, and part of the code is like
this:

class FreightRocketFactory
implements RocketFactory<FreightRocket> {
 createRocket(): FreightRocket {
 return new FreightRocket();
 }
}

Sometimes we may need to add a subclass just for changing the class name while
performing the same new operation. Instances of a single class usually share the same
methods and properties, so we can clone one existing instance for new instances to be
created. That is the concept of a prototype.

But in JavaScript, with the prototype concept built-in, new Constructor() does basically
what a clone method would do. So actually a constructor can play the role of a concrete
factory in some way:

interface Constructor<T> {
 new (): T;
}

function createFancyObject<T>(constructor: Constructor<T>): T {
 return new constructor();
}

Creational Design Patterns

[87]

With this privilege, we can parameterize product or component classes as part of other
patterns and make creation even more flexible.

There is something that could easily be ignored when talking about the Prototype Pattern in
JavaScript: cloning with the state. With the class syntax sugar introduced in ES6, which
hides the prototype modifications, we may occasionally forget that we can actually modify
prototypes directly:

class Base {
 state: number;
}

let base = new Base();
base.state = 0;

class Derived extends Base { }
Derived.prototype = base;

let derived = new Derived();

Now, the derived object will keep the state of the base object. This could be useful when
you want to create copies of a specific instance, but keep in mind that properties in a
prototype of these copies are not the own properties of these cloned objects.

Singleton
There are scenarios in which only one instance of the specific class should ever exist, and
that leads to Singleton Pattern.

Basic implementations
The simplest singleton in JavaScript is an object literal; it provides a quick and cheap way to
create a unique object:

const singleton = {
 foo(): void {
 console.log('bar');
 }
};

Creational Design Patterns

[88]

But sometimes we might want private variables:

const singleton = (() => {
 let bar = 'bar';
 return {
 foo(): void {
 console.log(bar);
 }
 };
})();

Or we want to take the advantage of an anonymous constructor function or class expression
in ES6:

const singleton = new class {
 private _bar = 'bar';
 foo(): void {
 console.log(this._bar);
 }
} ();

Remember that the private modifier only has an effect at compile time,
and simply disappears after being compiled to JavaScript (although of
course its accessibility will be kept in .d.ts).

However, it is possible to have the requirements for creating new instances of “singletons”
sometimes. Thus a normal class will still be helpful:

class Singleton {
 bar = 'bar';
 foo(): void {
 console.log(bar);
 }
 private static _default: Singleton;

 static get default(): Singleton {
 if (!Singleton._default) {
 Singleton._default = new Singleton();
 }

 return Singleton._default;
 }
}

Another benefit brought by this approach is lazy initialization: the object only gets
initialized when it gets accessed the first time.

Creational Design Patterns

[89]

Conditional singletons
Sometimes we might want to get “singletons” based on certain conditions. For example,
every country usually has only one capital city, thus a capital city could be treated as a
singleton under the scope of the specific country.

The condition could also be the result of context rather than explicit arguments. Assuming
we have a class Environment and its derived classes, WindowsEnvironment and
UnixEnvironment, we would like to access the correct environment singleton across
platforms by using Environment.default and apparently, a selection could be made by
the default getter.

For more complex scenarios, we might want a registration-based implementation to make it
extendable.

Summary
In this chapter, we've talked about several important creational design patterns including
the Factory Method, Abstract Factory, Builder, Prototype, and Singleton.

Starting with the Factory Method Pattern, which provides flexibility with limited
complexity, we also explored the Abstract Factory Pattern, the Builder Pattern and the
Prototype Pattern, which share similar levels of abstraction but focus on different aspects.
These patterns have more flexibility than the Factory Method Pattern, but are more complex
at the same time. With the knowledge of the idea behind each of the patterns, we should be
able to choose and apply a pattern accordingly.

While comparing the differences, we also found many things in common between different
creational patterns. These patterns are unlikely to be isolated from others and some of them
can even collaborate with or complete each other.

In the next chapter, we'll continue to discuss structural patterns that help to form large
objects with complex structures.

4
Structural Design Patterns

While creational patterns play the part of flexibly creating objects, structural patterns, on the
other hand, are patterns about composing objects. In this chapter, we are going to talk about
structural patterns that fit different scenarios.

If we take a closer look at structural patterns, they can be divided into structural class
patterns and structural object patterns. Structural class patterns are patterns that play with
“interested parties” themselves, while structural object patterns are patterns that weave
pieces together (like Composite Pattern). These two kinds of structural patterns
complement each other to some degree.

Here are the patterns we'll walk through in this chapter:

Composite: Builds tree-like structures using primitive and composite objects. A
good example would be the DOM tree that forms a complete page.
Decorator: Adds functionality to classes or objects dynamically.
Adapter: Provides a general interface and work with different adaptees by
implementing different concrete adapters. Consider providing different database
choices for a single content management system.
Bridge: Decouples the abstraction from its implementation, and make both of
them interchangeable.
Façade: Provides a simplified interface for the combination of complex
subsystems.
Flyweight: Shares stateless objects that are being used many times to improve
memory efficiency and performance.
Proxy: Acts as the surrogate that takes extra responsibilities when accessing
objects it manages.

Structural Design Patterns

[91]

Composite Pattern
Objects under the same class could vary from their properties or even specific subclasses,
but a complex object can have more than just normal properties. Taking DOM elements, for
example, all the elements are instances of class Node. These nodes form tree structures to
represent different pages, but every node in these trees is complete and uniform compared
to the node at the root:

<html>
 <head>
 <title>TypeScript</title>
 </head>
 <body>
 <h1>TypeScript</h1>

 </body>
</html>

The preceding HTML represents a DOM structure like this:

All of the preceding objects are instances of Node, they implement the interface of a
component in Composite Pattern. Some of these nodes like HTML elements (except for
HTMLImageElement) in this example have child nodes (components) while others don't.

Structural Design Patterns

[92]

Participants
The participants of Composite Pattern implementation include:

Component: Node

Defines the interface and implement the default behavior for objects of the
composite. It should also include an interface to access and manage the child
components of an instance, and optionally a reference to its parent.

Composite: Includes some HTML elements, like HTMLHeadElement and
HTMLBodyElement

Stores child components and implements related operations, and of course its
own behaviors.

Leaf: TextNode, HTMLImageElement

Defines behaviors of a primitive component.

Client:

Manipulates the composite and its components.

Pattern scope
Composite Pattern applies when objects can and should be abstracted recursively as
components that form tree structures. Usually, it would be a natural choice when a certain
structure needs to be formed as a tree, such as trees of view components, abstract syntax
trees, or trees that represent file structures.

Implementation
We are going to create a composite that represents simple file structures and has limited
kinds of components.

First of all, let's import related node modules:

import * as Path from 'path';
import * as FS from 'fs';

Structural Design Patterns

[93]

Module path and fs are built-in modules of Node.js, please refer to
Node.js documentation for more information: h t t p s : / / n o d e j s . o r g / a p i /.

It is my personal preference to have the first letter of a namespace (if it's
not a function at the same time) in uppercase, which reduces the chance of
conflicts with local variables. But a more popular naming style for
namespace in JavaScript does not.

Now we need to make abstraction of the components, say FileSystemObject:

abstract class FileSystemObject {
 constructor(
 public path: string,
 public parent?: FileSystemObject
) { }

 get basename(): string {
 return Path.basename(this.path);
 }
}

We are using abstract class because we are not expecting to use FileSystemObject
directly. An optional parent property is defined to allow us to visit the upper component
of a specific object. And the basename property is added as a helper for getting the
basename of the path.

The FileSystemObject is expected to have subclasses, FolderObject and FileObject.
For FolderObject, which is a composite that may contain other folders and files, we are
going to add an items property (getter) that returns other FileSystemObject it contains:

class FolderObject extends FileSystemObject {
 items: FileSystemObject[];

 constructor(path: string, parent?: FileSystemObject) {
 super(path, parent);
 }
}

We can initialize the items property in the constructor with actual files and folders
existing at given path:

this.items = FS
 .readdirSync(this.path)
 .map(path => {

https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/
https://nodejs.org/api/

Structural Design Patterns

[94]

 let stats = FS.statSync(path);

 if (stats.isFile()) {
 return new FileObject(path, this);
 } else if (stats.isDirectory()) {
 return new FolderObject(path, this);
 } else {
 throw new Error('Not supported');
 }
 });

You may have noticed we are forming items with different kinds of objects, and we are
also passing this as the parent of newly created child components.

And for FileObject, we'll add a simple readAll method that reads all bytes of the file:

class FileObject extends FileSystemObject {
 readAll(): Buffer {
 return FS.readFileSync(this.path);
 }
}

Currently, we are reading the child items inside a folder from the actual filesystem when a
folder object gets initiated. This might not be necessary if we want to access this structure
on demand. We may actually create a getter that calls readdir only when it's accessed,
thus the object would act like a proxy to the real filesystem.

Consequences
Both the primitive object and composite object in Composite Pattern share the component
interface, which makes it easy for developers to build a composite structure with fewer
things to remember.

It also enables the possibility of using markup languages like XML and HTML to represent
a really complex object with extreme flexibility. Composite Pattern can also make the
rendering easier by having components rendered recursively.

As most components are compatible with having child components or being child
components of their parents themselves, we can easily create new components that work
great with existing ones.

Structural Design Patterns

[95]

Decorator Pattern
Decorator Pattern adds new functionality to an object dynamically, usually without
compromising the original features. The word decorator in Decorator Pattern does share
something with the word decorator in the ES-next decorator syntax, but they are not exactly
the same. Classical Decorator Pattern as a phrase would differ even more.

The classical Decorator Pattern works with a composite, and the brief idea is to create
decorators as components that do the decorating work. As composite objects are usually
processed recursively, the decorator components would get processed automatically. So it
becomes your choice to decide what it does.

The inheritance hierarchy could be like the following structure shown:

The decorators are applied recursively like this:

Structural Design Patterns

[96]

There are two prerequisites for the decorators to work correctly: the awareness of context or
object that a decorator is decorating, and the ability of the decorators being applied. The
Composite Pattern can easily create structures that satisfy those two prerequisites:

The decorator knows what it decorates as the component property
The decorator gets applied when it is rendered recursively

However, it doesn't really need to take a structure like a composite to gain the benefits from
Decorator Pattern in JavaScript. As JavaScript is a dynamic language, if you can get your
decorators called, you may add whatever you want to an object.

Taking method log under console object as an example, if we want a timestamp before
every log, we can simply replace the log function with a wrapper that has the timestamp
prefixed:

const _log = console.log;
console.log = function () {
 let timestamp = `[${new Date().toTimeString()}]`;
 return _log.apply(this, [timestamp, ...arguments]);
};

Certainly, this example has little to do with the classical Decorator Pattern, but it enables a
different way for this pattern to be done in JavaScript. Especially with the help of new
decorator syntax:

class Target {
 @decorator
 method() {
 // ...
 }
}

TypeScript provides the decorator syntax transformation as an
experimental feature. To learn more about decorator syntax, please check
out the following link: h t t p : / / w w w . t y p e s c r i p t l a n g . o r g / d o c s / h a n d b o o k

/ d e c o r a t o r s . h t m l.

Participants
The participants of classical Decorator Pattern implementation include:

Component: UIComponent

Defines the interface of the objects that can be decorated.

http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html
http://www.typescriptlang.org/docs/handbook/decorators.html

Structural Design Patterns

[97]

ConcreteComponent: TextComponent

Defines additional functionalities of the concrete component.

Decorator: Decorator

Defines a reference to the component to be decorated, and manages the
context. Conforms the interface of a component with proper behaviors.

ConcreteDecorator: ColorDecorator, FontDecorator

Defines additional features and exposes API if necessary.

Pattern scope
Decorator Pattern usually cares about objects, but as JavaScript is prototype-based,
decorators would work well with the classes of objects through their prototypes.

The classical implementation of Decorator Pattern could have much in common with other
patterns we are going to talk about later, while the function one seems to share less.

Implementation
In this part, we'll talk about two implementations of Decorator Pattern. The first one would
be classical Decorator Pattern that decorates the target by wrapping with new classes that
conform to the interface of UIComponent. The second one would be decorators written in
new decorator syntax that processes target objects.

Classical decorators
Let's get started by defining the outline of objects to be decorated. First, we'll have the
UIComponent as an abstract class, defining its abstract function draw:

abstract class UIComponent {
 abstract draw(): void;
}

Structural Design Patterns

[98]

Then a TextComponent that extends the UIComponent, as well as its text contents of class
Text:

class Text {
 content: string;

 setColor(color: string): void { }
 setFont(font: string): void { }

 draw(): void { }
}

class TextComponent extends UIComponent {
 texts: Text[];

 draw(): void {
 for (let text of this.texts) {
 text.draw();
 }
 }
}

What's next is to define the interface of decorators to decorate objects that are instances of
class TextComponent:

class Decorator extends UIComponent {
 constructor(
 public component: TextComponent
) {
 super();
 }

 get texts(): Text[] {
 return this.component.texts;
 }

 draw(): void {
 this.component.draw();
 }
}

Now we have everything for concrete decorators. In this example, ColorDecorator and
FontDecorator look similar:

class ColorDecorator extends Decorator {
 constructor(
 component: TextComponent,
 public color: string

Structural Design Patterns

[99]

) {
 super(component);
 }

 draw(): void {
 for (let text of this.texts) {
 text.setColor(this.color);
 }

 super.draw();
 }
}

class FontDecorator extends Decorator {
 constructor(
 component: TextComponent,
 public font: string
) {
 super(component);
 }

 draw(): void {
 for (let text of this.texts) {
 text.setFont(this.font);
 }

 super.draw();
 }
}

In the implementation just described, this.texts in draw method calls
the getter defined on class Decorator. As this in that context would
ideally be an instance of class ColorDecorator or FontDecorator; the
texts it accesses would finally be the array in its component property.

This could be even more interesting or confusing if we have nested
decorators like we will soon. Try to draw a schematic diagram if it
confuses you later.

Now it's time to actually assemble them:

let decoratedComponent = new ColorDecorator(
 new FontDecorator(
 new TextComponent(),
 'sans-serif'
),

Structural Design Patterns

[100]

 'black'
);

The order of nesting decorators does not matter in this example. As either
ColorDecorator or FontDecorator is a valid UIComponent, they can be easily dropped
in and replace previous TextComponent.

Decorators with ES-next syntax
There is a limitation with classical Decorator Pattern that can be pointed out directly via its
nesting form of decorating. That applies to ES-next decorators as well. Take a look at the
following example:

class Foo {
 @prefix
 @suffix
 getContent(): string {
 return '...';
 }
}

What follows the @ character is an expression that evaluates to a decorator.
While a decorator is a function that processes target objects, we usually
use higher-order functions to parameterize a decorator.

We now have two decorators prefix and suffix decorating the getContent method. It
seems that they are just parallel at first glance, but if we are going to add a prefix and suffix
onto the content returned, like what the name suggests, the procedure would actually be
recursive rather than parallel just like the classical implementation.

To make decorators cooperate with others as we'd expect, we need to handle things
carefully:

function prefix(
 target: Object,
 name: string,
 descriptor: PropertyDescriptor
): PropertyDescriptor {
 let method = descriptor.value as Function;

 if (typeof method !== 'function') {
 throw new Error('Expecting decorating a method');
 }

Structural Design Patterns

[101]

 return {
 value: function () {
 return '[prefix] ' + method.apply(this, arguments);
 },
 enumerable: descriptor.enumerable,
 configurable: descriptor.configurable,
 writable: descriptor.writable
 };
}

In current ECMAScript decorator proposal, when decorating a method or
property (usually with getter or setter), you will have the third argument
passed in as the property descriptor.

Check out the following link for more information about property
descriptors: h t t p s : / / d e v e l o p e r . m o z i l l a . o r g / e n - U S / d o c s / W e b / J a v a S c r

i p t / R e f e r e n c e / G l o b a l _ O b j e c t s / O b j e c t / d e f i n e P r o p e r t y.

The suffix decorator would be just like the prefix decorator. So I'll save the code lines
here.

Consequences
The key to the Decorator Pattern is being able to add functionalities dynamically, and
decorators are usually expected to play nice with each other. Those expectations of
Decorator Pattern make it really flexible to form a customized object. However, it would be
hard for certain types of decorators to actually work well together.

Consider decorating an object with multiple decorators just like the second example of
implementation, would the decorating order matter? Or should the decorating order
matter?

A properly written decorator should always work no matter where it is in the decorators
list. And it's usually preferred that the decorated target behaves almost the same with
decorators decorated in different orders.

Adapter Pattern
Adapter Pattern connects existing classes or objects with another existing client. It makes
classes that are not designed to work together possible to cooperate with each other.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty

Structural Design Patterns

[102]

An adapter could be either a class adapter or an object adapter. A class adapter extends the
adaptee class and exposes extra APIs that would work with the client. An object adapter, on
the other hand, does not extend the adaptee class. Instead, it stores the adaptee as a
dependency.

The class adapter is useful when you need to access protected methods or properties of the
adaptee class. However, it also has some restrictions when it comes to the JavaScript world:

The adaptee class needs to be extendable
If the client target is an abstract class other than pure interface, you can't extend
the adaptee class and the client target with the same adapter class without a mixin
A single class with two sets of methods and properties could be confusing

Due to those limitations, we are going to talk more about object adapters. Taking browser-
side storage for example, we'll assume we have a client working with storage objects that
have both methods get and set with correct signatures (for example, a storage that stores
data online through AJAX). Now we want the client to work with IndexedDB for faster
response and offline usage; we'll need to create an adapter for IndexedDB that gets and sets
data:

We are going to use Promise for receiving results or errors of asynchronous operations. See
the following link for more information if you are not yet familiar with Promise: h t t p s : / / d
e v e l o p e r . m o z i l l a . o r g / e n - U S / d o c s / W e b / J a v a S c r i p t / R e f e r e n c e / G l o b a l _ O b j e c t s / P r o m

i s e.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Structural Design Patterns

[103]

Participants
The participants of Adapter Pattern include:

Target: Storage

Defines the interface of existing targets that works with client

Adaptee: IndexedDB

The implementation that is not designed to work with the client

Adapter: IndexedDBStorage

Conforms the interface of target and interacts with adaptee

Client.

Manipulates the target

Pattern scope
Adapter Pattern can be applied when the existing client class is not designed to work with
the existing adaptees. It focuses on the unique adapter part when applying to different
combinations of clients and adaptees.

Implementation
Start with the Storage interface:

interface Storage {
 get<T>(key: string): Promise<T>;
 set<T>(key: string, value: T): Promise<void>;
}

We defined the get method with generic, so that if we neither specify the
generic type, nor cast the value type of a returned Promise, the type of the
value would be {}. This would probably fail following type checking.

Structural Design Patterns

[104]

With the help of examples found on MDN, we can now set up the IndexedDB adapter. Visit
 IndexedDBStorage: h t t p s : / / d e v e l o p e r . m o z i l l a . o r g / e n - U S / d o c s / W e b / A P I / I n d e x e d D B

_ A P I / U s i n g _ I n d e x e d D B.

The creation of IndexedDB instances is asynchronous. We could put the opening operation
inside a get or set method so the database can be opened on demand. But for now, let's
make it easier by creating an instance of IndexedDBStorage that has a database instance
which is already opened.

However, constructors usually don't have asynchronous code. Even if they do, it cannot
apply changes to the instance before completing the construction. Fortunately, Factory
Method Pattern works well with asynchronous initiation:

class IndexedDBStorage implements Storage {
 constructor(
 public db: IDBDatabase,
 public storeName = 'default'
) { }

 open(name: string): Promise<IndexedDBStorage> {
 return new Promise<IndexedDBStorage>(
 (resolve, reject) => {
 let request = indexedDB.open(name);
 // ...
 });
 }
}

Inside the Promise resolver of method open, we'll get the asynchronous work done:

let request = indexedDB.open(name);

request.onsuccess = event => {
 let db = request.result as IDBDatabase;
 let storage = new IndexedDBStorage(db);
 resolve(storage);
};

request.onerror = event => {
 reject(request.error);
};

https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API/Using_IndexedDB

Structural Design Patterns

[105]

Now when we are accessing an instance of IndexedDBStorage, we can assume it has an
opened database and is ready to make queries. To make changes or to get values from the
database, we need to create a transaction. Here's how:

get<T>(key: string): Promise<T> {
 return new Promise<T>((resolve, reject) => {
 let transaction = this.db.transaction(this.storeName);
 let store = transaction.objectStore(this.storeName);

 let request = store.get(key);

 request.onsuccess = event => {
 resolve(request.result);
 };

 request.onerror = event => {
 reject(request.error);
 };
 });
}

Method set is similar. But while the transaction is by default read-only, we need to
explicitly specify 'readwrite' mode.

set<T>(key: string, value: T): Promise<void> {
 return new Promise<void>((resolve, reject) => {
 let transaction =
 this.db.transaction(this.storeName, 'readwrite');
 let store = transaction.objectStore(this.storeName);

 let request = store.put(value, key);

 request.onsuccess = event => {
 resolve();
 };

 request.onerror = event => {
 reject(request.error);
 };
 });
}

And now we can have a drop-in replacement for the previous storage used by the client.

Structural Design Patterns

[106]

Consequences
By applying Adapter Pattern, we can fill the gap between classes that originally would not
work together. In this situation, Adapter Pattern is quite a straightforward solution that
might come to mind.

But in other scenarios like a debugger adapter for debugging extensions of an IDE, the
implementation of Adapter Pattern could be more challenging.

Bridge Pattern
Bridge Pattern decouples the abstraction manipulated by clients from functional
implementations and makes it possible to add or replace these abstractions and
implementations easily.

Take a set of cross-API UI elements as an example:

We have the abstraction UIElement that can access different implementations of
UIToolkit for creating different UI based on either SVG or canvas. In the preceding
structure, the bridge is the connection between UIElement and UIToolkit.

Structural Design Patterns

[107]

Participants
The participants of Bridge Pattern include:

Abstraction: UIElement

Defines the interface of objects to be manipulated by the client and stores the
reference to its implementer.

Refined abstraction: TextElement, ImageElement

Extends abstraction with specialized behaviors.

Implementer: UIToolkit

Defines the interface of a general implementer that will eventually carry out
the operations defined in abstractions. The implementer usually cares only
about basic operations while the abstraction will handle high-level
operations.

Concrete implementer: SVGToolkit, CanvasToolkit

Implements the implementer interface and manipulates low-level APIs.

Pattern scope
Although having abstraction and implementer decoupled provides Bridge Pattern with the
ability to work with several abstractions and implementers, most of the time, bridge
patterns work only with a single implementer.

If you take a closer look, you will find Bridge Pattern is extremely similar to Adapter
Pattern. However, while Adapter Pattern tries to make existing classes cooperate and
focuses on the adapters part, Bridge Pattern foresees the divergences and provides a well-
thought-out and universal interface for its abstractions that play the part of adapters.

Implementation
A working implementation could be non-trivial in the example we are talking about. But we
can still sketch out the skeleton easily.

Structural Design Patterns

[108]

Start with implementer UIToolkit and abstraction UIElement that are directly related to
the bridge concept:

interface UIToolkit {
 drawBorder(): void;
 drawImage(src: string): void;
 drawText(text: string): void;
}

abstract class UIElement {
 constructor(
 public toolkit: UIToolkit
) { }

 abstract render(): void;
}

And now we can extend UIElement for refined abstractions with different behaviors. First
the TextElement class:

class TextElement extends UIElement {
 constructor(
 public text: string,
 toolkit: UIToolkit
) {
 super(toolkit);
 }

 render(): void {
 this.toolkit.drawText(this.text);
 }
}

And the ImageElement class with similar code:

class ImageElement extends UIElement {
 constructor(
 public src: string,
 toolkit: UIToolkit
) {
 super(toolkit);
 }

 render(): void {
 this.toolkit.drawImage(this.src);
 }
}

Structural Design Patterns

[109]

By creating concrete UIToolkit subclasses, we can manage to make everything together
with the client. But as it could lead to hard work we would not want to touch now, we'll
skip it by using a variable pointing to undefined in this example:

let toolkit: UIToolkit;

let imageElement = new ImageElement('foo.jpg', toolkit);
let textElement = new TextElement('bar', toolkit);

imageElement.render();
textElement.render();

In the real world, the render part could also be a heavy lift. But as it's coded at a relatively
higher-level, it tortures you in a different way.

Consequences
Despite having completely different names for the abstraction (UIElement) in the example
above and the adapter interface (Storage), they play similar roles in a static combination.

However, as we mentioned in the pattern scope section, the intentions of Bridge Pattern and
Adapter Pattern differ.

By decoupling the abstraction and implementer, Bridge Pattern brings great extensibility to
the system. The client does not need to know about the implementation details, and this
helps to build more stable systems as it forms a healthier dependency structure.

Another bonus that might be brought by Bridge Pattern is that, with a properly configured
build process, it can reduce compilation time as the compiler does not need to know
information on the other end of the bridge when changes are made to a refined abstraction
or concrete implementer.

Structural Design Patterns

[110]

Façade Pattern
The Façade Pattern organizes subsystems and provides a unified higher-level interface. An
example that might be familiar to you is a modular system. In JavaScript (and of course
TypeScript), people use modules to organize code. A modular system makes projects easier
to maintain, as a clean project structure can help reveal the interconnections among
different parts of the project.

It is common that one project gets referenced by others, but obviously the project that
references other projects doesn't and shouldn't care much about the inner structures of its
dependencies. Thus a façade can be introduced for a dependency project to provide a
higher-level API and expose what really matters to its dependents.

Take a robot as an example. People who build a robot and its components will need to
control every part separately and let them cooperate at the same time. However, people
who want to use this robot would only need to send simple commands like “walk” and
“jump”.

For the most flexible usage, the robot “SDK” can provide classes like MotionController,
FeedbackController, Thigh, Shank, Foot and so on. Possibly like the following image
shows:

Structural Design Patterns

[111]

But certainly, most of the people who want to control or program this robot do not want to
know as many details as this. What they really want is not a fancy tool box with everything
inbox, but just an integral robot that follows their commands. Thus the robot “SDK” can
actually provide a façade that controls the inner pieces and exposes much simpler APIs:

Unfortunately, Façade Pattern leaves us an open question of how to design the façade API
and subsystems. Answering this question properly is not easy work.

Participants
The participants of a Façade Pattern are relatively simple when it comes to their categories:

Façade: Robot

Defines a set of higher-level interfaces, and makes subsystems cooperate.

Subsystems: MotionController, FeedbackController, Thigh, Shank and
Foot

Implements their own functionalities and communicates internally with
other subsystems if necessary. Subsystems are dependencies of a façade, and
they do not depend on the façade.

Structural Design Patterns

[112]

Pattern scope
Façades usually act as junctions that connect a higher-level system and its subsystems. The
key to the Façade Pattern is to draw a line between what a dependent should or shouldn't
care about of its dependencies.

Implementation
Consider putting up a robot with its left and right legs, we can actually add another
abstraction layer called Leg that manages Thigh, Shank , and Foot. If we are going to
separate motion and feedback controllers to different legs respectively, we may also add
those two as part of the Leg:

class Leg {
 thigh: Thigh;
 shank: Shank;
 foot: Foot;

 motionController: MotionController;
 feedbackController: FeedbackController;
}

Before we add more details to Leg, let's first define MotionController and
FeedbackController .

The MotionController is supposed to control a whole leg based on a value or a set of
values. Here we are simplifying that as a single angle for not being distracted by this
impossible robot:

class MotionController {
 constructor(
 public leg: Leg
) { }

 setAngle(angle: number): void {
 let {
 thigh,
 shank,
 foot
 } = this.leg;

 // ...
 }
}

Structural Design Patterns

[113]

And the FeedbackController is supposed to be an instance of EventEmitter that
reports the state changes or useful events:

import { EventEmitter } from 'events';

class FeedbackController extends EventEmitter {
 constructor(
 public foot: Foot
) {
 super();
 }
}

Now we can make class Leg relatively complete:

class Leg {
 thigh = new Thigh();
 shank = new Shank();
 foot = new Foot();

 motionController: MotionController;
 feedbackController: FeedbackController;

 constructor() {
 this.motionController =
 new MotionController(this);
 this.feedbackController =
 new FeedbackController(this.foot);

 this.feedbackController.on('touch', () => {
 // ...
 });
 }
}

Let's put two legs together to sketch the skeleton of a robot:

class Robot {
 leftLegMotion: MotionController;
 rightLegMotion: MotionController;

 leftFootFeedback: FeedbackController;
 rightFootFeedback: FeedbackController;

 walk(steps: number): void { }
 jump(strength: number): void { }
}

Structural Design Patterns

[114]

I'm omitting the definition of classes Thigh, Shank , and Foot as we are not actually going
to walk the robot. Now for a user that only wants to walk or jump a robot via simple API,
they can make it via the Robot object that has everything connected.

Consequences
Façade Pattern loosens the coupling between client and subsystems. Though it does not
decouple them completely as you will probably still need to work with objects defined in
subsystems.

Façades usually forward operations from client to proper subsystems or even do heavy
work to make them work together.

With the help of Façade Pattern, the system and the relationship and structure within the
system can stay clean and intuitive.

Flyweight Pattern
A flyweight in Flyweight Pattern is a stateless object that can be shared across objects or
maybe classes many times. Obviously, that suggests Flyweight Pattern is a pattern about
memory efficiency and maybe performance if the construction of objects is expensive.

Taking drawing snowflakes as an example. Despite real snowflakes being different to each
other, when we are trying to draw them onto canvas, we usually have a limited number of
styles. However, by adding properties like sizes and transformations, we can create a
beautiful snow scene with limited snowflake styles.

As a flyweight is stateless, ideally it allows multiple operations simultaneously. You might
need to be cautious when working with multi-thread stuff. Fortunately, JavaScript is
usually single-threaded and avoids this issue if all related code is synchronous. You will
still need to take care in detailed scenarios if your code is working asynchronously.

Structural Design Patterns

[115]

Assume we have some flyweights of class Snowflake:

When it snows, it would look like this:

In the image above, snowflakes in different styles are the result of rendering with different
properties.

It's common that we would have styles and image resources being loaded dynamically,
thus we could use a FlyweightFactory for creating and managing flyweight objects.

Participants
The simplest implementation of Flyweight Pattern has the following participants:

Flyweight: Snowflake

Defines the class of flyweight objects.

Flyweight factory: FlyweightFactory

Creates and manages flyweight objects.

Structural Design Patterns

[116]

Client.

Stores states of targets and uses flyweight objects to manipulate these targets.

With these participants, we assume that the manipulation could be accomplished through
flyweights with different states. It would also be helpful sometimes to have concrete
flyweight class allowing customized behaviors.

Pattern scope
Flyweight Pattern is a result of efforts to improving memory efficiency and performance.
The implementation cares about having the instances being stateless, and it is usually the
client that manages detailed states for different targets.

Implementation
What makes Flyweight Pattern useful in the snowflake example is that a snowflake with the
same style usually shares the same image. The image is what consumes time to load and
occupies notable memory.

We are starting with a fake Image class that pretends to load images:

class Image {
 constructor(url: string) { }
}

The Snowflake class in our example has only a single image property, and that is a
property that will be shared by many snowflakes to be drawn. As the instance is now
stateless, parameters from context are required for rendering:

class Snowflake {
 image: Image;

 constructor(
 public style: string
) {
 let url = style + '.png';
 this.image = new Image(url);
 }

 render(x: number, y: number, angle: number): void {
 // ...
 }

Structural Design Patterns

[117]

}

The flyweights are managed by a factory for easier accessing. We'll have a
SnowflakeFactory that caches created snowflake objects with certain styles:

const hasOwnProperty = Object.prototype.hasOwnProperty;

class SnowflakeFactory {
 cache: {
 [style: string]: Snowflake;
 } = {};

 get(style: string): Snowflake {
 let cache = this.cache;
 let snowflake: Snowflake;

 if (hasOwnProperty.call(cache, style)) {
 snowflake = cache[style];
 } else {
 snowflake = new Snowflake(style);
 cache[style] = snowflake;
 }

 return snowflake;
 }
}

With building blocks ready, we'll implement the client (Sky) that snows:

const SNOW_STYLES = ['A', 'B', 'C'];

class Sky {
 constructor(
 public width: number,
 public height: number
) { }

 snow(factory: SnowflakeFactory, count: number) { }
}

We are going to fill the sky with random snowflakes at random positions. Before that let's
create a helper function that generates a number between 0 and a max value given:

function getRandomInteger(max: number): number {
 return Math.floor(Math.random() * max);
}

Structural Design Patterns

[118]

And then complete method snow of Sky:

snow(factory: SnowflakeFactory, count: number) {
 let stylesCount = SNOW_STYLES.length;

 for (let i = 0; i < count; i++) {
 let style = SNOW_STYLES[getRandomInteger(stylesCount)];
 let snowflake = factory.get(style);

 let x = getRandomInteger(this.width);
 let y = getRandomInteger(this.height);

 let angle = getRandomInteger(60);

 snowflake.render(x, y, angle);
 }
}

Now we may have thousands of snowflakes in the sky but with only three instances of
Snowflake created. You can continue this example by storing the state of snowflakes and
animating the snowing.

Consequences
Flyweight Pattern reduces the total number of objects involved in a system. As a direct
result, it may save quite a lot memory. This saving becomes more significant when the
flyweights get used by the client that processes a large number of targets.

Flyweight Pattern also brings extra logic into the system. When to use or not to use this
pattern is again a balancing game between development efficiency and runtime efficiency
from this point of view. Though most of the time, if there's not a good reason, we go with
development efficiency.

Proxy Pattern
Proxy Pattern applies when the program needs to know about or to intervene the behavior
of accessing objects. There are several detailed scenarios in Proxy Pattern, and we can
distinguish those scenarios by their different purposes:

Remote proxy: A proxy with interface to manipulate remote objects, such as data
items on a remote server

Structural Design Patterns

[119]

Virtual proxy: A proxy that manages expensive objects which need to be loaded
on demand
Protection proxy: A proxy that controls access to target objects, typically it
verifies permissions and validates values
Smart proxy: A proxy that does additional operations when accessing target
objects

In the section of Adapter Pattern, we used factory method open that creates an object
asynchronously. As a trade-off, we had to let the client wait before the object gets created.

With Proxy Pattern, we could now open database on demand and create storage instances
synchronously.

A proxy is usually dedicated to object or objects with known methods and
properties. But with the new Proxy API provided in ES6, we can get more
interesting things done by getting to know what methods or properties are
being accessed. Please refer to the following link for more information: h t t
p s : / / d e v e l o p e r . m o z i l l a . o r g / e n - U S / d o c s / W e b / J a v a S c r i p t / R e f e r e n c e

/ G l o b a l _ O b j e c t s / P r o x y.

Participants
The participants of Proxy Pattern include:

Proxy: IndexedDBStorage

Defines interface and implements operations to manage access to the subject.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Proxy

Structural Design Patterns

[120]

Subject: IndexedDB

The subject to be accessed by proxy.

Client: Accesses subject via proxy.

Pattern scope
Despite having a similar structure to Adapter Pattern, the key of Proxy Pattern is to
intervene the access to target objects rather than to adapt an incompatible interface.
Sometimes it might change the result of a specific method or the value of a certain property,
but that is probably for falling back or exception handling purposes.

Implementation
There are two differences we'll have in this implementation compared to the example for
pure Adapter Pattern. First, we'll create the IndexedDBStorage instance with
a constructor, and have the database opened on demand. Second, we are going to add a
useless permission checking for methods get and set.

Now when we call the method get or set, the database could either have been opened or
not. Promise is a great choice for representing a value that might either be pending or
settled. Consider this example:

let ready = new Promise<string>(resolve => {
 setTimeout(() => {
 resolve('biu~');
 }, Math.random() * 1000);
});

setTimeout(() => {
 ready.then(text => {
 console.log(text);
 });
}, 999);

It's hard to tell whether Promise ready is fulfilled when the second timeout fires. But the
overall behavior is easy to predict: it will log the 'biu~' text in around 1 second. By
replacing the Promise variable ready with a method or getter, it would be able to start the
asynchronous operation only when needed.

Structural Design Patterns

[121]

So let's start the refactoring of class IndexedDBStorage with the getter that creates the
Promise of the database to be opened:

private dbPromise: Promise<IDBDatabase>;

constructor(
 public name: string,
 public storeName = 'default'
) { }

private get dbReady(): Promise<IDBDatabase> {
 if (!this.dbPromise) {
 this.dbPromise =
 new Promise<IDBDatabase>((resolve, reject) => {
 let request = indexedDB.open(name);

 request.onsuccess = event => {
 resolve(request.result);
 };

 request.onerror = event => {
 reject(request.error);
 };
 });
 }

 return this.dbPromise;
}

Now the first time we access property dbReady, it will open the database and create a
Promise that will be fulfilled with the database being opened. To make this work with
methods get and set, we just need to wrap what we've implemented into a then method
following the dbReady Promise.

First for method get:

get<T>(key: string): Promise<T> {
 return this
 .dbReady
 .then(db => new Promise<T>((resolve, reject) => {
 let transaction = db.transaction(this.storeName);
 let store = transaction.objectStore(this.storeName);

 let request = store.get(key);

 request.onsuccess = event => {
 resolve(request.result);

Structural Design Patterns

[122]

 };

 request.onerror = event => {
 reject(request.error);
 };
 }));
}

And followed by updated method set:

set<T>(key: string, value: T): Promise<void> {
 return this
 .dbReady
 .then(db => new Promise<void>((resolve, reject) => {
 let transaction = db
 .transaction(this.storeName, 'readwrite');
 let store = transaction.objectStore(this.storeName);

 let request = store.put(value, key);

 request.onsuccess = event => {
 resolve();
 };

 request.onerror = event => {
 reject(request.error);
 };
 }));
}

Now we finally have the IndexedDBStorage property that can do a real drop-in
replacement for the client that supports the interface. We are also going to add simple
permission checking with a plain object that describes the permission of read and write:

interface Permission {
 write: boolean;
 read: boolean;
}

Then we will add permission checking for method get and set separately:

get<T>(key: string): Promise<T> {
 if (!this.permission.read) {
 return Promise.reject<T>(new Error('Permission denied'));
 }

 // ...
}

Structural Design Patterns

[123]

set<T>(key: string, value: T): Promise<void> {
 if (!this.permission.write) {
 return Promise.reject(new Error('Permission denied'));
 }

 // ...
}

You may recall Decorator Pattern when you are thinking about the permission checking
part, and decorators could be used to simplify the lines written. Try to use decorator syntax
to implement this permission checking yourself.

Consequences
The implementation of Proxy Pattern can usually be treated as the encapsulation of the
operations to specific objects or targets. It is easy to have the encapsulation augmented
without extra burden on the client.

For example, a working online database proxy could do much more than just acting like a
plain surrogate. It may cache data and changes locally, or synchronize on schedule without
the client being aware.

Summary
In this chapter, we learned about structural design patterns including Composite,
Decorator, Adapter, Bridge, Façade, Flyweight, and Proxy. Again we found some of these
patterns are highly inter related and even similar to each other to some degree.

For example, we mixed Composite Pattern with Decorator Pattern, Adapter Pattern with
Proxy Pattern, compared Adapter Pattern and Bridge Pattern. During the journey of
exploring, we sometimes found it was just a natural result to have our code end in a pattern
that's similar to what we've listed if we took writing better code into consideration.

Taking Adapter Pattern and Bridge Pattern as an example, when we are trying to make two
classes cooperate, it comes out with Adapter Pattern and when we are planning on
connecting with different classes in advance, it goes with Bridge Pattern. There are no actual
lines between each pattern and the applications of those patterns, though the techniques
behind patterns could usually be useful.

In the next chapter, we are going to talk about behavioral patterns that help to form
algorithms and assign the responsibilities.

5
Behavioral Design Patterns

As the name suggests, behavioral design patterns are patterns about how objects or classes
interact with each other. The implementation of behavioral design patterns usually requires
certain data structures to support the interaction in a system. However, behavioral patterns
and structural patterns focus on different aspects when applied. As a result, you might find
patterns in the category of behavioral design patterns usually have simpler or more
straightforward structures compared to structural design patterns.

In this chapter, we are going to talk about some of the following common behavioral
patterns:

Chain of Responsibility: Organizes behaviors with different scopes
Command: Exposes commands from the internal with encapsulated context
Memento: Provides an approach for managing states outside of their owners
without exposing detailed implementations
Iterator: Provides a universal interface for traversing
Mediator: It groups coupling and logically related objects and makes
interconnections cleaner in a system that manages many objects

Chain of Responsibility Pattern
There are many scenarios under which we might want to apply certain actions that can fall
back from a detailed scope to a more general one.

A nice example would be the help information of a GUI application: when a user requests
help information for a certain part of the user interface, it is expected to show information
as specific as possible. This can be done with different implementations, and the most
intuitive one for a web developer could be events bubbling.

Behavioral Design Patterns

[125]

Consider a DOM structure like this:

<div class="outer">
 <div class="inner">

 </div>
</div>

If a user clicks on the span.origin element, a click event would start bubbling from the
span element to the document root (if useCapture is false):

$('.origin').click(event => {
 console.log('Click on `span.origin`.');
});

$('.outer').click(event => {
 console.log('Click on `div.outer`.');
});

By default, it will trigger both event listeners added in the preceding code. To stop the
propagation as soon as an event gets handled, we can call its stopPropagation method:

$('.origin').click(event => {
 console.log('Click on `span.origin`.');
 event.stopPropagation();
});

$('.outer').click(event => {
 Console.log('Click on `div.outer`.');
});

Though a click event is not exactly the same as the help information request, with the
support of custom events, it's quite easy to handle help information with necessary detailed
or general information in the same chain.

Another important implementation of the Chain of Responsibility Pattern is related to error
handling. A primitive example for this could be using try...catch. Consider code like
this: we have three functions: foo, bar, and biu, foo is called by bar while bar is called by
biu:

function foo() {
 // throw some errors.
}

function bar() {
 foo();
}

Behavioral Design Patterns

[126]

function biu() {
 bar();
}

biu();

Inside both functions bar and biu, we can do some error catching. Assuming function foo
throws two kinds of errors:

function foo() {
 let value = Math.random();

 if (value < 0.5) {
 throw new Error('Awesome error');
 } else if (value < 0.8) {
 throw new TypeError('Awesome type error');
 }
}

In function bar we would like to handle the TypeError and leave other errors throwing
on:

function bar() {
 try {
 foo();
 } catch (error) {
 if (error instanceof TypeError) {
 console.log('Some type error occurs', error);
 } else {
 throw error;
 }
 }
}

And in function biu, we would like to add more general handling that catches all the errors
so that the program will not crash:

function biu() {
 try {
 bar();
 } catch (error) {
 console.log('Some error occurs', error);
 }
}

Behavioral Design Patterns

[127]

So by using try...catch statements, you may have been using the Chain of Responsibility
Pattern constantly without paying any attention to it. Just like you may have been using
other well-known design patterns all the time.

If we abstract the structure of Chain of Responsibility Pattern into objects, we could have
something as illustrated in the figure:

Participants
The participants of the Chain of Responsibility Pattern include:

Handler: Defines the interface of the handler with successor and method to
handle requests. This is done implicitly with classes like EventEmitter and
try...catch syntax.
Concrete handler: EventListener, catch block and HandlerA/HandlerB in
the class version. Defines handlers in the form of callbacks, code blocks and
classes that handle requests.
Client: Initiates the requests that go through the chain.

Behavioral Design Patterns

[128]

Pattern scope
The Chain of Responsibility Pattern itself could be applied to many different scopes in a
program. It requires a multi-level chain to work, but this chain could be in different forms.
We've been playing with events as well as try...catch statements that have structural
levels, this pattern could also be applied to scenarios that have logical levels.

Consider objects marked with different scopes using string:

let objectA = {
 scope: 'user.installation.package'
};

let objectB = {
 scope: 'user.installation'
};

Now we have two objects with related scopes specified by string, and by adding filters to
these scope strings, we can apply operations from specific ones to general ones.

Implementation
In this part, we are going to implement the class version we've mentioned at the end of the
introduction to the Chain of Responsibility Pattern. Consider requests that could either ask
for help information or feedback prompts:

type RequestType = 'help' | 'feedback';

interface Request {
 type: RequestType;
}

We are using string literal type here with union type. It is a pretty useful
feature provided in TypeScript that plays well with existing JavaScript
coding styles.
See the following link for more information: h t t p : / / w w w . t y p e s c r i p t l a n g

. o r g / d o c s / h a n d b o o k / a d v a n c e d - t y p e s . h t m l.

One of the key processes for this pattern is going through the handlers' chain and finding
out the most specific handler that's available for the request. There are several ways to
achieve this: by recursively invoking the handle method of a successor, or having a
separate logic walking through the handler successor chain until the request is confirmed as
handled.

http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html
http://www.typescriptlang.org/docs/handbook/advanced-types.html

Behavioral Design Patterns

[129]

The logic walking through the chain in the second way requires the acknowledgment of
whether a request has been properly handled. This can be done either by a state indicator
on the request object or by the return value of the handle method.

We'll go with the recursive implementation in this part. Firstly, we want the default
handling behavior of a handler to be forwarding requests to its successor if any:

class Handler {
 private successor: Handler;

 handle(request: Request): void {
 if (this.successor) {
 this.successor.handle(request);
 }
 }
}

And now for HelpHandler, it handles help requests but forwards others:

class HelpHandler extends Handler {
 handle(request: Request): void {
 if (request.type === 'help') {
 // Show help information.
 } else {
 super.handle(request);
 }
 }
}

The code for FeedbackHandler is similar:

class FeedbackHandler extends Handler {
 handle(request: Request): void {
 if (request.type === 'feedback') {
 // Prompt for feedback.
 } else {
 super.handle(request);
 }
 }
}

Thus, a chain of handlers could be made up in some way. And if a request got in this chain,
it would be passed on until a handler recognizes and handles it. However, it is not
necessary to have all requests handled after processing them. The handlers can always pass a
request on whether this request gets processed by this handler or not.

Behavioral Design Patterns

[130]

Consequences
The Chain of Responsibility Pattern decouples the connection between objects that issue the
requests and logic that handles those requests. The sender assumes that its requests could,
but not necessarily, be properly handled without knowing the details. For some
implementations, it is also very easy to add new responsibilities to a specific handler on the
chain. This provides notable flexibility for handling requests.

Besides the examples we've been talking about, there is another important mutation of
try...catch that can be treated in the Chain of Responsibility Pattern – Promise. Within a
smaller scope, the chain could be represented as:

promise
 .catch(TypeError, reason => {
 // handles TypeError.
 })
 .catch(ReferenceError, reason => {
 // handles ReferenceError.
 })
 .catch(reason => {
 // handles other errors.
 });

The standard catch method on an ES Promise object does not provide the
overload that accepts an error type as a parameter, but many
implementations do.

In a larger scope, this chain would usually appear when the code is playing with third-
party libraries. A common usage would be converting errors produced by other libraries to
errors known to the current project. We'll talk more about error handling of asynchronous
code later in this book.

Command Pattern
Command Pattern involves encapsulating operations as executable commands and could
either be in the form of objects or functions in JavaScript. It is common that we may want to
make operations rely on certain context and states that are not accessible for the invokers.
By storing those pieces of information with a command and passing it out, this situation
could be properly handled.

Behavioral Design Patterns

[131]

Consider an extremely simple example: we want to provide a function called wait, which
returns a cancel handler:

function wait() {
 let $layer = $('.wait-layer');
 $layer.show();
 return () => {
 $layer.hide();
 };
}

let cancel = wait();

setTimeout(() => cancel(), 1000);

The cancel handler in the preceding code is just a command we were talking about. It
stores the context ($layer) using closure and is passed out as the return value of function
wait.

Closure in JavaScript provides a really simple way to store command context and states,
however, the direct disadvantage would be compromised flexibility between context/states
and command functions because closure is lexically determined and cannot be changed at
runtime. This would be okay if the command is only expected to be invoked with fixed
context and states, but for more complex situations, we might need to construct them as
objects with a proper data structure.

The following diagram shows the overall relations between participants of Command
Pattern:

Behavioral Design Patterns

[132]

By properly splitting apart context and states with the command object, Command Pattern
could also play well with Flyweight Pattern if you wanted to reuse command objects
multiple times.

Other common extensions based on Command Pattern include undo support and macros
with multiple commands. We are going to play with those later in the implementation part.

Participants
The participants of Command Pattern include:

Command: Defines the general interface of commands passing around, it could
be a function signature if the commands are in the form of functions.
Concrete command: Defines the specific behaviors and related data structure. It
could also be a function that matches the signature declared as Command. The
cancel handler in the very first example is a concrete command.
Context: The context or receiver that the command is associated with. In the first
example, it is the $layer.
Client: Creates concrete commands and their contexts.
Invoker: Executes concrete commands.

Pattern scope
Command Pattern suggests two separate parts in a single application or a larger system:
client and invoker. In the simplified example wait and cancel, it could be hard to
distinguish the difference between those parts. But the line is clear: client knows or controls
the context of commands to be executed with, while invoker does not have access or does
not need to care about that information.

The key to the Command Pattern is the separation and bridging between those two parts
through commands that store context and states.

Behavioral Design Patterns

[133]

Implementation
It's common for an editor to expose commands for third-party extensions to modify the text
content. Consider a TextContext that contains information about the text file being
edited and an abstract TextCommand class associated with that context:

class TextContext {
 content = 'text content';
}

abstract class TextCommand {
 constructor(
 public context: TextContext
) { }

 abstract execute(...args: any[]): void;
}

Certainly, TextContext could contain much more information like language, encoding,
and so on. You can add them in your own implementation for more functionality. Now we
are going to create two commands: ReplaceCommand and InsertCommand.

class ReplaceCommand extends TextCommand {
 execute(index: number, length: number, text: string): void {
 let content = this.context.content;

 this.context.content =
 content.substr(0, index) +
 text +
 content.substr(index + length);
 }
}

class InsertCommand extends TextCommand {
 execute(index: number, text: string): void {
 let content = this.context.content;

 this.context.content =
 content.substr(0, index) +
 text +
 content.substr(index);
 }
}

Those two commands share similar logic and actually InsertCommand can be treated as a
subset of ReplaceCommand. Or if we have a new delete command, then replace command
can be treated as the combination of delete and insert commands.

Behavioral Design Patterns

[134]

Now let's assemble those commands with the client and invoker:

class Client {
 private context = new TextContext();

 replaceCommand = new ReplaceCommand(this.context);
 insertCommand = new InsertCommand(this.context);
}

let client = new Client();

$('.replace-button').click(() => {
 client.replaceCommand.execute(0, 4, 'the');
});

$('.insert-button').click(() => {
 client.insertCommand.execute(0, 'awesome ');
});

If we go further, we can actually have a command that executes other commands. Namely,
we can have macro commands. Though the preceding example alone does not make it
necessary to create a macro command, there would be scenarios where macro commands
help. As those commands are already associated with their contexts, a macro command
usually does not need to have an explicit context:

interface TextCommandInfo {
 command: TextCommand,
 args: any[];
}

class MacroTextCommand {
 constructor(
 public infos: TextCommandInfo[]
) { }

 execute(): void {
 for (let info of this.infos) {
 info.command.execute(...info.args);
 }
 }
}

Consequences
Command Pattern decouples the client (who knows or controls context) and the invoker
(who has no access to or does not care about detailed context).

Behavioral Design Patterns

[135]

It plays well with Composite Pattern. Consider the example of macro commands we
mentioned above: a macro command can have other macro commands as its components,
thus we make it a composite command.

Another important case of Command Pattern is adding support for undo operations. A
direct approach is to add the undo method to every command. When an undo operation is
requested, invoke the undo method of commands in reverse order, and we can pray that
every command would be undone correctly. However, this approach relies heavily on a
flawless implementation of the undo method as every mistake will accumulate. To
implement more stable undo support, redundant information or snapshots could be stored.

Memento Pattern
We've talked about an undo support implementation in the previous section on the
Command Pattern, and found it was not easy to implement the mechanism purely based on
reversing all the operations. However, if we take snapshots of objects as their history, we
may manage to avoid accumulating mistakes and make the system more stable. But then
we have a problem: we need to store the states of objects while the states are encapsulated
with objects themselves.

Memento Pattern helps in this situation. While a memento carries the state of an object at a
certain time point, it also controls the process of setting the state back to an object. This
makes the internal state implementation hidden from the undo mechanism in the following
example:

Behavioral Design Patterns

[136]

We have the instances of the memento controlling the state restoration in the preceding
structure. It can also be controlled by the caretaker, namely the undo mechanism, for simple
state restoring cases.

Participants
The participants of Memento Pattern include:

Memento: Stores the state of an object and defines method restore or other
APIs for restoring the states to specific objects
Originator: Deals with objects that need to have their internal states stored
Caretaker: Manages mementos without intervening with what's inside

Pattern scope
Memento Pattern mainly does two things: it prevents the caretaker from knowing the
internal state implementation and decouples the state retrieving and restoring process from
states managed by the Caretaker or Originator.

When the state retrieving and restoring processes are simple, having separated mementos
does not help much if you are already keeping the decoupling idea in mind.

Implementation
Start with an empty State interface and Memento class. As we do not want Caretaker to
know the details about state inside an Originator or Memento, we would like to make
state property of Memento private. Having restoration logic inside Memento does also help
with this, and thus we need method restore. So that we don't need to expose a public
interface for reading state inside a memento.

And as an object assignment in JavaScript assigns only its reference, we would like to do a
quick copy for the states (assuming state objects are single-level):

interface State { }

class Memento {
 private state: State;

 constructor(state: State) {
 this.state = Object.assign({} as State, state);

Behavioral Design Patterns

[137]

 }

 restore(state: State): void {
 Object.assign(state, this.state);
 }
}

For Originator we use a getter and a setter for creating and restoring specific mementos:

class Originator {
 state: State;

 get memento(): Memento {
 return new Memento(this.state);
 }

 set memento(memento: Memento) {
 memento.restore(this.state);
 }
}

Now the Caretaker would manage the history accumulated with mementos:

class Caretaker {
 originator: Originator;
 history: Memento[] = [];

 save(): void {
 this.history.push(this.originator.memento);
 }

 restore(): void {
 this.originator.memento = this.history.shift();
 }
}

In some implementations of Memento Pattern, a getState method is provided for
instances of Originator to read state from a memento. But to prevent classes other than
Originator from accessing the state property, it may rely on language features like a
friend modifier to restrict the access (which is not yet available in TypeScript).

Behavioral Design Patterns

[138]

Consequences
Memento Pattern makes it easier for a caretaker to manage the states of originators and it
becomes possible to extend state retrieving and restoring. However, a perfect
implementation that seals everything might rely on language features as we've mentioned
before. Using mementos could also bring a performance cost as they usually contain
redundant information in trade of stability.

Iterator Pattern
Iterator Pattern provides a universal interface for accessing internal elements of an
aggregate without exposing the underlying data structure. A typical iterator contains the
following methods or getters:

first(): moves the cursor to the first element in the aggregates
next(): moves the cursor to the next element
end: a getter that returns a Boolean indicates whether the cursor is at the end
item: a getter that returns the element at the position of the current cursor
index: a getter that returns the index of the element at the current cursor

Iterators for aggregates with different interfaces or underlying structures usually end with
different implementations as shown in the following figure:

Behavioral Design Patterns

[139]

Though the client does not have to worry about the structure of an aggregate, an iterator
would certainly need to. Assuming we have everything we need to build an iterator, there
could be a variety of ways for creating one. The factory method is widely used when
creating iterators, or a factory getter if no parameter is required.

Starting with ES6, syntax sugar for...of is added and works for all objects with property
Symbol.iterator. This makes it even easier and more comfortable for developers to work
with customized lists and other classes that can be iterated.

Participants
The participants of Iterator Pattern include:

Iterator: AbstractListIterator

Defines the universal iterator interface that is going to transverse different
aggregates.

Concrete iterator: ListIterator, SkipListIterator and
ReversedListIterator

Implements specific iterator that transverses and keeps track of a specific
aggregate.

Aggregate: AbstractList

Defines a basic interface of aggregates that iterators are going to work with.

Concreate aggregate: List and SkipList

Defines the data structure and factory method/getter for creating associated
iterators.

Pattern scope
Iterator Pattern provides a unified interface for traversing aggregates. In a system that
doesn't rely on iterators, the main functionality provided by iterators could be easily taken
over by simple helpers. However, the reusability of those helpers could be reduced as the
system grows.

Behavioral Design Patterns

[140]

Implementation
In this part, we are going to implement a straightforward array iterator, as well as an ES6
iterator.

Simple array iterator
Let's start by creating an iterator for a JavaScript array, which should be extremely easy.
Firstly, the universal interface:

interface Iterator<T> {
 first(): void;
 next(): void;
 end: boolean;
 item: T;
 index: number;
}

Please notice that the TypeScript declaration for ES6 has already declared
an interface called Iterator. Consider putting the code in this part into a
namespace or module to avoid conflicts.

And the implementation of a simple array iterator could be:

class ArrayIterator<T> implements Iterator<T> {
 index = 0;

 constructor(
 public array: T[]
) { }

 first(): void {
 this.index = 0;
 }

 next(): void {
 this.index++;
 }

 get end(): boolean {
 return this.index >= this.array.length;
 }

 get item(): T {
 return this.array[this.index];

Behavioral Design Patterns

[141]

 }
}

Now we need to extend the prototype of native Array to add an iterator getter:

Object.defineProperty(Array.prototype, 'iterator', {
 get() {
 return new ArrayIterator(this);
 }
});

To make iterator a valid property of the Array instance, we also need to extend the
interface of Array:

interface Array<T> {
 iterator: IteratorPattern.Iterator<T>;
}

This should be written outside the namespace under the global scope. Or
if you are in a module or ambient module, you might want to try declare
global { ... } for adding new properties to existing global interfaces.

ES6 iterator
ES6 provides syntax sugar for...of and other helpers for iterable objects, namely the
objects that have implemented the Iterable interface of the following:

interface IteratorResult<T> {
 done: boolean;
 value: T;
}

interface Iterator<T> {
 next(value?: any): IteratorResult<T>;
 return?(value?: any): IteratorResult<T>;
 throw?(e?: any): IteratorResult<T>;
}

interface Iterable<T> {
 [Symbol.iterator](): Iterator<T>;
}

Behavioral Design Patterns

[142]

Assume we have a class with the following structure:

class SomeData<T> {
 array: T[];
}

And we would like to make it iterable. More specifically, we would like to make it iterates
reversely. As the Iterable interface suggests, we just need to add a method with a special
name Symbol.iterator for creating an Iterator. Let's call the iterator SomeIterator:

class SomeIterator<T> implements Iterator<T> {
 index: number;

 constructor(
 public array: T[]
) {
 this.index = array.length - 1;
 }

 next(): IteratorResult<T> {
 if (this.index <= this.array.length) {
 return {
 value: undefined,
 done: true
 };
 } else {
 return {
 value: this.array[this.index--],
 done: false
 }
 }
 }
}

And then define the iterator method:

class SomeData<T> {
 array: T[];

 [Symbol.iterator]() {
 return new SomeIterator<T>(this.array);
 }
}

Behavioral Design Patterns

[143]

Now we would have SomeData that works with for...of.

Iterators also play well with generators; see the following link for more
examples: h t t p s : / / d e v e l o p e r . m o z i l l a . o r g / e n - U S / d o c s / W e b / J a v a S c r i

p t / R e f e r e n c e / I t e r a t i o n _ p r o t o c o l s.

Consequences
Iterator Pattern decouples iteration usage from the data structure that is being iterated. The
direct benefit of this is enabling an interchangeable data class that may have completely
different internal structures, like an array and binary tree. Also, one data structure can be
iterated via different iterators with different traversal mechanisms and results in different
orders and efficiencies.

A unified iterator interface in one system could also help the developer from being
confused when facing different aggregates. As we mentioned previously, some language
like your beloved JavaScript provides a language level abstraction for iterators and makes
life even easier.

Mediator Pattern
The connections between UI components and related objects could be extremely complex.
Object-oriented programming distributes functionalities among objects. This makes coding
easier with cleaner and more intuitive logic; however, it does not ensure the reusability and
sometimes makes it difficult to understand if you look at the code again after some days
(you may still understand every single operation but would be confused about the
interconnections if the network becomes really intricate).

Consider a page for editing user profile. There are standalone inputs like nickname and
tagline, as well as inputs that are related to each other. Taking location selection for
example, there could easily be a tree-level location and the options available in lower levels
are determined by the selection of higher levels. However, if those objects are managed
directly by a single huge controller, it will result in a page that has limited reusability. The
code formed under this situation would also tend to have a hierarchy that's less clean for
people to understand.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Iteration_protocols

Behavioral Design Patterns

[144]

Mediator Pattern tries to solve this problem by separating coupling elements and objects as
groups, and adding a director between a group of elements and other objects as shown in
the following figure:

Those objects form a mediator with their colleagues that can interact with other objects as a
single object. With proper encapsulation, the mediator will have better reusability as it has
just the right size and properly divided functionality. In the world of web front end
development, there are concepts or implementations that fit Mediator Pattern well, like Web
Component and React.

Participants
The participants of Mediator Pattern include:

Mediator:

Usually, the abstraction or skeleton predefined by a framework. Defines the
interface that colleagues in a mediator communicate through.

Concrete mediator: LocationPicker

Manages the colleagues and makes them cooperate, providing a higher level
interface for objects outside.

Colleague classes: CountryInput, ProvinceInput, CityInput

Defines references to their mediator and notifies its changes to the mediator
and accepts modifications issued by the mediator.

Behavioral Design Patterns

[145]

Pattern scope
Mediator Pattern could connect many parts of a project, but does not have direct or
enormous impact on the outline. Most of the credit is given because of increased usability
and cleaner interconnections introduced by mediators. However, along with a nice overall
architecture, Mediator Pattern can help a lot with refined code quality, and make the project
easier to maintain.

Implementation
Using libraries like React would make it very easy to implement Mediator Pattern, but for
now, we are going with a relatively primitive way and handle changes by hand. Let's think
about the result we want for a LocationPicker we've discussed, and hopefully, it includes
country, province and city fields:

interface LocationResult {
 country: string;
 province: string;
 city: string;
}

And now we can sketch the overall structure of class LocationPicker:

class LocationPicker {
 $country = $(document.createElement('select'));
 $province = $(document.createElement('select'));
 $city = $(document.createElement('select'));

 $element = $(document.createElement('div'))
 .append(this.$country)
 .append(this.$province)
 .append(this.$city);

 get value(): LocationResult {
 return {
 country: this.$country.val(),
 province: this.$province.val(),
 city: this.$city.val()
 };
 }
}

Behavioral Design Patterns

[146]

Before we can tell how the colleagues are going to cooperate, we would like to add a helper
method setOptions for updating options in a select element:

private static setOptions(
 $select: JQuery,
 values: string[]
): void {
 $select.empty();

 let $options = values.map(value => {
 return $(document.createElement('option'))
 .text(value)
 .val(value);
 });

 $select.append($options);
}

I personally tend to have methods that do not depend on a specific instance static methods
and this applies to methods getCountries, getProvincesByCountry, and
getCitiesByCountryAndProvince that simply return a list by the information given as
function arguments (though we are not going to actually implement that part):

private static getCountries(): string[] {
 return ['-'].concat([/* countries */]);
}

private static getProvincesByCountry(country: string): string[] {
 return ['-'].concat([/* provinces */]);
}

private static getCitiesByCountryAndProvince(
 country: string,
 province: string
): string[] {
 return ['-'].concat([/* cities */]);
}

Now we may add methods for updating options in the select elements:

updateProvinceOptions(): void {
 let country: string = this.$country.val();

 let provinces = LocationPicker.getProvincesByCountry(country);
 LocationPicker.setOptions(this.$province, provinces);

 this.$city.val('-');

Behavioral Design Patterns

[147]

}

updateCityOptions(): void {
 let country: string = this.$country.val();
 let province: string = this.$province.val();

 let cities = LocationPicker
 .getCitiesByCountryAndProvince(country, province);
 LocationPicker.setOptions(this.$city, cities);
}

Finally, weave those colleagues together and add listeners to the change events:

constructor() {
 LocationPicker
 .setOptions(this.$country, LocationPicker.getCountries());
 LocationPicker.setOptions(this.$province, ['-']);
 LocationPicker.setOptions(this.$city, ['-']);

 this.$country.change(() => {
 this.updateProvinceOptions();
 });

 this.$province.change(() => {
 this.updateCityOptions();
 });
}

Consequences
Mediator Pattern, like many other design patterns, downgrades a level-100 problem into
two level-10 problems and solves them separately. A well-designed mediator usually has a
proper size and usually tends to be reused in the future. For example, we might not want to
put nickname input together with the country, province, and city inputs as this combination
doesn't tend to occur in other situations (which means they are not strongly related).

As the project evolves, a mediator may grow to a size that's not efficient anymore. So a
properly designed mediator should also take the dimension of time into consideration.

Behavioral Design Patterns

[148]

Summary
In this chapter, we talked about some common behavioral patterns for different scopes and
different scenarios. Chain of Responsibility Pattern and Command Pattern can apply to a
relatively wide range of scopes, while other patterns mentioned in this chapter usually care
more about the scope with objects and classes directly related.

Behavioral patterns we've talked about in this chapter are less like each other compared to
creational patterns and structural patterns we previously walked through. Some of the
behavioral patterns could compete with others, but many of them could cooperate. For
example, we talked about Command Pattern with Memento Pattern to implement undo
support. Many others may cooperate in parallel and do their own part.

In the next chapter, we'll continue talking about other behavioral design patterns that are
useful and widely used.

6
Behavioral Design Patterns:

Continuous
In the previous chapter, we've already talked about some of the behavioral design patterns.
We'll be continuing with more patterns in this category in this chapter, including: Strategy
Pattern, State Pattern, Template Method Pattern, Observer Pattern, and Visitor Pattern.

Many of these patterns share the same idea: unify the shape and vary the details. Here is a
quick overview:

Strategy Pattern and Template Pattern: Defines the same outline of algorithms
State Pattern: Provides different behavior for objects in different states with the
same interface
Observer Pattern: Provides a unified process of handling subject changes and
notifying observers
Visitor Pattern: Does similar jobs as Strategy Pattern sometimes, but avoids an
over complex interface that might be required for Strategy Pattern to handle
objects in many different types

Patterns that will be discussed in this chapter could be applied in different scopes just as
many patterns in other categories.

Behavioral Design Patterns: Continuous

[150]

Strategy Pattern
It's common that a program has similar outlines for processing different targets with
different detailed algorithms. Strategy Pattern encapsulates those algorithms and makes
them interchangeable within the shared outline.

Consider conflicting merging processes of data synchronization, which we talked about in
Chapter 2, The Challenge of Increasing Complexity. Before refactoring, the code was like this:

if (type === 'value') {
 // ...
} else if (type === 'increment') {
 // ...
} else if (type === 'set') {
 // ...
}

But later we found out that we could actually extract the same outlines from different
phases of the synchronization process, and encapsulate them as different strategies. After
refactoring, the outline of the code became as follows:

let strategy = strategies[type];
strategy.operation();

We get a lot of ways to compose and organize those strategy objects or classes sometimes in
JavaScript. A possible structure for Strategy Pattern could be:

In this structure, the client is responsible for fetching specific strategies from the table and
applying operations of the current phase.

Behavioral Design Patterns: Continuous

[151]

Another structure is using contextual objects and letting them control their own strategies:

Thus the client needs only to link a specific context with the corresponding strategy.

Participants
We've mentioned two possible structures for Strategy Pattern, so let's discuss the
participants separately. For the first structure, the participants include the following:

Strategy

Defines the interface of strategy objects or classes.

Concrete strategy: ConcreteStrategyA and ConcreteStrategyB

Implements concrete strategy operations defined by the Strategy interface.

Strategy manager: Strategies

Defines a data structure to manage strategy objects. In the example, it's just a
simple hash table that uses data type names as keys and strategy objects as
values. It could be more complex on demand: for example, with matching
patterns or conditions.

Target

The target to apply algorithms defined in strategy objects.

Client

Makes targets and strategies cooperate.

Behavioral Design Patterns: Continuous

[152]

The participants of the second structure include the following:

Strategy and concrete strategy

The same as in the preceding section.

Context

Defines a reference to the strategy object applied. Provides related methods
or property getters for clients to operate.

Client

Manages context objects.

Pattern scope
Strategy Pattern is usually applied to scopes with small or medium sizes. It provides a way
to encapsulate algorithms and makes those algorithms easier to manage under the same
outline. Strategy Pattern can also be the core of an entire solution sometimes, and a good
example is the synchronization implementation we've been playing with. In this case,
Strategy Pattern builds the bridge of plugins and makes the system extendable. But most of
the time, the fundamental work done by Strategy Pattern is decoupling concrete strategies,
contexts, or targets.

Implementation
The implementation starts with defining the interfaces of objects we'll be playing with. We
have two target types in string literal type 'a' and 'b'. Targets of type 'a' have a result
property with type string, while targets of type 'b' have a value property with type
number.

The interfaces we'll have look, are like:

type TargetType = 'a' | 'b';

interface Target {
 type: TargetType;
}

interface TargetA extends Target {
 type: 'a';

Behavioral Design Patterns: Continuous

[153]

 result: string;
}

interface TargetB extends Target {
 type: 'b';
 value: number;
}

interface Strategy<TTarget extends Target> {
 operationX(target: TTarget): void;
 operationY(target: TTarget): void;
}

Now we'll define the concrete strategy objects without a constructor:

let strategyA: Strategy<TargetA> = {
 operationX(target) {
 target.result = target.result + target.result;
 },
 operationY(target) {
 target.result = target
 .result
 .substr(Math.floor(target.result.length / 2));
 }
};

let strategyB: Strategy<TargetB> = {
 operationX(target) {
 target.value = target.value * 2;
 },
 operationY(target) {
 target.value = Math.floor(target.value / 2);
 }
};

To make it easier for a client to fetch those strategies, we'll put them into a hash table:

let strategies: {
 [type: string]: Strategy<Target>
} = {
 a: strategyA,
 b: strategyB
};

Behavioral Design Patterns: Continuous

[154]

And now we can make them work with targets in different types:

let targets: Target[] = [
 { type: 'a' },
 { type: 'a' },
 { type: 'b' }
];

for (let target of targets) {
 let strategy = strategies[target.type];

 strategy.operationX(target);
 strategy.operationY(target);
}

Consequences
Strategy Pattern makes the foreseeable addition of algorithms for contexts or targets under
new categories easier. It also makes the outline of a process even cleaner by hiding trivial
branches of behaviors selection.

However, the abstraction of algorithms defined by the Strategy interface may keep
growing while we are trying to add more strategies and satisfy their requirements of
parameters. This could be a problem for a Strategy Pattern with clients that are managing
targets and strategies. But for the other structures which the references of strategy objects
are stored by contexts themselves, we can manage to trade-off the interchangeability. This
would result in Visitor Pattern, which we are going to talk about later in this chapter.

And as we've mentioned before, Strategy Pattern can also provide notable extensibility if an
extendable strategy manager is available or the client of contexts is designed to.

State Pattern
It's possible for some objects to behave completely differently when they are in different
states. Let's think about an easy example first. Consider rendering and interacting with a
custom button in two states: enabled and disabled. When the button is enabled, it lights up
and changes its style to active on a mouse hover, and of course, it handles clicks; when
disabled, it dims and no longer cares about mouse events.

Behavioral Design Patterns: Continuous

[155]

We may think of an abstraction with two operations: render (with a parameter that
indicates whether the mouse is hovering) and click; along with two states: enabled and
disabled. We can even divide deeper and have state active, but that won't be necessary in our
case.

And now we can have StateEnabled with both render and click methods
implemented, while having StateDisabled with only render method
implemented because it does not care about the hover parameter. In this example, we are
expecting every method of the states being callable. So we can have the abstract class State
with empty render and click methods.

Participants
The participants of State Pattern include the following:

State

Defines the interface of state objects that are being switched to internally.

Concrete state: StateEnabled and StateDisabled

Implements the State interface with behavior corresponding to a specific
state of the context. May have an optional reference back to its context.

Context

Manages references to different states, and makes operations defined on the
active one.

Behavioral Design Patterns: Continuous

[156]

Pattern scope
State Pattern usually applies to the code of scopes with the size of a feature. It does not
specify whom to transfer the state of context: it could be either the context itself, the state
methods, or code that controls context.

Implementation
Start with the State interface (it could also be an abstract class if there are operations or
logic to share):

interface State {
 render(hover: boolean): void;
 click(): void;
}

With the State interface defined, we can move to Context and sketch its outline:

class Context {
 $element: JQuery;

 state: State;

 private render(hover: boolean): void {
 this.state.render(hover);
 }

 private click(): void {
 this.state.click();
 }
 onclick(): void {
 console.log('I am clicked.');
 }
}

Now we are going to have the two states, StateEnabled and StateDisabled
implemented. First, let's address StateEnabled, it cares about hover status and handles
click event:

class StateEnabled implements State {
 constructor(
 public context: Context
) { }

 render(hover: boolean): void {

Behavioral Design Patterns: Continuous

[157]

 this
 .context
 .$element
 .removeClass('disabled')
 .toggleClass('hover', hover);
 }

 click(): void {
 this.context.onclick();
 }
}

Next, for StateDisabled it just ignores hover parameter and does nothing when click
event emits:

class StateDisabled implements State {
 constructor(
 public context: Context
) { }

 render(): void {
 this
 .context
 .$element
 .addClass('disabled')
 .removeClass('hover');
 }

 click(): void {
 // Do nothing.
 }
}

Now we have classes of states enabled and disabled ready. As the instances of those classes
are associated with the context, we need to initialize every state when a new Context is
initiated:

class Context {
 ...

 private stateEnabled = new StateEnabled(this);
 private stateDisabled = new StateDisabled(this);

 state: State = this.stateEnabled;
 ...
}

Behavioral Design Patterns: Continuous

[158]

It is possible to use flyweights by passing context in when invoking every operation on the
active state as well.

Now let's finish the Context by listening to and forwarding proper events:

constructor() {
 this
 .$element
 .hover(
 () => this.render(true),
 () => this.render(false)
)
 .click(() => this.click());

 this.render(false);
}

Consequences
State Pattern reduces conditional branches in potentially multiple methods of context
objects. As a trade-off, extra state objects are introduced, though it usually won't be a big
problem.

The context object in State Pattern usually delegates operations and forwards them to the
current state object. Thus operations defined by a concrete state may have access to the
context itself. This makes reusing state objects possible with flyweights.

Template Method Pattern
When we are talking about subclassing or inheriting, the building is usually built from the
bottom up. Subclasses inherit the basis and then provide more. However, it could be useful
to reverse the structure sometimes as well.

Consider Strategy Pattern which defines the outline of a process and has interchangeable
algorithms as strategies. If we apply this structure under the hierarchy of classes, we will
have Template Method Pattern.

Behavioral Design Patterns: Continuous

[159]

A template method is an abstract method (optionally with default implementation) and acts
as a placeholder under the outline of a larger process. Subclasses override or implement
related methods to modify or complete the behaviors. Imaging the skeleton of a
TextReader, we are expecting its subclasses to handle text files from different storage
media, detect different encodings and read all the text. We may consider a structure like
this:

The TextReader in this example has a method readAllText that reads all text from a
resource by two steps: reading all bytes from the resource (readAllBytes), and then
decoding those bytes with certain encoding (decodeBytes).

The structure also suggests the possibility of sharing implementations among concrete
classes that implement template methods. We may create an abstract class
AsciiTextReader that extends TextReader and implements method decodeBytes. And
build concrete classes FileAsciiTextReader and HttpAsciiTextReader that extend
AsciiTextReader and implement method readAllBytes to handle resources on different
storage media.

Participants
The participants of Template Method Pattern include the following:

Abstract class: TextReader

Defines the signatures of template methods, as well as the outline of
algorithms that weave everything together.

Behavioral Design Patterns: Continuous

[160]

Concrete classes: AsciiTextReader, FileAsciiTextReader and
HttpAsciiTextReader

Implements template methods defined in abstract classes. Typical concrete
classes are FileAsciiTextReader and HttpAsciiTextReader in this
example. However, compared to being abstract, defining the outline of
algorithms weighs more in the categorization.

Pattern scope
Template Method Pattern is usually applied in a relatively small scope. It provides an
extendable way to implement features and avoid redundancy from the upper structure of a
series of algorithms.

Implementation
There are two levels of the inheriting hierarchy: the AsciiTextReader will subclass
TextReader as another abstract class. It implements method decodeBytes but leaves
readAllBytes to its subclasses. Starting with the TextReader:

abstract class TextReader {
 async readAllText(): Promise<string> {
 let bytes = await this.readAllBytes();
 let text = this.decodeBytes(bytes);

 return text;
 }

 abstract async readAllBytes(): Promise<Buffer>;

 abstract decodeBytes(bytes: Buffer): string;
}

We are using Promises with async and await which are coming to
ECMAScript next. Please refer to the following links for more information:
h t t p s : / / g i t h u b . c o m / M i c r o s o f t / T y p e S c r i p t / i s s u e s / 1 6 6 4
h t t p s : / / t c 3 9 . g i t h u b . i o / e c m a s c r i p t - a s y n c a w a i t /

https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://github.com/Microsoft/TypeScript/issues/1664
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/
https://tc39.github.io/ecmascript-asyncawait/

Behavioral Design Patterns: Continuous

[161]

And now let's subclass TextReader as AsciiTextReader which still remains abstract:

abstract class AsciiTextReader extends TextReader {
 decodeBytes(bytes: Buffer): string {
 return bytes.toString('ascii');
 }
}

For FileAsciiTextReader, we'll need to import filesystem (fs) module of Node.js to
perform file reading:

import * as FS from 'fs';

class FileAsciiTextReader extends AsciiTextReader {
 constructor(
 public path: string
) {
 super();
 }

 async readAllBytes(): Promise<Buffer> {
 return new Promise<Buffer>((resolve, reject) => {
 FS.readFile(this.path, (error, bytes) => {
 if (error) {
 reject(error);
 } else {
 resolve(bytes);
 }
 });
 });
 }
}

For HttpAsciiTextReader, we are going to use a popular package request to send HTTP
requests:

import * as request from 'request';

class HttpAsciiTextReader extends AsciiTextReader {
 constructor(
 public url: string
) {
 super();
 }

 async readAllBytes(): Promise<Buffer> {
 return new Promise<Buffer>((resolve, reject) => {
 request(this.url, {

Behavioral Design Patterns: Continuous

[162]

 encoding: null
 }, (error, bytes, body) => {
 if (error) {
 reject(error);
 } else {
 resolve(body);
 }
 });
 });
 }
}

Both concrete reader implementations pass resolver functions to the
Promise constructor for converting asynchronous Node.js style callbacks
to Promises. For more information, read more about the Promise
constructor : h t t p s : / / d e v e l o p e r . m o z i l l a . o r g / e n - U S / d o c s / W e b / J a v a S c

r i p t / R e f e r e n c e / G l o b a l _ O b j e c t s / P r o m i s e.

Consequences
Compared to Strategy Pattern, Template Method Pattern provides convenience for building
objects with the same outline of algorithms outside of the existing system. This makes
Template Method Pattern a useful way to build tooling classes instead of fixed processes
built-in.

But Template Method Pattern has less runtime flexibility as it does not have a manager. It
also relies on the client who's using those objects to do the work. And as the
implementation of Template Method Pattern relies on subclassing, it could easily result in
hierarchies that have a similar code on different branches. Though this could be optimized
by using techniques like mixin.

Observer Pattern
Observer Pattern is an important Pattern backed by an important idea in software
engineering. And it is usually a key part of MVC architecture and its variants as well.

If you have ever written an application with a rich user interface without a framework like
Angular or a solution with React, you might probably have struggled with changing class
names and other properties of UI elements. More specifically, the code that controls those
properties of the same group of elements lies every branch related to the elements in related
event listeners, just to keep the elements being correctly updated.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

Behavioral Design Patterns: Continuous

[163]

Consider a “Do” button of which the disabled property should be determined by the
status of a WebSocket connection to a server and whether the currently active item is done.
Every time the status of either the connection or the active item gets updated, we'll need to
update the button correspondingly. The most “handy” way could be two somewhat
identical groups of code being put in two event listeners. But in this way, the amount of
similar code would just keep growing as more relevant objects get involved.

The problem in this “Do” button example is that, the behavior of code that's controlling the
button is driven by primitive events. The heavy load of managing the connections and
behaviors among different events is directly taken by the developer who's writing that code.
And unfortunately, the complexity in this case, grows exponentially, which means it could
easily exceed our brain capacity. Writing code this way might result in more bugs and make
maintaining much likely to introduce new bugs.

But the beautiful thing is, we can find the factors that multiply and output the desired
result, and the reference for dividing those factors are groups of related states. Still speaking
of the “Do” button example, what the button cares about is: connection status and the active
item status (assuming they are booleans connected and loaded). We can have the code
written as two parts: one part that changes those states, and another part that updates the
button:

let button = document.getElementById('do-button');

let connected = false;
let loaded = false;

function updateButton() {
 let disabled = !connected && !loaded;
 button.disabled = disabled;
}

connection.on('statuschange', event => {
 connected = event.connected;
 updateButton();
});

activeItem.on('statuschange', event => {
 loaded = event.loaded;
 updateButton();
});

Behavioral Design Patterns: Continuous

[164]

The preceding sample code already has the embryo of Observer Pattern: the subjects (states
connected and loaded) and the observer (updateButton function), though we still need
to call updateButton manually every time any related state changes. An improved
structure could look like the following figure:

But just like the example we've been talking about, observers in many situations care about
more than one state. It could be less satisfying to have subjects attach observers separately.

A solution to this could be multi-state subjects, to achieve that, we can form a composite
subject that contains sub-subjects. If a subject receives a notify call, it wakes up its
observers and at the same time notifies its parent. Thus the observer can attach one
composite subject for notifications of changes that happen to multiple states.

Behavioral Design Patterns: Continuous

[165]

However, the process of creating the composite itself could still be annoying. In dynamic
programming languages like JavaScript, we may have a state manager that contains specific
states handling notifications and attaching observers directly with implicit creations of
subjects:

let stateManager = new StateManager({
 connected: false,
 loaded: false,
 foo: 'abc',
 bar: 123
});

stateManager.on(['connected', 'loaded'], () => {
 let disabled =
 !stateManager.connected && !stateManager.loaded;
 button.disabled = disabled;
});

In many MV* frameworks, the states to be observed are analyzed
automatically from related expressions by built-in parsers or similar
mechanisms.

And now the structure gets even simpler:

Behavioral Design Patterns: Continuous

[166]

Participants
We've talked about the basic structure of Observer Pattern with subjects and observers, and
a variant with implicit subjects. The participants of the basic structure include the following:

Subject

Subject to be observed. Defines methods to attach or notify observers. A
subject could also be a composite that contains sub-subjects, which allows
multiple states to be observed with the same interface.

Concrete subject: ConnectedSubject and LoadedSubject

Contains state related to the subject, and implements methods or properties
to get and set their state.

Observer

Defines the interface of an object that reacts when an observation notifies. In
JavaScript, it could also be an interface (or signature) of a function.

Concrete observer: DoButtonObserver

Defines the action that reacts to the notifications of subjects being observed.
Could be a callback function that matches the signature defined.

In the variant version, the participants include the following:

State manager

Manages a complex, possibly multi-level state object containing multiple
states. Defines the interface to attach observers with subjects, and notifies
those observers when a subject changes.

Concrete subject

Keys to specific states. For example, string "connected" may represent state
stateManager.connected, while string "foo.bar" may represent state
stateManager.foo.bar.

Observer and concrete observer are basically the same as described in the former structure. But
observers are now notified by the state manager instead of subject objects.

Behavioral Design Patterns: Continuous

[167]

Pattern scope
Observer Pattern is a pattern that may easily structure half of the project. In MV*
architectures, Observer Pattern can decouple the view from business logic. The concept of
view can be applied to other scenarios related to displaying information as well.

Implementation
Both of the structures we've mentioned should not be hard to implement, though more
details should be put into consideration for production code. We'll go with the second
implementation that has a central state manager.

To simplify the implementation, we will use get and set methods to
access specific states by their keys. But many frameworks available might
handle those through getters and setters, or other mechanisms.

To learn about how frameworks like Angular handle states changing,
please read their documentation or source code if necessary.

We are going to have StateManager inherit EventEmitter, so we don't need to care much
about issues like multiple listeners. But as we are accepting multiple state keys as subjects,
an overload to method on will be added. Thus the outline of StateManager would be as
follows:

type Observer = () => void;

class StateManager extends EventEmitter{
 constructor(
 private state: any
) {
 super();
 }

 set(key: string, value: any): void { }

 get(key: string): any { }

 on(state: string, listener: Observer): this;
 on(states: string[], listener: Observer): this;
 on(states: string | string[], listener: Observer): this { }
}

Behavioral Design Patterns: Continuous

[168]

You might have noticed that method on has the return type this, which
may keep referring to the type of current instance. Type this is very
helpful for chaining methods.

The keys will be "foo" and "foo.bar", we need to split a key as separate identifiers for
accessing the value from the state object. Let's have a private _get method that takes an
array of identifiers as input:

private _get(identifiers: string[]): any {
 let node = this.state;

 for (let identifier of identifiers) {
 node = node[identifier];
 }

 return node;
}

Now we can implement method get upon _get:

get(key: string): any {
 let identifiers = key.split('.');
 return this._get(identifiers);
}

For method set, we can get the parent object of the last identifier of property to be set, so
things work like this:

set(key: string, value: any): void {
 let identifiers = key.split('.');
 let lastIndex = identifiers.length - 1;

 let node = this._get(identifiers.slice(0, lastIndex));
 node[identifiers[lastIndex]] = value;
}

But there's one more thing, we need to notify observers that are observing a certain subject:

set(key: string, value: any): void {
 let identifiers = key.split('.');
 let lastIndex = identifiers.length - 1;

 let node = this._get(identifiers.slice(0, lastIndex));
 node[identifiers[lastIndex]] = value;

 for (let i = identifiers.length; i > 0; i--) {

Behavioral Design Patterns: Continuous

[169]

 let key = identifiers.slice(0, i).join('.');
 this.emit(key);
 }
}

When we're done with the notifying part, let's add an overload for method on to support
multiple keys:

on(state: string, listener: Observer): this;
on(states: string[], listener: Observer): this;
on(states: string | string[], listener: Observer): this {
 if (typeof states === 'string') {
 super.on(states, listener);
 } else {
 for (let state of states) {
 super.on(state, listener);
 }
 }

 return this;
}

Problem solved. Now we have a state manager that will work for simple scenarios.

Consequences
Observer Pattern decouples subjects with observers. While an observer may be observing
multiple states in subjects at the same time, it usually does not care about which state
triggers the notification. As a result, the observer may make unnecessary updates that
actually do nothing to – for example – the view.

However, the impact on performance could be negligible most of the time, not even need to
mention the benefits it brings.

By splitting view and logic apart, Observer Pattern may reduce possible branches
significantly. This will help eliminate bugs caused at the coupling part between view and
logic. Thus, by properly applying Observer Pattern, the project will be made much more
robust and easier to maintain.

Behavioral Design Patterns: Continuous

[170]

However, there are some details we still need care about:

The observer that updates the state could cause circular invocation.1.
For more complex data structures like collections, it might be expensive to re-2.
render everything. Observers in this scenario may need more information about
the change to only perform necessary updates. View implementations like React
do this in another way; they introduce a concept called Virtual DOM. By
updating and diffing the virtual DOM before re-rendering the actual DOM
(which could usually be the bottleneck of performance), it provides a relatively
general solution for different data structures.

Visitor Pattern
Visitor Pattern provides a uniformed interface for visiting different data or objects while
allowing detailed operations in concrete visitors to vary. Visitor Pattern is usually used with
composites, and it is widely used for walking through data structures like abstract syntax
tree (AST). But to make it easier for those who are not familiar with compiler stuff, we will
provide a simpler example.

Consider a DOM-like tree containing multiple elements to render:

[
 Text {
 content: "Hello, "
 },
 BoldText {
 content: "TypeScript"
 },
 Text {
 content: "! Popular editors:\n"
 },
 UnorderedList {
 items: [
 ListItem {
 content: "Visual Studio Code"
 },
 ListItem {
 content: "Visual Studio"
 },
 ListItem {
 content: "WebStorm"
 }
]
 }

Behavioral Design Patterns: Continuous

[171]

]

The rendering result in HTML would look like this:

While in Markdown, it would look like this:

Visitor Pattern allows operations in the same category to be coded in the same place. We'll
have concrete visitors, HTMLVisitor and MarkdownVisitor that take the responsibilities
of transforming different nodes by visiting them respectively and recursively. The nodes
being visited have a method accept for accepting a visitor to perform the
transformation. An overall structure of Visitor Pattern could be split into two parts, the first
part is the visitor abstraction and its concrete subclasses:

Behavioral Design Patterns: Continuous

[172]

The second part is the abstraction and concrete subclasses of nodes to be visited:

Participants
The participants of Visitor Pattern include the following:

Visitor: NodeVisitor

Defines the interface of operations corresponding to each element class. In
languages with static types and method overloading, the method names can
be unified. But as it takes extra runtime checking in JavaScript, we'll use
different method names to distinguish them. The operation methods are
usually named after visit, but here we use append as its more related to the
context.

Concrete visitor: HTMLVisitor and MarkdownVisitor

Implements every operation of the concrete visitor, and handles internal
states if any.

Element: Node

Defines the interface of the element accepting the visitor instance. The
method is usually named accept, though here we are using appendTo for a
better matching with the context. Elements could themselves be composites
and pass visitors on with their child elements.

Behavioral Design Patterns: Continuous

[173]

Concrete element: Text, BoldText, UnorderedList and ListItem

Implements accept method and calls the method from the visitor instance
corresponding to the element instance itself.

Client:

Enumerates elements and applies visitors to them.

Pattern scope
Visitor Pattern can form a large feature inside a system. For some programs under certain
categories, it may also form the core architecture. For example, Babel uses Visitor Pattern for
AST transforming and a plugin for Babel is actually a visitor that can visit and transform
elements it cares about.

Implementation
We are going to implement HTMLVisitor and MarkdownVisitor which may transform
nodes to text, as we've talked about. Start with the upper abstraction:

interface Node {
 appendTo(visitor: NodeVisitor): void;
}

interface NodeVisitor {
 appendText(text: Text): void;
 appendBold(text: BoldText): void;
 appendUnorderedList(list: UnorderedList): void;
 appendListItem(item: ListItem): void;
}

Continue with concrete nodes that do similar things, Text and BoldText:

class Text implements Node {
 constructor(
 public content: string
) { }

 appendTo(visitor: NodeVisitor): void {
 visitor.appendText(this);
 }
}

Behavioral Design Patterns: Continuous

[174]

class BoldText implements Node {
 constructor(
 public content: string
) { }

 appendTo(visitor: NodeVisitor): void {
 visitor.appendBold(this);
 }
}

And list stuff:

class UnorderedList implements Node {
 constructor(
 public items: ListItem[]
) { }

 appendTo(visitor: NodeVisitor): void {
 visitor.appendUnorderedList(this);
 }
}

class ListItem implements Node {
 constructor(
 public content: string
) { }

 appendTo(visitor: NodeVisitor): void {
 visitor.appendListItem(this);
 }
}

Now we have the elements of a structure to be visited, we'll begin to implement concrete
visitors. Those visitors will have an output property for the transformed string.
HTMLVisitor goes first:

class HTMLVisitor implements NodeVisitor {
 output = '';

 appendText(text: Text) {
 this.output += text.content;
 }

 appendBold(text: BoldText) {
 this.output += `${text.content}`;
 }

 appendUnorderedList(list: UnorderedList) {

Behavioral Design Patterns: Continuous

[175]

 this.output += '';

 for (let item of list.items) {
 item.appendTo(this);
 }

 this.output += '';
 }

 appendListItem(item: ListItem) {
 this.output += `${item.content}`;
 }
}

Pay attention to the loop inside appendUnorderedList, it handles visiting of its own list
items.

A similar structure applies to MarkdownVisitor:

class MarkdownVisitor implements NodeVisitor {
 output = '';

 appendText(text: Text) {
 this.output += text.content;
 }

 appendBold(text: BoldText) {
 this.output += `**${text.content}**`;
 }

 appendUnorderedList(list: UnorderedList) {
 this.output += '\n';

 for (let item of list.items) {
 item.appendTo(this);
 }
 }

 appendListItem(item: ListItem) {
 this.output += `- ${item.content}\n`;
 }
}

Now the infrastructures are ready, let's create the tree-like structure we've been imagining
since the beginning:

let nodes = [
 new Text('Hello, '),

Behavioral Design Patterns: Continuous

[176]

 new BoldText('TypeScript'),
 new Text('! Popular editors:\n'),
 new UnorderedList([
 new ListItem('Visual Studio Code'),
 new ListItem('Visual Studio'),
 new ListItem('WebStorm')
])
];

And finally, build the outputs with visitors:

let htmlVisitor = new HTMLVisitor();
let markdownVisitor = new MarkdownVisitor();

for (let node of nodes) {
 node.appendTo(htmlVisitor);
 node.appendTo(markdownVisitor);
}

console.log(htmlVisitor.output);
console.log(markdownVisitor.output);

Consequences
Both Strategy Pattern and Visitor Pattern could be applied to scenarios of processing
objects. But Strategy Pattern relies on clients to handle all related arguments and contexts,
this makes it hard to come out with an exquisite abstraction if the expected behaviors of
different objects differ a lot. Visitor Pattern solves this problem by decoupling visit actions
and operations to be performed.

By passing different visitors, Visitor Pattern can apply different operations to objects
without changing other code although it usually means adding new elements and would
result in adding related operations to an abstract visitor and all of its concrete subclasses.

Visitors like the NodeVisitor in the previous example may store state itself (in that
example, we stored the output of transformed nodes) and more advanced operations can be
applied based on the state accumulated. For example, it's possible to determine what has
been appended to the output, and thus we can apply different behaviors with the node
currently being visited.

However, to complete certain operations, extra public methods may need to be exposed
from the elements.

Behavioral Design Patterns: Continuous

[177]

Summary
In this chapter, we've talked about other behavior design patterns as complements to the
former chapter, including Strategy, State, Template Method, Observer and Visitor Pattern.

Strategy Pattern is so common and useful that it may appear in a project several times, with
different forms. And you might not know you were using Observer Pattern with
implementation in a daily framework.

After walking through those patterns, you might find there are many ideas in common
behind each pattern. It is worth thinking what's behind them and even letting the outline go
in your mind.

In the next chapter, we'll continue with some handy patterns related to JavaScript and
TypeScript, and important scenarios of those languages.

7
Patterns and Architectures in

JavaScript and TypeScript
In the previous four chapters, we've walked through common and classical design patterns
and discussed some of their variants in JavaScript or TypeScript. In this chapter, we'll
continue with some architecture and patterns closely related to the language and their
common applications. We don't have many pages to expand and certainly cannot cover
everything in a single chapter, so please take it as an appetizer and feel free to explore more.

Many topics in this chapter are related to asynchronous programming. We'll start with a
web architecture for Node.js that's based on Promise. This is a larger topic that has
interesting ideas involved, including abstractions of responses and permissions, as well as
error handling tips. Then we'll talk about how to organize modules with ECMAScript (ES)
module syntax. And this chapter will end with several useful asynchronous techniques.

Overall, we'll have the following topics covered in this chapter:

Architecture and techniques related to Promise
Abstraction of responses and permissions in a web application
Modularizing a project to scale
Other useful asynchronous techniques

Again, due to the limited length, some of the related code is aggressively
simplified and nothing more than the idea itself can be applied practically.

Patterns and Architectures in JavaScript and TypeScript

[179]

Promise-based web architecture
To have a better understanding of the differences between Promises and traditional
callbacks, consider an asynchronous task like this:

function process(callback) {
 stepOne((error, resultOne) => {
 if (error) {
 callback(error);
 return;
 }

 stepTwo(resultOne, (error, resultTwo) => {
 if (error) {
 callback(error);
 return;
 }

 callback(undefined, resultTwo + 1);
 });
 });
}

If we write preceding above in Promise style, it would be as follows:

function process() {
 return stepOne()
 .then(result => stepTwo(result))
.then(result => result + 1);
}

As in the preceding example, Promise makes it easy and natural to write asynchronous
operations with a flat chain instead of nested callbacks. But the most exciting thing about
Promise might be the benefits it brings to error handling. In a Promise-based architecture,
throwing an error can be safe and pleasant. You don't have to explicitly handle errors when
chaining asynchronous operations, and this makes mistakes less likely to happen.

With the growing usage with ES6 compatible runtimes, Promise is already there out of the
box. And we actually have plenty of polyfills for Promises (including my ThenFail written
in TypeScript), as people who write JavaScript roughly refer to the same group of people
who created wheels.

Patterns and Architectures in JavaScript and TypeScript

[180]

Promises work well with other Promises:

A Promises/A+ -compatible implementation should work with other Promises/A+ -
compatible implementations
Promises work best in a Promise-based architecture

If you are new to Promise, you might be complaining about using Promises with a callback-
based project. Using asynchronous helpers such as Promise.each (non-standard) provided
by Promise libraries is a common reason for people to try out Promise, but it turns out they
have better alternatives (for a callback-based project) such as the popular async library.

The reason that makes you decide to switch should not be these helpers (as there are a lot of
them for old-school callbacks as well), but an easier way to handle errors or to take
advantage of the ES async/await feature, which is based on Promise.

Promisifying existing modules or libraries
Though Promises do best in a Promise-based architecture, it is still possible to begin using
Promise with a smaller scope by promisifying existing modules or libraries.

Let's take Node.js style callbacks as an example:

import * as FS from 'fs';

FS.readFile('some-file.txt', 'utf-8', (error, text) => {
 if (error) {
 console.error(error);
 return;
 }

 console.log('Content:', text);
});

You may expect a promisified version of the readFile function to look like the following:

FS
 .readFile('some-file.txt', 'utf-8')
 .then(text => {
 console.log('Content:', text);
 })
 .catch(reason => {
 Console.error(reason);
 });

Patterns and Architectures in JavaScript and TypeScript

[181]

The implementation of the promisified function readFile can be easy:

function readFile(path: string, options: any): Promise<string> {
 return new Promise((resolve, reject) => {
 FS.readFile(path, options, (error, result) => {
 if (error) {
 reject(error);
 } else {
 resolve(result);
 }
 });
 });
}

I am using the type any here for parameter options to reduce the size of
the code example, but I would suggest not using any whenever possible in
practice.

There are libraries that are able to promisify methods automatically. Though, unfortunately,
you might need to write declaration files yourself for the promisified methods if there are
no promisified version available.

Views and controllers in Express
Many of us may have already worked with frameworks such as Express. And this is how
we render a view or response with JSON in Express:

import * as Path from 'path';
import * as express from 'express';

let app = express();

app.set('engine', 'hbs');
app.set('views', Path.join(__dirname, '../views'));

app.get('/page', (req, res) => {
 res.render('page', {
 title: 'Hello, Express!',
 content: '...'
 });
});

app.get('/data', (req, res) => {
 res.json({

Patterns and Architectures in JavaScript and TypeScript

[182]

 version: '0.0.0',
 items: []
 });
});

app.listen(1337);

We will usually separate controllers from the routing configuration:

import { Request, Response } from 'express';

export function page(req: Request, res: Response): void {
 res.render('page', {
 title: 'Hello, Express!',
 content: '...'
 });
}

Thus we may have a better idea of existing routes, and have controllers managed more
easily. Furthermore, automated routing could be introduced so that we don't always need
to update routing manually:

import * as glob from 'glob';

let controllersDir = Path.join(__dirname, 'controllers');

let controllerPaths = glob.sync('**/*.js', {
 cwd: controllersDir
});

for (let path of controllerPaths) {
 let controller = require(Path.join(controllersDir, path));
 let urlPath = path.replace(/\\/g, '/').replace(/\.js$/, '');

 for (let actionName of Object.keys(controller)) {
 app.get(
 `/${urlPath}/${actionName}`,
 controller[actionName]
);
 }
}

The implementation above is certainly too simple to cover daily use, but it shows a rough
idea of how automated routing could work: via conventions based on file structures.

Patterns and Architectures in JavaScript and TypeScript

[183]

Now, if we are working with asynchronous code written in Promises, an action in the
controller could be like the following:

export function foo(req: Request, res: Response): void {
 Promise
 .all([
 Post.getContent(),
 Post.getComments()
])
 .then(([post, comments]) => {
 res.render('foo', {
 post,
 comments
 });
 });
}

We are destructuring an array within a parameter. Promise.all returns
a Promise of an array with elements corresponding to the values of the
resolvables passed in. (A resolvable means a normal value or a Promise-
like object that may resolve to a normal value.)

But that's not enough; we still need to handle errors properly, or in some Promise
implementations, the preceding code may fail in silence because the Promise chain is not
handled by a rejection handler (which is terrible). In Express, when an error occurs, you
should call next (the third argument passed into the callback) with the error object:

import { Request, Response, NextFunction } from 'express';

export function foo(
 req: Request,
 res: Response,
 next: NextFunction
): void {
 Promise
 // ...
 .catch(reason => next(reason));
}

Now, we are fine with the correctness of this approach, but that's simply not how Promises
work. Explicit error handling with callbacks could be eliminated in the scope of controllers,
and the easiest way is to return the Promise chain and hand over to code that was
previously doing routing logic. So the controller could be written like this:

export function foo(req: Request, res: Response) {
 return Promise
 .all([

Patterns and Architectures in JavaScript and TypeScript

[184]

 Post.getContent(),
 Post.getComments()
])
 .then(([post, comments]) => {
 res.render('foo', {
 post,
 comments
 });
 });
}

But, could we make it even better?

Abstraction of responses
We've already been returning a Promise to tell whether an error occurs. So now the
returned Promise indicates the status of the response: success or failure. But why we are
still calling res.render() for rendering the view? The returned promise object could be
the response itself rather than just an error indicator.

Think about the controller again:

export class Response { }

export class PageResponse extends Response {
 constructor(view: string, data: any) { }
}

export function foo(req: Request) {
 return Promise
 .all([
 Post.getContent(),
 Post.getComments()
])
 .then(([post, comments]) => {
 return new PageResponse('foo', {
 post,
 comments
 });
 });
}

The response object returned could vary for different response outputs. For example, it
could be either a PageResponse like it is in the preceding example, a JSONResponse, a
StreamResponse, or even a simple Redirection.

Patterns and Architectures in JavaScript and TypeScript

[185]

As, in most cases, PageResponse or JSONResponse is applied, and the view of a
PageResponse can usually be implied by the controller path and action name, it is useful to
have those two responses automatically generated from a plain data object with a proper
view to render with:

export function foo(req: Request) {
 return Promise
 .all([
 Post.getContent(),
 Post.getComments()
])
 .then(([post, comments]) => {
 return {
 post,
 comments
 };
 });
}

And that's how a Promise-based controller should respond. With this idea, let's update the
routing code with the abstraction of responses. Previously, we were passing controller
actions directly as Express request handlers. Now we need to do some wrapping up with
the actions by resolving the return value, and applying operations based on the resolved
result:

If it fulfils and it's an instance of Response, apply it to the res object passed in1.
by Express.
If it fulfils and it's a plain object, construct a PageResponse or a JSONResponse2.
if no view found and apply it to the res object.
If it rejects, call the next function with the reason.3.

Previously, it was like this:

app.get(`/${urlPath}/${actionName}`, controller[actionName]);

Now it gets a few more lines:

let action = controller[actionName];

app.get(`/${urlPath}/${actionName}`, (req, res, next) => {
 Promise
 .resolve(action(req))
 .then(result => {
 if (result instanceof Response) {
 result.applyTo(res);

Patterns and Architectures in JavaScript and TypeScript

[186]

 } else if (existsView(actionName)) {
 new PageResponse(actionName, result).applyTo(res);
 } else {
 new JSONResponse(result).applyTo(res);
 }
 })
 .catch(reason => next(reason));
});

However, so far we can handle only GET requests as we hardcoded app.get() in our
router implementation. The poor view-matching logic can hardly be used in practice either.
We need to make the actions configurable, and ES decorators could do nice work here:

export default class Controller {
 @get({
 view: 'custom-view-path'
 })
 foo(req: Request) {
 return {
 title: 'Action foo',
 content: 'Content of action foo'
 };
 }
}

I'll leave the implementation to you, and feel free to make it awesome.

Abstraction of permissions
Permissions play an important role in a project, especially in systems that have different
user groups, for example, a forum. The abstraction of permissions should be extendable to
satisfy changing requirements, and it should be easy to use as well.

Here, we are going to talk about the abstraction of permission in the level of controller
actions. Consider the legibility of performing one or more actions as a privilege. The
permission of a user may consist of several privileges and usually most users at the same
level would have the same set of privileges. So we may have a larger concept, namely
groups.

The abstraction could either work based on both groups and privileges or based on
privileges only (groups are then just aliases to sets of privileges):

Abstractions that validate based on privileges and groups at the same time is
easier to build. You do not need to create a large list of which actions can be
performed for a certain group of users; granular privileges are only required

Patterns and Architectures in JavaScript and TypeScript

[187]

when necessary.
Abstractions that validate based on privileges have better control and more
flexibility for describing the permission. For example, you can remove a small set
of privileges from the permission of a user easily.

However, both approaches have similar upper-level abstractions and differ mostly in
implementation. The general structure of the permission abstractions we've talked about is
as follows:

The participants include the following:

Privilege: Describes detailed privileges corresponding to specific actions
Group: Defines a set of privileges
Permission: Describes what a user is capable of doing; consists of groups the user
belongs to and privileges the user has
Permission descriptor: Describes how the permission of a user would be
sufficient; consists of possible groups and privileges

Expected errors
A great concern wiped away by using Promises is that we do not need to worry about
throwing an error in a callback would crash the application most of the time. The error
will flow through the Promises chain and, if not caught, will be handled by our router.
Errors can be roughly divided into expected errors and unexpected errors. Expected errors
are usually caused by incorrect input or foreseeable exceptions, and unexpected errors are
usually caused by bugs or other libraries the project relies on.

Patterns and Architectures in JavaScript and TypeScript

[188]

For expected errors, we usually want to give user-friendly responses with readable error
messages and codes, so that users can help themselves to find solutions or report to us with
useful context. For unexpected errors, we would also want reasonable responses (usually
messages described as unknown errors), a detailed server-side log (including the real error
name, message, stack information, and so on), and even alarms for getting the team notified
as soon as possible.

Defining and throwing expected errors
The router will need to handle different types of errors, and an easy way to achieve that is
to subclass a universal ExpectedError class and throw its instances out:

import ExtendableError from 'extendable-error';

class ExpectedError extends ExtendableError {
 constructor(
 message: string,
 public code: number
) {
 super(message);
 }
}

The extendable-error is a package of mine that handles stack trace and
the message property. You can directly extend the Error class as well.

Thus, when receiving an expected error, we can safely output its message as part of the
response. And if it's not an instance of ExpectedError, we can then output predefined
unknown error messages and have detailed error information logged.

Transforming errors
Some errors, such as those caused by unstable networks or remote services, are expected;
we may want to catch those errors and throw them out again as expected errors. But it is
rather trivial to actually do that. A centralized error-transforming process can then be
applied to reduce the efforts required to manage those errors.

Patterns and Architectures in JavaScript and TypeScript

[189]

The transforming process includes two parts: filtering (or matching) and transforming.
There are many approaches to filter errors, such as the following:

Filter by error class: Many third-party libraries throw errors of certain classes.
Taking Sequelize (a popular Node.js ORM) as an example, it throws
DatabaseError, ConnectionError, ValidationError, and so on. By filtering
errors by checking whether they are instances of a certain error class, we may
easily pick up target errors from the pile.
Filter by string or regular expression: Sometimes a library might be throwing
errors that are instances of an Error class itself instead of its subclasses; this
makes those errors harder to distinguish from others. In this situation, we may
filter those errors by their message, with keywords or regular expressions.
Filter by scope: It's possible that instances of the same error class with the same
error message should result in different responses. One of the reasons might be
that the operation that throws a certain error is at a lower level, but is being used
by upper structures within different scopes. Thus, a scope mark could be added
for those errors and make them easier to be filtered.

There could be more ways to filter errors, and they are usually able to cooperate as well. By
properly applying those filters and transforming errors, we can reduce noise for analyzing
what's going on within a system and locate problems faster if they show up.

Modularizing project
Before ES6, there were a lot of module solutions for JavaScript that worked. The two most
famous of them are AMD and commonjs. AMD is designed for asynchronous module
loading, which is mostly applied in browsers, while commonjs does module loading
synchronously, and that's the way the Node.js module system works.

To make it work asynchronously, writing an AMD module takes more characters. And due
to the popularity of tools such as browserify and webpack, commonjs becomes popular
even for browser projects.

The proper granularity of internal modules could help a project keep its structure healthy.
Consider a project structure like this:

project
├─controllers
├─core
│ │ index.ts
│ │

Patterns and Architectures in JavaScript and TypeScript

[190]

│ ├─product
│ │ index.ts
│ │ order.ts
│ │ shipping.ts
│ │
│ └─user
│ index.ts
│ account.ts
│ statistics.ts
│
├─helpers
├─models
├─utils
└─views

Assume we are writing a controller file that's going to import a module defined by the
core/product/order.ts file. Previously, with the commonjs require style, we would
want to write the following:

const Order = require('../core/product/order');

Now, with the new ES import syntax, it would be as follows:

import * as Order from '../core/product/order';

Wait, isn't that essentially the same? Sort of. But you may have noticed several index.ts
files I've put into folders. Now, in the file core/product/index.ts, we can have the
following:

import * as Order from './order';
import * as Shipping from './shipping';

export { Order, Shipping }

Alternatively, we could have the following:

export * from './order';
export * from './shipping';

What's the difference? The ideas behind those two approaches of re-exporting modules can
vary. The first style works better when we treat Order and Shipping as namespaces, under
which the entity names may not be easy to distinguish from one group to another. With this
style, the files are the natural boundaries of building those namespaces. The second style
weakens the namespace property of two files and uses them as tools to organize objects and
classes under the same larger category.

Patterns and Architectures in JavaScript and TypeScript

[191]

A good thing about using those files as namespaces is that multiple-level re-exporting is
fine while weakening namespaces makes it harder to understand different identifier names
as the number of re-exporting levels grows.

Asynchronous patterns
When we are writing JavaScript with network or file system I/O, there is a 95% chance that
we are doing it asynchronously. However, an asynchronous code may tremendously
decrease the determinability at the dimension of time. But we are so lucky that JavaScript is
usually single-threaded; this makes it possible for us to write predictable code without
mechanisms such as locks most of the time.

Writing predictable code
The predictable code relies on predictable tools (if you are using any). Consider a helper like
this:

type Callback = () => void;

let isReady = false;
let callbacks: Callback[] = [];

setTimeout(() => {
 callbacks.forEach(callback => callback());
 callbacks = undefined;
 }, 100);
export function ready(callback: Callback): void {
 if (!callbacks) {
 callback();
 } else {
 callbacks.push(callback);
 }
}

This module exports a ready function, which will invoke the callbacks passed in when
“ready”. It will assure that callbacks will be called even if added after that. However, you
cannot say for sure whether the callback will be called in the current event loop:

import { ready } from './foo';

let i = 0;

ready(() => {

Patterns and Architectures in JavaScript and TypeScript

[192]

 console.log(i);
});

i++;

In the preceding example, i could either be 0 or 1 when the callback gets called. Again, this
is not wrong, or even bad, it just makes the code less predictable. When someone else reads
this piece of code, he or she will need to consider two possibilities of how this program
would run. To avoid this issue, we can simply wrap up the synchronous invocation with
setImmediate (it may fallback to setTimeout in older browsers):

export function ready(callback: Callback): void {
 if (!callbacks) {
 setImmediate(() => callback());
 } else {
 callbacks.push(callback);
 }
}

Writing predictable code is actually more than writing predictable asynchronous code. The
highlighted line above can also be written as setImmediate(callback), but that would
make people who read your code think twice: how will callback get called and what are
the arguments?

Consider the line of code below:

let results = ['1', '2', '3'].map(parseInt);

What's the value of the array results? Certainly not [1, 2, 3]. Because the callback
passed to the method map receives several arguments: value of current item, index of
current item, and the whole array, while the function parseInt accepts two arguments:
string to parse, and radix. So results are actually the results of the following snippet:

[parseInt('1', 0), parseInt('2', 1), parseInt('3', 2)];

However, it is actually okay to write setImmediate(callback) directly, as the APIs of
those functions (including setTimeout, setInterval, process.nextTick, and so on) are
designed to be used in this way. And it is fair to assume people who are going to maintain
this project know that as well. But for other asynchronous functions whose signatures are
not well known, it is recommended to call them with explicit arguments.

Patterns and Architectures in JavaScript and TypeScript

[193]

Asynchronous creational patterns
We talked about many creational patterns in Chapter 3, Creational Design Patterns. While a
constructor cannot be asynchronous, some of those patterns may have problems applying
to asynchronous scenarios. But others need only slight modifications for asynchronous use.

In Chapter 4, Structural Design Patterns we walked through the Adapter Pattern with a
storage example that opens the database and creates a storage object asynchronously:

class Storage {
 private constructor() { }

 open(): Promise<Storage> {
 return openDatabase()
 .then(db => new Storage(db))
 }
}

And in the Proxy Pattern, we made the storage object immediately available from its
constructor. When a method of the object is called, it waits for the initialization to complete
and finishes the operation:

class Storage {
 private dbPromise: Promise<IDBDatabase>;

 get dbReady(): Promise<IDBDatabase> {
 if (this.dbPromise) {
 return this.dbPromise;
 }
 // ... }

 get<T>(): Promise<T> {
 return this
 .dbReady
 .then(db => {
 // ...
 });
 }
}

A drawback of this approach is that all members that rely on initialization have to be
asynchronous, though most of the time they just are asynchronous.

Patterns and Architectures in JavaScript and TypeScript

[194]

Asynchronous middleware and hooks
The concept of middleware is widely used in frameworks such as Express. Middleware
usually processes its target in serial. In Express, middleware is applied roughly in the order
it is added while there are not different phases. Some other frameworks, however, provide
hooks for different phases in time. For example, there are hooks that will be triggered before
install, after install, after uninstall, and so on.

The middleware mechanism of Express is actually a variant of the Chain
of Responsibility Pattern. And depending on the specific middleware to be
used, it can act more or less like hooks instead of a responsibility chain.

The reasons to implement middleware or hooks vary. They may include the following:

Extensibility: Most of the time, they are applied due to the requirement of
extensibility. New rules and processes could be easily added by new middleware
or hooks.
Decoupling interactions with business logic: A module that should only care
about business logic could need potential interactions with an interface. For
example, we might expect to be able to either enter or update credentials while
processing an operation, without restarting everything. Thus we can create a
middleware or a hook, so that we don't need to have them tightly coupled.

The implementation of asynchronous middleware could be interesting. Take the Promise
version as an example:

type Middleware = (host: Host) => Promise<void>;

class Host {
 middlewares: Middleware[] = [];

 start(): Promise<void> {
 return this
 .middlewares
 .reduce((promise, middleware) => {
 return promise.then(() => middleware(this));
 }, Promise.resolve());
 }
}

Here, we're using reduce to do the trick. We passed in a Promise fulfilled with undefined
as the initial value, and chained it with the result of middleware(this). And this is
actually how the Promise.each helper is implemented in many Promise libraries.

Patterns and Architectures in JavaScript and TypeScript

[195]

Event-based stream parser
When creating an application relies on socket, we usually need a lightweight “protocol” for
the client and server to communicate. Unlike XHR that already handles everything, by
using socket, you will need to define the boundaries so data won't be mixed up.

Data transferred through a socket might be concatenated or split, but TCP connection
ensures the order and correctness of bytes gets transferred. Consider a tiny protocol that
consists of only two parts: a 4-byte unsigned integer followed by a JSON string with byte
length that matches the 4-byte unsigned integer.

For example, for JSON "{}", the data packet would be as follows:

Buffer <00 00 00 02 7b 7d>

To build such a data packet, we just need to convert the JSON string to Buffer (with
encoding such as utf-8, which is default encoding for Node.js), and then prepend its
length:

function buildPacket(data: any): Buffer {
 let json = JSON.stringify(data);
 let jsonBuffer = new Buffer(json);

 let packet = new Buffer(4 + jsonBuffer.length);

 packet.writeUInt32BE(jsonBuffer.length, 0);
 jsonBuffer.copy(packet, 4, 0);

 return packet;
}

A socket client emits a data event when it receives new buffers. Assume we are going to
send the following JSON strings:

// 00 00 00 02 7b 7d
{}

// 00 00 00 0f 7b 22 6b 65 79 22 3a 22 76 61 6c 75 65 22 7d
{"key":"value"}

We may be receiving them like this:

Get two buffers separately; each of them is a complete packet with length and
JSON bytes

Patterns and Architectures in JavaScript and TypeScript

[196]

Get one single buffer with two buffers concatenated
Get two, or more than two, buffers; at least one of the previously sent packets
gets split into several ones.

The entire process is happening asynchronously. But just like the socket client emits a
data event, the parser can just emit its own data event when a complete packet gets
parsed. The parser for parsing our tiny protocol may have only two states, corresponding to
header (JSON byte length) and body (JSON bytes), and the emitting of the data event
happens after successfully parsing the body:

class Parser extends EventEmitter {
 private buffer = new Buffer(0);
 private state = State.header;

 append(buffer: Buffer): void {
 this.buffer = Buffer.concat([this.buffer, buffer]);
 this.parse();
 }

 private parse(): void { }

 private parseHeader(): boolean { }

 private parseBody(): boolean { }
}

Due to the limitation of length, I'm not going to put the complete implementation of the
parser here. For the complete code, please refer to the file src/event-based-parser.ts
in the code bundle of Chapter 7, Patterns and Architectures in JavaScript and TypeScript.

Thus the use of such a parser could be as follows:

import * as Net from 'net';

let parser = new Parser();
let client = Net.connect(port);

client.on('data', (data: Buffer) => {
 parser.append(data);
});

parser.on('data', (data: any) => {
 console.log('Data received:', data);
});

Patterns and Architectures in JavaScript and TypeScript

[197]

Summary
In this chapter, we discussed some interesting ideas and an architecture formed by those
ideas. Most of the topics focus on a small scope and do their own job, but there are also
ideas about putting a whole system together.

The code that implements techniques such as expected error and the approach to managing
modules in a project is not hard to apply. But with proper application, it can bring notable
convenience to the entire project.

However, as I have already mentioned at the beginning of this chapter, there are too many
beautiful things in JavaScript and TypeScript to be covered or even mentioned in a single
chapter. Please don't stop here, and keep exploring.

Many patterns and architectures are the result of some fundamental principles in software
engineering. Those principles might not always be applicable in every scenario, but they
may help when you feel confused. In the next chapter, we are going to talk about SOLID
principles in object-oriented design and find out how those principles may help form a
useful pattern.

8
SOLID Principles

SOLID Principles are well-known Object-Oriented Design (OOD)principles summarized by
Uncle Bob (Robert C. Martin). The word SOLID comes from the initials of the five principles
it refers to, including Single responsibility principle, Open-closed principle, Liskov
substitution principle, Interface segregation principle and Dependency inversion
principle. Those principles are closely related to each other, and can be a great guidance in
practice.

Here is a widely used summary of SOLID principles from Uncle Bob:

Single responsibility principle: A class should have one, and only one, reason to
change
Open-closed principle: You should be able to extend a classes behavior, without
modifying it
Liskov substitution principle: Derived classes must be substitutable for their
base classes
Interface segregation principle: Make fine-grained interfaces that are client
specific
Dependency inversion principle: Depend on abstractions, not on concretions

In this chapter, we will walk through them and find out how those principles can help form
a design that smells nice.

But before we proceed, I want to mention that a few of the reasons why those principles
exist might be related to the age in which they were raised, the languages and their building
or distributing process people were working with, and even computing resources. When
being applied to JavaScript and TypeScript projects nowadays, some of the details may not
be necessary. Think more about what problems those principles want to prevent people
from getting into, rather than the literal descriptions of how a principle should be followed.

SOLID Principles

[199]

Single responsibility principle
The single responsibility principle declares that a class should have one, and only one
reason to change. And the definition of the world reason in this sentence is important.

Example
Consider a Command class that is designed to work with both command-line interface and
graphical user interface:

class Command {
 environment: Environment;

 print(items: ListItem[]) {
 let stdout = this.environment.stdout;
 stdout.write('Items:\n');
 for (let item of items) {
 stdout.write(item.text + '\n');
 }
 }
 render(items: ListItem[]) {
 let element = <List items={items}></List>;
 this.environment.render(element);
 }
 execute() { }
}

To make this actually work, execute method would need to handle both the command
execution and result displaying:

class Command {
 ..
 execute() {
 let items = ...;
 if (this.environment.type === 'cli') {
 this.print(items);
 } else {
 this.render(items);
 }
 }
}

SOLID Principles

[200]

In this example, there are two reasons for changes:

How a command gets executed.1.
How the result of a command gets displayed in different environments.2.

Those reasons lead to changes in different dimensions and violate the single responsibility
principle. This might result in a messy situation over time. A better solution is to have those
two responsibilities separated and managed by the CommandEnvironment:

Does this look familiar to you? Because it is a variant of the Visitor Pattern. Now it is the
environment that executes a specific command and handles its result based on a concrete
environment class.

Choosing an axis
You might be thinking, doesn't CommandResult violate the single responsibility principle
by having the abilities to display content in a different environment? Yes, and no. When the
axis of this reason is set to displaying content, it does not; but if the axis is set to displaying
in a specific environment, it does. But take the overall structure into consideration, the
result of a command is expected to be an output that can adapt to a different environment.
And thus the reason is one-dimensional and confirms the principle.

SOLID Principles

[201]

Open-closed principle
The open-closed principle declares that you should be able to extend a class' behavior,
without modifying it. This principle is raised by Bertrand Meyer in 1988:

Software entities (classes, modules, functions, etc.) should be open for extension, but closed
for modification.

A program depends on all the entities it uses, that means changing the already-being-used
part of those entities may just crash the entire program. So the idea of the open-closed
principle is straightforward: we'd better have entities that never change in any way other
than extending itself.

That means once a test is written and passing, ideally, it should never be changed for newly
added features (and it needs to keep passing, of course). Again, ideally.

Example
Consider an API hub that handles HTTP requests to and responses from the server. We are
going to have several files written as modules, including http-client.ts, hub.ts and
app.ts (but we won't actually write http-client.ts in this example, you will need to
use some imagination).

Save the code below as file hub.ts.

import { HttpClient, HttpResponse } from './http-client';

export function update(): Promise<HttpResponse> {
 let client = new HttpClient();
 return client.get('/api/update');
}

And save the code below as file app.ts.

import Hub from './hub';

Hub
 .update()
 .then(response => JSON.stringify(response.text))
 .then(result => {
 console.log(result);
});

SOLID Principles

[202]

Bravely done! Now we have app.ts badly coupled with http-client.ts. And if we want
to adapt this API hub to something like WebSocket, BANG.

So how can we create entities that are open for extension, but closed for modification? The
key is a stable abstraction that adapts. Consider the storage and client example we took with
Adapter Pattern in Chapter 4, Structural Design Patterns we had a Storage interface that
isolates implementation of database operations from the client. And assuming that the
interface is well-designed to meet upcoming feature requirements, it is possible that it will
never change or just need to be extended during the life cycle of the program.

Abstraction in JavaScript and TypeScript
Guess what, our beloved JavaScript does not have an interface, and it is dynamically typed.
We were not even able to actually write an interface. However, we could still write down
documentation about the abstraction and create new concrete implementations just by
obeying that description.

But TypeScript offers interface, and we can certainly take advantage of it. Consider the
CommandResult class in the previous section. We were writing it as a concrete class, but it
may have subclasses that override the print or render method for customized output.
However, the type system in TypeScript cares only about the shape of a type. That means,
while you are declaring an entity with type CommandResult, the entity does not need to be
an instance of CommandResult: any object with a compatible type (namely has methods
print and render with proper signatures in this case) will do the job.

For example, the following code is valid:

let environment: Environment;

let command: Command = {
 environment,
 print(items) { },
 render(items) { },
 execute() { }
};

SOLID Principles

[203]

Refactor earlier
I double stressed that the open-closed principle can only be perfectly followed under ideal
scenarios. That can be a result of two reasons:

Not all entities in a system can be open to extension and closed to modification at the1.
same time. There will always be changes that need to break the closure of existing
entities to complete their functionalities. When we are designing the interfaces,
we need different strategies for creating stable closures for different foreseeable
situations. But this requires notable experience and no one can do it perfectly.
None of us is too good at designing a program that lasts long and stays healthy forever.2.
Even with thorough consideration, abstractions designed at the beginning can be
choppy facing the changing requirements.

So when we are expecting the entities to be closed for modification, it does not mean that
we should just stand there and watch it being closed. Instead, when things are still under
control, we should refactor and keep the abstraction in the status of being open to extension and
closed to modification at the time point of refactoring.

Liskov substitution principle
The open-closed principle is the essential principle of keeping code maintainable and
reusable. And the key to the open-closed principle is abstraction with polymorphism.
Behaviors like implementing interfaces, or extending classes make polymorphic shapes, but
that might not be enough.

The Liskov substitution principle declares that derived classes must be substitutable for
their base classes. Or in the words of Barbara Liskov, who raised this principle:

What is wanted here is something like the following substitution property: If for each object
o1 of type S there is an object o2 of type T such that for all programs P defined in terms of
T, the behavior of P is unchanged when o1 is substituted for o2 then S is a subtype of T.

Never mind. Let's try another one: any foreseeable usage of the instance of a class should be
working with the instances of its derived classes.

SOLID Principles

[204]

Example
And here we go with a straightforward violation example. Consider Noodles and
InstantNoodles (a subclass of Noodles) to be cooked:

function cookNoodles(noodles: Noodles) {
 if (noodles instanceof InstantNoodles) {
 cookWithBoiledWaterAndBowl(noodles);
 } else {
 cookWithWaterAndBoiler(noodles);
 }
}

Now if we want to have some fried noodles… The cookNoodles function does not seem to
be capable of handling that. Clearly, this violates the Liskov substitution principle, though it
does not mean that it's a bad design.

Let's consider another example written by Uncle Bob in his article talking about this
principle. We are creating class Square which is a subclass of Rectangle, but instead of
adding new features, it adds a constraint to Rectangle: the width and height of a square
should always be equal to each other. Assume we have a Rectangle class that allows its
width and height to be set:

class Rectangle {
 constructor(
 private _width: number;
 private _height: number;
) { }
 set width(value: number) {
 this._width = value;
 }
 set height(value: number) {
 this._height = value;
 }
}

Now we have a problem with its subclass Square, because it gets width and height
setters from Rectangle while it shouldn't. We can certainly override those setters and
make both of them update width and height simultaneously. But in some situations, the
client might just not want that, because doing so will make the program harder to be
predicted.

SOLID Principles

[205]

The Square and Rectangle example violates the Liskov substitution principle. Not
because we didn't find a good way to inherit, but because Square does not conform the
behavior of Rectangle and should not be a subclass of it at the beginning.

The constraints of substitution
Type is an important part in a programming language, even in JavaScript. But having the
same shape, being on the same hierarchy does not mean they can be the substitution of
another without some pain. More than just the shape, the complete behavior is what really
matters for implementations that hold to the Liskov substitution principle.

Interface segregation principle
We've already discussed the important role played by abstractions in object-oriented
design. The abstractions and their derived classes without separation usually come up with
hierarchical tree structures. That means when you choose to create a branch, you create a
parallel abstraction to all of those on another branch.

For a family of classes with only one level of inheritance, this is not a problem: because it is
just what you want to have those classes derived from. But for a hierarchy with greater
depth, it could be.

Example
Consider the TextReader example we took with Template Method Pattern in Chapter 6,
Behavioral Design Patterns: Continuous we had FileAsciiTextReader and
HttpAsciiTextReader derived from AsciiTextReader. But what if we want to have
other readers that understand UTF-8 encoding?

To achieve that goal, we have two common options: separate the interface into two for
different objects that cooperate, or separate the interface into two then get them
implemented by a single class.

SOLID Principles

[206]

For the first case, we can refactor the code with two abstractions, BytesReader and
TextReader:

And for the second case, we can separate method readAllBytes and decodeBytes onto
two interfaces, for example, BytesReader and BytesDecoder. Thus we may implement
them separately and use techniques like mixin to put them together:

An interesting point about this example is that TextReader above itself is an abstract class.
To make this mixin actually work, we need to create a concrete class of TextReader
(without actually implementing readAllBytes and decodeBytes), and then mixin two
concrete classes of BytesReader and BytesDecoder.

SOLID Principles

[207]

Proper granularity
It is said that by creating smaller interfaces, we can avoid a client from using big classes
with features that it never needs. This may cause unnecessary usage of resources, but in
practice, that usually won't be a problem. The most important part of the interface
segregation principle is still about keeping code maintainable and reusable.

Then the question comes out again, how small should an interface be? I don't think I have a
simple answer for that. But I am sure that being too small might not help.

Dependency inversion principle
When we talk about dependencies, the natural sense is about dependencies from bottom to
top, just like how buildings are built. But unlike a building that stands for tens of years with
little change, software keeps changing during its life cycle. Every change costs, more or less.

The dependency inversion principle declares that entities should depend on abstractions,
not on concretions. Higher level code should not depend directly on low-level
implementations, instead, it should depend on abstractions that lead to those
implementations. And this is why things are inverse.

Example
Still taking the HTTP client and API hub as an example, which obviously violates the
dependency inversion principle, taking the foreseeable application into consideration, what
the API hub should depend on is a messaging mechanism bridging client and server, but
not bare HTTP client. This means we should have an abstraction layer of messaging before
the concrete implementation of HTTP client:

SOLID Principles

[208]

Separating layers
Compared to other principles discussed in this chapter, the dependency inversion principle
cares more about the scope of modules or packages. As the abstraction might usually be
more stable than concrete implementations, by following dependency inversion principle,
we can minimize the impact from low-level changes to higher level behaviors.

But for JavaScript (or TypeScript) projects as the language is dynamically typed, this
principle is more about an idea of guidance that leads to a stable abstraction between
different layers of code implementation.

Originally, an important benefit of following this principle is that, if modules or packages
are relatively larger, separating them by abstraction could save a lot of time in compilation.
But for JavaScript, we don't have to worry about that; and for TypeScript, we don't have to
recompile the entire project for making changes to separated modules either.

Summary
In this chapter, we walked through the well-known SOLID principles with simple
examples. Sometimes, following those principles could lead us to a useful design pattern.
And we also found that those principles are strongly bound to each other. Usually violating
one of them may indicate other violations.

Those principles could be extremely helpful for OOD, but could also be overkill if they are
applied without proper adaptions. A well-designed system should have those principles
confirmed just right, or it might harm.

In the next chapter, instead of theories, we'll have more time with a complete workflow
with testing and continuous integration involved.

9
The Road to Enterprise

Application
After walking through common design patterns, we have now the basis of code designing.
However, software engineering is more about writing beautiful code. While we are trying
to keep the code healthy and robust, we still have a lot to do to keep the project and the
team healthy, robust, and ready to scale. In this chapter, we'll talk about popular elements
in the workflow of web applications, and how to design a workflow that fits your team.

The first part would be setting up the build steps of our demo project. We'll quickly walk
through how to build frontend projects with webpack, one of the most popular packaging
tools these days. And we'll configure tests, code linter, and then set up continuous
integration.

There are plenty of nice choices when it comes to workflow integration. Personally, I prefer
Team Foundation Server for private projects or a combination of GitHub and Travis-CI for
open-source projects. While Team Foundation Server (or Visual Studio Team Services as its
cloud-based version) provides a one-stop solution for the entire application life cycle, the
combination of GitHub and Travis-CI is more popular in the JavaScript community. In this
chapter, we are going use the services provided by GitHub and Travis-CI for our workflow.

Here are what we are going to walk through:

Packaging frontend assets with webpack.
Setting up tests and linter.
Getting our hands on a Git flow branching model and other Git-related
workflow.
Connecting a GitHub repository with Travis-CI.
A peek into automated deployment.

The Road to Enterprise Application

[210]

Creating an application
We've talked about creating TypeScript applications for both frontend and backend projects
in the Chapter 1, Tools and Frameworks. And now we are going to create an application that
contains two TypeScript projects at the same time.

Decision between SPA and “normal” web
applications
Applications for different purposes result in different choices. SPA (single page application)
usually delivers a better user experience after being loaded, but it can also lead to trade-offs
on SEO and may rely on more complex MV* frameworks like Angular.

One solution to build SEO-friendly SPA is to build a universal (or isomorphic) application
that runs the same code on both frontend and backend, but that could introduce even more
complexity. Or a reverse proxy could be configured to render automatically generated
pages with the help of tools like Phantom.

In this demo project, we'll choose a more traditional web application with multiple pages to
build. And here's the file structure of the client project:

The Road to Enterprise Application

[211]

Taking team collaboration into consideration
Before we actually start creating a real-world application, we need to come up with a
reasonable application structure. A proper application structure is more than something
under which the code compiles and runs. It should be a result, taking how your team
members work together into consideration.

For example, a naming convention is involved in this demo client structure shown earlier:
page assets are named after page names instead of their types (for example, style.scss)
or names like index.ts. And the consideration behind this convention is making it more
friendly for file navigation by the keyboard.

Of course, this consideration is valid only if a significant number of developers in your team
are cool with keyboard navigation. Other than operation preferences, the experiences and
backgrounds of a team should be seriously considered as well:

Should the “full-stack” mode be enabled for your team?
Should the “full-stack” mode be enabled for every engineer in your team?
How should you divide work between frontend and backend?

Usually, it's not necessary and not efficient to limit the access of a frontend engineer to
client-side development. If it's possible, frontend engineers could take over the controller
layer of the backend and leave hardcore business models and logic to engineers that focus
more on the backend.

We are having the client and server-side projects in the same repository for an easier
integration during development. But it does not mean everything in the frontend or
backend code base should be in this single repository. Instead, multiple modules could be
extracted and maintained by different developers in practice. For example, you can have
database models and business logic models separated from the controllers on the backend.

Building and testing projects
We have already talked about building and testing TypeScript projects at the beginning of
this book. In this section, we will go a little bit further for frontend projects, including the
basis of using Webpack to load static assets as well as code linting.

The Road to Enterprise Application

[212]

Static assets packaging with webpack
Modularizing helps code keep a healthy structure and makes it maintainable. However, it
could lead to performance issues if development-time code written in small modules are
directly deployed without bundling for production usage. So static assets packaging
becomes a serious topic of frontend engineering.

Back to the old days, packaging JavaScript files was just about uglifying source code and
concatenating files together. The project might be modularized as well, but in a global way.
Then we have libraries like Require.js, with modules no longer automatically exposing
themselves to the global scope.

But as I have mentioned, having the client download module files separately is not ideal for
performance; soon we had tools like browserify, and later, webpack – one of the most
popular frontend packaging tools these days.

Introduction to webpack
Webpack is an integrated packaging tool dedicated (at least at the beginning) to frontend
projects. It is designed to package not only JavaScript, but also other static assets in a
frontend project. Webpack provides built-in support for both asynchronous module
definition (AMD) and commonjs, and can load ES6 or other types of resources via plugins.

ES6 module support will get built-in for webpack 2.0, but by the time this
chapter is written, you still need plugins like babel-loader or ts-
loader to make it work. And of course we are going to use ts-loader
later.

To install webpack via npm, execute the following command:

$ npm install webpack -g

Bundling JavaScript
Before we actually use webpack to load TypeScript files, we'll have a quick walk through of
bundling JavaScript.

The Road to Enterprise Application

[213]

First, let's create the file index.js under the directory client/src/ with the following
code inside:

var Foo = require('./foo');

Foo.test();

Then create the file foo.js in the same folder with the following content:

exports.test = function test() {
 console.log('Hello, Webpack!');
};

Now we can have them bundled as a single file using the webpack command-line interface:

$ webpack ./client/src/index.js ./client/out/bundle.js

By viewing the bundle.js file generated by webpack, you will see that the contents of both
index.js and foo.js have been wrapped into that single file, together with the bootstrap
code of webpack. Of course, we would prefer not to type those file paths in the command
line every time, but to use a configuration file instead.

Webpack provides configuration file support in the form of JavaScript files, which makes it
more flexible to generate necessary data like bundle entries automatically. Let's create a
simple configuration file that does what the previous command did.

Create file client/webpack.config.js with the following lines:

'use strict';

const Path = require('path');

module.exports = {
 entry: './src/index',
 output: {
 path: Path.join(__dirname, 'out'),
 filename: 'bundle.js'
 }
};

The Road to Enterprise Application

[214]

These are the two things to mention:

The value of the entry field is not the filename, but the module id (most of the1.
time this is unresolved) instead. This means that you can have the .js extension
omitted, but have to prefix it with ./ or ../ by default when referencing a file.
The output path is required to be absolute. Building an absolute path with2.
__dirname ensures it works properly if we are not executing webpack under the
same directory as the configuration file.

Loading TypeScript
Now we are going to load and transpile our beloved TypeScript using the webpack plugin
ts-loader. Before updating the configuration, let's install the necessary npm packages:

$ npm install typescript ts-loader --save-dev

If things go well, you should have the TypeScript compiler as well as the ts-loader plugin
installed locally. We may also want to rename and update the files index.js and foo.js
to TypeScript files.

Rename index.js to index.ts and update the module importing syntax:

import * as Foo from './foo';

Foo.test();

Rename foo.js to foo.ts and update the module exporting syntax:

export function test() {
 console.log('Hello, Webpack!');
}

Of course, we would want to add the tsconfig.json file for those TypeScript files (in the
folder client):

{
 "compilerOptions": {
 "target": "es5",
 "module": "commonjs"
 },
 "exclude": [
 "out",
 "node_modules"
]
}

The Road to Enterprise Application

[215]

The compiler option outDir is omitted here because it is managed in the
webpack configuration file.

To make webpack work with TypeScript via ts-loader, we'll need to tell webpack some
information in the configuration file:

Webpack will need to resolve files with .ts extensions. Webpack has a default1.
extensions list to resolve, including '' (empty string), '.webpack.js',
'.web.js', and '.js'. We need to add '.ts' to this list for it to recognize
TypeScript files.
Webpack will need to have ts-loader loading .ts modules because it does not2.
compile TypeScript itself.

And here is the updated webpack.config.js:

'use strict';

const Path = require('path');

module.exports = {
 entry: './src/index',
 output: {
 path: Path.join(__dirname, 'bld'),
 filename: 'bundle.js'
 },
 resolve: {
 extensions: ['', '.webpack.js', '.web.js', '.ts', '.js']
 },
 module: {
 loaders: [
 { test: /\.ts$/, loader: 'ts-loader' }
]
 }
};

Now execute the command webpack under the client folder again, we should get the
compiled and bundled output as expected.

During development, we can enable transpile mode (corresponding to the compiler option
isolatedModules) of TypeScript to have better performance on compiling changing files.
But it means we'll need to rely on an IDE or an editor to provide error hints. And remember
to make another compilation with transpile mode disabled after debugging to ensure things
still work.

The Road to Enterprise Application

[216]

To enable transpile mode, add a ts field (defined by the ts-loader plugin) with
transpileOnly set to true:

module.exports = {
 ...
 ts: {
 transpileOnly: true
 }
};

Splitting code
To take the advantage of code caching across pages, we might want to split the packaged
modules as common pieces. The webpack provides a built-in plugin called
CommonsChunkPlugin that can pick out common modules and have them packed
separately.

For example, if we create another file called bar.ts that imports foo.ts just like
index.ts does, foo.ts can be treated as a common chunk and be packed separately:

module.exports = {
 entry: ['./src/index', './src/bar'],
 ...
 plugins: [
 new Webpack.optimize.CommonsChunkPlugin({
 name: 'common',
 filename: 'common.js'
 })
]
};

For multi-page applications, it is common to have different pages with different entry
scripts. Instead of manually updating the entry field in the configuration file, we can take
advantage of it being JavaScript and generate proper entries automatically. To do so, we
might want the help of the npm package glob for matching page entries:

$ npm install glob --saved-dev

And then update the webpack configuration file:

const glob = require('glob');

module.exports = {
 entry: glob
 .sync('./src/pages/*/*.ts')

The Road to Enterprise Application

[217]

 .filter(path =>
 Path.basename(path, '.ts') ===
 Path.basename(Path.dirname(path))
),
 ...
};

Splitting the code can be rather a complex topic for deep dive, so we'll stop here and let you
explore.

Loading other static assets
As we've mentioned, webpack can also be used to load other static assets like stylesheet and
its extensions. For example, you can use the combination of style-loader, css-loader
and sass-loader/less-loader to load .sass/.less files.

The configuration is similar to ts-loader so we'll not spend extra pages for their
introductions. For more information, refer to the following URLs:

Embedded stylesheets in webpack:
https://webpack.github.io/docs/stylesheets.html

SASS loader for webpack: https://github.com/jtangelder/sass-loader
LESS loader for webpack: https://github.com/webpack/less-loader

Adding TSLint to projects
A consistent code style is an important factor of code quality, and linters are our best
friends when it comes to code styles (and they also helps with common mistakes). For
TypeScript linting, TSLint is currently the simplest choice.

The installation and configuration of TSLint are easy. To begin with, let's install tslint as a
global command:

$ npm install tslint -g

And then we need to initialize a configuration file using the following command under the
project root directory:

$ tslint --init

https://webpack.github.io/docs/stylesheets.html
https://github.com/jtangelder/sass-loader
https://github.com/webpack/less-loader

The Road to Enterprise Application

[218]

TSLint will then generate a default configuration file named tslint.json, and you may
customize it based on your own preferences. And now we can use it to lint our TypeScript
source code:

$ tslint */src/**/*.ts

Integrating webpack and tslint command with
npm scripts
As we've mentioned before, an advantage of using npm scripts is that they can handle local
packages with executables properly by adding node_modules/.bin to PATH. And to make
our application easier to build and test for other developers, we can have webpack and
tslint installed as development dependencies and add related scripts to package.json:

"scripts": {
 "build-client": "cd client && webpack",
 "build-server": "tsc --project server",
 "build": "npm run build-client && npm run build-server",
 "lint": "tslint ./*/src/**/*.ts",
 "test-client": "cd client && mocha",
 "test-server": "cd server && mocha",
 "test": "npm run lint && npm run test-client && npm run test-server"
}

Version control
Thinking back to my senior high school days, I knew nothing about version control tools.
The best thing I could do was to create a daily archive of my code on a USB disk. And yes I
did lose one!

Nowadays, with the boom of version control tools like Git and the availabilities of multiple
free services like GitHub and Visual Studio Team Services, managing code with version
control tools has become a daily basis for every developer.

As the most popular version control tool, Git has already been playing an important role in
your work or personal projects. In this section, we'll talk about popular practices of using
Git in a team.

The Road to Enterprise Application

[219]

Note that I am assuming that you already have the basic knowledge of Git,
and know how to make operations like init, commit, push, pull and
merge. If not, please get hands on and try to understand those operations
before continue.

Check out this quick tutorial at: h t t p s : / / t r y . g i t h u b . i o /.

Git flow
Version control plays an important a role and it does not only influence the source code
management process but also shapes the entire workflow of product development and
delivery. Thus a successful branching model becomes a serious choice.

Git flow is a collection of Git extensions that provides high-level repository operations for a
branching model raised by Vincent Driessen. The name Git flow usually refers to the
branching model as well.

In this branching model, there are two main branches: master and develop, as well as
three different types of supporting branches: feature, hotfix , and release.

With the help of Git flow extensions, we can easily apply this branching model without
having to remember and type detailed sequences of commands. To install, please check out
the installation guide of Git flow at: h t t p s : / / g i t h u b . c o m / n v i e / g i t f l o w / w i k i / I n s t a l l a t

i o n.

Before we can use Git flow to create and merge branches, we'll need to make an
initialization:

$ git flow init -d

Here -d stands for using default branch naming conventions. If you
would like to customize, you may omit the -d option and answer the
questions about git flow init command.

This will create master and develop branches (if not present) and save Git flow-related
configuration to the local repository.

https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://try.github.io/
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation
https://github.com/nvie/gitflow/wiki/Installation

The Road to Enterprise Application

[220]

Main branches
The branching model defines two main branches: master and develop. Those two
branches exist in the lifetime of the current repository:

The graph in the preceding shows a simplified relationship between
develop and master branches.

Branch master: The HEAD of master branch should always contain production-
ready source code. It means that no daily development is done on master branch
in this branching model, and only commits that are fully tested and can be
performed with a fast-forward should be merged into this branch.
Branch develop: The HEAD of develop branch should contain delivered
development source code. Changes to develop branch will finally be merged
into master, but usually not directly. We'll come to that later when we talk about
release branches.

Supporting branches
There are three types of supporting branches in the branching model of Git flow: feature,
hotfix, and release. What they roughly do has already been suggested by their names,
and we'll have more details to follow.

Feature branches
A feature branch has only direct interactions with the develop branch, which means it
checks out from a develop branch and merges back to a develop branch. The feature
branches might be the simplest type of branches out of the three.

The Road to Enterprise Application

[221]

To create a feature branch with Git flow, simply execute the following command:

$ git flow feature start <feature-name>

Now Git flow will automatically checkout a new branch named after feature/<feature-
name>, and you are ready to start development and commit changes occasionally.

After completing feature development, Git flow can automatically merge things back to the
develop branch by the following command:

$ git flow feature finish <feature-name>

A feature branch is usually started by the developer who is assigned to the development of
that very feature and is merged by the developer him or herself, or the owners of the
develop branch (for example, if code review is required).

Release branches
In a single iteration of a product, after finishing the development of features, we usually
need a stage for fully testing everything, fixing bugs, and actually getting it ready to be
released. And work for this stage will be done on release branches.

Unlike feature branches, a repository usually has only one active release branch at a time,
and it is usually created by the owner of the repository. When the development branch is
reaching a state of release and a thorough test is about to begin, we can then create a release
branch using the following command:

$ git flow release start <version>

From now on, bug fixes that are going to be released in this iteration should be merged or
committed to branch release/<version> and changes to the current release branch can
be merged back to the develop branch anytime.

If the test goes well and important bugs have been fixed, we can then finish this release and
put it online:

$ git flow release finish <version>

The Road to Enterprise Application

[222]

After executing this command, Git flow will merge the current release branch to both
master and develop branches. So in a standard Git flow branching model, the develop
branch will not be merged into the master directly, though after finishing a release, the
content on develop and master branches could be identical (if no more changes are made
to the develop branch during the releasing stage).

Finishing the current release usually means the end of the iteration, and
the decision should be made with serious consideration.

Hotfix branches
Unfortunately, there's a phenomenon in the world of developers: bugs are always harder to
find before the code goes live. After releasing, if serious bugs were found, we would have to
use hotfixes to make things right.

A hotfix branch works kind of like a release branch but lasts shorter (because you would
probably want it merged as soon as possible). Unlike feature branches being checked out
from develop branch, a hotfix branch is checked out from master. And after getting
things done, it should be merged back to both master and develop branches, just like a
release branch does.

To create a hotfix branch, similarly you can execute the following command:

$ git flow hotfix start <hotfix-name>

And to finish, execute the following command:

$ git flow hotfix finish <hotfix-name>

Summary of Git flow
The most valuable idea in Git flow beside the branching model itself is, in my opinion, the
clear outline of one iteration. You may not need to follow every step mentioned thus far to
use Git flow, but just make it fit your work. For example, for small features that can be done
in a single commit, you might not actually need a feature branch. But conversely, Git flow
might not bring much value if the iteration itself gets chaotic.

The Road to Enterprise Application

[223]

Pull request based code review
Code review could be a very important joint of team cooperation. It ensures acceptable
quality of the code itself and helps newcomers correct their misunderstanding of the project
and accumulate experiences rapidly without taking a wrong path.

If you have tried to contribute code to open-source projects on GitHub, you must be
familiar with pull requests or PR. There are actually tools or IDEs with code reviewing
workflow built-in. But with GitHub and other self-hosted services like GitLab, we can get it
done smoothly without relying on specific tools.

Configuring branch permissions
Restrictions on accessing specific branches like master and develop are not technically
necessary. But without those restrictions, developers can easily skip code reviewing because
they are just able to do so. In services provided by the Visual Studio Team Foundation
Server, we may add a custom check in policy to force code review. But in lighter services
like GitHub and GitLab, it might be harder to have similar functionality.

The easiest way might be to have developers who are more qualified and familiar with the
current project have the permissions for writing the develop branch, and restrict code
reviewing in this group verbally. For other developers working on this project, pull requests
are now forced for getting changes they merged.

GitHub requires an organization account to specify push permissions for
branches. Besides this, GitHub provides a status API and can add
restrictions to merging so that only branches with a valid status can get
merged.

Comments and modifications before merge
A great thing about those popular Git services is that the reviewer and maybe other
colleagues of yours may comment on your pull requests or even specific lines of code to
raise their concerns or suggestions. And accordingly, you can make modifications to the
active pull request and make things a little bit closer to perfect.

Furthermore, references between issues and pull requests are shown in the conversation.
This along with the comments and modification records makes the context of current pull
requests clear and traceable.

The Road to Enterprise Application

[224]

Testing before commits
Ideally, we would expect every commit we make to pass tests and code linting. But because
we are human, we can easily forget about running tests before committing changes. And
then, if we have already set up continuous integration (we'll come to that shortly) of this
project, pushing the changes would make it red. And if your colleague has set up a CI light
with an alarm, you would make it flash and sound out.

To avoid breaking the build constantly, you might want to add a pre-commit hook to your
local repository.

Git hooks
Git provides varieties of hooks corresponding to specific phases of an operation or an event.
After initializing a Git repository, Git will create hook samples under the directory
.git/hooks.

Now let's create the file pre-commit under the directory .git/hooks with the following
content:

#!/bin/sh
npm run test

The hook file does not have to be a bash file, and it can just be any
executable. For example, if you want like to work with a Node.js hook,
you can update the shebang as #!/usr/bin/env node and then write the
hook in JavaScript.

And now Git will run tests before every commit of changes.

Adding pre-commit hook automatically
Adding hooks manually to the local repository could be trivial, but luckily we have npm
packages like pre-commit that will add pre-commit hooks automatically when it's installed
(as you usually might need to run npm install anyway).

To use the pre-commit package, just install it as a development dependency:

$ npm install pre-commit --save-dev

The Road to Enterprise Application

[225]

It will read your package.json and execute npm scripts listed with the field pre-commit
or precommit:

{
 ..
 "script": {
 "test": "istanbul cover ..."
 },
 "pre-commit": ["test"]
}

At the time of writing, npm package pre-commit uses symbolic links to
create Git hook, which requires administrator privileges on Windows. But
failing to create a symbolic link won't stop the npm install command
from completing. So if you are using Windows, you probably might want
to ensure pre-commit is properly installed.

Continuous integration
The continuous integration (CI) refers to a practice of integrating multiple parts of a project
or solution together regularly. Depending on the size of the project, the integration could be
taken for every single change or on a timed schedule.

The main goal of continuous integration is to avoid integration issues, and it also enforces
the discipline of frequent automated testing, this helps to find bugs earlier and prevents the
degeneration of functionalities.

There are many solutions or services with continuous integration support. For example,
self-hosted services like TFS and Jenkins, or cloud-based services like Visual Studio Team
Services, Travis-CI, and AppVeyor. We are going to walk through the basic configuration of
Travis-CI with our demo project.

Connecting GitHub repository with Travis-CI
We are going to use GitHub as the Git service behind continuous integration. First of all,
let's get our GitHub repository and Travis-CI settings ready:

Create a correspondent repository as origin and push the local repository to1.
GitHub:

 $ git remote add origin https://github.com/<username>/<repo>.git

The Road to Enterprise Application

[226]

 $ git push -u origin master

Sign into Travis-CI with your GitHub account at: h t t p s : / / t r a v i s - c i . o r g / a u t h.2.
Go to the account page, find the project we are working with, and then flick the3.
repository switch on.

Now the only thing we need to make the continuous integration setup work is a proper
Travis-CI configuration file. Travis-CI has built-in support for many languages and
runtimes. It provides multiple versions of Node.js and makes it extremely easy to test
Node.js projects.

Create the file .travis.yml in the root of project with the following content:

language: node_js
node_js:
 - "4"
 - "6"
before_script:
 - npm run build

This configuration file tells Travis-CI to test with both Node.js v4 and v6, and execute the
command npm run build before testing (it will run the npm test command
automatically).

Almost ready! Now add and commit the new .travis.yml file and push it to origin. If
everything goes well, we should see Travis-CI start the build of this project shortly.

You might be seeing building status badges everywhere nowadays, and
it's easy to add one to the README.md of your own project. In the project
page on Travis-CI, you should see a badge next to the project name. Copy
its URL and add it to the README.md as an image:

![building status](https://api.travis-ci.org/<username>/<repo>.svg)

Deployment automation
Rather than a version control tool, Git is also popular for relatively simple deployment
automation. And in this section, we'll get our hands on and configure automated
deployment based on Git.

https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth
https://travis-ci.org/auth

The Road to Enterprise Application

[227]

Passive deployment based on Git server side
hooks
The idea of passive deployment is simple: when a client pushes commits to the bare
repository on the server, a post-receive hook of Git will be triggered. And thus we can
add scripts checking out changes and start deployment.

The elements involved in the Git deployment solution on both the client and server sides
includes:

To make this mechanism work, we need to perform the following steps:

Create a bare repository on the server with the following command:1.

 $ mkdir deployment.git
 $ cd deployment.git
 $ git init --bare

A bare repository usually has the extension .git and can be treated as a
centralized place for sharing purposes. Unlike normal repositories, a bare
repository does not have the working copy of source files, and its structure
is quite similar to what's inside a .git directory of a normal repository.

Add deployment.git as a remote repository of our project, and try to push the2.
master branch to the deployment.git repository:

 $ cd ../demo-project
 $ git remote add deployment ../deployment.git
 $ git push -u deployment master

The Road to Enterprise Application

[228]

We are adding a local bare repository as the remote repository in this
example. Extra steps might be required to create real remote repositories.

Add a post-receive hook for the deployment.git repository. We've already3.
worked with the client side Git hook pre-commit, and the server side hooks
work the same way.

But when it comes to a serious production deployment, how to write the hook could be a
hard question to answer. For example, how do we minimize the impact of deploying new
builds?

If we have set up our application with high availability load balancing, it might not be a big
issue to have one of them offline for minutes. But certainly not all of them in this case. So
here are some basic requirements of the deploy scripts on both the client and server sides:

The deployment should be proceeded in a certain sequence
The deployment should stop running services gently

And we can do better by:

Building outside of the previous deployment directory
Only trying to stop running services after the newly deployed application is
ready to start immediately

Proactive deployment based on timers or
notifications
Instead of using Git hooks, we can have other tools pull and build the application
automatically as well. In this way, we no longer need the client to push changes to servers
separately. And instead, the program on the server will pull changes from a remote
repository and complete deployment.

A notification mechanism is preferred to avoid frequent fetching though, and there are
already tools like PM2 that have automated deployment built-in. You can also consider
building up your own using hooks provided by cloud-based or self-hosted Git services.

The Road to Enterprise Application

[229]

Summary
In this final chapter, we built the outline of a complete workflow starting with building and
testing to continuous integration and automated deployment. We've covered some popular
services or tools and provide other options for readers to discover and explore.

Among the varieties of choice, you might agree that the most appropriate workflow for
your team is the workflow that fits the best. Taking people rather than technologies alone
into consideration is an important part of software engineering, and it is also the key to
keeping the team efficient (and happy, perhaps).

The sad thing about a team, or a crowd of people is that usually only a few of them can
keep the passion burning. We’ve talked about finding the balance point, but that is what we
still need to practice. And in most of the cases, expecting every one of your team to find the
right point is just unreasonable. When it comes to team projects, we'd better have rules that
can be validated automatically instead of conventions that are not testable.

After reading this book, I hope the reader gets the outlines of the build steps, workflow, and
of course knowledge of common design patterns. But rather than the cold explanations of
different terms and patterns, there are more important ideas I wanted to deliver:

We as humans are dull, and should always keep our work divided as controllable
pieces, instead of acting like a genius. And that's also why we need to design
software to make our lives easier.
And we are also unreliable, especially at a scale of some mass (like a team).
As a learner, always try to understand the reason behind a conclusion or
mechanism behind a phenomenon.

Module 3

TypeScript Blueprints

Build exciting end-to-end applications with TypeScript

Chapter 1: TypeScript 2.0 Fundamentals 1

What is TypeScript? 1
Quick example 2

Transpiling 3
Type checking 4

Learning modern JavaScript 4
let and const 5
Classes 6
Arrow functions 6
Function arguments 7
Array spread 8
Destructuring 8
Template strings 8
New classes 9

Type checking 9
Primitive types 9
Defining types 10
Undefined and null 11
Type annotations 11

Summary 12

Chapter 2: A Weather Forecast Widget with Angular 2 13

Using modules 14
Setting up the project 15

Directory structure 15
Configuring TypeScript 16
Building the system 16
The HTML file 18

Creating the first component 20
The template 21
Testing 21
Interactions 22
One-way variable binding 23
Event listeners 24

Adding conditions to the template 25

Module 3: TypeScript Blueprints

[ii]

Directives 25
The template tag 25
Modifying the about template 26

Using the component in other components 26
Showing a forecast 27

Using the API 27
Typing the API 28

Creating the forecast component 28
Templates 30
Downloading the forecast 32
Adding @Output 35

The main component 40
Using our other components 40
Two-way bindings 40
Listening to our event 41
Geolocation API 41
Component sources 41

Summary 44

Chapter 3: Note-Taking App with a Server 45

Setting up the project structure 46
Directories 46
Configuring the build tool 46
Type definitions 48

Getting started with NodeJS 49
Asynchronous code 49

Callback approach for asynchronous code 50
Disadvantages of callbacks 51

The database 52
Wrapping functions in promises 52
Connecting to the database 53
Querying the database 54

Understanding the structural type system 55
Generics 55
Typing the API 58

Adding authentication 58
Implementing users in the database 60
Adding users to the database 61

Testing the API 62
Adding CRUD operations 63

Implementing the handlers 64

[iii]

Request handling 66
Writing the client side 66

Creating the login form 68
Creating a menu 70
The note editor 71
The main component 71

Error handler 73
Running the application 75
Summary 75

Chapter 4: Real-Time Chat 76

Setting up the project 77
Configuring gulp 78

Getting started with React 79
Creating a component with JSX 79
Adding props and state to a component 80
Creating the menu 81
Testing the application 84

Writing the server 84
Connections 84
Typing the API 84
Accepting connections 85
Storing recent messages 86
Handling a session 87
Implementing a chat message session 88

Connecting to the server 90
Automatic reconnecting 90
Sending a message to the server 92
Writing the event handler 93

Creating the chat room 94
Two-way bindings 94
Stateless functional components 95
Running the application 96

Comparing React and Angular 96
Templates and JSX 96
Libraries or frameworks 97

Summary 98

Chapter 5: Native QR Scanner App 99

Getting started with NativeScript 100

[iv]

Creating the project structure 101
Adding TypeScript 102

Creating a Hello World page 103
Creating the main view 105
Adding a details view 109
Scanning QR codes 113

Type definitions 113
Implementation 113
Testing on a device 115

Adding persistent storage 116
Styling the app 117
Comparing NativeScript to alternatives 119
Summary 120

Chapter 6: Advanced Programming in TypeScript 121

Using type guards 121
Narrowing 122
Narrowing any 123
Combining type guards 123

More accurate type guards 124
Assignments 125

Checking null and undefined 126
Guard against null and undefined 126
The never type 127

Creating tagged union types 127
Comparing performance of algorithms 128

Big-Oh notation 129
Optimizing algorithms 130
Binary search 131
Built-in functions 132

Summary 133

Chapter 7: Spreadsheet Applications with Functional Programming 134

Setting up the project 135
Functional programming 137

Calculating a factorial 138
Using data types for expressions 139

Creating data types 139
Traversing data types 141
Validating an expression 143

[v]

Calculating expressions 145
Parsing an expression 147

Creating core parsers 147
Running parsers in a sequence 148
Parsing a number 151
Order of operations 152

Defining the sheet 155
Calculating all fields 156

Using the Flux architecture 158
Defining the state 158
Creating the store and dispatcher 159

Creating actions 160
Adding a column or a row 161
Changing the title 162
Showing the input popup 163
Testing actions 165

Writing the view 166
Rendering the grid 166
Rendering a field 168
Showing the popup 170
Adding styles 172
Gluing everything together 174

Advantages of Flux 175
Going cross-platform 175

Summary 176

Chapter 8: Pac Man in HTML5 177

Setting up the project 178
Using the HTML5 canvas 179

Saving and restoring the state 180
Designing the framework 181

Creating pictures 182
Wrapping other pictures 185
Creating events 187
Binding everything together 188

Drawing on the canvas 190
Adding utility functions 192
Creating the models 193

Using enums 194
Storing the level 195

[vi]

Creating the default level 196
Creating the state 199

Drawing the view 200
Handling events 203

Working with key codes 203
Creating the time handler 205
Running the game 209
Adding a menu 210

Changing the model 210
Rendering the menu 212
Handling events 213
Modifying the time handler 214

Summary 215

Chapter 9: Playing Tic-Tac-Toe against an AI 216

Creating the project structure 218
Configure TypeScript 218

Adding utility functions 219
Creating the models 219

Showing the grid 220
Creating operations on the grid 221
Creating the grid 225
Adding tests 226
Random testing 228

Implementing the AI using Minimax 230
Implementing Minimax in TypeScript 231
Optimizing the algorithm 232

Creating the interface 233
Handling interaction 233
Creating players 236

Testing the AI 238
Testing with a random player 239

Summary 240

Chapter 10: Migrate JavaScript to TypeScript 241

Gradually migrating to TypeScript 241
Adding TypeScript 242

Configuring TypeScript 242
Configuring the build tool 244
Acquiring type definitions 245

[vii]

Testing the project 245
Migrating each file 245

Converting to ES modules 245
Correcting types 247
Adding type guards and casts 248
Using modern syntax 249
Adding types 250

Refactoring the project 250
Enable strict checks 251

Summary 251

Index 252

1
TypeScript 2.0 Fundamentals

In Chapters 2 through 5, we will learn a few frameworks to create (web) applications with
TypeScript. First you need some basic knowledge of TypeScript 2.0. If you have used
TypeScript previously, then you can skim over this chapter, or use it as a reference while
reading the other chapters. If you have not used TypeScript yet, then this chapter will teach
you the fundamentals of TypeScript.

What is TypeScript?
The TypeScript language looks like JavaScript; it is JavaScript with type annotations added
to it. The TypeScript compiler has two main features: it is a transpiler and a type checker. A
transpiler is a special form of compiler that outputs source code. In case of the TypeScript
compiler, TypeScript source code is compiled to JavaScript code. A type checker searches
for contradictions in your code. For instance, if you assign a string to a variable, and then
use it as a number, you will get a type error.

The compiler can figure out some types without type annotations; for others you have to
add type annotations. An additional advantage of these types is that they can also be used
in editors. An editor can provide completions and refactoring based on the type
information. Editors such as Visual Studio Code and Atom (with a plugin, namely atom-
typescript) provide such features.

TypeScript 2.0 Fundamentals

[2]

Quick example
The following example code shows some basic TypeScript usage. If you understand this
code, you have enough knowledge for the next chapters. This example code creates an
input box in which you can enter a name. When you click on the button, you will see a
personalized greeting:

class Hello {
 private element: HTMLDivElement;
 private elementInput: HTMLInputElement;
 private elementText: HTMLDivElement;
 constructor(defaultName: string) {
 this.element = document.createElement("div");
 this.elementInput = document.createElement("input");
 this.elementText = document.createElement("div");
 const elementButton = document.createElement("button");

 elementButton.textContent = "Greet";

 this.element.appendChild(this.elementInput);
 this.element.appendChild(elementButton);
 this.element.appendChild(this.elementText);

 this.elementInput.value = defaultName;
 this.greet();

 elementButton.addEventListener("click",
 () => this.greet()
);
 }

 show(parent: HTMLElement) {
 parent.appendChild(this.element);
 }

 greet() {
 this.elementText.textContent = `Hello,
 ${ this.elementInput.value }!`;
 }
}

const hello = new Hello("World");
hello.show(document.body);

TypeScript 2.0 Fundamentals

[3]

The preceding code creates a class, Hello. The class has three properties that contain an HTML element.
We create these elements in the constructor. TypeScript has different types for all HTML elements and
document.createElement gives the corresponding element type. If you replace div with span (on
the first line of the constructor), you would get a type error saying that type HTMLSpanElement is not
assignable to type HTMLDivElement. The class has two functions: one to add the element to the HTML
page and one to update the greeting based on the entered name.
It is not necessary to specify types for all variables. The types of the
variables elementButton and hello can be inferred by the compiler.

You can see this example in action by creating a new directory and saving the file as
scripts.ts. In index.html, you must add the following code:

<!DOCTYPE HTML>
<html>
 <head>
 <title>Hello World</title>
 </head>
 <body>
 <script src="scripts.js"></script>
 </body>
</html>

The TypeScript compiler runs on NodeJS, which can be installed from h t t p s ://n o d e j s . o r g

. Afterward, you can install the TypeScript compiler by running npm install
typescript -g in a console/terminal. You can compile the source file by running tsc
scripts.ts. This will create the scripts.js file. Open index.html in a browser to see
the result.

The next sections explain the basics of TypeScript in more detail. After reading those
sections, you should understand this example fully.

Transpiling
The compiler transpiles TypeScript to JavaScript. It does the following transformations on
your source code:

Remove all type annotations
Compile new JavaScript features for old versions of JavaScript
Compile TypeScript features that are not standard JavaScript

https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org
https://nodejs.org

TypeScript 2.0 Fundamentals

[4]

We can see the preceding three transformations in action in the next example:

enum Direction {
 Left,
 Right,
 Up,
 Down
}
let x: Direction = Direction.Left;

TypeScript compiles this to the following:

var Direction;
(function (Direction) {
 Direction[Direction["Left"] = 0] = "Left";
 Direction[Direction["Right"] = 1] = "Right";
 Direction[Direction["Up"] = 2] = "Up";
 Direction[Direction["Down"] = 3] = "Down";
})(Direction || (Direction = {}));
var x = Direction.Left;

In the last line, you can see that the type annotation was removed. You can also see that let
was replaced by var, since let is not supported in older versions of JavaScript. The enum
declaration, which is not standard JavaScript, was transpiled to normal JavaScript.

Type checking
The most important feature of TypeScript is type checking. For instance, for the following
code, it will report that you cannot assign a number to a string:

let x: string = 4;

In the next sections, you will learn the new features of the latest JavaScript versions.
Afterward, we will discuss the basics of the type checker.

Learning modern JavaScript
JavaScript has different versions. Some of these are ES3, ES5, ES2015 (also known as ES6),
and ES2016. Recent versions are named after the year in which they were introduced.
Depending on the environment for which you write code, some features might be or might
not be supported. TypeScript can compile new features of JavaScript to an older version of
JavaScript. That is not possible with all features, however.

TypeScript 2.0 Fundamentals

[5]

Recent web browsers support ES5 and they are working on ES2015.

We will first take a look at the constructs that can be transpiled to older versions.

let and const
ES2015 has introduced let and const. These keywords are alternatives to var. These
prevent issues with scoping, as let and const are block scoped instead of function scoped.
You can use such variables only within the block in which they were created. It is not
allowed to use such variables outside of that block or before its definition. The following
example illustrates some dangerous behavior that could be prevented with let and const:

alert(x.substring(1, 2));
var x = "lorem";
for (var i = 0; i < 10; i++) {
 setTimeout(function() {
 alert(i);
 }, 10 * i);
}

The first two lines give no error, as a variable declared with var can be used before its
definition. With let or const, you will get an error, as expected.

The second part shows 10 message boxes saying 10. We would expect 10 messages saying
0, 1, 2, and so on up to 9. But, when the callback is executed and alert is called, i is
already 10, so you see 10 messages saying 10.

When you change the var keywords to let, you will get an error in the first line and the
messages work as expected. The variable i is bound to the loop body. For each iteration, it
will have a different value. The for loop is transpiled as follows:

var _loop_1 = function(i) {
 setTimeout(function () {
 alert(i);
 }, 10 * i);
};
for (var i = 0; i < 10; i++) {
 _loop_1(i);
}

A variable declared with const cannot be reassigned, and a variable with let can be
reassigned. If you reassign a const variable, you get a compile error.

TypeScript 2.0 Fundamentals

[6]

Classes
As of ES2015, you can create classes easily. In older versions, you could simulate classes to a
certain extent. TypeScript transpiles a class declaration to the old way to simulate a class:

class Person {
 age: number;
 constructor(public name: string) {
 }
 greet() {
 console.log("Hello, " + this.name);
 }
}

const person = new Person("World");
person.age = 35;
person.greet();

This example is transpiled to the following:

var Person = (function () {
 function Person(name) {
 this.name = name;
 }
 Person.prototype.greet = function () {
 console.log("Hello, " + this.name);
 };
 return Person;
}());
var person = new Person("World");
person.age = 35;
person.greet();

When you prefix an argument of the constructor with public or private, it is added as a
property of the class. Other properties must be declared in the body of the class. This is not
per the JavaScript specification, but needed with TypeScript for type information.

Arrow functions
ES6 introduced a new way to create functions. Arrow functions are function expressions
defined using =>. Such function looks like the following:

(x: number, y: boolean): string => {
 statements
}

TypeScript 2.0 Fundamentals

[7]

The function expression starts with an argument list, followed by an optional return type,
the arrow (=>), and then a block with statements. If the function has only one argument
without type annotation and no return type annotation, you may omit the parenthesis: x
=> { ... }. If the body contains only one return statement, without any other
statements, you can simplify it to (x: number, y: number) => expression. A function
with one argument and only a return statement can be simplified to x => expression.

Besides the short syntax, arrow functions have one other major difference with normal
functions. Arrow functions share the value of this and the position where it was defined;
this is lexically bound. Previously, you would store the value of this in a variable called
_this or self, or you would fix the value using .bind(this). With arrow functions, that
is not required any more.

Function arguments
It is possible to add a default value to an argument:

function sum(a = 0, b = 0, c = 0) {
 return a + b + c;
}
sum(10, 5);

When you call this function with less than three arguments, it will set the other arguments
to 0. TypeScript will automatically infer the types of a, b, and c based on their default
values, so you do not have to add a type annotation there.

You can also define an optional argument without a default value: function a(x?:
number) {}. The argument will then be undefined when it is not provided. This is not
standard JavaScript, but only available in TypeScript.

The sum function can be defined even better, with a rest argument. At the end of a function,
you can add a rest argument:

function sum(...xs: number[]) {
 let total = 0;
 for (let i = 0; i < xs.length; i++) total += xs[i];
 return total;
}
sum(10, 5, 2, 1);

TypeScript 2.0 Fundamentals

[8]

Array spread
It is easier to create arrays in ES6. You can create an array literal (with brackets), in which
you use another array. In the following example, you can see how you can add an item to a
list and how you can concatenate two lists:

const a = [0, 1, 2];
const b = [...a, 3];
const c = [...a, ...b];

A similar feature for object literals will probably be added to JavaScript too.

Destructuring
With destructuring, you can easily create variables for properties of an object or elements of
an array:

const a = { x: 1, y: 2, z: 3 };
const b = [4, 5, 6];

const { x, y, z } = a;
const [u, v, w] = b;

The preceding is transpiled to the following:

var a = { x: 1, y: 2, z: 3 };
var b = [4, 5, 6];

var x = a.x, y = a.y, z = a.z;
var u = b[0], v = b[1], w = b[2];

You can use destructing in an assignment, variable declaration, or argument of a function
header.

Template strings
With template strings, you can easily create a string with expressions in it. If you would
write "Hello, " + name + "!", you can now write Hello ${ name }!.

TypeScript 2.0 Fundamentals

[9]

New classes
ES2015 has introduced some new classes, including Map, Set, WeakMap, WeakSet, and
Promise. In modern browsers, these classes are already available. For other environments,
TypeScript does not automatically add a fallback for these classes. Instead, you should use a
polyfill, such as es6-shim. Most browsers already support these classes, so in most cases,
you do not need a polyfill. You can find information on browser support at h t t p ://c a n i u s

e . c o m .

Type checking
The compiler will check the types of your code. It has several primitive types and you can
define new types yourself. Based on these types, the compiler will warn when a value of a
type is used in an invalid manner. That could be using a string for multiplication or using a
property of an object that does not exist. The following code would show these errors:

let x = "foo";
x * 2;
x.bar();

TypeScript has a special type, called any, that allows everything; you can assign every value
to it and you will never get type errors. The type any can be used if you do not have an
exact type (yet), for instance, because it is a complex type or if it is from a library that was
not written in TypeScript. This means that the following code gives no compile errors:

let x: any = "foo";
x * 2;
x.bar();

In the next sections, we will discover these types and learn how the compiler finds these
types.

Primitive types
TypeScript has several primitive types, which are listed in the following table:

Name Values Example

boolean true, false let x: boolean = true;

string Any string literal let x: string = "foo";

http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com
http://caniuse.com

TypeScript 2.0 Fundamentals

[10]

number Any number, including Infinity, -Infinity,
and NaN

let x: number = 42;
let y: number = NaN;

Literal types Literal types can only contain one value let x: "foo" = "foo";

void Only used for a function that does not return a
value

function a(): void { }

never No values

any All values let x: any = "foo";
let y: any = true;

Defining types
You can define your own types in various ways:

Kind Meaning Example

Object type Represents an object, with the specified
properties. Properties marked with ? are
optional. Objects can also have an indexer (for
example, like an array), or call signatures.
Object types can be defined inline, with a class
or with an interface declaration.

let x: {
 a: boolean,
 b: string,
 c?: number,
 [i: number]:
string
};
x = {
 a: true, b: "foo"
};
x[0] = "foo";

Union type A value is assignable to a union type if it is
assignable to one of the specified types. In the
example, it should be a string or a number.

let x: string |
number;
x = "foo";
x = 42;

Intersection
type

A value is assignable to an intersection type if it is
assignable to all specified types.

let x: { a: string }
& { b: number } =
{ a: "foo", b: 42 };

Enum type A special number type, with several values
declared. The declared members get a value
automatically, but you can also specify a value.

enum E {
 X,
 Y = 100
}
let a: E = E.X;

TypeScript 2.0 Fundamentals

[11]

Function type Represents a function with the specified
arguments and return type. Optional and rest
arguments can also be specified.

let f: (x: string,
y?: boolean) =>
number;
let g: (...xs:
number[]) =>
number;

Tuple type Multiple values are placed in one, as an array. let x: [string,
number];
X = ["foo", 42];

Undefined and null
By default, undefined and null can be assigned to every type. Thus, the compiler cannot
give you a warning when a value can possibly be undefined or null. TypeScript 2.0 has
introduced a new mode, called strictNullChecks, which adds two new types:
undefined and null. With that mode, you do get warnings in such cases. We will discover
that mode in Chapter 6, Advanced Programming in TypeScript.

Type annotations
TypeScript can infer some types. This means that the TypeScript compiler knows the type,
without a type annotation. If a type cannot be inferred, it will default to any. In such a case,
or in case the inferred type is not correct, you have to specify the types yourself. The
common declarations that you can annotate are given in the following table:

Location Can it be inferred? Examples

Variable declaration Yes, based on initializer let a: number;
let b = 1;

Function argument Yes, based on default value (second
example) or when passing the function to
a typed variable or function (third
example)

function a(x: number) {}
function b(x = 1) {}
[1, 2].map(
 x => x * 2
);

Function return type Yes, based on return statements in body function a(): number { }
(): number => { }
function c() {
 return 1;
}

TypeScript 2.0 Fundamentals

[12]

Class member Yes, based on default value class A {
 x: number;
 y = 0;
}

Interface member No interface A {
 x: number;
}

You can set the compiler option noImplicitAny to get compiler errors when a type could
not be inferred and falls back to any. It is advised to use that option always, unless you are
migrating a JavaScript codebase to TypeScript. You can read about such migration in
Chapter 10, Migrate JavaScript to TypeScript.

Summary
In this chapter, you discovered the basics of TypeScript. You should now be familiar with
the principles of TypeScript and you should understand the code example at the beginning
of the chapter. You now have the knowledge to start with the next chapters, in which you
will learn two major web frameworks, Angular 2 and React. We will start with Angular 2 in
Chapter 2, A Weather Forecast Widget with Angular 2.

2
A Weather Forecast Widget

with Angular 2
In this chapter, we'll create a simple application that shows us the weather forecast. The
framework we use, Angular 2, is a new framework written by Google in TypeScript. The
application will show the weather of the current day and the next. In the following
screenshot, you can see the result. We will explore some key concepts of Angular, such as
data binding and directives.

We will build the application in the following steps:

Using modules
Setting up the project
Creating the first component
Adding conditions to the template
Showing a forecast
Creating the forecast components
The main component

A Weather Forecast Widget with Angular 2

[14]

Using modules
We will use modules in all applications in this book. Modules (also called external modules
and ES2015 modules) are a concept of separating code in multiple files. Every file is a
module. Within these modules, you can use variables, functions, and classes (members)
exported by other modules and you can make some members visible for other modules. To
use other modules, you must import them, and to make members visible, you need to
export them. The following example will show some basic usage:

// x.ts
import { one, add, Lorem } from './y';
console.log(add(one, 2));

var lorem = new Lorem();
console.log(lorem.name);

// y.ts
export var one = 1;
export function add(a: number, b: number) {
 return a + b;
}
export class Lorem {
 name = "ipsum";
}

You can export declarations by prefixing them with the export keyword or by prefixing
them with export default. A default export should be imported differently though we
will not use such an export as it can be confusing. There are various ways to import a file.
We have seen the variant that is used most times, import { a, b, c } from './d'. The
dot and slash mean that the d.ts file is located in the same directory. You can use ./x/y
and ../z to reference a file in a subdirectory or a parent directory. A reference that does not
start with a dot can be used to import a library, such as Angular. Another import variant is
import * as e from './d'. This will import all exports from d.ts. These are available
as e.a, e.b, e is an object that contains all exports.

To keep code readable and maintainable, it is advisable to use multiple small files instead of
one big file.

A Weather Forecast Widget with Angular 2

[15]

Setting up the project
We will quickly set up the project before we can start writing. We will use npm to manage
our dependencies and gulp to build our project. These tools are built on NodeJS, so it
should be installed from nodejs.org.

First of all, we must create a new directory in which we will place all files. We must create a
package.json file used by npm:

{
 "name": "weather-widget",
 "version": "1.0.0",
 "private": true,
 "description": ""
}

The package.json file contains information about the project, such as the name, version,
and a description. These fields are used by npm when you publish a project on the registry
on NPM, which contains a lot of open source projects. We will not publish it there. We set
the private field to true, so we cannot accidentally publish it.

Directory structure
We will separate the TypeScript sources from the other files. The TypeScript files will be
added in the lib directory. Static files, such as HTML and CSS, will be located in the
static directory. This directory can be uploaded to a webserver. The compiled sources
will be written to static/scripts. We first install Angular and some requirements of
Angular with npm. In a terminal, we run the following command in the root directory of the
project:

npm install angular2 rxjs es6-shim reflect-metadata zone.js --save

The console might show some warnings about unmet peer dependencies. These
will probably be caused by a minor version mismatch between Angular and one of its
dependencies. You can ignore these warnings.

A Weather Forecast Widget with Angular 2

[16]

Configuring TypeScript
TypeScript can be configured using a tsconfig.json file. We will place that file in the lib
directory, as all our files are located there. We specify the experimentalDecorators and
emitDecoratorMetadata options, as these are necessary for Angular:

{
 "compilerOptions": {
 "target": "es5",
 "module": "commonjs",
 "experimentalDecorators": true,
 "emitDecoratorMetadata": true,
 "lib": ["es2015", "dom"]
 }
}

The target option specifies the version of JavaScript of the generated code. Current
browsers support es5. TypeScript will compile newer JavaScript features, such as classes, to
an es5 equivalent. With the lib option, we can specify the version of the JavaScript library.
We use the libraries from es2015, the version after es5. Since these libraries might not be
available in all browsers, we will add a polyfill for these features later on. We also include
the libraries for the DOM, which contains functions such as document.createElement
and document.getElementById.

Building the system
With gulp, it is easy to compile a program in multiple steps. For most webapps, multiple
steps are needed: compiling TypeScript, bundling modules, and finally minifying all code.
In this application, we need to do all of these steps.

Gulp streams source files through a series of plugins. These plugins can (just like gulp itself)
be installed using npm:

npm install gulp --global
npm install gulp gulp-typescript gulp-sourcemaps gulp-uglify small --save-
dev

The --global flag will install the dependency globally such that you can
call gulp from a terminal. The --save-dev flag will add the dependency
to the devDependencies (development dependencies) section of the
package.json file. Use --save to add a runtime dependency.

A Weather Forecast Widget with Angular 2

[17]

We use the following plugins for gulp:

The gulp-typescript plugin compiles TypeScript to JavaScript
The gulp-uglify plugin can minify JavaScript files
The small plugin can bundle external modules
The gulp-sourcemaps plugin improves the debugging experience with source
maps

We will create two tasks, one that compiles the sources to a development build and another
that can create a release build. The development build will have source maps and will not
be minified, whereas the release build will be minified without source maps. Minifying
takes some time so we do not do that on the debug task. Creating source maps in the release
task is possible too, but generating the source map is slow so we will not do that.

We write these tasks in gulpfile.js in the root of the project. The second task is the
easiest to write, as it only uses one plugin. The task will look like this:

var gulp = require('gulp');
var uglify = require('gulp-uglify');

gulp.task('release', ['compile'], function() {
 return gulp.src('static/scripts/scripts.js')
 .pipe(uglify())
 .pipe(gulp.dest('static/scripts'));
});

The gulp.task call will register a task named release, which will take
static/scripts/scripts.js (which will be created by the compile task), run uglify (a
tool that minifies JavaScript) on it, and then save it in the same directory again. This task
depends on the compile task, meaning that the compile task will be run before this one.

The first task, compile, is more complicated. The task will transpile TypeScript, and bundle
the files with the external libraries.

First, we must load some plugins:

var gulp = require('gulp');

var typescript = require('gulp-typescript');var small =
require('small').gulp;var sourcemaps = require('gulp-sourcemaps');

var uglify = require('gulp-uglify');

A Weather Forecast Widget with Angular 2

[18]

We load the configuration of TypeScript in the tsconfig.json file:

var tsProject = typescript.createProject('lib/tsconfig.json');

Now, we can finally write the task. First, we load all sources and compile them using the
TypeScript compiler. After that, we bundle these files (including Angular, stored under
node_modules, using small):

gulp.task('compile', function() {
 return gulp.src('lib/**/*.ts')
 .pipe(sourcemaps.init())
 .pipe(typescript(tsProject))
 .pipe(small('index.js', {
 externalResolve: ['node_modules'],
 globalModules: {
 "crypto": {
 standalone: "undefined"
 }
 }
 }))
 .pipe(sourcemaps.write('.'))
 .pipe(gulp.dest('static/scripts'));
});
gulp.task('release', ['compile'], function() {
 return gulp.src('static/scripts/scripts.js')
 .pipe(uglify())
 .pipe(gulp.dest('static/scripts'));
});

gulp.task('default', ['compile']);

This task compiles our project and saves the result as static/scripts/scripts.js. The
sourcemaps.init() and sourcemaps.write('.') functions handle the creation of
source maps, which will improve the debugging experience.

The HTML file
The main file of our application is the HTML file, static/index.html. This file will
reference our (compiled) scripts and stylesheet:

<!DOCTYPE HTML>
<html>
 <head>
 <title>Weather</title>
 <link rel="stylesheet" href="style.css" />
 </head>

A Weather Forecast Widget with Angular 2

[19]

 <body>
 <div id="wrapper">
 <weather-widget>Loading..</weather-widget>
 </div>
 <script src="scripts/index.js" type="text/javascript"></script>
 </body>
</html>

The weather-widget tag will be initialized by Angular. We will add some fancy styles in
static/style.css:

body {
 font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
 font-weight: 100;
}
h1, h2, h3 {
 font-weight: 100;
 margin: 0;
 padding: 0;
 color: #57BEDE;
}
#wrapper {
 position: absolute;
 left: 0;
 right: 0;
 top: 0;
 width: 450px;
 margin: 10% auto;
}
a:link, a:visited {
 color: #57BEDE;
 text-decoration: underline;
}
a:hover, a:active {
 color: #44A4C2;
}
.clearfix {
 clear: both;
}

A Weather Forecast Widget with Angular 2

[20]

Creating the first component
Angular is based on components. Components are built with other components and normal
HTML tags. Our application will have three components: the forecast page, the about page,
and the whole widget. The widget itself, which is referenced in the HTML page, will use the
other two widgets.

The widget will show the About page in the third tab, as you can see in the following
screenshot:

The forecast component is shown in the first tab of the following screenshot. We will create
the forecast and the widget later in this chapter.

A Weather Forecast Widget with Angular 2

[21]

The template
A component is a class decorated with some metadata. Decorators are functions that can
modify a class or decorate it with some metadata. A simple component that does not have
any interaction will look like this:

import { Component } from "angular2/core";

@Component({
 selector: "about-page",
template: `
 <h2>About</h2>
 This widget shows the weather forecast of Utrecht.
 The next 24 hours are shown under 'Today' and the forecast of
24-48 hours ahead under 'Tomorrow'.
 `
})
export class About {
}

As a convention, you can always choose selector names with a dash (-).
You can then identify components by the dash. Normal HTML tags will
never have names with a dash.

This component will be the about page selector of our application. We will modify it in the
next sessions. We will use one file per component, so we save this as lib/about.ts.

Testing
We can test the component by calling the bootstrap function. We create a new file,
lib/index.ts, which will start the application:

import "zone.js";
import "rxjs";
import "reflect-metadata";
import "es6-shim";
import { bootstrap } from "angular2/platform/browser";
import { About } from "./about";

bootstrap(About).catch(err => console.error(err));

A Weather Forecast Widget with Angular 2

[22]

The .catch section will show errors in the console. If you do not include
that call, you will not see those errors and that can be pretty frustrating.

We must change the weather-widget tag in static/index.html to an about-page tag.
Now, we can run gulp and open index.html in a browser to see the results.

At the time of writing this, when you run this command, you get an error when saying that
the type definition of zone.js is incorrect. You can ignore this error as it is a bug of
zone.js.

Test early
It's always a good idea to test during development. If you test after writing
a lot of code, you will discover issues late, and it will take more work to
repair them. Every time that you want to test the project, you must first
run gulp and then open or refresh index.html.

Interactions
We can add an interaction inside the class body. We must use bindings to connect the
template to definitions in the body. There are three different bindings:

One-way variable binding
One-way event listener
Two-way binding

A one-way binding will connect the class body and template in one direction. In case of a
variable, changes of the variable will update the template, but the template cannot update
the variable. A template can only send an event to the class. In case of a two-way binding, a
change of the variable changes the template and a change in the template will change the
variable. This is useful for the value of an input element, for example. We will take a look at
one-way bindings in the next section.

A Weather Forecast Widget with Angular 2

[23]

One-way variable binding
In the first attempt of the about page, the location (Utrecht) is hardcoded. In the final
application, we want to choose our own location. The first step we will take is to add a
property to the class that contains the location. Using a one-way binding, we will reference
that value in the template. A one-way variable binding is denoted with brackets inside
attributes and double curly brackets inside text:

import { Component } from "angular2/core";

@Component({
 selector: "about-page",
 template: `
 <h2>About</h2>
 This widget shows the weather forecast of
 <a [href]="'https://maps.google.com/?q=' + encodedLocation">
 {{ location }}

 The next 24 hours are shown under 'Today' and the forecast of
24-48 hours ahead under 'Tomorrow'.
 `
})
export class About {
 location = "Utrecht";

 get encodedLocation() {
 return encodeURIComponent(this.location);
 }
}

At the time of writing this, templates aren't checked by TypeScript. Make
sure that you write the correct names of the variables. Variables should
not be prefixed by this., like you would do in class methods.

You can add an expression in such bindings. In this example, the binding of the href
attribute does string concatenation. However, the subset of expressions is limited. You can
add more complex code inside getters in the class, as done with encodedLocation.

You can also use a different getter, which would encode the location and
concatenate it with the Google Maps URL.

A Weather Forecast Widget with Angular 2

[24]

Event listeners
Event bindings can connect an event emitter of a tag or component to a method of a
function. Such binding is denoted with parenthesis in the template. We will add a show-
more button to our application:

import { Component} from "angular2/core";

@Component({
 selector: "about-page",
 template: `
 <h2>About</h2>
 This widget shows the weather forecast of
 <a [href]="'https://maps.google.com/?q=' + encodedLocation">
 {{ location }}
 .
 The next 24 hours are shown under 'Today' and the forecast of
24-48 hours ahead under 'Tomorrow'.

 Show more
 Show less
 `
})
export class About {
 location = "Utrecht";
 collapsed = true;
 show() {
 this.collapsed = false;
 }
 hide()
 {
 this.collapsed = true;
 }

 get encodedLocation() {
 return encodeURIComponent(this.location);
 }
}

The show() or hide() function will be called when one of the show or hide links is clicked
on.

A Weather Forecast Widget with Angular 2

[25]

Adding conditions to the template
The event handler in the previous section sets the property collapsed to false but that does
not modify the template. In normal code, we would have written if (this.collapsed)
{ ... }. In templates, we cannot use that, but we can use ngIf.

Directives
A directive is an extension to normal HTML tags and attributes. It can define custom
behavior. A custom component, such as the About page, can be seen as a directive too. The
ngIf condition is a built-in directive in Angular. It is a custom attribute that displays the
content if the specified value is true.

The template tag
If a piece of a component needs to be shown a variable an amount of times, you can wrap it
in a template tag. Using the ngIf (or ngFor) directive, you can control how often it is
shown (in case of ngIf, once or zero times). The template tag will look like this:

<template [ngIf]="collapsed">
 <div>Content</div>
</template>

You can abbreviate this as follows:

<div *ngIf="collapsed">Content</div>

It is advised to use the abbreviated style, but it's good to remember that it is shorthand for
the template tag.

A Weather Forecast Widget with Angular 2

[26]

Modifying the about template
Since ngIf is a built-in directive, it doesn't have to be imported. Custom directives need to
be imported. We will see an example of using custom components later in this chapter. In
the template, we can use *ngIf now. The template will thus look like this:

 template: `
 <h2>About</h2>
 This widget shows the weather forecast of
 <a [href]="'https://maps.google.com/?q=' + encodedLocation">
 {{ location }}
 .
 The next 24 hours are shown under 'Today' and the forecast of
24-48 hours ahead under 'Tomorrow'.

 <a *ngIf="collapsed" href="javascript:;" (click)="show()">Show
 more
 <div *ngIf="!collapsed">
 The forecast uses data from Open Weather Map.

 Hide
 </div>
 `
})

The class body does not have to be changed. As you can see, you can use expressions in the
*ngIf bindings, which is not surprising as it is a shorthand for one-way variable bindings.

Using the component in other components
We can use the about-page component in other components, as if it was a normal HTML
tag. But the component is still boring, as it will always say that it shows the weather
broadcast of Utrecht. We can mark the location property as an input. After that,
location is an attribute that we can set from other components. It is even possible to bind
it as a one-way binding. The Input decorator, which we are using here, needs to be
imported just like Component:

import { Component, Input } from "angular2/core";

@Component({
 ...
})
export class About {

A Weather Forecast Widget with Angular 2

[27]

 @Input()
 location: string = "Utrecht";
 collapsed = true;
 show() {
 this.collapsed = false;
 }
 hide() {
 this.collapsed = true;
 }

 get encodedLocation() {
 return encodeURIComponent(this.location);
 }
}

Showing a forecast
We still have not shown a forecast yet. We will use data from open weather map (h t t p ://w

w w . o p e n w e a t h e r m a p . o r g). You can create an account on their website. With your account,
you can request an API token. You need the token to request the forecast. A free account is
limited to 60 requests per second and 50,000 requests per day.

We save the API token in a separate file, lib/config.ts:

export const openWeatherMapKey = "your-token-here";
export const apiURL = "http://api.openweathermap.org/data/2.5/";

Add constants to a separate file
When you add constants in separate configuration files, you can easily
change them and your code is more readable. This gives you better
maintainable code.

Using the API
We will create a new file, lib/api.ts, that will simplify downloading data from open
weather map. The API uses URLs such as
http://api.openweathermap.org/data/2.5/forecast?mode=json&q=Utrecht,NL&

appid=your-token-here. We will create a function that will build the full URL out of
forecast?mode=json&q=Utrecht,NL. The function must check whether the path already
contains a question mark. If so, it must add &appid=, otherwise ?appid=:

import { openWeatherMapKey, apiURL } from "./config";

http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org
http://www.openweathermap.org

A Weather Forecast Widget with Angular 2

[28]

export function getUrl(path: string) {
 let url = apiURL + path;
 if (path.indexOf("?") === -1) {
 url += "?";
 } else {
 url += "&";
 }
 url += "appid=" + openWeatherMapKey;
 return url;
}

Write small functions
Small functions are easy to reuse. This reduces the amount of code you
need to write. The same applies to components—small components are
easy to reuse.

Typing the API
You can open the URL in the previous section to get a look at the data you get. We will
write an interface for the part of the API that we will use:

export interface ForecastResponse {
 city: {
 name: string;
 country: string;
 };
 list: ForecastItem[];
}
export interface ForecastItem {
 dt: number;
 main: {
 temp: number
 };
 weather: {
 main: string,
 description: string
 };
}

JSDoc comments
You can add documentation for interfaces and their properties by adding
a JSDoc comment before it:
/*** Documentation here */

A Weather Forecast Widget with Angular 2

[29]

Creating the forecast component
As a quick recap, the forecast widget will look like this:

What properties does the class need? The template will need forecast data of the current
day or the next day. The component can show the weather of Today and Tomorrow, so we
will also need a property for that. For fetching the forecast, we also need the location. To
show the loading state in the template, we will also store that in the class. This will result in
the following class, in lib/forecast.ts:

import { Component, Input } from "angular2/core";
import { ForecastResponse } from "./api";

export interface ForecastData {
 date: string;
 temperature: number;
 main: string;
 description: string;
}

enum State {
 Loading,
 Refreshing,
 Loaded,
 Error
}

@Component({
 selector: "weather-forecast",
 template: `...`
})
export class Forecast {
 temperatureUnit = "degrees Celsius";

 @Input()

A Weather Forecast Widget with Angular 2

[30]

 tomorrow = false;
 @Input()
 location = "Utrecht";

data: ForecastData[] = [];

 state = State.Loading;
}

Testing
You can test this component by adjusting the tag in index.html and
bootstrapping the right component in index.ts. Run gulp to compile the
sources and open the web browser.

Templates
The template uses the ngFor directive to iterate over the data array:

import { Component, Input } from "angular2/core";
import { ForecastResponse } from "./api";

...

@Component({
 selector: "weather-forecast",
 template: `
 Loading...
 Refreshing...
 <a *ngIf="loaded || error" href="javascript:;" (click)="load()"
class="state">Refresh
 <h2>{{ tomorrow ? 'Tomorrow' : 'Today' }}'s weather in {{
location }}</h2>
 <div *ngIf="error">Failed to load data.</div>

 <li *ngFor="#item of data">
 <div class="item-date">{{ item.date }}</div>
 <div class="item-main">{{ item.main }}</div>
 <div class="item-description">{{ item.description }}</div>
 <div class="item-temperature">
 {{ item.temperature }} {{ temperatureUnit }}
 </div>

 <div class="clearfix"></div>
 `,

A Weather Forecast Widget with Angular 2

[31]

Using the styles property, we can add nice CSS styles, as shown here:

 styles: [
 `.state {
 float: right;
 margin-top: 6px;
 }
 ul {
 margin: 0;
 padding: 0 0 15px;
 list-style: none;
 width: 100%;
 overflow-x: scroll;
 white-space: nowrap;
 }
 li {
 display: inline-block;
 margin-right: 15px;
 width: 170px;
 white-space: initial;
 }
 .item-date {
 font-size: 15pt;
 color: #165366;
 margin-right: 10px;
 display: inline-block;
 }
 .item-main {
 font-size: 15pt;
 display: inline-block;
 }
 .item-description {
 border-top: 1px solid #44A4C2;
 width: 100%;
 font-size: 11pt;
 }
 .item-temperature {
 font-size: 11pt;
 }`
]
})

In the class body, we add the getters which we used in the template:

export class Forecast {
 ...
 state = State.Loading;
 get loading() {

A Weather Forecast Widget with Angular 2

[32]

 return this.state === State.Loading;
 }
 get refreshing() {
 return this.state === State.Refreshing;
 }
 get loaded() {
 return this.state === State.Loaded;
 }
 get error() {
 return this.state === State.Error;
 }
 ...
}

Enums
Enums are just numbers with names attached to them. It's more readable
to write State.Loaded than 2, but they mean the same in this context.

As you can see, the syntax of ngFor is *ngFor="#variable of array". The enum cannot
be referenced from the template, so we need to add getters in the body of the class.

Downloading the forecast
To download data from the Internet in Angular, we need to get the HTTP service. We need
to set the viewProviders section for that:

import { Component, Input } from "angular2/core";
import { Http, Response, HTTP_PROVIDERS } from "angular2/http";
import { getUrl, ForecastResponse } from "./api";

...

@Component({
 selector: "weather-forecast",
 viewProviders: [HTTP_PROVIDERS],
 template: `...`,
 styles: [...]
})
export class Forecast {
 constructor(private http: Http) {

 }
...

A Weather Forecast Widget with Angular 2

[33]

Angular will inject the Http service into the constructor.

By including private or public before an argument of the constructor,
that argument will become a property of the class, initialized by the value
of the argument.

We will now implement the load function, which will try to download the forecast on the
specified location. The function can also use coordinates as a location, written as
Coordinates lat lon, where lat and lon are the coordinates as shown here:

 private load() {
 let path = "forecast?mode=json&";
 const start = "coordinate ";
 if (this.location &&
 this.location.substring(0,
 start.length).toLowerCase() === start) {
 const coordinate = this.location.split(" ");
 path += `lat=${ parseFloat(coordinate[1]) }&lon=${
parseFloat(coordinate[2]) }`;
 } else {
 path += "q=" + this.location;
 }

 this.state = this.state === State.Loaded ?
 State.Refreshing : State.Loading;
 this.http.get(getUrl(path))
 .map(response => response.json())
 .subscribe(res =>
 this.update(<ForecastResponse> res), ()
 =>this.showError());
 };

Three kinds of variables
You can define variables with const, let, and var. A variable declared
with const cannot be modified. Variables declared with const or let are
block-scoped and cannot be used before their definition. A variable
declared with var is function scoped and can be used before its definition.
Such variable can give unexpected behavior, so it's advised to use const
or let.

The function will first calculate the URL, then set the state and finally fetch the data and get
returns an observable. An observable, comparable to a promise, is something that contains a
value that can change later on. Like with arrays, you can map an observable to a different
observable. Subscribe registers a callback, which is called when the observable is changed.

A Weather Forecast Widget with Angular 2

[34]

This observable changes only once, when the data is loaded. If something goes wrong, the
second callback will be called.

Lambda expressions (inline functions)
The fat arrow (=>) creates a new function. It's almost equal to a function
defined with the function keyword (function () { return ... }),
but it is scoped lexically, which means that this refers to the value of
this outside the function. x => expression is a shorthand for (x) =>
expression, which is a shorthand for (x) => { return expression;
}. TypeScript will automatically infer the type of the argument based on
the signature of map and subscribe.

As you can see, this function uses the update and showError functions. The update
function stores the results of the open weather map API, and showError is a small function
that sets the state to State.Error. Since temperatures of the API are expressed in Kelvin,
we must substract 273 to get the value in Celsius:

 fullData: ForecastData[] = [];
 data: ForecastData[] = [];

 private formatDate(date: Date) {
 return date.getHours() + ":"
 + date.getMinutes() + ":"
 + date.getSeconds();
 }
 private update(data: ForecastResponse) {
 if (!data.list) {
 this.showError();
 return;
 }

 this.fullData = data.list.map(item => ({
 date: this.formatDate(new Date(item.dt * 1000)),
 temperature: Math.round(item.main.temp - 273),
 main: item.weather[0].main,
 description: item.weather[0].description
 }));
 this.filterData();
 this.state = State.Loaded;
 }
 private showError() {
 this.data = [];
 this.state = State.Error;
 }
 private filterData() {
 const start = this.tomorrow ? 8 : 0;

A Weather Forecast Widget with Angular 2

[35]

 this.data = this.fullData.slice(start, start + 8);
 }

The filterData method will filter the forecast based on whether we want to see the
forecast of today or tomorrow. Open weather map has one forecast per 3 hours, so 8 per
day. The slice function will return a section of the array. fullData will contain the full
forecast, so we can easily show the forecast of tomorrow, if we have already shown today.

Change detection
Angular will automatically reload the template when some property is
changed, there's no need to invalidate anything (as C# developers might
expect). This is called change detection.

We also want to refresh data when the location is changed. If tomorrow is changed, we do
not need to download any data, because we can just use a different section of the fullData
array. To do that, we will use getters and setters. In the setter, we can detect changes:

 private _tomorrow = false;
 @Input()
 set tomorrow(value) {
 if (this._tomorrow === value) return;
 this._tomorrow = value;
 this.filterData();
 }
 get tomorrow() {
 return this._tomorrow;
 }

 private _location: string;
 @Input()
 set location(value) {
 if (this._location === value) return;
 this._location = value;
 this.state = State.Loading;
 this.data = [];
 this.load();
 }
 get location() {
 return this._location;
 }

A Weather Forecast Widget with Angular 2

[36]

Adding @Output
The response of Open weather map contains the name of the city. We can use this to
simulate completion later on. We will create an event emitter. Other components can listen
to the event and update the location when the event is triggered. The whole code will look
like this with final changes highlighted:

import { Component, Input, Output, EventEmitter } from "angular2/core";
import { Http, Response, HTTP_PROVIDERS } from "angular2/http";
import { getUrl, ForecastResponse } from "./api";

interface ForecastData {
 date: string;
 temperature: number;
 main: string;
 description: string;
}

enum State {
 Loading,
 Refreshing,
 Loaded,
 Error
}

@Component({
 selector: "weather-forecast",
 viewProviders: [HTTP_PROVIDERS],
 template: `
 Loading...
 Refreshing...
 <a *ngIf="loaded || error" href="javascript:;" (click)="load()"
class="state">Refresh
 <h2>{{ tomorrow ? 'Tomorrow' : 'Today' }}'s weather in {{
location }}</h2>
 <div *ngIf="error">Failed to load data.</div>

 <li *ngFor="#item of data">
 <div class="item-date">{{ item.date }}</div>
 <div class="item-main">{{ item.main }}</div>
 <div class="item-description">{{ item.description }}</div>
 <div class="item-temperature">
 {{ item.temperature }} {{ temperatureUnit }}
 </div>

 <div class="clearfix;"></div>

A Weather Forecast Widget with Angular 2

[37]

 `,
 styles: [
 `.state {
 float: right;
 margin-top: 6px;
 }
 ul {
 margin: 0;
 padding: 0 0 15px;
 list-style: none;
 width: 100%;
 overflow-x: scroll;
 white-space: nowrap;
 }
 li {
 display: inline-block;
 margin-right: 15px;
 width: 170px;
 white-space: initial;
 }
 .item-date {
 font-size: 15pt;
 color: #165366;
 margin-right: 10px;
 display: inline-block;
 }
 .item-main {
 font-size: 15pt;
 display: inline-block;
 }
 .item-description {
 border-top: 1px solid #44A4C2;
 width: 100%;
 font-size: 11pt;
 }
 .item-temperature {
 font-size: 11pt;
 }`
]
})
export class Forecast {
 constructor(private http: Http) {

 }

 temperatureUnit = "degrees Celsius";

 private _tomorrow = false;

A Weather Forecast Widget with Angular 2

[38]

 @Input()
 set tomorrow(value) {
 if (this._tomorrow === value) return;
 this._tomorrow = value;
 this.filterData();
 }
 get tomorrow() {
 return this._tomorrow;
 }

 private _location: string;
 @Input()
 set location(value) {
 if (this._location === value) return;
 this._location = value;
 this.state = State.Loading;
 this.data = [];
 this.load();
 }
 get location() {
 return this._location;
 }

 fullData: ForecastData[] = [];
 data: ForecastData[] = [];

 state = State.Loading;
 get loading() {
 return this.state === State.Loading;
 }
 get refreshing() {
 return this.state === State.Refreshing;
 }
 get loaded() {
 return this.state === State.Loaded;
 }
 get error() {
 return this.state === State.Error;
 }

 @Output()
 correctLocation = new EventEmitter<string>(true);

 private formatDate(date: Date) {
 return date.getHours() + ":" + date.getMinutes() +
date.getSeconds();
 }
 private update(data: ForecastResponse) {

A Weather Forecast Widget with Angular 2

[39]

 if (!data.list) {
 this.showError();
 return;
 }

 const location = data.city.name + ", " + data.city.country;
 if (this._location !== location) {
 this._location = location;
 this.correctLocation.next(location);
 }

 this.fullData = data.list.map(item => ({
 date: this.formatDate(new Date(item.dt * 1000)),
 temperature: Math.round(item.main.temp - 273),
 main: item.weather[0].main,
 description: item.weather[0].description
 }));
 this.filterData();
 this.state = State.Loaded;
 }
 private showError() {
 this.data = [];
 this.state = State.Error;
 }
 private filterData() {
 const start = this.tomorrow ? 8 : 0;
 this.data = this.fullData.slice(start, start + 8);
 }

 private load() {
 let path = "forecast?mode=json&";
 const start = "coordinate ";
 if (this.location&&this.location.substring(0,
start.length).toLowerCase() === start) {
 const coordinate = this.location.split(" ");
 path += `lat=${ parseFloat(coordinate[1]) }&lon=${
parseFloat(coordinate[2]) }`;
 } else {
 path += "q=" + this.location;
 }

 this.state = this.state === State.Loaded ? State.Refreshing :
State.Loading;
 this.http.get(getUrl(path))
 .map(response => response.json()))
 .subscribe(res => this.update(<ForecastResponse> res), () =>
this.showError());
 }

A Weather Forecast Widget with Angular 2

[40]

}

The generic (type argument) in new EventEmitter<string>() means
that the contents of an event will be a string. If the generic is not specified,
it defaults to {}, an empty object type, which means that there is no
content. In this case, we want to send the new location, which is a string.

The main component
As you can see in the screenshot in the introduction of this chapter, this component should
have a textbox, a button, and three tabs. Under the tabs, these component will show the
forecast or the About page.

Using our other components
We can use our components that we have already written by adding them to the
directives section and using their tag names in the template.

Two-way bindings
To get the value of the input box, we need two-way bindings. We can use the ngModel
directive for that. The syntax combines the syntaxes of the two one-way bindings:
[(ngModel)]="property". The directive is again a built-in one, so we don't have to
import it.

Using this two-way binding, we can automatically update the weather widget after every
key press. That would cause a lot of requests to the server, and especially on slow
connections, that's not desired.

To prevent these issues, we will add two separate properties. The property location will
contain the content of the input and activeLocation will contain the location, which is
being shown.

A Weather Forecast Widget with Angular 2

[41]

Listening to our event
We can listen to our event, just like we did with other events. We can access the event
content with $event. Such a listener will look like (correct-
location)="correctLocation($event). When the server responds with the forecast, it
also provides the name of the location. If the user had a small typo in the name, the
response will correct that. This event will be fired in such a case and the name will be
corrected in the input box.

Geolocation API
Because our forecast widget supports coordinates, we can use the geolocation API to set the
initial location. That API can give the coordinates where the device is located (roughly).
Later on, we will use this API to set the widget to the current location when the page loads
as shown here:

navigator.geolocation.getCurrentPosition(position => {
 const location = `Coordinate ${ position.coords.latitude } ${
position.coords.longitude }`;
 this.location = location;
 this.activeLocation = location;
});

Template string
Template strings, not to be confused with Angular templates, are strings
wrapped in backticks (`). These strings can be multiline and can contain
expressions between ${ and }.

Component sources
As usual, we start by importing Angular. We also have to import the two components we
have already written. We use an enumeration again to store the state of the component:

import { Component } from "angular2/core";
import { Forecast } from "./forecast";
import { About } from "./about";

enum State {
 Today,
 Tomorrow,
 About
}

A Weather Forecast Widget with Angular 2

[42]

The template will use the two-way binding on the input element:

@Component({
 selector: "weather-widget",
 directives: [Forecast, About],
 template: `
 <input [(ngModel)]="location" (keyup.enter)="clickGo()"
(blur)="clickGo()" />
 <button (click)="clickGo()">Go</button>
 <div class="tabs">
 <a href="javascript:;" [class.selected]="selectedTab === 0"
(click)="selectTab(0)">Today
 <a href="javascript:;" [class.selected]="selectedTab === 1"
(click)="selectTab(1)">Tomorrow
 <a href="javascript:;" [class.selected]="selectedTab === 2"
(click)="selectTab(2)">About
 </div>
 <div class="content" [class.is-dirty]="isDirty" *ngIf="selectedTab
=== 0 || selectedTab === 1">
 <weather-forecast [location]="activeLocation"
[tomorrow]="selectedTab === 1"
(correctLocation)="correctLocation($event)" />
 </div>
 <div class="content" *ngIf="selectedTab === 2">
 <about-page [location]="activeLocation" />
 </div>
 `,

Binding to class.selected means that the element will have the selected class if the
bound value is true. After the template, we can add some styles as shown here:

 styles: [
 `.tabs > a {
 display: inline-block;
 padding: 5px;
 margin-top: 5px;
 border: 1px solid #57BEDE;
 border-bottom: 0px none;
 text-decoration: none;
 }
 .tabs>a.selected {
 background-color: #57BEDE;
 color: #fff;
 }
 .content {
 border-top: 5px solid #57BEDE;
 }
 .is-dirty {

A Weather Forecast Widget with Angular 2

[43]

 opacity: 0.4;
 background-color: #ddd;
 }`
]
})

In the constructor, we can use the geolocation API to get the coordinates of the current
position:

export class Widget {
 constructor() {
 navigator.geolocation.getCurrentPosition(position => {
 const location = `Coordinate ${ position.coords.latitude }
${ position.coords.longitude }`;
 this.location = location;
 this.activeLocation = location;
 });
 }

 location: string = "Utrecht,NL";
 activeLocation: string = "Utrecht,NL";
 get isDirty() {
 return this.location !== this.activeLocation;
 }

 clickGo() {
 this.activeLocation = this.location;
 }
 correctLocation(location: string) {
 if (!this.isDirty) this.location = location;
 this.activeLocation = location;
 }

 selectedTab = 0;
 selectTab(index: number) {
 this.selectedTab = index;
 }
}

A Weather Forecast Widget with Angular 2

[44]

Summary
In this chapter, we created an application with Angular 2. We explored Angular 2 and used
its directives and bindings in our components. We also used an online API. You should
now be able to build small Angular applications. In the next chapter, we will build a more
complex application in Angular, which will also use its own server.

3
Note-Taking App with a Server

In this chapter, we will create a client-server app. The client will be written using Angular 2
and the server will be written using NodeJS and MongoDB. We can use TypeScript on both
sides and we will see how we can reuse code between them.

The application can be used to take notes. We will implement a login page and basic
,Create, Read, Update, and Delete (CRUD) operations for the notes.

In this chapter, we will cover the following topics:

Setting up the project structure
Getting started with NodeJS
Understanding the structural type system
Adding authentication
Testing the API
Adding CRUD operations
Writing the client side
Running the application

Note-Taking App with a Server

[46]

Setting up the project structure
First, we have to setup the project. The difference with the previous chapter is that we now
have to build two applications—the client side and the server side. This causes some
differences with the previous setup.

Directories
We will again place our TypeScript sources in the lib directory. In that directory, we will
create four subdirectories: client, server, shared, and typings. The lib/client
directory will contain the client-side application and the lib/server directory will contain
the server code. Codes that can be used by both the server and the client will go in
lib/shared. Last but not least, lib/typings will contain type definitions for some
dependencies, including NodeJS.

Configuring the build tool
In lib, we create a tsconfig.json file that will contain some configuration for
TypeScript. We want to compile the server-side code to es2015, so we can use some new
features of TypeScript and JavaScript. The client side, however, must be compiled to es5 for
browser support. In the tsconfig file, we will specify es2015 as target and override it in
the gulp file. We can also specify the version of the default library that we want to use. We
need es2015 and dom. The first contains the recent classes and functions from JavaScript,
such as Map and Object.assign:

{
 "compilerOptions": {
 "target": "es6",
 "module": "commonjs",
 "experimentalDecorators": true,
 "emitDecoratorMetadata": true,
 "lib": ["es2015", "dom"]
 }
}

Note-Taking App with a Server

[47]

The lib option will only make the types for new classes and functions available. At
runtime, these might not be present. We include a polyfill, es6-shim, to make sure that these
will always be available.

The gulp file, located in the root of the project, is comparable to the configuration of the
previous chapter. We can install all necessary dependencies, including runtime
dependencies, using npm:

 npm init
 npm install gulp gulp-typescript small gulp-sourcemaps merge2 gulp-
concat gulp-uglify --save-dev
 npm install angular2 es6-shim rxjs phaethon --save

You can again set the private property in package.json so that you don't accidentally
upload your project to npm. In gulpfile.js, we can now load all dependencies:

var gulp = require("gulp");
var typescript = require("gulp-typescript");
var small = require("small").gulp;
var sourcemaps = require("gulp-sourcemaps");
var merge = require("merge2");
var concat = require("gulp-concat");
var uglify = require("gulp-uglify");

We will create two TypeScript projects: one for the server and one for the client side. In the
second project, we will override the target to es5:

var tsServer = typescript.createProject("lib/tsconfig.json");
var tsClient = typescript.createProject("lib/tsconfig.json", {
 target: "es5"
});

Now we can use almost the same task as in the previous chapter. The sources must be
loaded from lib/client instead of lib, and lib/shared should be included too:

gulp.task("compile-client", function() {
 return gulp.src(["lib/client/**/*.ts", "lib/shared/**/*.ts"], {
base: "lib" })
 .pipe(sourcemaps.init())
 .pipe(typescript(tsClient))
 .pipe(small('client/index.js', {
 outputFileName: { standalone: "scripts.js" },
 externalResolve: ['node_modules'],
 globalModules: {
 "crypto": {
 standalone: "undefined"
 }

Note-Taking App with a Server

[48]

 }
 }))
 .pipe(sourcemaps.write('.'))
 .pipe(gulp.dest('static/scripts'));
});

The compilation of the server-side code is simpler, as the code doesn't have to be bundled.
NodeJS has a built-in module loader:

gulp.task("compile-server", function() {
 return gulp.src(["lib/server/**/*.ts", "lib/shared/**/*.ts"], { base:
"lib" })
 .pipe(sourcemaps.init())
 .pipe(typescript(tsServer))
 .pipe(sourcemaps.write("."))
 .pipe(gulp.dest("dist"));
});

We add the release and default tasks that can build the release and debug tasks:

gulp.task("release", ["compile-client", "compile-server"], function() {
 return gulp.src("static/scripts/scripts.js")
 .pipe(uglify())
 .pipe(gulp.dest("static/scripts"));
});

gulp.task("default", ["compile-client", "compile-server"]);

The tasks can be started using gulp or gulp release.

Type definitions
Before a library can be used in TypeScript, you have to have type definitions for it. These
are stored in .d.ts files. For some packages, these are automatically installed. For example,
we used Angular in the previous chapter and we didn't install the definitions manually.
Packages distributed on npm can include their type definitions in the same package. When
you download such a package, the typings come along. Unfortunately, not all packages do
this. As of TypeScript 2.0, it is possible to download typings for these packages on npm too.
For instance, the typings for mongodb are published in the @types/mongodb package.
You can install types for a lot of packages this way. Types for NodeJS itself are available in
@types/node. Run these commands in the root directory:

npm install @types/node --save
npm install @types/mongodb --save

Note-Taking App with a Server

[49]

The compiler will automatically find the types for mongodb when you import it. Since we
will not explicitly import NodeJS in the code, the compiler will not find it. We must add it
to our tsconfig file.

{
 "compilerOptions": {
 "target": "es6",
 "module": "commonjs",
 "experimentalDecorators": true,
 "emitDecoratorMetadata": true,
 "lib": ["es2015", "dom"],
 "types": ["node"]
 }
}

The compiler can now use all type definitions.

Getting started with NodeJS
In the previous chapter, we used NodeJS, as gulp uses it. Node can be used for a server and
for a command line tool. In this chapter, we will build a server and in Chapter 9, Playing
Tic-Tac-Toe against an AI, we will create a command line application. If you haven't installed
Node yet, you can download it from nodejs.org.

We will first create a simple server. We will use Phaethon, a package for Node that makes it
easy to build a server in NodeJS. Phaethon includes type definitions, so we can use it
immediately. We create a file lib/server/index.ts and add the following:

import { Server } from "phaethon";
const server = new Server();
server.listener = request => new phaethon.ServerResponse("Hello");
server.listenHttp(8800);

We can run this server using the following command:

 gulp && node dist/server

When you open localhost:8800 in a web browser, the listener callback will be called and
you will see Hello in the browser.

Note-Taking App with a Server

[50]

Asynchronous code
A server doesn't do all the work itself. It will also delegate some tasks. For instance, it might
need to download a webpage or fetch something from a database. Such a task will not give
a result immediately. In the meantime, the server could do something else. This style of
programming is called asynchronous or nonblocking, as the order of execution is not fixed
and such task does not block the rest of the application.

Imagine we have a task that will download a webpage. The synchronous variant would
look like the following:

function download() {
 return ...;
}

function demo() {
// Before download
try {
const result = download();
const result2 = download();
// Download completed
} catch (error) {
 // Error
}
}

Callback approach for asynchronous code
In a webserver, this would prevent the server from handling other requests. The task blocks
the whole server. That is, of course, not what we want. The simplest asynchronous
approach uses callbacks. The first argument of the callback will contain an error if
something went wrong and the second argument will contain the result if there is a result:

function download(callback: (error: any, result: string) => void) {
 ...
}

function demo() {
// Before download
download((error, result) => {
if (error) {
 // Error
 } else {
 // Download completed
 download((error2, result2) => {

Note-Taking App with a Server

[51]

 if (error2) {
 } else {
 // Download 2 completed
 }
 });
 }
});
}

Disadvantages of callbacks
The disadvantage of this is that when you have a lot of callbacks, you have to nest callbacks
in callbacks, which is called callback hell. In ES6, a new class was introduced, that acts like
an abstraction of such a task. It is called a promise. Such a value promises that there will be
a result now or later on. The promise can be resolved, which means that the result is ready.
The promise can also be rejected, which means that there was some error:

function download(): Promise<string> {
 ...
}

function demo() {
// Before download
download().then(result => {
 // Download completed

 return download();
}).then(result2 => {
 // Second download completed
});
}

As you can see, the preceding code is more readable than the callbacks code. It's also easier
to chain tasks since you can return another promise in the then section of a promise.
However, the synchronous code is still more readable. ES7 has introduced async functions.
These functions are syntactic sugar around promises. Instead of calling then on a promise,
you can await it and write code as if it were synchronous.

At the time of writing, async functions can only be compiled to ES6.
TypeScript 2.1 will introduce support for ES5 too.

function download(): Promise<string> {
 ...

Note-Taking App with a Server

[52]

}

async function demo() {
 try {
 const result = await download();
 const result2 = await download();
 } catch (error) {
 }
}

As you can see, this is almost the same as the code we started with. This gives the best of
both worlds: it results in readable and performant code.

Do not forget the async keyword in the function header. If you want to
annotate the function with a return type, write Promise<T> instead of T.

The database
A lot of programmers use MongoDB in combination with NodeJS. You can install
MongoDB from www.mongodb.org. MongoDB can be started using the following command
in the project root:

 mongod --dbpath ./data

You can keep the preceding command running in one terminal window and run NodeJS in
another terminal window later on.

Wrapping functions in promises
We will run the database on the same computer as the server and we will name the
database notes. This yields the URL mongodb://localhost/notes, which we need to
connect to the database. We have already installed the definitions with tsd. MongoDB
exposes an API based on callbacks. We will wrap these in promises, as we will use
async/await later on. Wrapping a function in a promise will look like the following:

function wrapped() {
 return new Promise<string>((resolve, reject) => {
 originalFunction((error, result) => {
 if (error) {
 reject(error);
 } else {

http://www.mongodb.org

Note-Taking App with a Server

[53]

 resolve(result);
 }
 });
 });
}

The Promise constructor takes a callback function. This function can call the resolve
callback if everything succeeded or call the reject function if something failed.

Connecting to the database
We add the following in lib/server/database.ts. First we must connect to the
database. Instead of rejecting when the connection failed, we will throw the error. This way
the server will quit if it can't connect to the database:

import { MongoClient, Db, Collection } from "mongodb";

const databaseUrl = "mongodb://localhost:27017/notes";
const database = new Promise<Db>(resolve => {
 MongoClient.connect(databaseUrl, (error, db) => {
 if (error) {
 throw error;
 }
 resolve(db);
 })
});

Usually, you would reject the promise in case of an error. Here, we throw
the error and crash the server. In this case it is better since the server
cannot do anything without a database connection.

The database contains two collections (tables): users and notes. Since we can only access
these after the connection to the database has succeeded, these should also be placed in a
Promise. Since database already is a Promise, we can use async/await:

async function getCollection(name: string) {
 const db = await database;
 return db.collection(name);
}
export const users = getCollection("users");
export const notes = getCollection("notes");

Note-Taking App with a Server

[54]

The users and notes variables have the type Promise<Collection>.

We can now write a function that will insert an item into a collection and return a promise.
Since this promise doesn't have a resulting value, we will type it as Promise<void>:

export function insert(table: Promise<Collection>, item: any) {
 const collection = await table;
 return new Promise<void>((resolve, reject) => {
 collection.insertOne(item, (error) => {
 if (error) {
 reject(error);
 } else {
 resolve();
 }
 });
 });
}

Querying the database
To query the database, we will use the function find. MongoDB returns a cursor object,
which allows you to stream all results. If you have a big application, and queries that return
a lot of results, this can improve the performance of your application. Instead of streaming
the results, we can also buffer them in an array with the toArray function:

export function find(table: Promise<Collection>, query: any) {
 const collection = await table;
 return new Promise<U[]>((resolve, reject) => {
 collection.find(query, (error, cursor) => {
 if (error) {
 reject(error);
 } else {
 cursor.toArray((error, results) => {
 if (error) {
 reject(error);
 } else {
 resolve(results);
 }
 });
 }
 });
 });
}

We will add update and remove functions later on.

Note-Taking App with a Server

[55]

Understanding the structural type system
TypeScript uses a structural type system. What that means can be easily demonstrated
using the following example:

class Person {
 name: string;
}
class City {
 name: string;
}
const x: City = new Person();

In languages like C#, this would not compile. These languages use a nominal type system.
Based on the name, a Person is not a City. TypeScript uses a structural type system. Based
on the structure of Person and City, these types are equal, as they both have a name
property. This fits well in the dynamic nature of JavaScript. It can, however, lead to some
unexpected behavior, as the following would compile:

class Foo {
}
const f: Foo = 42;

Since Foo does not have any properties, every value would be assignable to it. In cases were
the structural behavior is not desired, you can add a brand, a property that adds type safety
but does not exist at runtime:

class Foo {
 __fooBrand: void;
}
const f: Foo = 42;

Now the last line will give an error, as expected.

Generics
The typings for MongoDB don't use generics or type arguments. Given that we already
have to add a tiny wrapper around it, we can also easily add generics to that wrapper. We
will create a new type for the data store that has generics:

export interface Table<T> extends Collection {
 __tableBrand: T;
}

Note-Taking App with a Server

[56]

If you din't include the brand, Table<A> would be structurally identical to Table,
which we do not want. We can now load the collections with the correct types. We use the
User and Note types here. We will create these interfaces later on:

import { User } from "./user";
import { Note } from "./note";

async function getCollection<U>(name: string) {
 const db = await database;
 return <Table<U>> db.collection(name);
}
export const users = getCollection<User>("users");
export const notes = getCollection<Note>("notes");

With generics, the insert function will look like the following:

export function insert<U>(table: Table<U>, item: U) {
 return new Promise<void>((resolve, reject) => {
 table.insertOne(item, (error) => {
 if (error) {
 reject(error);
 } else {
 resolve();
 }
 });
 });
}

For find, we want the query to be a supertype of the table content. In other words, you
want to query on some properties of the content of the table. Support for this was added in
TypeScript 1.8:

export function find<U extends V, V>(table: Table<U>, query: V) {
 return new Promise<U[]>((resolve, reject) => {
 table.find(query, (error, result) => {
 if (error) {
 reject(error);
 } else {
 resolve(result);
 }
 });
 });
}

Note-Taking App with a Server

[57]

We will also write wrappers for update and remove. Together these functions can do the
CRUD operations: create, read, update, and delete:

export function update<U extends V, V>(table: Table<U>, query: V, newItem:
U) {
 return new Promise<void>((resolve, reject) => {
 table.update(query, newItem, (error) => {
 if (error) {
 reject(error);
 } else {
 resolve();
 }
 });
 });
}
export function remove<U extends V, V>(table: Table<U>, query: V) {
 return new Promise<void>((resolve, reject) => {
 table.remove(query, (error) => {
 if (error) {
 reject(error);
 } else {
 resolve();
 }
 });
 });
}

In lib/server/user.ts, we will create the User model. For MongoDB, such types should
have an _id property. The database will use that property to identify instances of the
models:

import { ObjectID } from "mongodb";
export interface User {
 _id: ObjectID;
 username: string;
 passwordHash: string;
}

And in lib/server/note.ts, we add the Note model:

import { ObjectID } from "mongodb";
export interface Note {
 _id: ObjectID;
 userId: string;
 content: string;
}

Note-Taking App with a Server

[58]

Typing the API
In lib/shared/api.ts, we will add some typings for the API. On the server side, we can
check that the response has the right type:

export interface LoginResult {
 ok: boolean;
 message?: string;
}
export interface MenuResult {
 items: MenuItem[];
}
export interface MenuItem {
 id: string;
 title: string;
}
export interface ItemResult {
 id: string;
 content: string;
}

We will now implement the functions that return these types.

Adding authentication
In lib/server/index.ts, we will first add sessions. A session is a place to store data,
which is persistent for a client on the server. On the client side, a cookie will be saved,
which contains an identifier of the session. If a request contains a valid cookie with such an
identifier, you will get the same session object. Otherwise, a new session will be created:

import { Server, ServerRequest, ServerResponse, ServerError, StatusCode,
SessionStore } from "phaethon";
import { ObjectID } from "mongodb";
import { User, login, logout } from "./user";
import * as note from "./note";

With import { ... }, we can import a set of entities from another file.
With import * as ..., we import the whole file as an object. The
following two snippets are equivalent:
import * as foo from "./foo"; foo.bar(); import { bar }
from "./foo"; bar();

Note-Taking App with a Server

[59]

We define the type of the content of the session as follows:

export interface Session {
 userId: ObjectID;
}

const server = new Server();

The sessions will be stored in a SessionStore. The lifetime of a session is 60 * 60 * 24
seconds or one day:

const sessionStore = new SessionStore<Session>("session-id", () => ({
userId: undefined }), 60 * 60 * 24, 1024);
server.listener = sessionStore.wrapListener(async (request, session) =>
{
 const response = await handleRequest(request, session.data);
 if (response instanceof ServerResponse) {
 return response;
 } else {
 const serverResponse = new
ServerResponse(JSON.stringify(response));
 return serverResponse;
 }
});
server.listenHttp(8800);

JSON.stringify will convert an object to a string. Such a string can easily be converted
back to an object on the client side. In Chapter 2, Weather Forecast Widget, the responses of
the weather API were also formatted as JSON strings.

In handleRequest, all requests will be sent to a handler based on their path:

async function handleRequest(request: ServerRequest, session: Session):
Promise<ServerResponse | Object> {
 const path = request.path.toLowerCase();

 if (path === "/api/login") return login(request, session);
 if (path === "/api/logout") return logout(request, session);
 throw new ServerError(StatusCode.ClientErrorNotFound);
}

Note-Taking App with a Server

[60]

Implementing users in the database
Now we can implement authentication in user.ts. For safety, we won't store plain
passwords in our database. Instead we hash them. A hash is a manipulation of an input, in
a way that you cannot find the input based on the hash. When someone wants to log in, the
password is hashed and compared with the hashed password from the database. Using the
built-in module crypto, this can easily be done:

import * as crypto from "crypto";
function getPasswordHash(username: string, password: string): string {
 return crypto.createHash("sha256").update(password.length + "-" +
username + "-" + password).digest("hex");
}

The logout handler is easy to write. We must remove the userId of the session as follows:

export function logout(request: ServerRequest, session: Session):
LoginResult {
 session.userId = undefined;
 return { ok: true };
}

As you can see, we are using the LoginResult interface that we wrote previously. The
login function will use the async/await syntax. The function expects that the username
and password are available in the URL query. If they are not available, validate.expect
will throw an error, which will be displayed as a Bad Request error:

export async function login(request: ServerRequest, session: Session):
Promise<LoginResult> {
 const username = validate.expect(request.query["username"],
validate.isString);
 const password = validate.expect(request.query["password"],
validate.isString);
 constpasswordHash = getPasswordHash(username, password);

 const results = await find(users, { username, passwordHash });
 if (results.length === 0) {
 return { ok: false, message: "Username or password incorrect" };
 }
 const user = results[0];
 session.userId = user._id;
 return { ok: true };
}

Note-Taking App with a Server

[61]

Adding users to the database
To add some users to the database, we must add some code and run the server once with it.
In a real-world application, you would probably want to add a register form. That is
comparable to adding a note, which we will do later on in this chapter.

We will also add two helper functions that we can use in note.ts to check whether the
user is logged in:

import * as crypto from "crypto";
import { ServerRequest, ServerResponse, ServerError, StatusCode, validate }
from "phaethon";
import { Session } from "./index";
import { LoginResult } from "../shared/api";
import { users, find, insert } from "./database";

export interface User {
 _id: string;
 username: string;
 passwordHash: string;
}

function getPasswordHash(username: string, password: string): string {
 return crypto.createHash("sha256").update(password.length + "-" +
username + "-" + password).digest("hex");
}

insert(users, {
 _id: undefined,
 username: "lorem",
 passwordHash: getPasswordHash("lorem", "ipsum")
});
insert(users, {
 _id: undefined,
 username: "foo",
 passwordHash: getPasswordHash("foo", "bar")
});

export async function login(request: ServerRequest, session: Session):
Promise<LoginResult> {
 const username = validate.expect(
 request.query["username"], validate.isString);
 const password = validate.expect(
 request.query["password"], validate.isString);
 const passwordHash = getPasswordHash(username, password);

 const results = await find(users, { username, passwordHash });

Note-Taking App with a Server

[62]

 if (results.length === 0) {
 return { ok: false, message: "Username or password incorrect" };
 }
 const user = results[0];
 session.userId = user._id;
 return { ok: true };
}
export function logout(request: ServerRequest, session: Session): Login
Result {
 session.userId = undefined;
 return { ok: true };
}
export async function getUser(session: Session) {
 if (session.userId === undefined) return undefined;
 const results = await find(users, { _id: session.userId });
 return results[0];
}
export async function getUserOrError(session: Session) {
 const user = await getUser(session);
 if (user === undefined) {
 throw new ServerError(StatusCode.ClientErrorUnauthorized);
 }
 return user;
}

Run the server once and remove the two insert calls afterward.

Testing the API
We can start the server by running the following command:

 gulp && node --harmony_destructuring dist/server

In a web browser, you can open
localhost:8800/api/login?username=lorem&password=ipsum to test the code. You
can change the parameters to test how a wrong username or password behaves.

For debugging, you can add console.log("..."); calls in your code.

Note-Taking App with a Server

[63]

Adding CRUD operations
Most servers handle CRUD operations primarily. Our server must handle five different
requests: list all notes of the current user, find a specific note, insert a new note,
update a note, and remove a note.

First, we add a helper function that can be used on the server side and the client side. In
lib/shared/note.ts, we add a function that returns the title of a note—the first line, if
available, or “Untitled”:

export function getTitle(content: string) {
 const lineEnd = content.indexOf("\n");
 if (content === "" || lineEnd === 0) {
 return "Untitled";
 }
 if (lineEnd === -1) {
 // Note contains one line
 return content;
 }
 // Get first line
 return content.substring(0, lineEnd);
}

We write the CRUD functions in lib/server/note.ts. We start with imports and the
Note definition:

import { ServerRequest, ServerResponse, ServerError, StatusCode, validate }
from "phaethon";
import { ObjectID } from "mongodb";
import { Session } from "./index";
import { getUserOrError } from "./user";
import { Note } from "./note";
import { getTitle } from "../shared/note";
import { MenuResult, ItemResult } from "../shared/api";
import * as database from "./database";

export interface Note {
 _id: string;
 userId: string;
 content: string;
}

Note-Taking App with a Server

[64]

Implementing the handlers
Now we can implement the list function. Using the helper functions we wrote previously,
we can easily write the following function:

export async function list(request: ServerRequest, session: Session):
Promise<MenuResult> {
 const user = await getUserOrError(session);
 const results = await database.find(
 database.notes, { userId: user._id });
 const items = results.map(note => ({
 id: note._id.toHexString(),
 title: getTitle(note.content)
 }));
 return { items };
}

With toHexString, an ObjectID can be converted to a string. It can be converted back
using new ObjectID(...). The map function transforms an array with a specific callback.

In the find function, we must search for a note based on a specific ID:

export async function find(request: ServerRequest, session: Session):
Promise<ItemResult> {
 const user = await getUserOrError(session);
 const id = validate.expect(
 request.query["id"], validate.isString);
 const notes = await database.find(database.notes,
 { _id: new ObjectID(id), userId: user._id });
 if (notes.length === 0) {
 throw new ServerError(StatusCode.ClientErrorNotFound);
 }
 const note = notes[0];
 return {
 id: note._id.toHexString(),
 content: note.content
 };
}

Do not forget to add the userId in the query. Otherwise, a hacker could
find notes of a different user without knowing his/her password.

Note-Taking App with a Server

[65]

The insert, update, and remove functions can be implemented as follows. In insert, we
set _id to undefined, as MongoDB will add a unique ID itself:

export async function insert(request: ServerRequest, session: Session):
Promise<ItemResult> {
 const user = await getUserOrError(session);
 const content = validate.expect(
 request.query["content"], validate.isString);
 const note: Note = {
 _id: undefined,
 userId: user._id,
 content
 };
 await database.insert(database.notes, note);
 return {
 id: note._id.toHexString(),
 content: note.content
 };
}
export async function update(request: ServerRequest, session: Session):
Promise<ItemResult> {
 const user = await getUserOrError(session);
 const id = validate.expect(
 request.query["id"], validate.isString);
 const content = validate.expect(
 request.query["content"], validate.isString);
 const note: Note = {
 _id: new ObjectID(id),
 userId: user._id,
 content
 };
 await database.update(database.notes,
 { _id: new ObjectID(id), userId: user._id }, note);
 return {
 id: note._id.toHexString(),
 content: note.content
 };
}
export async function remove(request: ServerRequest, session: Session) {
 const user = await getUserOrError(session);
 const id = validate.expect(
 request.query["id"], validate.isString);
 await database.remove(database.notes,
 { _id: new ObjectID(id), userId: user._id });
 return {};
}

Note-Taking App with a Server

[66]

Request handling
In lib/server/index.ts, we must add references to these functions in handleRequest:

async function handleRequest(request: ServerRequest, session: Session):
Promise<ServerResponse | Object> {
 const path = request.path.toLowerCase();

 if (path === "/api/login")
return login(request, session);
 if (path === "/api/logout")
return logout(request, session);
 if (path === "/api/note/list")
return note.list(request, session);
 if (path === "/api/note/insert")
return note.insert(request, session);
 if (path === "/api/note/update")
return note.update(request, session);
 if (path === "/api/note/remove")
return note.remove(request, session);
 if (path === "/api/note/find")
return note.find(request, session);
 throw new ServerError(StatusCode.ClientErrorNotFound);
}

Writing the client side
Just like the weather widget, we will write the client side of the note application with
Angular 2. When the application starts, it will try to download the list of notes. If the user is
not logged in, we will get an Unauthorized error (status code 401) and show the login
form. Otherwise, we can show the menu with all notes, a logout button, and a button to
create a new note. When clicking on a note, that note is downloaded and the user can edit it
in the note editor. If the user clicks on the new button, the user can write the new note in the
(same) note editor.

The server uses a cookie to manage the session, so we do not have to do that manually on
the client side.

We start with almost the same HTML file saved as static/index.html:

<!DOCTYPE HTML>
<html>
 <head>
 <title>My Notes</title>

Note-Taking App with a Server

[67]

 <link rel="stylesheet" href="style.css" />
 </head>
 <body>
 <div id="wrapper">
 <note-application>Loading..</note-application>
 </div>
 <script type="text/javascript">
 var global = window;
 </script>
 <script src="scripts/scripts.js"
type="text/javascript"></script>
 </body>
</html>

In static/style.css, we add some styles as follows:

body {
 font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
 font-weight: 100;
}
h1, h2, h3 {
 margin: 0 0;
 padding: 0 0;
 color: #C93524;
}
h2 {
 margin: 0 0;
 padding: 0 0;
 color: #1C5C91;
}
#wrapper {
 position: absolute;
 left: 0;
 right: 0;
 top: 0;
 width: 450px;
 margin: 10% auto;
}
a:link, a:visited {
 color: #1C5C91;
 text-decoration: underline;
}
a:hover, a:active {
 color: #3B6282;
}
li >a:link, li >a:visited {
 color: #C93524;
 text-decoration: underline;

Note-Taking App with a Server

[68]

}
li >a:hover, li >a:active {
 color: #AD4236;
}
label {
 display: block;
}

In lib/client/api.ts, we create a function, getUrl, that will simplify API access. With
this function, we can write getUrl("login", { username: "lorem", password:
"ipsum" }) instead of "login?username=lorem&password=ipsum". The function also
takes the escaping of characters, such as an ampersand, into account:

export const baseUrl = "/api/";
export function getUrl(method: string, query: { [key: string]: string }) {
 let url = baseUrl + method;
 let seperator = "?";
 for (const key of Object.keys(query)) {
 url += seperator + encodeURIComponent(key) + "=" +
encodeURIComponent(query[key]);
 seperator = "&";
 }
 return url;
}

Creating the login form
Now we can create the login form, as shown in the following screenshot:

Note-Taking App with a Server

[69]

In lib/client/login.ts, we create the login form. We start with the imports and the
template:

import { Component, Output, EventEmitter } from "angular2/core";
import { Http, HTTP_PROVIDERS } from "angular2/http";
import { getUrl } from "./api";
import { LoginResult } from "../shared/api";

@Component({
 selector: "login-form",
 template: `
 <h2>Login</h2>
 <form (submit)="submit($event)">
 <div>{{ message }}</div>
 <label>Username
<input [(ngModel)]="username"
/></label>
 <label>Password
<input type="password"
[(ngModel)]="password" /></label>
 <button type="submit">Log in< /button>
 </form>
 `,
 viewProviders: [HTTP_PROVIDERS]
})
export class LoginForm {
 username: string;
 password: string;
 message: string;

 constructor(private http: Http) {}

Here we will submit the username and password to the server. If the login is successful, we
emit the success event. The main component can then hide the login page and show the
menu:

 submit(e: Event) {
 e.preventDefault();
 this.http.get(getUrl("login", { username: this.username,
password: this.password }))
 .map(response =>response.json())
 .subscribe((response: LoginResult) => {
 if (response.ok) {
 this.success.emit(undefined);
 } else {
 this.message = response.message;
 }
 });
 }

Note-Taking App with a Server

[70]

 @Output()
 success = new EventEmitter();
}

Creating a menu
In lib/client/menu.ts, we create the menu. In the menu, the user will see his/her notes
and can create a new note. The menu will look like the following:

This component can emit two different events: create and open. The second has an
argument, so we have to add string as type argument:

import { Component, Input, Output, EventEmitter } from "angular2/core";
import { MenuItem } from "../shared/api";

@Component({
 selector: "notes-menu",
 template: `
 <button type="button" (click)="clickCreate()">New</button>

 <li *ngFor="#item of items">
 {{
item.title }}

 `
})
export class Menu {
 @Input()
 items: MenuItem[];

 @Output()
 create = new EventEmitter();

Note-Taking App with a Server

[71]

 @Output()
 open = new EventEmitter<string>();

 clickCreate() {
 this.create.emit(undefined);
 }
 clickItem(item: MenuItem) {
 this.open.emit(item.id);
 }
}

The note editor
The note editor is a simple text area. Above it, we will show the title of the note. With two-
way bindings, the title is automatically updated when the content of the text area is
changed.

The main component
Now we can write the main component. This component will show one of the other
components, depending on the state. First we must import rxjs, Angular, and the
functions and components we have already written:

import "rxjs";
import { Component } from "angular2/core";
import { bootstrap } from "angular2/platform/browser";
import { Http, HTTP_PROVIDERS, Response } from "angular2/http";
import { getUrl } from "./api";
import { MenuItem, MenuResult, ItemResult } from "../shared/api";
import { LoginForm } from "./login";
import { Menu } from "./menu";
import { NoteEditor } from "./note";

Note-Taking App with a Server

[72]

We will use an enum type to store the state:

enum State {
 Login,
 Menu,
 Note,
 Error
}

The template shows the right component based on the state. These components have some
event listeners attached:

@Component({
 selector: "note-application",
 viewProviders: [HTTP_PROVIDERS],
 directives: [LoginForm, Menu, NoteEditor],
 template: `
 <h1>My Notes</h1>
 <login-form *ngIf="stateLogin" (success)="loadMenu()"></login-
form>
 <div *ngIf="!stateLogin">
 Log out
 </div>
 <notes-menu *ngIf="stateMenu" [items]="menu"
(create)="createNote()" (open)="loadNote($event)"> </notes-menu>
 <note-editor *ngIf="stateNote&& note" [content]="note.content"
(save)="save($event)" (remove)="remove($event)"></note-editor>
 <div *ngIf="stateError">
 <h2>Something went wrong</h2>
 Reload the page and try again
 </div>
 `
})

In the body of the class, we have to add some properties for the state first:

class Application {
 state = State.Menu;

 constructor(private http: Http) {
 this.loadMenu();
 }

 get stateLogin() {
 return this.state === State.Login;
 }
 get stateMenu() {
 return this.state === State.Menu;

Note-Taking App with a Server

[73]

 }
 get stateNote() {
 return this.state === State.Note;
 }
 get stateError() {
 return this.state === State.Error;
 }

 menu: MenuItem[] = [];
 note: ItemResult = undefined;

Error handler
Now we will write a function that will load the menu. Errors will be passed to
handleError. If the user was not authenticated, we will find the status code 401 here and
show the login form. For a successful request, we can cast the response to the interfaces we
defined in lib/shared/api.ts:

handleError(error: Response) {
 if (error.status === 401) {
 // Unauthorized
 this.state = State.Login;
 this.menu = [];
 this.note = undefined;
 } else {
 this.state = State.Error;
 }
}
loadMenu() {
 this.state = State.Menu;
 this.menu = [];
 this.http.get(getUrl("note/list", {})).subscribe(response => {
 const body = <MenuResult>response.json();
 this.menu = body.items;
 }, error => this.handleError(error));
 }

We implement the event listeners, createNote and loadNote, of the menu:

createNote() {
 this.note = {
 id: undefined,
 content: ""
 };
 this.state = State.Note;
 }

Note-Taking App with a Server

[74]

 loadNote(id: string) {
 this.note = undefined;
 this.http.get(getUrl("note/find", { id: id
})).subscribe(response => {
 this.state = State.Note;
 this.note = <ItemResult>response.json();
 }, error => this.handleError(error));
 }

In save, we have to check whether the note is new or being updated:

save(content: string) {
 let url: string;
 this.note.content = content;
 if (this.note.id === undefined) {
 // New note
 url = getUrl("note/insert", { content: this.note.content });
 } else {
 // Existing note
 url = getUrl("note/update", { id: this.note.id, content:
this.note.content });
 }

 this.state = State.Note;
 this.note = undefined;
 this.http.get(url).subscribe(response => {
 this.loadMenu();
 }, error => this.handleError(error));
 }
 remove() {
 if (this.note.id === undefined) {
 this.loadMenu();
 return;
 }
 this.http.get(getUrl("note/remove", { id: this.note.id
})).subscribe(response => {
 this.loadMenu();
 }, error => this.handleError(error));
 }
 logout() {
 this.http.get(getUrl("logout", {})).subscribe(response => {
 this.state = State.Login;
 this.menu = [];
 this.note = undefined;
 }, error => this.handleError(error));
 }
}

Note-Taking App with a Server

[75]

bootstrap(Application).catch(err => console.error(err));

Running the application
To test the application, the server and the static files have to be served from the same server.
To do that, you can use the http-server package. That server can serve the static files and
pass through (proxy) the requests to the API server. If MongoDB is not running yet, open a
terminal window and run mongod --dbpath ./data. Open a terminal window in the root
of the project and run the following to start the API server on localhost:8800:

 gulp && node --harmony_destructuring dist/server

In a new terminal window, navigate to the static directory. Install http-server using
the following command:

 npm install http-server -g

Now you can start the server:

 http-server -P http://localhost:8800

Open localhost:8080 in a browser and you will see the application that we have created.

Summary
In this chapter, you created a client-server application. You used NodeJS to create a server,
with MongoDB and Phaethon. You also learned more about asynchronous programming
and the structural type system. We used our knowledge of Angular from the first chapter to
create the client side.

In the next chapter, we will create another client-server application. That application is not a
CRUD application, but a real-time chat application. We will be using React instead of
Angular.

4
Real-Time Chat

After having written two applications with Angular 2, we will now create one with React.
The server part will also be different. Instead of a connectionless server, we will now create
a server with a persistent connection. In the previous chapters, the client sent requests to the
server and the server responded to them. Now we will write a server that can send
information at any time to the client. This is needed to send new chat messages immediately
to the client, as shown in the following:

Real-Time Chat

[77]

In the chat application, a user can first choose a username and join a chat room. In the room,
he/she can send messages and receive messages from other users. In this chapter, we will
cover the following topics:

Setting up the project
Getting started with React
Writing the server
Connecting to the server
Creating the chat room
Comparing React and Angular

Setting up the project
Before we can start coding, we have to set up the project. The directory structure will be the
same as in Chapter 3, Note-Taking App with Server; static contains the static files for the
webserver, lib/client contains the client-side code, lib/server contains the code for
the server, lib/shared contains the code that can be used on both sides, and lib/typings
contains the type definitions for React.

We can install all dependencies, for gulp, the server, and React, as follows:

npm init
npm install react react-dom ws --save
npm install gulp gulp-sourcemaps gulp-typescript gulp-uglify small --save-
dev

The type definitions can be installed using npm:

cd lib
npm install @types/node @types/react @types/react-dom @types/ws --save

We create static/index.html, which will load the compiled JavaScript file:

<!DOCTYPE HTML>
<html>
 <head>
 <title>Chat</title>
 <link href="style.css" rel="stylesheet" />
 </head>
 <body>
 <div id="app"></div>
 <script type="text/javascript">
 var process = {

Real-Time Chat

[78]

 env: {
 NODE_ENV: "DEBUG" // or "PRODUCTION"
 }
 };
 </script>
 <script src="scripts/scripts.js" type="text/javascript"></script>
 </body>
</html>

We add styles in static/style.css:

body {
 font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
label, input, button {
 display: block;
}

Configuring gulp
We can use almost the same gulpfile. We do not have to load any polyfills for React, so
the resulting file is even simpler:

var gulp = require("gulp");
var sourcemaps = require("gulp-sourcemaps");
var typescript = require("gulp-typescript");
var small = require("small").gulp;
var uglify = require("gulp-uglify");

var tsServer = typescript.createProject("lib/tsconfig.json", {
typescript: require("typescript") });

var tsClient = typescript.createProject("lib/tsconfig.json", { typescript:
require("typescript"), target: "es5" });

gulp.task("compile-client", function() {
 return gulp.src(["lib/client/**/*.ts", "lib/client/**/*.tsx",
 "lib/shared/**/*.ts"], { base: "lib" })
 .pipe(sourcemaps.init())
 .pipe(typescript(tsClient))
 .pipe(small("client/index.js", { outputFileName: {
 standalone: "scripts.js" }, externalResolve:
 ["node_modules"] }))
 .pipe(sourcemaps.write("."))
 .pipe(gulp.dest("static/scripts"));
});

Real-Time Chat

[79]

gulp.task("compile-server", function() {
 return gulp.src(["lib/server/**/*.ts", "lib/shared/**/*.ts"], {
 base: "lib" })
 .pipe(sourcemaps.init())
 .pipe(typescript(tsServer))
 .pipe(sourcemaps.write("."))
 .pipe(gulp.dest("dist"));
});
gulp.task("release", ["compile-client", "compile-server"], function() {
 return gulp.src("static/scripts/**.js")
 .pipe(uglify())
 .pipe(gulp.dest("static/scripts"));
});

gulp.task("default", ["compile-client", "compile-server"]);

In lib/tsconfig.json, we configure TypeScript. We have to set the jsx option. In React,
views are written in an XML-like language, JSX, inside JavaScript. To use this in TypeScript,
you have to set the jsx option and use the file extension .tsx instead of .jsx.

{
 "compilerOptions": {
 "module": "commonjs",
 "target": "es6",
 "jsx": "react",
 "types": ["node"]
 }
}

Getting started with React
Just like Angular, React is component based. Angular is called a framework, whereas React
is called a library. This means that Angular provides a lot of different functionalities and
React provides one functionality, views. In the first two chapters, we used the HTTP service
of Angular. React does not provide such a service, but you can use other libraries from npm
instead.

Creating a component with JSX
A component is a class that has a render method. That method will render the view and is
the replacement of the template in Angular. A simple component would look like the
following:

Real-Time Chat

[80]

export class Example extends React.Component<{}, {}> {
 render() {
 const name = "World";
 return (
 <div>
 Hello, { name }!
 <button onClick={() => alert("Hello")}>
 Click me
 </button>
 </div>
);
 }
}

As you can see, you can embed HTML inside the render function. Expressions can be
wrapped inside curly brackets, both in text and in properties of other components. Event
handlers can be added in this way too. Instead of using built-in components, you can use
custom components in these handlers. All built-in components start with a lowercase
character and custom elements should start with an uppercase character. This is not just a
convention, but required by React. We have to use a different syntax for type casts in .tsx
files, as the normal syntax conflicts with the XML elements. Instead of <Type> value, we
will now write value as Type. In .ts files, we can use both styles.

Adding props and state to a component
In the example, the component extends the React.Component class. That class has two
type arguments, which represent the props and the state. The props contain the input that
the parent component gives to this one. You can compare that to the @Input directive in
Angular. You cannot modify the props in the containing class. The state contains the other
properties of a component in Angular, which can be modified in the class. You can access
the props with this.props and the state with this.state. The state cannot be modified
directly, as you have to replace the state with a new object. Imagine the state contains two
properties, foo and bar. If you want to modify foo and bar, it is not allowed with
this.state.foo = 42, but you have to write this.setState({ foo: 42, bar: true
}) instead. In most cases, you do not have to change all properties of the state. In such
cases, you only have to specify the properties that you want to change. For instance,
this.setState({ foo: 42, bar: true }) will change the value of foo and keep the
old value of bar. The state object is then replaced by a new object. The state object will
never change. Such an object is called an immutable object. We will read more on these
objects in Chapter 5, Native QR Scanner App.

The component will be re-rendered by React after calling setState.

Real-Time Chat

[81]

In other parts of the application, we will also need to modify a few properties of an object.
For big objects, this becomes annoying. We create a helper function, which requires the old
state, adds modifications to it, and returns a new state. This function does not change the
old state, but returns a new one. In lib/client/model.ts, we create the modify function:

export function modify<U extends V, V>(old: U, changes: V) {
 const result: any = Object.create(Object.getPrototypeOf(old));
 for (const key of Object.keys(old)) {
 result[key] = old[key];
 }
 for (const key of Object.keys(changes)) {
 result[key] = changes[key];
 }
 return <U> result;
}

Creating the menu
We will start with the menu of our application. In the menu, the user can choose the chat
room that he/she wants to join. The menu will first ask the user for a username. Afterward,
the user can type the name of a chat room. The user will get completions for known rooms,
but he/she can also create a new room. Let's check the following screenshot as an example
of menu:

The component will delegate the completions to its parent, so we need to add the current
list of completions to the props, such that the parent can set it. Also, we need to add a
callback that can be called when the completions must be fetched.

The state must contain the username and the room name. React does not have two-way
bindings, so we have to use event listeners to update the username and room name in the
state.

Real-Time Chat

[82]

We will disable the rest of the menu if the user hasn't provided the username. When the
user has filled in a room, we show a list of completions and a button to create a new room
with the specified name.

We write the code in lib/client/menu.tsx. First, we define the props and state in two
different interfaces:

import * as React from "react";
import { modify } from "./model";

interface MenuProps {
 completions: string[];
 onRequestCompletions: (room: string) => void;
 onClick: (username: string, room: string) => void;
}
interface MenuState {
 username: string;
 roomname: string;
}

Second, we create the class. We set the initial state with an empty username and room
name:

 export class Menu extends React.Component<MenuProps,
 MenuState> {
 state = {
 username: "",
 roomname: ""
 };

In the render function, we use JSX to show the component. We can use normal TypeScript
constructs. There is no need to use something like NgIf or NgFor, as we did in Angular:

 render() {
 const menuEnabled = this.state.username !== "";
 const menuStyle = {
 opactity: menuEnabled ? 1 : 0.5
 };
 const showCreateButton = menuEnabled
 && this.state.roomname !== ""
 && this.props.completions
 .indexOf(this.state.roomname) === -1;
 return (<div>
 <label htmlFor="username">Username</label>
 <input type="text" id="username" onChange=
 {e => this.changeUsername(
 (e.target as HTMLInputElement).value)} />

Real-Time Chat

[83]

 <div style={menuStyle}>
 <label htmlFor="roomname">Room</label>
 <input type="text" id="roomname"
 disabled={!menuEnabled}
 onChange={e =>
 this.changeName(
 (e.target as HTMLInputElement).value)
 } />
 { showCreateButton
 ? <button onClick={
 () => this.submit(this.state.roomname)}>
 Create room { this.state.roomname }</button>
 : "" }
 { this.props.completions.map(
 completion =>
 <a href="javascript:;"
 key={completion}
 style={{display: "block"}}
 onClick={() =>
 this.submit(completion)}>
 { completion }) }
 </div>
 </div>);
 }

Finally, we can implement the listeners:

 private changeUsername(username: string) {
 this.setState({ username });
 }
 private changeName(roomname: string) {
 this.setState({ roomname });
 this.props.onRequestCompletions(roomname);
 }
 private submit(room: string) {
 this.props.onClick(this.state.username, room);
 }
 }

We can see this component in action by adding the following in lib/client/index.tsx:

ReactDOM.render(<Menu completions={[]} onRequestCompletions={() => {}}
onClick={() => {}} />);

This will render the menu in the HTML file.

Real-Time Chat

[84]

Testing the application
To view the application in a browser, you must first build it using gulp. You can execute
gulp in a terminal. Afterward, you can open static/index.html in a browser.

Writing the server
To add interaction to the application, we must create the server first. We will use the ws
package to easily create a websocket server. On the websocket, we can send messages in
both directions. These messages are objects converted to strings with JSON, just like in the
previous chapters.

Connections
In the previous chapter, we wrote a connectionless server. For every request, a new
connection was set up. We could store a state using a session. Such session was identified
with a cookie. If you were to copy that cookie to a different computer, you would have the
same session there.

Now we will write a server that uses connections. In this way, the server can easily keep
track of which user is logged in and where. The server can also send a message to the client
without a direct request. This automatic updating is called pushing. The opposite, pulling,
or polling, means that the client constantly asks the server whether there is new data.

With connections, the order of arrival is the same as the order of sending. With a
connectionless server, a second message can use a different route and arrive earlier.

Typing the API
We will type these messages in lib/shared/api.ts. In the previous chapter, the URL
identified the function to be called. Now, we must include that information in the message
object. We type the messages from the client to the server and vice versa:

export enum MessageKind {
 FindRooms,
 OpenRoom,
 SendMessage,

 RoomCompletions,
 ReceiveMessage,

Real-Time Chat

[85]

 RoomContent
}
export interface Message {
 kind: MessageKind;
}

export type ClientMessage = OpenRoom | ChatMessage | FindRooms;
export type ServerMessage = RoomContent | ChatMessage;

export interface FindRooms extends Message {
 query: string;
}
export interface OpenRoom extends Message {
 room: string;
}
export interface RoomCompletions extends Message {
 completions: string[];
}
export interface RoomContent extends Message {
 room: string;
 messages: ChatContent[];
}
export interface SendMessage extends Message {
 text: string;
}
export interface ChatMessage extends Message {
 content: ChatContent
}

export interface ChatContent {
 room: string;
 username: string;
 content: string;
}

Accepting connections
In lib/server/index.ts, we create a server that listens for new connections. We also
keep track of all open connections. When a message is sent in a chat room, it can be
forwarded to all sessions that have opened that room. We use ws to create a websocket
server:

import * as WebSocket from "ws";
import * as api from "../shared/api";

const server = new WebSocket.Server({ port: 8800 });

Real-Time Chat

[86]

server.on("connection", receiveConnection);

interface Session {
 sendChatMessage(message: api.ChatContent): void;
}
const sessions: Session[] = [];

We will store the recent messages in an array. We limit the size of the array, as an attacker
could otherwise fill the whole memory of a server with a (D)DOS attack: if a user sends a lot
of messages (automatically), this will cost a lot of server memory. If multiple users do that,
the memory can be filled entirely and the server will crash.

Storing recent messages
You can implement this with an array by removing the first message and appending the
new message at the end. However, this would shift the whole array, especially large arrays
that can take some time. Instead, we use a different approach. We use an array that can be
seen as a circle: after the last element comes the first one. We use a variable that points to
the oldest message. When a new message is added, the item at the position of the pointer is
overwritten with the new message. The pointer is incremented with one and points again to
the oldest message. When the messages A, B, C and D are sent with an array size of 3, this
can be visualized like the following:

[-, -, -]; pointer = 0
[A, -, -]; pointer = 1
[A, B, -]; pointer = 2
[A, B, C]; pointer = 0
[D, B, C]; pointer = 1

If you are familiar with analyzing algorithms and Big-Oh notation, this takes O(1),
whereas the naive idea takes O(n). We create the array in lib/server/index.ts:

const recentMessages: api.ChatContent[] = new Array(2048);
let recentMessagesPointer = 0;

We do not save the messages to disk. You could do that and use a cache with such array to
increase the performance of the server.

Real-Time Chat

[87]

Handling a session
For each connection, we have to keep track of the username and room name of the user. We
can do that with variables inside the receiveConnection function:

function receiveConnection(ws: WebSocket) {
 let username: string;
 let room: string;

We can listen to the message and close events. The first is emitted when the client has sent
a message in the websocket. The second is emitted when the websocket has been closed.
When the socket is closed, we must not send any messages to it and we must remove it
from the sessions array:

ws.on("message", message);
 ws.on("close", close);
 const session: Session = { sendChatMessage };
 sessions.push(session);

 function message(data) {
 try {
 const object = <api.ClientMessage> JSON.parse(data);
 if (typeof object.kind !== "number") return;
 switch (object.kind) {
 case api.MessageKind.FindRooms:
 findRooms(<api.FindRooms> object);
 case api.MessageKind.OpenRoom:
 openRoom(<api.OpenRoom> object);
 break;
 case api.MessageKind.SendMessage:
 chatMessage(<api.SendMessage> object);
 break;
 }
 } catch (e) {
 console.error(e);
 }
 }
 function close() {
 const index = sessions.indexOf(session);
 sessions.splice(index, 1);
 }
 function send(data: api.ServerMessage) {
 ws.send(JSON.stringify(data));
 }

Real-Time Chat

[88]

The server should always validate the input that it gets. The data could not be a JSON
string, which would cause JSON.parse to throw an error. object.kind might not be a
number, as TypeScript does not do any runtime checks. We can validate that with a typeof
check.

If you would not have added a try/catch, the server would crash if the
client sends a message that is not the correct JSON. To prevent this, we
will catch that error. For debugging, we write the error on the console.

Implementing a chat message session
Now we can implement the functions that are called when a message comes in. We start
with the function that sends a chat message to all active connections in that room and stores
it in the array with recent messages:

 function sendChatMessage(content: api.ChatContent) {
 if (content.room === room) {
 send({
 kind: api.MessageKind.ReceiveMessage,
 content
 });
 }
 }

 function chatMessage(message: api.SendMessage) {
 if (typeof message.content !== "string") return;

 const content: api.ChatContent = {
 room,
 username,
 content: message.content
 };

 recentMessages[recentMessagesPointer] = content;
 recentMessagesPointer++;
 if (recentMessagesPointer >= recentMessages.length) {
 recentMessagesPointer = 0;
 }

 for (const item of sessions) {
 if (session !== item) item.sendChatMessage(content);
 }
 }

Real-Time Chat

[89]

This will send a chat message to all other sessions in the same room. We insert the message
at the right location in recentMessages and adjust the pointer.

Finally, we will write the function that gives completions for room names. We do not have
an array of room names, so we have to get that information from the recent messages. The
resulting array can contain duplicates, so we have to remove these. A naive approach
would be to check for every element if it has occurred before in the array. However, this is a
slow operation. Instead, we sort the array first. After sorting, we only have to compare each
element with the element before it. If these are equal, the second is a duplicate, otherwise it
is not. For those familiar with Big-Oh, the first approach costs O(n^2) and the second one
costs O(n log(n)). This results in the following function:

 function findRooms(message: api.FindRooms) {
 const query = message.query;
 if (typeof query !== "string") return;

 const rooms = recentMessages
 .map(msg => msg.room)
 .filter(room => room.toLowerCase().indexOf(query.toLowerCase()) !==
-1)
 .sort();
 const completions: string[] = [];
 let previous: string = undefined;
 for (let room of rooms) {
 if (previous !== room) {
 completions.push(room);
 previous = room;
 }
 }
 send({
 kind: api.MessageKind.RoomCompletions,
 completions
 });
 }
}

We have completed the server and can focus on the client side again.

Real-Time Chat

[90]

Connecting to the server
We can connect to the server with the WebSocket class:

const socket = new WebSocket("ws://localhost:8800/");

Since we're using React, we add the following to the state. We create a new component,
App, that will show the menu or a chat room based on the state. In
lib/client/index.tsx, we first define the state and props of that component:

import * as React from "react";
import * as ReactDOM from "react-dom";
import * as api from "../shared/api";
import * as model from "./model";
import { Menu } from "./menu";
import { Room } from "./room";

interface Props {
 apiUrl: string;
}
interface State {
 socket: WebSocket;
 username: string;
 connected: boolean;
 completions: string[];
 room: model.Room;
}
class App extends React.Component<Props, State> {
 state = {
 socket: undefined,
 username: '',
 connected: false,
 completions: [],
 room: undefined
 };

Automatic reconnecting
Next up, we will write a function, connect, that connects to the server using a WebSocket.
We call that function in componentDidMount, which is called by React. We must also call
connect when the connection gets closed for some reason (for instance, network problems).
We store the socket in the state and we also keep track of whether the client is connected:

connect() {
if (this.state.connected) return;

Real-Time Chat

[91]

const socket = new WebSocket(this.props.apiUrl);
this.setState({ socket });
socket.onopen = () => {
this.setState({ connected: true });
if (this.state.room) {
this.openRoom(this.state.username, this.state.room.name);
}
};
socket.onmessage = e => this.onMessage(e);
socket.onclose = e => {
this.setState({ connected: false });
setTimeout(() => this.connect(), 400);
};
}
onMessage(e: MessageEvent) {
const message = JSON.parse(e.data.toString()) as api.ServerMessage;
if (message.kind === api.MessageKind.RoomCompletions) {
this.setState({
completions: (message as api.RoomCompletions).completions
});
} else if (message.kind === api.MessageKind.RoomContent) {
this.setState({
room: {
name: (message as api.RoomContent).room,
messages: (message as api.RoomContent).messages.map(msg =>
this.mapMessage(msg))
}
});
} else if (message.kind === api.MessageKind.ReceiveMessage) {
this.addMessage(this.mapMessage((message as api.ReceiveMessage).content));
}
}
componentDidMount() {
this.connect();
}

socket.onmessage is called when the client receives a message from the server. Based on
the kind of message, it is sent to some function that we will implement later. First, we will
write the render function. After we have written the render function, we know which event
handlers we have to write.

When you write top down, you first write the main function and
afterward the helper functions that the main function requires. With the
bottom up approach, you write the helper functions before you write the
main function. In this section, we write the helper functions last, so we
write top down. You can try both styles and find out what you like most.

Real-Time Chat

[92]

In render, we render the component based on the state—if there is no connection, we show
Connecting…, if the user is in a room, we show that chat room, otherwise we show the
menu:

render() {
 if (!this.state.connected) {
 return <div>Connecting...</div>;
 }
 if (this.state.room) {
 return <Room room={this.state.room} onPost={content =>
this.post(content)} />;
 }
 return <Menu
 completions={this.state.completions}
 onRequestCompletions={query =>
this.requestCompletions(query)}
 onClick={(username, room) =>
this.openRoom(username, room)}
 />;
 }

Sending a message to the server
Before writing the event handlers, we first write a small function that sends a message to
the server. It converts an object to JSON, and TypeScript will check that we are sending a
correct message to the server:

 private send(message: api.ClientMessage) {
 this.state.socket.send(JSON.stringify(message));
 }

The requestCompletions and openRoom functions send a message to the server. In
openRoom, we also have to store the username in the state:

private requestCompletions(query: string) {
 this.send({
 kind: api.MessageKind.FindRooms,
 query
 });
 }
 private openRoom(username, room: string) {
 this.send({
 kind: api.MessageKind.OpenRoom,
 username,
 room
 });

Real-Time Chat

[93]

 this.setState({ username });
 }

Writing the event handler
For iterations in React, every element should have a key that can identify it. Thus, we need
to give every message such a key. We use a simple numeric key, which we will increment
for every message:

 private nextMessageId: number = 0;
 private post(content: string) {
 this.send({
 kind: api.MessageKind.SendMessage,
 content
 });
 this.addMessage({
 id: this.nextMessageId++,
 user: this.state.username,
 content,
 isAuthor: true
 });
 }
 private addMessage(msg: model.Message) {
 const messages = [
 ...this.state.room.messages,
 msg
].slice(Math.max(0, this.state.room.messages.length - 10));
 const room = model.modify(this.state.room, {
 messages
 });
 this.setState({ room });
 }
 private mapMessage(msg: api.ChatContent) {
 return {
 id: this.nextMessageId++,
 user: msg.username,
 content: msg.content,
 isAuthor: msg.username === this.state.username
 };
 }
}

Real-Time Chat

[94]

Finally, we can show the component in the HTML file:

ReactDOM.render(
<App apiUrl="ws://localhost:8800/" />, document.getElementById("app")
);

We have now written all event handlers and interaction with the server. We write the chat
room component in the next section.

Creating the chat room
We divide the chat room into two subcomponents: a message and the input box. When the
user sends a new message, it is sent to the main component. Message of the user will be
shown on the right and other messages on the left, as shown in the following screenshot:

Two-way bindings
React does not have two-way bindings. Instead, we can store the value in the state and
modify it when the onChange event is fired. For the input box, we will use this technique.
The textbox should be emptied when the user has sent his/her message. With this binding,
we can easily do that by modifying the value in the state to an empty string:

class InputBox extends React.Component<{ onSubmit(value: string): void; },
{ value: string }> {
 state = {
 value: ""

Real-Time Chat

[95]

 };
 render() {
 return (
 <form onSubmit={e => this.submit(e)}>
 <input onChange={e => this.changeValue((e.target as
HTMLInputElement).value)} value={this.state.value} />
 <button disabled={this.state.value === ""}
type="submit">Submit</button>
 </form>
);
 }
 private changeValue(value: string) {
 this.setState({ value });
 }
 private submit(e: React.FormEvent<{}>) {
 e.preventDefault();
 if (this.state.value) {
 this.props.onSubmit(this.state.value);
 this.state.value = "";
 }
 }
}

Stateless functional components
If a component doesn't need a state, then it does not need a class to store and manage that
state. Instead of writing a class with just a render function, you can write that function
without the class. These components are called stateless functional components. A message
is clearly stateless, as you cannot modify a message that has already been sent:

function Message(props: { message: model.Message }) {
 return (
 <div>
 <div className={props.message.isAuthor ? "message message-
own" : "message"}>
 { props.message.content }
 <div className="message-user">
 { props.message.user }
 </div>
 </div>
 <div style={{clear: "both"}}></div>
 </div>
);
}

A stateless functional component can have a child component with a state. The input box

Real-Time Chat

[96]

has a state and can be used inside Room, which is a stateless component. We have to set the
key property in the array of messages. React uses this to identify components inside the
array:

export function Room(props: { room: model.Room, onPost: (content: string)
=> void }) {
 return (
 <div>
 <h2>{props.room.name}</h2>
 {props.room.messages.map(message => <Message
key={message.id} message={message} />)}
 <Input onSubmit={content => props.onPost(content)} />
 </div>
);
}

Running the application
We can now run the whole application. First, we must compile it with gulp. Second, we can
start the server by running node dist/server in a terminal. Finally, we can open
static/index.html in a browser and start chatting. When you open this page multiple
times, you can simulate multiple users.

Comparing React and Angular
In the previous chapters, we used Angular and in this chapter we used React. Angular and
React are both focused on components, but there are differences, for instance, between the
templates in Angular and the views in React. In this section, you can read more about these
differences.

Templates and JSX
Angular uses a template for the view of a component. Such a template is a string that is
parsed at runtime. TypeScript cannot check these templates. If you misspell a property
name, you will not get a compile error.

Real-Time Chat

[97]

React uses JSX, which is syntactic sugar around function calls. A JSX element is
transformed, by the compiler, into a call to React.createElement. The first argument is
the name of the element or the element class, the second argument contains the props, and
the other arguments are the children of the component. The following example
demonstrates the transform:

<div></div>;
React.createElement("div", null);

<div prop="a"></div>;
React.createElement("div", { prop: "a" });

<div>Foo</div>;
React.createElement(
 "div",
 null,
 "Foo"
);

<div>Foo</div>;
React.createElement(
 "div",
 null,
 React.createElement(
 "span",
 null,
 "Foo"
)
);

Elements that start with a capital letter or contain a dot are considered to be custom
components, and other elements are treated as intrinsic elements, the standard HTML
elements:

<div></div>;
React.createElement("div", null);

<Foo></Foo>;
React.createElement(Foo, null);

These JSX elements are checked and transformed at compile time, so you do get an early
error when you misspell a property. React is not the only framework that uses JSX, but it is
the most popular one.

Real-Time Chat

[98]

Libraries or frameworks
Angular is a framework and React is a library. A library provides one functionality in the
case of React—the views of the application. A framework provides a lot of different
functionalities. For instance, Angular renders the views of the application, but also has, for
instance, dependency injection and an Http service. If you want such features when you are
using React, you can use another library that gives that feature.

React programmers often use a Flux based architecture. Flux is an application architecture
that is implemented in various libraries. In Chapter 5, Native QR Scanner App, we will take
a look at this architecture.

Summary
We have written an application with websockets. We have used React and JSX for the views
of our application. We have seen multiple ways to create components and learned how the
JSX transform works. In Chapter 5, Native QR Scanner App, we will use React again, but we
will first take a look at mobile apps with NativeScript in the next chapter.

5
Native QR Scanner App

We have already used TypeScript to build web apps and a server. TypeScript can also be
used to create mobile apps. In this chapter, we will build such an app. The app can scan QR
codes. The app shows a list of all previous scans. If a QR code contains a URL, the app can
open that URL in a web browser. Various frameworks exist for making mobile apps in
TypeScript. We will use NativeScript, which provides a native user interface and runs on
Android and iOS, as shown in the following:

Native QR Scanner App

[100]

We will create this app with the following steps:

Creating the project structure
Creating a Hello World page
Creating the main view
Adding a details view
Scanning QR codes
Adding persistent storage
Styling the app
Comparing NativeScript to alternatives

Getting started with NativeScript
Installing NativeScript requires several steps. For developing apps for Android, you have to
install Java Development Kit (JDK) and the Android SDK. Android apps can be built on
Windows, Linux, and Mac. Apps for iOS can only be built on a Mac. You need to install
XCode to build these apps.

You can find more details on how to install the Android SDK at h t t p s ://d o c s . n a t i v e s c r i

p t . o r g /s t a r t /q u i c k - s e t u p .

After installing the Android SDK or XCode, you can install NativeScript using npm:

 npm install nativescript -g

You can see whether your system is configured correctly by running the following
command:

 tns doctor

https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup
https://docs.nativescript.org/start/quick-setup

Native QR Scanner App

[101]

If you only want to develop apps for iOS, you can ignore the errors on Android and vice
versa.

We can test most parts of the app in a simulator that is included in the SDK or XCode.
Scanning a QR code only works on a device.

Setting up XCode for iOS development is easier than installing the
Android SDK. If you can choose between iOS and Android, you want to
choose iOS.

Creating the project structure
In the previous chapters, we wrote our TypeScript sources in the lib directory. The static
or dist directory contained the compiled sources. However, in this chapter, we have to
make a different structure since NativeScript has some requirements on it. NativeScript
requires that the compiled sources are located in the app directory and it uses the lib
directory for plugins, so we cannot use that directory for our TypeScript sources. Instead,
we will use the src directory.

NativeScript can automatically create a basic project structure. By running the following
commands, a minimal project will be created:

 tns init
 npm install

The first command creates the package.json file and the app directory. NativeScript
stores the icons and splash screens (which you see when the app is loading) in app. You can
edit these files when you want to publish an app. The npm install command installs the
dependencies that NativeScript needs. These dependencies were added to package.json
by the first command.

We need to make some adjustments to it. We must create an app/package.json file.
NativeScript uses this file to get the main file of the project:

{
 "main": "app.js"
}

Native QR Scanner App

[102]

Adding TypeScript
By default, NativeScript apps should be written in JavaScript. We will not use gulp to
compile our TypeScript files since NativeScript has built-in support for transpilers like
TypeScript. We can add TypeScript to it by running the following command:

 tns install typescript

After running this command, NativeScript will automatically compile TypeScript to
JavaScript. This command has created two files: tsconfig.json and references.d.ts.
The tsconfig file contains the configuration for TypeScript. We will add the outDir
option to tsconfig.json so that we do not have to place the source files in the same
direction as the compiled files. NativeScript requires that JavaScript files are placed in the
app folder. We will write our TypeScript sources in the src folder, and the compiler will
write the output to the app folder:

{
 "compilerOptions": {
 "module": "commonjs",
 "target": "es5",
 "inlineSourceMap": true,
 "experimentalDecorators": true,
 "noEmitHelpers": true,
 "outDir": "app"
 },
 "exclude": [
 "node_modules",
 "platforms"
]
}

The references.d.ts file contains a reference to the definition files (.d.ts files) of the
core modules of NativeScript.

Native QR Scanner App

[103]

Creating a Hello World page
To get started with NativeScript, we will first write a simple app. In src/app.ts, we must
register mainEntry that will create the view of the app. The entry should be a function that
returns a Page. A Page attribute is one of the classes that NativeScript uses for the user
interface. We can create a basic page as follows:

import * as application from "application";
import { Page } from "ui/page";
import { Label } from "ui/label";

application.mainEntry = () => {
 const page = new Page();
 const label = new Label();
 label.text = "Hello, World";
 page.content = label;
 return page;
};
application.start();

This will create a single label and add it to the page. The content of the page should be a
View class, which is the base class that all components (including Label) in NativeScript
inherit.

You can run the app with one of the following commands for Android and iOS,
respectively:

 tns run android --emulator
 tns run ios --emulator

You can run the app on a device by removing --emulator. Your device should be
connected using a USB cable. You can see all connected devices by running tns device.

NativeScript prints a lot on the console after the output of TypeScript.
Make sure you do not miss any compile errors of TypeScript.

Native QR Scanner App

[104]

On iOS, the app will now look like the following:

In the next sections, we will see how we can add event listeners and build bigger views.

Native QR Scanner App

[105]

Creating the main view
The main view will show a list of recent scans. Clicking on one of the recent scans opens a
details page that shows more details on the scan. When a user clicks on the Scan button, the
user can scan a QR code using the camera:

First, we create the model of a scan in src/model.ts. We need to store the content (a
string) and the date of the scan:

export interface Scan {
 content: string;
 date: Date;
}

Native QR Scanner App

[106]

In src/view/main.ts, we will create the view. The view should export a function that
creates the page, so we can use it as the mainEntry. It also needs to export a function that
can update the content. The view has two callbacks or events: one is called when an item is
clicked and the other is called when the user clicks on the Scan button. This can be
implemented by adding the two callbacks as arguments of the createPage function and
returning setItems, which updates the content of the list, and createView, which creates
the Page, as an object:

import { Page } from "ui/page";
import { ActionBar, ActionItem } from "ui/action-bar";
import { ListView } from "ui/list-view";

export function createPage(itemCallback: (index: number) => void,
scanCallback: () => void) {
 let items: string[] = [];
 let list: ListView;

 return { setItems, createView };
 function setItems(value: string[]) {
 items = value;
 if (list) {
 list.items = items;
 list.refresh();
 }
 }

An ActionBar is the bar at the top of the screen with the app name. We add an
ActionItem attribute to it, which is a button in the bar. We use a ListView attribute to
show the recent scans in a list. Elements have an on method, which we use to listen to
events, similar to addEventListener in websites and on in NodeJS.

The itemLoading event is fired when an item in the list is being rendered. In that event,
the view for an item of the list should be created. The tap event is fired when the user taps
on the scan button. The itemCallback event will be invoked with the index of the item
when that happens.

Native QR Scanner App

[107]

First, we create the action bar. We add it to the page and add a button to the action bar:

 function createView() {
 const page = new Page();
 const actionBar = new ActionBar();
 actionBar.title = "QR Scanner";
 const buttonScan = new ActionItem();
 buttonScan.text = "Scan";
 buttonScan.on("tap", scanCallback);
 actionBar.actionItems.addItem(buttonScan);

Next, we create the list as follows:

 list = new ListView();
 list.items = items;

Finally, we add event listeners to the list. In itemLoading, we create Label, if it was not
created yet, and set the text of it. In itemTap, we call itemCallback with the index of the
tapped item:

 list.on("itemLoading", args => {
 if (!args.view) {
 args.view = new Label();
 }
 (<Label> args.view).text = items[args.index];
 });
 list.on("itemTap", e => itemCallback(e.index));

 page.actionBar = actionBar;
 page.content = list;
 return page;
 }
}

In src/app.ts, we can call this function and show the view attribute:

import * as application from "application";
import { createPage } from "./view/main";
import * as model from "./model";

let items: model.Scan[] = [];

const page = createPage(index => showDetailsPage(items[index]), scan);
application.mainEntry = page.createView;
application.cssFile = "style.css";
application.start();

Native QR Scanner App

[108]

We will implement scanning later on. For now, we will always add a fake scan, so we can
test the other parts of the application:

function scan() {
 addItem("Lorem");
}

In addItem, we add a new scan to the list of scans. We call update, which will update the
list in the main view and show the details page with this scan. We limit the amount of scans
in the list by 100:

function addItem(content: string) {
 const item: model.Scan = {
 content,
 date: new Date()
 };
 items = [item, ...items].slice(0, 100);
 update();
 showDetailsPage(item);
}

We will implement the details page in the next section. For now, we will only add a
placeholder function so that we can test the other functions:

function showDetailsPage(scan: model.Scan) {
}

In update, we change the values in the list to the new items:

function update() {
 page.setItems(items.map(item => item.content));
}

Native QR Scanner App

[109]

Adding a details view
The details view is shown when the user scans a code or clicks on an item in the recent
scans list. It shows the content of the scan and the date, as shown in the following
screenshot:

Native QR Scanner App

[110]

If the content of the scan is a URL, we will show a button to open that link, as shown in the
following screenshot:

At the end of this chapter, we will style this page properly.

We add a function to src/model.ts that will return true when the scan (probably)
contains a URL. We consider a scan that contains no spaces and begins with http:// or
https:// to be a URL:

function startsWith(input: string, start: string) {
 return input.substring(0, start.length) === start;
}
export function isUrl({ content }: Scan) {
 if (content.indexOf(" ") !== -1) {
 return false;
 }
 return startsWith(content, "http://") || startsWith(content,
"https://");
}

Native QR Scanner App

[111]

The view requires the scan itself and optionally a callback. The callback will only be
provided if the scan contains a link and the button should be shown.

NativeScript has various ways to show multiple elements on a page. A page can only
contain a single component, but NativeScript has components that can contain multiple
components. These are called layouts. The simplest one, and probably also the most used, is
the StackLayout. Elements will be placed below or beside each other. The StackLayout
has a property orientation that indicates whether the elements should be placed below
(vertical, default) or beside (horizontal) each other.

Other layouts include the following:

DockLayout: Elements can be placed on the left, right, top, bottom, or center of
the component.
GridLayout: Elements are placed in one or multiple rows and columns in a grid.
This is equal to a <table> tag in HTML.
WrapLayout: A row is filled with elements. When it is full, the next elements are
added to a new row.

You can find all components at h t t p ://d o c s . n a t i v e s c r i p t . o r g /u i /u i - v

i e w s and all layout containers at h t t p ://d o c s . n a t i v e s c r i p t . o r g /u i /l a y

o u t - c o n t a i n e r s .

In src/view/details.ts, we will implement this page:

import { EventData } from "data/observable";
import { topmost } from "ui/frame";
import { Page } from "ui/page";
import { ActionBar, ActionItem } from "ui/action-bar";
import { Button } from "ui/button";
import { Label } from "ui/label";
import { StackLayout } from "ui/layouts/stack-layout";
import * as model from "../model";

export function createDetailsPage(scan: model.Scan, callback?: () => void)
{
 return { createView };
 function createView() {
 const page = new Page();
 const layout = new StackLayout();
 page.content = layout;

http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/ui-views
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers
http://docs.nativescript.org/ui/layout-containers

Native QR Scanner App

[112]

In a label, we will show the content of the scan. We can add a class name to it, just like you
would do on an HTML webpage. Later on, we can style this page using CSS:

 const label = new Label();
 label.text = scan.content;
 label.className = "details-content";
 layout.addChild(label);

The date of the scan will be shown in a second label:

 const date = new Label();
 date.text = scan.date.toLocaleString("en");
 layout.addChild(date);

If a callback is provided, we show a button that will open the link of the scan:

 if (callback) {
 const button = new Button();
 button.text = "Open";
 button.on("tap", callback);
 layout.addChild(button);
 }

 return page;
 }
}

In src/app.ts, we can now implement the showDetailsPage function. Using
topmost().navigate, we can navigate to the page. Users can go back to the main page
with the standard back button of Android or iOS, which is automatically shown:

import { topmost } from "ui/frame";
import { openUrl } from "utils/utils";
import { createDetailsPage } from "./view/details";
...
function showDetailsPage(scan: model.Scan) {
 let callback: () => void;
 if (model.isUrl(scan)) {
 callback = () => openUrl(scan.content);
 }
 topmost().navigate(createDetailsPage(scan, callback).createView);
}

The openUrl function opens a web browser with the specified URL.

Native QR Scanner App

[113]

Scanning QR codes
NativeScript has support for plugins. A plugin can add extra functionality, such as turning
on the flash light of a phone, vibrating the phone, logging in with Facebook, or scanning QR
codes. These can be installed using the command line interface of NativeScript.

We will use a NativeScript plugin to scan QR codes. The plugin is called NativeScript
BarcodeScanner. It can scan QR codes and other barcode formats. The plugin can be
installed using the following command:

 tns plugin add nativescript-barcodescanner

Type definitions
We must add a definition file to import the plugin. The plugin does not contain type
definitions, and type definitions are not available on DefinitelyTyped and TSD. It is not
necessary to write definitions that are fully correct. We only have to type the parts of the
library that we are using. We use the scan function, which can take an optional settings
object and return a Promise. In src/definitions.d.ts, we write the following
definition:

declare module "nativescript-barcodescanner" {
 function scan(options?: any): Promise<any>;
}

You do not need to specify the export keyword in definition files. All
declarations in a module in a definition file are automatically considered
to be exported.

Implementation
The scan function can now be implemented. We use the exported scan function and listen
for Promise to resolve or reject. When Promise resolves, we add the item to the list and
open the details page.

We can import the plugin in src/app.ts:

import * as barcodescanner from "nativescript-barcodescanner";

Native QR Scanner App

[114]

The scan function can now be rewritten as follows:

function scan() {
 barcodescanner.scan().then(result => {
 addItem(result.text);
 return false;
 });
}

We can also show a message when the scan failed. This way, the user gets feedback when
the scan failed. We will show a question asking whether the user wants to try again, as
shown in the following screenshot:

This can be implemented by replacing the scan function with the following code:

import * as dialogs from "ui/dialogs";
...
function scan() {
 barcodescanner.scan().then(result => {
 addItem(result.text);
 return false;

Native QR Scanner App

[115]

 }, () => {
 return dialogs.confirm("Failed to scan a barcode. Try again?")
 }).then(tryAgain => {
 if (tryAgain) {
 scan();
 }
 });
}

In the first callback, the scan was successful. The scan is added to the recent scan list and the
details page shows. In the second callback, we show the dialog. The dialogs.confirm
function returns a promise, which will resolve to boolean. In the last callback, tryAgain
will be false if the scan was successful or if the user clicked on the No button. It will be
true if the user clicked on the Yes button. In that case, we will show the barcode scanner
again.

When you return a value in the second callback (or catch callback), the
resulting Promise will resolve to that value. When you return Promise,
the resulting Promise will be resolved or rejected with the value or error
of that Promise. If you want to reject the resulting Promise, you must use
throw.

Testing on a device
In the emulator, we cannot take a picture of a QR code; thus, we have to test the app on a
device. We can do that by connecting the device using a USB cable and then running tns
run android or tns run ios. You can test the app using these QR codes, which contain
text (left image) and a URL (right image). You can scan the QR codes several times and
notice the list build up in the main view. When you restart the app, you will see that the list
is cleared. We will fix that in the next section.

Native QR Scanner App

[116]

Adding persistent storage
When the user closes and reopens the app, the user sees an empty list of scans. We can
make the list persistent by saving it after a scan and loading it when the app starts. We can
use the application-settings module to store the scans. The storage is based on key-
value: a value is assigned to a specific key.

Only booleans, numbers, and strings can be stored using this module. An array cannot be
stored. Instead, one could store the length under one key (for instance, items-length) and
the items under a set of keys (items-0, items-1, …). An easier approach is to convert the
array to a string using JSON.

The list can be saved using the following function:

function save() {
 applicationSettings.setString("items", JSON.stringify(items));
}

The Date objects are converted to strings by JSON.stringify. Thus, we must convert
them back to a Date object manually:

function load() {
 const data = applicationSettings.getString("items");
 if (data) {
 try {
 items = (<any[]> JSON.parse(data)).map(item => ({
 content: item.content,
 date: new Date(item.date)
 }));
 } catch (e) {}
 }
}

Before application.start(), we must call the load and update functions to show the
previous scans:

const page = createPage(index => showDetailsPage(items[index]), scan);
application.mainEntry = page.createView;
load();
update();
application.start();

Native QR Scanner App

[117]

In addItem, we must call save:

function addItem(content: string) {
 const item: model.Scan = {
 content,
 date: new Date()
 };
 items = [item, ...items].slice(0, 100);
 save();
 update();
 showDetailsPage(item);
}

Styling the app
The app can be styled using CSS. Not all CSS properties are supported, but basic settings
like fonts, colors, margin, and padding work. We can add a stylesheet in the app adding the
following code before application.start():

application.cssFile = "style.css";

We will change the style of the following parts of the app:

In app/style.css, we will first give the ActionBar a background color:

ActionBar {
 background-color: #237691;
 color: #fefefe;
}

The stylesheet must be added in the app folder, instead of src.
NativeScript will only load files inside app. TypeScript files are compiled
into that folder, but the stylesheet should already be located there.

We will add some margin to the labels in the list and details page:

Label {
 margin: 10px;
}

Native QR Scanner App

[118]

The main page is now properly styled, as shown in the following screenshot:

We can also style the label on the detail page, which we gave a class name. We make the
text in the label bigger and center the text:

.details-content {
 font-size: 28pt;
 text-align: center;
 margin: 10px;
}

Native QR Scanner App

[119]

This results in the following design:

Comparing NativeScript to alternatives
Various frameworks that can build mobile apps exist. Lots of developers use Cordova or
Phonegap. These tools wrap an HTML page into an app. These apps are called hybrid, as
they combine HTML pages with mobile apps. The user interface is not native and can give a
bad user experience.

Other tools have a native interface, which gives a good look and feel. Titanium,
NativeScript, and React Native do this. With these tools, less code can be shared between a
web app and mobile app. With React Native, apps can be written using the React
framework.

Native QR Scanner App

[120]

In NativeScript, programmers have access to all native APIs. The disadvantage of this is
that the programmer would write platform-specific code. NativeScript also includes
wrappers around these classes, which work on both Android and iOS. For instance, the
Button class, which we used in this chapter, is a wrapper around
android.widget.Button on Android and UIButton on iOS.

Summary
In this chapter, we created a mobile app using NativeScript. We used a plugin to scan QR
codes. The scans are saved, so the list is persisted after a restart of the app. Finally, we
added custom styles to our app.

In the next chapter, we will build a spreadsheet web app using React. We will discover
some principles of functional programming and learn how we can handle the state of an
application. We will also see how we can build a cross-platform application.

6
Advanced Programming in

TypeScript
In the previous chapters, we learned the basics of TypeScript and we worked with various
frameworks. We will discover more advanced features of TypeScript in this chapter. This
chapter covers the following aspects:

Using type guards
More accurate type guards
Checking null and undefined
Creating tagged union types
Comparing performance of algorithms

Using type guards
Sometimes, you must check whether a value is of a certain type. For instance, if you have a
value of a class Base, you might want to check if it is of a certain subclass Derived. In
JavaScript you would write this with an instanceof check. Since TypeScript is an
extension of JavaScript, you can also use instanceof in TypeScript. In other typed
languages, like C#, you must then add a type cast, which tells the compiler that a value is of
a type, different from what the compiler analyzed. You can also add type casts in two
different ways. The old syntax for type casts uses < and >, the new syntax uses the as
keyword. You can see them both in the next example:

class Base {
 a: string;
}
class Derived extends Base {

Advanced Programming in TypeScript

[122]

 b: number;
}
const foo: Base;
if (foo instanceof Derived) {
 (<Derived> foo).b;
 (foo as Derived).b;
}

When you use a type guard, you say to the compiler: trust me, this value will always be of
this type. The compiler cannot check that and will assume that it is true. But, we are using a
compiler to get notified about errors so we want to reduce the amount of casts that we need.

Luckily, the compiler can, in most cases, understand the usages of instanceof. Thus, in
the previous example the compiler knows that the type of foo is Derived inside the if-
block. Thus, we do not need type casts there:

const foo: Base;
if (foo instanceof Derived) {
 foo.b;
}

An expression that checks whether a value is of a certain type is called a type guard.
TypeScript supports three different kinds of type guards:

The typeof guard checks for primitive types. It starts typeof x === or typeof
x !==, followed by string, number, boolean, object, function, or symbol.
The instanceof guard checks for class types. Such a type guard starts with the
variable name, followed by instanceof and the class name.
User defined type guards a custom type guard. You can define a custom type
guard as a function with a special return type:

 function isCat(animal: Animal): animal is Cat {
 return animal.name === "Kitty";
 }

You can then use it as isCat(x).

You can use these type guards in the condition of if, while, for, and do–while
statements and in the first operand of binary logical operators (x && y, x || y) and
conditional expressions (x ? y : z).

Advanced Programming in TypeScript

[123]

Narrowing
The type of a variable will change (locally) after a type guard. This is called narrowing. The
type will be more specific after narrowing. More specific can mean that a class type is
replaced by the type of a subclass, or that a union is replaced by one of its parts. The latter is
demonstrated in the following example:

let x: string | number;
if (typeof x === "string") {
 // x: string
} else {
 // x: number
}

As you can see, a type guard can also narrow a variable in the else block.

Narrowing any
Narrowing will give a more specific type. For instance, string is more specific than any.
The following code will narrow x from any to string:

let x: any;
if (typeof x === "string") {
 // x: string
}

In general, a more specific type can be used on more constructs than the initial type. For
instance, you can call .substring on a string, but not on a string | number. When
narrowing from any, that is not the case. You may write x.abcd if x has the type any, but
not when its type is string. In this case, a more specific type allows less constructs with
that value. To prevent these issues, the compiler will only narrow values of type any to
primitive types. That means that a value can be narrowed to string, but not to a class type,
for instance. The next example demonstrates a case where the compiler would give an
undesired error, if this was not implemented:

let x: any;
if (x instanceof Object) {
 x.abcd();
}

In the block after the type guard, x should not be narrowed to Object.

Advanced Programming in TypeScript

[124]

Combining type guards
Type guards can be combined in two ways. First, you can nest if statements and thus apply
multiple type guards to a variable:

let x: string | number | boolean;
if (typeof x !== "string") {
 if (typeof x !== "number") {
 // x: boolean
 }
}

Secondly, you can also combine type guards with the logical operators (&& , ||). The
previous example can also be written as:

let x: string | number | boolean;
if (typeof x !== "string" && typeof x !== "number") {
 // x: boolean
}

With ||, we can check that a value matches one of multiple type guards:

let x: string | number | boolean;
if (typeof x === "string" || typeof x === "number") {
 // x: string | number
} else {
 // x: boolean
}

More complex type guards can be created with user defined type guards.

More accurate type guards
Before TypeScript 2.0, the compiler did not use the control flow of the program for type
guards. The easiest way to see what that means, is by an example:

function f(x: string | number) {
 if (typeof x === "string") {
 return;
 }
 x;
}

Advanced Programming in TypeScript

[125]

The type guard narrows x to string in the block after the if statement. If the else block
existed, it would have narrowed x to number there. Outside of the if statement, no
narrowing happens, because the compiler only looks at the structure or shape of the
program. That means that the type of x on the last line would be string | number, even
though that line can only be executed if the condition of the if statement is false and x can
only be a number there. With some terminology, type guards were only syntax directed and
were only based on the syntax, not on the control flow of the program.

As of TypeScript 2.0, the compiler can follow the control flow of the program. This gives
more accurate types after type guards. The compiler understands that the last line of the
function can only be reached if x is not a string. The type of x on the last line will now be
number. This analysis is called control flow based type analysis.

Assignments
Previously, the compiler did not follow assignments of a variable. If a variable was
reassigned in the block after an if statement, the narrowing would not be applied. Thus, in
the next example, the type of x is string | number, both before and after the assignment:

let x: string | number = ...;
if (typeof x === "string") {
 x = 4;
}

With control flow based type analysis, these assignments can be checked. The type of x will
be string before the assignment and number after it. Narrowing after an assignment works
only for union types. The parts of the union type are filtered based on the assigned value.
For types other than union types, the type of the variable will be reset to the initial type
after an assignment.

This can be used to write a function that either accepts one value or a list of values, in one of
the following ways:

function f(x: string | string[]) {
 if (typeof x === "string") x = [x];
 // x: string[]
}
function g(x: string | string[]) {
 if (x instanceof Array) {
 for (const item of x) g(item);
 return;
 }
 // x: string

Advanced Programming in TypeScript

[126]

}

With the same analysis, the compiler can also check for values that are possibly null or
undefined. Instead of getting runtime errors saying undefined is not an object, you will get
a compile time warning that a variable might be undefined or null.

Checking null and undefined
TypeScript 2.0 introduces two new types: null and undefined. You have to set the
compiler option strictNullChecks to true to use these types. In this mode, all other
types cannot contain undefined or null anymore. If you want to declare a variable that
can be undefined or null, you have to annotate it with a union type. For instance, if you
want a variable that should contain a string or undefined, you can declare it as let x:
string | undefined;.

Before assignments, the type of the variable will be undefined. Assignments and type
guards will modify the type locally.

Guard against null and undefined
TypeScript has various ways to check whether a variable could be undefined or null. The
next code block demonstrates them:

let x: string | null | undefined = ...;
if (x !== null) {
 // x: string | undefined
}
if (x !== undefined) {
 // x: string | null
}
if (x != null) {
 // x: string
}
if (x) {
 // x: string
}

The last type guard can have unexpected behavior, so it is advised to use the others instead.
At runtime, x is converted to a Boolean. null and undefined are both converted to false,
non-empty strings to true, but an empty string is converted to false. The latter is not
always desired.

Advanced Programming in TypeScript

[127]

To check for a string, you can also use typeof x === "string" as a type guard. It is not
always possible to write a type guard for some types, but you can always use the type
guards in the code block.

The never type
TypeScript 2.0 also introduced the never type, which represents an unreachable value. For
instance, if you write a function that always throws an error, its return type will be never.

function alwaysThrows() {
 throw new Error();
}

In a union type, never will disappear. Formally, T | never and never | T are equal to T.
You can use this to create an assertion that a certain position in your code is unreachable:

function unreachable() {
 throw new Error("Should be unreachable");
}
function f() {
 switch (...) {
 case ...:
 return true;
 case ...:
 return false;
 default:
 return unreachable();
}

The compiler takes the union of the types of all expressions in return statements. That gives
boolean | never in this example, which is reduced to boolean.

We will use strictNullChecks in the next chapters.

Creating tagged union types
With TypeScript 2.0, you can add a tag to union types and use these as type guards. That
feature is called: discriminated union types. This sounds very difficult, but in practice it is
very easy. The following example demonstrates it:

interface Circle {
 type: "circle";
radius: number;

Advanced Programming in TypeScript

[128]

}
interface Square {
 type: "square";
 size: number;
}
type Shape = Circle | Square;
function area(shape: Shape) {
 if (shape.type === "circle") {
 return shape.radius * shape.radius * Math.PI;
 } else {
 return shape.size * shape.size;
 }
}

The condition in the if statements works as a type guard. It narrows the type of shape to
circle in the true branch and square in the false branch.

To use this feature, you must create a union type of which all elements have a property with
a string value. You can then compare that property with a string literal and use that as a
type guard. You can also do that check in a switch statement, like the next example.

function area(shape: Shape) {
 switch (shape.type) {
 case "circle":
 return shape.radius * shape.radius * Math.PI;
 case "square":
 return shape.size * shape.size;
 }
}

We have now seen the new major features of the type system of TypeScript 2.0. We will see
most of them in action in the next chapters. We will also write some simple algorithms in
these chapters. We will learn some background information on writing and analyzing
algorithms in the next section.

Comparing performance of algorithms
We will also write some small algorithms in the next chapters. This section shows how the
performance of an algorithm can be estimated. During such analysis, it is often assumed
that only a large input gives performance problems. The analysis will show how the
running time scales when the input scales.

Advanced Programming in TypeScript

[129]

The next section requires some knowledge of basic mathematics. However, this section is
not foreknowledge for the next chapters. If you do not understand a piece of this section,
you can still follow the rest of the book.

For instance, if you want to find the index of an element in a list, you can use a for loop:

function indexOf(list: number[], item: number) {
 for (let i = 0; i < list.length; i++) {
 if (list[i] === item) return i;
 }
 return -1;
}

This function loops over all elements of the array. If the array has size n, then the body of
the loop will be evaluated n times. We do not know how long the body of the loop runs. It
could be hundreds or tens of a second, but that depends on the computer. When you run
the program twice, the time will probably not be exactly the same.

Luckily, we do not need these numbers for the analysis. It is important to see that the
running time of the body does not depend on the size of the array.

The function first sets i to 0, and then executes the code in the loop at most n times. In the
worst case, the body is executed n times and the final return -1 runs. The running time
will then be something + n * something + something, where all instances of
something do not depend on n. When the input is big enough, we can neglect the time of
the initialization of i and the final return -1. So, for a large n, the running time is
approximately n * something.

Big-Oh notation
Mathematicians created a notation to write this more simply, called Big-Oh notation. When
you say that the running time is O(n), you mean that the running time is at most n *
something, for a big enough n. In general, O(f(n)), where f(n) is a formula, means that
the running time is at most a multiple of f(n). More formally, if you say that the running
time is O(f(n)), you mean that for some numbers N and c the following holds: if n > N
then the running time is at most c * f(n). The condition n > N is a formal way of saying:
if n is big enough, the value of c is the replacement of something.

Advanced Programming in TypeScript

[130]

For the original problem, this would result in O(n). When you analyze some other
algorithms, you can count how often it can be executed for each piece of code. From these
terms, you must choose the highest one. We will analyze the next example:

function hasDuplicate(items: number[]) {
 for (let i = 0; i < items.length; i++) {
 for (let j = 0; j < items.length; j++) {
 if (items[i] === items[j] && i !== j) return true;
 }
 }
 return false;
}

The first line, where i is declared, is only evaluated once. The line where j is declared is
executed at most n times, because it is in the first for loop. The if statement runs at most n
* n, or n2 times. The last line is evaluated at most once. The highest term of these is n2.
Thus, this algorithm runs in O(n2).

Optimizing algorithms
For a large array, this function might be too slow. If we would want to optimize this
algorithm, we can make the second for loop shorter.

function hasDuplicate(items: number[]) {
 for (let i = 0; i < items.length; i++) {
 for (let j = 0; j < i; j++) {
 if (items[i] === items[j]) return true;
 }
 }
 return false;
}

With the old version, we would compare every two items twice, but now we compare them
only once. We also can remove the check i !== j. It requires some more work to analyze
this algorithm. The body of the second for loop is now evaluated 0 + 1 + 2 + ... + (n
- 1) times. This is a sum of n terms and the average of the terms is (n - 1) / 2. This
results in n * (n-1) / 2, or n2 / 2 - n / 2. With the Big-Oh notation, you can write
this as O(n2). This is the highest term, so the whole algorithm still runs in O(n2). As you can
see, there is no difference in the Big-Oh between the original and optimized versions. The
algorithm will be about twice as fast, but if the original algorithm was way too slow, this
one is probably too slow. Real optimization is a bit harder to find.

Advanced Programming in TypeScript

[131]

Binary search
We will first take a look at the indexOf example, which runs in O(n). What if we knew that
the input is always a sorted list? In such a case, we can find the index much faster. If the
element at the center of the array is higher than the value that we search, we do not have to
take a look at all elements on the right side of the array. If the value at the center is lower,
then we can forget all elements on the left side. This is called binary search. We can
implement this with two variables, left and right, which represent the section of the
array in which we are searching: left is the first element of that section, and right is the
first element after the section. So right - 1 is the last element of the section. The code
works as follows: it chooses the center of the section. If that element is the element that we
search, we can stop. Otherwise, we check whether we should search on the left or right side.
When left equals right, the section is empty. We will then return -1, since we did not
find the element.

function binarySearch(items: number[], item: number) {
 let left = 0;
 let right = items.length;
 while (left < right) {
 const mid = Math.floor((left + right) / 2);
 if (item === items[mid]) {
 return mid;
 } else if (item < items[mid]) {
 right = mid;
 } else {
 left = mid + 1;
 }
 }
 return -1;
}

What is the running time of this algorithm? To find that, we must know how often the body
of the loop is evaluated. Every time that the body is executed, the function returns, or the
length of the section is approximately divided by two. In the worst case, the length of the
section is constantly divided by two, until the section contains one element. That element is
the searched element and the function returns or the length becomes zero and the function
while loop stops. So, we can ask the question: how often can you divide n by two, until it
becomes less than one? 2log n gives us that number. This algorithm runs in O(2log(n)),
which is a lot faster than O(n). However, it only works if the array is sorted.

Advanced Programming in TypeScript

[132]

In Big-Oh notation, O(log(n)) and O(2log(n)) are the same. They only
differ by some constant number, which disappears in Big-Oh notation.

Built-in functions
When you use other functions in your algorithm, you must be aware of their running time.
We could for instance implement indexOf like this:

function fastIndexOf(items: number[], item: number) {
 items.sort();
 return binarySearch(items, item);
}

Both lines of the function are only executed once, but O(1) is not the running time of this
algorithm! This function calls binarySearch, and we know that the body of the while loop
in that function runs, at most, approximately 2log n times. We do not need to know how
the function is implemented, we only need to know that it takes O(2log(n)). We also call
.sort() on the array. We have not written that function ourselves and we cannot analyze
the code for it. For these functions, you must know (or look up) the running time. For
sorting, that is O(n 2log(n)). So our fastIndexOf is not faster than the original version,
as it runs in O(n 2log(n)).

We can however use sorting to improve the hasDuplicate function.

function hasDuplicate(items: number[]) {
 items.sort();
 for (let i = 1; i < items.length; i++) {
 if (items[i] === items[i - 1]) return true;
 }
 return false;
}

The loop costs O(n) and the sorting costs O(n 2log(n)), so this algorithm runs in O(n
2log(n)). This is faster than our initial implementation, that took O(n2).

With this basic knowledge, you can analyze simple algorithms and compare their speeds
for large inputs. In the next chapters, we will analyze some of the algorithms that we will
write.

Advanced Programming in TypeScript

[133]

Summary
In this chapter, we have seen various new features of TypeScript 2.0. In this release, lots of
new features for more accurate type analysis were added. We have seen control flow based
type analysis, null and undefined checking, and tagged union types. Finally, we have also
taken a look at analyzing algorithms. We will use most of these topics in the next three
chapters. In Chapter 7, Spreadsheet Application with Functional Programming, we will build a
spreadsheet application. We will also discover functional programming there.

7
Spreadsheet Applications with

Functional Programming
In this chapter, we will explore a different style of programming: functional programming.
With this style, functions should only return something and not have other side effects,
such as assigning a global variable. We will explore this by building a spreadsheet
application.

Users can write calculations in this application. The spreadsheet contains a grid and every
field of the grid can contain an expression that will be calculated. Such expressions can
contain constants (numbers), operations (such as addition, multiplying), and they can
reference other fields of the spreadsheet. We will write a parser, that can convert the string
representation of such expressions into a data structure. Afterwards, we can calculate the
results of the expressions with that data structure. If necessary, we will show errors such as
division by zero to the user.

Spreadsheet Applications with Functional Programming

[135]

We will build this application using the following steps:

Setting up the project
Functional programming
Using data types for expressions
Writing unit tests
Parsing an expression
Defining the sheet
Using the Flux architecture
Creating actions
Writing the view
Advantages of Flux

Setting up the project
We start by installing the dependencies that we need in this chapter using NPM:

 npm init -y
 npm install react react-dom -save
 npm install gulp gulp-typescript small --save-dev

We set up TypeScript with lib/tsconfig.json:

{
 "compilerOptions": {
 "target": "es5",
 "module": "commonjs",
 "noImplicitAny": true,
 "jsx": "react"
 }
}

We configure gulp in gulpfile.js:

var gulp = require("gulp");
var ts = require("gulp-typescript");
var small = require("small").gulp;

var tsProject = ts.createProject("lib/tsconfig.json");

gulp.task("compile", function() {
 return gulp.src(["lib/**/*.ts", "lib/**/*.tsx"])
 .pipe(ts(tsProject))

Spreadsheet Applications with Functional Programming

[136]

 .pipe(gulp.dest("dist"))
 .pipe(small("client/index.js", { externalResolve:
["node_modules"], outputFileName: { standalone: "client.js" } }))
 .pipe(gulp.dest("static/scripts/"));
});

We install type definitions for React:

npm install @types/react @types/react-dom --save

In static/index.html, we create the HTML structure of our application:

<!DOCTYPE HTML>

<html>
 <head>
 <title>Chapter 5</title>
 <link href="style.css" rel="stylesheet" />
 </head>
 <body>
 <div id="wrapper"></div>
 <script type="text/javascript">
 var process = {
 env: {
 NODE_ENV: "DEBUG" // or "PRODUCTION"
 }
 };
 </script>
 <script type="text/javascript" src="scripts/client.js"></script>
 </body>
</html>

We add some basic styles in static/style.css. We will add more styles later on:

body {
 font-family: 'Trebuchet MS', 'Lucida Sans Unicode','Lucida Grande',
'Lucida Sans', Arial, sans-serif;
}

a:link, a:visited {
 color: #5a8bb8;
 text-decoration: none;
}
a:hover, a:active {
 color: #406486;
}

Spreadsheet Applications with Functional Programming

[137]

Functional programming
When you ask a developer what the definition of a function is, he would probably answer
something like “something that does something with some arguments”. Mathematicians
have a formal definition for a function:

A function is a relation where an input has exactly one output.

This means that a function should always return the same output for the same input.
Functional programming (FP) uses this mathematical definition. The following code would
violate this definition:

let x = 1;
function f(y: number) {
 return x + y;
}

f(1);
x = 2;
f(1);

The first call to f would return 2, but the second would return 3. This is caused by the
assignment to x, which is called a side effect. A reassignment to a variable or a property is
called a side effect, since function calls can give different results after it.

It would be even worse if a function modified a variable that was defined outside of the
function:

let x = 1;
function g(y: number) {
 x = y;
}

Code like this is hard to read or test. These mutations are called side effects. When a piece of
code does not have side effects, it is called pure. With functional programming, all or most
functions should be pure.

Spreadsheet Applications with Functional Programming

[138]

Calculating a factorial
We will take a look at the factorial function to see how we can surpass the limitations of
functional programming. The factorial function, written as n! is defined as 1 * 2 * 3 *
... * n. This can be programmed with a simple for loop:

export function factorial(x: number) {
 let result = 1;
 for (let i = 1; i <= x; i++) {
 result *= i;
 }
 return result;
}

However, the value of i is increased in the loop, which is a reassignment and thus a side
effect. With functional programming, recursion should be used instead of a loop. The
factorial of x can be calculated using the factorial of x - 1 and multiplying it with x, since
x! = x * (x-1)! for x > 1. The following function is pure and smaller than the iterative
function. Calling a function from the same function is called recursion.

export function factorial(x: number): number {
 if (x <= 1) return 1;
 return x * factorial(x - 1);
}

When you define a function with recursion, TypeScript cannot infer the
return type. You have to specify the return type yourself in the function
header.

We will use this function later on, so save this as lib/model/utils.ts.

Spreadsheet Applications with Functional Programming

[139]

Using data types for expressions
Fields of the spreadsheet can contain expressions, that can be calculated. To calculate these
values, the input of the user must be converted to a data structure, which can then be used
to calculate the result of that field.

These expressions can contain constants, operations, references to other fields or a
parenthesized expression:

Constants: 0, 42, 10.2, 4e6, 7.5e8
Unary expression: -expression, expression!
Binary expression: expression + expression, expression / expression
References: 3:1 (third column, first row)
Parenthesized expression: (expression)

We will create these types in lib/model/expression.ts. First we import factorial,
since we will need it later on.

import { factorial } from "./utils";

Creating data types
We can declare data types for these expression kinds. We define them using a class. We can
distinguish these kinds easily using instanceof. We can declare Constant as follows:

export class Constant {
 constructor(
 public value: number
) {}

Spreadsheet Applications with Functional Programming

[140]

}

Adding public or private before a constructor argument is syntactic sugar
for declaring the property and assigning to it in the constructor:

export class Constant {
 value: number;
 constructor(value: number) {
 this.value = value;
 }
}

A UnaryExpression has a kind (minus or factorial) and the operand on which it is
working. We define the kind using an enum. For the expression, we reference the
Expression type that we will define later on:

export class UnaryOperation {
 constructor(
 public expression: Expression,
 public kind: UnaryOperationKind
) {}
}
export enum UnaryOperationKind {
 Minus,
 Factorial
}

A binary expression also has a kind (Add, Subtract, Multiply, or Divide) and two
operands.

export class BinaryOperation {
 constructor(
 public left: Expression,
 public right: Expression,
 public kind: BinaryOperationKind
) {}
}
export enum BinaryOperationKind {
 Add,
 Subtract,
 Multiply,
 Divide
}

Spreadsheet Applications with Functional Programming

[141]

We will call the reference to another field, a Variable. It contains the column and the row
of the referenced field:

export class Variable {
 constructor(
 public column: number,
 public row: number
) {}
}

A parenthesized expression simply contains an expression:

export class Parenthesis {
 constructor(
 public expression: Expression
) {}
}

We can now define Expression as the union type of these classes:

export type Expression = Constant | UnaryOperation | BinaryOperation |
Variable | Parenthesis;

The preceding definition means that an Expression is a Constant, UnaryExpression,
BinaryExpression, Variable or Parenthesis.

Traversing data types
We can distinguish these classes using instanceof. We will demonstrate that by writing a
function that converts an expression to a string. TypeScript will change the type of a
variable after an instanceof check. These checks are called type guards. In the code
below, formula instanceof Constant narrows the type of formula to Constant in the
block after the if. In the else block, Constant is removed from the type of formula,
resulting in UnaryOperation | BinaryOperation | Variable | Parenthesis.

Using a sequence of if statements, we can distinguish all cases. For a constant, we can
simply convert the value to a string:

export function expressionToString(formula: Expression): string {
 if (formula instanceof Constant) {
 return formula.value.toFixed();

Spreadsheet Applications with Functional Programming

[142]

For a UnaryOperation, we show the operator before or after the rest of the expression. We
convert the rest to a string using recursion and we call expressionToString on the
expression. Because of that, we had to specify the return type manually:

 } else if (formula instanceof UnaryOperation) {
 const { expression, kind } = formula;
 switch (kind) {
 case UnaryOperationKind.Factorial:
 return expressionToString(expression) + "!";
 case UnaryOperationKind.Minus:
 return "-" + expressionToString(expression);
 }

We convert a BinaryOperation to a string by inserting the operator between the
converted operands:

 } else if (formula instanceof BinaryOperation) {
 const { left, right, kind } = formula;
 const leftString = expressionToString(left);
 const rightString = expressionToString(right);
 switch (kind) {
 case BinaryOperationKind.Add:
 return leftString + "+" + rightString;
 case BinaryOperationKind.Subtract:
 return leftString + "-" + rightString;
 case BinaryOperationKind.Multiply:
 return leftString + "*" + rightString;
 case BinaryOperationKind.Divide:
 return leftString + "/" + rightString;
 }

A variable is shown as the column, a colon and the row:

 } else if (formula instanceof Variable) {
 const { column, row } = formula;
 return column + ":" + row;

A parenthesized expression is shown as the containing expression wrapped in parentheses:

 } else if (formula instanceof Parenthesis) {
 const { expression } = formula;
 return "(" + expressionToString(expression) + ")";
 }
}

Spreadsheet Applications with Functional Programming

[143]

This function is a good example of walking through (traversing) a data structure with
recursion. Such a function can be written in the following steps:

Distinguish different cases (for instance using instanceof or typeof)
Handle the containing nodes recursively (for instance, left and right of a
BinaryOperation)
Combine the results

In the next session, we will write another function that traverses an expression to validate it.

Validating an expression
When you are writing a function with recursion, you should always be sure that you are not
creating infinite recursion, similar to an infinite loop. For instance, when you forget the base
cases of the factorial function (x <= 1), you would get infinite recursion.

We would also get recursion when a field of the spreadsheet references itself (directly or
indirectly). To prevent these issues, we will validate an expression before calculating it. We
create the restriction that a reference should not point to itself and it may not reference a
higher column or row index.

Later on, we will also show errors when a number is divided by zero, when the factorial of
a negative or non-integer is calculated, when a referenced field contains an error, and when
a referenced field contains text instead of a number. We define a class Failure to represent
such an error:

export class Failure {
 constructor(
 public kind: FailureKind,
 public location: Expression
) {}
}
export enum FailureKind {
 ForwardReference,
 SelfReference,
 TextNotANumber,
 DivideByZero,
 FactorialNegative,
 FactorialNonInteger,
 FailedDependentRow
}

Spreadsheet Applications with Functional Programming

[144]

Next, we define a function which gives a string description of the error:

export function failureText({ kind }: Failure) {
 switch (kind) {
 case FailureKind.ForwardReference:
 return "This expression contains a forward reference to
another variable";
 case FailureKind.SelfReference:
 return "This expression references itself";
 case FailureKind.TextNotANumber:
 return "This expression references a field that does not
contain a number";
 case FailureKind.DivideByZero:
 return "Cannot divide by zero";
 case FailureKind.FactorialNegative:
 return "Cannot compute the factorial of a negative number";
 case FailureKind.FactorialNonInteger:
 return "The factorial can only be computed of an integer";
 case FailureKind.FailedDependentRow:
 return "This expression references a field that has one or
more errors";
 }
}

Now we can define a validate function, which will generate an array of errors. The function
has two base cases: constants and variables.

A constant can never have errors. A variable is an error if it is a self or forward reference.
For a unary, binary, or parenthesized expression we must validate the children recursively:

export function validate(column: number, row: number, formula: Expression):
Failure[] {
 if (formula instanceof UnaryOperation || formula instanceof Parenthesis)
{
 return validate(column, row, formula.expression);
 } else if (formula instanceof BinaryOperation) {
 return [
 ...validate(column, row, formula.left),
 ...validate(column, row, formula.right)
];
 } else if (formula instanceof Variable) {
 if (formula.column === column && formula.row === row) {
 return [new Failure(FailureKind.SelfReference, formula)];
 }
 if (formula.column > column || formula.row > row) {
 return [new Failure(FailureKind.ForwardReference, formula)];
 }
 return [];

Spreadsheet Applications with Functional Programming

[145]

 } else {
 return [];
 }
}

In the first if statement, the type of formula is UnaryOperation | Parenthesis. Since
both types have the property expression, we can access it.

Calculating expressions
The last traversal is calculating the expression. This function will return a number if the
calculation succeeded. Otherwise, it will return a list of errors. The arguments of the
function are the expression and a function that gives the value of a referenced field:

export function calculateExpression(formula: Expression, resolve:
(variable: Variable) => number | Failure[]): number | Failure[] {

For a constant, we can simply return its value:

 if (formula instanceof Constant) {
 return formula.value;

To calculate the value of a UnaryOperation, we first calculate its operand. If that contains
an error, we propagate it. Otherwise, we calculate the factorial or the negative value of it.
For a factorial we also show an error if it is not a non-negative integer. Because of the type
guard, TypeScript narrows the type of value to a number in the else block:

 } else if (formula instanceof UnaryOperation) {
 const { expression, kind } = formula;
 const value = calculateExpression(expression, resolve);
 if (value instanceof Array) {
 return value;
 } else {
 switch (kind) {
 case UnaryOperationKind.Factorial:
 if (value < 0) {
 return [new Failure(FailureKind.FactorialNegative,
formula)];
 }
 if (Math.round(value) !== value) {
 return [new
Failure(FailureKind.FactorialNonInteger, formula)];
 }
 return factorial(Math.round(value));
 case UnaryOperationKind.Minus:
 return -value;

Spreadsheet Applications with Functional Programming

[146]

 }
 }

For a binary operation, we calculate the left and right side. If one of these contains errors,
we return those. Otherwise we apply the operator to both values:

 } else if (formula instanceof BinaryOperation) {
 const { left, right, kind } = formula;
 const leftValue = calculateExpression(left, resolve);
 const rightValue = calculateExpression(right, resolve);
 if (leftValue instanceof Array) {
 if (rightValue instanceof Array) {
 return [...leftValue, ...rightValue];
 }
 return leftValue;
 } else if (rightValue instanceof Array) {
 return rightValue;
 } else {
 switch (kind) {
 case BinaryOperationKind.Add:
 return leftValue + rightValue;
 case BinaryOperationKind.Subtract:
 return leftValue - rightValue;
 case BinaryOperationKind.Multiply:
 return leftValue * rightValue;
 case BinaryOperationKind.Divide:
 if (rightValue === 0) {
 return [new Failure(FailureKind.DivideByZero,
formula)];
 }
 return leftValue / rightValue;
 }
 }

For a variable, we delegate the calculation to the resolve function:

 } else if (formula instanceof Variable) {
 return resolve(formula);
 } else if (formula instanceof Parenthesis) {
 return calculateExpression(formula.expression, resolve);
 }
}

Finally, we calculate the value of a parenthesized expression with the expression it contains.

Spreadsheet Applications with Functional Programming

[147]

Parsing an expression
A parser can convert a string to some data type. The first guess of the type of a parser
would be:

type Parser<T> = (source: string) => T;

Since we will also use a parser to parse a part of the source. For instance, when parsing a
factorial, we first parse the operand (which hopefully has one character remaining, the
exclamation mark) and then parse the exclamation mark. Thus, a parser should return the
resulting data and the remaining source:

type Parser<T> = (source: string) => [T, string];

A constant (such as 5.2) and a variable (5:2) both start with a number. Because of that, a
parser should return an array with all options:

type Parser<T> = (source: string) => [T, string][];

To demonstrate how this works, imagine that there are two parsers: one that parses A, one
that parses AA and one that parses AB. The string AAA could be parsed with a sequence of
these parsers in three different ways: A-A-A, A-AA, and AA-A. Now imagine that the parsers
can first parse A or AA, and then only AB. We will parse AAB. The first part would result in
the following result:

[
 ["A", "AB"]
 ["AA", "B"]
]

The remaining string of the first element (AB), can then be parsed by the second parser (AB).
This would have an empty string as the remaining part. The remaining string of the second
item (B) cannot be parsed. Thus, these parses can parse AAB as A-AB.

Creating core parsers
We will first create two core parsers in lib/model/parser.ts. The function parse runs a
parser and returns the result if successful, epsilon will always succeed and token will try
to parse a specific string. The value can be specified as the last argument for both functions:

type ParseResult<T> = [T, string][];
type Parser<T> = (source: string) => ParseResult<T>;

export function parse<U>(parser: Parser<U>, source: string): U | undefined

Spreadsheet Applications with Functional Programming

[148]

{
 const result = parser(source)
 .filter(([result, rest]) => rest.length === 0)[0];
 if (!result) return undefined;
 return result[0];
}

const epsilon = <U>(value: U): Parser<U> => source =>
 [[value, source]];

const token = <U>(term: string, value: U): Parser<U> => source => {
 if (source.substring(0, term.length) === term) {
 return [[value, source.substring(term.length)]];
 } else {
 return [];
 }
};

We will combine these core parsers into more complex and useful parsers. First, we will
create a function that tries different parsers:

const or = <U>(...parsers: Parser<U>[]): Parser<U> => source =>
 (<[U, string][]>[]).concat(...parsers.map(parser => parser(source)));

We can use this to parse a digit. We combine the parsers that parse the number 0 t0 9:

const parseDigit = or(
 token("0", 0), token("1", 1),
 token("2", 2), token("3", 3),
 token("4", 4), token("5", 5),
 token("6", 6), token("7", 7),
 token("8", 8), token("9", 9)
);

Functions that have functions as an argument or return type are called
high order functions. These functions can easily be reused. With
functional programming, you often create such functions.

Running parsers in a sequence
Another way to combine parsers is running them in a sequence. Before we can write these
functions, we must define two helper functions in lib/model/utils.ts. flatten will
convert an array of arrays into an array. flatMap will first call map on the array and
secondly flatten:

Spreadsheet Applications with Functional Programming

[149]

export function flatten<U>(source: U[][]) {
 return (<U[]>[]).concat(...source);
}
export function flatMap<U, V>(source: U[], callback: (value: U) => V[]):
V[] {
 return flatten(source.map(callback));
}

Back in lib/model/parser.ts, we define a map function, which can convert a
Parser<U> to a Parser<V>:

const map = <U, V>(parser: Parser<U>, callback: (value: U) => V): Parser<V>
=> source =>
 parser(source).map<[V, string]>(([item, rest]) => [callback(item),
rest]);

We also define a bind function, which will run a parser after another parser:

const bind = <U, V>(parser: Parser<U>, callback: (value: U) => Parser<V>):
Parser<V> => source =>
 flatMap(parser(source), ([result, rest]) => callback(result)(rest));

With functional programming, the type of a function can sometimes already describe the
implementation. When the implementation gives no type errors, the implementation is in
most cases correct.

Next up, we create two functions that can run two or three parsers in a sequence and can
combine the results of these parsers into a specific type:

const sequence2 = <U, V, W>(
 left: Parser<U>,
 right: Parser<V>,
 combine: (x: U, y: V) => W) =>
 bind(left, x => map(right, y => combine(x, y)));

const sequence3 = <U, V, W, T>(
 first: Parser<U>,
 second: Parser<V>,
 third: Parser<W>,
 combine: (x: U, y: V, z: W) => T) =>
 bind(first, x => sequence2(second, third, (y, z) => combine(x, y,
z)));

Spreadsheet Applications with Functional Programming

[150]

With these functions, we can write a function that can match a sequence of any length, or a
list. A list is either one element or one element followed by a list. As you can see, this
requires recursion. We need the resulting parser inside the definition of the parser, which is
not possible. Instead, we can create a function that will evaluate the parser (source =>
parser(source)):

function list<U>(parseItem: Parser<U>) {
 const parser: Parser<U[]> = or(
 map(parseItem, item => [item]),
 sequence2(
 parseItem,
 source => parser(source),
 (item, items) => [item, ...items]
)
);
 return parser;
}

We can also create a separated list parser, which will either parse only one element, or parse
the first element and a list of separators and items. We create an interface to store the result
of the function:

interface SeparatedList<U, V> {
 first: U;
 items: [V, U][];
}
const separatedList = <U, V>(parseItem: Parser<U>, parseSeparator:
Parser<V>) =>
 or(
 map(parseItem, first => ({ first, items: [] })),
 sequence2(
 parseItem,
 list(sequence2(parseSeparator, parseItem, (sep, item) => <[V,
U]>[sep, item])),
 (first, items) => ({ first, items })
)
);

We can now parse a list of digits:

const parseDigits = list(parseDigit);

This can parse a list of digits. We can convert that to a number with the map function that
we have defined. Since an integer can be written as 1337 = 1 * 10^3 + 3 * 10^2 + 3
* 10^1 + 7 * 10^0. We can use the reduce function of arrays for this. reduce works as
follows: [1, 2, 3, 4].reduce(f, 0) === f(f(f(f(0, 1), 2), 3), 4)

Spreadsheet Applications with Functional Programming

[151]

We can now define the conversion function:

const toInteger = (digits: number[]) => digits.reduce(
 (previous, current, index) =>
 previous + current * Math.pow(10, digits.length - index - 1),
 0
);

With map, we can define parseInteger:

const parseInteger = map(parseDigits, toInteger);

A variable can be parsed as a sequence of an integer (the column), a colon, and another
integer (the row):

const parseVariable = sequence3(parseInteger, token(":", undefined),
parseInteger,
 (column, separator, row) => new Variable(column, row));

Parsing a number
A number or constant can be written in the following ways:

8 (integer)
8.5 (with decimal part)
8e4 = 80000 (with exponent)
8.5e4 = 85000 (with decimal part and exponent)

We create two parsers, that will parse the decimal part and exponent of a number. They
fallback to a default value (0 and 1) in case the number does not have a decimal part or
exponent:

const parseDecimal = or(
 epsilon(0),
 sequence2(
 token(".", undefined),
 parseDigits,
 (dot, digits) => toInteger(digits) / Math.pow(10, digits.length)
)
);
const parseExponent = or(
 epsilon(1),
 sequence2(
 token("e", undefined),
 parseDigits,

Spreadsheet Applications with Functional Programming

[152]

 (e, digits) => Math.pow(10, toInteger(digits))
)
);

With these functions, we can easily define the parseConstant function:

const parseConstant = sequence3(
 parseInteger,
 parseDecimal,
 parseExponent,
 (int, decimal, exp) => new Constant((int + decimal) * exp)
);

We can now define a parser called parseConstantVariableOrParenthesis, which will
parse a constant, variable, or parenthesized expression (as the name suggests).
parseParenthesis will be implemented later on:

const parseConstantVariableOrParenthesis = or(parseConstant, parseVariable,
parseParenthesis);

Order of operations
When evaluating an expression, the order of execution is important. For instance, (3 * 4)
+ 2 equals 14, while 3 * (4 + 2) equals 18. The correct evaluation of 3 * 4 + 2 is the
first one. An expression should be evaluated in this order:

Parenthesis1.
Multiplication and division2.
Addition and subtraction3.
Unary expressions4.

Multiple instances of the same group should be evaluated from left to right, so 10 - 2 + 3
= (10 - 2) + 3.

Two ways exist to implement this: parsing the source in the right order, or parsing it left to
right and correcting it during calculation. Since we already wrote the calculation part, we
will parse the source in the right order. That is also the easiest option.

Spreadsheet Applications with Functional Programming

[153]

Based on these rules, the left or right side of a multiplication or division can never be an
addition or subtraction. The operand of a unary expression can only be a constant, variable,
or parenthesized expression. With these restrictions, one can create the following abstract
representation:

Expression ← Term | Expression ('+' | '-') Term
Term ← Factor | Term ('*' | '/') Factor
Factor ← ConstantVariableOrParenthesis | '-' ConstantVariableOrParenthesis
| ConstantVariableOrParenthesis '!'
Parenthesis ← '(' Expression ')'
ConstantVariableOrParenthesis ← Constant | Variable | Parenthesis

This means that an expression is either a single term, or an addition and subtraction of
multiple terms. A term is a factor or a multiplication and division of factors. A factor can be
a constant, variable or parenthesized expression, optionally with a minus or an exclamation
mark. With these rules, an expression will always be parsed in the right order.

We can easily convert this abstract representation to parsers. We start with parseFactor,
which can be built with or and sequence2.

const parseFactor = or(
 parseConstantVariableOrParenthesis,
 sequence2(
 token("-", undefined),
 parseConstantVariableOrParenthesis,
 (t, value) => new UnaryOperation(value, UnaryOperationKind.Minus)
),
 sequence2(
 parseConstantVariableOrParenthesis,
 token("!", undefined),
 (value) => new UnaryOperation(value, UnaryOperationKind.Factorial)
)
);

We can implement parseTerm and parseExpression using the function seperatedList.
We will use reduce to transform the array into a BinaryOperation, just like we used it to
convert an array of numbers into a single number in toInteger. First, we create the
function that transforms the array into a BinaryOperation.

function foldBinaryOperations({ first, items }: SeparatedList<Expression,
BinaryOperationKind>) {
 return items.reduce(fold, first);

 function fold(previous: Expression, [kind, next]: [BinaryOperationKind,
Expression]) {
 return new BinaryOperation(previous, next, kind);

Spreadsheet Applications with Functional Programming

[154]

 }
}

We use that function in parseTerm and parseExpression.

const parseTerm = map(
 separatedList(
 parseFactor,
 or(
 token("*", BinaryOperationKind.Multiply),
 token("/", BinaryOperationKind.Divide)
)
),
 foldBinaryOperations
);
export const parseExpression = map(
 separatedList(
 parseTerm,
 or(
 token("+", BinaryOperationKind.Add),
 token("-", BinaryOperationKind.Subtract)
)
),
 foldBinaryOperations
);

We have not defined parseParenthesis yet. Because it depends on parseExpression,
we must place it below its definition. However, if we would define it here with const, it
cannot be referenced in parseConstantVariableOrParenthesis. Instead we will define
it as a function.

function parseParenthesis(source: string): ParseResult<Expression> {
 return sequence3(
 token("(", undefined),
 parseExpression,
 token(")", undefined),
 (left, expression, right) => new Parenthesis(expression)
)(source);
}

Functions can be used before their definition. We add the source as an argument, as defined
in the Parser type.

Spreadsheet Applications with Functional Programming

[155]

Defining the sheet
A spreadsheet will be a grid of fields. Every field can contain a string or an expression, as
demonstrated in the following screenshot:

In lib/model/sheet.ts, we will define the sheet and create functions to parse, show and
calculate all expressions in the field.

First, we will import types and functions that we will use in this file.

import { Expression, Variable, calculateExpression, Constant, Failure,
FailureKind, validate, expressionToString } from "./expression";
import { parse, parseConstant, parseExpression} from "./parser";

We can define a field as an expression or a string, and a sheet as a grid of fields:

export type Field = Expression | string;
export class Sheet {
 constructor(
 public title: string,
 public grid: Field[][]
) {}
}

Now we will write functions that give the amount of columns and rows of the sheet.

export function columns(sheet: Sheet) {
 return sheet.grid.length;
}
export function rows(sheet: Sheet) {
 const firstColumn = sheet.grid[0];
 if (firstColumn) return firstColumn.length;
 return 0;
}

Spreadsheet Applications with Functional Programming

[156]

The user can write text or an expression in the fields of the spreadsheet. When the content
of a field starts with an equals token, it is considered an expression. We write a function
parseField that parses the content to an expression if it starts with the equals token.
Otherwise, it will return the string as-is.

export function parseField(content: string): Field {
 if (content.charAt(0) === "=") {
 return parse(parseExpression, content.substring(1));
 } else {
 return content;
 }
}

We also create a function that changes a field to a string.

export function fieldToString(field: Field) {
 if (typeof field === "string") {
 return field;
 } else {
 return "=" + expressionToString(field);
 }
}

In case of an expression, it converts it to a string and adds an equals token before it.
Otherwise, it just returns the string.

Calculating all fields
We will write a function that calculates all expressions in the spreadsheet. A field that
contains an expression is converted to a number, if the calculation succeeded, or an array of
errors otherwise. A field that contains text does not need calculation, so the content is
immediately returned.

This yields this type for the result of the calculation:

export type Result = ResultField[][];
export type ResultField = string | number | Failure[];

We will use two nested loops to loop over each field. This is not pure, but it makes it easier
to resolve variables in expressions. When a valid expression is to be calculated, the
referenced fields would already be evaluated.

export function calculateSheet({ grid }: Sheet) {
 const result: ResultField[][] = [];

Spreadsheet Applications with Functional Programming

[157]

 for (let column = 0; column < grid.length; column++) {
 const columnContent = grid[column];
 result[column] = [];
 for (let row = 0; row < columnContent.length; row++) {
 result[column][row] = calculateField(column, row);
 }
 }

 return result;

For each field, we first check whether it is a string. If so, we can immediately return it.
Otherwise, we validate the expression. If the expression is invalid, we return the errors and
otherwise we run calculateExpression on it.

 function calculateField(column: number, row: number): ResultField {
 const field = grid[column][row];
 if (typeof field === "string") {
 return field;
 } else {
 const errors = validate(column, row, field);
 if (errors.length !== 0) return errors;
 return calculateExpression(field, resolveVariable);
 }
 }

When a variable reference needs to be resolved, we can access the calculated value from the
array result. If it contains a string, we try to convert it to a number.

 function resolveVariable(location: Variable): number | Failure[] {
 const { column, row } = location;
 const value = result[column][row];
 if (typeof value === "string") {
 const num = parse(parseConstant, value);
 if (num === undefined) {
 return [new Failure(FailureKind.TextNotANumber,
location)];
 }
 return num.value;
 } else if (value instanceof eArray) {
 return [new Failure(FailureKind.FailedDependentRow,
location)];
 } else {
 return value;
 }
 }
}

We have already written a parser that can parse a constant, so we can reuse it here. If it

Spreadsheet Applications with Functional Programming

[158]

contains an array of errors, we return a new error, which says that a referenced field
contains an error. Otherwise, the field contains a number and we can simply return that.

Using the Flux architecture
In React, every class component can have a state. Maintaining a state is a side effect and not
pure, so we will not use that in this application. Instead, we will use Stateless Functional
Components, which are pure. We still need to maintain the state of the application. We will
use the Flux architecture to do that. With Flux, you need to write a small piece of non-pure,
but the other parts of the application can be written pure. The architecture can be divided
into these parts:

Store: Contains the state of the application
View: React components that render the state to HTML
Action: A function that can modify the state (example: rename the spreadsheet)
Dispatcher: A hub modifies the state by executing an action

Several implementations of Flux exist. We will build our own, so that we can understand
the ideas better and we can create an implementation that can be properly typed using
TypeScript.

We will implement these parts in the following sections.

Defining the state
In lib/model/state.ts, we can define an interface that contains the state of the
application. The state should contain this information:

Active spreadsheet
Calculated results of all expressions
Selected column and row if a popup is opened
Content of the textbox of the popup
Whether or not the textbox of the popup contains a syntax error

This yields the following declaration:

import { Sheet, Result } from "./sheet";

export interface State {
 sheet: Sheet;

Spreadsheet Applications with Functional Programming

[159]

 result: Result;

 selectedColumn: number;
 selectedRow: number;
 popupInput: string;
 popupSyntaxError: boolean;
}

If the popup is not shown, we will set selectedColumn and selectedRow to undefined.
Otherwise, these properties will contain the column and row of the selected field.

const emptyRow = ["", ""];
const emptyGrid = [
 emptyRow,
 emptyRow
]
export const emptySheet = new Sheet("Untitled", emptyGrid)

export const empty: State = {
 sheet: emptySheet,
 result: emptyGrid,

 selectedColumn: undefined,
 selectedRow: undefined,
 popupInput: "",
 popupSyntaxError: false
}

We should also construct the state of the application when it starts. It should contain an
empty sheet and the popup should not be open.

Creating the store and dispatcher
We will create the store and dispatcher in lib/model/store.ts. The dispatcher should
take an action and execute it. We first define an action as a function that modifies a state.
Since we cannot assign to the state, as that is not pure, an action should not adjust the old
state, but create a new state object with a certain modification.

export type Action<T> = (state: T) => T;

The dispatcher should accept such action. We define the dispatcher as a function with an
action as an argument.

export type Dispatch<T> = (action: Action<T>) => void;

Spreadsheet Applications with Functional Programming

[160]

We can now create the store. The store should fire a callback when the state changes.

export function createStore<U>(state: U, onChange: (newState: U) => void) {
 const dispatch: Dispatch<U> = action => {
 state = action(state);
 onChange(state);
 }
 return dispatch;
}

The store also needs an initial state. We add these two as arguments to the createStore
function. The function will return the dispatcher.

Creating actions
An action should modify the state. To do that, we will first create three helper functions.
One to modify a part of an object, one to modify a part of an array, and one to easily create a
new array.

We use the same update function as we did in Chapter 3, Note-Taking App with a Server. We
add this function to lib/model/utils.ts.

export function update<U extends V, V>(old: U, changes: V): U {
 const result = Object.create(Object.getPrototypeOf(old));
 for (const key of Object.keys(old)) {
 result[key] = (<any> old)[key];
 }
 for (const key of Object.keys(changes)) {
 result[key] = (<any> changes)[key];
 }
 return result;
}

We also create a function that changes the element at a certain index of an array. The other
elements will remain at the same location. We will use this function to change the content of
a field of the spreadsheet later on.

export function updateArray<U>(array: U[], index: number, item: U) {
 return [...array.slice(0, index), item, ...array.slice(index + 1)];
}

Spreadsheet Applications with Functional Programming

[161]

We define a function rangeMap, which creates an array. The callback argument is used to
create each element of the array.

export function rangeMap<U>(start: number, end: number, callback: (index:
number) => U): U[] {
 const result: U[] = [];
 for (let i = start; i < end; i++) {
 result[i] = callback(i);
 }
 return result;
}

The functions update and rangeMap are not pure, since the functions
contain several assignments. Sometimes it is not possible or very hard to
write a function pure. However, these functions keep the side effects local
and other functions will not perceive that the function is pure.

Adding a column or a row
In lib/model/action.ts, we will create the actions for our application. First we must
import the types and function that we have written before.

import { State } from "./state";
import { calculateSheet, Field, rows, fieldToString, parseField } from
"./sheet";
import { update, updateArray, rangeMap } from "./utils";

Now we can create an action that calculates all expressions. We will not export this action,
but we will use it in other actions.

const modifyResult = (state: State) =>
 update(state, {
 result: calculateSheet(state.sheet)
 });

With this definition, modifyResult is a function that takes a state and returns an updated
state with a modified result property. This conforms to the Action type that we defined
earlier.

We can use this function to create the actions that add a row or column. If a new row needs
to be added, every column should get an extra field at the end. This field should be empty;
it should contain the empty string. Afterwards, we need to update the result property of
the state. We will use the modifyResult function for that.

export const addRow = (state: State) =>

Spreadsheet Applications with Functional Programming

[162]

 modifyResult(update(state, {
 sheet: update(state.sheet, {
 grid: state.sheet.grid.map(column => [...column, ""])
 })
 }));

To add a new column, we must add a new array with empty strings. We will use rangeMap
to create such an array. We can use rows to get the amount of rows, and thus the length of
the new array.

export const addColumn = (state: State) =>
 modifyResult(update(state, {
 sheet: update(state.sheet, {
 grid: [
 ...state.sheet.grid,
 rangeMap(0, rows(state.sheet), () => "")
]
 })
 }));

Later on, these actions can be triggered by dispatch(addRow) or dispatch(addColumn).
We will see that in action when we create the view.

Changing the title
Adding a row or a column is an action that does not have arguments. Changing the title
does require an argument, namely the new title. Since the definition of an action does not
allow extra arguments, we cannot write it as a function that requires the new title and the
current state. Instead, we can create a function that takes the new title, and then returns a
function that requires the current state. That will give this definition:

export const setTitle = (title: string) => (state: State) =>
 update(state, {
 sheet: update(state.sheet, { title })
 });

This action can be fired by running dispatch(setTitle("Untitled")). If you forget the
argument, or specify a wrong argument, TypeScript will give an error. Other
implementations of Flux make it hard to type such actions.

Spreadsheet Applications with Functional Programming

[163]

Showing the input popup
We need to create several actions for the popup:

Open the popup
Close it
Toggle it (close if it is already open, close it otherwise)
Change the input of the textbox
Save the new value

To open the popup, we need the column and the row of the field and save them in the state.
We set the input of the popup to the content of that field, either a string or the expression
converted to a string. When the popup is opened, it cannot have any syntax errors so we set
that property to false.

export const popupOpen = (selectedColumn: number, selectedRow: number) =>
(state: State) =>
 update(state, {
 selectedColumn,
 selectedRow,
 popupInput:
fieldToString(state.sheet.grid[selectedColumn][selectedRow]),
 popupSyntaxError: false
 });

The popup can be closed by setting the column and row to undefined.

export const popupClose = (state: State) =>
 update(state, {
 selectedColumn: undefined,
 selectedRow: undefined,
 popupInput: ""
 });

To toggle the popup, we check whether it opened in the specified location, and close it or
open it afterwards.

export const popupToggle = (column: number, row: number) => (state: State)
=>
 (column === state.selectedColumn && row === state.selectedRow)
 ? popupClose(state) : popupOpen(column, row)(state);

Spreadsheet Applications with Functional Programming

[164]

We can update the content of the input box:

export const popupChangeInput = (popupInput: string) => (state: State) =>
 update(state, {
 popupInput
 });

Finally, we can create an action that saves the input in the popup and closes it. However,
when the popup contains a syntax error, we will not close the popup, but we will tell the
user that the input contains an error. In such a case, parseField will return undefined.
Otherwise, we change the field that is selected and recalculate the whole spreadsheet.

export const popupSave = (state: State) => {
 const input = state.popupInput;
 const value = parseField(input);
 if (value === undefined) {
 return update(state, {
 popupSyntaxError: true
 });
 }
 return modifyResult(update(state, {
 sheet: update(state.sheet, {
 grid: updateArray(state.sheet.grid, state.selectedColumn,
 updateArray(state.sheet.grid[state.selectedColumn],
state.selectedRow, value)
)
 }),
 selectedColumn: undefined,
 selectedRow: undefined,
 popupInput: ""
 }));
};

These are all actions of our applications.

Spreadsheet Applications with Functional Programming

[165]

Testing actions
Since actions are pure functions, we can easily test them. They can be tested without the
store, dispatcher, and view. To demonstrate this, we will write tests for addColumn, addRow
and setTitle. We start with importing AVA, these functions and some helper functions.

import * as test from "ava";
import { empty } from "../model/state";
import { addColumn, addRow, setTitle } from "../model/action";
import { columns, rows } from "../model/sheet";

We will write a test for addColumn. We validate that the amount of columns is increased by
one and that the amount of rows has not been changed.

test("addColumn", t => {
 const state = addColumn(empty);
 t.is(columns(state.sheet), columns(empty.sheet) + 1);
 t.is(rows(state.sheet), rows(empty.sheet));
});

We write a test for addRow too. This time, we validate that the amount of columns stayed
the same but the amount of rows increased.

test("addRow", t => {
 const state = addRow(empty);
 t.is(columns(state.sheet), columns(empty.sheet));
 t.is(rows(state.sheet), rows(empty.sheet) + 1);
});

For setTitle, we check that the title has indeed been changed and that the grid has not
changed.

test("setTitle", t => {
 const state = setTitle("foo")(empty);
 t.is(state.sheet.title, "foo");
 t.is(state.sheet.grid, empty.sheet.grid);
});

When you get a bug report, try to create a unit test that demonstrates that
error. When you have fixed the bug, you can easily validate it by running
the tests and you prevent the bug from returning in the feature.

Spreadsheet Applications with Functional Programming

[166]

Writing the view
The application will show an input box at the top of the screen, which is used to type the
title of the spreadsheet. Below the title, a table is shown which contains all fields of the
spreadsheet. When the user clicks on a field, a popup is created which allows the user to
change the content of that field. If the field contains errors, these errors are shown in the
popup:

We will use React to create the view of our application. With Stateless Functional
Components, we can write pure functions that render the state.

Rendering the grid
In lib/client/sheet.tsx, we will import React and functions and types that we created
before:

import * as React from "react";
import { Dispatch } from "../model/store";
import { Expression, expressionToString, failureText } from
"../model/expression"
import { State } from "../model/state";
import { Sheet, Field, Result, ResultField, columns, rows, parseField,
fieldToString } from "../model/sheet";
import { update, rangeMap } from "../model/utils";
import * as action from "../model/action";

Spreadsheet Applications with Functional Programming

[167]

We will render the spreadsheet in RenderSheet. That function requires the state and the
dispatcher.

export function RenderSheet({ state, dispatch }: { state: State, dispatch:
Dispatch<State> }) {
 const { sheet, result } = state;
 const columnCount = columns(sheet);
 const rowCount = rows(sheet);

At the top of the screen, we show the input box. When the user changes the title, we adjust
the state to it with the setTitle action.

 return (
 <div className="sheet">
 <input className="sheet-title" value={sheet.title}
 onChange={e => dispatch(action.setTitle((e.target as
HTMLInputElement).value))} />

We show the table below the title. In this table, we show the calculated values of all fields.
We also show two buttons to add a new row or column. These buttons dispatch the actions
that we defined earlier.

 <table>
 <tbody>
 <tr>
 <th></th>
 { rangeMap(0, columnCount, index => <th key={index}>{
index }</th>) }
 <th rowSpan={rowCount + 1} className="sheet-add-
column">
 <a href="javascript:;"
 onClick={() => dispatch(action.addColumn)}>Add
column
 </th>
 </tr>
 { rangeMap(0, rowCount, renderRow) }
 <tr><th colSpan={columnCount + 2}>
 <a href="javascript:;"
 onClick={() => dispatch(action.addRow)}>Add row
 </th></tr>
 </tbody>
 </table>
 </div>
);

Spreadsheet Applications with Functional Programming

[168]

We render a row in the renderRow function. We use rangeMap to call this function, and to
call renderColumn. React requires that we use the key property in a loop. We assign the
row and column index to it, since these will be unique.

 function renderRow(row: number) {
 return (
 <tr key={row}>
 <th>{ row }</th>
 { rangeMap(0, columnCount, renderColumn) }
 </tr>
);
 function renderColumn(column: number) {
 return (
 <RenderField key={column} column={column} row={row}
state={state} dispatch={dispatch} />
);
 }
 }
}

React components should start with a capital letter. Normal functions should be named
with a lower letter as a convention, but for components we have to break that rule.

Rendering a field
To render a field, we will first query the content of the field and check whether the popup is
open on this field.

function RenderField({ column, row, state, dispatch }: {column: number,
row: number, state: State, dispatch: Dispatch<State> }) {
 const field = state.sheet.grid[column][row];
 const result = state.result[column][row];
 const open = state.selectedColumn === column
 && state.selectedRow === row;

Spreadsheet Applications with Functional Programming

[169]

Now we check whether the field contains text or an expression. In case of an expression, it
can either be a successful calculation or a failed one. If it failed, we will show the amount of
errors. In the popup, the user can read all errors. We generate a class name based on this,
and on whether the popup is opened in this field.

 let text: string;
 let className: string;

 if (typeof result === "string") {
 text = result;
 className = "field-string";
 } else if (typeof result === "number") {
 text = result.toString();
 className = "field-value";
 } else {
 text = result.length === 1 ? "1 error" : result.length + "
errors";
 className = "field-error";
 }
 className += " field";
 if (open) {
 className += " field-open";
 }

With these variables, we can render the field. If we must show the popup, we will do that
with RenderPopup.

 return (
 <td className={className}>
 dispatch(action.popupToggle(column,
row))}>
 { text }

 { open ?
 <RenderPopup
 field={field}
 content={result}
 syntaxError={state.popupSyntaxError}
 input={state.popupInput}
 dispatch={dispatch} />
 : undefined
 }
 </td>
);
}

Spreadsheet Applications with Functional Programming

[170]

We define that function in the next section. We attach an event listener to the field which
will open or close the field when the user clicks on it.

Showing the popup
We will show the popup in RenderPopup. The popup contains an input box, a save, and
cancel button:

If the field contains an error, we show it below the two buttons:

Spreadsheet Applications with Functional Programming

[171]

For errors other than syntax errors, we show the location where it happened:

We will first store all errors in a variable. In case of a syntax error, we cannot give details.
For other errors, we show a description and the location of the error.

function RenderPopup({ field, content, syntaxError, input, dispatch }: {
field: Field, content: ResultField, syntaxError: boolean, input: string,
dispatch: Dispatch<State> }) {
 let errors: JSX.Element | JSX.Element[];
 if (syntaxError) {
 errors = <div className="failure">
 Could not parse this expression.
 </div>;
 } else if (content instanceof Array) {
 errors = content.map((failure, index) => <div className="failure"
key={index.toString()}>
 { failureText(failure) }
 {
expressionToString(failure.location) }
 </div>);
 }

Spreadsheet Applications with Functional Programming

[172]

Now we can build the full view. We attach event listeners to the input box, save, and close
button. We also wrap the input box in a form, such that the user can press Enter (instead of
clicking Save) to accept the changes.

 return (
 <div className="field-popup">
 <form onSubmit={(e) => {e.preventDefault();
dispatch(action.popupSave);}}>
 <input value={input} autoFocus
 onChange={e => dispatch(action.popupChangeInput((e.target as
HTMLInputElement).value))} />
 </form>

dispatch(action.popupSave)}>Save

dispatch(action.popupClose)}>Cancel

 { errors }
 </div>
);
}

Adding styles
In static/style.css, we will add some more styles. We will make the text of the input
box for the title bigger.

.sheet-title {
 font-size: 24pt;
 margin: 0 0 10px;
 border: 1px solid #ccc;
 width: 200px;
}

We will add a border to the table and style the button to add a column.

.sheet > table, .sheet tr, .sheet th, .sheet td {
 border: 1px solid #ccc;
 border-collapse: collapse;
}
.sheet-add-column > a {
 width: 70px;
 display: block;
}

Spreadsheet Applications with Functional Programming

[173]

We will style the fields so they show their value properly and can contain a popup.

.field {
 position: relative;
}
.field > span {
 display: block;
 min-width: 42px;
 font-size: 10pt;
 height: 18px;
 padding: 3px;
}
.field-value > span {
 font-family: Cambria, Cochin, Georgia, Times, Times New Roman, serif;
 text-align: right;
}
.field-error > span {
 color: #aa2222;
}
.field-open {
 background-color: #eee;
}

We add some styles to the popup:

.field-popup {
 position: absolute;
 left: 0px;
 top: 20px;
 z-index: 10;
 background-color: #eee;
 border-bottom: 4px solid #5a8bb8;
 border-right: 1px solid #ddd;
 padding: 8px;
 width: 300px;
}
.field-popup > input {
 margin-right: 10px;
}
.field-popup > a {
 margin-left: 10px;
}

Spreadsheet Applications with Functional Programming

[174]

Finally, we change the looks of error messages in the popup.

.failure-text {
 font-style: italic;
}
.failure-source {
 margin-left: 10px;
 color: #555;
 font-family: Cambria, Cochin, Georgia, Times, Times New Roman, serif;
}

Gluing everything together
In lib/client/index.tsx, we will combine all parts of our application. We will create a
component that contains the state and renders the view. When the state is updated in the
store, we will propagate that to this component and render the view again.

import * as React from "react";
import { render } from "react-dom";
import { createStore, Dispatch } from "../model/store";
import { State, empty } from "../model/state";
import { RenderSheet } from "./sheet";

class App extends React.Component<{}, State> {
 dispatch: Dispatch<State>;
 state = empty;

 constructor(props: {}) {
 super(props);
 this.dispatch = createStore(this.state, state =>
this.setState(state));
 }
 render() {
 return (
 <div className="sheet">
 <RenderSheet
 state={this.state}
 dispatch={this.dispatch} />
 </div>
);
 }
}

Spreadsheet Applications with Functional Programming

[175]

Finally, we can render this component in the HTML file.

render(<App />, document.getElementById("wrapper"));

We can view the result by running gulp compile and opening static/index.html in
your browser.

Advantages of Flux
In this section you can find some of the advantages of using Flux, the architecture that we
used in this chapter.

Flux is based on the unidirectional flow of data. Angular supports two way bindings, which
allow data to flow in two directions. With this data flow, a lot of properties might get
changed after a single change is made. This can lead to unpredictable behavior in big
applications. Flow and React do not have such bindings, but instead there is a clean flow of
data (store | view | action | dispatch | store).

The parts of Flux are not strictly bound to each other. This makes it easy to test specific
parts of the application with unit tests. We already saw that the actions do not depend on
the view.

Going cross-platform
Since the parts of Flux are not bound, we can, relatively, replace the HTML views of the
application with views of a different platform. The user interface does not store the state of
the application, but it is managed in the store. The other parts need no modification when
the HTML views are replaced. This way we can port the application to a different platform
and go cross-platform.

Spreadsheet Applications with Functional Programming

[176]

Summary
We have built a spreadsheet application with functional programming, React, and Flux in
this chapter. We have discovered the limitations of functional programming and learned
how we can take advantage of it. We have written automated unit tests for parts of the code
that we have written. We also saw how we can traverse data structures and write a parser
with functional programming. With the Flux architecture, we learnt how we can write the
biggest part of the application with pure functions.

In the next chapter, we will see more of functional programming. We will rebuild Pac-Man
with the HTML5 canvas.

8
Pac Man in HTML5

In this chapter, we will recreate Pac Man with the HTML5 canvas. Just like the previous
chapter, we will be using functional programming. With the HTML5 canvas and JavaScript,
you can play games in the browser.

Pac Man is a classic game where the player (Pac Man, the yellow circle) must eat all of the
dots. The ghosts are the enemies of Pac Man: when you get caught by a ghost, you lose. If
you eat all of the dots without being caught by a ghost, you win the game.

Drawing on a canvas is, just like modifying the HTML elements of a page, a side effect and
thus not pure. Since we will be using functional programming, we will create some
abstraction around it, similar to what React does. We will build a small non-pure
framework so we can use that to build the rest of the game with pure functions. We will
also use strictNullChecks in this chapter. The compiler will check which values can be
undefined or null.

Pac Man in HTML5

[178]

We will build the game in these steps:

Setting up the project
Using the HTML5 canvas
Designing the framework
Drawing on the canvas
Adding utility functions
Creating the models
Drawing the view
Handling events
Creating the time handler
Running the game
Adding a menu

Setting up the project
The project structure will be similar to the previous projects. In lib, we will place our
sources. We separate the files for the framework and the game in lib/framework and
lib/game. In lib/tsconfig.json, we configure TypeScript:

{
 "compilerOptions": {
 "target": "es5",
 "module": "commonjs",
 "strictNullChecks": true
 }
}

In the root directory, we set up gulp in gulpfile.js:

var gulp = require("gulp");
var ts = require("gulp-typescript");
var small = require("small").gulp;

var tsProject = ts.createProject("lib/tsconfig.json");

gulp.task("compile", function() {
 return gulp.src("lib/**/*.ts")
 .pipe(ts(tsProject))
 .pipe(small("game/index.js", { outputFileName: { standalone:
"scripts.js" }}))
 .pipe(gulp.dest("static/scripts/"));

Pac Man in HTML5

[179]

});
gulp.task("default", ["compile"]);

We can install our dependencies with NPM.

 npm init -y
 npm install gulp gulp-typescript small --save-dev

Finally, we create a simple HTML file in static/index.html.

<!DOCTYPE HTML>
<html>
 <head>
 <title>Pac Man</title>
 </head>
 <body style="background-color: black;">
 <canvas id="game" width="800" height="600"></canvas>
 <script src="scripts/scripts.js"></script>
 </body>
</html>

Before we start writing the framework, we will have a quick look at how the HTML5 canvas
works.

Using the HTML5 canvas
The HTML5 canvas is an HTML element, just like <div>. However, the canvas does not
contain other HTML elements, but it can contain a drawing generated by JavaScript code. In
lib/game/index.ts we will quickly experiment with it.

We can get a reference to the canvas using document.getElementById the same way we
got a reference to a <div> element:

const canvas = <HTMLCanvasElement> document.getElementById("game");

We cannot directly draw on the canvas; we have to get a rendering context first. Currently,
two kinds of rendering contexts exist: a two dimensional context and a webgl context, used
for 3D rendering. The webgl context is a lot harder to use. Luckily, Pac Man is 2D, so we
can use the 2D context:

const context = canvas.getContext("2d");

Pac Man in HTML5

[180]

In an editor with completions, you can check which functions exist on the context. For
instance, you can use context.fillRect(10, 10, 100, 100) to draw a filled rectangle
from 10,10 to 110,110. The x-axis starts at the left side and goes to the right, and the y-axis
starts at the top of the canvas and goes down.

Before you can draw anything on the canvas, you must set the drawing color. The canvas
distinguishes two different color settings: the fill color and the stroke color. The fill color is
used to paint a filled shape. The stroke color is used to draw a shape that only consists of an
outline.

We can set these colors using context.fillStyle and context.strokeStyle:

context.fillStyle = "#ff0000";
context.strokeStyle = "#0000ff";

We can also set the weight of a line with a similar property.

context.lineWidth = 5;

We can draw rectangles with these styles.

context.fillRect(10, 10, 100, 100);
context.strokeRect(20, 20, 100, 100);

This results in the following image:

Saving and restoring the state
The context also has the functions save() and restore(). With these functions, you can
restore the current draw styles, such as fillStyle, and lineWidth. restore() resets
the state to the last time that save() was called, based on a LIFO stack (Last In, First Out).

Pac Man in HTML5

[181]

In the following example, the restore on position 3 resets the state to the state saved on
position 2, and restore on position 4 resets it to position 1:

context.save(); // 1
context.fillStyle = "#ff0000";
context.save(); // 2
context.strokeStyle = "#0000ff";
context.restore(); // 3
context.restore(); // 4

We will use these functions in the framework as they can easily be used with recursion.

Designing the framework
We will design the framework based on functional programming. The framework will do
all non-pure work, so that the rest of the application can be built with pure functions
(except for Math.random).

Strictly speaking, Math.random is not a pure function. Given that
Math.random() is not always equal to Math.random(), that function will
update some internal state.
In pure functional languages, such a function can still exist. That function
takes a state and returns a random number and a new state. Since every
call to random will get a different state, it can return different random
values.

A game consists of an event loop. The amount of iterations that this loop does per second is
called FPS or frames per second. Every step of the loop, the game state needs to be updated.
For instance, enemies and the player can move, and the player can eat dots in Pac Man. At
the end of each step, the game state must be redrawn.

The game must also handle user input. When the user presses the left button, the player
should start moving to the left.

We will split the event loop into the following components:

The view, which will draw the game every step
A time handler, which will be called once in every step
An event handler, which will be called for every event that occurs

Pac Man in HTML5

[182]

With functional programming it can often be useful to think about the types of functions
before you write them. We will take a quick look at the types of these three components.
Imagine the state is stored in some interface State. The view will transform this state into a
picture. The view might need the width and height of the canvas, so we add these as
arguments. We will create the definition of a Picture later on:

function draw(state: State, width: number, height: number): Picture

The time handler should transform the state into a new state. It should not have any other
arguments:

function timeHandler(state: State): State

The event handler also transforms the state, but it can use an extra argument, which
contains the event that has occurred:

function eventHandler(state: State, event: Event): State

In the next sections, we will create a framework that manages these three components.

Creating pictures
We will start by creating data types for pictures. Some examples of a picture are a circle, a
line, text, or a combination of those. Such pictures can also be scaled, repositioned
(translated), or rotated. An empty picture is also a picture.

We define a picture as the union of these different kinds:

export type Picture
 = Empty
 | Rectangle
 | RectangleOutline
 | Circle
 | CircleOutline
 | Line
 | Text
 | Color
 | Translate
 | Rotate
 | Scale
 | Pictures;

Pac Man in HTML5

[183]

We start by creating some basic types. The Empty picture can be defined as follows:

export class Empty {
 __emptyBrand: void;
}

This class does not need any properties. However, if you do not add any properties to a
class, values of every type will be assignable to it. This is because TypeScript has a
structural type system, and for instance a string has, at the least, all properties of an empty
class (that is, no properties). For instance, a string or a number is assignable to that class. To
prevent that, we add a brand to the class. A brand is a property that does not exist at
runtime, but is used to prevent issues with structural typing.

For rectangles and circles, we create different types. One is filled, one has only the outline.
For such outlines, we can set the thickness:

export class Rectangle {
 __rectangleBrand: void;

 constructor(
 public x = 0,
 public y = 0,
 public width = 1,
 public height = width
) {}
}
export class RectangleOutline {
 __rectangleOutlineBrand: void;

 constructor(
 public x = 0,
 public y = 0,
 public width = 1,
 public height = width,
 public thickness = 1
) {}
}

Pac Man in HTML5

[184]

If we do not add a brand to these definitions, a Rectangle will be assignable to a
RectangleOutline. These brands are also necessary to differentiate a rectangle and a
circle:

export class Circle {
 __circleBrand: void;

 constructor(
 public x = 0,
 public y = 0,
 public width = 1,
 public height = width
) {}
}
export class CircleOutline {
 __circleOutlineBrand: void;

 constructor(
 public x = 0,
 public y = 0,
 public width = 1,
 public height = width,
 public thickness = 1
) {}
}

We define a line as a list of points and a thickness:

export type Point = [number, number];
export type Path = Point[];
export class Line {
 __lineBrand: void;

 constructor(
 public path: Path,
 public thickness: number
) {}
}

Pac Man in HTML5

[185]

Next, we define the type for text:

export class Text {
 __textBrand: void;

 constructor(
 public text: string,
 public font: string
) {}
}

Wrapping other pictures
We can wrap other pictures and create new ones. For instance, we will change the color of a
picture with Color. With this definition we can write new Color("#ff0000", new
Circle(0, 0, 2, 2)) to get a red circle:

export class Color {
 __colorBrand: void;

 constructor(
 public color: string,
 public picture: Picture
) {}
}

We could also reposition a picture. This is usually called translating. new Translate(100,
100, new Circle(0, 0, 2, 2)) draws a circle around (100, 100) instead of (0, 0):

export class Translate {
 __translateBrand: void;

 constructor(
 public x: number,
 public y: number,
 public picture: Picture
) {}
}

Pac Man in HTML5

[186]

As the name suggests, Rotate rotates some other picture:

export class Rotate {
 __rotateBrand: void;

 constructor(
 public angle: number,
 public picture: Picture
) {}
}

We can resize a picture with Scale. new Scale(5, 5, new Circle(0, 0, 2, 2))
would draw a circle of 10×10 instead of 2×2:

export class Scale {
 __scaleBrand: void;

 constructor(
 public x: number,
 public y: number,
 public picture: Picture
) {}
}

The last class provides a way to show multiple pictures as one picture:

export class Pictures {
 __picturesBrand: void;

 constructor(
 public pictures: Picture[]
) {}
}

In lib/framework/draw.ts, we will draw these pictures on a canvas. We will implement
that function later; we will now only define its header:

import { Picture, Rectangle, RectangleOutline, Circle, CircleOutline, Line,
Text, Color, Translate, Rotate, Scale, Pictures, Path } from "./picture";

export function drawPicture(context: CanvasRenderingContext2D, item:
Picture) { }

We have now defined all the data types needed to draw a picture. We will create events
before we implement the drawPicture function.

Pac Man in HTML5

[187]

Creating events
The application can accept keyboard events. We will distinguish between two kinds of
event: a key press and a key release. We will not add mouse events, but you can add these
yourself. We define these events in lib/framework/event.ts.

Every key has a certain key code, a number that identifies a key. For instance, the left arrow
key has code 37. We will add the key code to the event class:

export const enum KeyEventKind {
 Press,
 Release
}
export class KeyEvent {
 constructor(
 public kind: KeyEventKind,
 public keyCode: number
) {}
}

We define the event source as a function that will be invoked every step. It will return a list
of events that occurred in that step.

export function createEventSource(element: HTMLElement) {
 let queue: KeyEvent[] = [];

 const handleKeyEvent = (kind: KeyEventKind) => (e: KeyboardEvent) => {
 e.preventDefault();
 queue.push(new KeyEvent(
 kind,
 e.keyCode
));
 };
 const keypress = handleKeyEvent(KeyEventKind.Press);
 const keyup = handleKeyEvent(KeyEventKind.Release);
 element.addEventListener("keydown", keypress);
 element.addEventListener("keyup", keyup);
 function events() {
 const result = queue;
 queue = [];
 return result;
 }
 return events;
}

We will call this function in every step to check for new events. In the next section, we will
pass these events to the event handler, which will update the game state.

Pac Man in HTML5

[188]

Binding everything together
In lib/framework/game.ts, we will bind these components together. We will create a
function that starts the event loop and updates the state every step. The function has these
arguments:

The canvas element on which the game will be drawn.
The event element. Events on this element will be sent to the event handler. This
does not have to be the same element as the canvas. An element needs focus to
get keyboard events. Since the canvas does not always have focus, it can be better
to listen for events on the body element, if there is only one game on the web
page.
The amount of frames per second.
The initial state of the game.
A function that draws the state.
The time handler.
The event handler.

We register the type of the state as a generic or type argument. Users of this function can
provide their own type. TypeScript will automatically infer this type based on the value of
the state argument:

import { Picture } from "./picture";
import { drawPicture } from "./draw";
import { createEventSource, KeyEvent } from "./event";

export function game<UState>(
 canvas: HTMLCanvasElement,
 eventElement: HTMLElement,
 fps: number,
 state: UState,
 drawState: (state: UState, width: number, height: number) => Picture,
 timeHandler: (state: UState) => UState = x => x,
 eventHandler: (state: UState, event: KeyEvent) => UState) {

With createEventSource, which we have written before, we can get an event source for
the specified element:

 const eventSource = createEventSource(eventElement);

To set up drawing, we must acquire the rendering context:

 const context = canvas.getContext("2d")!;

Pac Man in HTML5

[189]

The function getContext may return null when the context type is not supported. The
type 2d is supported in all browsers that support a canvas, so we can safely cast it with an
exclamation mark. This cast will remove the null ability from the type. We create an
interval, such that the step function will be called multiple times per second, based on the
fps parameter:

 setInterval(step, 1000 / fps);

We will use the function requestAnimationFrame to render the view. This function takes
a callback that will be called when the browser wants to redraw the page. If the browser
does not need to redraw, or it has no time for it, it will not try to redraw it. If the draw
function is pure, this does not affect the game:

 let drawAnimationFrame = -1;
 draw();

 function step() {
 let previous = state;
 for (const event of eventSource()) {
 state = eventHandler(state, event);
 }
 state = timeHandler(state);
 if (previous !== state && drawAnimationFrame === -1) {
 drawAnimationFrame = requestAnimationFrame(draw);
 }
 }

Finally, we create the draw function. This function renders the picture in the center of the
screen. A canvas has an x-axis that goes to the left and a y-axis that goes down. In
mathematics, however, the y-axis goes to the top. We will choose the latter and flip the
whole picture. context.restore(); will restore the state to the state at context.save().
The transformations do not influence any drawings after the draw function, for instance in
the next step:

 function draw() {
 drawAnimationFrame = -1;
 const { width, height } = canvas;

 context.clearRect(0, 0, width, height);

 context.save();
 context.translate(Math.round(width / 2), Math.round(height / 2));
 context.scale(1, -1);

 drawPicture(context, drawState(state, width, height));

Pac Man in HTML5

[190]

 context.restore();
 }
}

We will use the save and restore function in the next section too. We will then draw all
kinds of picture on the canvas.

Drawing on the canvas
In lib/framework/draw.ts, we will implement the drawPicture function that we
created before. Using instanceof we can check which kind of picture we must draw.

We will interpret the location of an object as the center of it. Thus, new Rectangle(10,
10, 100, 100) will draw a rectangle around 10,10. We can draw the outline of a rectangle
or the whole rectangle with strokeRect and fillRect:

import { Picture, Rectangle, RectangleOutline, Circle, CircleOutline, Line,
Text, Color, Translate, Rotate, Scale, Pictures, Path } from "./picture";

export function drawPicture(context: CanvasRenderingContext2D, item:
Picture) {
 context.save();
 if (item instanceof RectangleOutline) {
 const { x, y, width, height, thickness } = item;
 context.strokeRect(x - width / 2, y - height / 2, width, height);
 } else if (item instanceof Rectangle) {
 const { x, y, width, height } = item;
 context.fillRect(x - width / 2, y - height / 2, width, height);

To draw a circle, we use the arc function. That function does not draw the circle itself, but
only registers its path. We can draw the line or fill it using stroke or fill. We must wrap arc
with beginPath and closePath to do that:

 } else if (item instanceof CircleOutline || item instanceof Circle) {
 const { x, y, width, height } = item;
 if (width !== height) {
 context.scale(1, height / width);
 }
 context.beginPath();
 context.arc(x, y, width / 2, 0, Math.PI * 2);
 context.closePath();
 if (item instanceof CircleOutline) {
 context.lineWidth = item.thickness;
 context.stroke();
 } else {

Pac Man in HTML5

[191]

 context.fill();
 }

For a line, we must do something similar. With lineTo, we can draw one section of the line.
A line does not have to be closed; it does not have to end at the location it started. Thus, we
do not call closePath:

 } else if (item instanceof Line) {
 const { path, thickness } = item;
 context.lineWidth = thickness;
 context.beginPath();
 if (path.length === 0) return;
 const [head, ...tail] = path;
 const [headX, headY] = head;
 context.moveTo(headX, headY);
 for (const [x, y] of tail) {
 context.lineTo(x, y);
 }
 context.stroke();

With fillText, we can draw text on the canvas. We will center the text. We must also scale
the text, since we have flipped the whole canvas in game.ts. If you forget this, the text
would be upside down:

 } else if (item instanceof Text) {
 const { text, font } = item;
 context.scale(1, -1);
 context.font = font;
 context.textAlign = "center";
 context.textBaseline = "middle";
 context.fillText(text, 0, 0);

We will draw pictures that contain other pictures, such as Color or Pictures, with
recursion. For Color, we can simply set the color on the context:

 } else if (item instanceof Color) {
 const { color, picture } = item;
 context.fillStyle = color;
 context.strokeStyle = color;
 drawPicture(context, picture);

For Translate, Rotate, and Scale, we can use the translate, rotate, and scale
functions that exist on the rendering context:

 } else if (item instanceof Translate) {
 const { x, y, picture } = item;
 context.translate(x, y);

Pac Man in HTML5

[192]

 drawPicture(context, picture);
 } else if (item instanceof Rotate) {
 const { angle, picture } = item;
 context.rotate(angle);
 drawPicture(context, picture);
 } else if (item instanceof Scale) {
 const { x, y, picture } = item;
 context.scale(x, y);
 drawPicture(context, picture);

For Pictures, we can use a loop to render all pictures:

 } else if (item instanceof Pictures) {
 const { pictures } = item;
 for (const picture of pictures) {
 drawPicture(context, picture);
 }
 }

Finally, we restore the state of the context:

 context.restore();
}

We have now finished the work on the framework. We will develop the game in the next
section.

Adding utility functions
We will write several utility functions in lib/game/utils.ts. With flatten, we will
transform an array of arrays into one array.

export function flatten<U>(source: U[][]): U[] {
 return (<U[]>[]).concat(...source);
}

With update, we can modify some properties of an object. This is the same function as in
previous chapters.

export function update<U extends V, V>(old: U, changes: V): U {
 const result = Object.create(Object.getPrototypeOf(old));
 for (const key of Object.keys(old)) {
 result[key] = (<any> old)[key];
 }
 for (const key of Object.keys(changes)) {
 result[key] = (<any> changes)[key];

Pac Man in HTML5

[193]

 }
 return result;
}

Next, we will create a function for working with Math.random. randomInt will return a
random integer in a certain range and chance has a chance to return true:

export function randomInt(min: number, max: number) {
 return min + Math.floor(Math.round(
 Math.random() * (max - min + 1)
));
}
export function chance(x: number) {
 return Math.random() < x;
}

We can calculate the difference between two points with the Pythagorean theorem:

export function square(x: number) {
 return x * x;
}
export function distance(x1: number, y1: number, x2: number, y2: number) {
 return Math.sqrt(square(x1 - x2) + square(y1 - y2));
}

Finally, we write a function that checks whether a number is an integer:

export function isInt(x: number) {
 return Math.abs(Math.round(x) - x) < 0.001;
}

Due to rounding errors, we must check that the value is near an integer.

Creating the models
In lib/game/model.ts, we will create the models for the game. These models will contain
the state of the game, such as the location of the enemies, walls, and dots. The state must
also contain the current movement of the player and the difficulty level, as the game will
have multiple difficulties.

Pac Man in HTML5

[194]

Using enums
We start with several enums. We can store the difficulty with such an enum:

export enum Difficulty {
 Easy,
 Hard,
 Extreme
}

The values of an enum are converted to numbers during compilation. TypeScript gives the
first element zero as the value, the next item one, and so on. In this example, Easy is 0, Hard
is 1, and Extreme is 2. However, you can also provide other values. For some applications,
this can be useful. We will use custom values to define Movement. This enum contains the
four directions in which the player can move. In case the user does not move, we use None.
We give the members a value:

export enum Movement {
 None = 0,
 Left = 1,
 Right = -1,
 Top = 2,
 Bottom = -2
}

With these values, we can easily create a function that checks whether two movements are
in the opposite direction: their sum should equal zero:

export function isOppositeMovement(a: Movement, b: Movement) {
 return a + b === 0;
}

Other useful patterns that are often used are bitwise values. A number is stored in a
computer as multiple bits. For instance, 00000011 (binary) equals 3 (decimal). You can
calculate the decimal value of a binary number as follows. The first position from the right
has value 1. The next has value 2, then 4, 8, and so on. Summing the values of the positions
with a one results in the decimal value.

You can use this binary representation to store multiple Booleans in a number. 00000011
would then mean that the first two values are true, and the other values are 0. We use an
enum to define the names of these properties. <<is the bitwise shift operator. 1 << x means
that 00000001 is shifted x bits to the left. For instance, 1 << 4 results in 00010000:

export enum Side {
 Left = 1 << 0,
 Right = 1 << 1,

Pac Man in HTML5

[195]

 Top = 1 << 2,
 Bottom = 1 << 3,
 LeftTop = 1 << 4,
 RightTop = 1 << 5,
 LeftBottom = 1 << 6,
 RightBottom = 1 << 7
}

We can combine multiple values using the bitwise or operator, |. A bit of the output is 1 if
at least one of the input bits on that position is 1. Thus, Side.Left | Side.Right equals
00000011. We can check whether some bit is true with the bitwise and operator, &. A bit of
the output of this operator is 1 if both input bits on that position are 1. For instance,
00000011 and Side.Right results in 00000010. This is not zero, so the Boolean value of
Side.Right in that number is true.

We will use this later on to draw the edges of the walls. As you can see in the following
screenshot, the edges of all walls are drawn.

Storing the level
Now, we will define a model that can store the state of a level. A level contains several
objects that are placed in a certain location:

export interface Object {
 x: number;
 y: number;
}

Pac Man in HTML5

[196]

An enemy should also contain the location at which it is targeted. An enemy might not
always know where the player is, so it cannot always run toward the player:

export interface Enemy extends Object {
 toX: number;
 toY: number;
}

For a wall, we store the sides on which walls exist. These neighbors are used to draw the
walls:

export interface Wall extends Object {
 neighbours: Side;
}

We can store these objects in the level. We also store the size of the grid, the current
movement and the movement based on the keyboard input in the level:

export interface Level {
 walls: Wall[];
 dots: Object[];
 enemies: Enemy[];
 player: Object;
 width: number;
 height: number;
 inputMovement: Movement;
 currentMovement: Movement;
 difficulty: Difficulty;
}

Creating the default level
We will write a function that can parse a level, based on a string. This allows us to create the
level as follows:

const defaultLevel = parseLevel([
 "WWWWWWWWWWWWWWW",
 "W....E........W",
 "W.WWWWW.WWWWW.W",
 "W.W...W.W...W.W",
 "WE..W.....W...W",
 "W.W...W.W...W.W",
 "W.WWWWW.WWWWW.W",
 "W.............W",
 "WWWW.WW WW.WWWW",
 "W....W W....W",

Pac Man in HTML5

[197]

 "W.WW.W P W.WW.W",
 "W.WW.WW WW.WWEW",
 "W.............W",
 "WWWWWWWWWWWWWWW"
]);

A W means that there should be a wall in that location, E stands for an enemy, P for the
player, and a dot for a dot that Pac Man can eat.

To parse a level, we will first split these strings into an array of arrays, our grid:

function parseLevel(data: string[]): Level {
 const grid = data.map(row => row.split(""));

We will create a function mapBoard, which will transform this grid into an array of objects.
toObject creates an object if the grid contains the specified character in that location:

 return {
 walls: mapBoard(toWall),
 dots: mapBoard(toObject(".")),
 enemies: mapBoard(toEnemy),
 player: mapBoard(toObject("P"))[0],
 width: grid[0].length,
 height: grid.length,
 inputMovement: Movement.None,
 currentMovement: Movement.None,
 difficulty: Difficulty.Easy
 };

In mapBoard, we first apply the callback to each element of the grid. We then flatten the
grid to a one dimensional array. We filter elements that are undefined out of this array, as
the callback should return undefined when the element in the grid at that location is not
the expected kind:

function mapBoard<U>(callback: (field: string, x: number, y: number) => U |
undefined): U[] {
 const mapped = grid.map((row, y) => row.map((field, x) =>
 callback(field, x, y)));
 return flatten(mapped).filter(item => item !== undefined)
 as U[];
 }

We have to cast the value in the return-statement. The TypeScript compiler cannot follow
that the call to filter only passes through values that are not undefined.

Pac Man in HTML5

[198]

In toObject, we create a function that will create an object if the grid contains the specified
character at that position. A function that returns a function can be used to curry. Currying
means that you first provide some arguments, and later on the other arguments. In this
case, we provide the first argument, the kind within the return statement, some preceding
lines. The other arguments are provided by the mapBoard function:

 function toObject(kind: string) {
 return (value: string, x: number, y: number) => {
 if (value !== kind) return undefined;
 return { x, y };
 } We will return the content of a field of the grid in get. If the
index is out of bounds, we

 }

We will return the content of a field of the grid in get. If the index is out of bounds, we
return undefined:

 function get(x: number, y: number) {
 const row = grid[y];
 if (!row) return undefined;
 return row[x];
 }

We use this function to check for the neighbors of a wall. Using the bitwise defined enum,
we can register all sides on which the wall has a neighbor:

function toWall(kind: string, x: number, y: number): Wall | undefined {
 if (kind !== "W") return undefined;
 let neighbours: Side = 0;
 if (get(x - 1, y) === "W") neighbours |= Side.Left;
 if (get(x + 1, y) === "W") neighbours |= Side.Right;
 if (get(x, y - 1) === "W") neighbours |= Side.Bottom;
 if (get(x, y + 1) === "W") neighbours |= Side.Top;
 if (get(x - 1, y - 1) === "W") neighbours |= Side.LeftBottom;
 if (get(x - 1, y + 1) === "W") neighbours |= Side.LeftTop;
 if (get(x + 1, y - 1) === "W") neighbours |= Side.RightBottom;
 if (get(x + 1, y + 1) === "W") neighbours |= Side.RightTop;
 return {
 x,
 y,
 neighbours
 }
 }

Pac Man in HTML5

[199]

In toEnemy, we set the initial location of the enemy and the target location to the same
values:

 function toEnemy(kind: string, x: number, y: number) {
 if (kind !== "E") return undefined;
 return {
 x,
 y,
 toX: x,
 toY: y
 };
 }
}

Finally, we create a small function that checks whether an object is aligned on the grid:

export function onGrid({ x, y }: Object) {
 return isInt(x) && isInt(y);
}

We have now created the default level. You can easily add another level later on, when the
main menu has been added.

Creating the state
We store the state in a new interface. We will also define the default state for our game:

export interface State {
 level: Level;
}
export const defaultState: State = {
 level: defaultLevel
};

This interface is, at the moment, not very useful as you might be better off using the Level
as the game state. However, later on in this chapter, we will also add a menu that should
exist in the state.

Pac Man in HTML5

[200]

Drawing the view
In lib/game/view.ts, we will render the game. We start with importing types that we
defined earlier:

import { State, Level, Object, Wall, Side, Menu } from "./model";
import { Picture, Pictures, Translate, Scale, Rotate, Rectangle, Line,
Circle, Color, Text, Empty } from "../framework/picture";

We will store the font name in a variable, so we can easily change it later:

const font = "Arial";

In draw, we will render the game. For now, that means only drawing the level. Later on, we
will add a menu to the game:

export function draw(state: State, width: number, height: number) {
 drawLevel(state.level, width, height),
}

We render the level in drawLevel. We calculate the size of all objects with the size of the
grid and the canvas:

function drawLevel(level: Level, width: number, height: number) {
 const scale = Math.min(width / (level.width + 1), height / (level.height
+ 1));

We scale and center the whole level with this calculated scale:

 return new Scale(scale, scale,
 new Translate(-level.width / 2 + 0.5, -level.height / 2 + 0.5, new
Pictures([

Next, we draw all objects on the canvas. We use several functions that we create as follows:

 drawObjects(level.walls, drawWall),
 drawObjects(level.walls, drawWallLines),
 drawObjects(level.dots, drawDot),
 drawObjects(level.enemies, drawEnemy),
 drawObject(drawPlayer)(level.player)
]))
);

Pac Man in HTML5

[201]

In drawObject, we draw an object using the specified callback. We translate the picture of
the object to the right location:

 function drawObject<U extends Object>(callback: (item: U) => Picture) {
 return (item: U) =>
 new Translate(item.x, item.y, callback(item));
 }

With drawObjects, we can draw a list of objects:

 function drawObjects<U extends Object>(items: U[], callback: (item: U) =>
Picture) {
 return new Pictures(items.map(drawObject(callback)));
 }
}

In drawWall, we render the background of a wall:

function drawWall() {
 return new Color("#111", new Rectangle(0, 0, 1, 1));
}

We render the edges of a wall in drawWallLines. We check the neighbors of a wall with
the bitwise enum that we defined earlier. First, we list all possible sides in an array:

const leftTop: [number, number] = [-0.5, 0.5];
const leftBottom: [number, number] = [-0.5, -0.5];
const rightTop: [number, number] = [0.5, 0.5];
const rightBottom: [number, number] = [0.5, -0.5];
const wallLines: [Side, Line][] = [
 [Side.Left, new Line([leftTop, leftBottom], 0.1)],
 [Side.Right, new Line([rightTop, rightBottom], 0.1)],
 [Side.Top, new Line([leftTop, rightTop], 0.1)],
 [Side.Bottom, new Line([leftBottom, rightBottom], 0.1)]
];

We filter this array with the bitwise enum, and color the remaining pieces:

function drawWallLines({ neighbours }: Wall) {
 const lines = wallLines
 .filter(([side]) => (side & neighbours) === 0)
 .map(([side, line]) => line);
 return new Color("#0021b3", new Pictures(lines));
}

Pac Man in HTML5

[202]

In drawDot, we will show a small circle for a dot:

function drawDot() {
 return new Color("#f0c0a8", new Circle(0, 0, 0.2, 0.2));
}

We render the player as a circle. You can try to create the famous, eating Pac Man yourself
later on:

function drawPlayer() {
 return new Color("#ffff00", new Circle(0, 0, 0.8, 0.8));
}

We do some more work to draw an enemy. The enemy will look as follows:

The background of the enemy consists of a circle for its head, a rectangle for the body, and
two rotated rectangles for the feet.

function drawEnemy() {
 const shape = new Color("#ff0000", new Pictures([
 new Circle(0, 0.15, 0.6),
 new Rectangle(0, -0.05, 0.6, 0.4),
 new Translate(-0.15, -0.25,
 new Rotate(Math.PI / 4, new Rectangle(0, 0, 0.2, Math.SQRT2 *
0.15))),
 new Translate(0.15, -0.25,
 new Rotate(Math.PI / 4, new Rectangle(0, 0, 0.2, Math.SQRT2 * 0.15)))
]));

Pac Man in HTML5

[203]

The eyes consist of two white circles with two smaller black circles as pupils.

 const eyes = new Color("#fff", new Pictures([
 new Circle(-0.12, 0.15, 0.2),
 new Circle(0.12, 0.15, 0.2)
]));
 const pupils = new Color("#000", new Pictures([
 new Circle(-0.12, 0.15, 0.06),
 new Circle(0.12, 0.15, 0.06)
]));
 return new Pictures([shape, eyes, pupils]);
}

Handling events
We will create an event handler in lib/game/event.ts. The event handler must set the
correct movement direction in the state. The time handler will then use this to update the
direction of the player. The step can only do that when the player is aligned to the grid. If
the player is between two fields on the grid, we will not change the direction of the player,
since he will then probably head into a wall.

Working with key codes
An event provides the key code of the pressed or released key. We can get this code of a
certain character with "x".charCodeAt(0) (where x is the character). The key codes of
left, top, right, and bottom are 37, 38, 39, and 40.

First, we must create a helper function that transforms a key code to the Movement enum
that we defined earlier. We store the different keys that we use in a new enum:

import { KeyEvent, KeyEventKind } from "../framework/event";
import { State, Movement } from "./model";
import { update } from "./utils";

enum Keys {
 Top = 38,
 Left = 37,
 Bottom = 40,
 Right = 39,
 Space = " ".charCodeAt(0)
}

Pac Man in HTML5

[204]

Now we can transform a key code to a Movement:

function getMovement(key: number) {
 switch (key) {
 case Keys.Top:
 return Movement.Top;
 case Keys.Left:
 return Movement.Left;
 case Keys.Bottom:
 return Movement.Bottom;
 case Keys.Right:
 return Movement.Right;
 }
 return undefined;
}

The event handler will invoke eventHandlerPlaying, which we will define later on in
this section. When we add a menu to the application, we will adjust this handler:

export function eventHandler(state: State, event: KeyEvent) {
 return eventHandlerPlaying(state, event);
}

In eventHandlerPlaying, we update the movement in the state. When the user presses a
key, we set the movement to that corresponding direction. When the user releases the key
that maps to the current movement, we set the movement to None:

function eventHandlerPlaying(state: State, event: KeyEvent) {
 if (event instanceof KeyEvent) {
 const inputMovement = getMovement(event.keyCode);
 if (event.kind === KeyEventKind.Press) {
 if (inputMovement) {
 return update(state, {
 level: update(state.level, { inputMovement })
 });
 }
 } else {
 if (inputMovement === state.level.inputMovement) {
 return update(state, {
 level: update(state.level, { inputMovement: Movement.None })
 });
 }
 }
 }
 return state;
}

Pac Man in HTML5

[205]

We have now finished the event handler for the game. When the user presses or releases a
key, this is updated in the state. However, the real work is being done in the time handler,
which we create in the next section.

Creating the time handler
The time handler requires some more work. First, we import other types and functions.

import { State, Level, Object, Enemy, Wall, Movement, isOppositeMovement,
onGrid, Difficulty } from "./model";
import { update, randomInt, chance, distance, isInt } from "./utils";

We define a step function so that we can add the menu later on.

export function step(state: State) {
 return stepLevel(state);
}

In stepLevel, we can update the objects in the level. First, we update the location of the
enemies. We use stepEnemy, which we define later on.

function stepLevel(state: State): State {
 const level = state.level;
 const enemies = level.enemies.map(enemy => stepEnemy(enemy, level.player,
level.walls, level.difficulty));

We update the location of the player based on the current movement:

 const player = stepPlayer(level.player, level.currentMovement,
level.walls);

Dots that are near the player, are eaten by the player and removed from the level:

 const dots = stepDots(level.dots, player);

We change the current movement if the player is aligned on the grid or when they wants to
move in the opposite direction:

 const currentMovement = onGrid(player) ||
isOppositeMovement(level.inputMovement, level.currentMovement) ?
level.inputMovement : level.currentMovement;

Pac Man in HTML5

[206]

We use these values to update the level:

 const newLevel = update(level, { enemies, dots, player, currentMovement
});
 return update(state, { level: newLevel });
}

Now, we create a function that checks whether an object collides with a wall:

function collidesWall(x: number, y: number, walls: Wall[]) {
 for (const wall of walls) {
 if (Math.abs(wall.x - x) < 1 && Math.abs(wall.y - y) < 1) {
 return true;
 }
 }
 return false;
}

Next, we create a function that updates the position of an enemy. The enemy can walk
0.0125 points if the difficulty is easy, otherwise,they can move 0.025 point. These values are
chosen so that after a certain amount of steps, the enemy has walked exactly 1 point on the
grid. Thus, the enemy will always be aligned to the grid again:

function stepEnemy(enemy: Enemy, player: Object, walls: Wall[], difficulty:
Difficulty): Enemy {
 const enemyStepSize = difficulty === Difficulty.Easy ? 0.0125 : 0.025;

 let { x, y, toX, toY } = enemy;

With a certain chance, the enemy will target on the player again. An enemy cannot always
see where the player is, and the chance simulates that. Also, the enemy will get a small
deviation:

 if (chance(1 / (difficulty === Difficulty.Extreme ? 30 : 10))) {
 toX = Math.round(player.x) + randomInt(-2, 2);
 toY = Math.round(player.y) + randomInt(-2, 2);
 }

If the enemy is aligned on the grid, it can move in all directions. Otherwise, it can only walk
ahead or back:

 if (!isInt(x)) {
 x += toX > x ? enemyStepSize : -enemyStepSize;
 } else if (!isInt(y)) {
 y += toY > y ? enemyStepSize : -enemyStepSize;
 } else {

Pac Man in HTML5

[207]

The player is aligned on the grid, but the location might have a small rounding error. Thus,
we round the values here.

 x = Math.round(x);
 y = Math.round(y);

To walk around, we first create an array of all options. Then, we filter these options and sort
them. With a chance of 0.2, the enemy will choose the second-best option. Otherwise, it will
choose the best option. The best option is the option that brings the enemy as close to the
enemy:

 const options: [number, number][] = [
 [x + enemyStepSize, y],
 [x - enemyStepSize, y],
 [x, y + enemyStepSize],
 [x, y - enemyStepSize]
];
 const possible = options
 .filter(([x, y]) => !collidesWall(x, y, walls))
 .sort(compareDistance);
 if (possible.length !== 0) {
 if (possible.length > 1 && chance(0.2)) {
 [x, y] = possible[1];
 }
 [x, y] = possible[0];
 }
 }
 return {
 x, y, toX, toY
 };

At the end of this function, we define the compare function that we used to sort the array.
Such compare functions should return a negative value if the first argument comes after the
second argument, and a positive value if the first argument should come before the other:

 function compareDistance([x1, y1]: [number, number], [x2, y2]: [number,
number]) {
 return distance(toX, toY, x1, y1) - distance(toX, toY, x2, y2);
 }
}

Pac Man in HTML5

[208]

We update the location of the player in stepPlayer:

const playerStepSize = 0.04;
function stepPlayer(player: Object, movement: Movement, walls: Wall[]):
Object {
 let { x, y } = player;

When the player is aligned on the grid, we round the location to eliminate rounding errors:

 if (onGrid(player)) {
 x = Math.round(x);
 y = Math.round(y);
 }

If the user has no movement, we do not modify the player and we can return it directly:

 switch (movement) {
 case Movement.None:
 return player;

Otherwise, we update the x or y coordinate of the player:

 case Movement.Left:
 x -= playerStepSize;
 break;
 case Movement.Right:
 x += playerStepSize;
 break;
 case Movement.Top:
 y += playerStepSize;
 break;
 case Movement.Bottom:
 y -= playerStepSize;
 break;
 }

If the user was not aligned on the grid, we do not have to check whether the player collides
with a wall. Otherwise, we must validate it. If the user then does collide with a wall, we
return the old player with the old location:

 if (onGrid(player) && collidesWall(x, y, walls)) {
 return player;
 }
 return { x, y };
}

Pac Man in HTML5

[209]

We can filter the dots by calculating the distance to Pac Man. When they are close to the
player, they are eaten by Pac Man and filtered out:

function stepDots(dots: Object[], player: Object) {
 return dots.filter(dot => distance(dot.x, dot.y, player.x, player.y) >=
0.55)
}

The time handler can now update the state: the player moves, the enemies try to move
toward the player, and the player can eat dots.

Running the game
To start the game, we must call the game function with the default state, draw function,
time handler, and event handler. In lib/game/index.ts, we write the following code to
start the game:

import { game } from "../framework/game";
import { defaultState } from "./model";
import { draw } from "./view";
import { step } from "./step";
import { eventHandler } from "./event";

const canvas = <HTMLCanvasElement> document.getElementById("game");
game(canvas, document.body, 60, defaultState, draw, step, eventHandler);

We can compile the game by executing gulp. You can play the game by opening
static/index.html.

As you will see, nothing happens when you have eaten all of the dots, or when you get hit
by an enemy. In the next section, we will implement a menu. When the player wins or loses,
we will show this menu.

Pac Man in HTML5

[210]

Adding a menu
To finish off the game, we will add some menus to it. In the main menu, the user can choose
a difficulty. The user can select an option using the arrow keys and confirm using the
spacebar. The menu will look like this:

To implement the menu, we must add it to the state. Then we can render the menu and
update the menu state in the event handler. We start by updating the state.

Changing the model
In lib/game/model.ts, we will add the menus to the state. First, we will create a new
type for the menu. The menu contains a title, a list of options, and the index of the selected
button. Each option has a string and a function that applies the action by transforming the
state:

export interface Menu {
 title: string;
 options: [string, (state: State) => State][];
 selected: number;
}

Pac Man in HTML5

[211]

We add the menu to the State:

export interface State {
 menu: Menu | undefined;
 level: Level;
}

The main menu will contain three buttons; to start an easy, hard, or extreme game. We will
define a function that can start the game with a specified difficulty:

const startGame = (difficulty: Difficulty) => (state: State) => ({
 menu: undefined,
 level: update(defaultLevel, { difficulty })
});

Now we can define the main menu:

export const menuMain: Menu = {
 title: "Pac Man",
 options: [
 ["Easy", startGame(Difficulty.Easy)],
 ["Hard", startGame(Difficulty.Hard)],
 ["Extreme", startGame(Difficulty.Extreme)]
],
 selected: 0
}

We can define two more menus, which are shown when the user wins or dies:

export const menuWon: Menu = {
 title: "You won!",
 options: [
 ["Back", state => ({ menu: menuMain, level: state.level })]
],
 selected: 0
}
export const menuLost: Menu = {
 title: "Game over!",
 options: [
 ["Back", state => ({ menu: menuMain, level: state.level })]
],
 selected: 0
}

Pac Man in HTML5

[212]

We can use this menu in the starting state of the application:

export const defaultState: State = {
 menu: menuMain,
 level: defaultLevel
};

Since the menu is a part of the default state, the game will start with the menu. In the next
sections, we will render the menu and handle its events.

Rendering the menu
We must update lib/game/view.ts to draw the menu on the canvas. We change the draw
function:

export function draw(state: State, width: number, height: number) {
 return new Pictures([
 drawLevel(state.level, width, height),
 drawMenu(state.menu, width, height)
]);
}

Next, we create drawMenu, that will render the level. It will show the title and the buttons.
The selected button gets a different color:

function drawMenu(menu: Menu | undefined, width: number, height: number):
Picture {
 if (menu === undefined) return new Empty();
 const selected = menu.selected;
 const background = new Color("rgba(40,40,40,0.8)", new
 Rectangle(0, 0, width, height));
 const title = new Translate(0, 200, new Scale(4, 4,
 new Color("#fff", new Text(menu.title, font))
));
 const options = new Pictures(menu.options.map(showOption));

 return new Pictures([background, title, options]);

 function showOption(item: [string, (state: State) => State],
 index: number) {
 const isSelected = index === selected;
 return new Translate(0, 100 - index * 50, new Pictures([
 new Color(isSelected ? "#ff0000" : "#000000",
 new Rectangle(0, 0, 200, 40)),
 new Color(isSelected ? "#000000" : "#ffffff",
 new Scale(1.6, 1.6, new Text(item[0], font)))

Pac Man in HTML5

[213]

]));
 }
}

This function will now draw the menu when it is active. We must still handle the events of
the menu. We will do that in the next section.

Handling events
In lib/game/event.ts, we will handle the events for the menu. We must update the
index of the selected item when the user presses the up or down key. When the user presses
space, we execute the action of the selected button. First, we must adjust eventHandler to
call eventHandlerMenu when the menu is visible.

export function eventHandler(state: State, event: KeyEvent) {
 if (state.menu) {
 return eventHandlerMenu(state, event);
 } else {
 return eventHandlerPlaying(state, event);
 }
}

Next, we create eventHandlerMenu.

function eventHandlerMenu(state: State, event: KeyEvent) {

 if (event instanceof KeyEvent && event.kind === KeyEventKind.Press) {
 const menu = state.menu!;
 let selected = menu.selected;
 switch (event.keyCode) {
 case Keys.Top:
 selected--;
 if (selected < 0) {
 selected = menu.options.length - 1;
 }
 return {
 menu: update(menu, {
 selected
 }),
 level: state.level
 };
 case Keys.Bottom:
 selected++;
 if (selected >= menu.options.length) {
 selected = 0;
 }

Pac Man in HTML5

[214]

 return {
 menu: update(menu, {
 selected
 }),
 level: state.level
 };
 case Keys.Space:
 const option = menu.options[menu.selected];
 return option[1](state);
 default:
 return state;
 }
 }
 return state;
}

You can navigate through the menu using the arrow keys and the space bar. However, in
the background, the game is still running. In the next section, we will not update the state
of the level when the menu is active. Also, we will show a menu when the user has won
or lost.

Modifying the time handler
In lib/game/step.ts, we must show the menu when the user won or lost. We must
change the import-statement to import menuLost and menuWon from model:

import { State, Level, Object, Enemy, Wall, Movement, isOppositeMovement,
menuLost, menuWon, onGrid, Difficulty } from "./model";

In newMenu, we check whether such a menu should be shown.

function newMenu(player: Object, dots: Object[], enemies: Enemy[]) {
 for (const enemy of enemies) {
 if (distance(enemy.x, enemy.y, player.x, player.y) <= 1) {
 return menuLost;
 }
 }
 if (dots.length === 0) return menuWon;
 return undefined;
}

In stepLevel, we must call this function.

function stepLevel(state: State): State {
 const level = state.level;
 const enemies = level.enemies.map(enemy => stepEnemy(enemy, level.player,

Pac Man in HTML5

[215]

level.walls, level.difficulty));
 const player = stepPlayer(level.player, level.currentMovement,
level.walls);
 const dots = stepDots(level.dots, player);
 const currentMovement = onGrid(player) ||
isOppositeMovement(level.inputMovement, level.currentMovement) ?
level.inputMovement : level.currentMovement;
 const menu = newMenu(player, dots, enemies);
 const newLevel = update(level, { enemies, dots, player, currentMovement
});
 return update(state, { level: newLevel, menu });
}

Finally, we must not call stepLevel in step if the menu is active.

export function step(state: State) {
 if (state.menu === undefined) {
 return stepLevel(state);
 } else {
 return state;
 }
}

We can now compile the game again with gulp and run it by opening
static/index.html.

Summary
In this chapter, we have explored the HTML canvas. We have seen how we can design a
framework to use functional programming. The framework provides abstraction around
drawing on the canvas, which is not pure.

We have built the game Pac Man. The structure of this application was similar to a Flux
architecture, like we saw in the previous chapter.

The enemies in this game are not very smart. They easily get stuck behind a wall. In the next
chapter, we will take a look at another game, but we will only focus on the artificial
intelligence (AI). We will create an application that can play Tic-Tac-Toe without losing. We
will see how a Minimax strategy works and how we can implement it in TypeScript.

9
Playing Tic-Tac-Toe against an

AI
We built the game Pac Man in the previous chapter. The enemies were not very smart; you
can easily fool them. In this chapter, we will build a game in which the computer will play
well. The game is called Tic-Tac-Toe. The game is played by two players on a grid, usually
three by three. The players try to place their symbols three in a row (horizontal, vertical or
diagonal). The first player can place crosses, the second player places circles. If the board is
full, and no one has three symbols in a row, it is a draw.

The game is usually played on a three-by-three grid and the target is to have three symbols
in a row. To make the application more interesting, we will make the dimension and the
row length variable.

We will not create a graphical interface for this application, since we have already done that
in Chapter 6, Advanced Programming in TypeScript. We will only build the game mechanics
and the artificial intelligence (AI). An AI is a player controlled by the computer. If
implemented correctly, the computer should never lose on a standard three by three grid.
When the computer plays against the computer, it will result in a draft. We will also write
various unit tests for the application.

We will build the game as a command-line application. That means you can play the game
in a terminal. You can interact with the game only with text input:

 It's player one's turn!
 Choose one out of these options:
 1 X|X|
 -+-+-
 |O|
 -+-+-
 | |

Playing Tic-Tac-Toe against an AI

[217]

 2 X| |X
 -+-+-
 |O|
 -+-+-
 | |
 3 X| |
 -+-+-
 X|O|
 -+-+-
 | |
 4 X| |
 -+-+-
 |O|X
 -+-+-
 | |
 5 X| |
 -+-+-
 |O|
 -+-+-
 X| |
 6 X| |
 -+-+-
 |O|
 -+-+-
 |X|
 7 X| |
 -+-+-
 |O|
 -+-+-
 | |X

We will build this application in the following steps:

Creating the project structure
Adding utility functions
Creating the models
Implementing the AI using Minimax
Creating the interface
Testing the AI
Summary

Playing Tic-Tac-Toe against an AI

[218]

Creating the project structure
We will locate the source files in lib and the tests in lib/test. We use gulp to compile
the project and AVA to run tests. We can install the dependencies of our project with NPM:

npm init -y
npm install ava gulp gulp-typescript --save-dev

In gulpfile.js, we configure gulp to compile our TypeScript files:

var gulp = require("gulp");
var ts = require("gulp-typescript");

var tsProject = ts.createProject("./lib/tsconfig.json");

gulp.task("default", function() {
 return tsProject.src()
 .pipe(ts(tsProject))
 .pipe(gulp.dest("dist"));
});

Configure TypeScript
We can download type definitions for NodeJS with NPM:

 npm install @types/node --save-dev

We must exclude browser files in TypeScript. In lib/tsconfig.json, we add the
configuration for TypeScript:

{
 "compilerOptions": {
 "target": "es6",
 "module": "commonjs"
 }

}

For applications that run in the browser, you will probably want to target ES5, since ES6 is
not supported in all browsers. However, this application will only be executed in NodeJS,
so we do not have such limitations. You have to use NodeJS 6 or later for ES6 support.

Playing Tic-Tac-Toe against an AI

[219]

Adding utility functions
Since we will work a lot with arrays, we can use some utility functions. First, we create a
function that flattens a two dimensional array into a one dimensional array:

export function flatten<U>(array: U[][]) {
 return (<U[]>[]).concat(...array);
}

Next, we create a function that replaces a single element of an array with a specified
value. We will use functional programming in this chapter again, so we must use
immutable data structures. We can use map for this, since this function provides both the
element and the index to the callback. With this index, we can determine whether that
element should be replaced:

export function arrayModify<U>(array: U[], index: number, newValue: U) {
 return array.map((oldValue, currentIndex) =>
 currentIndex === index ? newValue : oldValue);
}

We also create a function that returns a random integer under a certain upper bound:

export function randomInt(max: number) {
 return Math.floor(Math.random() * max);
}

We will use these functions in the next sessions.

Creating the models
In lib/model.ts, we will create the model for our game. The model should contain the
game state.

We start with the player. The game is played by two players. Each field of the grid contains
the symbol of a player or no symbol. We will model the grid as a two dimensional array,
where each field can contain a player:

export type Grid = Player[][];

A player is either Player1, Player2, or no player:

export enum Player {
 Player1 = 1,
 Player2 = -1,

Playing Tic-Tac-Toe against an AI

[220]

 None = 0
}

We have given these members values so we can easily get the opponent of a player:

export function getOpponent(player: Player): Player {
 return -player;
}

We create a type to represent an index of the grid. Since the grid is two dimensional, such
an index requires two values:

export type Index = [number, number];

We can use this type to create two functions that get or update one field of the grid. We use
functional programming in this chapter, so we will not modify the grid. Instead, we return
a new grid with one field changed:

export function get(grid: Grid, [rowIndex, columnIndex]: Index) {
 const row = grid[rowIndex];
 if (!row) return undefined;
 return row[columnIndex];
}
export function set(grid: Grid, [row, column]: Index, value: Player) {
 return arrayModify(grid, row,
 arrayModify(grid[row], column, value)
);
}

Showing the grid
To show the game to the user, we must convert a grid to a string. First, we will create a
function that converts a player to a string, then a function that uses the previous function to
show a row, finally a function that uses these functions to show the complete grid.

The string representation of a grid should have lines between the fields. We create these
lines with standard characters (+, -, and |). This gives the following result:

 X|X|O
 -+-+-
 |O|
 -+-+-
 X| |

Playing Tic-Tac-Toe against an AI

[221]

To convert a player to the string, we must get their symbol. For Player1, that is a cross and
for Player2, a circle. If a field of the grid contains no symbol, we return a space to keep the
grid aligned:

function showPlayer(player: Player) {
 switch (player) {
 case Player.Player1:
 return "X";
 case Player.Player2:
 return "O";
 default:
 return " ";
 }
}

We can use this function to the tokens of all fields in a row. We add a separator between
these fields:

function showRow(row: Player[]) {
 return row.map(showPlayer).reduce((previous, current) => previous + "|" +
current);
}

Since we must do the same later on, but with a different separator, we create a small helper
function that does this concatenation based on a separator:

const concat = (separator: string) => (left: string, right: string) =>
 left + separator + right;

This function requires the separator and returns a function that can be passed to reduce. We
can now use this function in showRow:

function showRow(row: Player[]) {
 return row.map(showPlayer).reduce(concat("|"));
}

We can also use this helper function to show the entire grid. First we must compose the
separator, which is almost the same as showing a single row. Next, we can show the grid
with this separator:

export function showGrid(grid: Grid) {
 const separator = "\n" + grid[0].map(() => "-").reduce(concat("+")) +
"\n";
 return grid.map(showRow).reduce(concat(separator));
}

Playing Tic-Tac-Toe against an AI

[222]

Creating operations on the grid
We will now create some functions that do operations on the grid. These functions check
whether the board is full, whether someone has won, and what options a player has.

We can check whether the board is full by looking at all fields. If no field exists that has no
symbol on it, the board is full, as every field has a symbol:

export function isFull(grid: Grid) {
 for (const row of grid) {
 for (const field of row) {
 if (field === Player.None) return false;
 }
 }
 return true;
}

To check whether a user has won, we must get a list of all horizontal, vertical and diagonal
rows. For each row, we can check whether a row consists of a certain amount of the same
symbols on a row. We store the grid as an array of the horizontal rows, so we can easily get
those rows. We can also get the vertical rows relatively easily:

function allRows(grid: Grid) {
 return [
 ...grid,
 ...grid[0].map((field, index) => getVertical(index)),
 ...
];
 function getVertical(index: number) {
 return grid.map(row => row[index]);
 }
}

Getting a diagonal row requires some more work. We create a helper function that will
walk on the grid from a start point, in a certain direction. We distinguish two different
kinds of diagonals: a diagonal that goes to the lower-right and a diagonal that goes to the
lower-left.

For a standard three by three game, only two diagonals exist. However, a larger grid may
have more diagonals. If the grid is 5 by 5, and the users should get three in a row, ten
diagonals with a length of at least three exist:

0, 0 to 4, 41.
0, 1 to 3, 42.
0, 2 to 2, 43.

Playing Tic-Tac-Toe against an AI

[223]

1, 0 to 4, 34.
2, 0 to 4, 25.
4, 0 to 0, 46.
3, 0 to 0, 37.
2, 0 to 0, 28.
4, 1 to 1, 49.
4, 2 to 2, 410.

The diagonals that go toward the lower-right, start at the first column or at the first
horizontal row. Other diagonals start at the last column or at the first horizontal row. In this
function, we will just return all diagonals, even if they only have one element, since that is
easy to implement.

We implement this with a function that walks the grid to find the diagonal. That function
requires a start position and a step function. The step function increments the position for
a specific direction:

function allRows(grid: Grid) {
 return [
 ...grid,
 ...grid[0].map((field, index) => getVertical(index)),
 ...grid.map((row, index) => getDiagonal([index, 0], stepDownRight)),
 ...grid[0].slice(1).map((field, index) => getDiagonal([0, index + 1],
stepDownRight)),
 ...grid.map((row, index) => getDiagonal([index, grid[0].length - 1],
stepDownLeft)),
 ...grid[0].slice(1).map((field, index) => getDiagonal([0, index],
stepDownLeft))
];
 function getVertical(index: number) {
 return grid.map(row => row[index]);
 }
 function getDiagonal(start: Index, step: (index: Index) =>
 Index) {
 const row: Player[] = [];
 let index: Index | undefined = start;
 let value = get(grid, index);
 while (value !== undefined) {
 row.push(value);
 index = step(index);
 value = get(grid, index);
 }
 return row;
 }
 function stepDownRight([i, j]: Index): Index {

Playing Tic-Tac-Toe against an AI

[224]

 return [i + 1, j + 1];
 }
 function stepDownLeft([i, j]: Index): Index {
 return [i + 1, j - 1];
 }
 function stepUpRight([i, j]: Index): Index {
 return [i - 1, j + 1];
 }
}

To check whether a row has a certain amount of the same elements on a row, we will create
a function with some nice looking functional programming. The function requires the array,
the player, and the index at which the checking starts. That index will usually be zero, but
during recursion we can set it to a different value. originalLength contains the original
length that a sequence should have. The last parameter, length, will have the same value
in most cases, but in recursion we will change the value. We start with some base cases.
Every row contains a sequence of zero symbols, so we can always return true in such a
case:

function isWinningRow(row: Player[], player: Player, index: number,
originalLength: number, length: number): boolean {
 if (length === 0) {
 return true;
 }

If the row does not contain enough elements to form a sequence, the row will not have such
a sequence and we can return false:

 if (index + length > row.length) {
 return false;
 }

For other cases, we use recursion. If the current element contains a symbol of the provided
player, this row forms a sequence if the next length-1 fields contain the same symbol:

 if (row[index] === player) {
 return isWinningRow(row, player, index + 1, originalLength, length -
1);
 }

Otherwise, the row should contain a sequence of the original length in some other position:

 return isWinningRow(row, player, index + 1, originalLength,
originalLength);
}

Playing Tic-Tac-Toe against an AI

[225]

If the grid is large enough, a row could contain a long enough sequence after a sequence
that was too short. For instance, XXOXXX contains a sequence of length three. This function
handles these rows correctly with the parameters originalLength and length.

Finally, we must create a function that returns all possible sets that a player can do. To
implement this function, we must first find all indices. We filter these indices to indices that
reference an empty field. For each of these indices, we change the value of the grid into the
specified player. This results in a list of options for the player:

export function getOptions(grid: Grid, player: Player) {
 const rowIndices = grid.map((row, index) => index);
 const columnIndices = grid[0].map((column, index) => index);
 const allFields = flatten(rowIndices.map(
 row => columnIndices.map(column => <Index> [row, column])
));
 return allFields
 .filter(index => get(grid, index) === Player.None)
 .map(index => set(grid, index, player));
}

The AI will use this to choose the best option and a human player will get a menu with
these options.

Creating the grid
Before the game can be started, we must create an empty grid. We will write a function that
creates an empty grid with the specified size:

export function createGrid(width: number, height: number) {
 const grid: Grid = [];
 for (let i = 0; i < height; i++) {
 grid[i] = [];
 for (let j = 0; j < width; j++) {
 grid[i][j] = Player.None;
 }
 }
 return grid;
}

In the next section, we will add some tests for the functions that we have written. These
functions work on the grid, so it will be useful to have a function that can parse a grid based
on a string.

We will separate the rows of a grid with a semicolon. Each row contains tokens for each
field. For instance, "XXO; O ;X " results in this grid:

Playing Tic-Tac-Toe against an AI

[226]

 X|X|O
 -+-+-
 |O|
 -+-+-
 X| |

We can implement this by splitting the string into an array of lines. For each line, we split
the line into an array of characters. We map these characters to a Player value:

export function parseGrid(input: string) {
 const lines = input.split(";");
 return lines.map(parseLine);
 function parseLine(line: string) {
 return line.split("").map(parsePlayer);
 }
 function parsePlayer(character: string) {
 switch (character) {
 case "X":
 return Player.Player1;
 case "O":
 return Player.Player2;
 default:
 return Player.None;
 }
 }
}

In the next section we will use this function to write some tests.

Adding tests
Just like in Chapter 5, Native QR Scanner App, we will use AVA to write tests for our
application. Since the functions do not have side effects, we can easily test them.

In lib/test/winner.ts, we test the findWinner function. First, we check whether the
function recognizes the winner in some simple cases:

import test from "ava";
import { Player, parseGrid, findWinner } from "../model";

test("player winner", t => {
 t.is(findWinner(parseGrid(" ;XXX; "), 3), Player.Player1);
 t.is(findWinner(parseGrid(" ;OOO; "), 3), Player.Player2);
 t.is(findWinner(parseGrid(" ; ; "), 3), Player.None);
});

Playing Tic-Tac-Toe against an AI

[227]

We can also test all possible three-in-a-row positions in the three by three grid. With this
test, we can find out whether horizontal, vertical, and diagonal rows are checked correctly:

test("3x3 winner", t => {
 const grids = [
 "XXX; ; ",
 " ;XXX; ",
 " ; ;XXX",
 "X ;X ;X ",
 " X ; X ; X ",
 " X; X; X",
 "X ; X ; X",
 " X; X ;X "
];
 for (const grid of grids) {
 t.is(findWinner(parseGrid(grid), 3), Player.Player1);
 }
});

We must also test that the function does not claim that someone won too often. In the next
test, we validate that the function does not return a winner for grids that do not have a
winner:

test("3x3 no winner", t => {
 const grids = [
 "XXO;OXX;XOO",
 " ; ; ",
 "XXO; ;OOX",
 "X ;X ; X "
];
 for (const grid of grids) {
 t.is(findWinner(parseGrid(grid), 3), Player.None);
 }
});

Since the game also supports other dimensions, we should check these too. We check that
all diagonals of a four by three grid are checked correctly, where the length of a sequence
should be two:

test("4x3 winner", t => {
 const grids = [
 "X ; X ; ",
 " X ; X ; ",
 " X ; X; ",
 " ;X ; X ",
 " X ; X; ",
 " X ; X ; ",
 "X ; X ; ",

Playing Tic-Tac-Toe against an AI

[228]

 " ; X; X "
];
 for (const grid of grids) {
 t.is(findWinner(parseGrid(grid), 2), Player.Player1);
 }
});

You can of course add more test grids yourself.

Add tests before you fix a bug. These tests should show the wrong
behavior related to the bug. When you have fixed the bug, these tests
should pass. This prevents the bug returning in a future version.

Random testing
Instead of running the test on some predefined set of test cases, you can also write tests that
run on random data. You cannot compare the output of a function directly with an expected
value, but you can check some properties of it. For instance, getOptions should return an
empty list if and only if the board is full. We can use this property to test getOptions and
isFull.

First, we create a function that randomly chooses a player. To higher the chance of a full
grid, we add some extra weight on the players compared to an empty field:

import test from "ava";
import { createGrid, Player, isFull, getOptions } from "../model";
import { randomInt } from "../utils";

function randomPlayer() {
 switch (randomInt(4)) {
 case 0:
 case 1:
 return Player.Player1;
 case 2:
 case 3:
 return Player.Player2;
 default:
 return Player.None;
 }
}

Playing Tic-Tac-Toe against an AI

[229]

We create 10000 random grids with this function. The dimensions and the fields are chosen
randomly:

test("get-options", t => {
 for (let i = 0; i < 10000; i++) {
 const grid = createGrid(randomInt(10) + 1, randomInt(10) + 1)
 .map(row => row.map(randomPlayer));

Next, we check whether the property that we describe holds for this grid:

 const options = getOptions(grid, Player.Player1)
 t.is(isFull(grid), options.length === 0);

We also check that the function does not give the same option twice:

 for (let i = 1; i < options.length; i++) {
 for (let j = 0; j < i; j++) {
 t.notSame(options[i], options[j]);
 }
 }
 }
});

Depending on how critical a function is, you can add more tests. In this case, you could
check that only one field is modified in an option or that only an empty field can be
modified in an option:

Now you can run the tests using gulp && ava dist/test. You can add this to your
package.json file. In the scripts section, you can add commands that you want to run.
With npm run xxx, you can run task xxx. npm test that was added as shorthand for npm
run test, since the test command is often used:

{
 "name": "chapter-7",
 "version": "1.0.0",
 "scripts": {
 "test": "gulp && ava dist/test"
 },
...

Playing Tic-Tac-Toe against an AI

[230]

Implementing the AI using Minimax
We create an AI based on Minimax. The computer cannot know what his opponent will do
in the next steps, but he can check what he can do in the worst-case. The minimum outcome
of these worst cases is maximized by this algorithm. This behavior has given Minimax its
name.

To learn how Minimax works, we will take a look at the value or score of a grid. If the game
is finished, we can easily define its value: if you won, the value is 1; if you lost, -1 and if it is
a draw, 0. Thus, for player 1 the next grid has value 1 and for player 2 the value is -1:

 X|X|X
 -+-+-
 O|O|
 -+-+-
 X|O|

We will also define the value of a grid for a game that has not been finished. We take a look
at the following grid:

 X| |X
 -+-+-
 O|O|
 -+-+-
 O|X|

It is player 1's turn. He can place his stone on the top row, and he would win, resulting in a
value of 1. He can also choose to lay his stone on the second row. Then the game will result
in a draft, if player 2 is not dumb, with score 0. If he chooses to place the stone on the last
row, player 2 can win resulting in -1. We assume that player 1 is smart and that he will go
for the first option. Thus, we could say that the value of this unfinished game is 1.

We will now formalize this. In the previous paragraph, we have summed up all options for
the player. For each option, we have calculated the minimum value that the player could
get if he would choose that option. From these options, we have chosen the maximum
value.

Minimax chooses the option with the highest value of all options.

Playing Tic-Tac-Toe against an AI

[231]

Implementing Minimax in TypeScript
As you can see, the definition of Minimax looks like you can implement it with recursion.
We create a function that returns both the best option and the value of the game. A function
can only return a single value, but multiple values can be combined into a single value in a
tuple, which is an array with these values.

First, we handle the base cases. If the game is finished, the player has no options and the
value can be calculated directly:

import { Player, Grid, findWinner, isFull, getOpponent, getOptions } from
"./model";

export function minimax(grid: Grid, rowLength: number, player: Player):
[Grid, number] {
 const winner = findWinner(grid, rowLength);
 if (winner === player) {
 return [undefined, 1];
 } else if (winner !== Player.None) {
 return [undefined, -1];
 } else if (isFull(grid)) {
 return [undefined, 0];

Otherwise, we list all options. For all options, we calculate the value. The value of an option
is the same as the opposite of the value of the option for the opponent. Finally, we choose
the option with the best value:

 } else {
 let options = getOptions(grid, player);
 const opponent = getOpponent(player);
 return options.map<[Grid, number]>(
 option => [option, -(minimax(option, rowLength, opponent)[1])]
).reduce(
 (previous, current) => previous[1] < current[1] ? current : previous
)!;
 }
}

When you use tuple types, you should explicitly add a type definition for it. Since tuples are
arrays too, an array type is automatically inferred. When you add the tuple as return type,
expressions after the return keyword will be inferred as these tuples. For options.map, you
can mention the union type as a type argument or by specifying it in the callback function
(options.map((option): [Grid, number] => ...);).

Playing Tic-Tac-Toe against an AI

[232]

You can easily see that such an AI can also be used for other kinds of games. Actually, the
minimax function has no direct reference to Tic-Tac-Toe, only findWinner, isFull and
getOptions are related to Tic-Tac-Toe.

Optimizing the algorithm
The Minimax algorithm can be slow. Choosing the first set, especially, takes a long time
since the algorithm tries all ways of playing the game. We will use two techniques to speed
up the algorithm.

First, we can use the symmetry of the game. When the board is empty it does not matter
whether you place a stone in the upper-left corner or the lower-right corner. Rotating the
grid around the center 180 degrees gives an equivalent board. Thus, we only need to take a
look at half the options when the board is empty.

Secondly, we can stop searching for options if we found an option with value 1. Such an
option is already the best thing to do.

Implementing these techniques gives the following function:

import { Player, Grid, findWinner, isFull, getOpponent, getOptions } from
"./model";

export function minimax(grid: Grid, rowLength: number, player: Player):
[Grid, number] {
 const winner = findWinner(grid, rowLength);
 if (winner === player) {
 return [undefined, 1];
 } else if (winner !== Player.None) {
 return [undefined, -1];
 } else if (isFull(grid)) {
 return [undefined, 0];
 } else {
 let options = getOptions(grid, player);
 const gridSize = grid.length * grid[0].length;
 if (options.length === gridSize) {
 options = options.slice(0, Math.ceil(gridSize / 2));
 }
 const opponent = getOpponent(player);
 let best: [Grid, number] | undefined = undefined;
 for (const option of options) {
 const current: [Grid, number] = [option, -(minimax(option, rowLength,
opponent)[1])];
 if (current[1] === 1) {
 return current;

Playing Tic-Tac-Toe against an AI

[233]

 } else if (best === undefined || current[1] > best[1]) {
 best = current;
 }
 }
 return best!;
 }
}

This will speed up the AI. In the next sections we will implement the interface for the game
and we will write some tests for the AI.

Creating the interface
NodeJS can be used to create servers, as we did in chapters 2 and 3. You can also create
tools with a command line interface (CLI). For instance, gulp, NPM and typings are
command line interfaces built with NodeJS. We will use NodeJS to create the interface for
our game.

Handling interaction
The interaction from the user can only happen by text input in the terminal. When the game
starts, it will ask the user some questions about the configuration: width, height, row length
for a sequence, and the player(s) that are played by the computer. The highlighted lines are
the input of the user:

Tic-Tac-Toe

Width
3
Height
3
Row length
2
Who controls player 1?
1 You

2 Computer

1
Who controls player 2?
1 You

2 Computer

Playing Tic-Tac-Toe against an AI

[234]

1

During the game, the game asks the user which of the possible options he wants to do. All
possible steps are shown on the screen, with an index. The user can type the index of the
option he wants:

 X| |
 -+-+-
 O|O|
 -+-+-
 |X|
 It's player one's turn!
 Choose one out of these options:
 1 X|X|
 -+-+-
 O|O|
 -+-+-
 |X|
 2 X| |X
 -+-+-
 O|O|
 -+-+-
 |X|
 3 X| |
 -+-+-
 O|O|X
 -+-+-
 |X|
 4 X| |
 -+-+-
 O|O|
 -+-+-
 X|X|
 5 X| |
 -+-+-
 O|O|
 -+-+-
 |X|X

A NodeJS application has three standard streams to interact with the user. Standard input,
stdin, is used to receive input from the user. Standard output, stdout, is used to show text
to the user. Standard error, stderr, is used to show error messages to the user. You can
access these streams with process.stdin, process.stdout and process.stderr.

You have probably already used console.log to write text to the console. This function
writes the text to stdout. We will use console.log to write text to stdout and we will
not use stderr.

Playing Tic-Tac-Toe against an AI

[235]

We will create a helper function that reads a line from stdin. This is an asynchronous task,
the function starts listening and resolves when the user hits enter. In lib/cli.ts, we start
by importing the types and function that we have written.

import { Grid, Player, getOptions, getOpponent, showGrid, findWinner,
isFull, createGrid } from "./model";
import { minimax } from "./ai";

We can listen to input from stdin using the data event. The process sends either the string
or a buffer, an efficient way to store binary data in memory. With once, the callback will
only be fired once. If you want to listen to all occurrences of the event, you can use on:

function readLine() {
 return new Promise<string>(resolve => {
 process.stdin.once("data", (data: string | Buffer) =>
resolve(data.toString()));
 });
}

We can easily use readLine in async functions. For instance, we can now create a function
that reads, parses and validates a line. We can use this to read the input of the user, parse it
to a number, and finally check that the number is within a certain range. This function will
return the value if it passes the validator. Otherwise it shows a message and retries.

async function readAndValidate<U>(message: string, parse: (data: string) =>
U, validate: (value: U) => boolean): Promise<U> {
 const data = await readLine();
 const value = parse(data);
 if (validate(value)) {
 return value;
 } else {
 console.log(message);
 return readAndValidate(message, parse, validate);
 }
}

We can use this function to show a question where the user has various options. The user
should type the index of his answer. This function validates that the index is within bounds.
We will show indices starting at 1 to the user, so we must carefully handle these.

async function choose(question: string, options: string[]) {
 console.log(question);
 for (let i = 0; i < options.length; i++) {
 console.log((i + 1) + "\t" + options[i].replace(/\n/g, "\n\t"));
 console.log();
 }
 return await readAndValidate(

Playing Tic-Tac-Toe against an AI

[236]

 `Enter a number between 1 and ${ options.length }`,
 parseInt,
 index => index >= 1 && index <= options.length
) - 1;
}

Creating players
A player could either be a human or the computer. We create a type that can contain both
kinds of players.

type PlayerController = (grid: Grid) => Grid | Promise<Grid>;

Next we create a function that creates such a player. For a user, we must first know whether
he is the first or the second player. Then we return an async function that asks the player
which step he wants to do.

const getUserPlayer = (player: Player) => async (grid: Grid) => {
 const options = getOptions(grid, player);
 const index = await choose("Choose one out of these options:",
options.map(showGrid));
 return options[index];
};

For the AI player, we must know the player index and the length of a sequence. We use
these variables and the grid of the game to run the Minimax algorithm.

const getAIPlayer = (player: Player, rowLength: number) => (grid: Grid) =>
 minimax(grid, rowLength, player)[0]!;

Now we can create a function that asks the player whether a player should be played by the
user or the computer.

async function getPlayer(index: number, player: Player, rowLength: number):
Promise<PlayerController> {
 switch (await choose(`Who controls player ${ index }?`, ["You",
"Computer"])) {
 case 0:
 return getUserPlayer(player);
 default:
 return getAIPlayer(player, rowLength);
 }
}

Playing Tic-Tac-Toe against an AI

[237]

We combine these functions in a function that handles the whole game. First, we must ask
the user to provide the width, height and length of a sequence.

export async function game() {
 console.log("Tic-Tac-Toe");
 console.log();
 console.log("Width");
 const width = await readAndValidate("Enter an integer", parseInt,
isFinite);
 console.log("Height");
 const height = await readAndValidate("Enter an integer", parseInt,
isFinite);
 console.log("Row length");
 const rowLength = await readAndValidate("Enter an integer", parseInt,
isFinite);

We ask the user which players should be controlled by the computer.

 const player1 = await getPlayer(1, Player.Player1, rowLength);
 const player2 = await getPlayer(2, Player.Player2, rowLength);

The user can now play the game. We do not use a loop, but we use recursion to give the
player their turns.

 return play(createGrid(width, height), Player.Player1);
 async function play(grid: Grid, player: Player): Promise<[Grid, Player]>
{

In every step, we show the grid. If the game is finished, we show which player has won.

 console.log();
 console.log(showGrid(grid));
 console.log();
 const winner = findWinner(grid, rowLength);
 if (winner === Player.Player1) {
 console.log("Player 1 has won!");
 return <[Grid, Player]> [grid, winner];
 } else if (winner === Player.Player2) {
 console.log("Player 2 has won!");
 return <[Grid, Player]>[grid, winner];
 } else if (isFull(grid)) {
 console.log("It's a draw!");
 return <[Grid, Player]>[grid, Player.None];
 }

Playing Tic-Tac-Toe against an AI

[238]

If the game is not finished, we ask the current player or the computer which set he wants to
do.

 console.log(`It's player ${ player === Player.Player1 ? "one's" :
"two's" } turn!`);
 const current = player === Player.Player1 ? player1 : player2;
 return play(await current(grid), getOpponent(player));
 }
}

In lib/index.ts, we can start the game. When the game is finished, we must manually
exit the process.

import { game } from "./cli";

game().then(() => process.exit());

We can compile and run this in a terminal:

 gulp && node --harmony_destructuring dist

At the time of writing, NodeJS requires the --harmony_destructuring flag to allow
destructuring, like [x, y] = z. In future versions of NodeJS, this flag will be removed and
you can run it without it.

Testing the AI
We will add some tests to check that the AI works properly. For a standard three by three
game, the AI should never lose. That means when an AI plays against an AI, it should result
in a draw. We can add a test for this. In lib/test/ai.ts, we import AVA and our own
definitions.

import test from "ava";
import { createGrid, Grid, findWinner, isFull, getOptions, Player } from
"../model";
import { minimax } from "../ai";
import { randomInt } from "../utils";

We create a function that simulates the whole gameplay.

type PlayerController = (grid: Grid) => Grid;
function run(grid: Grid, a: PlayerController, b: PlayerController): Player
{
 const winner = findWinner(grid, 3);
 if (winner !== Player.None) return winner;

Playing Tic-Tac-Toe against an AI

[239]

 if (isFull(grid)) return Player.None;
 return run(a(grid), b, a);
}

We write a function that executes a step for the AI.

const aiPlayer = (player: Player) => (grid: Grid) =>
 minimax(grid, 3, player)[0]!;

Now we create the test that validates that a game where the AI plays against the AI results
in a draw.

test("AI vs AI", t => {
 const result = run(createGrid(3, 3), aiPlayer(Player.Player1),
aiPlayer(Player.Player2))
 t.is(result, Player.None);
});

Testing with a random player
We can also test what happens when the AI plays against a random player or when a player
plays against the AI. The AI should win or it should result in a draw. We run these multiple
times; what you should always do when you use randomization in your test.

We create a function that creates the random player.

const randomPlayer = (player: Player) => (grid: Grid) => {
 const options = getOptions(grid, player);
 return options[randomInt(options.length)];
};

We write the two tests that both run 20 games with a random player and an AI.

test("random vs AI", t => {
 for (let i = 0; i < 20; i++) {
 const result = run(createGrid(3, 3), randomPlayer(Player.Player1),
aiPlayer(Player.Player2))
 t.not(result, Player.Player1);
 }
});

test("AI vs random", t => {
 for (let i = 0; i < 20; i++) {
 const result = run(createGrid(3, 3), aiPlayer(Player.Player1),
randomPlayer(Player.Player2))
 t.not(result, Player.Player2);

Playing Tic-Tac-Toe against an AI

[240]

 }
});

We have written different kinds of tests:

Tests that check the exact results of single function
Tests that check a certain property of results of a function
Tests that check a big component

Always start writing tests for small components. If the AI tests should fail, that could be
caused by a mistake in hasWinner, isFull or getOptions, so it is hard to find the location
of the error. Only testing small components is not enough; bigger tests, such as the AI tests,
are closer to what the user will do. Bigger tests are harder to create, especially when you
want to test the user interface. You must also not forget that tests cannot guarantee that
your code runs correctly, it just guarantees that your test cases work correctly.

Summary
In this chapter, we have written an AI for Tic-Tac-Toe. With the command line interface,
you can play this game against the AI or another human. You can also see how the AI plays
against the AI. We have written various tests for the application.

You have learned how Minimax works for turn-based games. You can apply this to other
turn-based games as well. If you want to know more on strategies for such games, you can
take a look at game theory, the mathematical study of these games.

Reading this means that you have finished the Functional Programming part of this book.
One chapter remains, which will explain how you can migrate a legacy JavaScript code base
to TypeScript.

10
Migrate JavaScript to

TypeScript
In the previous chapters, we have built new applications in TypeScript. However, you
might also have old code bases in JavaScript which you want to migrate to TypeScript. We
will see how these projects can be converted to TypeScript.

You could rewrite the whole project from scratch, but that would require a lot of work for
big projects. Since TypeScript is based on JavaScript, this transition can be done more
efficiently.

Since the migration process is dependent on the project, this chapter can only give
guidance. For various common topics, this chapter contains a recipe to migrate code.
Migrating a project requires knowledge of the frameworks and the structure of the project.

The following steps are related to migrating a code base:

Gradually migrating to TypeScript
Adding TypeScript
Migrating each file
Refactoring the project

Gradually migrating to TypeScript
As of TypeScript 1.8, it is possible to combine JavaScript and TypeScript in the same project.
Thus, you can migrate a project file by file.

Migrate JavaScript to TypeScript

[242]

During the migration of the files, the project should be working at every step. That way,
you can check that the work is going well, and you can still work on the project. If an urgent
bug is reported, you do not have to fix it in the old and migrated version; you only have to
fix it in the current version.

You can convert the project in the following steps:

Add the TypeScript compiler to the project
Migrate each file
Refactor and enable stricter checks of TypeScript

In the next sections, we will see how these steps can be done.

Adding TypeScript
Before you can convert JavaScript files to TypeScript, you must add the TypeScript compiler
to a project. If the project already uses a build step, the TypeScript compiler must be
integrated into the build step. Otherwise, a new build step must be created. In the following
sections, we will set up TypeScript and the build system.

Configuring TypeScript
In all cases, you should start with configuring TypeScript. This configuration will be used
by code editors and the build tool. The most important setting is allowJs. This setting
allows JavaScript files in the TypeScript project. Other important options are target and
module. For target, you can choose between es3, es5, and es2015. The latest version of
JavaScript, es2015, is not supported in all browsers at the time of writing. You can target
es2015 when you write an application for NodeJS. You can target es5 for browsers. For
very old environments, you must target es3.

If the project uses external modules, you should also set the module setting. If your project
uses CommonJS, mostly used in combination with NodeJS, browserify or webpack, you
should use "module": "commonjs". An import in CommonJS can be recognized by a call
to require and an export by an assignment to exports.[...] or module.exports, and
files are not wrapped in a define function:

var path = require("path");

exports.lorem = ...;
module.exports = ...;

Migrate JavaScript to TypeScript

[243]

Another module format is AMD, Asynchronous Module Definition. This format is used a
lot for web applications. You can configure TypeScript for AMD with "module": "amd".
The most popular implementation of AMD is require.js.

An AMD file starts with a define call.

define(["require", "exports", "path"], function (require, exports, path) {
 exports.lorem = ...;
});

Recent projects might use es2015 modules, with a build step. You can recognize such files
by the import and export keywords.

import * as path from "path";
export var lorem = ...;

If you use es2015 modules, you can set "module": "es2015". However, since these
modules are often used with a certain build step to compile these modules to CommonJS,
AMD or SystemJS, you can also do that directly with TypeScript. The TypeScript compiler
will also do this transformation for the JavaScript files of the project, so you can remove the
other build step that does this (for instance, Babel). If you want to do this, you must use
"commonjs", "amd", or "systemjs".

If your project did not use a build step, you might want to change the directory structure of
your project. You must not store the source files (TypeScript/JavaScript) in the same
directory as the compiled files (JavaScript). In the previous chapters, we used lib for the
sources and dist for the compiled files. We can configure that by setting "outDir":
"dest". If you use a build tool such as gulp where temporary files can stay in memory and
are not written to the disk, you do not need to set this option since the compiled files are not
directly written to the disk.

This should result in a tsconfig.json file similar to this one:

{
 "compilerOptions": {
 "target": "es5",
 "module": "commonjs",
 "outDir": "dist"
 }
}

Migrate JavaScript to TypeScript

[244]

You should place this file in the directory that contains the source files. If your project did
not use a build tool, you can now compile the project with tsc -p ./lib (where ./lib
references the directory that contains the source files and tsconfig.json file), provided
that you have TypeScript installed (npm install typescript -g). If your project
already used a build system, you have to integrate the TypeScript compiler into it, which
we will do in the next section.

Configuring the build tool
Configuring the build depends on the build tool you use. For a few commonly used tools,
you can find the steps here. Most build tools require you to install a TypeScript plugin. For
browserify, you must install tsify using NPM; for Grunt, grunt-ts; for gulp, gulp-
typescript; and for webpack, ts-loader. If your project uses JSPM, you do not have to
install a plugin.

You can find various configurations with these tools at: h t t p ://w w w . t y p e s c r i p t l a n g . o r g

/d o c s /h a n d b o o k /i n t e g r a t i n g - w i t h - b u i l d - t o o l s . h t m l . If you use a different build tool,
you should look in the documentation of the tool and search for a TypeScript plugin.

Since TypeScript accepts (and needs) the JavaScript files in your project, you must provide
all source files to the TypeScript compiler. For gulp, that would mean that you add
TypeScript before other compilation steps. Imagine a task in your gulp file looks like this:

gulp.src("lib/**/*.js")
 .pipe(plugin())
 .pipe(gulp.dist("dest"));

You can add TypeScript to this gulp file:

var ts = require("gulp-typescript");
var tsProject = ts.createProject("lib/tsconfig.json");
...
gulp.src("lib/**/*.js")
 .pipe(ts(tsProject))
 .pipe(plugin())
 .pipe(gulp.dist("dest"));

For a build tool that cannot store temporary files in memory, such as Grunt, you should
compile TypeScript to a temporary directory. Other steps from the build should read the
sources from this directory.

For more information on how to configure a specific build tool, you can look at the
documentation of the tool and the plugin.

http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html
http://www.typescriptlang.org/docs/handbook/integrating-with-build-tools.html

Migrate JavaScript to TypeScript

[245]

Acquiring type definitions
For dependencies that you use, such as jQuery, you must acquire type definitions. You can
install them using npm. You can find these type definitions on h t t p s ://a k a . m s /t y p e s .

Testing the project
Before going to the next step, make sure that the build is working. TypeScript should only
show syntax errors in JavaScript files. Also, the application should be working at runtime.

If you are now using TypeScript to transpile ES modules to CommonJS,
you might run into problems. Babel and TypeScript handle default
imports differently. Babel looks for the default property, and if that does
not exist, it behaves the same as a full module import. TypeScript will only
look for the default property. If you get runtime errors after the migration,
you might need to replace a default import (import name from
"package") with a full module import (import * as name from
"package").

Migrating each file
When the build system is set up, you can start with migrating files. It is easiest to start with
files that do not depend on other files, as these do not depend on types of other files. To
migrate a file, you must rename the file extension to .ts, convert the module format to ES
modules, correct types that are inferred incorrectly, and add types to untyped entities. In
the next sections, we will take a look at these tasks.

Converting to ES modules
In TypeScript files you cannot use CommonJS or AMD directly. Instead you must use ES
modules, like we did in the previous chapters. For an import, you must choose from these:

import * as name from "package", imports the whole package, similar to
var name = require("package") in CommonJS.
import name from "package", imports the default export, similar to var
name = require("package").default.
import { name } from "package", imports a named export, similar to var
name = require("package").name.

https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types
https://aka.ms/types

Migrate JavaScript to TypeScript

[246]

ES modules offer various constructs to export values from modules:

export function name() {}, export class Name {}, export var name,
exports a named variable. Compiles to:

function name() {}
exports.name = name;

export default function name() {}, export default class Name {},
export default var name, exports a variable as the default export. Compiles
to:

function name() {}
exports.default = name;

export default x, where x is an expression, exports an expression as the
default export.
export { x, y }, exports variables x and y as named exports. This compiles
to:

exports.x = x;
exports.y = y;

With CommonJS and AMD you can also export an expression as the full module, with
module.exports = x in CommonJS or return x in AMD. This is not possible with ES
modules. If this pattern is used in a file that you must migrate, you can either switch to an
ES export or patch all files that import this file, or use a legacy export statement in
TypeScript. With export = x, you can export an expression as the full module. However,
since this is not standard, it is not advised to do this but it can help during the migration.
This compiles to module.exports = x or return x.

The file should give no syntax errors when you compile it. It might show type errors, which
the next session will discuss.

Migrate JavaScript to TypeScript

[247]

Correcting types
Since the file was a JavaScript file, it does not have any type annotations. At some locations,
TypeScript will infer types for variables. When you declare a variable and directly assign to
it, TypeScript will infer the type based on the type of the assignment. Thus, when you write
let x = "", TypeScript will type x as a string. However, in some cases the inferred type
is not correct. You can see that in the next examples.

let x = {};
x.a = true;

The type of x is inferred as {}, an empty object. Thus, the assignment to x.a is not allowed,
since the property a does not exist. You can fix this by adding a type to the definition: let
x: { a?: boolean } = {}.

class Base {
 a: boolean;
}
class Derived extends Base {
 b: string;
}
let x = new Derived();
x = new Base();

In this case, the type of x is Derived. The assignment on the last line is not allowed, since
Base is not assignable to Derived. You can again fix this by adding a type: let x: Base
= new Derived().

If the type of a variable is unknown or very complex, you can use any as the type for the
variable, which disables type checking for that variable.

Other possible sources of errors are classes. When you use the class keyword to create
classes, you can get errors that a property does not exist in the class.

class A {
 constructor() {
 this.x = true;
 }
}

Migrate JavaScript to TypeScript

[248]

In this example, you would get an error that the property x does not exist in A. In
TypeScript, you must declare all properties of a class.

class A {
 x: boolean;
 constructor() {
 this.x = true;
 }
}

Most errors of TypeScript should now be fixed. Some cases however can still generate type
errors, for example when a variable has different types, which is discussed in the next
session.

Adding type guards and casts
A common pattern in JavaScript is that a function accepts either a single value of a certain
type, or an array of multiple types. You can express such a type with a union type:

function foo(input: string | string[]) {
 ...
}

In the body of such a function, you would check if the argument is an array or a single
string. In most cases, TypeScript can correctly follow this pattern. For instance, TypeScript
can change the type of input in the next example.

function foo(input: string | string[]) {
 if (typeof input === "string") {
 } else {

 }
}

The type of input is string in the block after the if and string[] in the else-block. The
changing of a type is called narrowing and the checks for a type are called type guards.
TypeScript has built-in support for typeof and instanceof type guards, but you can also
define your own. A user defined type guard function is a function that takes the value as
one of its arguments and returns true when the value is of a certain type. A type guard can
be written like this:

function isBar(value: Foo): value is Bar {
 ...
}

Migrate JavaScript to TypeScript

[249]

As you can see, the return type of isBar is value is Bar, a special boolean type. If you
have a function that checks that a value is of a certain type, you should add a return type to
make it a type guard.

If the TypeScript compiler still cannot correctly narrow the type of a variable on a certain
location, you must add a cast. A cast is a compiler instruction in which the programmer
guarantees that a value is of a certain type. A type guard can be written in two different
ways.

<Bar> value
value as Bar

The first syntax is most used, but not supported in JSX or TSX files. In a TSX file, you must
use the second syntax.

When you have fixed all these errors, the project should compile without errors again.

Using modern syntax
The class keyword was introduced in ES2015, a recent version of JavaScript. Older projects
created classes with a function and prototypes should migrate to the new class syntax. In
TypeScript, these classes can be typed better. Following are two code fragments, which
show the same class written with the prototype and with the class syntax.

var A = (function () {
 function A() {
 this.x = true;
 }
 A.prototype.a = function () {
 };
 return A;
}());

class A {
 x: boolean;
 constructor() {
 this.x = true;
 }
 a() {
 }
}

Migrate JavaScript to TypeScript

[250]

You can also use the new, block scoped variable declarations. Instead of var x you should
write const x for a variable that is not reassigned and let x for a variable that will be
reassigned.

Finally, you can also use arrow functions (or lambda expressions). Using normal function
definitions, the value of this is lost in callbacks. Thus, you had to store that in a variable
(self or _this was commonly used). You can replace that with an arrow function.

var _this = this;
function myCallback() {
 _this ...
}

This code fragment can be rewritten to:

const myCallback = () => {
 this ...
};

Adding types
The file compiles now, but lots of variables and parameters might be typed as any. For
complex types, you can first create an interface, for object types, or a type alias, for function
types or union types.

TypeScript does not infer types in the following cases:

Variable declaration without an initializer (like var x;)
Parameters of a function definition without a default value
Return type of a function that uses recursion

In an editor like VS Code, you can check the type of a variable, parameter or function by
hovering over it. On these locations you should add a type annotation yourself.

Refactoring the project
When you have ported the project to TypeScript, you can refactor the program more easily.
You should remove patterns that do not fit well with TypeScript. For instance, magic string
values should be replaced by enums. When you have a project that uses a framework, you
can also do some framework related refactoring. For a React project, you might want to
upgrade from the old class creation with React.createClass to the new class syntax.

Migrate JavaScript to TypeScript

[251]

A proper editor can help during refactoring. VS Code can rename an identifier in the whole
project or find all references of an identifier. It can also format your code if it's messy or
jump to the definition of an identifier. You can access these options with a right-click on the
identifier in the code.

Which steps you must do for refactoring depends on your project. You should look for parts
of the code that are not typed or incorrectly typed, because of a bad structure or some
dynamic behavior.

Enable strict checks
You can enable stricter checks in TypeScript. These checks can improve the quality of your
program. Here are a few options that can be useful.

noImplicitAny: Checks that no variables are typed as any unless you explicitly
annotated them with any.
noImplicitReturns: Checks that all execution paths of a function return a
value.
strictNullChecks: Enables strict checks for variables that might be undefined
or null.

Summary
In this chapter, we have looked at various steps involved in migrating a project from
JavaScript to TypeScript. We saw how a project can be migrated gradually. We looked at
various ways to update an old project so that it can use new JavaScript features and how it
can use the type system of TypeScript. You can use your knowledge from the previous
chapters to make the project even better.

Index

A
about-page component
 using, in other components 26
actions
 column, adding 161
 creating 160
 input popup, showing 163
 rows, adding 161
 testing 165
 title, changing 162
algorithms
 Big-Oh notation 129
 binary search 131
 built-in functions 132
 optimizing 130
 performances, comparing 128, 129
Angular 2 45
Angular
 as framework 98
 comparing, with React 96
 templates, using 96
API
 testing 62
artificial intelligence (AI)
 about 216
 implementing, with Minimax 230
 testing 238
 testing, with random player 239
asynchronous code, NodeJS
 about 50
 callback approach 50
 callback approach, disadvantages 51
Asynchronous Module Definition (AMD) 243
authentication
 adding 58
 users, adding to database 61

 users, implementing in database 60

B
binary search 131
build tool
 reference link 244

C
canvas
 drawing on 190, 192
chat room
 application, running 96
 creating 94
 stateless functional components 95
 two-way bindings 94
client side
 login form, creating 68, 69
 main component 71
 main component, error handler 73
 menu, creating 70
 note editor 71
 writing 66
command line interface (CLI)
 creating 233
 interaction, handling 233
 players, creating 236, 238
CommonJS 242
component
 creating 20
 event listeners 24
 interactions, adding 22
 one-way variable binding 23
 template 21
 testing 21
components
 reference link 111
conditions, adding to templates

[253]

 about template, modifying 26
 directives 25
 template tag 25
constants 144
control flow base type analysis 125
Cordova 119
Create, Read, Update, and Delete (CRUD) 45
CRUD operations
 adding 63
 handlers, implementing 64
 request handling 66

D
decorators 21
discriminated union types 127

E
ES2015 249
event handler
 creating 203
 key code, working with 203
 key codes, working with 205
expressions
 calculating 145
 core parsers, creating 147
 data types, creating 139, 141
 data types, traversing 141, 142
 data types, using 139
 number, parsing 151
 order of operations 152, 154
 parsers, running in sequence 148, 150
 parsing 147
 validating 143

F
file migration
 about 245
 casts, adding 248
 converting, to ES modules 245
 correcting types 247
 modern syntax, using 249
 type guards, adding 248
 types, adding 250
Flux architecture
 action 158

 advantages 175
 cross-platform feature 175
 dispatcher 158
 dispatcher, creating 159
 state, defining 158
 store 158
 store, creating 159
 using 158
 view 158
forecast component
 @Output, adding 36
 creating 29
 data, downloading 32, 35
 templates, using 30
forecast
 API, typing 28
 API, using 27
 displaying 27
framework
 components, binding 188
 designing 181
 events, creating 187
 other pictures, wrapping 185
 pictures, creating 182, 184
functional programming (FP)
 about 134, 137
 factorial, creating 138

H
hash 60
HTML5 canvas
 state, restoring 181
 state, saving 180
 using 179, 180

J
JavaScript
 array spread 8
 arrow functions 6
 classes, creating 6
 const 5
 destructuring 8
 ES2015 (ES6) version 4
 ES2016 4
 ES3 version 4

[254]

 ES5 version 4
 function arguments 7
 let 5
 new classes 9
 template strings 8
JSON 116
JSON strings 59
JSX files 249

K
key-value 116

L
layout container
 reference link 111
layouts, NativeScript
 DockLayout 111
 GridLayout 111
 WrapLayout 111

M
main component
 about 40
 event, listening to 41
 geolocation API, using 41
 other components, using 40
 sources 41
 two-way bindings 40
menu, PacMan
 adding 210
 events, handling 213
 model, changing 210
 rendering 212
 time handler, modifying 214
Minimax alogrithm
 optimizing 232
Minimax
 implementing, in TypeScript 231
 used, for implementing AI 230
model,Tic-Tac-Toe game
 creating 219
 grid, creating 225
 grid, displaying 220
 operations, creating on grid 222
 random testing 228, 229

 tests, adding 226
models, PacMan
 creating 193
 default level, creating 196, 199
 enums, using 194, 195
 level, storing 195
 state, creating 199
modules
 using 14
MongoDB 45
MongoDB database, NodeJS
 connecting to 53
 functions, wrapping in promises 52
 querying 54
 reference link 52

N
NativeScript
 about 99
 comparing 119
 detail view, creating 112
 details view, creating 109, 110, 111
 Hello World page, creating 103
 main view, creating 105, 107, 108
 persistent storage, adding 116
 structure, creating 101
 styling 117, 118
 TypeScript, adding 102
 working with 100
never type
 about 127
NodeJS
 about 45, 233
 asynchronous code 50
 MongoDB database 52
 starting with 49
note-taking app project
 build tool, configuring 46, 47
 directories 46
 running 75
 setting up 46
 type definitions 48
null type
 checking 126

[255]

O
open weather map
 reference link 27

P
Pac Man
 about 177
 menu, adding 210
 running 209
 setting up 178
Phonegap 119
polyfill
 reference link 9
pure code 137

Q
QR codes
 scan function, implementing 113, 114
 scanning 113
 testing, on device 115
 type definitions 113

R
React Native 119
React
 about 76
 as libraries 98
 comparing, with Angular 96
 components, creating with JSX 79
 JSX, using 97
 menu, creating 81
 props, adding to component 80
 starting with 79
 state, adding to component 80
Real-Time Chat project
 gulp, configuring 78
 setting up 77
 testing 84
rest argument 7

S
side effect 137
spreadsheet application project
 setting up 135

 summarizing 174
spreadsheet
 all fields calculating 156
 defining 155
structural type system
 about 55
 API, typing 58
 generics 55

T
tagged union types
 creating 127
template
 conditions, adding 25
Tic-Tac-Toe game
 about 216
 structure, creating 218
 TypeScript, configuring 218
time handler
 creating 205, 209
Titanium 119
TSX file 249
type cast 121
type guard
 about 248
 accuracy, checking 124
 assignments, checking 125
 combining 124
 instanceof guard 122
 narrowing any 123
 narrowing process 123
 typeof guard 122
 user defined 122
 using 122
types
 annotations 11
 any 10
 boolean 9
 checking 9
 defining 10
 enum type 10
 function type 11
 intersection type 10
 literal types 10
 never 10

 null 11
 number 10
 Object type 10
 string 9
 tuple type 11
 undefined 11
 union type 10
 void 10
TypeScript 2.0 1
TypeScript compiler
 checker 1
 transpiler 1
TypeScript
 about 1
 adding 242
 build tool, configuring 244
 configuring 242
 example 2, 3
 migrating to 241
 project, testing 245
 refactoring 250
 strict checks, enabling 251
 transpiling 3, 4
 typechecking 4

U
undefined type
 checking 126
utility functions, PacMan
 adding 192
utility functions,Tic-Tac-Toe game
 adding 219

V

variable
 about 144
 null type, checking 126
 undefined type, checking 126
view
 drawing 200, 203
 field, rendering 168
 grid, rendering 166
 popup, displaying 170
 rendering 168
 styles, adding 172
 writing 166

W
weather forecast project
 directory structure 15
 first component, creating 20
 HTML file 18
 setting up 15
 system, building 16, 18
 system,building 17
 TypeScript, configuring 16
websocket server
 API, typing 84
 automatically reconnecting 90
 chat message session, implementing 88
 connecting to 90
 connections 84
 connections, accepting 85
 event handler, writing 93
 event handlers, writing 94
 message, sending 92
 recent messages, storing 86
 session, handling 87
 writing 84

Chapter No.

[337]

Bibliography

This learning path has been prepared for you to build stunning applications by
leveraging the features of TypeScript. It comprises of the following Packt products:

• Learning TypeScript, Remo H. Jansen

• TypeScript Design Patterns, Vilic Vane

• TypeScript Blueprints, Ivo Gabe de Wolff

	Cover
	Copyright
	Credits
	Preface
	Module 1: Table of Contents
	Module 2: Table of Contents
	Module 3: Table of Contents
	Module 1: Learning TypeScript
	Chapter 1: Introducing TypeScript
	The TypeScript architecture
	TypeScript language features
	Putting everything together
	Summary

	Chapter 2: Automating Your Development Workflow
	A modern development workflow
	Prerequisites
	Source control tools
	Package management tools
	Task runners
	Test runners
	Synchronized cross-device testing
	Continuous Integration tools
	Scaffolding tools
	Summary

	Chapter 3: Working with Functions
	Working with functions in TypeScript
	Asynchronous programming in TypeScript
	Summary

	Chapter 4: Object-Oriented Programming with TypeScript
	SOLID principles
	Classes
	Interfaces
	Association, aggregation, and composition
	Inheritance
	Generic classes
	Generic constraints
	Applying the SOLID principles
	Namespaces
	Modules
	Circular dependencies
	Summary

	Chapter 5: Runtime
	The environment
	The runtime
	The this operator
	Prototypes
	Closures
	Summary

	Chapter 6: Application Performance
	Prerequisites
	Performance and resources
	Performance metrics
	Performance analysis
	Performance automation
	Exception handling
	Summary

	Chapter 7: Application Testing
	Software testing glossary
	Prerequisites
	Testing planning and methodologies
	Setting up a test infrastructure
	Creating test assertions, specs, and suites with Mocha and Chai
	Test spies and stubs with Sinon.JS
	Creating end-to-end tests with Nightwatch.js
	Generating test coverage reports
	Summary

	Chapter 8: Decorators
	Prerequisites
	Annotations and decorators
	Summary

	Chapter 9: Application Architecture
	The single-page application architecture
	The MV* architecture
	Common components and features in the MV* frameworks
	Choosing an application framework
	Writing an MVC framework from scratch
	Summary

	Chapter 10: Putting Everything Together
	Prerequisites
	The application's requirements
	The application's data
	The application's architecture
	The application's file structure
	Configuring the automated build
	The application's layout
	Implementing the root component
	Implementing the market controller
	Implementing the NASDAQ model
	Implementing the NYSE model
	Implementing the market view
	Implementing the market template
	Implementing the symbol controller
	Implementing the symbol view
	Implementing the chart model
	Implementing the chart view
	Testing the application
	Preparing the application for a production release
	Summary

	Module 2: TypeScript Design Patterns
	Chapter 1: Tools and Frameworks
	Installing the prerequisites
	Installing Node.js
	Installing TypeScript compiler

	Choosing a handy editor
	Visual Studio Code
	Configuring Visual Studio Code
	Opening a folder as a workspace
	Configuring a minimum build task

	Sublime Text with TypeScript plugin
	Installing Package Control
	Installing the TypeScript plugin

	Other editor or IDE options
	Atom with the TypeScript plugin
	Visual Studio
	WebStorm

	Getting your hands on the workflow
	Configuring a TypeScript project
	Introduction to tsconfig.json
	Compiler options
	target
	module
	declaration
	sourceMap
	jsx
	noEmitOnError
	noEmitHelpers
	noImplicitAny
	experimentalDecorators*
	emitDecoratorMetadata*
	outDir
	outFile
	rootDir
	preserveConstEnums
	strictNullChecks
	stripInternal*
	isolatedModules

	Adding source map support

	Downloading declarations using typings
	Installing typings
	Downloading declaration files
	Option “save”

	Testing with Mocha and Istanbul
	Mocha and Chai
	Writing tests in JavaScript
	Writing tests in TypeScript

	Getting coverage information with Istanbul

	Testing in real browsers with Karma
	Creating a browser project
	Installing Karma
	Configuring and starting Karma

	Integrating commands with npm
	Why not other fancy build tools?

	Summary

	Chapter 2: The Challenge of Increasing Complexity
	Implementing the basics
	Creating the code base
	Defining the initial structure of the data to be synchronized
	Getting data by comparing timestamps
	Two-way synchronizing
	Things that went wrong while implementing the basics
	Passing a data store from the server to the client does not make sense
	Making the relationships clear

	Growing features
	Synchronizing multiple items
	Simply replacing data type with an array
	Server-centered synchronization
	Synchronizing from the server to the client
	Synchronizing from client to server

	Synchronizing multiple types of data
	Supporting multiple clients with incremental data
	Updating the client side
	Updating server side

	Supporting more conflict merging
	New data structures
	Updating client side
	Updating the server side

	Things that go wrong while implementing everything
	Piling up similar yet parallel processes
	Data stores that are tremendously simplified

	Getting things right
	Finding abstraction
	Implementing strategies
	Wrapping stores

	Summary

	Chapter 3: Creational Design Patterns
	Factory method
	Participants
	Pattern scope
	Implementation
	Consequences

	Abstract Factory
	Participants
	Pattern scope
	Implementation
	Consequences

	Builder
	Participants
	Pattern scope
	Implementation
	Consequences

	Prototype
	Singleton
	Basic implementations
	Conditional singletons

	Summary

	Chapter 4: Structural Design Patterns
	Composite Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Decorator Pattern
	Participants
	Pattern scope
	Implementation
	Classical decorators
	Decorators with ES-next syntax

	Consequences

	Adapter Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Bridge Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Façade Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Flyweight Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Proxy Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Summary

	Chapter 5: Behavioral Design Patterns
	Chain of Responsibility Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Command Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Memento Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Iterator Pattern
	Participants
	Pattern scope
	Implementation
	Simple array iterator
	ES6 iterator

	Consequences

	Mediator Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Summary

	Chapter 6: Behavioral Design Patterns: Continuous
	Strategy Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	State Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Template Method Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Observer Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Visitor Pattern
	Participants
	Pattern scope
	Implementation
	Consequences

	Summary

	Chapter 7: Patterns and Architectures in JavaScript and TypeScript
	Promise-based web architecture
	Promisifying existing modules or libraries
	Views and controllers in Express
	Abstraction of responses
	Abstraction of permissions
	Expected errors
	Defining and throwing expected errors
	Transforming errors

	Modularizing project
	Asynchronous patterns
	Writing predictable code
	Asynchronous creational patterns
	Asynchronous middleware and hooks
	Event-based stream parser

	Summary

	Chapter 8: SOLID Principles
	Single responsibility principle
	Example
	Choosing an axis

	Open-closed principle
	Example
	Abstraction in JavaScript and TypeScript
	Refactor earlier

	Liskov substitution principle
	Example
	The constraints of substitution

	Interface segregation principle
	Example
	Proper granularity

	Dependency inversion principle
	Example
	Separating layers

	Summary

	Chapter 9: The Road to Enterprise Application
	Creating an application
	Decision between SPA and “normal” web applications
	Taking team collaboration into consideration

	Building and testing projects
	Static assets packaging with webpack
	Introduction to webpack
	Bundling JavaScript
	Loading TypeScript
	Splitting code
	Loading other static assets

	Adding TSLint to projects
	Integrating webpack and tslint command with npm scripts

	Version control
	Git flow
	Main branches
	Supporting branches
	Feature branches
	Release branches
	Hotfix branches

	Summary of Git flow

	Pull request based code review
	Configuring branch permissions
	Comments and modifications before merge

	Testing before commits
	Git hooks
	Adding pre-commit hook automatically

	Continuous integration
	Connecting GitHub repository with Travis-CI

	Deployment automation
	Passive deployment based on Git server side hooks
	Proactive deployment based on timers or notifications

	Summary

	Module 3: TypeScript Blueprints
	Chapter 1: TypeScript 2.0 Fundamentals
	What is TypeScript?
	Quick example
	Transpiling
	Type checking

	Learning modern JavaScript
	let and const
	Classes
	Arrow functions
	Function arguments
	Array spread
	Destructuring
	Template strings
	New classes

	Type checking
	Primitive types
	Defining types
	Undefined and null
	Type annotations

	Summary

	Chapter 2: A Weather Forecast Widget with Angular 2
	Using modules
	Setting up the project
	Directory structure
	Configuring TypeScript
	Building the system
	The HTML file

	Creating the first component
	The template
	Testing
	Interactions
	One-way variable binding
	Event listeners

	Adding conditions to the template
	Directives
	The template tag
	Modifying the about template

	Using the component in other components
	Showing a forecast
	Using the API
	Typing the API

	Creating the forecast component
	Templates
	Downloading the forecast
	Adding @Output

	The main component
	Using our other components
	Two-way bindings
	Listening to our event
	Geolocation API
	Component sources

	Summary

	Chapter 3: Note-Taking App with a Server
	Setting up the project structure
	Directories
	Configuring the build tool
	Type definitions

	Getting started with NodeJS
	Asynchronous code
	Callback approach for asynchronous code
	Disadvantages of callbacks

	The database
	Wrapping functions in promises
	Connecting to the database
	Querying the database

	Understanding the structural type system
	Generics
	Typing the API

	Adding authentication
	Implementing users in the database
	Adding users to the database

	Testing the API
	Adding CRUD operations
	Implementing the handlers
	Request handling

	Writing the client side
	Creating the login form
	Creating a menu
	The note editor
	The main component
	Error handler

	Running the application
	Summary

	Chapter 4: Real-Time Chat
	Setting up the project
	Configuring gulp

	Getting started with React
	Creating a component with JSX
	Adding props and state to a component
	Creating the menu
	Testing the application

	Writing the server
	Connections
	Typing the API
	Accepting connections
	Storing recent messages
	Handling a session
	Implementing a chat message session

	Connecting to the server
	Automatic reconnecting
	Sending a message to the server
	Writing the event handler

	Creating the chat room
	Two-way bindings
	Stateless functional components
	Running the application

	Comparing React and Angular
	Templates and JSX
	Libraries or frameworks

	Summary

	Chapter 5: Native QR Scanner App
	Getting started with NativeScript
	Creating the project structure
	Adding TypeScript

	Creating a Hello World page
	Creating the main view
	Adding a details view
	Scanning QR codes
	Type definitions
	Implementation
	Testing on a device

	Adding persistent storage
	Styling the app
	Comparing NativeScript to alternatives
	Summary

	Chapter 6: Advanced Programming in TypeScript
	Using type guards
	Narrowing
	Narrowing any
	Combining type guards

	More accurate type guards
	Assignments

	Checking null and undefined
	Guard against null and undefined
	The never type

	Creating tagged union types
	Comparing performance of algorithms
	Big-Oh notation
	Optimizing algorithms
	Binary search
	Built-in functions

	Summary

	Chapter 7: Spreadsheet Applications with Functional Programming
	Setting up the project
	Functional programming
	Calculating a factorial

	Using data types for expressions
	Creating data types
	Traversing data types
	Validating an expression
	Calculating expressions

	Parsing an expression
	Creating core parsers
	Running parsers in a sequence
	Parsing a number
	Order of operations

	Defining the sheet
	Calculating all fields

	Using the Flux architecture
	Defining the state
	Creating the store and dispatcher

	Creating actions
	Adding a column or a row
	Changing the title
	Showing the input popup
	Testing actions

	Writing the view
	Rendering the grid
	Rendering a field
	Showing the popup
	Adding styles
	Gluing everything together

	Advantages of Flux
	Going cross-platform

	Summary

	Chapter 8: Pac Man in HTML5
	Setting up the project
	Using the HTML5 canvas
	Saving and restoring the state

	Designing the framework
	Creating pictures
	Wrapping other pictures
	Creating events
	Binding everything together

	Drawing on the canvas
	Adding utility functions
	Creating the models
	Using enums
	Storing the level
	Creating the default level
	Creating the state

	Drawing the view
	Handling events
	Working with key codes

	Creating the time handler
	Running the game
	Adding a menu
	Changing the model
	Rendering the menu
	Handling events
	Modifying the time handler

	Summary

	Chapter 9: Playing Tic-Tac-Toe against an AI
	Creating the project structure
	Configure TypeScript

	Adding utility functions
	Creating the models
	Showing the grid
	Creating operations on the grid
	Creating the grid
	Adding tests
	Random testing

	Implementing the AI using Minimax
	Implementing Minimax in TypeScript
	Optimizing the algorithm

	Creating the interface
	Handling interaction
	Creating players

	Testing the AI
	Testing with a random player

	Summary

	Chapter 10: Migrate JavaScript to TypeScript
	Gradually migrating to TypeScript
	Adding TypeScript
	Configuring TypeScript
	Configuring the build tool
	Acquiring type definitions
	Testing the project

	Migrating each file
	Converting to ES modules
	Correcting types
	Adding type guards and casts
	Using modern syntax
	Adding types

	Refactoring the project
	Enable strict checks

	Summary

	Bibliography

