
“I doubt there’s a more thorough, or thoughtful,
ES6 reference available.”

—ANGUS CROLL, Twitter Engineer, author of
If Hemingway Wrote JavaScript (No Starch)

ES6 & I
BEYOND

KYLE SIMPSON

Kyle Simpson

You Don’t Know JS:
ES6 and Beyond

978-1-491-90424-4

[LSI]

You Don’t Know JS: ES6 & Beyond
by Kyle Simpson

Copyright © 2016 Getify Solutions, Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472.

O’Reilly books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safaribooksonline.com). For
more information, contact our corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Brian
MacDonald
Production Editor: Kristen Brown
Copyeditor: Jasmine Kwityn

Proofreader: Christina Edwards
Interior Designer: David Futato
Cover Designer: Randy Comer
Illustrator: Rebecca Demarest

January 2016: First Edition

Revision History for the First Edition
2015-12-11: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491904244 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. You Don’t Know
JS: ES6 & Beyond, the cover image, and related trade dress are trademarks of
O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the
information and instructions contained in this work are accurate, the publisher and
the author disclaim all responsibility for errors or omissions, including without limi‐
tation responsibility for damages resulting from the use of or reliance on this work.
Use of the information and instructions contained in this work is at your own risk. If
any code samples or other technology this work contains or describes is subject to
open source licenses or the intellectual property rights of others, it is your responsi‐
bility to ensure that your use thereof complies with such licenses and/or rights.

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491904244

Table of Contents

Foreword. vii

Preface. ix

1. ES? Now & Future. 1
Versioning 2
Transpiling 3
Review 6

2. Syntax. 7
Block-Scoped Declarations 7
Spread/Rest 15
Default Parameter Values 18
Destructuring 23
Object Literal Extensions 38
Template Literals 47
Arrow Functions 54
for..of Loops 61
Regular Expressions 64
Number Literal Extensions 72
Unicode 73
Symbols 80
Review 85

3. Organization. 87
Iterators 87
Generators 98

iii

Modules 116
Classes 135
Review 146

4. Async Flow Control. 147
Promises 147
Generators + Promises 155
Review 158

5. Collections. 159
TypedArrays 159
Maps 165
WeakMaps 169
Sets 170
WeakSets 173
Review 173

6. API Additions. 175
Array 175
Object 186
Math 190
Number 191
String 194
Review 197

7. Meta Programming. 199
Function Names 200
Meta Properties 202
Well-Known Symbols 203
Proxies 210
Reflect API 224
Feature Testing 228
Tail Call Optimization (TCO) 230
Review 238

8. Beyond ES6. 241
async functions 242
Object.observe(..) 245
Exponentiation Operator 249
Objects Properties and ... 249
Array#includes(..) 250

iv | Table of Contents

SIMD 251
WebAssembly (WASM) 252
Review 254

A. Acknowledgments. 257

Table of Contents | v

Foreword

Kyle Simpson is a thorough pragmatist.

I can’t think of higher praise than this. To me, these are two of the
most important qualities that a software developer must have. That’s
right: must, not should. Kyle’s keen ability to tease apart layers of the
JavaScript programming language and present them in understand‐
able and meaningful portions is second to none.

ES6 & Beyond will be familiar to readers of the You Don’t Know JS
series: they can expect to be deeply immersed in everything from the
obvious, to the very subtle—revealing semantics that were either
taken for granted or never even considered. Until now, the You Don’t
Know JS book series has covered material that has at least some
degree of familiarity to its readers. They have either seen or heard
about the subject matter; they may even have experience with it.
This volume covers material that only a very small portion of the
JavaScript developer community has been exposed to: the evolution‐
ary changes to the language introduced in the ECMAScript 2015
Language Specification.

Over the last couple years, I’ve witnessed Kyle’s tireless efforts to
familiarize himself with this material to a level of expertise that is
rivaled by only a handful of his professional peers. That’s quite a
feat, considering that at the time of this writing, the language speci‐
fication document hasn’t been formally published! But what I’ve said
is true, and I’ve read every word that Kyle’s written for this book. I’ve
followed every change, and each time, the content only gets better
and provides yet a deeper level of understanding.

vii

This book is about shaking up your sense of understanding by
exposing you to the new and unknown. The intention is to evolve
your knowledge in step with your tools by bestowing you with new
capabilities. It exists to give you the confidence to fully embrace the
next major era of JavaScript programming.

—Rick Waldron (@rwaldron),
Open Web Engineer at Bocoup

Ecma/TC39 Representative
for jQuery

viii | Foreword

Preface

I’m sure you noticed, but “JS” in the series title is not an abbrevia‐
tion for words used to curse about JavaScript, though cursing at the
language’s quirks is something we can probably all identify with!

From the earliest days of the Web, JavaScript has been a founda‐
tional technology that drives interactive experience around the con‐
tent we consume. While flickering mouse trails and annoying pop-
up prompts may be where JavaScript started, nearly two decades
later, the technology and capability of JavaScript has grown many
orders of magnitude, and few doubt its importance at the heart of
the world’s most widely available software platform: the Web.

But as a language, it has perpetually been a target for a great deal of
criticism, owing partly to its heritage but even more to its design
philosophy. Even the name evokes, as Brendan Eich once put it,
“dumb kid brother” status next to its more mature older brother
Java. But the name is merely an accident of politics and marketing.
The two languages are vastly different in many important ways.
“JavaScript” is as related to “Java” as “Carnival” is to “Car.”

Because JavaScript borrows concepts and syntax idioms from sev‐
eral languages, including proud C-style procedural roots as well as
subtle, less obvious Scheme/Lisp-style functional roots, it is exceed‐
ingly approachable to a broad audience of developers, even those
with little to no programming experience. The “Hello World” of
JavaScript is so simple that the language is inviting and easy to get
comfortable with in early exposure.

While JavaScript is perhaps one of the easiest languages to get up
and running with, its eccentricities make solid mastery of the lan‐
guage a vastly less common occurrence than in many other lan‐

ix

guages. Where it takes a pretty in-depth knowledge of a language
like C or C++ to write a full-scale program, full-scale production
JavaScript can, and often does, barely scratch the surface of what the
language can do.

Sophisticated concepts that are deeply rooted into the language tend
instead to surface themselves in seemingly simplistic ways, such as
passing around functions as callbacks, which encourages the Java‐
Script developer to just use the language as-is and not worry too
much about what’s going on under the hood.

It is simultaneously a simple, easy-to-use language that has broad
appeal, and a complex and nuanced collection of language mechan‐
ics that without careful study will elude true understanding even for
the most seasoned of JavaScript developers.

Therein lies the paradox of JavaScript, the Achilles’ heel of the lan‐
guage, the challenge we are presently addressing. Because JavaScript
can be used without understanding, the understanding of the lan‐
guage is often never attained.

Mission
If at every point that you encounter a surprise or frustration in Java‐
Script, your response is to add it to the blacklist (as some are accus‐
tomed to doing), you soon will be relegated to a hollow shell of the
richness of JavaScript.

While this subset has been famously dubbed “The Good Parts,” I
would implore you, dear reader, to instead consider it the “The Easy
Parts,” “The Safe Parts,” or even “The Incomplete Parts.”

This You Don’t Know JS series offers a contrary challenge: learn and
deeply understand all of JavaScript, even and especially “The Tough
Parts.”

Here, we address head-on the tendency of JS developers to learn
“just enough” to get by, without ever forcing themselves to learn
exactly how and why the language behaves the way it does. Further‐
more, we eschew the common advice to retreat when the road gets
rough.

x | Preface

I am not content, nor should you be, at stopping once something
just works and not really knowing why. I gently challenge you to
journey down that bumpy “road less traveled” and embrace all that
JavaScript is and can do. With that knowledge, no technique, no
framework, no popular buzzword acronym of the week will be
beyond your understanding.

These books each take on specific core parts of the language that are
most commonly misunderstood or under-understood, and dive very
deep and exhaustively into them. You should come away from read‐
ing with a firm confidence in your understanding, not just of the
theoretical, but the practical “what you need to know” bits.

The JavaScript you know right now is probably parts handed down
to you by others who’ve been burned by incomplete understanding.
That JavaScript is but a shadow of the true language. You don’t really
know JavaScript yet, but if you dig into this series, you will. Read on,
my friends. JavaScript awaits you.

Review
JavaScript is awesome. It’s easy to learn partially, and much harder to
learn completely (or even sufficiently). When developers encounter
confusion, they usually blame the language instead of their lack of
understanding. These books aim to fix that, inspiring a strong
appreciation for the language you can now, and should, deeply know.

Many of the examples in this book assume
modern (and future-reaching) JavaScript engine
environments, such as ES6. Some code may not
work as described if run in older (pre-ES6)
engines.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Preface | xi

Constant width

Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names, data‐
bases, data types, environment variables, statements, and key‐
words.

Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available
for download at http://bit.ly/ydkjs-es6beyond-code.

This book is here to help you get your job done. In general, if exam‐
ple code is offered with this book, you may use it in your programs
and documentation. You do not need to contact us for permission
unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code

xii | Preface

http://bit.ly/ydkjs-es6beyond-code

does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usu‐
ally includes the title, author, publisher, and ISBN. For example:
“You Don’t Know JavaScript: ES6 & Beyond by Kyle Simpson
(O’Reilly). Copyright 2016 Getify Solutions, Inc.,
978-1-491-90424-4.”

If you feel your use of code examples falls outside fair use or the per‐
mission given above, feel free to contact us at permis‐
sions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital
library that delivers expert content in both
book and video form from the world’s lead‐
ing authors in technology and business.

Technology professionals, software developers, web designers, and
business and creative professionals use Safari Books Online as their
primary resource for research, problem solving, learning, and certif‐
ication training.

Safari Books Online offers a range of plans and pricing for enter‐
prise, government, education, and individuals.

Members have access to thousands of books, training videos, and
prepublication manuscripts in one fully searchable database from
publishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press,
Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress,
Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech‐
nology, and hundreds more. For more information about Safari
Books Online, please visit us online.

Preface | xiii

mailto:permissions@oreilly.com
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
and any additional information. You can access this page at http://
bit.ly/ydkjs-es6-beyond.

To comment or ask technical questions about this book, send email
to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xiv | Preface

http://bit.ly/ydkjs-es6-beyond
http://bit.ly/ydkjs-es6-beyond
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

ES? Now & Future

Before you dive into this book, you should have a solid working pro‐
ficiency over JavaScript up to the most recent standard (at the time
of this writing), which is commonly called ES5 (technically ES 5.1).
Here, we plan to talk squarely about the upcoming ES6, as well as
cast our vision beyond to understand how JS will evolve moving
forward.

If you are still looking for confidence with JavaScript, I highly rec‐
ommend you read the other titles in this series first:

• Up & Going: Are you new to programming and JS? This is the
roadmap you need to consult as you start your learning journey.

• Scope & Closures: Did you know that JS lexical scope is based on
compiler (not interpreter!) semantics? Can you explain how clo‐
sures are a direct result of lexical scope and functions as values?

• this & Object Prototypes: Can you recite the four simple rules for
how this is bound? Have you been muddling through fake
“classes” in JS instead of adopting the simpler “behavior delega‐
tion” design pattern? Ever heard of objects linked to other objects
(OLOO)?

• Types & Grammar: Do you know the built-in types in JS, and
more importantly, do you know how to properly and safely use
coercion between types? How comfortable are you with the
nuances of JS grammar/syntax?

• Async & Performance: Are you still using callbacks to manage
your asynchrony? Can you explain what a promise is and

1

why/how it solves “callback hell”? Do you know how to use gen‐
erators to improve the legibility of async code? What exactly
constitutes mature optimization of JS programs and individual
operations?

If you’ve already read all those titles and you feel pretty comfortable
with the topics they cover, it’s time we dive into the evolution of JS
to explore all the changes coming not only soon but farther over the
horizon.

Unlike ES5, ES6 is not just a modest set of new APIs added to the
language. It incorporates a whole slew of new syntactic forms, some
of which may take quite a bit of getting used to. There’s also a variety
of new organization forms and new API helpers for various data
types.

ES6 is a radical jump forward for the language. Even if you think
you know JS in ES5, ES6 is full of new stuff you don’t know yet, so
get ready! This book explores all the major themes of ES6 that you
need to get up to speed on, and even gives you a glimpse of future
features coming down the track that you should be aware of.

All code in this book assumes an ES6+ environ‐
ment. At the time of this writing, ES6 support
varies quite a bit in browsers and JS environ‐
ments (like Node.js), so your mileage may vary.

Versioning
The JavaScript standard is referred to officially as “ECMAScript”
(abbreviated “ES”), and up until just recently has been versioned
entirely by ordinal number (i.e., “5” for “5th edition”).

The earliest versions, ES1 and ES2, were not widely known or
implemented. ES3 was the first widespread baseline for JavaScript,
and constitutes the JavaScript standard for browsers like IE6-8 and
older Android 2.x mobile browsers. For political reasons beyond
what we’ll cover here, the ill-fated ES4 never came about.

In 2009, ES5 was officially finalized (later ES5.1 in 2011), and settled
as the widespread standard for JS for the modern revolution and
explosion of browsers, such as Firefox, Chrome, Opera, Safari, and
many others.

2 | Chapter 1: ES? Now & Future

Leading up to the expected next version of JS (slipped from 2013 to
2014 and then 2015), the obvious and common label in discourse
has been ES6.

However, late into the ES6 specification timeline, suggestions have
surfaced that versioning may in the future switch to a year-based
schema, such as ES2016 (aka ES7) to refer to whatever version of the
specification is finalized before the end of 2016. Some disagree, but
ES6 will likely maintain its dominant mindshare over the late-
change substitute ES2015. However, ES2016 may in fact signal the
new year-based schema.

It has also been observed that the pace of JS evolution is much faster
even than single-year versioning. As soon as an idea begins to pro‐
gress through standards discussions, browsers start prototyping the
feature, and early adopters start experimenting with the code.

Usually well before there’s an official stamp of approval, a feature is
de facto standardized by virtue of this early engine/tooling prototyp‐
ing. So it’s also valid to consider the future of JS versioning to be
per-feature rather than per-arbitrary-collection-of-major-features
(as it is now) or even per-year (as it may become).

The takeaway is that the version labels stop being as important, and
JavaScript starts to be seen more as an evergreen, living standard.
The best way to cope with this is to stop thinking about your code
base as being “ES6-based,” for instance, and instead consider it fea‐
ture by feature for support.

Transpiling
Made even worse by the rapid evolution of features, a problem arises
for JS developers who at once may both strongly desire to use new
features while at the same time being slapped with the reality that
their sites/apps may need to support older browsers without such
support.

The way ES5 appears to have played out in the broader industry, the
typical mindset was that code bases waited to adopt ES5 until most
if not all pre-ES5 environments had fallen out of their support spec‐
trum. As a result, many are just recently (at the time of this writing)
starting to adopt things like strict mode, which landed in ES5 over
five years ago.

Transpiling | 3

It’s widely considered to be a harmful approach for the future of the
JS ecosystem to wait around and trail the specification by so many
years. All those responsible for evolving the language desire for
developers to begin basing their code on the new features and pat‐
terns as soon as they stabilize in specification form and browsers
have a chance to implement them.

So how do we resolve this seeming contradiction? The answer is
tooling, specifically a technique called transpiling (transformation +
compiling). Roughly, the idea is to use a special tool to transform
your ES6 code into equivalent (or close!) matches that work in ES5
environments.

For example, consider shorthand property definitions (see “Object
Literal Extensions” on page 38 in Chapter 2). Here’s the ES6 form:

var foo = [1,2,3];

var obj = {
 foo // means `foo: foo`
};

obj.foo; // [1,2,3]

But (roughly) here’s how that transpiles:

var foo = [1,2,3];

var obj = {
 foo: foo
};

obj.foo; // [1,2,3]

This is a minor but pleasant transformation that lets us shorten the
foo: foo in an object literal declaration to just foo, if the names are
the same.

Transpilers perform these transformations for you, usually in a build
workflow step similar to how you perform linting, minification, and
other similar operations.

Shims/Polyfills
Not all new ES6 features need a transpiler. Polyfills (aka shims) are a
pattern for defining equivalent behavior from a newer environment
into an older environment, when possible. Syntax cannot be polyfil‐
led, but APIs often can be.

4 | Chapter 1: ES? Now & Future

For example, Object.is(..) is a new utility for checking strict
equality of two values but without the nuanced exceptions that ===
has for NaN and -0 values. The polyfill for Object.is(..) is pretty
easy:

if (!Object.is) {
 Object.is = function(v1, v2) {
 // test for `-0`
 if (v1 === 0 && v2 === 0) {
 return 1 / v1 === 1 / v2;
 }
 // test for `NaN`
 if (v1 !== v1) {
 return v2 !== v2;
 }
 // everything else
 return v1 === v2;
 };
}

Pay attention to the outer if statement guard
wrapped around the polyfill. This is an impor‐
tant detail, which means the snippet only
defines its fallback behavior for older environ‐
ments where the API in question isn’t already
defined; it would be very rare that you’d want to
overwrite an existing API.

There’s a great collection of ES6 shims called “ES6 Shim” that you
should definitely adopt as a standard part of any new JS project!

It is assumed that JS will continue to evolve constantly, with brows‐
ers rolling out support for features continually rather than in large
chunks. So the best strategy for keeping updated as it evolves is to
just introduce polyfill shims into your code base, and a transpiler
step into your build workflow, right now and get used to that new
reality.

If you decide to keep the status quo and just wait around for all
browsers without a feature supported to go away before you start
using the feature, you’re always going to be way behind. You’ll sadly
be missing out on all the innovations designed to make writing Java‐
Script more effective, efficient, and robust.

Transpiling | 5

https://github.com/paulmillr/es6-shim/

Review
ES6 (some may try to call it ES2015) is just landing as of the time of
this writing, and it has lots of new stuff you need to learn!

But it’s even more important to shift your mindset to align with the
new way that JavaScript is going to evolve. It’s not just waiting
around for years for some official document to get a vote of appro‐
val, as many have done in the past.

Now, JavaScript features land in browsers as they become ready, and
it’s up to you whether you’ll get on the train early or whether you’ll
be playing costly catch-up games years from now.

Whatever labels that future JavaScript adopts, it’s going to move a lot
quicker than it ever has before. Transpilers and shims/polyfills are
important tools to keep you on the forefront of where the language
is headed.

If there’s any narrative important to understand about the new real‐
ity for JavaScript, it’s that all JS developers are strongly implored to
move from the trailing edge of the curve to the leading edge. And
learning ES6 is where that all starts!

6 | Chapter 1: ES? Now & Future

CHAPTER 2

Syntax

If you’ve been writing JS for any length of time, odds are the syntax
is pretty familiar to you. There are certainly many quirks, but overall
it’s a fairly reasonable and straightforward syntax that draws many
similarities from other languages.

However, ES6 adds quite a few new syntactic forms that take some
getting used to. In this chapter, we’ll tour through them to find out
what’s in store.

At the time of this writing, some of the features
discussed in this book have been implemented
in various browsers (Firefox, Chrome, etc.), but
some have only been partially implemented and
many others have not been implemented at all.
Your experience may be mixed trying these
examples directly. If so, try them out with tran‐
spilers, as most of these features are covered by
those tools.
ES6Fiddle is a great, easy-to-use playground for
trying out ES6, as is the online REPL for the
Babel transpiler.

Block-Scoped Declarations
You’re probably aware that the fundamental unit of variable scoping
in JavaScript has always been the function. If you needed to create a
block of scope, the most prevalent way to do so other than a regular

7

http://www.es6fiddle.net/
http://babeljs.io/repl/

function declaration was the immediately invoked function expres‐
sion (IIFE). For example:

var a = 2;

(function IIFE(){
 var a = 3;
 console.log(a); // 3
})();

console.log(a); // 2

let Declarations
However, we can now create declarations that are bound to any
block, called (unsurprisingly) block scoping. This means all we need
is a pair of { .. } to create a scope. Instead of using var, which
always declares variables attached to the enclosing function (or
global, if top level) scope, use let:

var a = 2;

{
 let a = 3;
 console.log(a); // 3
}

console.log(a); // 2

It’s not very common or idiomatic thus far in JS to use a standalone
{ .. } block, but it’s always been valid. And developers from other
languages that have block scoping will readily recognize that pattern.

I believe this is the best way to create block-scoped variables, with a
dedicated { .. } block. Moreover, you should always put the let
declaration(s) at the very top of that block. If you have more than
one to declare, I’d recommend using just one let.

Stylistically, I even prefer to put the let on the same line as the
opening {, to make it clearer that this block is only for the purpose
of declaring the scope for those variables.

{ let a = 2, b, c;
 // ..
}

Now, that’s going to look strange and it’s not likely going to match
the recommendations given in most other ES6 literature. But I have
reasons for my madness.

8 | Chapter 2: Syntax

There’s another experimental (not standardized) form of the let
declaration called the let-block, which looks like:

let (a = 2, b, c) {
 // ..
}

That form is what I call explicit block scoping, whereas the let ..
declaration form that mirrors var is more implicit, as it kind of
hijacks whatever { .. } pair it’s found in. Generally developers find
explicit mechanisms a bit more preferable than implicit mechanisms,
and I claim this is one of those cases.

If you compare the previous two snippet forms, they’re very similar,
and in my opinion both qualify stylistically as explicit block scoping.
Unfortunately, the let (..) { .. } form, the most explicit of the
options, was not adopted in ES6. That may be revisited post-ES6,
but for now the former option is our best bet, I think.

To reinforce the implicit nature of let .. declarations, consider
these usages:

let a = 2;

if (a > 1) {
 let b = a * 3;
 console.log(b); // 6

 for (let i = a; i <= b; i++) {
 let j = i + 10;
 console.log(j);
 }
 // 12 13 14 15 16

 let c = a + b;
 console.log(c); // 8
}

Quick quiz without looking back at that snippet: which variable(s)
exist only inside the if statement, and which variable(s) exist only
inside the for loop?

The answers: the if statement contains b and c block-scoped vari‐
ables, and the for loop contains i and j block-scoped variables.

Did you have to think about it for a moment? Does it surprise you
that i isn’t added to the enclosing if statement scope? That mental

Block-Scoped Declarations | 9

pause and questioning—I call it a “mental tax”—comes from the fact
that this let mechanism is not only new to us, but it’s also implicit.

There’s also a hazard in the let c = .. declaration appearing so far
down in the scope. Unlike traditional var-declared variables, which
are attached to the entire enclosing function scope regardless of
where they appear, let declarations attach to the block scope but are
not initialized until they appear in the block.

Accessing a let-declared variable earlier than its let .. declara‐
tion/initialization causes an error, whereas with var declarations the
ordering doesn’t matter (except stylistically).

Consider:

{
 console.log(a); // undefined
 console.log(b); // ReferenceError!

 var a;
 let b;
}

This ReferenceError from accessing too-early
let-declared references is technically called a
Temporal Dead Zone (TDZ) error—you’re
accessing a variable that’s been declared but not
yet initialized. This will not be the only time we
see TDZ errors—they crop up in several places
in ES6. Also, note that “initialized” doesn’t
require explicitly assigning a value in your code,
as let b; is totally valid. A variable that’s not
given an assignment at declaration time is
assumed to have been assigned the undefined
value, so let b; is the same as let b = unde
fined;. Explicit assignment or not, you cannot
access b until the let b statement is run.

One last gotcha: typeof behaves differently with TDZ variables than
it does with undeclared (or declared!) variables. For example:

{
 // `a` is not declared
 if (typeof a === "undefined") {
 console.log("cool");
 }

10 | Chapter 2: Syntax

 // `b` is declared, but in its TDZ
 if (typeof b === "undefined") { // ReferenceError!
 // ..
 }

 // ..

 let b;
}

The a is not declared, so typeof is the only safe way to check for its
existence or not. But typeof b throws the TDZ error because far‐
ther down in the code there happens to be a let b declaration.
Oops.

Now it should be clearer why I insist that let declarations should all
be at the top of their scope. That totally avoids the accidental errors
of accessing too early. It also makes it more explicit when you look at
the start of a block, any block, what variables it contains.

Your blocks (if statements, while loops, etc.) don’t have to share
their original behavior with scoping behavior.

This explicitness on your part, which is up to you to maintain with
discipline, will save you lots of refactor headaches and footguns
down the line.

For more information on let and block scoping,
see Chapter 3 of the Scope & Closures title of this
series.

let + for
The only exception I’d make to the preference for the explicit form
of let declaration blocking is a let that appears in the header of a
for loop. The reason may seem nuanced, but I believe it to be one of
the more important ES6 features.

Consider:

var funcs = [];

for (let i = 0; i < 5; i++) {
 funcs.push(function(){
 console.log(i);

Block-Scoped Declarations | 11

 });
}

funcs[3](); // 3

The let i in the for header declares an i not just for the for loop
itself, but it redeclares a new i for each iteration of the loop. That
means that closures created inside the loop iteration close over those
per-iteration variables the way you’d expect.

If you tried that same snippet but with var i in the for loop header,
you’d get 5 instead of 3, because there’d only be one i in the outer
scope that was closed over, instead of a new i for each iteration’s
function to close over.

You could also have accomplished the same thing slightly more ver‐
bosely:

var funcs = [];

for (var i = 0; i < 5; i++) {
 let j = i;
 funcs.push(function(){
 console.log(j);
 });
}

funcs[3](); // 3

Here, we forcibly create a new j for each iteration, and then the clo‐
sure works the same way. I prefer the former approach; that extra
special capability is why I endorse the for (let ..) .. form. It
could be argued that it’s somewhat more implicit, but it’s explicit
enough, and useful enough, for my tastes.

let also works the same way with for..in and for..of loops (see
“for..of Loops” on page 61).

const Declarations
There’s one other form of block-scoped declaration to consider: the
const, which creates constants.

What exactly is a constant? It’s a variable that’s read-only after its ini‐
tial value is set. Consider:

12 | Chapter 2: Syntax

{
 const a = 2;
 console.log(a); // 2

 a = 3; // TypeError!
}

You are not allowed to change the value the variable holds once it’s
been set, at declaration time. A const declaration must have an
explicit initialization. If you wanted a constant with the undefined
value, you’d have to declare const a = undefined to get it.

Constants are not a restriction on the value itself, but on the varia‐
ble’s assignment of that value. In other words, the value is not frozen
or immutable because of const, just the assignment of it. If the value
is complex, such as an object or array, the contents of the value can
still be modified:

{
 const a = [1,2,3];
 a.push(4);
 console.log(a); // [1,2,3,4]

 a = 42; // TypeError!
}

The a variable doesn’t actually hold a constant array; rather, it holds
a constant reference to the array. The array itself is freely mutable.

Assigning an object or array as a constant means
that value will not be able to be garbage collec‐
ted until that constant’s lexical scope goes away,
as the reference to the value can never be unset.
That may be desirable, but be careful if it’s not
your intent!

Essentially, const declarations enforce what we’ve stylistically sig‐
naled with our code for years, where we declared a variable name of
all uppercase letters and assigned it some literal value that we took
care never to change. There’s no enforcement on a var assignment,
but there is now with a const assignment, which can help you catch
unintended changes.

const can be used with variable declarations of for, for..in, and
for..of loops (see “for..of Loops” on page 61). However, an error

Block-Scoped Declarations | 13

will be thrown if there’s any attempt to reassign, such as the typical
i++ clause of a for loop.

const Or Not

There’s some rumored assumptions that a const could be more opti‐
mizable by the JS engine in certain scenarios than a let or var
would be. Theoretically, the engine more easily knows the variable’s
value/type will never change, so it can eliminate some possible
tracking.

Whether const really helps here or this is just our own fantasies and
intuitions, the much more important decision to make is if you
intend constant behavior or not. Remember: one of the most impor‐
tant roles for source code is to communicate clearly, not only to you,
but your future self and other code collaborators, what your intent
is.

Some developers prefer to start out every variable declaration as a
const and then relax a declaration back to a let if it becomes neces‐
sary for its value to change in the code. This is an interesting per‐
spective, but it’s not clear that it genuinely improves the readability
or reason-ability of code.

It’s not really a protection, as many believe, because any later devel‐
oper who wants to change a value of a const can just blindly change
const to let on the declaration. At best, it protects accidental
change. But again, other than our intuitions and sensibilities, there
doesn’t appear to be an objective and clear measure of what consti‐
tutes “accidents” or prevention thereof. Similar mindsets exist
around type enforcement.

My advice: to avoid potentially confusing code, only use const for
variables that you’re intentionally and obviously signaling will not
change. In other words, don’t rely on const for code behavior, but
instead use it as a tool for signaling intent, when intent can be sig‐
naled clearly.

Block-Scoped Functions
Starting with ES6, function declarations that occur inside of blocks
are now specified to be scoped to that block. Prior to ES6, the speci‐
fication did not call for this, but many implementations did it any‐
way. So now the specification meets reality.

14 | Chapter 2: Syntax

Consider:

{
 foo(); // works!

 function foo() {
 // ..
 }
}

foo(); // ReferenceError

The foo() function is declared inside the { .. } block, and as of
ES6 is block-scoped there. So it’s not available outside that block.
But also note that it is “hoisted” within the block, as opposed to let
declarations, which suffer the TDZ error trap mentioned earlier.

Block-scoping of function declarations could be a problem if you’ve
ever written code like this before, and relied on the old legacy non-
block-scoped behavior:

if (something) {
 function foo() {
 console.log("1");
 }
}
else {
 function foo() {
 console.log("2");
 }
}

foo(); // ??

In pre-ES6 environments, foo() would print "2" regardless of the
value of something, because both function declarations were hoisted
out of the blocks, and the second one always wins.

In ES6, that last line throws a ReferenceError.

Spread/Rest
ES6 introduces a new ... operator that’s typically referred to as the
spread or rest operator, depending on where/how it’s used. Let’s take
a look:

function foo(x,y,z) {
 console.log(x, y, z);
}

Spread/Rest | 15

foo(...[1,2,3]); // 1 2 3

When ... is used in front of an array (actually, any iterable, which
we cover in Chapter 3), it acts to “spread” it out into its individual
values.

You’ll typically see that usage as is shown in that previous snippet,
when spreading out an array as a set of arguments to a function call.
In this usage, ... acts to give us a simpler syntactic replacement for
the apply(..) method, which we would typically have used pre-ES6
as:

foo.apply(null, [1,2,3]); // 1 2 3

But ... can be used to spread out/expand a value in other contexts
as well, such as inside another array declaration:

var a = [2,3,4];
var b = [1, ...a, 5];

console.log(b); // [1,2,3,4,5]

In this usage, ... is basically replacing concat(..), as it behaves
like [1].concat(a, [5]) here.

The other common usage of ... can be seen as essentially the oppo‐
site; instead of spreading a value out, the ... gathers a set of values
together into an array. Consider:

function foo(x, y, ...z) {
 console.log(x, y, z);
}

foo(1, 2, 3, 4, 5); // 1 2 [3,4,5]

The ...z in this snippet is essentially saying: “gather the rest of the
arguments (if any) into an array called z.” Because x was assigned 1,
and y was assigned 2, the rest of the arguments 3, 4, and 5 were
gathered into z.

Of course, if you don’t have any named parameters, the ... gathers
all arguments:

function foo(...args) {
 console.log(args);
}

foo(1, 2, 3, 4, 5); // [1,2,3,4,5]

16 | Chapter 2: Syntax

The ...args in the foo(..) function declara‐
tion is usually called “rest parameters,” because
you’re collecting the rest of the parameters. I
prefer “gather,” because it’s more descriptive of
what it does rather than what it contains.

The best part about this usage is that it provides a very solid alterna‐
tive to using the long-since-deprecated arguments array—actually,
it’s not really an array, but an array-like object. Because args (or
whatever you call it—a lot of people prefer r or rest) is a real array,
we can get rid of lots of silly pre-ES6 tricks we jumped through to
make arguments into something we can treat as an array.

Consider:

// doing things the new ES6 way
function foo(...args) {
 // `args` is already a real array

 // discard first element in `args`
 args.shift();

 // pass along all of `args` as arguments
 // to `console.log(..)`
 console.log(...args);
}

// doing things the old-school pre-ES6 way
function bar() {
 // turn `arguments` into a real array
 var args = Array.prototype.slice.call(arguments);

 // add some elements on the end
 args.push(4, 5);

 // filter out odd numbers
 args = args.filter(function(v){
 return v % 2 == 0;
 });

 // pass along all of `args` as arguments
 // to `foo(..)`
 foo.apply(null, args);
}

bar(0, 1, 2, 3); // 2 4

The ...args in the foo(..) function declaration gathers arguments,
and the ...args in the console.log(..) call spreads them out.

Spread/Rest | 17

That’s a good illustration of the symmetric but opposite uses of
the ... operator.

Besides the ... usage in a function declaration, there’s another case
where ... is used for gathering values, and we’ll look at it in “Too
Many, Too Few, Just Enough” on page 30 later in this chapter.

Default Parameter Values
Perhaps one of the most common idioms in JavaScript relates to set‐
ting a default value for a function parameter. The way we’ve done
this for years should look quite familiar:

function foo(x,y) {
 x = x || 11;
 y = y || 31;

 console.log(x + y);
}

foo(); // 42
foo(5, 6); // 11
foo(5); // 36
foo(null, 6); // 17

Of course, if you’ve used this pattern before, you know that it’s both
helpful and a little bit dangerous if, for example, you need to be able
to pass in what would otherwise be considered a falsy value for one
of the parameters. Consider:

foo(0, 42); // 53 <-- Oops, not 42

Why? Because the 0 is falsy, and so the x || 11 results in 11, not the
directly passed in 0.

To fix this gotcha, some people will instead write the check more
verbosely like this:

function foo(x,y) {
 x = (x !== undefined) ? x : 11;
 y = (y !== undefined) ? y : 31;

 console.log(x + y);
}

foo(0, 42); // 42
foo(undefined, 6); // 17

18 | Chapter 2: Syntax

Of course, that means any value except undefined can be directly
passed in. However, undefined will be assumed to signal, “I didn’t
pass this in.” That works great unless you actually need to be able to
pass undefined in.

In that case, you could test to see if the argument is actually omitted,
by it actually not being present in the arguments array, perhaps like
this:

function foo(x,y) {
 x = (0 in arguments) ? x : 11;
 y = (1 in arguments) ? y : 31;

 console.log(x + y);
}

foo(5); // 36
foo(5, undefined); // NaN

But how would you omit the first x argument without the ability to
pass in any kind of value (not even undefined) that signals “I’m
omitting this argument”?

foo(,5) is tempting, but it’s invalid syntax. foo.apply(null,[,5])
seems like it should do the trick, but apply(..)’s quirks here mean
the arguments are treated as [undefined,5], which of course
doesn’t omit.

If you investigate further, you’ll find you can only omit arguments
on the end (i.e., righthand side) by simply passing fewer arguments
than “expected,” but you cannot omit arguments in the middle or at
the beginning of the arguments list. It’s just not possible.

There’s a principle applied to JavaScript’s design here that is impor‐
tant to remember: undefined means missing. That is, there’s no dif‐
ference between undefined and missing, at least as far as function
arguments go.

There are, confusingly, other places in JS where
this particular design principle doesn’t apply,
such as for arrays with empty slots. See the Types
& Grammar title of this series for more informa‐
tion.

Default Parameter Values | 19

With all this in mind, we can now examine a nice helpful syntax
added as of ES6 to streamline the assignment of default values to
missing arguments:

function foo(x = 11, y = 31) {
 console.log(x + y);
}

foo(); // 42
foo(5, 6); // 11
foo(0, 42); // 42

foo(5); // 36
foo(5, undefined); // 36 <-- `undefined` is missing
foo(5, null); // 5 <-- null coerces to `0`

foo(undefined, 6); // 17 <-- `undefined` is missing
foo(null, 6); // 6 <-- null coerces to `0`

Notice the results and how they imply both subtle differences and
similarities to the earlier approaches.

x = 11 in a function declaration is more like x !== undefined ?
x : 11 than the much more common idiom x || 11, so you’ll need
to be careful in converting your pre-ES6 code to this ES6 default
parameter value syntax.

A rest/gather parameter (see “Spread/Rest” on
page 15) cannot have a default value. So, while
function foo(...vals=[1,2,3]) { might
seem like an intriguing capability, it’s not valid
syntax. You’ll need to continue to apply that sort
of logic manually if necessary.

Default Value Expressions
Function default values can be more than just simple values like 31;
they can be any valid expression, even a function call:

function bar(val) {
 console.log("bar called!");
 return y + val;
}

function foo(x = y + 3, z = bar(x)) {
 console.log(x, z);
}

20 | Chapter 2: Syntax

var y = 5;
foo(); // "bar called"
 // 8 13
foo(10); // "bar called"
 // 10 15
y = 6;
foo(undefined, 10); // 9 10

As you can see, the default value expressions are lazily evaluated,
meaning they’re only run if and when they’re needed—that is, when
a parameter’s argument is omitted or is undefined.

It’s a subtle detail, but the formal parameters in a function declara‐
tion are in their own scope (think of it as a scope bubble-wrapped
around just the (..) of the function declaration), not in the func‐
tion body’s scope. That means a reference to an identifier in a
default value expression first matches the formal parameters’ scope
before looking to an outer scope. See the Scope & Closures title of
this series for more information.

Consider:

var w = 1, z = 2;

function foo(x = w + 1, y = x + 1, z = z + 1) {
 console.log(x, y, z);
}

foo(); // ReferenceError

The w in the w + 1 default value expression looks for w in the formal
parameters’ scope, but does not find it, so the outer scope’s w is used.
Next, the x in the x + 1 default value expression finds x in the for‐
mal parameters’ scope, and luckily x has already been initialized, so
the assignment to y works fine.

However, the z in z + 1 finds z as a not-yet-initialized-at-that-
moment parameter variable, so it never tries to find the z from the
outer scope.

As we mentioned in “let Declarations” on page 8 earlier in this chap‐
ter, ES6 has a TDZ, which prevents a variable from being accessed in
its uninitialized state. As such, the z + 1 default value expression
throws a TDZ ReferenceError error.

Though it’s not necessarily a good idea for code clarity, a default
value expression can even be an inline function expression call—

Default Parameter Values | 21

commonly referred to as an immediately invoked function expres‐
sion (IIFE):

function foo(x =
 (function(v){ return v + 11; })(31)
) {
 console.log(x);
}

foo(); // 42

There will very rarely be any cases where an IIFE (or any other exe‐
cuted inline function expression) will be appropriate for default
value expressions. If you find yourself tempted to do this, take a step
back and reevaluate!

If the IIFE had tried to access the x identifier
and had not declared its own x, this would also
have been a TDZ error, just as discussed before.

The default value expression in the previous snippet is an IIFE in
that in the sense that it’s a function that’s executed right inline, via
(31). If we had left that part off, the default value assigned to x
would have just been a function reference itself, perhaps like a
default callback. There will probably be cases where that pattern will
be quite useful, such as:

function ajax(url, cb = function(){}) {
 // ..
}

ajax("http://some.url.1");

In this case, we essentially want to default cb to be a no-op empty
function call if not otherwise specified. The function expression is
just a function reference, not a function call itself (no invoking ()
on the end of it), which accomplishes that goal.

Since the early days of JS, there’s been a little-known but useful quirk
available to us: Function.prototype is itself an empty no-op func‐
tion. So, the declaration could have been cb = Function.prototype
and saved the inline function expression creation.

22 | Chapter 2: Syntax

Destructuring
ES6 introduces a new syntactic feature called destructuring, which
may be a little less confusing if you instead think of it as a structured
assignment. To understand this meaning, consider:

function foo() {
 return [1,2,3];
}

var tmp = foo(),
 a = tmp[0], b = tmp[1], c = tmp[2];

console.log(a, b, c); // 1 2 3

As you can see, we created a manual assignment of the values in the
array that foo() returns to individual variables a, b, and c, and to do
so we (unfortunately) needed the tmp variable.

Similarly, we can do the following with objects:

function bar() {
 return {
 x: 4,
 y: 5,
 z: 6
 };
}

var tmp = bar(),
 x = tmp.x, y = tmp.y, z = tmp.z;

console.log(x, y, z); // 4 5 6

The tmp.x property value is assigned to the x variable, and likewise
for tmp.y to y and tmp.z to z.

Manually assigning indexed values from an array or properties from
an object can be thought of as structured assignment. ES6 adds a
dedicated syntax for destructuring, specifically array destructuring
and object destructuring. This syntax eliminates the need for the tmp
variable in the previous snippets, making them much cleaner. Con‐
sider:

var [a, b, c] = foo();
var { x: x, y: y, z: z } = bar();

console.log(a, b, c); // 1 2 3
console.log(x, y, z); // 4 5 6

Destructuring | 23

You’re likely more accustomed to seeing syntax like [a,b,c] on the
righthand side of an = assignment, as the value being assigned.

Destructuring symmetrically flips that pattern, so that [a,b,c] on
the lefthand side of the = assignment is treated as a kind of “pattern”
for decomposing the righthand side array value into separate vari‐
able assignments.

Similarly, { x: x, y: y, z: z } specifies a “pattern” to decompose
the object value from bar() into separate variable assignments.

Object Property Assignment Pattern
Let’s dig into that { x: x, .. } syntax from the previous snippet. If
the property name being matched is the same as the variable you
want to declare, you can actually shorten the syntax:

var { x, y, z } = bar();

console.log(x, y, z); // 4 5 6

Pretty cool, right?

But is { x, .. } leaving off the x: part or leaving off the : x part?
We’re actually leaving off the x: part when we use the shorter syntax.
That may not seem like an important detail, but you’ll understand
its importance in just a moment.

If you can write the shorter form, why would you ever write out the
longer form? Because that longer form actually allows you to assign
a property to a different variable name, which can sometimes be
quite useful:

var { x: bam, y: baz, z: bap } = bar();

console.log(bam, baz, bap); // 4 5 6
console.log(x, y, z); // ReferenceError

There’s a subtle but super-important quirk to understand about this
variation of the object destructuring form. To illustrate why it can be
a gotcha you need to be careful of, let’s consider the “pattern” of how
normal object literals are specified:

var X = 10, Y = 20;

var o = { a: X, b: Y };

console.log(o.a, o.b); // 10 20

24 | Chapter 2: Syntax

In { a: X, b: Y }, we know that a is the object property, and X is
the source value that gets assigned to it. In other words, the syntactic
pattern is target: source, or more obviously, property-alias:
value. We intuitively understand this because it’s the same as =
assignment, where the pattern is target = source.

However, when you use object destructuring assignment—that is,
putting the { .. } object literal-looking syntax on the lefthand side
of the = operator—you invert that target: source pattern.

Recall:

var { x: bam, y: baz, z: bap } = bar();

The syntactic pattern here is source: target (or value:

variable-alias). x: bam means the x property is the source value
and bam is the target variable to assign to. In other words, object lit‐
erals are target <-- source, and object destructuring assignments
are source --> target. See how that’s flipped?

There’s another way to think about this syntax though, which may
help ease the confusion. Consider:

var aa = 10, bb = 20;

var o = { x: aa, y: bb };
var { x: AA, y: BB } = o;

console.log(AA, BB); // 10 20

In the { x: aa, y: bb } line, the x and y represent the object prop‐
erties. In the { x: AA, y: BB } line, the x and y also represent the
object properties.

Recall how earlier I asserted that { x, .. } was leaving off the x:
part? In those two lines, if you erase the x: and y: parts in that snip‐
pet, you’re left only with aa, bb and AA, BB, which in effect—only
conceptually, not actually—are assignments from aa to AA and from
bb to BB.

So, that symmetry may help to explain why the syntactic pattern was
intentionally flipped for this ES6 feature.

Destructuring | 25

I would have preferred the syntax to be { AA:
x , BB: y } for the destructuring assignment,
as that would have preserved consistency of the
more familiar target: source pattern for both
usages. Alas, I’m having to train my brain for the
inversion, as some readers may also have to do.

Not Just Declarations
So far, we’ve used destructuring assignment with var declarations
(of course, they could also use let and const), but destructuring is a
general assignment operation, not just a declaration.

Consider:

var a, b, c, x, y, z;

[a,b,c] = foo();
({ x, y, z } = bar());

console.log(a, b, c); // 1 2 3
console.log(x, y, z); // 4 5 6

The variables can already be declared, and then the destructuring
only does assignments, exactly as we’ve already seen.

For the object destructuring form specifically,
when leaving off a var/let/const declarator, we
had to surround the whole assignment expres‐
sion in (), because otherwise the { .. } on the
lefthand side as the first element in the state‐
ment is taken to be a block statement instead of
an object.

In fact, the assignment expressions (a, y, etc.) don’t actually need to
be just variable identifiers. Anything that’s a valid assignment
expression is allowed. For example:

var o = {};

[o.a, o.b, o.c] = foo();
({ x: o.x, y: o.y, z: o.z } = bar());

console.log(o.a, o.b, o.c); // 1 2 3
console.log(o.x, o.y, o.z); // 4 5 6

26 | Chapter 2: Syntax

You can even use computed property expressions in the destructur‐
ing. Consider:

var which = "x",
 o = {};

({ [which]: o[which] } = bar());

console.log(o.x); // 4

The [which]: part is the computed property, which results in x—the
property to destructure from the object in question as the source of
the assignment. The o[which] part is just a normal object key refer‐
ence, which equates to o.x as the target of the assignment.

You can use the general assignments to create object mappings/
transformations, such as:

var o1 = { a: 1, b: 2, c: 3 },
 o2 = {};

({ a: o2.x, b: o2.y, c: o2.z } = o1);

console.log(o2.x, o2.y, o2.z); // 1 2 3

Or you can map an object to an array, such as:

var o1 = { a: 1, b: 2, c: 3 },
 a2 = [];

({ a: a2[0], b: a2[1], c: a2[2] } = o1);

console.log(a2); // [1,2,3]

Or the other way around:

var a1 = [1, 2, 3],
 o2 = {};

[o2.a, o2.b, o2.c] = a1;

console.log(o2.a, o2.b, o2.c); // 1 2 3

Or you could reorder one array to another:

var a1 = [1, 2, 3],
 a2 = [];

[a2[2], a2[0], a2[1]] = a1;

console.log(a2); // [2,3,1]

Destructuring | 27

You can even solve the traditional “swap two variables” task without
a temporary variable:

var x = 10, y = 20;

[y, x] = [x, y];

console.log(x, y); // 20 10

Be careful: you shouldn’t mix in declaration with
assignment unless you want all of the assign‐
ment expressions also to be treated as declara‐
tions. Otherwise, you’ll get syntax errors. That’s
why in the earlier example I had to do var a2 =
[] separately from the [a2[0], ..] = ..
destructuring assignment. It wouldn’t make any
sense to try var [a2[0], ..] = .., because
a2[0] isn’t a valid declaration identifier; it also
obviously couldn’t implicitly create a var a2 =
[] declaration.

Repeated Assignments
The object destructuring form allows a source property (holding any
value type) to be listed multiple times. For example:

var { a: X, a: Y } = { a: 1 };

X; // 1
Y; // 1

That also means you can both destructure a sub-object/array prop‐
erty and also capture the sub-object/array’s value itself. Consider:

var { a: { x: X, x: Y }, a } = { a: { x: 1 } };

X; // 1
Y; // 1
a; // { x: 1 }

({ a: X, a: Y, a: [Z] } = { a: [1] });

X.push(2);
Y[0] = 10;

X; // [10,2]
Y; // [10,2]
Z; // 1

28 | Chapter 2: Syntax

A word of caution about destructuring: it may be tempting to list
destructuring assignments all on a single line as has been done thus
far in our discussion. However, it’s a much better idea to spread
destructuring assignment patterns over multiple lines, using proper
indentation—much like you would in JSON or with an object literal
value—for readability’s sake.

// harder to read:
var { a: { b: [c, d], e: { f } }, g } = obj;

// better:
var {
 a: {
 b: [c, d],
 e: { f }
 },
 g
} = obj;

Remember: the purpose of destructuring is not just less typing, but
more declarative readability.

Destructuring Assignment Expressions
The assignment expression with object or array destructuring has as
its completion value the full righthand object/array value. Consider:

var o = { a:1, b:2, c:3 },
 a, b, c, p;

p = { a, b, c } = o;

console.log(a, b, c); // 1 2 3
p === o; // true

In the previous snippet, p was assigned the o object reference, not
one of the a, b, or c values. The same is true of array destructuring:

var o = [1,2,3],
 a, b, c, p;

p = { a, b, c } = o;

console.log(a, b, c); // 1 2 3
p === o; // true

By carrying the object/array value through as the completion, you
can chain destructuring assignment expressions together:

var o = { a:1, b:2, c:3 },
 p = [4,5,6],

Destructuring | 29

 a, b, c, x, y, z;

({a} = {b,c} = o);
[x,y] = [z] = p;

console.log(a, b, c); // 1 2 3
console.log(x, y, z); // 4 5 4

Too Many, Too Few, Just Enough
With both array destructuring assignment and object destructuring
assignment, you do not have to assign all the values that are present.
For example:

var [,b] = foo();
var { x, z } = bar();

console.log(b, x, z); // 2 4 6

The 1 and 3 values that came back from foo() are discarded, as is
the 5 value from bar().

Similarly, if you try to assign more values than are present in the
value you’re destructuring/decomposing, you get graceful fallback to
undefined, as you’d expect:

var [,,c,d] = foo();
var { w, z } = bar();

console.log(c, z); // 3 6
console.log(d, w); // undefined undefined

This behavior follows symmetrically from the earlier stated “unde
fined is missing” principle.

We examined the ... operator earlier in this chapter, and saw that it
can sometimes be used to spread an array value out into its separate
values, and sometimes it can be used to do the opposite: to gather a
set of values together into an array.

In addition to the gather/rest usage in function declarations, ... can
perform the same behavior in destructuring assignments. To illus‐
trate, let’s recall a snippet from earlier in this chapter:

var a = [2,3,4];
var b = [1, ...a, 5];

console.log(b); // [1,2,3,4,5]

30 | Chapter 2: Syntax

Here we see that ...a is spreading a out, because it appears in the
array [..] value position. If ...a appears in an array destructur‐
ing position, it performs the gather behavior:

var a = [2,3,4];
var [b, ...c] = a;

console.log(b, c); // 2 [3,4]

The var [..] = a destructuring assignment spreads a out to be
assigned to the pattern described inside the [..]. The first part
names b for the first value in a (2). But then ...c gathers the rest of
the values (3 and 4) into an array and calls it c.

We’ve seen how ... works with arrays, but what
about with objects? It’s not an ES6 feature, but
see Chapter 8 for discussion of a possible
“beyond ES6” feature where ... works with
spreading or gathering objects.

Default Value Assignment
Both forms of destructuring can offer a default value option for an
assignment, using the = syntax similar to the default function argu‐
ment values discussed earlier.

Consider:

var [a = 3, b = 6, c = 9, d = 12] = foo();
var { x = 5, y = 10, z = 15, w = 20 } = bar();

console.log(a, b, c, d); // 1 2 3 12
console.log(x, y, z, w); // 4 5 6 20

You can combine the default value assignment with the alternative
assignment expression syntax covered earlier. For example:

var { x, y, z, w: WW = 20 } = bar();

console.log(x, y, z, WW); // 4 5 6 20

Be careful about confusing yourself (or other developers who read
your code) if you use an object or array as the default value in a
destructuring. You can create some really hard-to-understand code:

var x = 200, y = 300, z = 100;
var o1 = { x: { y: 42 }, z: { y: z } };

Destructuring | 31

({ y: x = { y: y } } = o1);
({ z: y = { y: z } } = o1);
({ x: z = { y: x } } = o1);

Can you tell from that snippet what values x, y, and z have at the
end? Takes a moment of pondering, I would imagine. I’ll end the
suspense:

console.log(x.y, y.y, z.y); // 300 100 42

The takeaway here: destructuring is great and can be very useful, but
it’s also a sharp sword that can cause injury (to someone’s brain) if
used unwisely.

Nested Destructuring
If the values you’re destructuring have nested objects or arrays, you
can destructure those nested values as well:

var a1 = [1, [2, 3, 4], 5];
var o1 = { x: { y: { z: 6 } } };

var [a, [b, c, d], e] = a1;
var { x: { y: { z: w } } } = o1;

console.log(a, b, c, d, e); // 1 2 3 4 5
console.log(w); // 6

Nested destructuring can be a simple way to flatten out object name‐
spaces. For example:

var App = {
 model: {
 User: function(){ .. }
 }
};

// instead of:
// var User = App.model.User;

var { model: { User } } = App;

Destructuring Parameters
In the following snippet, can you spot the assignment?

function foo(x) {
 console.log(x);
}

foo(42);

32 | Chapter 2: Syntax

The assignment is kinda hidden: 42 (the argument) is assigned to x
(the parameter) when foo(42) is executed. If parameter/argument
pairing is an assignment, then it stands to reason that it’s an assign‐
ment that could be destructured, right? Of course!

Consider array destructuring for parameters:

function foo([x, y]) {
 console.log(x, y);
}

foo([1, 2]); // 1 2
foo([1]); // 1 undefined
foo([]); // undefined undefined

Object destructuring for parameters works, too:

function foo({ x, y }) {
 console.log(x, y);
}

foo({ y: 1, x: 2 }); // 2 1
foo({ y: 42 }); // undefined 42
foo({}); // undefined undefined

This technique is an approximation of named arguments (a long
requested feature for JS!), in that the properties on the object map to
the destructured parameters of the same names. That also means
that we get optional parameters (in any position) for free; as you can
see, leaving off the x “parameter” worked as we’d expect.

Of course, all the previously discussed variations of destructuring
are available to us with parameter destructuring, including nested
destructuring, default values, and more. Destructuring also mixes
fine with other ES6 function parameter capabilities, like default
parameter values and rest/gather parameters.

Consider these quick illustrations (certainly not exhaustive of the
possible variations):

function f1([x=2, y=3, z]) { .. }
function f2([x, y, ...z], w) { .. }
function f3([x, y, ...z], ...w) { .. }

function f4({ x: X, y }) { .. }
function f5({ x: X = 10, y = 20 }) { .. }
function f6({ x = 10 } = {}, { y } = { y: 10 }) { .. }

Let’s take one example from this snippet and examine it, for illustra‐
tion purposes:

Destructuring | 33

function f3([x, y, ...z], ...w) {
 console.log(x, y, z, w);
}

f3([]); // undefined undefined [] []
f3([1,2,3,4], 5, 6); // 1 2 [3,4] [5,6]

There are two ... operators in use here, and they’re both gathering
values in arrays (z and w), though ...z gathers from the rest of the
values left over in the first array argument, while ...w gathers from
the rest of the main arguments left over after the first.

Destructuring Defaults + Parameter Defaults
There’s one subtle point you should be particularly careful to notice
—the difference in behavior between a destructuring default value
and a function parameter default value. For example:

function f6({ x = 10 } = {}, { y } = { y: 10 }) {
 console.log(x, y);
}

f6(); // 10 10

At first, it would seem that we’ve declared a default value of 10 for
both the x and y parameters, but in two different ways. However,
these two different approaches will behave differently in certain
cases, and the difference is awfully subtle.

Consider:

f6({}, {}); // 10 undefined

Wait, why did that happen? It’s pretty clear that named parameter x
is defaulting to 10 if not passed as a property of that same name in
the first argument’s object.

But what about y being undefined? The { y: 10 } value is an
object as a function parameter default value, not a destructuring
default value. As such, it only applies if the second argument is not
passed at all, or is passed as undefined.

In the previous snippet, we are passing a second argument ({}), so
the default { y: 10 } value is not used, and the { y } destructuring
occurs against the passed-in {} empty object value.

Now, compare { y } = { y: 10 } to { x = 10 } = {}.

34 | Chapter 2: Syntax

For the x’s form usage, if the first function argument is omitted or
undefined, the {} empty object default applies. Then, whatever
value is in the first argument position—either the default {} or
whatever you passed in—is destructured with the { x = 10 },
which checks to see if an x property is found, and if not found (or
undefined), the 10 default value is applied to the x named
parameter.

Deep breath. Read back over those last few paragraphs a couple of
times. Let’s review via code:

function f6({ x = 10 } = {}, { y } = { y: 10 }) {
 console.log(x, y);
}

f6(); // 10 10
f6(undefined, undefined); // 10 10
f6({}, undefined); // 10 10

f6({}, {}); // 10 undefined
f6(undefined, {}); // 10 undefined

f6({ x: 2 }, { y: 3 }); // 2 3

It would generally seem that the defaulting behavior of the x param‐
eter is probably the more desirable and sensible case compared to
that of y. As such, it’s important to understand why and how { x =
10 } = {} form is different from { y } = { y: 10 } form.

If that’s still a bit fuzzy, go back and read it again, and play with this
yourself. Your future self will thank you for taking the time to get
this very subtle gotcha nuance detail straight.

Nested Defaults: Destructured and Restructured
Although it may at first be difficult to grasp, an interesting idiom
emerges for setting defaults for a nested object’s properties: using
object destructuring along with what I’d call restructuring.

Consider a set of defaults in a nested object structure, like the fol‐
lowing:

// taken from:
// http://es-discourse.com/t/partial-default-arguments/120/7

var defaults = {
 options: {
 remove: true,

Destructuring | 35

 enable: false,
 instance: {}
 },
 log: {
 warn: true,
 error: true
 }
};

Now, let’s say you have an object called config, which has some of
these applied, but perhaps not all, and you’d like to set all the
defaults into this object in the missing spots, but not override spe‐
cific settings already present:

var config = {
 options: {
 remove: false,
 instance: null
 }
};

You can of course do so manually, as you might have done in the
past:

config.options = config.options || {};
config.options.remove = (config.options.remove !== undefined) ?
 config.options.remove : defaults.options.remove;
config.options.enable = (config.options.enable !== undefined) ?
 config.options.enable : defaults.options.enable;
...

Yuck.

Others may prefer the assign-overwrite approach to this task. You
might be tempted by the ES6 Object.assign(..) utility (see Chap‐
ter 6) to clone the properties first from defaults and then overwrit‐
ten with the cloned properties from config, as so:

config = Object.assign({}, defaults, config);

That looks way nicer, huh? But there’s a major problem!
Object.assign(..) is shallow, which means when it copies
defaults.options, it just copies that object reference, not deep
cloning that object’s properties to a config.options object.
Object.assign(..) would need to be applied (sort of “recursively”)
at all levels of your object’s tree to get the deep cloning you’re
expecting.

36 | Chapter 2: Syntax

Many JS utility libraries/frameworks provide
their own option for deep cloning of an object,
but those approaches and their gotchas are
beyond our scope to discuss here.

So let’s examine if ES6 object destructuring with defaults can help at
all:

config.options = config.options || {};
config.log = config.log || {};
{
 options: {
 remove: config.options.remove = default.options.remove,
 enable: config.options.enable = default.options.enable,
 instance: config.options.instance =
 default.options.instance
 } = {},
 log: {
 warn: config.log.warn = default.log.warn,
 error: config.log.error = default.log.error
 } = {}
} = config;

Not as nice as the false promise of Object.assign(..) (being that
it’s shallow only), but it’s better than the manual approach by a fair
bit, I think. It is still unfortunately verbose and repetitive, though.

The previous snippet’s approach works because I’m hacking the
destructuring and defaults mechanism to do the property === unde
fined checks and assignment decisions for me. It’s a trick in that I’m
destructuring config (see the = config at the end of the snippet),
but I’m reassigning all the destructured values right back into
config, with the config.options.enable assignment references.

Still too much, though. Let’s see if we can make anything better.

The following trick works best if you know that all the various prop‐
erties you’re destructuring are uniquely named. You can still do it
even if that’s not the case, but it’s not as nice—you’ll have to do the
destructuring in stages, or create unique local variables as temporary
aliases.

If we fully destructure all the properties into top-level variables, we
can then immediately restructure to reconstitute the original nested
object structure.

Destructuring | 37

But all those temporary variables hanging around would pollute
scope. So, let’s use block scoping (see “Block-Scoped Declarations”
on page 7 earlier in this chapter) with a general { } enclosing block:

// merge `defaults` into `config`
{
 // destructure (with default value assignments)
 let {
 options: {
 remove = defaults.options.remove,
 enable = defaults.options.enable,
 instance = defaults.options.instance
 } = {},
 log: {
 warn = defaults.log.warn,
 error = defaults.log.error
 } = {}
 } = config;

 // restructure
 config = {
 options: { remove, enable, instance },
 log: { warn, error }
 };
}

That seems a fair bit nicer, huh?

You could also accomplish the scope enclosure
with an arrow IIFE instead of the general { }
block and let declarations. Your destructuring
assignments/defaults would be in the parameter
list and your restructuring would be the return
statement in the function body.

The { warn, error } syntax in the restructuring part may look
new to you; that’s called “concise properties” and we cover it in the
next section!

Object Literal Extensions
ES6 adds a number of important convenience extensions to the
humble { .. } object literal.

Concise Properties
You’re certainly familiar with declaring object literals in this form:

38 | Chapter 2: Syntax

var x = 2, y = 3,
 o = {
 x: x,
 y: y
 };

If it’s always felt redundant to say x: x all over, there’s good news. If
you need to define a property that is the same name as a lexical
identifier, you can shorten it from x: x to x. Consider:

var x = 2, y = 3,
 o = {
 x,
 y
 };

Concise Methods
In a similar spirit to concise properties we just examined, functions
attached to properties in object literals also have a concise form, for
convenience.

The old way:

var o = {
 x: function(){
 // ..
 },
 y: function(){
 // ..
 }
}

And as of ES6:

var o = {
 x() {
 // ..
 },
 y() {
 // ..
 }
}

While x() { .. } seems to just be shorthand
for x: function(){ .. }, concise methods
have special behaviors that their older counter‐
parts don’t; specifically, the allowance for super
(see “Object super” on page 47 later in this chap‐
ter).

Object Literal Extensions | 39

Generators (see Chapter 4) also have a concise method form:

var o = {
 *foo() { .. }
};

Concisely Unnamed
While that convenience shorthand is quite attractive, there’s a subtle
gotcha to be aware of. To illustrate, let’s examine pre-ES6 code like
the following, which you might try to refactor to use concise
methods:

function runSomething(o) {
 var x = Math.random(),
 y = Math.random();

 return o.something(x, y);
}

runSomething({
 something: function something(x,y) {
 if (x > y) {
 // recursively call with `x`
 // and `y` swapped
 return something(y, x);
 }

 return y - x;
 }
});

This obviously silly code just generates two random numbers and
subtracts the smaller from the bigger. But what’s important here isn’t
what it does, but rather how it’s defined. Let’s focus on the object lit‐
eral and function definition, as we see here:

runSomething({
 something: function something(x,y) {
 // ..
 }
});

Why do we say both something: and function something? Isn’t
that redundant? Actually, no, both are needed for different purposes.
The property something is how we can call o.something(..), sort
of like its public name. But the second something is a lexical name
to refer to the function from inside itself, for recursion purposes.

40 | Chapter 2: Syntax

Can you see why the line return something(y,x) needs the name
something to refer to the function? There’s no lexical name for the
object, such that it could have said return o.something(y,x) or
something of that sort.

That’s actually a pretty common practice when the object literal does
have an identifying name, such as:

var controller = {
 makeRequest: function(..){
 // ..
 controller.makeRequest(..);
 }
};

Is this a good idea? Perhaps, perhaps not. You’re assuming that the
name controller will always point to the object in question. But it
very well may not—the makeRequest(..) function doesn’t control
the outer code and so can’t force that to be the case. This could come
back to bite you.

Others prefer to use this to define such things:

var controller = {
 makeRequest: function(..){
 // ..
 this.makeRequest(..);
 }
};

That looks fine, and should work if you always invoke the method as
controller.makeRequest(..). But you now have a this binding
gotcha if you do something like:

btn.addEventListener("click", controller.makeRequest, false);

Of course, you can solve that by passing controller.makeRe
quest.bind(controller) as the handler reference to bind the event
to. But yuck—it isn’t very appealing.

Or what if your inner this.makeRequest(..) call needs to be made
from a nested function? You’ll have another this binding hazard,
which people will often solve with the hacky var self = this, such
as:

var controller = {
 makeRequest: function(..){
 var self = this;

Object Literal Extensions | 41

 btn.addEventListener("click", function(){
 // ..
 self.makeRequest(..);
 }, false);
 }
};

More yuck.

For more information on this binding rules
and gotchas, see Chapters 1–2 of the this &
Object Prototypes title of this series.

OK, what does all this have to do with concise methods? Recall our
something(..) method definition:

runSomething({
 something: function something(x,y) {
 // ..
 }
});

The second something here provides a super convenient lexical
identifier that will always point to the function itself, giving us the
perfect reference for recursion, event binding/unbinding, and so on
—no messing around with this or trying to use an untrustable
object reference.

Great!

So, now we try to refactor that function reference to this ES6 concise
method form:

runSomething({
 something(x,y) {
 if (x > y) {
 return something(y, x);
 }

 return y - x;
 }
});

Seems fine at first glance, except this code will break. The return
something(..) call will not find a something identifier, so you’ll get
a ReferenceError. Oops. But why?

The above ES6 snippet is interpreted as meaning:

42 | Chapter 2: Syntax

runSomething({
 something: function(x,y){
 if (x > y) {
 return something(y, x);
 }

 return y - x;
 }
});

Look closely. Do you see the problem? The concise method defini‐
tion implies something: function(x,y). See how the second some
thing we were relying on has been omitted? In other words, concise
methods imply anonymous function expressions.

Yeah, yuck.

You may be tempted to think that => arrow
functions are a good solution here, but they’re
equally insufficient, as they’re also anonymous
function expressions. We’ll cover them in
“Arrow Functions” on page 54 later in this chap‐
ter.

The partially redeeming news is that our something(x,y) concise
method won’t be totally anonymous. See “Function Names” on page
200 in Chapter 7 for information about ES6 function name infer‐
ence rules. That won’t help us for our recursion, but it helps with
debugging at least.

So what are we left to conclude about concise methods? They’re
short and sweet, and a nice convenience. But you should only use
them if you’re never going to need them to do recursion or event
binding/unbinding. Otherwise, stick to your old-school something:
function something(..) method definitions.

A lot of your methods are probably going to benefit from concise
method definitions, so that’s great news! Just be careful of the few
where there’s an un-naming hazard.

ES5 Getter/Setter
Technically, ES5 defined getter/setter literals forms, but they didn’t
seem to get used much, mostly due to the lack of transpilers to han‐
dle that new syntax (the only major new syntax added in ES5,
really). So while it’s not a new ES6 feature, we’ll briefly refresh on

Object Literal Extensions | 43

that form, as it’s probably going to be much more useful with ES6
going forward.

Consider:

var o = {
 __id: 10,
 get id() { return this.__id++; },
 set id(v) { this.__id = v; }
}

o.id; // 10
o.id; // 11
o.id = 20;
o.id; // 20

// and:
o.__id; // 21
o.__id; // 21--still!

These getter and setter literal forms are also present in classes; see
Chapter 3.

It may not be obvious, but the setter literal must
have exactly one declared parameter; omitting it
or listing others is illegal syntax. The single
required parameter can use destructuring and
defaults (e.g., set id({ id: v = 0 }) { .. }),
but the gather/rest ... is not allowed (set
id(...v) { .. }).

Computed Property Names
You’ve probably been in a situation like the following snippet, where
you have one or more property names that come from some sort of
expression and thus can’t be put into the object literal:

var prefix = "user_";

var o = {
 baz: function(..){ .. }
};

o[prefix + "foo"] = function(..){ .. };
o[prefix + "bar"] = function(..){ .. };
..

44 | Chapter 2: Syntax

ES6 adds a syntax to the object literal definition that allows you to
specify an expression that should be computed, whose result is the
property name assigned. Consider:

var prefix = "user_";

var o = {
 baz: function(..){ .. },
 [prefix + "foo"]: function(..){ .. },
 [prefix + "bar"]: function(..){ .. }
 ..
};

Any valid expression can appear inside the [..] that sits in the
property name position of the object literal definition.

Probably the most common use of computed property names will be
with Symbols (which we cover in “Symbols” on page 80 later in this
chapter), such as:

var o = {
 [Symbol.toStringTag]: "really cool thing",
 ..
};

Symbol.toStringTag is a special built-in value, which we evaluate
with the [..] syntax, so we can assign the "really cool thing"
value to the special property name.

Computed property names can also appear as the name of a concise
method or a concise generator:

var o = {
 ["f" + "oo"]() { .. } // computed concise method
 *["b" + "ar"]() { .. } // computed concise generator
};

Setting [[Prototype]]
We won’t cover prototypes in detail here, so for more information,
see the this & Object Prototypes title of this series.

Sometimes it will be helpful to assign the [[Prototype]] of an
object at the same time you’re declaring its object literal. The follow‐
ing has been a nonstandard extension in many JS engines for a
while, but is standardized as of ES6:

var o1 = {
 // ..
};

Object Literal Extensions | 45

var o2 = {
 __proto__: o1,
 // ..
};

o2 is declared with a normal object literal, but it’s also
[[Prototype]]-linked to o1. The __proto__ property name here
can also be a string "__proto__", but note that it cannot be the
result of a computed property name (see the previous section).

__proto__ is controversial, to say the least. It’s a decades-old propri‐
etary extension to JS that is finally standardized, somewhat begrudg‐
ingly it seems, in ES6. Many developers feel it shouldn’t ever be used.
In fact, it’s in “Annex B” of ES6, which is the section that lists things
JS feels it has to standardize for compatibility reasons only.

Though I’m narrowly endorsing __proto__ as a
key in an object literal definition, I definitely do
not endorse using it in its object property form,
like o.__proto__. That form is both a getter and
setter (again for compatibility reasons), but
there are definitely better options. See the this &
Object Prototypes title of this series for more
information.

For setting the [[Prototype]] of an existing object, you can use the
ES6 utility Object.setPrototypeOf(..). Consider:

var o1 = {
 // ..
};

var o2 = {
 // ..
};

Object.setPrototypeOf(o2, o1);

We’ll discuss Object again in Chapter 6.
“Object.setPrototypeOf(..) Static Function”
provides additional details on Object.setProto
typeOf(..). Also see “Object.assign(..) Static
Function” on page 188 for another form that
relates o2 prototypically to o1.

46 | Chapter 2: Syntax

Object super
super is typically thought of as being only related to classes. How‐
ever, due to JS’s classless-objects-with-prototypes nature, super is
equally effective, and nearly the same in behavior, with plain objects’
concise methods.

Consider:

var o1 = {
 foo() {
 console.log("o1:foo");
 }
};

var o2 = {
 foo() {
 super.foo();
 console.log("o2:foo");
 }
};

Object.setPrototypeOf(o2, o1);

o2.foo(); // o1:foo
 // o2:foo

super is only allowed in concise methods, not
regular function expression properties. It also is
only allowed in super.XXX form (for property/
method access), not in super() form.

The super reference in the o2.foo() method is locked statically to
o2, and specifically to the [[Prototype]] of o2. super here would
basically be Object.getPrototypeOf(o2)—resolves to o1 of course
—which is how it finds and calls o1.foo().

For complete details on super, see “Classes” on page 135 in Chap‐
ter 3.

Template Literals
At the very outset of this section, I’m going to have to call out the
name of this ES6 feature as being awfully… misleading, depending
on your experiences with what the word template means.

Template Literals | 47

Many developers think of templates as being reusable renderable
pieces of text, such as the capability provided by most template
engines (Mustache, Handlebars, etc.). ES6’s use of the word template
would imply something similar, like a way to declare inline template
literals that can be re-rendered. However, that’s not at all the right
way to think about this feature.

So, before we go on, I’m renaming it to what it should have been
called: interpolated string literals (or interpoliterals for short).

You’re already well aware of declaring string literals with " or '
delimiters, and you also know that these are not smart strings (as
some languages have), where the contents would be parsed for inter‐
polation expressions.

However, ES6 introduces a new type of string literal, using the `
backtick as the delimiter. These string literals allow basic string
interpolation expressions to be embedded, which are then automati‐
cally parsed and evaluated.

Here’s the old pre-ES6 way:

var name = "Kyle";

var greeting = "Hello " + name + "!";

console.log(greeting); // "Hello Kyle!"
console.log(typeof greeting); // "string"

Now, consider the new ES6 way:

var name = "Kyle";

var greeting = `Hello ${name}!`;

console.log(greeting); // "Hello Kyle!"
console.log(typeof greeting); // "string"

As you can see, we used the `..` around a series of characters,
which are interpreted as a string literal, but any expressions of the
form ${..} are parsed and evaluated inline immediately. The fancy
term for such parsing and evaluating is interpolation (much more
accurate than templating).

The result of the interpolated string literal expression is just a plain
old normal string, assigned to the greeting variable.

48 | Chapter 2: Syntax

typeof greeting == "string" illustrates why
it’s important not to think of these entities as
special template values, as you cannot assign the
unevaluated form of the literal to something and
reuse it. The `..` string literal is more like an
IIFE in the sense that it’s automatically evaluated
inline. The result of a `..` string literal is, sim‐
ply, just a string.

One really nice benefit of interpolated string literals is they are
allowed to split across multiple lines:

var text =
`Now is the time for all good men
to come to the aid of their
country!`;

console.log(text);
// Now is the time for all good men
// to come to the aid of their
// country!

The line breaks (newlines) in the interpolated string literal were pre‐
served in the string value.

Unless appearing as explicit escape sequences in the literal value, the
value of the \r carriage return character (code point U+000D) or the
value of the \r\n carriage return + line feed sequence (code points U
+000D and U+000A) are both normalized to a \n line feed character
(code point U+000A). Don’t worry though; this normalization is rare
and would likely only happen if copy-pasting text into your JS file.

Interpolated Expressions
Any valid expression is allowed to appear inside ${..} in an inter‐
polated string literal, including function calls, inline function
expression calls, and even other interpolated string literals!

Consider:

function upper(s) {
 return s.toUpperCase();
}

var who = "reader";

var text =
`A very ${upper("warm")} welcome

Template Literals | 49

to all of you ${upper(`${who}s`)}!`;

console.log(text);
// A very WARM welcome
// to all of you READERS!

Here, the inner `${who}s` interpolated string literal was a little bit
nicer convenience for us when combining the who variable with the
"s" string, as opposed to who + "s". There will be cases where nest‐
ing interpolated string literals is helpful, but be wary if you find
yourself doing that kind of thing often, or if you find yourself nest‐
ing several levels deep.

If that’s the case, the odds are good that your string value production
could benefit from some abstractions.

As a word of caution, be very careful about the
readability of your code with such newfound
power. Just like with default value expressions
and destructuring assignment expressions, just
because you can do something doesn’t mean you
should do it. Never go so overboard with new
ES6 tricks that your code becomes more clever
than you or your other team members.

Expression Scope
One quick note about the scope that is used to resolve variables in
expressions. I mentioned earlier that an interpolated string literal is
kind of like an IIFE, and it turns out thinking about it like that
explains the scoping behavior as well.

Consider:

function foo(str) {
 var name = "foo";
 console.log(str);
}

function bar() {
 var name = "bar";
 foo(`Hello from ${name}!`);
}

var name = "global";

bar(); // "Hello from bar!"

50 | Chapter 2: Syntax

At the moment the `..` string literal is expressed, inside the bar()
function, the scope available to it finds bar()’s name variable with
value "bar". Neither the global name nor foo(..)’s name matter. In
other words, an interpolated string literal is just lexically scoped
where it appears, not dynamically scoped in any way.

Tagged Template Literals
Again, renaming the feature for sanity sake: tagged string literals.

To be honest, this is one of the cooler tricks that ES6 offers. It may
seem a little strange, and perhaps not all that generally practical at
first. But once you’ve spent some time with it, tagged string literals
may just surprise you in their usefulness.

For example:

function foo(strings, ...values) {
 console.log(strings);
 console.log(values);
}

var desc = "awesome";

foo`Everything is ${desc}!`;
// ["Everything is ", "!"]
// ["awesome"]

Let’s take a moment to consider what’s happening in the previous
snippet. First, the most jarring thing that jumps out is foo`Every
thing…`;. That doesn’t look like anything we’ve seen before. What is
it?

It’s essentially a special kind of function call that doesn’t need the
(..). The tag—the foo part before the `..` string literal—is a
function value that should be called. Actually, it can be any expres‐
sion that results in a function, even a function call that returns
another function, like:

function bar() {
 return function foo(strings, ...values) {
 console.log(strings);
 console.log(values);
 }
}

var desc = "awesome";

Template Literals | 51

bar()`Everything is ${desc}!`;
// ["Everything is ", "!"]
// ["awesome"]

But what gets passed to the foo(..) function when invoked as a tag
for a string literal?

The first argument—we called it strings—is an array of all the
plain strings (the stuff between any interpolated expressions). We
get two values in the strings array: "Everything is " and "!".

For convenience sake in our example, we then gather up all subse‐
quent arguments into an array called values using the ... gather/
rest operator (see “Spread/Rest” on page 15 earlier in this chapter),
though you could of course have left them as individually named
parameters following the strings parameter.

The argument(s) gathered into our values array are the results of
the already-evaluated interpolation expressions found in the string
literal. So obviously the only element in values in our example is
"awesome".

You can think of these two arrays as: the values in values are the
separators if you were to splice them in between the values in
strings, and then if you joined everything together, you’d get the
complete interpolated string value.

A tagged string literal is like a processing step after the interpolation
expressions are evaluated but before the final string value is com‐
piled, allowing you more control over generating the string from the
literal.

Typically, the string literal tag function (foo(..) in the previous
snippets) should compute an appropriate string value and return it,
so that you can use the tagged string literal as a value just like untag‐
ged string literals:

function tag(strings, ...values) {
 return strings.reduce(function(s,v,idx){
 return s + (idx > 0 ? values[idx-1] : "") + v;
 }, "");
}

var desc = "awesome";

var text = tag`Everything is ${desc}!`;

console.log(text); // Everything is awesome!

52 | Chapter 2: Syntax

In this snippet, tag(..) is a pass-through operation, in that it
doesn’t perform any special modifications, but just uses reduce(..)
to loop over and splice/interleave strings and values together the
same way an untagged string literal would have done.

So what are some practical uses? There are many advanced ones that
are beyond our scope to discuss here. But here’s a simple idea that
formats numbers as U.S. dollars (sort of like basic localization):

function dollabillsyall(strings, ...values) {
 return strings.reduce(function(s,v,idx){
 if (idx > 0) {
 if (typeof values[idx-1] == "number") {
 // look, also using interpolated
 // string literals!
 s += `$${values[idx-1].toFixed(2)}`;
 }
 else {
 s += values[idx-1];
 }
 }

 return s + v;
 }, "");
}

var amt1 = 11.99,
 amt2 = amt1 * 1.08,
 name = "Kyle";

var text = dollabillsyall
`Thanks for your purchase, ${name}! Your
product cost was ${amt1}, which with tax
comes out to ${amt2}.`

console.log(text);
// Thanks for your purchase, Kyle! Your
// product cost was $11.99, which with tax
// comes out to $12.95.

If a number value is encountered in the values array, we put "$" in
front of it and format it to two decimal places with toFixed(2).
Otherwise, we let the value pass-through untouched.

Raw Strings
In the previous snippets, our tag functions receive the first argument
we called strings, which is an array. But there’s an additional bit of

Template Literals | 53

data included: the raw unprocessed versions of all the strings. You
can access those raw string values using the .raw property, like this:

function showraw(strings, ...values) {
 console.log(strings);
 console.log(strings.raw);
}

showraw`Hello\nWorld`;
// ["Hello
// World"]
// ["Hello\nWorld"]

The raw version of the value preserves the raw escaped \n sequence
(the \ and the n are separate characters), while the processed version
considers it a single newline character. However, the earlier men‐
tioned line-ending normalization is applied to both values.

ES6 comes with a built-in function that can be used as a string literal
tag: String.raw(..). It simply passes through the raw versions of
the strings:

console.log(`Hello\nWorld`);
// Hello
// World

console.log(String.raw`Hello\nWorld`);
// Hello\nWorld

String.raw`Hello\nWorld`.length;
// 12

Other uses for string literal tags include special processing for inter‐
nationalization, localization, and more!

Arrow Functions
We’ve touched on this binding complications with functions earlier
in this chapter, and they’re covered at length in the this & Object
Prototypes title of this series. It’s important to understand the frus‐
trations that this-based programming with normal functions
brings, because that is the primary motivation for the new ES6 =>
arrow function feature.

Let’s first illustrate what an arrow function looks like, as compared
to normal functions:

54 | Chapter 2: Syntax

function foo(x,y) {
 return x + y;
}

// versus

var foo = (x,y) => x + y;

The arrow function definition consists of a parameter list (of zero or
more parameters, and surrounding (..) if there’s not exactly one
parameter), followed by the => marker, followed by a function body.

So, in the previous snippet, the arrow function is just the (x,y) =>
x + y part, and that function reference happens to be assigned to
the variable foo.

The body only needs to be enclosed by { .. } if there’s more than
one expression, or if the body consists of a non-expression state‐
ment. If there’s only one expression, and you omit the surrounding
{ .. }, there’s an implied return in front of the expression, as illus‐
trated in the previous snippet.

Here’s some other arrow function variations to consider:

var f1 = () => 12;
var f2 = x => x * 2;
var f3 = (x,y) => {
 var z = x * 2 + y;
 y++;
 x *= 3;
 return (x + y + z) / 2;
};

Arrow functions are always function expressions; there is no arrow
function declaration. It also should be clear that they are anonymous
function expressions—they have no named reference for the pur‐
poses of recursion or event binding/unbinding—though “Function
Names” on page 200 in Chapter 7 will describe ES6’s function name
inference rules for debugging purposes.

All the capabilities of normal function parame‐
ters are available to arrow functions, including
default values, destructuring, rest parameters,
and so on.

Arrow Functions | 55

Arrow functions have a nice, shorter syntax, which makes them on
the surface very attractive for writing terser code. Indeed, nearly all
literature on ES6 (other than the titles in this series) seems to imme‐
diately and exclusively adopt the arrow function as “the new func‐
tion.”

It is telling that nearly all examples in our discussion of arrow func‐
tions are short single statement utilities, such as those passed as call‐
backs to various utilities. For example:

var a = [1,2,3,4,5];

a = a.map(v => v * 2);

console.log(a); // [2,4,6,8,10]

In those cases, where you have such inline function expressions, and
they fit the pattern of computing a quick calculation in a single
statement and returning that result, arrow functions indeed look to
be an attractive and lightweight alternative to the more verbose func
tion keyword and syntax.

Most people tend to ooh and aah at nice terse examples like that, as I
imagine you just did!

However, I would caution you that it would seem to me somewhat a
misapplication of this feature to use arrow function syntax with
otherwise normal, multistatement functions, especially those that
would otherwise be naturally expressed as function declarations.

Recall the dollabillsyall(..) string literal tag function from ear‐
lier in this chapter—let’s change it to use => syntax:

var dollabillsyall = (strings, ...values) =>
 strings.reduce((s,v,idx) => {
 if (idx > 0) {
 if (typeof values[idx-1] == "number") {
 // look, also using interpolated
 // string literals!
 s += `$${values[idx-1].toFixed(2)}`;
 }
 else {
 s += values[idx-1];
 }
 }

 return s + v;
 }, "");

56 | Chapter 2: Syntax

In this example, the only modifications I made were the removal of
function, return, and some { .. }, and then the insertion of =>
and a var. Is this a significant improvement in the readability of the
code? Meh.

I’d actually argue that the lack of return and outer { .. } partially
obscures the fact that the reduce(..) call is the only statement in
the dollabillsyall(..) function and that its result is the intended
result of the call. Also, the trained eye, which is so used to hunting
for the word function in code to find scope boundaries, now needs
to look for the => marker, which can definitely be harder to find in
the thick of the code.

While not a hard-and-fast rule, I’d say that the readability gains
from => arrow function conversion are inversely proportional to the
length of the function being converted. The longer the function, the
less => helps; the shorter the function, the more => can shine.

I think it’s probably more sensible and reasonable to adopt => for the
places in code where you do need short inline function expressions,
but leave your normal-length main functions as is.

Not Just Shorter Syntax, But this
Most of the popular attention toward => has been on saving those
precious keystrokes by dropping function, return, and { .. }
from your code.

But there’s a big detail we’ve skipped over so far. I said at the begin‐
ning of the section that => functions are closely related to this bind‐
ing behavior. In fact, => arrow functions are primarily designed to
alter this behavior in a specific way, solving a particular and com‐
mon pain point with this-aware coding.

The saving of keystrokes is a red herring, a misleading sideshow at
best.

Let’s revisit another example from earlier in this chapter:

var controller = {
 makeRequest: function(..){
 var self = this;

 btn.addEventListener("click", function(){
 // ..
 self.makeRequest(..);

Arrow Functions | 57

 }, false);
 }
};

We used the var self = this hack, and then referenced self.mak
eRequest(..), because inside the callback function we’re passing to
addEventListener(..), the this binding will not be the same as it
is in makeRequest(..) itself. In other words, because this bindings
are dynamic, we fall back to the predictability of lexical scope via the
self variable.

Herein we finally can see the primary design characteristic of =>
arrow functions. Inside arrow functions, the this binding is not
dynamic, but is instead lexical. In the previous snippet, if we used an
arrow function for the callback, this will be predictably what we
wanted it to be.

Consider:

var controller = {
 makeRequest: function(..){
 btn.addEventListener("click", () => {
 // ..
 this.makeRequest(..);
 }, false);
 }
};

Lexical this in the arrow function callback in the previous snippet
now points to the same value as in the enclosing makeRequest(..)
function. In other words, => is a syntactic stand-in for var self =
this.

In cases where var self = this (or, alternatively, a func‐
tion .bind(this) call) would normally be helpful, => arrow func‐
tions are a nicer alternative operating on the same principle. Sounds
great, right?

Not quite so simple.

If => replaces var self = this or .bind(this) and it helps, guess
what happens if you use => with a this-aware function that doesn’t
need var self = this to work? You might be able to guess that it’s
going to mess things up. Yeah.

58 | Chapter 2: Syntax

Consider:

var controller = {
 makeRequest: (..) => {
 // ..
 this.helper(..);
 },
 helper: (..) => {
 // ..
 }
};

controller.makeRequest(..);

Although we invoke as controller.makeRequest(..), the
this.helper reference fails, because this here doesn’t point to con
troller as it normally would. Where does it point? It lexically
inherits this from the surrounding scope. In this previous snippet,
that’s the global scope, where this points to the global object. Ugh.

In addition to lexical this, arrow functions also have lexical argu
ments—they don’t have their own arguments array but instead
inherit from their parent—as well as lexical super and new.target
(see “Classes” on page 135 in Chapter 3).

So now we can conclude a more nuanced set of rules for when => is
appropriate and when it is not:

• If you have a short, single-statement inline function expression,
where the only statement is a return of some computed value,
and that function doesn’t already make a this reference inside
it, and there’s no self-reference (recursion, event binding/
unbinding), and you don’t reasonably expect the function to
ever be that way, you can probably safely refactor it to be an =>
arrow function.

• If you have an inner function expression that’s relying on a var
self = this hack or a .bind(this) call on it in the enclosing
function to ensure proper this binding, that inner function
expression can probably safely become an => arrow function.

Arrow Functions | 59

• If you have an inner function expression that’s relying on some‐
thing like var args = Array.prototype.slice.call(argu

ments) in the enclosing function to make a lexical copy of
arguments, that inner function expression can probably safely
become an => arrow function.

• For everything else—normal function declarations, longer mul‐
tistatement function expressions, functions that need a lexical
name identifier self-reference (recursion, etc.), and any other
function that doesn’t fit the previous characteristics—you
should probably avoid => function syntax.

Bottom line: => is about lexical binding of this, arguments, and
super. These are intentional features designed to fix some common
problems, not bugs, quirks, or mistakes in ES6.

Don’t believe any hype that => is primarily, or even mostly, about
fewer keystrokes. Whether you save keystrokes or waste them, you
should know exactly what you are intentionally doing with every
character typed.

If you have a function that for any of these
articulated reasons is not a good match for an =>
arrow function, but it’s being declared as part of
an object literal, recall from “Concise Methods”
on page 39 earlier in this chapter that there’s
another option for shorter function syntax.

If you prefer a visual decision chart for how/why to pick an arrow
function:

60 | Chapter 2: Syntax

for..of Loops
Joining the for and for..in loops from the JavaScript we’re all
familiar with, ES6 adds a for..of loop, which loops over the set of
values produced by an iterator.

The value you loop over with for..of must be an iterable, or it must
be a value that can be coerced/boxed to an object (see the Types &

for..of Loops | 61

Grammar title of this series) that is an iterable. An iterable is simply
an object that is able to produce an iterator, which the loop then
uses.

Let’s compare for..of to for..in to illustrate the difference:

var a = ["a","b","c","d","e"];

for (var idx in a) {
 console.log(idx);
}
// 0 1 2 3 4

for (var val of a) {
 console.log(val);
}
// "a" "b" "c" "d" "e"

As you can see, for..in loops over the keys/indexes in the a array,
while for..of loops over the values in a.

Here’s the pre-ES6 version of the for..of from that previous
snippet:

var a = ["a","b","c","d","e"],
 k = Object.keys(a);

for (var val, i = 0; i < k.length; i++) {
 val = a[k[i]];
 console.log(val);
}
// "a" "b" "c" "d" "e"

And here’s the ES6 but non-for..of equivalent, which also gives a
glimpse at manually iterating an iterator (see “Iterators” on page 87
in Chapter 3):

var a = ["a","b","c","d","e"];

for (var val, ret, it = a[Symbol.iterator]();
 (ret = it.next()) && !ret.done;
) {
 val = ret.value;
 console.log(val);
}
// "a" "b" "c" "d" "e"

Under the covers, the for..of loop asks the iterable for an iterator
(using the built-in Symbol.iterator; see “Well-Known Symbols” on

62 | Chapter 2: Syntax

page 203 in Chapter 7), then it repeatedly calls the iterator and
assigns its produced value to the loop iteration variable.

Standard built-in values in JavaScript that are by default iterables (or
provide them) include:

• Arrays
• Strings
• Generators (see Chapter 3)
• Collections / TypedArrays (see Chapter 5)

Plain objects are not by default suitable for
for..of looping. That’s because they don’t have
a default iterator, which is intentional, not a mis‐
take. However, we won’t go any further into
those nuanced reasonings here. In “Iterators” on
page 87 in Chapter 3, we’ll see how to define
iterators for our own objects, which lets for..of
loop over any object to get a set of values we
define.

Here’s how to loop over the characters in a primitive string:

for (var c of "hello") {
 console.log(c);
}
// "h" "e" "l" "l" "o"

The "hello" primitive string value is coerced/boxed to the String
object wrapper equivalent, which is an iterable by default.

In for (XYZ of ABC).., the XYZ clause can either be an assignment
expression or a declaration, identical to that same clause in for and
for..in loops. So you can do stuff like this:

var o = {};

for (o.a of [1,2,3]) {
 console.log(o.a);
}
// 1 2 3

for ({x: o.a} of [{x: 1}, {x: 2}, {x: 3}]) {
 console.log(o.a);

for..of Loops | 63

}
// 1 2 3

for..of loops can be prematurely stopped, just like other loops,
with break, continue, return (if in a function), and thrown excep‐
tions. In any of these cases, the iterator’s return(..) function is
automatically called (if one exists) to let the iterator perform cleanup
tasks, if necessary.

See “Iterators” on page 87 in Chapter 3 for more
complete coverage on iterables and iterators.

Regular Expressions
Let’s face it: regular expressions haven’t changed much in JS in a
long time. So it’s a great thing that they’ve finally learned a couple of
new tricks in ES6. We’ll briefly cover the additions here, but the
overall topic of regular expressions is so dense that you’ll need to
turn to chapters/books dedicated to it (of which there are many!) if
you need a refresher.

Unicode Flag
We’ll cover the topic of Unicode in more detail in “Unicode” on page
73 later in this chapter. Here, we’ll just look briefly at the new u flag
for ES6+ regular expressions, which turns on Unicode matching for
that expression.

JavaScript strings are typically interpreted as sequences of 16-bit
characters, which correspond to the characters in the Basic Multilin‐
gual Plane (BMP). But there are many UTF-16 characters that fall
outside this range, and so strings may have these multibyte charac‐
ters in them.

Prior to ES6, regular expressions could only be matched based on
BMP characters, which means that those extended characters were
treated as two separate characters for matching purposes. This is
often not ideal.

64 | Chapter 2: Syntax

http://en.wikipedia.org/wiki/Plane_%28Unicode%29
http://en.wikipedia.org/wiki/Plane_%28Unicode%29

So, as of ES6, the u flag tells a regular expression to process a string
with the interpretation of Unicode (UTF-16) characters, such that
such an extended character will be matched as a single entity.

Despite the name implication, “UTF-16” doesn’t
strictly mean 16 bits. Modern Unicode uses 21
bits, and standards like UTF-8 and UTF-16 refer
roughly to how many bits are used in the repre‐
sentation of a character.

An example (straight from the ES6 specification): 𝄞 the musical
symbol G-clef) is Unicode point U+1D11E (0x1D11E).

If this character appears in a regular expression pattern (like /𝄞/),
the standard BMP interpretation would be that it’s two separate
characters (0xD834 and 0xDD1E) to match with. But the new ES6
Unicode-aware mode means that /𝄞/u (or the escaped Unicode
form /\u{1D11E}/u) will match "𝄞" in a string as a single matched
character.

You might be wondering why this matters? In non-Unicode BMP
mode, the pattern is treated as two separate characters, but would
still find the match in a string with the "𝄞" character in it, as you
can see if you try:

/𝄞/.test("𝄞-clef"); // true

The length of the match is what matters. For example:

/^.-clef/ .test("𝄞-clef"); // false
/^.-clef/u.test("𝄞-clef"); // true

The ^.-clef in the pattern says to match only a single character at
the beginning before the normal "-clef" text. In standard BMP
mode, the match fails (two characters), but with u Unicode mode
flagged on, the match succeeds (one character).

It’s also important to note that u makes quantifiers like + and * apply
to the entire Unicode code point as a single character, not just the
lower surrogate (aka rightmost half of the symbol) of the character.
The same goes for Unicode characters appearing in character
classes, like /[💩-💫]/u.

Regular Expressions | 65

There’s plenty more nitty-gritty details about u
behavior in regular expressions, which Mathias
Bynens has written extensively about.

Sticky Flag
Another flag mode added to ES6 regular expressions is y, which is
often called “sticky mode.” Sticky essentially means the regular
expression has a virtual anchor at its beginning that keeps it rooted
to matching at only the position indicated by the regular expression’s
lastIndex property.

To illustrate, let’s consider two regular expressions—the first without
sticky mode and the second with:

var re1 = /foo/,
 str = "++foo++";

re1.lastIndex; // 0
re1.test(str); // true
re1.lastIndex; // 0--not updated

re1.lastIndex = 4;
re1.test(str); // true--ignored `lastIndex`
re1.lastIndex; // 4--not updated

Three things to observe about this snippet:

• test(..) doesn’t pay any attention to lastIndex’s value, and
always just performs its match from the beginning of the input
string.

• Because our pattern does not have a ^ start-of-input anchor, the
search for "foo" is free to move ahead through the whole string
looking for a match.

• lastIndex is not updated by test(..).

Now, let’s try a sticky mode regular expression:

var re2 = /foo/y, // <-- notice the `y` sticky flag
 str = "++foo++";

re2.lastIndex; // 0
re2.test(str); // false--"foo" not found at `0`
re2.lastIndex; // 0

66 | Chapter 2: Syntax

https://twitter.com/mathias
https://twitter.com/mathias
https://mathiasbynens.be/notes/es6-unicode-regex

re2.lastIndex = 2;
re2.test(str); // true
re2.lastIndex; // 5--updated to after previous match

re2.test(str); // false
re2.lastIndex; // 0--reset after previous match failure

And so our new observations about sticky mode:

• test(..) uses lastIndex as the exact and only position in str
to look to make a match. There is no moving ahead to look for
the match—it’s either there at the lastIndex position or not.

• If a match is made, test(..) updates lastIndex to point to the
character immediately following the match. If a match fails,
test(..) resets lastIndex back to 0.

Normal nonsticky patterns that aren’t otherwise ^-rooted to the
start-of-input are free to move ahead in the input string looking for
a match. But sticky mode restricts the pattern to matching just at the
position of lastIndex.

As I suggested at the beginning of this section, another way of look‐
ing at this is that y implies a virtual anchor at the beginning of the
pattern that is relative (aka constrains the start of the match) to
exactly the lastIndex position.

In previous literature on the topic, it has alterna‐
tively been asserted that this behavior is like y
implying a ^ (start-of-input) anchor in the pat‐
tern. This is inaccurate. We’ll explain in further
detail in “Anchored Sticky” on page 70.

Sticky Positioning

It may seem strangely limiting that to use y for repeated matches,
you have to manually ensure lastIndex is in the exact right posi‐
tion, as it has no move-ahead capability for matching.

Here’s one possible scenario: if you know that the match you care
about is always going to be at a position that’s a multiple of a num‐
ber (e.g., 0, 10, 20, etc.), you can just construct a limited pattern
matching what you care about, but then manually set lastIndex
each time before matching to those fixed positions.

Consider:

Regular Expressions | 67

var re = /f../y,
 str = "foo far fad";

str.match(re); // ["foo"]

re.lastIndex = 10;
str.match(re); // ["far"]

re.lastIndex = 20;
str.match(re); // ["fad"]

However, if you’re parsing a string that isn’t formatted in fixed posi‐
tions like that, figuring out what to set lastIndex to before each
match is likely going to be untenable.

There’s a saving nuance to consider here. y requires that lastIndex
be in the exact position for a match to occur. But it doesn’t strictly
require that you manually set lastIndex.

Instead, you can construct your expressions in such a way that they
capture in each main match everything before and after the thing
you care about, up to right before the next thing you’ll care to
match.

Because lastIndex will set to the next character beyond the end of a
match, if you’ve matched everything up to that point, lastIndex will
always be in the correct position for the y pattern to start from the
next time.

If you can’t predict the structure of the input
string in a sufficiently patterned way like that,
this technique may not be suitable and you may
not be able to use y.

Having structured string input is likely the most practical scenario
where y will be capable of performing repeated matching through‐
out a string. Consider:

var re = /\d+\.\s(.*?)(?:\s|$)/y
 str = "1. foo 2. bar 3. baz";

str.match(re); // ["1. foo ", "foo"]

re.lastIndex; // 7--correct position!
str.match(re); // ["2. bar ", "bar"]

68 | Chapter 2: Syntax

re.lastIndex; // 14--correct position!
str.match(re); // ["3. baz", "baz"]

This works because I knew something ahead of time about the
structure of the input string: there is always a numeral prefix like
"1. " before the desired match ("foo", etc.), and either a space after
it, or the end of the string ($ anchor). So the regular expression I
constructed captures all of that in each main match, and then I use a
matching group () so that the stuff I really care about is separated
out for convenience.

After the first match ("1. foo "), the lastIndex is 7, which is
already the position needed to start the next match, for "2. bar ",
and so on.

If you’re going to use y sticky mode for repeated matches, you’ll
probably want to look for opportunities to have lastIndex automat‐
ically positioned as we’ve just demonstrated.

Sticky Versus Global
Some readers may be aware that you can emulate something like this
lastIndex-relative matching with the g global match flag and the
exec(..) method, as so:

var re = /o+./g, // <-- look, `g`!
 str = "foot book more";

re.exec(str); // ["oot"]
re.lastIndex; // 4

re.exec(str); // ["ook"]
re.lastIndex; // 9

re.exec(str); // ["or"]
re.lastIndex; // 13

re.exec(str); // null--no more matches!
re.lastIndex; // 0--starts over now!

While it’s true that g pattern matches with exec(..) start their
matching from lastIndex’s current value, and also update lastIn
dex after each match (or failure), this is not the same thing as y’s
behavior.

Notice in the previous snippet that "ook", located at position 6, was
matched and found by the second exec(..) call, even though at the

Regular Expressions | 69

time, lastIndex was 4 (from the end of the previous match). Why?
Because as we said earlier, nonsticky matches are free to move ahead
in their matching. A sticky mode expression would have failed here,
because it would not be allowed to move ahead.

In addition to perhaps undesired move-ahead matching behavior,
another downside to just using g instead of y is that g changes the
behavior of some matching methods, like str.match(re).

Consider:

var re = /o+./g, // <-- look, `g`!
 str = "foot book more";

str.match(re); // ["oot","ook","or"]

See how all the matches were returned at once? Sometimes that’s
OK, but sometimes that’s not what you want.

The y sticky flag will give you one-at-a-time progressive matching
with utilities like test(..) and match(..). Just make sure the las
tIndex is always in the right position for each match!

Anchored Sticky
As we warned earlier, it’s inaccurate to think of sticky mode as
implying a pattern starts with ^. The ^ anchor has a distinct mean‐
ing in regular expressions, which is not altered by sticky mode. ^ is
an anchor that always refers to the beginning of the input, and is not
in any way relative to lastIndex.

Besides poor/inaccurate documentation on this topic, the confusion
is unfortunately strengthened further because an older pre-ES6
experiment with sticky mode in Firefox did make ^ relative to las
tIndex, so that behavior has been around for years.

ES6 elected not to do it that way. ^ in a pattern means start-of-input
absolutely and only.

As a consequence, a pattern like /^foo/y will always and only find a
"foo" match at the beginning of a string, if it’s allowed to match
there. If lastIndex is not 0, the match will fail. Consider:

var re = /^foo/y,
 str = "foo";

re.test(str); // true
re.test(str); // false

70 | Chapter 2: Syntax

re.lastIndex; // 0--reset after failure

re.lastIndex = 1;
re.test(str); // false--failed for positioning
re.lastIndex; // 0--reset after failure

Bottom line: y plus ^ plus lastIndex > 0 is an incompatible combi‐
nation that will always cause a failed match.

While y does not alter the meaning of ^ in any
way, the m multiline mode does, such that ^
means start-of-input or start of text after a new‐
line. So, if you combine y and m flags together
for a pattern, you can find multiple ^-rooted
matches in a string. But remember: because it’s y
sticky, you’ll have to make sure lastIndex is
pointing at the correct new line position (likely
by matching to the end of the line) each subse‐
quent time, or no subsequent matches will be
made.

Regular Expression flags
Prior to ES6, if you wanted to examine a regular expression object to
see what flags it had applied, you needed to parse them out—ironi‐
cally, probably with another regular expression—from the content
of the source property, such as:

var re = /foo/ig;

re.toString(); // "/foo/ig"

var flags = re.toString().match(/\/([gim]*)$/)[1];

flags; // "ig"

As of ES6, you can now get these values directly, with the new flags
property:

var re = /foo/ig;

re.flags; // "gi"

It’s a small nuance, but the ES6 specification calls for the expression’s
flags to be listed in this order: "gimuy", regardless of what order the
original pattern was specified with. That’s the reason for the differ‐
ence between /ig and "gi".

Regular Expressions | 71

No, the order of flags specified or listed doesn’t matter.

Another tweak from ES6 is that the RegExp(..) constructor is now
flags-aware if you pass it an existing regular expression:

var re1 = /foo*/y;
re1.source; // "foo*"
re1.flags; // "y"

var re2 = new RegExp(re1);
re2.source; // "foo*"
re2.flags; // "y"

var re3 = new RegExp(re1, "ig");
re3.source; // "foo*"
re3.flags; // "gi"

Prior to ES6, the re3 construction would throw an error, but as of
ES6 you can override the flags when duplicating.

Number Literal Extensions
Prior to ES5, number literals looked like the following—the octal
form was not officially specified, only allowed as an extension that
browsers had come to de facto agreement on:

var dec = 42,
 oct = 052,
 hex = 0x2a;

Though you are specifying a number in different
bases, the number’s mathematic value is what is
stored, and the default output interpretation is
always base-10. The three variables in the previ‐
ous snippet all have the 42 value stored in them.

To further illustrate that 052 was a nonstandard form extension,
consider:

Number("42"); // 42
Number("052"); // 52
Number("0x2a"); // 42

ES5 continued to permit the browser-extended octal form (includ‐
ing such inconsistencies), except that in strict mode, the octal literal
(052) form is disallowed. This restriction was done mainly because
many developers had the habit (from other languages) of seemingly

72 | Chapter 2: Syntax

innocuously prefixing otherwise base-10 numbers with `0`s for code
alignment purposes, and then running into the accidental fact that
they’d changed the number value entirely!

ES6 continues the legacy of changes/variations to how number liter‐
als outside base-10 numbers can be represented. There’s now an offi‐
cial octal form, an amended hexadecimal form, and a brand-new
binary form. For web compatibility reasons, the old octal 052 form
will continue to be legal (though unspecified) in nonstrict mode, but
should really never be used anymore.

Here are the new ES6 number literal forms:

var dec = 42,
 oct = 0o52, // or `0O52` :(
 hex = 0x2a, // or `0X2a` :/
 bin = 0b101010; // or `0B101010` :/

The only decimal form allowed is base-10. Octal, hexadecimal, and
binary are all integer forms.

And the string representations of these forms are all able to be
coerced/converted to their number equivalent:

Number("42"); // 42
Number("0o52"); // 42
Number("0x2a"); // 42
Number("0b101010"); // 42

Though not strictly new to ES6, it’s a little-known fact that you can
actually go the opposite direction of conversion (well, sort of):

var a = 42;

a.toString(); // "42"--also `a.toString(10)`
a.toString(8); // "52"
a.toString(16); // "2a"
a.toString(2); // "101010"

In fact, you can represent a number this way in any base from 2 to
36, though it’d be rare that you’d go outside the standard bases: 2, 8,
10, and 16.

Unicode
Let me just say that this section is not an exhaustive everything-you-
ever-wanted-to-know-about-Unicode resource. I want to cover what
you need to know that’s changing for Unicode in ES6, but we won’t

Unicode | 73

go much deeper than that. Mathias Bynens has written/spoken
extensively and brilliantly about JS and Unicode (see https://mathias
bynens.be/notes/javascript-unicode and http://fluentconf.com/
javascript-html-2015/public/content/2015/02/18-javascript-loves-
unicode).

The Unicode characters that range from 0x0000 to 0xFFFF contain
all the standard printed characters (in various languages) that you’re
likely to have seen or interacted with. This group of characters is
called the Basic Multilingual Plane (BMP). The BMP even contains
fun symbols like this cool snowman: ☃ (U+2603).

There are lots of other extended Unicode characters beyond this
BMP set, which range up to 0x10FFFF. These symbols are often
referred to as astral symbols, as that’s the name given to the set of 16
planes (e.g., layers/groupings) of characters beyond the BMP. Exam‐
ples of astral symbols include 𝄞 U+1D11E) and 💩 U+1F4A9).

Prior to ES6, JavaScript strings could specify Unicode characters
using Unicode escaping, such as:

var snowman = "\u2603";
console.log(snowman); // "☃"

However, the \uXXXX Unicode escaping only supports four hexadeci‐
mal characters, so you can only represent the BMP set of characters
in this way. To represent an astral character using Unicode escaping
prior to ES6, you need to use a surrogate pair—basically two spe‐
cially calculated Unicode-escaped characters side by side, which JS
interprets together as a single astral character:

var gclef = "\uD834\uDD1E";
console.log(gclef); // "𝄞"

As of ES6, we now have a new form for Unicode escaping (in strings
and regular expressions), called Unicode code point escaping:

var gclef = "\u{1D11E}";
console.log(gclef); // "𝄞"

As you can see, the difference is the presence of the { } in the escape
sequence, which allows it to contain any number of hexadecimal
characters. Because you only need six to represent the highest possi‐
ble code point value in Unicode (i.e., 0x10FFFF), this is sufficient.

74 | Chapter 2: Syntax

http://twitter.com/mathias
https://mathiasbynens.be/notes/javascript-unicode
https://mathiasbynens.be/notes/javascript-unicode
http://fluentconf.com/javascript-html-2015/public/content/2015/02/18-javascript-loves-unicode)
http://fluentconf.com/javascript-html-2015/public/content/2015/02/18-javascript-loves-unicode)
http://fluentconf.com/javascript-html-2015/public/content/2015/02/18-javascript-loves-unicode)

Unicode-Aware String Operations
By default, JavaScript string operations and methods are not sensi‐
tive to astral symbols in string values. So, they treat each BMP char‐
acter individually, even the two surrogate halves that make up an
otherwise single astral character. Consider:

var snowman = "☃";
snowman.length; // 1

var gclef = "𝄞";
gclef.length; // 2

So, how do we accurately calculate the length of such a string? In
this scenario, the following trick will work:

var gclef = "𝄞";

[...gclef].length; // 1
Array.from(gclef).length; // 1

Recall from “for..of Loops” on page 61 earlier in this chapter that
ES6 strings have built-in iterators. This iterator happens to be
Unicode-aware, meaning it will automatically output an astral sym‐
bol as a single value. We take advantage of that using the ... spread
operator in an array literal, which creates an array of the string’s
symbols. Then we just inspect the length of that resultant array.
ES6’s Array.from(..) does basically the same thing as [...XYZ],
but we’ll cover that utility in detail in Chapter 6.

It should be noted that constructing and
exhausting an iterator just to get the length of a
string is quite expensive on performance, rela‐
tively speaking, compared to what a theoretically
optimized native utility/property would do.

Unfortunately, the full answer is not as simple or straightforward. In
addition to the surrogate pairs (which the string iterator takes care
of), there are special Unicode code points that behave in other spe‐
cial ways, which is much harder to account for. For example, there’s
a set of code points that modify the previous adjacent character,
known as Combining Diacritical Marks.

Consider these two string outputs:

console.log(s1); // "é"
console.log(s2); // "é"

Unicode | 75

They look the same, but they’re not! Here’s how we created s1 and
s2:

var s1 = "\xE9",
 s2 = "e\u0301";

As you can probably guess, our previous length trick doesn’t work
with s2:

[...s1].length; // 1
[...s2].length; // 2

So what can we do? In this case, we can perform a Unicode normal‐
ization on the value before inquiring about its length, using the ES6
String#normalize(..) utility (which we’ll cover more in Chap‐
ter 6):

var s1 = "\xE9",
 s2 = "e\u0301";

s1.normalize().length; // 1
s2.normalize().length; // 1

s1 === s2; // false
s1 === s2.normalize(); // true

Essentially, normalize(..) takes a sequence like "e\u0301" and
normalizes it to "\xE9". Normalization can even combine multiple
adjacent combining marks if there’s a suitable Unicode character
they combine to:

var s1 = "o\u0302\u0300",
 s2 = s1.normalize(),
 s3 = "ồ";

s1.length; // 3
s2.length; // 1
s3.length; // 1

s2 === s3; // true

Unfortunately, normalization isn’t fully perfect here, either. If you
have multiple combining marks modifying a single character, you
may not get the length count you’d expect, because there may not be
a single defined normalized character that represents the combina‐
tion of all the marks. For example:

var s1 = "e\u0301\u0330";

console.log(s1); // "ḛ́"

76 | Chapter 2: Syntax

s1.normalize().length; // 2

The further you go down this rabbit hole, the more you realize that
it’s difficult to get one precise definition for “length.” What we see
visually rendered as a single character—more precisely called a
grapheme—doesn’t always strictly relate to a single “character” in the
program processing sense.

If you want to see just how deep this rabbit hole
goes, check out the “Grapheme Cluster Bound‐
aries” algorithm.

Character Positioning
Similar to length complications, what does it actually mean to ask,
“what is the character at position 2?” The naive pre-ES6 answer
comes from charAt(..), which will not respect the atomicity of an
astral character, nor will it take into account combining marks.

Consider:

var s1 = "abc\u0301d",
 s2 = "ab\u0107d",
 s3 = "ab\u{1d49e}d";

console.log(s1); // "abćd"
console.log(s2); // "abćd"
console.log(s3); // "ab𝒞d"

s1.charAt(2); // "c"
s2.charAt(2); // "ć"
s3.charAt(2); // "" <-- unprintable surrogate
s3.charAt(3); // "" <-- unprintable surrogate

So, is ES6 giving us a Unicode-aware version of charAt(..)?
Unfortunately, no. At the time of this writing, there’s a proposal for
such a utility that’s under consideration for post-ES6.

But with what we explored in the previous section (and of course
with the limitations noted thereof!), we can hack an ES6 answer:

var s1 = "abc\u0301d",
 s2 = "ab\u0107d",
 s3 = "ab\u{1d49e}d";

[...s1.normalize()][2]; // "ć"

Unicode | 77

http://www.Unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries
http://www.Unicode.org/reports/tr29/#Grapheme_Cluster_Boundaries

[...s2.normalize()][2]; // "ć"
[...s3.normalize()][2]; // "𝒞"

Reminder of an earlier warning: constructing
and exhausting an iterator each time you want
to get at a single character is… very not ideal,
performance-wise. Let’s hope we get a built-in
and optimized utility for this soon, post-ES6.

What about a Unicode-aware version of the charCodeAt(..) utility?
ES6 gives us codePointAt(..):

var s1 = "abc\u0301d",
 s2 = "ab\u0107d",
 s3 = "ab\u{1d49e}d";

s1.normalize().codePointAt(2).toString(16);
// "107"

s2.normalize().codePointAt(2).toString(16);
// "107"

s3.normalize().codePointAt(2).toString(16);
// "1d49e"

What about the other direction? A Unicode-aware version of
String.fromCharCode(..) is ES6’s String.fromCodePoint(..):

String.fromCodePoint(0x107); // "ć"

String.fromCodePoint(0x1d49e); // "𝒞"

So wait, can we just combine String.fromCodePoint(..) and code
PointAt(..) to get a better version of a Unicode-aware charAt(..)
from earlier? Yep!

var s1 = "abc\u0301d",
 s2 = "ab\u0107d",
 s3 = "ab\u{1d49e}d";

String.fromCodePoint(s1.normalize().codePointAt(2));
// "ć"

String.fromCodePoint(s2.normalize().codePointAt(2));
// "ć"

String.fromCodePoint(s3.normalize().codePointAt(2));
// "𝒞"

78 | Chapter 2: Syntax

There’s quite a few other string methods we haven’t addressed here,
including toUpperCase(), toLowerCase(), substring(..),
indexOf(..), slice(..), and a dozen others. None of these have
been changed or augmented for full Unicode awareness, so you
should be very careful—probably just avoid them!—when working
with strings containing astral symbols.

There are also several string methods that use regular expressions
for their behavior, like replace(..) and match(..). Thankfully, ES6
brings Unicode awareness to regular expressions, as we covered in
“Unicode Flag” on page 64.

OK, there we have it! JavaScript’s Unicode string support is signifi‐
cantly better over pre-ES6 (though still not perfect) with the various
additions we’ve just covered.

Unicode Identifier Names
Unicode can also be used in identifier names (variables, properties,
etc.). Prior to ES6, you could do this with Unicode-escapes, like:

var \u03A9 = 42;

// same as: var Ω = 42;

As of ES6, you can also use the earlier explained code point escape
syntax:

var \u{2B400} = 42;

// same as: var = 42;

There’s a complex set of rules around exactly which Unicode charac‐
ters are allowed. Furthermore, some are allowed only if they’re not
the first character of the identifier name.

Mathias Bynens has a great post on all the nitty-
gritty details.

The reasons for using such unusual characters in identifier names
are rather rare and academic. You typically won’t be best served by
writing code that relies on these esoteric capabilities.

Unicode | 79

https://mathiasbynens.be/notes/javascript-identifiers-es6

Symbols
With ES6, for the first time in quite a while, a new primitive type has
been added to JavaScript: the symbol. Unlike the other primitive
types, however, symbols don’t have a literal form.

Here’s how you create a symbol:

var sym = Symbol("some optional description");

typeof sym; // "symbol"

Some things to note:

• You cannot and should not use new with Symbol(..). It’s not a
constructor, nor are you producing an object.

• The parameter passed to Symbol(..) is optional. If passed, it
should be a string that gives a friendly description for the sym‐
bol’s purpose.

• The typeof output is a new value ("symbol") that is the primary
way to identify a symbol.

The description, if provided, is solely used for the stringification
representation of the symbol:

sym.toString(); // "Symbol(some optional description)"

Similar to how primitive string values are not instances of String,
symbols are also not instances of Symbol. If, for some reason, you
want to construct a boxed wrapper object form of a symbol value,
you can do the following:

sym instanceof Symbol; // false

var symObj = Object(sym);
symObj instanceof Symbol; // true

symObj.valueOf() === sym; // true

symObj in this snippet is interchangeable with
sym; either form can be used in all places sym‐
bols are utilized. There’s not much reason to use
the boxed wrapper object form (symObj) instead
of the primitive form (sym). Keeping with simi‐
lar advice for other primitives, it’s probably best
to prefer sym over symObj.

80 | Chapter 2: Syntax

The internal value of a symbol itself—referred to as its name—is hid‐
den from the code and cannot be obtained. You can think of this
symbol value as an automatically generated, unique (within your
application) string value.

But if the value is hidden and unobtainable, what’s the point of hav‐
ing a symbol at all?

The main point of a symbol is to create a string-like value that can’t
collide with any other value. So, for example, consider using a sym‐
bol as a constant representing an event name:

const EVT_LOGIN = Symbol("event.login");

You’d then use EVT_LOGIN in place of a generic string literal like
"event.login":

evthub.listen(EVT_LOGIN, function(data){
 // ..
});

The benefit here is that EVT_LOGIN holds a value that cannot be
duplicated (accidentally or otherwise) by any other value, so it is
impossible for there to be any confusion of which event is being dis‐
patched or handled.

Under the covers, the evthub utility assumed in
the previous snippet would almost certainly be
using the symbol value from the EVT_LOGIN
argument directly as the property/key in some
internal object (hash) that tracks event handlers.
If evthub instead needed to use the symbol value
as a real string, it would need to explicitly coerce
with String(..) or toString(), as implicit
string coercion of symbols is not allowed.

You may use a symbol directly as a property name/key in an object,
such as a special property you want to treat as hidden or meta in
usage. It’s important to know that although you intend to treat it as
such, it is not actually a hidden or untouchable property.

Consider this module that implements the singleton pattern behav‐
ior—that is, it only allows itself to be created once:

const INSTANCE = Symbol("instance");

function HappyFace() {

Symbols | 81

 if (HappyFace[INSTANCE]) return HappyFace[INSTANCE];

 function smile() { .. }

 return HappyFace[INSTANCE] = {
 smile: smile
 };
}

var me = HappyFace(),
 you = HappyFace();

me === you; // true

The INSTANCE symbol value here is a special, almost hidden, meta-
like property stored statically on the HappyFace() function object.

It could alternatively have been a plain old property like
__instance, and the behavior would have been identical. The usage
of a symbol simply improves the metaprogramming style, keeping
this INSTANCE property set apart from any other normal properties.

Symbol Registry
One mild downside to using symbols as in the last few examples is
that the EVT_LOGIN and INSTANCE variables had to be stored in an
outer scope (perhaps even the global scope), or otherwise somehow
stored in a publicly available location, so that all parts of the code
that need to use the symbols can access them.

To aid in organizing code with access to these symbols, you can cre‐
ate symbol values with the global symbol registry. For example:

const EVT_LOGIN = Symbol.for("event.login");

console.log(EVT_LOGIN); // Symbol(event.login)

And:

function HappyFace() {
 const INSTANCE = Symbol.for("instance");

 if (HappyFace[INSTANCE]) return HappyFace[INSTANCE];

 // ..

 return HappyFace[INSTANCE] = { .. };
}

82 | Chapter 2: Syntax

Symbol.for(..) looks in the global symbol registry to see if a sym‐
bol is already stored with the provided description text, and returns
it if so. If not, it creates one to return. In other words, the global
symbol registry treats symbol values, by description text, as single‐
tons themselves.

But that also means that any part of your application can retrieve the
symbol from the registry using Symbol.for(..), as long as the
matching description name is used.

Ironically, symbols are basically intended to replace the use of magic
strings (arbitrary string values given special meaning) in your appli‐
cation. But you precisely use magic description string values to
uniquely identify/locate them in the global symbol registry!

To avoid accidental collisions, you’ll probably want to make your
symbol descriptions quite unique. One easy way of doing that is to
include prefix/context/namespacing information in them.

For example, consider a utility such as the following:

function extractValues(str) {
 var key = Symbol.for("extractValues.parse"),
 re = extractValues[key] ||
 /[^=&]+?=([^&]+?)(?=&|$)/g,
 values = [], match;

 while (match = re.exec(str)) {
 values.push(match[1]);
 }

 return values;
}

We use the magic string value "extractValues.parse" because it’s
quite unlikely that any other symbol in the registry would ever col‐
lide with that description.

If a user of this utility wants to override the parsing regular expres‐
sion, they can also use the symbol registry:

extractValues[Symbol.for("extractValues.parse")] =
 /..some pattern../g;

extractValues("..some string..");

Symbols | 83

Aside from the assistance the symbol registry provides in globally
storing these values, everything we’re seeing here could have been
done by just actually using the magic string "extractVal

ues.parse" as the key, rather than the symbol. The improvements
exist at the metaprogramming level more than the functional level.

You may have occasion to use a symbol value that has been stored in
the registry to look up what description text (key) it’s stored under.
For example, you may need to signal to another part of your appli‐
cation how to locate a symbol in the registry because you cannot
pass the symbol value itself.

You can retrieve a registered symbol’s description text (key) using
Symbol.keyFor(..):

var s = Symbol.for("something cool");

var desc = Symbol.keyFor(s);
console.log(desc); // "something cool"

// get the symbol from the registry again
var s2 = Symbol.for(desc);

s2 === s; // true

Symbols as Object Properties
If a symbol is used as a property/key of an object, it’s stored in a spe‐
cial way so that the property will not show up in a normal enumera‐
tion of the object’s properties:

var o = {
 foo: 42,
 [Symbol("bar")]: "hello world",
 baz: true
};

Object.getOwnPropertyNames(o); // ["foo","baz"]

To retrieve an object’s symbol properties:

Object.getOwnPropertySymbols(o); // [Symbol(bar)]

This makes it clear that a property symbol is not actually hidden or
inaccessible, as you can always see it in the Object.getOwnProperty
Symbols(..) list.

84 | Chapter 2: Syntax

Built-In Symbols
ES6 comes with a number of predefined built-in symbols that
expose various meta behaviors on JavaScript object values. However,
these symbols are not registered in the global symbol registry, as one
might expect.

Instead, they’re stored as properties on the Symbol function object.
For example, in “for..of Loops” on page 61 earlier in this chapter, we
introduced the Symbol.iterator value:

var a = [1,2,3];

a[Symbol.iterator]; // native function

The specification uses the @@ prefix notation to refer to the built-in
symbols, the most common ones being: @@iterator, @@toString
Tag, @@toPrimitive. Several others are defined as well, though they
probably won’t be used as often.

See “Well-Known Symbols” on page 203 in
Chapter 7 for detailed information about how
these built-in symbols are used for meta pro‐
gramming purposes.

Review
ES6 adds a heap of new syntax forms to JavaScript, so there’s plenty
to learn!

Most of these are designed to ease the pain points of common pro‐
gramming idioms, such as setting default values to function parame‐
ters and gathering the “rest” of the parameters into an array.
Destructuring is a powerful tool for more concisely expressing
assignments of values from arrays and nested objects.

While features like => arrow functions appear to also be all about
shorter and nicer-looking syntax, they actually have very specific
behaviors that you should intentionally use only in appropriate sit‐
uations.

Expanded Unicode support, new tricks for regular expressions, and
even a new primitive symbol type round out the syntactic evolution
of ES6.

Review | 85

CHAPTER 3

Organization

It’s one thing to write JS code, but it’s another to properly organize
it. Utilizing common patterns for organization and reuse goes a long
way to improving the readability and understandability of your
code. Remember: code is at least as much about communicating to
other developers as it is about feeding the computer instructions.

ES6 has several important features that help significantly improve
these patterns, including iterators, generators, modules, and classes.

Iterators
An iterator is a structured pattern for pulling information from a
source in one-at-a-time fashion. This pattern has been found in pro‐
gramming for a long time. And to be sure, JS developers have been
ad hoc designing and implementing iterators in JS programs since
before anyone can remember, so it’s not at all a new topic.

What ES6 has done is introduce an implicit standardized interface
for iterators. Many of the built-in data structures in JavaScript will
now expose an iterator implementing this standard. And you can
also construct your own iterators adhering to the same standard, for
maximal interoperability.

Iterators are a way of organizing ordered, sequential, pull-based
consumption of data.

For example, you may implement a utility that produces a new
unique identifier each time it’s requested. Or you may produce an

87

infinite series of values that rotate through a fixed list, in round-
robin fashion. Or you could attach an iterator to a database query
result to pull out new rows one at a time.

Although they have not commonly been used in JS in such a man‐
ner, iterators can also be thought of as controlling behavior one step
at a time. This can be illustrated quite clearly when considering gen‐
erators (see “Generators” on page 98 later in this chapter), though
you can certainly do the same without generators.

Interfaces
At the time of this writing, ES6 section 25.1.1.2 details the Iterator
interface as having the following requirement:

Iterator [required]
 next() {method}: retrieves next IteratorResult

There are two optional members that some iterators are extended
with:

Iterator [optional]
 return() {method}: stops iterator and returns IteratorResult
 throw() {method}: signals error and returns IteratorResult

The IteratorResult interface is specified as:

IteratorResult
 value {property}: current iteration value or final return
 value (optional if `undefined`)
 done {property}: boolean, indicates completion status

I call these interfaces implicit not because they’re
not explicitly called out in the specification—
they are!—but because they’re not exposed as
direct objects accessible to code. JavaScript does
not, in ES6, support any notion of “interfaces,”
so adherence for your own code is purely con‐
ventional. However, wherever JS expects an iter‐
ator—a for..of loop, for instance—what you
provide must adhere to these interfaces or the
code will fail.

There’s also an Iterable interface, which describes objects that must
be able to produce iterators:

88 | Chapter 3: Organization

https://people.mozilla.org/~jorendorff/es6-draft.html#sec-iterator-interface

Iterable
 @@iterator() {method}: produces an Iterator

If you recall from “Built-In Symbols” on page 85 in Chapter 2,
@@iterator is the special built-in symbol representing the method
that can produce iterator(s) for the object.

IteratorResult

The IteratorResult interface specifies that the return value from
any iterator operation will be an object of the form:

{ value: .. , done: true / false }

Built-in iterators will always return values of this form, but more
properties are, of course, allowed to be present on the return value,
as necessary.

For example, a custom iterator may add additional metadata to the
result object (e.g., where the data came from, how long it took to
retrieve, cache expiration length, frequency for the appropriate next
request, etc.).

Technically, value is optional if it would other‐
wise be considered absent or unset, such as in
the case of the value undefined. Because access‐
ing res.value will produce undefined whether
it’s present with that value or absent entirely, the
presence/absence of the property is more an
implementation detail or an optimization (or
both), rather than a functional issue.

next() Iteration
Let’s look at an array, which is an iterable, and the iterator it can pro‐
duce to consume its values:

var arr = [1,2,3];

var it = arr[Symbol.iterator]();

it.next(); // { value: 1, done: false }
it.next(); // { value: 2, done: false }
it.next(); // { value: 3, done: false }

it.next(); // { value: undefined, done: true }

Iterators | 89

Each time the method located at Symbol.iterator (see Chapter 2
and Chapter 7) is invoked on this arr value, it will produce a new
fresh iterator. Most structures will do the same, including all the
built-in data structures in JS.

However, a structure like an event queue consumer might only ever
produce a single iterator (singleton pattern). Or a structure might
only allow one unique iterator at a time, requiring the current one to
be completed before a new one can be created.

The it iterator in the previous snippet doesn’t report done: true
when you receive the 3 value. You have to call next() again, in
essence going beyond the end of the array’s values, to get the com‐
plete signal done: true. It may not be clear why until later in this
section, but that design decision will typically be considered a best
practice.

Primitive string values are also iterables by default:

var greeting = "hello world";

var it = greeting[Symbol.iterator]();

it.next(); // { value: "h", done: false }
it.next(); // { value: "e", done: false }
..

Technically, the primitive value itself isn’t itera‐
ble, but thanks to “boxing”, "hello world" is
coerced/converted to its String object wrapper
form, which is an iterable. See the Types &
Grammar title of this series for more informa‐
tion.

ES6 also includes several new data structures, called collections (see
Chapter 5). These collections are not only iterables themselves, but
they also provide API method(s) to generate an iterator, such as:

var m = new Map();
m.set("foo", 42);
m.set({ cool: true }, "hello world");

var it1 = m[Symbol.iterator]();
var it2 = m.entries();

it1.next(); // { value: ["foo", 42], done: false }

90 | Chapter 3: Organization

it2.next(); // { value: ["foo", 42], done: false }
..

The next(..) method of an iterator can optionally take one or more
arguments. The built-in iterators mostly do not exercise this capa‐
bility, though a generator’s iterator definitely does (see “Generators”
on page 98 later in this chapter).

By general convention, including all the built-in iterators, calling
next(..) on an iterator that’s already been exhausted is not an error,
but will simply continue to return the result { value: undefined,
done: true }.

Optional: return(..) and throw(..)
The optional methods on the iterator interface—return(..) and
throw(..)—are not implemented on most of the built-in iterators.
However, they definitely do mean something in the context of gen‐
erators, so see “Generators” on page 98 for more specific informa‐
tion.

return(..) is defined as sending a signal to an iterator that the con‐
suming code is complete and will not be pulling any more values
from it. This signal can be used to notify the producer (the iterator
responding to next(..) calls) to perform any cleanup it may need
to do, such as releasing/closing network, database, or file handle
resources.

If an iterator has a return(..) present and any condition occurs
that can automatically be interpreted as abnormal or early termina‐
tion of consuming the iterator, return(..) will automatically be
called. You can call return(..) manually as well.

return(..) will return an IteratorResult object just like next(..)
does. In general, the optional value you send to return(..) would
be sent back as value in this IteratorResult, though there are
nuanced cases where that might not be true.

throw(..) is used to signal an exception/error to an iterator, which
possibly may be used differently by the iterator than the completion
signal implied by return(..). It does not necessarily imply a com‐
plete stop of the iterator as return(..) generally does.

For example, with generator iterators, throw(..) actually injects a
thrown exception into the generator’s paused execution context,

Iterators | 91

which can be caught with a try..catch. An uncaught throw(..)
exception would end up abnormally aborting the generator’s
iterator.

By general convention, an iterator should not
produce any more results after having called
return(..) or throw(..).

Iterator Loop
As we covered in “for..of Loops” on page 61 in Chapter 2, the ES6
for..of loop directly consumes a conforming iterable.

If an iterator is also an iterable, it can be used directly with the
for..of loop. You make an iterator an iterable by giving it a
Symbol.iterator method that simply returns the iterator itself:

var it = {
 // make the `it` iterator an iterable
 [Symbol.iterator]() { return this; },

 next() { .. },
 ..
};

it[Symbol.iterator]() === it; // true

Now we can consume the it iterator with a for..of loop:

for (var v of it) {
 console.log(v);
}

To fully understand how such a loop works, recall the for equivalent
of a for..of loop from Chapter 2:

for (var v, res; (res = it.next()) && !res.done;) {
 v = res.value;
 console.log(v);
}

If you look closely, you’ll see that it.next() is called before each
iteration, and then res.done is consulted. If res.done is true, the
expression evaluates to false and the iteration doesn’t occur.

92 | Chapter 3: Organization

Recall earlier that we suggested iterators should in general not
return done: true along with the final intended value from the iter‐
ator. Now you can see why.

If an iterator returned { done: true, value: 42 }, the for..of
loop would completely discard the 42 value and it’d be lost. For this
reason, assuming that your iterator may be consumed by patterns
like the for..of loop or its manual for equivalent, you should
probably wait to return done: true for signaling completion until
after you’ve already returned all relevant iteration values.

You can, of course, intentionally design your
iterator to return some relevant value at the
same time as returning done: true. But don’t
do this unless you’ve documented that as the
case, and thus implicitly forced consumers of
your iterator to use a different pattern for itera‐
tion than is implied by for..of or its manual
equivalent as we depicted.

Custom Iterators
In addition to the standard built-in iterators, you can make your
own! All it takes to make them interoperate with ES6’s consumption
facilities (e.g., the for..of loop and the ... operator) is to adhere to
the proper interface(s).

Let’s try constructing an iterator that produces the infinite series of
numbers in the Fibonacci sequence:

var Fib = {
 [Symbol.iterator]() {
 var n1 = 1, n2 = 1;

 return {
 // make the iterator an iterable
 [Symbol.iterator]() { return this; },

 next() {
 var current = n2;
 n2 = n1;
 n1 = n1 + current;
 return { value: current, done: false };
 },

 return(v) {

Iterators | 93

 console.log(
 "Fibonacci sequence abandoned."
);
 return { value: v, done: true };
 }
 };
 }
};

for (var v of Fib) {
 console.log(v);

 if (v > 50) break;
}
// 1 1 2 3 5 8 13 21 34 55
// Fibonacci sequence abandoned.

If we hadn’t inserted the break condition, this
for..of loop would have run forever, which is
probably not the desired result in terms of
breaking your program!

The Fib[Symbol.iterator]() method when called returns the iter‐
ator object with next() and return(..) methods on it. State is
maintained via n1 and n2 variables, which are kept by the closure.

Let’s next consider an iterator that is designed to run through a ser‐
ies (aka a queue) of actions, one item at a time:

var tasks = {
 [Symbol.iterator]() {
 var steps = this.actions.slice();

 return {
 // make the iterator an iterable
 [Symbol.iterator]() { return this; },

 next(...args) {
 if (steps.length > 0) {
 let res = steps.shift()(...args);
 return { value: res, done: false };
 }
 else {
 return { done: true }
 }
 },

 return(v) {
 steps.length = 0;

94 | Chapter 3: Organization

 return { value: v, done: true };
 }
 };
 },
 actions: []
};

The iterator on tasks steps through functions found in the actions
array property, if any, and executes them one at a time, passing in
whatever arguments you pass to next(..), and returning any return
value to you in the standard IteratorResult object.

Here’s how we could could use this tasks queue:

tasks.actions.push(
 function step1(x){
 console.log("step 1:", x);
 return x * 2;
 },
 function step2(x,y){
 console.log("step 2:", x, y);
 return x + (y * 2);
 },
 function step3(x,y,z){
 console.log("step 3:", x, y, z);
 return (x * y) + z;
 }
);

var it = tasks[Symbol.iterator]();

it.next(10); // step 1: 10
 // { value: 20, done: false }

it.next(20, 50); // step 2: 20 50
 // { value: 120, done: false }

it.next(20, 50, 120); // step 3: 20 50 120
 // { value: 1120, done: false }

it.next(); // { done: true }

This particular usage reinforces that iterators can be a pattern for
organizing functionality, not just data. It’s also reminiscent of what
we’ll see with generators in the next section.

You could even get creative and define an iterator that represents
meta operations on a single piece of data. For example, we could
define an iterator for numbers that by default ranges from 0 up to
(or down to, for negative numbers) the number in question.

Iterators | 95

Consider:

if (!Number.prototype[Symbol.iterator]) {
 Object.defineProperty(
 Number.prototype,
 Symbol.iterator,
 {
 writable: true,
 configurable: true,
 enumerable: false,
 value: function iterator(){
 var i, inc, done = false, top = +this;

 // iterate positively or negatively?
 inc = 1 * (top < 0 ? -1 : 1);

 return {
 // make the iterator itself an iterable!
 [Symbol.iterator](){ return this; },

 next() {
 if (!done) {
 // initial iteration always 0
 if (i == null) {
 i = 0;
 }
 // iterating positively
 else if (top >= 0) {
 i = Math.min(top,i + inc);
 }
 // iterating negatively
 else {
 i = Math.max(top,i + inc);
 }

 // done after this iteration?
 if (i == top) done = true;

 return { value: i, done: false };
 }
 else {
 return { done: true };
 }
 }
 };
 }
 }
);
}

Now, what tricks does this creativity afford us?

96 | Chapter 3: Organization

for (var i of 3) {
 console.log(i);
}
// 0 1 2 3

[...-3]; // [0,-1,-2,-3]

Those are some fun tricks, though the practical utility is somewhat
debatable. But then again, one might wonder why ES6 didn’t just
ship with such a minor but delightful feature easter egg!

I’d be remiss if I didn’t at least remind you that extending native pro‐
totypes as I’m doing in the previous snippet is something you
should only do with caution and awareness of potential hazards.

In this case, the chances that you’ll have a collision with other code
or even a future JS feature is probably exceedingly low. But just
beware of the slight possibility. And document what you’re doing
verbosely for posterity’s sake.

I’ve expounded on this particular technique in
this blog post if you want more details. And this
comment even suggests a similar trick but for
making string character ranges.

Iterator Consumption
We’ve already shown consuming an iterator item by item with the
for..of loop. But there are other ES6 structures that can consume
iterators.

Let’s consider the iterator attached to this array (though any iterator
we choose would have the following behaviors):

var a = [1,2,3,4,5];

The ... spread operator fully exhausts an iterator. Consider:

function foo(x,y,z,w,p) {
 console.log(x + y + z + w + p);
}

foo(...a); // 15

... can also spread an iterator inside an array:

var b = [0, ...a, 6];
b; // [0,1,2,3,4,5,6]

Iterators | 97

http://blog.getify.com/iterating-es6-numbers/
http://blog.getify.com/iterating-es6-numbers/comment-page-1/#comment-535294
http://blog.getify.com/iterating-es6-numbers/comment-page-1/#comment-535294

Array destructuring (see “Destructuring” on page 23 in Chapter 2)
can partially or completely (if paired with a ... rest/gather opera‐
tor) consume an iterator:

var it = a[Symbol.iterator]();

var [x,y] = it;
// take just the first two elements from `it`
var [z, ...w] = it;
// take the third, then the rest all at once

// is `it` fully exhausted? Yep.
it.next(); // { value: undefined, done: true }

x; // 1
y; // 2
z; // 3
w; // [4,5]

Generators
All functions run to completion, right? In other words, once a func‐
tion starts running, it finishes before anything else can interrupt.

At least that’s how it’s been for the whole history of JavaScript up to
this point. As of ES6, a new somewhat exotic form of function is
being introduced, called a generator. A generator can pause itself in
mid-execution, and can be resumed either right away or at a later
time. So it clearly does not hold the run-to-completion guarantee
that normal functions do.

Moreover, each pause/resume cycle in mid-execution is an opportu‐
nity for two-way message passing, where the generator can return a
value, and the controlling code that resumes it can send a value back
in.

As with iterators in the previous section, there are multiple ways to
think about what a generator is, or rather what it’s most useful for.
There’s no one right answer, but we’ll try to consider several angles.

See the Async & Performance title of this series
for more information about generators, and also
see Chapter 4 of this current title.

98 | Chapter 3: Organization

Syntax
The generator function is declared with this new syntax:

function *foo() {
 // ..
}

The position of the * is not functionally relevant. The same declara‐
tion could be written as any of the following:

function *foo() { .. }
function* foo() { .. }
function * foo() { .. }
function*foo() { .. }
..

The only difference here is stylistic preference. Most other literature
seems to prefer function* foo(..) { .. }. I prefer
function *foo(..) { .. }, so that’s how I’ll present them for the
rest of this title.

My reason is purely didactic in nature. In this text, when referring to
a generator function, I will use *foo(..), as opposed to foo(..) for
a normal function. I observe that *foo(..) more closely matches
the * positioning of function *foo(..) { .. }.

Moreover, as we saw in Chapter 2 with concise methods, there’s a
concise generator form in object literals:

var a = {
 *foo() { .. }
};

I would say that with concise generators, *foo() { .. } is rather
more natural than * foo() { .. }. So that further argues for
matching the consistency with *foo().

Consistency eases understanding and learning.

Executing a Generator

Though a generator is declared with *, you still execute it like a nor‐
mal function:

foo();

You can still pass it arguments, as in:

Generators | 99

function *foo(x,y) {
 // ..
}

foo(5, 10);

The major difference is that executing a generator, like foo(5,10),
doesn’t actually run the code in the generator. Instead, it produces
an iterator that will control the generator to execute its code.

We’ll come back to this later in “Iterator Control” on page 105, but
briefly:

function *foo() {
 // ..
}

var it = foo();

// to start/advanced `*foo()`, call
// `it.next(..)`

yield
Generators also have a new keyword you can use inside them, to sig‐
nal the pause point: yield. Consider:

function *foo() {
 var x = 10;
 var y = 20;

 yield;

 var z = x + y;
}

In this *foo() generator, the operations on the first two lines would
run at the beginning, then yield would pause the generator. If and
when resumed, the last line of *foo() would run. yield can appear
any number of times (or not at all, technically!) in a generator.

You can even put yield inside a loop, and it can represent a
repeated pause point. In fact, a loop that never completes just means
a generator that never completes, which is completely valid, and
sometimes entirely what you need.

yield is not just a pause point. It’s an expression that sends out a
value when pausing the generator. Here’s a while..true loop in a
generator that for each iteration yields a new random number:

100 | Chapter 3: Organization

function *foo() {
 while (true) {
 yield Math.random();
 }
}

The yield .. expression not only sends a value—yield without a
value is the same as yield undefined—but also receives (i.e., is
replaced by) the eventual resumption value. Consider:

function *foo() {
 var x = yield 10;
 console.log(x);
}

This generator will first yield out the value 10 when pausing itself.
When you resume the generator—using the it.next(..) we
referred to earlier—whatever value (if any) you resume with will
replace/complete the whole yield 10 expression, meaning that the
value will be assigned to the x variable.

A yield .. expression can appear anywhere a normal expression
can. For example:

function *foo() {
 var arr = [yield 1, yield 2, yield 3];
 console.log(arr, yield 4);
}

*foo() here has four yield .. expressions. Each yield results in
the generator pausing to wait for a resumption value that’s then used
in the various expression contexts.

yield is not technically an operator, though when used like yield 1
it sure looks like it. Because yield can be used all by itself as in var
x = yield;, thinking of it as an operator can sometimes be confus‐
ing.

Technically, yield .. is of the same “expression precedence”—simi‐
lar conceptually to operator precedence—as an assignment expres‐
sion like a = 3. That means yield .. can basically appear
anywhere a = 3 can validly appear.

Let’s illustrate the symmetry:

var a, b;

a = 3; // valid
b = 2 + a = 3; // invalid

Generators | 101

b = 2 + (a = 3); // valid

yield 3; // valid
a = 2 + yield 3; // invalid
a = 2 + (yield 3); // valid

If you think about it, it makes a sort of concep‐
tual sense that a yield .. expression would
behave similar to an assignment expression.
When a paused yield expression is resumed, it’s
completed/replaced by the resumption value in
a way that’s not terribly dissimilar from being
“assigned” that value.

The takeaway: if you need yield .. to appear in a position where
an assignment like a = 3 would not itself be allowed, it needs to be
wrapped in a ().

Because of the low precedence of the yield keyword, almost any
expression after a yield .. will be computed first before being sent
with yield. Only the ... spread operator and the , comma operator
have lower precedence, meaning they’d bind after the yield has
been evaluated.

So just like with multiple operators in normal statements, another
case where () might be needed is to override (elevate) the low
precedence of yield, such as the difference between these expres‐
sions:

yield 2 + 3; // same as `yield (2 + 3)`

(yield 2) + 3; // `yield 2` first, then `+ 3`

Just like = assignment, yield is also “right-associative,” which means
that multiple yield expressions in succession are treated as having
been (..) grouped from right to left. So, yield yield yield 3 is
treated as yield (yield (yield 3)). A “left-associative” interpre‐
tation like ((yield) yield) yield 3 would make no sense.

Just like with operators, it’s a good idea to use (..) grouping, even
if not strictly required, to disambiguate your intent if yield is com‐
bined with other operators or yields.

102 | Chapter 3: Organization

See the Types & Grammar title of this series for
more information about operator precedence
and associativity.

yield *

In the same way that the * makes a function declaration into func
tion * generator declaration, a * makes yield into yield *, which
is a very different mechanism, called yield delegation. Grammati‐
cally, yield *.. will behave the same as a yield .., as discussed in
the previous section.

yield * .. requires an iterable; it then invokes that iterable’s itera‐
tor, and delegates its own host generator’s control to that iterator
until it’s exhausted. Consider:

function *foo() {
 yield *[1,2,3];
}

As with the * position in a generator’s declara‐
tion (discussed earlier), the * positioning in
yield * expressions is stylistically up to you.
Most other literature prefers yield* .., but I
prefer yield *.., for very symmetrical reasons
as already discussed.

The [1,2,3] value produces an iterator that will step through its
values, so the *foo() generator will yield those values out as it’s con‐
sumed. Another way to illustrate the behavior is in yield delegating
to another generator:

function *foo() {
 yield 1;
 yield 2;
 yield 3;
}

function *bar() {
 yield *foo();
}

The iterator produced when *bar() calls *foo() is delegated to via
yield *, meaning whatever value(s) *foo() produces will be pro‐
duced by *bar().

Generators | 103

Whereas with yield .. the completion value of the expression
comes from resuming the generator with it.next(..), the comple‐
tion value of the yield *.. expression comes from the return value
(if any) from the delegated-to iterator.

Built-in iterators generally don’t have return values, as we covered at
the end of “Iterator Loop” on page 92 earlier in this chapter. But if
you define your own custom iterator (or generator), you can design
it to return a value, which yield *.. would capture:

function *foo() {
 yield 1;
 yield 2;
 yield 3;
 return 4;
}

function *bar() {
 var x = yield *foo();
 console.log("x:", x);
}

for (var v of bar()) {
 console.log(v);
}
// 1 2 3
// x: 4

While the 1, 2, and 3 values are yielded out of *foo() and then out
of *bar(), the 4 value returned from *foo() is the completion value
of the yield *foo() expression, which then gets assigned to x.

Because yield * can call another generator (by way of delegating to
its iterator), it can also perform a sort of generator recursion by call‐
ing itself:

function *foo(x) {
 if (x < 3) {
 x = yield *foo(x + 1);
 }
 return x * 2;
}

foo(1);

The result from foo(1) and then calling the iterator’s next() to run
it through its recursive steps will be 24. The first *foo(..) run has x
at value 1, which is x < 3. x + 1 is passed recursively to *foo(..),
so x is then 2. One more recursive call results in x of 3.

104 | Chapter 3: Organization

Now, because x < 3 fails, the recursion stops, and return 3 * 2
gives 6 back to the previous call’s yield *.. expression, which is
then assigned to x. Another return 6 * 2 returns 12 back to the
previous call’s x. Finally 12 * 2, or 24, is returned from the comple‐
ted run of the *foo(..) generator.

Iterator Control
Earlier, we briefly introduced the concept that generators are con‐
trolled by iterators. Let’s fully dig into that now.

Recall the recursive *foo(..) from the previous section. Here’s how
we’d run it:

function *foo(x) {
 if (x < 3) {
 x = yield *foo(x + 1);
 }
 return x * 2;
}

var it = foo(1);
it.next(); // { value: 24, done: true }

In this case, the generator doesn’t really ever pause, as there’s no
yield .. expression. Instead, yield * just keeps the current itera‐
tion step going via the recursive call. So, just one call to the iterator’s
next() function fully runs the generator.

Now let’s consider a generator that will have multiple steps and thus
multiple produced values:

function *foo() {
 yield 1;
 yield 2;
 yield 3;
}

We already know we can consume an iterator, even one attached to a
generator like *foo(), with a for..of loop:

for (var v of foo()) {
 console.log(v);
}
// 1 2 3

Generators | 105

The for..of loop requires an iterable. A genera‐
tor function reference (like foo) by itself is not
an iterable; you must execute it with foo() to
get the iterator (which is also an iterable, as we
explained earlier in this chapter). You could the‐
oretically extend the GeneratorPrototype (the
prototype of all generator functions) with a Sym
bol.iterator function that essentially just does
return this(). That would make the foo refer‐
ence itself an iterable, which means for (var v
of foo) { .. } (notice no () on foo) will
work.

Let’s instead iterate the generator manually:

function *foo() {
 yield 1;
 yield 2;
 yield 3;
}

var it = foo();

it.next(); // { value: 1, done: false }
it.next(); // { value: 2, done: false }
it.next(); // { value: 3, done: false }

it.next(); // { value: undefined, done: true }

If you look closely, there are three yield statements and four next()
calls. That may seem like a strange mismatch. In fact, there will
always be one more next() call than yield expression, assuming all
are evaluated and the generator is fully run to completion.

But if you look at it from the opposite perspective (inside-out
instead of outside-in), the matching between yield and next()
makes more sense.

Recall that the yield .. expression will be completed by the value
you resume the generator with. That means the argument you pass
to next(..) completes whatever yield .. expression is currently
paused waiting for a completion.

Let’s illustrate this perspective this way:

function *foo() {
 var x = yield 1;
 var y = yield 2;

106 | Chapter 3: Organization

 var z = yield 3;
 console.log(x, y, z);
}

In this snippet, each yield .. is sending a value out (1, 2, 3), but
more directly, it’s pausing the generator to wait for a value. In other
words, it’s almost like asking the question, “What value should I use
here? I’ll wait to hear back.”

Now, here’s how we control *foo() to start it up:

var it = foo();

it.next(); // { value: 1, done: false }

That first next() call is starting up the generator from its initial
paused state, and running it to the first yield. At the moment you
call that first next(), there’s no yield .. expression waiting for a
completion. If you passed a value to that first next() call, it would
currently just be thrown away, because no yield is waiting to receive
such a value.

An early proposal for the “beyond ES6” time‐
frame would let you access a value passed to an
initial next(..) call via a separate meta property
(see Chapter 7) inside the generator.

Now, let’s answer the currently pending question, “What value
should I assign to x?” We’ll answer it by sending a value to the next
next(..) call:

it.next("foo"); // { value: 2, done: false }

Now, the x will have the value "foo", but we’ve also asked a new
question, “What value should I assign to y?” And we answer:

it.next("bar"); // { value: 3, done: false }

Answer given, another question asked. Final answer:

it.next("baz"); // "foo" "bar" "baz"
 // { value: undefined, done: true }

Now it should be clearer how each yield .. “question” is answered
by the next next(..) call, and so the “extra” next() call we observed
is always just the initial one that starts everything going.

Let’s put all those steps together:

Generators | 107

var it = foo();

// start up the generator
it.next(); // { value: 1, done: false }

// answer first question
it.next("foo"); // { value: 2, done: false }

// answer second question
it.next("bar"); // { value: 3, done: false }

// answer third question
it.next("baz"); // "foo" "bar" "baz"
 // { value: undefined, done: true }

You can think of a generator as a producer of values, in which case
each iteration is simply producing a value to be consumed.

But in a more general sense, perhaps it’s appropriate to think of gen‐
erators as controlled, progressive code execution, much like the
tasks queue example from the earlier section “Custom Iterators” on
page 93.

That perspective is exactly the motivation for
how we’ll revisit generators in Chapter 4. Specif‐
ically, there’s no reason that next(..) has to be
called right away after the previous next(..)
finishes. While the generator’s inner execution
context is paused, the rest of the program con‐
tinues unblocked, including the ability for asyn‐
chronous actions to control when the generator
is resumed.

Early Completion
As we covered earlier in this chapter, the iterator attached to a gen‐
erator supports the optional return(..) and throw(..) methods.
Both of them have the effect of aborting a paused generator immedi‐
ately.

Consider:

function *foo() {
 yield 1;
 yield 2;
 yield 3;
}

108 | Chapter 3: Organization

var it = foo();

it.next(); // { value: 1, done: false }

it.return(42); // { value: 42, done: true }

it.next(); // { value: undefined, done: true }

return(x) is kind of like forcing a return x to be processed at
exactly that moment, such that you get the specified value right
back. Once a generator is completed, either normally or early as
shown, it no longer processes any code or returns any values.

In addition to return(..) being callable manually, it’s also called
automatically at the end of iteration by any of the ES6 constructs
that consume iterators, such as the for..of loop and the ... spread
operator.

The purpose of this capability is to notify the generator if the con‐
trolling code is no longer going to iterate over it anymore, so that it
can perhaps do any cleanup tasks (freeing up resources, resetting
status, etc.). Identical to a normal function cleanup pattern, the
main way to accomplish this is to use a finally clause:

function *foo() {
 try {
 yield 1;
 yield 2;
 yield 3;
 }
 finally {
 console.log("cleanup!");
 }
}

for (var v of foo()) {
 console.log(v);
}
// 1 2 3
// cleanup!

var it = foo();

it.next(); // { value: 1, done: false }
it.return(42); // cleanup!
 // { value: 42, done: true }

Generators | 109

Do not put a yield statement inside the finally
clause! It’s valid and legal, but it’s a really terrible
idea. It acts in a sense as deferring the comple‐
tion of the return(..) call you made, as any
yield .. expressions in the finally clause are
respected to pause and send messages; you don’t
immediately get a completed generator as
expected. There’s basically no good reason to opt
in to that crazy bad part, so avoid doing so!

In addition to the previous snippet showing how return(..) aborts
the generator while still triggering the finally clause, it also dem‐
onstrates that a generator produces a whole new iterator each time
it’s called. In fact, you can use multiple iterators attached to the same
generator concurrently:

function *foo() {
 yield 1;
 yield 2;
 yield 3;
}

var it1 = foo();
it1.next(); // { value: 1, done: false }
it1.next(); // { value: 2, done: false }

var it2 = foo();
it2.next(); // { value: 1, done: false }

it1.next(); // { value: 3, done: false }

it2.next(); // { value: 2, done: false }
it2.next(); // { value: 3, done: false }

it2.next(); // { value: undefined, done: true }
it1.next(); // { value: undefined, done: true }

Early Abort

Instead of calling return(..), you can call throw(..). Just like
return(x) is essentially injecting a return x into the generator at its
current pause point, calling throw(x) is essentially like injecting a
throw x at the pause point.

Other than the exception behavior (we cover what that means to try
clauses in the next section), throw(..) produces the same sort of

110 | Chapter 3: Organization

early completion that aborts the generator’s run at its current pause
point. For example:

function *foo() {
 yield 1;
 yield 2;
 yield 3;
}

var it = foo();

it.next(); // { value: 1, done: false }

try {
 it.throw("Oops!");
}
catch (err) {
 console.log(err); // Exception: Oops!
}

it.next(); // { value: undefined, done: true }

Because throw(..) basically injects a throw .. in replacement of
the yield 1 line of the generator, and nothing handles this excep‐
tion, it immediately propagates back out to the calling code, which
handles it with a try..catch.

Unlike return(..), the iterator’s throw(..) method is never called
automatically.

Of course, though not shown in the previous snippet, if a
try..finally clause was waiting inside the generator when you call
throw(..), the finally clause would be given a chance to complete
before the exception is propagated back to the calling code.

Error Handling
As we’ve already hinted, error handling with generators can be
expressed with try..catch, which works in both inbound and out‐
bound directions:

function *foo() {
 try {
 yield 1;
 }
 catch (err) {
 console.log(err);
 }

Generators | 111

 yield 2;

 throw "Hello!";
}

var it = foo();

it.next(); // { value: 1, done: false }

try {
 it.throw("Hi!"); // Hi!
 // { value: 2, done: false }
 it.next();

 console.log("never gets here");
}
catch (err) {
 console.log(err); // Hello!
}

Errors can also propagate in both directions through yield * dele‐
gation:

function *foo() {
 try {
 yield 1;
 }
 catch (err) {
 console.log(err);
 }

 yield 2;

 throw "foo: e2";
}

function *bar() {
 try {
 yield *foo();

 console.log("never gets here");
 }
 catch (err) {
 console.log(err);
 }
}

var it = bar();

try {
 it.next(); // { value: 1, done: false }

112 | Chapter 3: Organization

 it.throw("e1"); // e1
 // { value: 2, done: false }

 it.next(); // foo: e2
 // { value: undefined, done: true }
}
catch (err) {
 console.log("never gets here");
}

it.next(); // { value: undefined, done: true }

When *foo() calls yield 1, the 1 value passes through *bar()
untouched, as we’ve already seen.

But what’s most interesting about this snippet is that when *foo()
calls throw "foo: e2", this error propagates to *bar() and is
immediately caught by *bar()’s try..catch block. The error doesn’t
pass through *bar() like the 1 value did.

*bar()’s catch then does a normal output of err ("foo: e2") and
then *bar() finishes normally, which is why the { value: unde
fined, done: true } iterator result comes back from it.next().

If *bar() didn’t have a try..catch around the yield *.. expres‐
sion, the error would of course propagate all the way out, and on the
way through it still would complete (abort) *bar().

Transpiling a Generator
Is it possible to represent a generator’s capabilities prior to ES6? It
turns out it is, and there are several great tools that do so, including
most notably Facebook’s Regenerator tool.

But just to better understand generators, let’s try our hand at man‐
ually converting. Basically, we’re going to create a simple closure-
based state machine.

We’ll keep our source generator really simple:

function *foo() {
 var x = yield 42;
 console.log(x);
}

To start, we’ll need a function called foo() that we can execute,
which needs to return an iterator:

Generators | 113

https://facebook.github.io/regenerator/

function foo() {
 // ..

 return {
 next: function(v) {
 // ..
 }

 // we'll skip `return(..)` and `throw(..)`
 };
}

Now, we need some inner variable to keep track of where we are in
the steps of our “generator"’s logic. We’ll call it state. There will be
three states: 0 initially, 1 while waiting to fulfill the yield expression,
and 2 once the generator is complete.

Each time next(..) is called, we need to process the next step, and
then increment state. For convenience, we’ll put each step into a
case clause of a switch statement, and we’ll hold that in an inner
function called nextState(..) that next(..) can call. Also, because
x is a variable across the overall scope of the “generator,” it needs to
live outside the nextState(..) function.

Here it is all together (obviously somewhat simplified, to keep the
conceptual illustration clearer):

function foo() {
 function nextState(v) {
 switch (state) {
 case 0:
 state++;

 // the `yield` expression
 return 42;
 case 1:
 state++;

 // `yield` expression fulfilled
 x = v;
 console.log(x);

 // the implicit `return`
 return undefined;

 // no need to handle state `2`
 }
 }

114 | Chapter 3: Organization

 var state = 0, x;

 return {
 next: function(v) {
 var ret = nextState(v);

 return { value: ret, done: (state == 2) };
 }

 // we'll skip `return(..)` and `throw(..)`
 };
}

And finally, let’s test our pre-ES6 “generator”:

var it = foo();

it.next(); // { value: 42, done: false }

it.next(10); // 10
 // { value: undefined, done: true }

Not bad, huh? Hopefully this exercise solidifies in your mind that
generators are actually just simple syntax for state machine logic.
That makes them widely applicable.

Generator Uses
So, now that we much more deeply understand how generators
work, what are they useful for?

We’ve seen two major patterns:

Producing a series of values
This usage can be simple (e.g., random strings or incremented
numbers), or it can represent more structured data access (e.g.,
iterating over rows returned from a database query).

Either way, we use the iterator to control a generator so that
some logic can be invoked for each call to next(..). Normal
iterators on data structures merely pull values without any con‐
trolling logic.

Queue of tasks to perform serially
This usage often represents flow control for the steps in an algo‐
rithm, where each step requires retrieval of data from some
external source. The fulfillment of each piece of data may be
immediate, or may be asynchronously delayed.

Generators | 115

From the perspective of the code inside the generator, the
details of sync or async at a yield point are entirely opaque.
Moreover, these details are intentionally abstracted away, such
as not to obscure the natural sequential expression of steps with
such implementation complications. Abstraction also means the
implementations can be swapped/refactored often without
touching the code in the generator at all.

When generators are viewed in light of these uses, they become a lot
more than just a different or nicer syntax for a manual state
machine. They are a powerful abstraction tool for organizing and
controlling orderly production and consumption of data.

Modules
I don’t think it’s an exaggeration to suggest that the single most
important code organization pattern in all of JavaScript is, and
always has been, the module. For myself, and I think for a large
cross-section of the community, the module pattern drives the vast
majority of code.

The Old Way
The traditional module pattern is based on an outer function with
inner variables and functions, and a returned “public API” with
methods that have closure over the inner data and capabilities. It’s
often expressed like this:

function Hello(name) {
 function greeting() {
 console.log("Hello " + name + "!");
 }

 // public API
 return {
 greeting: greeting
 };
}

var me = Hello("Kyle");
me.greeting(); // Hello Kyle!

This Hello(..) module can produce multiple instances by being
called subsequent times. Sometimes, a module is only called for as a
singleton (i.e., it just needs one instance), in which case a slight var‐
iation on the previous snippet, using an IIFE, is common:

116 | Chapter 3: Organization

var me = (function Hello(name){
 function greeting() {
 console.log("Hello " + name + "!");
 }

 // public API
 return {
 greeting: greeting
 };
})("Kyle");

me.greeting(); // Hello Kyle!

This pattern is tried and tested. It’s also flexible enough to have a
wide assortment of variations for a number of different scenarios.

One of the most common is the Asynchronous Module Definition
(AMD), and another is the Universal Module Definition (UMD).
We won’t cover the particulars of these patterns and techniques
here, but they’re explained extensively in many places online.

Moving Forward
As of ES6, we no longer need to rely on the enclosing function and
closure to provide us with module support. ES6 modules have first
class syntactic and functional support.

Before we get into the specific syntax, it’s important to understand
some fairly significant conceptual differences with ES6 modules
compared to how you may have dealt with modules in the past:

• ES6 uses file-based modules, meaning one module per file. At
this time, there is no standardized way of combining multiple
modules into a single file.
That means that if you are going to load ES6 modules directly
into a browser web application, you will be loading them indi‐
vidually, not as a large bundle in a single file as has been com‐
mon in performance optimization efforts.
It’s expected that the contemporaneous advent of HTTP/2 will
significantly mitigate any such performance concerns, as it
operates on a persistent socket connection and thus can very
efficiently load many smaller files in parallel and interleaved
with one another.

Modules | 117

• The API of an ES6 module is static. That is, you define statically
what all the top-level exports are on your module’s public API,
and those cannot be amended later.
Some uses are accustomed to being able to provide dynamic
API definitions, where methods can be added/removed/
replaced in response to runtime conditions. Either these uses
will have to change to fit with ES6 static APIs, or they will have
to restrain the dynamic changes to properties/methods of a
second-level object.

• ES6 modules are singletons. That is, there’s only one instance of
the module, which maintains its state. Every time you import
that module into another module, you get a reference to the one
centralized instance. If you want to be able to produce multiple
module instances, your module will need to provide some sort
of factory to do it.

• The properties and methods you expose on a module’s public
API are not just normal assignments of values or references.
They are actual bindings (almost like pointers) to the identifiers
in your inner module definition.
In pre-ES6 modules, if you put a property on your public API
that holds a primitive value like a number or string, that prop‐
erty assignment was by value-copy, and any internal update of a
corresponding variable would be separate and not affect the
public copy on the API object.
With ES6, exporting a local private variable, even if it currently
holds a primitive string/number/etc., exports a binding to the
variable. If the module changes the variable’s value, the external
import binding now resolves to that new value.

• Importing a module is the same thing as statically requesting it
to load (if it hasn’t already). If you’re in a browser, that implies a
blocking load over the network. If you’re on a server (i.e.,
Node.js), it’s a blocking load from the filesystem.
However, don’t panic about the performance implications.
Because ES6 modules have static definitions, the import
requirements can be statically scanned, and loads will happen
preemptively, even before you’ve used the module.
ES6 doesn’t actually specify or handle the mechanics of how
these load requests work. There’s a separate notion of a Module
Loader, where each hosting environment (browser, Node.js,

118 | Chapter 3: Organization

etc.) provides a default Loader appropriate to the environment.
The importing of a module uses a string value to represent
where to get the module (URL, file path, etc.), but this value is
opaque in your program and only meaningful to the Loader
itself.
You can define your own custom Loader if you want more fine-
grained control than the default Loader affords—which is basi‐
cally none, as it’s totally hidden from your program’s code.

As you can see, ES6 modules will serve the overall use case of organ‐
izing code with encapsulation, controlling public APIs, and refer‐
encing dependency imports. But they have a very particular way of
doing so, and that may or may not fit very closely with how you’ve
already been doing modules for years.

CommonJS
There’s a similar, but not fully compatible, module syntax called
CommonJS, which is familiar to those in the Node.js ecosystem.

For lack of a more tactful way to say this, in the long run, ES6 mod‐
ules essentially are bound to supercede all previous formats and
standards for modules, even CommonJS, as they are built on syntac‐
tic support in the language. This will, in time, inevitably win out as
the superior approach, if for no other reason than ubiquity.

We face a fairly long road to get to that point, though. There are lit‐
erally hundreds of thousands of CommonJS style modules in the
server-side JavaScript world, and 10 times that many modules of
varying format standards (UMD, AMD, ad hoc) in the browser
world. It will take many years for the transitions to make any signifi‐
cant progress.

In the interim, module transpilers/converters will be an absolute
necessity. You might as well just get used to that new reality.
Whether you author in regular modules, AMD, UMD, CommonJS,
or ES6, these tools will have to parse and convert to a format that is
suitable for whatever environment your code will run in.

For Node.js, that probably means (for now) that the target is Com‐
monJS. For the browser, it’s probably UMD or AMD. Expect lots of
flux on this over the next few years as these tools mature and best
practices emerge.

Modules | 119

From here on out, my best advice on modules is this: whatever for‐
mat you’ve been religiously attached to with strong affinity, also
develop an appreciation for and understanding of ES6 modules,
such as they are, and let your other module tendencies fade. They
are the future of modules in JS, even if that reality is a bit of a ways
off.

The New Way
The two main new keywords that enable ES6 modules are import
and export. There’s lots of nuance to the syntax, so let’s take a
deeper look.

An important detail that’s easy to overlook: both
import and export must always appear in the
top-level scope of their respective usage. For
example, you cannot put either an import or
export inside an if conditional; they must
appear outside of all blocks and functions.

Exporting API Members

The export keyword is either put in front of a declaration, or used
as an operator (of sorts) with a special list of bindings to export.
Consider:

export function foo() {
 // ..
}

export var awesome = 42;

var bar = [1,2,3];
export { bar };

Another way of expressing the same exports:

function foo() {
 // ..
}

var awesome = 42;
var bar = [1,2,3];

export { foo, awesome, bar };

120 | Chapter 3: Organization

These are all called named exports, as you are in effect exporting the
name bindings of the variables/functions/etc.

Anything you don’t label with export stays private inside the scope
of the module. That is, although something like var bar = .. looks
like it’s declaring at the top-level global scope, the top-level scope is
actually the module itself; there is no global scope in modules.

Modules do still have access to window and all
the “globals” that hang off it, just not as lexical
top-level scope. However, you really should stay
away from the globals in your modules if at all
possible.

You can also “rename” (aka alias) a module member during named
export:

function foo() { .. }

export { foo as bar };

When this module is imported, only the bar member name is avail‐
able to import; foo stays hidden inside the module.

Module exports are not just normal assignments of values or refer‐
ences, as you’re accustomed to with the = assignment operator.
Actually, when you export something, you’re exporting a binding
(kinda like a pointer) to that thing (variable, etc.).

Within your module, if you change the value of a variable you
already exported a binding to, even if it’s already been imported (see
the next section), the imported binding will resolve to the current
(updated) value.

Consider:

var awesome = 42;
export { awesome };

// later
awesome = 100;

When this module is imported, regardless of whether that’s before or
after the awesome = 100 setting, once that assignment has hap‐
pened, the imported binding resolves to the 100 value, not 42.

Modules | 121

That’s because the binding is, in essence, a reference to, or a pointer
to, the awesome variable itself, rather than a copy of its value. This is
a mostly unprecedented concept for JS introduced with ES6 module
bindings.

Though you can clearly use export multiple times inside a module’s
definition, ES6 definitely prefers the approach that a module has a
single export, which is known as a default export. In the words of
some members of the TC39 committee, you’re “rewarded with sim‐
pler import syntax” if you follow that pattern, and conversely
“penalized” with more verbose syntax if you don’t.

A default export sets a particular exported binding to be the default
when importing the module. The name of the binding is literally
default. As you’ll see later, when importing module bindings you
can also rename them, as you commonly will with a default export.

There can only be one default per module definition. We’ll cover
import in the next section, and you’ll see how the import syntax is
more concise if the module has a default export.

There’s a subtle nuance to default export syntax that you should pay
close attention to. Compare these two snippets:

function foo(..) {
 // ..
}

export default foo;

And this one:

function foo(..) {
 // ..
}

export { foo as default };

In the first snippet, you are exporting a binding to the function
expression value at that moment, not to the identifier foo. In other
words, export default .. takes an expression. If you later assign
foo to a different value inside your module, the module import still
reveals the function originally exported, not the new value.

122 | Chapter 3: Organization

By the way, the first snippet could also have been written as:

export default function foo(..) {
 // ..
}

Although the function foo.. part here is tech‐
nically a function expression, for the purposes of
the internal scope of the module, it’s treated like
a function declaration, in that the foo name is
bound in the module’s top-level scope (often
called “hoisting”). The same is true for export
default class Foo... However, while you can
do export var foo = .., you currently cannot
do export default var foo = .. (or let or
const), in a frustrating case of inconsistency. At
the time of this writing, there’s already discus‐
sion of adding that capability in soon, post-ES6,
for consistency’s sake.

Recall the second snippet again:

function foo(..) {
 // ..
}

export { foo as default };

In this version of the module export, the default export binding is
actually to the foo identifier rather than its value, so you get the pre‐
viously described binding behavior (i.e., if you later change foo’s
value, the value seen on the import side will also be updated).

Be very careful of this subtle gotcha in default export syntax, espe‐
cially if your logic calls for export values to be updated. If you never
plan to update a default export’s value, export default .. is fine. If
you do plan to update the value, you must use export { .. as
default }. Either way, make sure to comment your code to explain
your intent!

Because there can only be one default per module, you may be
tempted to design your module with one default export of an object
with all your API methods on it, such as:

Modules | 123

export default {
 foo() { .. },
 bar() { .. },
 ..
};

That pattern seems to map closely to how a lot of developers have
already structured their pre-ES6 modules, so it seems like a natural
approach. Unfortunately, it has some downsides and is officially dis‐
couraged.

In particular, the JS engine cannot statically analyze the contents of a
plain object, which means it cannot do some optimizations for static
import performance. The advantage of having each member indi‐
vidually and explicitly exported is that the engine can do the static
analysis and optimization.

If your API has more than one member already, it seems like these
principles—one default export per module, and all API members as
named exports—are in conflict, doesn’t it? But you can have a single
default export as well as other named exports; they are not mutually
exclusive.

So, instead of this (discouraged) pattern:

export default function foo() { .. }

foo.bar = function() { .. };
foo.baz = function() { .. };

You can do:

export default function foo() { .. }

export function bar() { .. }
export function baz() { .. }

In this previous snippet, I used the name foo for
the function that default labels. That foo name,
however, is ignored for the purposes of export—
default is actually the exported name. When
you import this default binding, you can give it
whatever name you want, as you’ll see in the
next section.

Alternatively, some will prefer:

124 | Chapter 3: Organization

function foo() { .. }
function bar() { .. }
function baz() { .. }

export { foo as default, bar, baz, .. };

The effects of mixing default and named exports will be more clear
when we cover import shortly. But essentially it means that the most
concise default import form would only retrieve the foo() function.
The user could additionally manually list bar and baz as named
imports, if they want them.

You can probably imagine how tedious that’s going to be for con‐
sumers of your module if you have lots of named export bindings.
There is a wildcard import form where you import all of a module’s
exports within a single namespace object, but there’s no way to wild‐
card import to top-level bindings.

Again, the ES6 module mechanism is intentionally designed to dis‐
courage modules with lots of exports; relatively speaking, it’s desired
that such approaches be a little more difficult, as a sort of social
engineering to encourage simple module design in favor of large/
complex module design.

I would probably recommend that you avoid mixing default export
with named exports, especially if you have a large API and refactor‐
ing to separate modules isn’t practical or desired. In that case, just
use all named exports, and document that consumers of your mod‐
ule should probably use the import * as .. (namespace import,
discussed in the next section) approach to bring the whole API in at
once on a single namespace.

We mentioned this earlier, but let’s come back to it in more detail.
Other than the export default ... form that exports an expres‐
sion value binding, all other export forms are exporting bindings to
local identifiers. For those bindings, if you change the value of a
variable inside a module after exporting, the external imported
binding will access the updated value:

var foo = 42;
export { foo as default };

export var bar = "hello world";

foo = 10;
bar = "cool";

Modules | 125

When you import this module, the default and bar exports will be
bound to the local variables foo and bar, meaning they will reveal
the updated 10 and "cool" values. The values at time of export are
irrelevant. The values at time of import are irrelevant. The bindings
are live links, so all that matters is what the current value is when
you access the binding.

Two-way bindings are not allowed. If you
import a foo from a module, and try to change
the value of your imported foo variable, an error
will be thrown! We’ll revisit that in the next
section.

You can also re-export another module’s exports, such as:

export { foo, bar } from "baz";
export { foo as FOO, bar as BAR } from "baz";
export * from "baz";

Those forms are similar to just first importing from the "baz" mod‐
ule then listing its members explicitly for export from your module.
However, in these forms, the members of the "baz" module are
never imported to your module’s local scope; they sort of pass
through untouched.

Importing API Members

To import a module, unsurprisingly you use the import statement.
Just as export has several nuanced variations, so does import, so
spend plenty of time considering the following issues and experi‐
menting with your options.

If you want to import certain specific named members of a module’s
API into your top-level scope, you use this syntax:

import { foo, bar, baz } from "foo";

The { .. } syntax here may look like an object
literal, or even an object destructuring syntax.
However, its form is special just for modules, so
be careful not to confuse it with other { .. }
patterns elsewhere.

126 | Chapter 3: Organization

The "foo" string is called a module specifier. Because the whole goal
is statically analyzable syntax, the module specifier must be a string
literal; it cannot be a variable holding the string value.

From the perspective of your ES6 code and the JS engine itself, the
contents of this string literal are completely opaque and meaning‐
less. The module loader will interpret this string as an instruction of
where to find the desired module, either as a URL path or a local
filesystem path.

The foo, bar, and baz identifiers listed must match named exports
on the module’s API (static analysis and error assertion apply). They
are bound as top-level identifiers in your current scope:

import { foo } from "foo";

foo();

You can rename the bound identifiers imported, as:

import { foo as theFooFunc } from "foo";

theFooFunc();

If the module has just a default export that you want to import and
bind to an identifier, you can opt to skip the { .. } surrounding
syntax for that binding. The import in this preferred case gets the
nicest and most concise of the import syntax forms:

import foo from "foo";

// or:
import { default as foo } from "foo";

As explained in the previous section, the
default keyword in a module’s export specifies
a named export where the name is actually
default, as is illustrated by the second more
verbose syntax option. The renaming from
default to, in this case, foo, is explicit in the lat‐
ter syntax and is identical yet implicit in the for‐
mer syntax.

You can also import a default export along with other named
exports, if the module has such a definition. Recall this module defi‐
nition from earlier:

Modules | 127

export default function foo() { .. }

export function bar() { .. }
export function baz() { .. }

To import that module’s default export and its two named exports:

import FOOFN, { bar, baz as BAZ } from "foo";

FOOFN();
bar();
BAZ();

The strongly suggested approach from ES6’s module philosophy is
that you only import the specific bindings from a module that you
need. If a module provides 10 API methods, but you only need two
of them, some believe it wasteful to bring in the entire set of API
bindings.

One benefit, besides code being more explicit, is that narrow
imports make static analysis and error detection (accidentally using
the wrong binding name, for instance) more robust.

Of course, that’s just the standard position influenced by ES6 design
philosophy; there’s nothing that requires adherence to that
approach.

Many developers would be quick to point out that such approaches
can be more tedious, requiring you to regularly revisit and update
your import statement(s) each time you realize you need something
else from a module. The trade-off is in exchange for convenience.

In that light, the preference might be to import everything from the
module into a single namespace, rather than importing individual
members, each directly into the scope. Fortunately, the import state‐
ment has a syntax variation that can support this style of module
consumption, called namespace import.

Consider a "foo" module exported as:

export function bar() { .. }
export var x = 42;
export function baz() { .. }

You can import that entire API to a single module namespace bind‐
ing:

import * as foo from "foo";

foo.bar();

128 | Chapter 3: Organization

foo.x; // 42
foo.baz();

The * as .. clause requires the * wildcard. In
other words, you cannot do something like
import { bar, x } as foo from "foo" to
bring in only part of the API but still bind to the
foo namespace. I would have liked something
like that, but for ES6 it’s all or nothing with the
namespace import.

If the module you’re importing with * as .. has a default export, it
is named default in the namespace specified. You can additionally
name the default import outside of the namespace binding, as a top-
level identifier. Consider a "world" module exported as:

export default function foo() { .. }
export function bar() { .. }
export function baz() { .. }

And this import:

import foofn, * as hello from "world";

foofn();
hello.default();
hello.bar();
hello.baz();

While this syntax is valid, it can be rather confusing that one
method of the module (the default export) is bound at the top-level
of your scope, whereas the rest of the named exports (and one called
default) are bound as properties on a differently named (hello)
identifier namespace.

As I mentioned earlier, my suggestion would be to avoid designing
your module exports in this way, to reduce the chances that your
module’s users will suffer these strange quirks.

All imported bindings are immutable and/or read-only. Consider
the previous import; all of these subsequent assignment attempts
will throw TypeErrors:

import foofn, * as hello from "world";

foofn = 42; // (runtime) TypeError!
hello.default = 42; // (runtime) TypeError!

Modules | 129

hello.bar = 42; // (runtime) TypeError!
hello.baz = 42; // (runtime) TypeError!

Recall earlier in “Exporting API Members” on page 120 that we
talked about how the bar and baz bindings are bound to the actual
identifiers inside the "world" module. That means if the module
changes those values, hello.bar and hello.baz now reference the
updated values.

But the immutable/read-only nature of your local imported bind‐
ings enforces that you cannot change them from the imported bind‐
ings, hence the TypeErrors. That’s pretty important, because
without those protections, your changes would end up affecting all
other consumers of the module (remember: singleton), which could
create some very surprising side effects!

Moreover, though a module can change its API members from the
inside, you should be very cautious of intentionally designing your
modules in that fashion. ES6 modules are intended to be static, so
deviations from that principle should be rare and should be carefully
and verbosely documented.

There are module design philosophies where
you actually intend to let a consumer change the
value of a property on your API, or module
APIs designed to be “extended” by having other
“plug-ins” added to the API namespace. As we
just asserted, ES6 module APIs should be
thought of and designed as static and unchange‐
able, which strongly restricts and discourages
these alternative module design patterns. You
can get around these limitations by exporting a
plain object, which of course can then be
changed at will. But be careful and think twice
before going down that road.

Declarations that occur as a result of an import are “hoisted” (see
the Scope & Closures title of this series). Consider:

foo();

import { foo } from "foo";

foo() can run because not only did the static resolution of the
import .. statement figure out what foo is during compilation, but

130 | Chapter 3: Organization

it also “hoisted” the declaration to the top of the module’s scope,
thus making it available throughout the module.

Finally, the most basic form of the import looks like this:

import "foo";

This form does not actually import any of the module’s bindings
into your scope. It loads (if not already loaded), compiles (if not
already compiled), and evaluates (if not already run) the "foo"
module.

In general, that sort of import is probably not going to be terribly
useful. There may be niche cases where a module’s definition has
side effects (such as assigning things to the window/global object).
You could also envision using import "foo" as a sort of preload for
a module that may be needed later.

Circular Module Dependency
A imports B. B imports A. How does this actually work?

I’ll state off the bat that designing systems with intentional circular
dependency is generally something I try to avoid. That having been
said, I recognize there are reasons people do this and it can solve
some sticky design situations.

Let’s consider how ES6 handles this. First, module "A":

import bar from "B";

export default function foo(x) {
 if (x > 10) return bar(x - 1);
 return x * 2;
}

Now, module "B":

import foo from "A";

export default function bar(y) {
 if (y > 5) return foo(y / 2);
 return y * 3;
}

These two functions, foo(..) and bar(..), would work as standard
function declarations if they were in the same scope, because the
declarations are “hoisted” to the whole scope and thus available to
each other regardless of authoring order.

Modules | 131

With modules, you have declarations in entirely different scopes, so
ES6 has to do extra work to help make these circular references
work.

In a rough conceptual sense, this is how circular import dependen‐
cies are validated and resolved:

• If the "A" module is loaded first, the first step is to scan the file
and analyze all the exports, so it can register all those bindings
available for import. Then it processes the import .. from
"B", which signals that it needs to go fetch "B".

• Once the engine loads "B", it does the same analysis of its
export bindings. When it sees the import .. from "A", it
knows the API of "A" already, so it can verify the import is
valid. Now that it knows the "B" API, it can also validate the
import .. from "B" in the waiting "A" module.

In essence, the mutual imports, along with the static verification
that’s done to validate both import statements, virtually composes
the two separate module scopes (via the bindings), such that
foo(..) can call bar(..) and vice versa. This is symmetric to if they
had originally been declared in the same scope.

Now let’s try using the two modules together. First, we’ll try
foo(..):

import foo from "foo";
foo(25); // 11

Or we can try bar(..):

import bar from "bar";
bar(25); // 11.5

By the time either the foo(25) or bar(25) calls are executed, all the
analysis/compilation of all modules has completed. That means
foo(..) internally knows directly about bar(..) and bar(..) inter‐
nally knows directly about foo(..).

If all we need is to interact with foo(..), then we only need to
import the "foo" module. Likewise with bar(..) and the "bar"
module.

Of course, we can import and use both of them if we want to:

132 | Chapter 3: Organization

import foo from "foo";
import bar from "bar";

foo(25); // 11
bar(25); // 11.5

The static loading semantics of the import statement mean a "foo"
and "bar" that mutually depend on each other via import will
ensure that both are loaded, parsed, and compiled before either of
them runs. So their circular dependency is statically resolved and
this works as you’d expect.

Module Loading
We asserted at the beginning of “Modules” on page 116 that the
import statement uses a separate mechanism, provided by the host‐
ing environment (browser, Node.js, etc.), to actually resolve the
module specifier string into some useful instruction for finding and
loading the desired module. That mechanism is the system Module
Loader.

The default module loader provided by the environment will inter‐
pret a module specifier as a URL if in the browser, and (generally) as
a local filesystem path if on a server such as Node.js. The default
behavior is to assume the loaded file is authored in the ES6 standard
module format.

Moreover, you will be able to load a module into the browser via an
HTML tag, similar to how current script programs are loaded. At
the time of this writing, it’s not fully clear if this tag will be <script
type="module"> or <module>. ES6 doesn’t control that decision, but
discussions in the appropriate standards bodies are already well
along in parallel of ES6.

Whatever the tag looks like, you can be sure that under the covers it
will use the default loader (or a customized one you’ve prespecified,
as we’ll discuss in the next section).

Just like the tag you’ll use in markup, the module loader itself is not
specified by ES6. It is a separate, parallel standard controlled cur‐
rently by the WHATWG browser standards group.

At the time of this writing, the following discussions reflect an early
pass at the API design, and things are likely to change.

Modules | 133

http://whatwg.github.io/loader/

Loading Modules Outside of Modules
One use for interacting directly with the module loader is if a non-
module needs to load a module. Consider:

// normal script loaded in browser via `<script>`,
// `import` is illegal here

Reflect.Loader.import("foo") // returns a promise for `"foo"`
.then(function(foo){
 foo.bar();
});

The Reflect.Loader.import(..) utility imports the entire module
onto the named parameter (as a namespace), just like the import *
as foo .. namespace import we discussed earlier.

The Reflect.Loader.import(..) utility returns
a promise that is fulfilled once the module is
ready. To import multiple modules, you can
compose promises from multiple
Reflect.Loader.import(..) calls using
Promise.all([..]). For more information
about Promises, see “Promises” on page 147 in
Chapter 4.

You can also use Reflect.Loader.import(..) in a real module to
dynamically/conditionally load a module, where import itself would
not work. You might, for instance, choose to load a module contain‐
ing a polyfill for some ES7+ feature if a feature test reveals it’s not
defined by the current engine.

For performance reasons, you’ll want to avoid dynamic loading
whenever possible, as it hampers the ability of the JS engine to fire
off early fetches from its static analysis.

Customized Loading
Another use for directly interacting with the module loader is if you
want to customize its behavior through configuration or even rede‐
finition.

At the time of this writing, there’s a polyfill for the module loader
API being developed. While details are scarce and highly subject to
change, we can explore what possibilities may eventually land.

134 | Chapter 3: Organization

https://github.com/ModuleLoader/es6-module-loader
https://github.com/ModuleLoader/es6-module-loader

The Reflect.Loader.import(..) call may support a second argu‐
ment for specifying various options to customize the import/load
task. For example:

Reflect.Loader.import("foo", { address: "/path/to/foo.js" })
.then(function(foo){
 // ..
})

It’s also expected that a customization will be provided (through
some means) for hooking into the process of loading a module,
where a translation/transpilation could occur after load but before
the engine compiles the module.

For example, you could load something that’s not already an ES6-
compliant module format (e.g., CoffeeScript, TypeScript, Com‐
monJS, AMD). Your translation step could then convert it to an
ES6-compliant module for the engine to then process.

Classes
From nearly the beginning of JavaScript, syntax and development
patterns have all strived (read: struggled) to put on a facade of sup‐
porting class-oriented development. With things like new and
instanceof and a .constructor property, who couldn’t help but be
teased that JS had classes hidden somewhere inside its prototype
system?

Of course, JS “classes” aren’t nearly the same as classical classes. The
differences are well documented, so I won’t belabor that point any
further here.

To learn more about the patterns used in JS to
fake “classes,” and an alternative view of proto‐
types called “delegation,” see the second half of
the this & Object Prototypes title of this series.

class
Although JS’s prototype mechanism doesn’t work like traditional
classes, that doesn’t stop the strong tide of demand on the language
to extend the syntactic sugar so that expressing “classes” looks more
like real classes. Enter the ES6 class keyword and its associated
mechanism.

Classes | 135

This feature is the result of a highly contentious and drawn-out
debate, and represents a smaller subset compromise from several
strongly opposed views on how to approach JS classes. Most devel‐
opers who want full classes in JS will find parts of the new syntax
quite inviting, but will find important bits still missing. Don’t worry,
though. TC39 is already working on additional features to augment
classes in the post-ES6 timeframe.

At the heart of the new ES6 class mechanism is the class keyword,
which identifies a block where the contents define the members of a
function’s prototype. Consider:

class Foo {
 constructor(a,b) {
 this.x = a;
 this.y = b;
 }

 gimmeXY() {
 return this.x * this.y;
 }
}

Some things to note:

• class Foo implies creating a (special) function of the name Foo,
much like you did pre-ES6.

• constructor(..) identifies the signature of that Foo(..) func‐
tion, as well as its body contents.

• Class methods use the same “concise method” syntax available
to object literals, as discussed in Chapter 2. This also includes
the concise generator form as discussed earlier in this chapter,
as well as the ES5 getter/setter syntax. However, class methods
are non-enumerable whereas object methods are by default enu‐
merable.

• Unlike object literals, there are no commas separating members
in a class body! In fact, they’re not even allowed.

The class syntax definition in the previous snippet can be roughly
thought of as this pre-ES6 equivalent, which probably will look fairly
familiar to those who’ve done prototype-style coding before:

function Foo(a,b) {
 this.x = a;
 this.y = b;

136 | Chapter 3: Organization

}

Foo.prototype.gimmeXY = function() {
 return this.x * this.y;
}

In either the pre-ES6 form or the new ES6 class form, this “class”
can now be instantiated and used just as you’d expect:

var f = new Foo(5, 15);

f.x; // 5
f.y; // 15
f.gimmeXY(); // 75

Caution! Though class Foo seems much like function Foo(),
there are important differences:

• A Foo(..) call of class Foo must be made with new, as the pre-
ES6 option of Foo.call(obj) will not work.

• While function Foo is “hoisted” (see the Scope & Closures title
of this series), class Foo is not; the extends .. clause specifies
an expression that cannot be “hoisted.” So, you must declare a
class before you can instantiate it.

• class Foo in the top global scope creates a lexical Foo identifier
in that scope, but unlike function Foo does not create a global
object property of that name.

The established instanceof operator still works with ES6 classes,
because class just creates a constructor function of the same name.
However, ES6 introduces a way to customize how instanceof
works, using Symbol.hasInstance (see “Well-Known Symbols” on
page 203 in Chapter 7).

Another way of thinking about class, which I find more conve‐
nient, is as a macro that is used to automatically populate a proto
type object. Optionally, it also wires up the [[Prototype]]

relationship if using extends (see the next section).

An ES6 class isn’t really an entity itself, but a meta concept that
wraps around other concrete entities, such as functions and proper‐
ties, and ties them together.

Classes | 137

In addition to the declaration form, a class can
also be an expression, as in: var x = class Y
{ .. }. This is primarily useful for passing a
class definition (technically, the constructor
itself) as a function argument or assigning it to
an object property.

extends and super
ES6 classes also have syntactic sugar for establishing the [[Proto
type]] delegation link between two function prototypes—com‐
monly mislabeled “inheritance” or confusingly labeled “prototype
inheritance”—using the class-oriented familiar terminology
extends:

class Bar extends Foo {
 constructor(a,b,c) {
 super(a, b);
 this.z = c;
 }

 gimmeXYZ() {
 return super.gimmeXY() * this.z;
 }
}

var b = new Bar(5, 15, 25);

b.x; // 5
b.y; // 15
b.z; // 25
b.gimmeXYZ(); // 1875

A significant new addition is super, which is actually something not
directly possible pre-ES6 (without some unfortunate hack trade-
offs). In the constructor, super automatically refers to the “parent
constructor,” which in the previous example is Foo(..). In a
method, it refers to the “parent object,” such that you can then make
a property/method access off it, such as super.gimmeXY().

Bar extends Foo of course means to link the [[Prototype]] of
Bar.prototype to Foo.prototype. So, super in a method like gim
meXYZ() specifically means Foo.prototype, whereas super means
Foo when used in the Bar constructor.

138 | Chapter 3: Organization

super is not limited to class declarations. It
also works in object literals, in much the same
way we’re discussing here. See “Object super” on
page 47 in Chapter 2 for more information.

There Be super Dragons

It is not insignificant to note that super behaves differently depend‐
ing on where it appears. In fairness, most of the time, that won’t be a
problem. But surprises await if you deviate from a narrow norm.

There may be cases where in the constructor you would want to ref‐
erence the Foo.prototype, such as to directly access one of its prop‐
erties/methods. However, super in the constructor cannot be used
in that way; super.prototype will not work. super(..) means
roughly to call new Foo(..), but isn’t actually a usable reference to
Foo itself.

Symmetrically, you may want to reference the Foo(..) function
from inside a nonconstructor method. super.constructor will
point at Foo(..) the function, but beware that this function can only
be invoked with new. new super.constructor(..) would be valid,
but it wouldn’t be terribly useful in most cases, because you can’t
make that call use or reference the current this object context,
which is likely what you’d want.

Also, super looks like it might be driven by a function’s context just
like this—that is, that they’d both be dynamically bound. However,
super is not dynamic like this is. When a constructor or method
makes a super reference inside it at declaration time (in the class
body), that super is statically bound to that specific class hierarchy,
and cannot be overridden (at least in ES6).

What does that mean? It means that if you’re in the habit of taking a
method from one “class” and “borrowing” it for another class by
overriding its this, say with call(..) or apply(..), that may very
well create surprises if the method you’re borrowing has a super in
it. Consider this class hierarchy:

class ParentA {
 constructor() { this.id = "a"; }
 foo() { console.log("ParentA:", this.id); }
}

class ParentB {

Classes | 139

 constructor() { this.id = "b"; }
 foo() { console.log("ParentB:", this.id); }
}

class ChildA extends ParentA {
 foo() {
 super.foo();
 console.log("ChildA:", this.id);
 }
}

class ChildB extends ParentB {
 foo() {
 super.foo();
 console.log("ChildB:", this.id);
 }
}

var a = new ChildA();
a.foo(); // ParentA: a
 // ChildA: a
var b = new ChildB(); // ParentB: b
b.foo(); // ChildB: b

All seems fairly natural and expected in this previous snippet. How‐
ever, if you try to borrow b.foo() and use it in the context of a—by
virtue of dynamic this binding, such borrowing is quite common
and used in many different ways, including mixins most notably—
you may find this result an ugly surprise:

// borrow `b.foo()` to use in `a` context
b.foo.call(a); // ParentB: a
 // ChildB: a

As you can see, the this.id reference was dynamically rebound so
that : a is reported in both cases instead of : b. But b.foo()’s
super.foo() reference wasn’t dynamically rebound, so it still
reported ParentB instead of the expected ParentA.

Because b.foo() references super, it is statically bound to the
ChildB/ParentB hierarchy and cannot be used against the ChildA/
ParentA hierarchy. There is no ES6 solution to this limitation.

super seems to work intuitively if you have a static class hierarchy
with no cross-pollination. But in all fairness, one of the main bene‐
fits of doing this-aware coding is exactly that sort of flexibility. Sim‐
ply, class + super requires you to avoid such techniques.

140 | Chapter 3: Organization

The choice boils down to narrowing your object design to these
static hierarchies—class, extends, and super will be quite nice—or
dropping all attempts to “fake” classes and instead embrace dynamic
and flexible, classless objects and [[Prototype]] delegation (see the
this & Object Prototypes title of this series).

Subclass Constructor
Constructors are not required for classes or subclasses; a default
constructor is substituted in both cases if omitted. However, the
default substituted constructor is different for a direct class versus
an extended class.

Specifically, the default subclass constructor automatically calls the
parent constructor, and passes along any arguments. In other words,
you could think of the default subclass constructor sort of like this:

constructor(...args) {
 super(...args);
}

This is an important detail to note. Not all class languages have the
subclass constructor automatically call the parent constructor. C++
does, but Java does not. But more importantly, in pre-ES6 classes,
such automatic “parent constructor” calling does not happen. Be
careful when converting to the ES6 class if you’ve been relying on
such calls not happening.

Another perhaps surprising deviation/limitation of ES6 subclass
constructors: in a constructor of a subclass, you cannot access this
until super(..) has been called. The reason is nuanced and compli‐
cated, but it boils down to the fact that the parent constructor is
actually the one creating/initializing your instance’s this. Pre-ES6, it
works oppositely; the this object is created by the “subclass con‐
structor,” and then you call a “parent constructor” with the context
of the “subclass” this.

Let’s illustrate. This works pre-ES6:

function Foo() {
 this.a = 1;
}

function Bar() {
 this.b = 2;
 Foo.call(this);
}

Classes | 141

// `Bar` "extends" `Foo`
Bar.prototype = Object.create(Foo.prototype);

But this ES6 equivalent is not allowed:

class Foo {
 constructor() { this.a = 1; }
}

class Bar extends Foo {
 constructor() {
 this.b = 2; // not allowed before `super()`
 super(); // to fix swap these two statements
 }
}

In this case, the fix is simple. Just swap the two statements in the
subclass Bar constructor. However, if you’ve been relying pre-ES6 on
being able to skip calling the “parent constructor,” beware because
that won’t be allowed anymore.

extending Natives

One of the most heralded benefits to the new class and extend
design is the ability to (finally!) subclass the built-in natives, like
Array. Consider:

class MyCoolArray extends Array {
 first() { return this[0]; }
 last() { return this[this.length - 1]; }
}

var a = new MyCoolArray(1, 2, 3);

a.length; // 3
a; // [1,2,3]

a.first(); // 1
a.last(); // 3

Prior to ES6, a fake “subclass” of Array using manual object creation
and linking to Array.prototype only partially worked. It missed out
on the special behaviors of a real array, such as the automatically
updating length property. ES6 subclasses should fully work with
“inherited” and augmented behaviors as expected!

Another common pre-ES6 “subclass” limitation is with the Error
object, in creating custom error “subclasses.” When genuine Error

142 | Chapter 3: Organization

objects are created, they automatically capture special stack infor‐
mation, including the line number and file where the error is cre‐
ated. Pre-ES6 custom error “subclasses” have no such special
behavior, which severely limits their usefulness.

ES6 to the rescue:

class Oops extends Error {
 constructor(reason) {
 this.oops = reason;
 }
}

// later:
var ouch = new Oops("I messed up!");
throw ouch;

The ouch custom error object in this previous snippet will behave
like any other genuine error object, including capturing stack.
That’s a big improvement!

new.target
ES6 introduces a new concept called a meta property (see Chapter 7),
in the form of new.target.

If that looks strange, it is; pairing a keyword with a . and a property
name is definitely an out-of-the-ordinary pattern for JS.

new.target is a new “magical” value available in all functions,
though in normal functions it will always be undefined. In any con‐
structor, new.target always points at the constructor that new
actually directly invoked, even if the constructor is in a parent class
and was delegated to by a super(..) call from a child constructor.
Consider:

class Foo {
 constructor() {
 console.log("Foo: ", new.target.name);
 }
}

class Bar extends Foo {
 constructor() {
 super();
 console.log("Bar: ", new.target.name);
 }
 baz() {
 console.log("baz: ", new.target);

Classes | 143

 }
}

var a = new Foo();
// Foo: Foo

var b = new Bar();
// Foo: Bar <-- respects the `new` call-site
// Bar: Bar

b.baz();
// baz: undefined

The new.target meta property doesn’t have much purpose in class
constructors, except accessing a static property/method (see the next
section).

If new.target is undefined, you know the function was not called
with new. You can then force a new invocation if that’s necessary.

static
When a subclass Bar extends a parent class Foo, we already observed
that Bar.prototype is [[Prototype]]-linked to Foo.prototype. But
additionally, Bar() is [[Prototype]]-linked to Foo(). That part
may not have such an obvious reasoning.

However, it’s quite useful in the case where you declare static
methods (not just properties) for a class, as these are added directly
to that class’s function object, not to the function object’s prototype
object. Consider:

class Foo {
 static cool() { console.log("cool"); }
 wow() { console.log("wow"); }
}

class Bar extends Foo {
 static awesome() {
 super.cool();
 console.log("awesome");
 }
 neat() {
 super.wow();
 console.log("neat");
 }
}

Foo.cool(); // "cool"

144 | Chapter 3: Organization

Bar.cool(); // "cool"
Bar.awesome(); // "cool"
 // "awesome"

var b = new Bar();
b.neat(); // "wow"
 // "neat"

b.awesome; // undefined
b.cool; // undefined

Be careful not to get confused that static members are on the
class’s prototype chain. They’re actually on the dual/parallel chain
between the function constructors.

Symbol.species Constructor Getter

One place where static can be useful is in setting the Symbol.spe
cies getter (known internally in the specification as @@species) for
a derived (child) class. This capability allows a child class to signal to
a parent class what constructor should be used—when not intending
the child class’s constructor itself—if any parent class method needs
to vend a new instance.

For example, many methods on Array create and return a new
Array instance. If you define a derived class from Array, but you
want those methods to continue to vend actual Array instances
instead of from your derived class, this works:

class MyCoolArray extends Array {
 // force `species` to be parent constructor
 static get [Symbol.species]() { return Array; }
}

var a = new MyCoolArray(1, 2, 3),
 b = a.map(function(v){ return v * 2; });

b instanceof MyCoolArray; // false
b instanceof Array; // true

To illustrate how a parent class method can use a child’s species dec‐
laration somewhat like Array#map(..) is doing, consider:

class Foo {
 // defer `species` to derived constructor
 static get [Symbol.species]() { return this; }
 spawn() {
 return new this.constructor[Symbol.species]();
 }

Classes | 145

}

class Bar extends Foo {
 // force `species` to be parent constructor
 static get [Symbol.species]() { return Foo; }
}

var a = new Foo();
var b = a.spawn();
b instanceof Foo; // true

var x = new Bar();
var y = x.spawn();
y instanceof Bar; // false
y instanceof Foo; // true

The parent class Symbol.species does return this to defer to any
derived class, as you’d normally expect. Bar then overrides to man‐
ually declare Foo to be used for such instance creation. Of course, a
derived class can still vend instances of itself using new this.con
structor(..).

Review
ES6 introduces several new features that aid in code organization:

• Iterators provide sequential access to data or operations. They
can be consumed by new language features like for..of
and

• Generators are locally pause/resume capable functions con‐
trolled by an iterator. They can be used to programmatically
(and interactively, through yield/next(..) message passing)
generate values to be consumed via iteration.

• Modules allow private encapsulation of implementation details
with a publicly exported API. Module definitions are file-based,
singleton instances, and statically resolved at compile time.

• Classes provide cleaner syntax around prototype-based coding.
The addition of super also solves tricky issues with relative ref‐
erences in the [[Prototype]] chain.

These new tools should be your first stop when trying to improve
the architecture of your JS projects by embracing ES6.

146 | Chapter 3: Organization

CHAPTER 4

Async Flow Control

It’s no secret if you’ve written any significant amount of JavaScript
that asynchronous programming is a required skill. The primary
mechanism for managing asynchrony has been the function call‐
back.

However, ES6 adds a new feature that helps address significant
shortcomings in the callbacks-only approach to async: Promises. In
addition, we can revisit generators (from the previous chapter) and
see a pattern for combining the two that’s a major step forward in
async flow control programming in JavaScript.

Promises
Let’s clear up some misconceptions: Promises are not about replac‐
ing callbacks. Promises provide a trustable intermediary—that is,
between your calling code and the async code that will perform the
task—to manage callbacks.

Another way of thinking about a Promise is as an event listener,
upon which you can register to listen for an event that lets you know
when a task has completed. It’s an event that will only ever fire once,
but it can be thought of as an event nonetheless.

Promises can be chained together, which can sequence a series of
asychronously completing steps. Together with higher-level abstrac‐
tions like the all(..) method (in classic terms, a “gate”) and the
race(..) method (in classic terms, a “latch”), promise chains pro‐
vide an approximation of async flow control.

147

Yet another way of conceptualizing a Promise is that it’s a future
value, a time-independent container wrapped around a value. This
container can be reasoned about identically whether the underlying
value is final or not. Observing the resolution of a Promise extracts
this value once available. In other words, a Promise is said to be the
async version of a sync function’s return value.

A Promise can only have one of two possible resolution outcomes:
fulfilled or rejected, with an optional single value. If a Promise is ful‐
filled, the final value is called a fulfillment. If it’s rejected, the final
value is called a reason (as in, a “reason for rejection”). Promises can
only be resolved (fulfillment or rejection) once. Any further attempts
to fulfill or reject are simply ignored. Thus, once a Promise is
resolved, it’s an immutable value that cannot be changed.

Clearly, there are several different ways to think about what a
Promise is. No single perspective is fully sufficient, but each pro‐
vides a separate aspect of the whole. The big takeaway is that they
offer a significant improvement over callbacks-only async, namely
that they provide order, predictability, and trustability.

Making and Using Promises
To construct a promise instance, use the Promise(..) constructor:

var p = new Promise(function(resolve,reject){
 // ..
});

The two parameters provided to the Promise(..) constructor are
functions, and are generally named resolve(..) and reject(..),
respectively. They are used as:

• If you call reject(..), the promise is rejected, and if any value
is passed to reject(..), it is set as the reason for rejection.

• If you call resolve(..) with no value, or any nonpromise value,
the promise is fulfilled.

• If you call resolve(..) and pass another promise, this promise
simply adopts the state—whether immediate or eventual—of
the passed promise (either fulfillment or rejection).

Here’s how you’d typically use a promise to refactor a callback-
reliant function call. If you start out with an ajax(..) utility that
expects to be able to call an error-first style callback:

148 | Chapter 4: Async Flow Control

function ajax(url,cb) {
 // make request, eventually call `cb(..)`
}

// ..

ajax("http://some.url.1", function handler(err,contents){
 if (err) {
 // handle ajax error
 }
 else {
 // handle `contents` success
 }
});

You can convert it to:

function ajax(url) {
 return new Promise(function pr(resolve,reject){
 // make request, eventually call
 // either `resolve(..)` or `reject(..)`
 });
}

// ..

ajax("http://some.url.1")
.then(
 function fulfilled(contents){
 // handle `contents` success
 },
 function rejected(reason){
 // handle ajax error reason
 }
);

Promises have a then(..) method that accepts one or two callback
functions. The first function (if present) is treated as the handler to
call if the promise is fulfilled successfully. The second function (if
present) is treated as the handler to call if the promise is rejected
explicitly, or if any error/exception is caught during resolution.

If one of the arguments is omitted or otherwise not a valid function
—typically you’ll use null instead—a default placeholder equivalent
is used. The default success callback passes its fulfillment value
along and the default error callback propagates its rejection reason
along.

The shorthand for calling then(null,handleRejection) is
catch(handleRejection).

Promises | 149

Both then(..) and catch(..) automatically construct and return
another promise instance, which is wired to receive the resolution
from whatever the return value is from the original promise’s fulfill‐
ment or rejection handler (whichever is actually called). Consider:

ajax("http://some.url.1")
.then(
 function fulfilled(contents){
 return contents.toUpperCase();
 },
 function rejected(reason){
 return "DEFAULT VALUE";
 }
)
.then(function fulfilled(data){
 // handle data from original promise's
 // handlers
});

In this snippet, we’re returning an immediate value from either ful
filled(..) or rejected(..), which then is received on the next
event turn in the second then(..)’s fulfilled(..). If we instead
return a new promise, that new promise is subsumed and adopted
as the resolution:

ajax("http://some.url.1")
.then(
 function fulfilled(contents){
 return ajax(
 "http://some.url.2?v=" + contents
);
 },
 function rejected(reason){
 return ajax(
 "http://backup.url.3?err=" + reason
);
 }
)
.then(function fulfilled(contents){
 // `contents` comes from the subsequent
 // `ajax(..)` call, whichever it was
});

It’s important to note that an exception (or rejected promise) in the
first fulfilled(..) will not result in the first rejected(..) being
called, as that handler only responds to the resolution of the first
original promise. Instead, the second promise, which the second
then(..) is called against, receives that rejection.

150 | Chapter 4: Async Flow Control

In this previous snippet, we are not listening for that rejection,
which means it will be silently held onto for future observation. If
you never observe it by calling a then(..) or catch(..), then it will
go unhandled. Some browser developer consoles may detect these
unhandled rejections and report them, but this is not reliably guar‐
anteed; you should always observe promise rejections.

This was just a brief overview of Promise theory
and behavior. For a much more in-depth explo‐
ration, see Chapter 3 of the Async & Perfor‐
mance title of this series.

Thenables
Promises are genuine instances of the Promise(..) constructor.
However, there are promise-like objects called thenables that gener‐
ally can interoperate with the Promise mechanisms.

Any object (or function) with a then(..) function on it is assumed
to be a thenable. Any place where the Promise mechanisms can
accept and adopt the state of a genuine promise, they can also han‐
dle a thenable.

Thenables are basically a general label for any promise-like value
that may have been created by some other system than the actual
Promise(..) constructor. In that perspective, a thenable is generally
less trustable than a genuine Promise. Consider this misbehaving
thenable, for example:

var th = {
 then: function thener(fulfilled) {
 // call `fulfilled(..)` once every 100ms forever
 setInterval(fulfilled, 100);
 }
};

If you received that thenable and chained it with th.then(..), you’d
likely be surprised that your fulfillment handler is called repeatedly,
when normal Promises are supposed to only ever be resolved once.

Generally, if you’re receiving what purports to be a promise or then‐
able back from some other system, you shouldn’t just trust it blindly.
In the next section, we’ll see a utility included with ES6 Promises
that helps address this trust concern.

Promises | 151

But to further understand the perils of this issue, consider that any
object in any piece of code that’s ever been defined to have a method
on it called then(..) can be potentially confused as a thenable—if
used with Promises, of course—regardless of if that thing was ever
intended to even remotely be related to Promise-style async coding.

Prior to ES6, there was never any special reservation made on meth‐
ods called then(..), and as you can imagine there’s been at least a
few cases where that method name has been chosen prior to Prom‐
ises ever showing up on the radar screen. The most likely case of
mistaken thenable will be async libraries that use then(..) but
which are not strictly Promises-compliant—there are several out in
the wild.

The onus will be on you to guard against directly using values with
the Promise mechanism that would be incorrectly assumed to be a
thenable.

Promise API
The Promise API also provides some static methods for working
with Promises.

Promise.resolve(..) creates a promise resolved to the value
passed in. Let’s compare how it works to the more manual approach:

var p1 = Promise.resolve(42);

var p2 = new Promise(function pr(resolve){
 resolve(42);
});

p1 and p2 will have essentially identical behavior. The same goes for
resolving with a promise:

var theP = ajax(..);

var p1 = Promise.resolve(theP);

var p2 = new Promise(function pr(resolve){
 resolve(theP);
});

152 | Chapter 4: Async Flow Control

Promise.resolve(..) is the solution to the
thenable trust issue raised in the previous sec‐
tion. Any value that you are not already certain
is a trustable promise—even if it could be an
immediate value—can be normalized by passing
it to Promise.resolve(..). If the value is
already a recognizable promise or thenable, its
state/resolution will simply be adopted, insulat‐
ing you from misbehavior. If it’s instead an
immediate value, it will be “wrapped” in a genu‐
ine promise, thereby normalizing its behavior to
be async.

Promise.reject(..) creates an immediately rejected promise, the
same as its Promise(..) constructor counterpart:

var p1 = Promise.reject("Oops");

var p2 = new Promise(function pr(resolve,reject){
 reject("Oops");
});

While resolve(..) and Promise.resolve(..) can accept a
promise and adopt its state/resolution, reject(..) and
Promise.reject(..) do not differentiate what value they receive.
So, if you reject with a promise or thenable, the promise/thenable
itself will be set as the rejection reason, not its underlying value.

Promise.all([..]) accepts an array of one or more values (e.g.,
immediate values, promises, thenables). It returns a promise back
that will be fulfilled if all the values fulfill, or reject immediately once
the first of any of them rejects.

Starting with these values/promises:

var p1 = Promise.resolve(42);
var p2 = new Promise(function pr(resolve){
 setTimeout(function(){
 resolve(43);
 }, 100);
});
var v3 = 44;
var p4 = new Promise(function pr(resolve,reject){
 setTimeout(function(){
 reject("Oops");
 }, 10);
});

Promises | 153

Let’s consider how Promise.all([..]) works with combinations
of those values:

Promise.all([p1,p2,v3])
.then(function fulfilled(vals){
 console.log(vals); // [42,43,44]
});

Promise.all([p1,p2,v3,p4])
.then(
 function fulfilled(vals){
 // never gets here
 },
 function rejected(reason){
 console.log(reason); // Oops
 }
);

While Promise.all([..]) waits for all fulfillments (or the first
rejection), Promise.race([..]) waits only for either the first ful‐
fillment or rejection. Consider:

// NOTE: re-setup all test values to
// avoid timing issues misleading you!

Promise.race([p2,p1,v3])
.then(function fulfilled(val){
 console.log(val); // 42
});

Promise.race([p2,p4])
.then(
 function fulfilled(val){
 // never gets here
 },
 function rejected(reason){
 console.log(reason); // Oops
 }
);

While Promise.all([]) will fulfill right away
(with no values), Promise.race([]) will hang
forever. This is a strange inconsistency, and
speaks to the suggestion that you should never
use these methods with empty arrays.

154 | Chapter 4: Async Flow Control

Generators + Promises
It is possible to express a series of promises in a chain to represent
the async flow control of your program. Consider:

step1()
.then(
 step2,
 step2Failed
)
.then(
 function(msg) {
 return Promise.all([
 step3a(msg),
 step3b(msg),
 step3c(msg)
])
 }
)
.then(step4);

However, there’s a much better option for expressing async flow
control, and it will probably be much more preferable in terms of
coding style than long promise chains. We can use what we learned
in Chapter 3 about generators to express our async flow control.

The important pattern to recognize: a generator can yield a promise,
and that promise can then be wired to resume the generator with its
fulfillment value.

Consider the previous snippet’s async flow control expressed with a
generator:

function *main() {
 var ret = yield step1();

 try {
 ret = yield step2(ret);
 }
 catch (err) {
 ret = yield step2Failed(err);
 }

 ret = yield Promise.all([
 step3a(ret),
 step3b(ret),
 step3c(ret)
]);

Generators + Promises | 155

 yield step4(ret);
}

On the surface, this snippet may seem more verbose than the
promise chain equivalent in the earlier snippet. However, it offers a
much more attractive—and more importantly, a more understanda‐
ble and reason-able—synchronous-looking coding style (with =
assignment of “return” values, etc.) That’s especially true in that
try..catch error handling can be used across those hidden async
boundaries.

Why are we using Promises with the generator? It’s certainly possi‐
ble to do async generator coding without Promises.

Promises are a trustable system that uninverts the inversion of con‐
trol of normal callbacks or thunks (see the Async & Performance title
of this series). So, combining the trustability of Promises and the
synchronicity of code in generators effectively addresses all the
major deficiencies of callbacks. Also, utilities like
Promise.all([..]) are a nice, clean way to express concurrency
at a generator’s single yield step.

So how does this magic work? We’re going to need a runner that can
run our generator, receive a yielded promise, and wire it up to
resume the generator with either the fulfillment success value, or
throw an error into the generator with the rejection reason.

Many async-capable utilities/libraries have such a “runner”; for
example, Q.spawn(..) and my asynquence’s runner(..) plug-in.
But here’s a stand-alone runner to illustrate how the process works:

function run(gen) {
 var args = [].slice.call(arguments, 1), it;

 it = gen.apply(this, args);

 return Promise.resolve()
 .then(function handleNext(value){
 var next = it.next(value);

 return (function handleResult(next){
 if (next.done) {
 return next.value;
 }
 else {
 return Promise.resolve(next.value)
 .then(
 handleNext,

156 | Chapter 4: Async Flow Control

 function handleErr(err) {
 return Promise.resolve(
 it.throw(err)
)
 .then(handleResult);
 }
);
 }
 })(next);
 });
}

For a more prolifically commented version of
this utility, see the Async & Performance title of
this series. Also, the run utilities provided with
various async libraries are often more powerful/
capable than what we’ve shown here. For exam‐
ple, asynquence’s runner(..) can handle
yielded promises, sequences, thunks, and
immediate (nonpromise) values, giving you ulti‐
mate flexibility.

So now running *main() as listed in the earlier snippet is as easy as:

run(main)
.then(
 function fulfilled(){
 // `*main()` completed successfully
 },
 function rejected(reason){
 // Oops, something went wrong
 }
);

Essentially, anywhere that you have more than two asynchronous
steps of flow control logic in your program, you can and should use
a promise-yielding generator driven by a run utility to express the
flow control in a synchronous fashion. This will make for much eas‐
ier to understand and maintain code.

This yield-a-promise-resume-the-generator pattern is going to be so
common and so powerful, the next version of JavaScript is almost
certainly going to introduce a new function type that will do it auto‐
matically without needing the run utility. We’ll cover async func
tions (as they’re expected to be called) in Chapter 8.

Generators + Promises | 157

Review
As JavaScript continues to mature and grow in its widespread adop‐
tion, asynchronous programming is more and more of a central
concern. Callbacks are not fully sufficient for these tasks, and totally
fall down the more sophisticated the need.

Thankfully, ES6 adds Promises to address one of the major short‐
comings of callbacks: lack of trust in predictable behavior. Promises
represent the future completion value from a potentially async task,
normalizing behavior across sync and async boundaries.

But it’s the combination of Promises with generators that fully real‐
izes the benefits of rearranging our async flow control code to de-
emphasize and abstract away that ugly callback soup (aka “hell”).

Right now, we can manage these interactions with the aide of vari‐
ous async libraries’ runners, but JavaScript is eventually going to
support this interaction pattern with dedicated syntax alone!

158 | Chapter 4: Async Flow Control

CHAPTER 5

Collections

Structured collection and access to data is a critical component of
just about any JS program. From the beginning of the language up
to this point, the array and the object have been our primary mecha‐
nism for creating data structures. Of course, many higher-level data
structures have been built on top of these, as user-land libraries.

As of ES6, some of the most useful (and performance-optimizing!)
data structure abstractions have been added as native components of
the language.

We’ll start this chapter first by looking at TypedArrays, which were
technically contemporary to ES5 efforts several years ago, but only
standardized as companions to WebGL and not JavaScript itself. As
of ES6, these have been adopted directly by the language specifica‐
tion, which gives them first-class status.

Maps are like objects (key/value pairs), but instead of just a string
for the key, you can use any value—even another object or map! Sets
are similar to arrays (lists of values), but the values are unique; if you
add a duplicate, it’s ignored. There are also weak (in relation to
memory/garbage collection) counterparts: WeakMap and WeakSet.

TypedArrays
As we cover in the Types & Grammar title of this series, JS does have
a set of built-in types, like number and string. It’d be tempting to
look at a feature named “typed array” and assume it means an array
of a specific type of values, like an array of only strings.

159

However, typed arrays are really more about providing structured
access to binary data using array-like semantics (indexed access,
etc.). The “type” in the name refers to a “view” layered on type of the
bucket of bits, which is essentially a mapping of whether the bits
should be viewed as an array of 8-bit signed integers, 16-bit signed
integers, and so on.

How do you construct such a bit-bucket? It’s called a “buffer,” and
you construct it most directly with the ArrayBuffer(..) construc‐
tor:

var buf = new ArrayBuffer(32);
buf.byteLength; // 32

buf is now a binary buffer that is 32-bytes long (256-bits), that’s pre-
initialized to all 0s. A buffer by itself doesn’t really allow you any
interaction exception for checking its byteLength property.

Several web platform features use or return
array buffers, such as FileReader#readAsArray
Buffer(..), XMLHttpRequest#send(..), and
ImageData (canvas data).

But on top of this array buffer, you can then layer a “view,” which
comes in the form of a typed array. Consider:

var arr = new Uint16Array(buf);
arr.length; // 16

arr is a typed array of 16-bit unsigned integers mapped over the
256-bit buf buffer, meaning you get 16 elements.

Endianness
It’s very important to understand that the arr is mapped using the
endian-setting (big-endian or little-endian) of the platform the JS is
running on. This can be an issue if the binary data is created with
one endianness but interpreted on a platform with the opposite
endianness.

Endian means if the low-order byte (collection of 8-bits) of a multi-
byte number—such as the 16-bit unsigned ints we created in the ear‐
lier snippet—is on the right or the left of the number’s bytes.

160 | Chapter 5: Collections

For example, let’s imagine the base-10 number 3085, which takes 16-
bits to represent. If you have just one 16-bit number container, it’d
be represented in binary as 0000110000001101 (hexadecimal 0c0d)
regardless of endianness.

But if 3085 was represented with two 8-bit numbers, the endianness
would significantly affect its storage in memory:

• 0000110000001101 / 0c0d (big-endian)
• 0000110100001100 / 0d0c (little-endian)

If you received the bits of 3085 as 0000110100001100 from a little-
endian system, but you layered a view on top of it in a big-endian
system, you’d instead see value 3340 (base-10) and 0d0c (base-16).

Little-endian is the most common representation on the Web these
days, but there are definitely browsers where that’s not true. It’s
important that you understand the endianness of both the producer
and consumer of a chunk of binary data.

From MDN, here’s a quick way to test the endianness of your Java‐
Script:

var littleEndian = (function() {
 var buffer = new ArrayBuffer(2);
 new DataView(buffer).setInt16(0, 256, true);
 return new Int16Array(buffer)[0] === 256;
})();

littleEndian will be true or false; for most browsers, it should
return true. This test uses DataView(..), which allows more low-
level, fine-grained control over accessing (setting/getting) the bits
from the view you layer over the buffer. The third parameter of the
setInt16(..) method in the previous snippet is for telling the Data
View what endianness you’re wanting it to use for that operation.

TypedArrays | 161

Do not confuse endianness of underlying binary
storage in array buffers with how a given num‐
ber is represented when exposed in a JS pro‐
gram. For example, (3085).toString(2)

returns "110000001101", which with an
assumed leading four "0"s appears to be the big-
endian representation. In fact, this representa‐
tion is based on a single 16-bit view, not a view
of two 8-bit bytes. The DataView test above is
the best way to determine endianness for your JS
environment.

Multiple Views
A single buffer can have multiple views attached to it, such as:

var buf = new ArrayBuffer(2);

var view8 = new Uint8Array(buf);
var view16 = new Uint16Array(buf);

view16[0] = 3085;
view8[0]; // 13
view8[1]; // 12

view8[0].toString(16); // "d"
view8[1].toString(16); // "c"

// swap (as if endian!)
var tmp = view8[0];
view8[0] = view8[1];
view8[1] = tmp;

view16[0]; // 3340

The typed array constructors have multiple signature variations.
We’ve shown so far only passing them an existing buffer. However,
that form also takes two extra parameters: byteOffset and length.
In other words, you can start the typed array view at a location other
than 0 and you can make it span less than the full length of the
buffer.

If the buffer of binary data includes data in nonuniform size/loca‐
tion, this technique can be quite useful.

For example, consider a binary buffer that has a 2-byte number (aka
“word”) at the beginning, followed by two 1-byte numbers, followed

162 | Chapter 5: Collections

by a 32-bit floating-point number. Here’s how you can access that
data with multiple views on the same buffer, offsets, and lengths:

var first = new Uint16Array(buf, 0, 2)[0],
 second = new Uint8Array(buf, 2, 1)[0],
 third = new Uint8Array(buf, 3, 1)[0],
 fourth = new Float32Array(buf, 4, 4)[0];

Typed Array Constructors
In addition to the (buffer,[offset, [length]]) form examined
in the previous section, typed array constructors also support these
forms:

• [constructor\](length): Creates a new view over a new buffer
of length bytes

• [constructor\](typedArr): Creates a new view and buffer, and
copies the contents from the typedArr view

• [constructor\](obj): Creates a new view and buffer, and iterates
over the array-like or object obj to copy its contents

The following typed array constructors are available as of ES6:

• Int8Array (8-bit signed integers), Uint8Array (8-bit unsigned
integers)
— Uint8ClampedArray (8-bit unsigned integers, each value

clamped on setting to the 0-255 range)
• Int16Array (16-bit signed integers), Uint16Array (16-bit

unsigned integers)
• Int32Array (32-bit signed integers), Uint32Array (32-bit

unsigned integers)
• Float32Array (32-bit floating point, IEEE-754)
• Float64Array (64-bit floating point, IEEE-754)

Instances of typed array constructors are almost the same as regular
native arrays. Some differences include having a fixed length and the
values all being of the same “type.”

However, they share most of the same prototype methods. As such,
you likely will be able to use them as regular arrays without needing
to convert.

TypedArrays | 163

For example:

var a = new Int32Array(3);
a[0] = 10;
a[1] = 20;
a[2] = 30;

a.map(function(v){
 console.log(v);
});
// 10 20 30

a.join("-");
// "10-20-30"

You can’t use certain Array.prototype methods
with TypedArrays that don’t make sense, such as
the mutators (splice(..), push(..), etc.) and
concat(..).

Be aware that the elements in TypedArrays really are constrained to
the declared bit sizes. If you have a Uint8Array and try to assign
something larger than an 8-bit value into one of its elements, the
value wraps around so as to stay within the bit length.

This could cause problems if you were trying to, for instance, square
all the values in a TypedArray. Consider:

var a = new Uint8Array(3);
a[0] = 10;
a[1] = 20;
a[2] = 30;

var b = a.map(function(v){
 return v * v;
});

b; // [100, 144, 132]

The 20 and 30 values, when squared, resulted in bit overflow. To get
around such a limitation, you can use the TypedArray#from(..)
function:

var a = new Uint8Array(3);
a[0] = 10;
a[1] = 20;
a[2] = 30;

var b = Uint16Array.from(a, function(v){

164 | Chapter 5: Collections

 return v * v;
});

b; // [100, 400, 900]

See “Array.from(..) Static Function” on page 177 in Chapter 6 for
more information about the Array.from(..) that is shared with
TypedArrays. Specifically, “Mapping” on page 179 explains the map‐
ping function accepted as its second argument.

One interesting behavior to consider is that TypedArrays have a
sort(..) method much like regular arrays, but this one defaults to
numeric sort comparisons instead of coercing values to strings for
lexicographic comparison. For example:

var a = [10, 1, 2,];
a.sort(); // [1,10,2]

var b = new Uint8Array([10, 1, 2]);
b.sort(); // [1,2,10]

The TypedArray#sort(..) takes an optional compare function
argument just like Array#sort(..), which works in exactly the
same way.

Maps
If you have a lot of JS experience, you know that objects are the pri‐
mary mechanism for creating unordered key/value-pair data struc‐
tures, otherwise known as maps. However, the major drawback with
objects-as-maps is the inability to use a nonstring value as the key.

For example, consider:

var m = {};

var x = { id: 1 },
 y = { id: 2 };

m[x] = "foo";
m[y] = "bar";

m[x]; // "bar"
m[y]; // "bar"

What’s going on here? The two objects x and y both stringify to
"[object Object]", so only that one key is being set in m.

Maps | 165

Some have implemented fake maps by maintaining a parallel array
of non-string keys alongside an array of the values, such as:

var keys = [], vals = [];

var x = { id: 1 },
 y = { id: 2 };

keys.push(x);
vals.push("foo");

keys.push(y);
vals.push("bar");

keys[0] === x; // true
vals[0]; // "foo"

keys[1] === y; // true
vals[1]; // "bar"

Of course, you wouldn’t want to manage those parallel arrays your‐
self, so you could define a data structure with methods that auto‐
matically do the management under the covers. Besides having to do
that work yourself, the main drawback is that access is no longer
O(1) time-complexity, but instead is O(n).

But as of ES6, there’s no longer any need to do this! Just use Map(..):

var m = new Map();

var x = { id: 1 },
 y = { id: 2 };

m.set(x, "foo");
m.set(y, "bar");

m.get(x); // "foo"
m.get(y); // "bar"

The only drawback is that you can’t use the [] bracket access syn‐
tax for setting and retrieving values. But get(..) and set(..) work
perfectly suitably instead.

To delete an element from a map, don’t use the delete operator, but
instead use the delete(..) method:

m.set(x, "foo");
m.set(y, "bar");

m.delete(y);

166 | Chapter 5: Collections

You can clear the entire map’s contents with clear(). To get the
length of a map (i.e., the number of keys), use the size property
(not length):

m.set(x, "foo");
m.set(y, "bar");
m.size; // 2

m.clear();
m.size; // 0

The Map(..) constructor can also receive an iterable (see “Iterators”
on page 87 in Chapter 3), which must produce a list of arrays, where
the first item in each array is the key and the second item is the
value. This format for iteration is identical to that produced by the
entries() method, explained in the next section. That makes it easy
to make a copy of a map:

var m2 = new Map(m.entries());

// same as:
var m2 = new Map(m);

Because a map instance is an iterable, and its default iterator is the
same as entries(), the second shorter form is preferable.

Of course, you can just manually specify an entries list (array of key/
value arrays) in the Map(..) constructor form:

var x = { id: 1 },
 y = { id: 2 };

var m = new Map([
 [x, "foo"],
 [y, "bar"]
]);

m.get(x); // "foo"
m.get(y); // "bar"

Map Values
To get the list of values from a map, use values(..), which returns
an iterator. In Chapters 2 and 3, we covered various ways to process
an iterator sequentially (like an array), such as the ... spread opera‐
tor and the for..of loop. Also, “Creating Arrays and Subtypes” on
page 179 in Chapter 6 covers the Array.from(..) method in detail.
Consider:

Maps | 167

var m = new Map();

var x = { id: 1 },
 y = { id: 2 };

m.set(x, "foo");
m.set(y, "bar");

var vals = [...m.values()];

vals; // ["foo","bar"]
Array.from(m.values()); // ["foo","bar"]

As discussed in the previous section, you can iterate over a map’s
entries using entries() (or the default map iterator). Consider:

var m = new Map();

var x = { id: 1 },
 y = { id: 2 };

m.set(x, "foo");
m.set(y, "bar");

var vals = [...m.entries()];

vals[0][0] === x; // true
vals[0][1]; // "foo"

vals[1][0] === y; // true
vals[1][1]; // "bar"

Map Keys
To get the list of keys, use keys(), which returns an iterator over the
keys in the map:

var m = new Map();

var x = { id: 1 },
 y = { id: 2 };

m.set(x, "foo");
m.set(y, "bar");

var keys = [...m.keys()];

keys[0] === x; // true
keys[1] === y; // true

168 | Chapter 5: Collections

To determine if a map has a given key, use has(..):

var m = new Map();

var x = { id: 1 },
 y = { id: 2 };

m.set(x, "foo");

m.has(x); // true
m.has(y); // false

Maps essentially let you associate some extra piece of information
(the value) with an object (the key) without actually putting that
information on the object itself.

While you can use any kind of value as a key for a map, you typically
will use objects, as strings and other primitives are already eligible as
keys of normal objects. In other words, you’ll probably want to con‐
tinue to use normal objects for maps unless some or all of the keys
need to be objects, in which case map is more appropriate.

If you use an object as a map key and that object
is later discarded (all references unset) in
attempt to have garbage collection (GC) reclaim
its memory, the map itself will still retain its
entry. You will need to remove the entry from
the map for it to be GC-eligible. In the next sec‐
tion, we’ll see WeakMaps as a better option for
object keys and GC.

WeakMaps
WeakMaps are a variation on maps, which has most of the same
external behavior but differs underneath in how the memory alloca‐
tion (specifically its GC) works.

WeakMaps take (only) objects as keys. Those objects are held
weakly, which means if the object itself is GC’d, the entry in the
WeakMap is also removed. This isn’t observable behavior, though, as
the only way an object can be GC’d is if there’s no more references to
it, but once there are no more references to it—you have no object
reference to check if it exists in the WeakMap.

Otherwise, the API for WeakMap is similar, though more limited:

WeakMaps | 169

var m = new WeakMap();

var x = { id: 1 },
 y = { id: 2 };

m.set(x, "foo");

m.has(x); // true
m.has(y); // false

WeakMaps do not have a size property or clear() method, nor do
they expose any iterators over their keys, values, or entries. So even
if you unset the x reference, which will remove its entry from m upon
GC, there is no way to tell. You’ll just have to take JavaScript’s word
for it!

Just like Maps, WeakMaps let you soft-associate information with an
object. But they are particularly useful if the object is not one you
completely control, such as a DOM element. If the object you’re
using as a map key can be deleted and should be GC-eligible when it
is, then a WeakMap is a more appropriate option.

It’s important to note that a WeakMap only holds its keys weakly, not
its values. Consider:

var m = new WeakMap();

var x = { id: 1 },
 y = { id: 2 },
 z = { id: 3 },
 w = { id: 4 };

m.set(x, y);

x = null; // { id: 1 } is GC-eligible
y = null; // { id: 2 } is GC-eligible
 // only because { id: 1 } is

m.set(z, w);

w = null; // { id: 4 } is not GC-eligible

For this reason, WeakMaps are in my opinion better named “Weak‐
KeyMaps.”

Sets
A set is a collection of unique values (duplicates are ignored).

170 | Chapter 5: Collections

The API for a set is similar to map. The add(..) method takes the
place of the set(..) method (somewhat ironically), and there is no
get(..) method.

Consider:

var s = new Set();

var x = { id: 1 },
 y = { id: 2 };

s.add(x);
s.add(y);
s.add(x);

s.size; // 2

s.delete(y);
s.size; // 1

s.clear();
s.size; // 0

The Set(..) constructor form is similar to Map(..), in that it can
receive an iterable, like another set or simply an array of values.
However, unlike how Map(..) expects an entries list (array of key/
value arrays), Set(..) expects a values list (array of values):

var x = { id: 1 },
 y = { id: 2 };

var s = new Set([x,y]);

A set doesn’t need a get(..) because you don’t retrieve a value from
a set, but rather test if it is present or not, using has(..):

var s = new Set();

var x = { id: 1 },
 y = { id: 2 };

s.add(x);

s.has(x); // true
s.has(y); // false

Sets | 171

The comparison algorithm in has(..) is almost
identical to Object.is(..) (see Chapter 6),
except that -0 and 0 are treated as the same
rather than distinct.

Set Iterators
Sets have the same iterator methods as maps. Their behavior is dif‐
ferent for sets, but symmetric with the behavior of map iterators.
Consider:

var s = new Set();

var x = { id: 1 },
 y = { id: 2 };

s.add(x).add(y);

var keys = [...s.keys()],
 vals = [...s.values()],
 entries = [...s.entries()];

keys[0] === x;
keys[1] === y;

vals[0] === x;
vals[1] === y;

entries[0][0] === x;
entries[0][1] === x;
entries[1][0] === y;
entries[1][1] === y;

The keys() and values() iterators both yield a list of the unique
values in the set. The entries() iterator yields a list of entry arrays,
where both items of the array are the unique set value. The default
iterator for a set is its values() iterator.

The inherent uniqueness of a set is its most useful trait. For example:

var s = new Set([1,2,3,4,"1",2,4,"5"]),
 uniques = [...s];

uniques; // [1,2,3,4,"1","5"]

Set uniqueness does not allow coercion, so 1 and "1" are considered
distinct values.

172 | Chapter 5: Collections

WeakSets
Whereas a WeakMap holds its keys weakly (but its values strongly),
a WeakSet holds its values weakly (there aren’t really keys).

var s = new WeakSet();

var x = { id: 1 },
 y = { id: 2 };

s.add(x);
s.add(y);

x = null; // `x` is GC-eligible
y = null; // `y` is GC-eligible

WeakSet values must be objects, not primitive
values as is allowed with sets.

Review
ES6 defines a number of useful collections that make working with
data in structured ways more efficient and effective.

TypedArrays provide “view”s of binary data buffers that align with
various integer types, like 8-bit unsigned integers and 32-bit floats.
The array access to binary data makes operations much easier to
express and maintain, which enables you to more easily work with
complex data like video, audio, canvas data, and so on.

Maps are key-value pairs where the key can be an object instead of
just a string/primitive. Sets are unique lists of values (of any type).

WeakMaps are maps where the key (object) is weakly held, so that
GC is free to collect the entry if it’s the last reference to an object.
WeakSets are sets where the value is weakly held, again so that GC
can remove the entry if it’s the last reference to that object.

WeakSets | 173

CHAPTER 6

API Additions

From conversions of values to mathematic calculations, ES6 adds
many static properties and methods to various built-in natives and
objects to help with common tasks. In addition, instances of some of
the natives have new capabilities via various new prototype
methods.

Most of these features can be faithfully polyfil‐
led. We will not dive into such details here, but
check out “ES6 Shim” for standards-compliant
shims/polyfills.

Array
One of the most commonly extended features in JS by various user
libraries is the Array type. It should be no surprise that ES6 adds a
number of helpers to Array, both static and prototype (instance).

Array.of(..) Static Function
There’s a well-known gotcha with the Array(..) constructor, which
is that if there’s only one argument passed, and that argument is a
number, instead of making an array of one element with that num‐
ber value in it, it constructs an empty array with a length property
equal to the number. This action produces the unfortunate and
quirky “empty slots” behavior that’s reviled about JS arrays.

175

https://github.com/paulmillr/es6-shim/

Array.of(..) replaces Array(..) as the preferred function-form
constructor for arrays, because Array.of(..) does not have that
special single-number-argument case. Consider:

var a = Array(3);
a.length; // 3
a[0]; // undefined

var b = Array.of(3);
b.length; // 1
b[0]; // 3

var c = Array.of(1, 2, 3);
c.length; // 3
c; // [1,2,3]

Under what circumstances would you want to use Array.of(..)
instead of just creating an array with literal syntax, like c =

[1,2,3]? There’s two possible cases.

If you have a callback that’s supposed to wrap argument(s) passed to
it in an array, Array.of(..) fits the bill perfectly. That’s probably
not terribly common, but it may scratch an itch for you.

The other scenario is if you subclass Array (see “Classes” on page
135 in Chapter 3) and want to be able to create and initialize ele‐
ments in an instance of your subclass, such as:

class MyCoolArray extends Array {
 sum() {
 return this.reduce(function reducer(acc,curr){
 return acc + curr;
 }, 0);
 }
}

var x = new MyCoolArray(3);
x.length; // 3--oops!
x.sum(); // 0--oops!

var y = [3]; // Array, not MyCoolArray
y.length; // 1
y.sum(); // `sum` is not a function

var z = MyCoolArray.of(3);
z.length; // 1
z.sum(); // 3

You can’t just (easily) create a constructor for MyCoolArray that
overrides the behavior of the Array parent constructor, because that

176 | Chapter 6: API Additions

constructor is necessary to actually create a well-behaving array
value (initializing the this). The “inherited” static of(..) method
on the MyCoolArray subclass provides a nice solution.

Array.from(..) Static Function
An “array-like object” in JavaScript is an object that has a length
property on it, specifically with an integer value of zero or higher.

These values have been notoriously frustrating to work with in JS;
it’s been quite common to need to transform them into an actual
array, so that the various Array.prototype methods (map(..),
indexOf(..), etc.) are available to use with it. That process usually
looks like:

// array-like object
var arrLike = {
 length: 3,
 0: "foo",
 1: "bar"
};

var arr = Array.prototype.slice.call(arrLike);

Another common task where slice(..) is often used is in duplicat‐
ing a real array:

var arr2 = arr.slice();

In both cases, the new ES6 Array.from(..) method can be a more
understandable and graceful—if also less verbose—approach:

var arr = Array.from(arrLike);

var arrCopy = Array.from(arr);

Array.from(..) looks to see if the first argument is an iterable (see
“Iterators” on page 87 in Chapter 3), and if so, it uses the iterator to
produce values to “copy” into the returned array. Because real arrays
have an iterator for those values, that iterator is automatically used.

But if you pass an array-like object as the first argument to
Array.from(..), it behaves basically the same as slice() (no argu‐
ments!) or apply(..) does, which is that it simply loops over the
value, accessing numerically named properties from 0 up to what‐
ever the value of length is.

Array | 177

Consider:

var arrLike = {
 length: 4,
 2: "foo"
};

Array.from(arrLike);
// [undefined, undefined, "foo", undefined]

Because positions 0, 1, and 3 didn’t exist on arrLike, the result was
the undefined value for each of those slots.

You could produce a similar outcome like this:

var emptySlotsArr = [];
emptySlotsArr.length = 4;
emptySlotsArr[2] = "foo";

Array.from(emptySlotsArr);
// [undefined, undefined, "foo", undefined]

Avoiding Empty Slots
There’s a subtle but important difference in the previous snippet
between the emptySlotsArr and the result of the Array.from(..)
call. Array.from(..) never produces empty slots.

Prior to ES6, if you wanted to produce an array initialized to a cer‐
tain length with actual undefined values in each slot (no empty
slots!), you had to do extra work:

var a = Array(4);
// four empty slots!

var b = Array.apply(null, { length: 4 });
// four `undefined` values

But Array.from(..) now makes this easier:

var c = Array.from({ length: 4 });
// four `undefined` values

Using an empty slot array like a in the previous
snippets would work with some array functions,
but others ignore empty slots (like map(..),
etc.). You should never intentionally work with
empty slots, as it will almost certainly lead to
strange/unpredictable behavior in your pro‐
grams.

178 | Chapter 6: API Additions

Mapping

The Array.from(..) utility has another helpful trick up its sleeve.
The second argument, if provided, is a mapping callback (almost the
same as the regular Array#map(..) expects), which is called to map/
transform each value from the source to the returned target. Con‐
sider:

var arrLike = {
 length: 4,
 2: "foo"
};

Array.from(arrLike, function mapper(val,idx){
 if (typeof val == "string") {
 return val.toUpperCase();
 }
 else {
 return idx;
 }
});
// [0, 1, "FOO", 3]

As with other array methods that take callbacks,
Array.from(..) takes an optional third argu‐
ment that if set will specify the this binding for
the callback passed as the second argument.
Otherwise, this will be undefined.

See “TypedArrays” on page 159 in Chapter 5 for an example of using
Array.from(..) in translating values from an array of 8-bit values
to an array of 16-bit values.

Creating Arrays and Subtypes
In the last couple of sections, we’ve discussed Array.of(..) and
Array.from(..), both of which create a new array in a similar way
to a constructor. But what do they do in subclasses? Do they create
instances of the base Array or the derived subclass?

class MyCoolArray extends Array {
 ..
}

MyCoolArray.from([1, 2]) instanceof MyCoolArray; // true

Array.from(

Array | 179

 MyCoolArray.from([1, 2])
) instanceof MyCoolArray; // false

Both of(..) and from(..) use the constructor that they’re accessed
from to construct the array. So if you use the base Array.of(..)
you’ll get an Array instance, but if you use MyCoolArray.of(..),
you’ll get a MyCoolArray instance.

In “Classes” on page 135 in Chapter 3, we covered the @@species
setting that all the built-in classes (like Array) have defined, which is
used by any prototype methods if they create a new instance.
slice(..) is a great example:

var x = new MyCoolArray(1, 2, 3);

x.slice(1) instanceof MyCoolArray; // true

Generally, that default behavior will probably be desired, but as we
discussed in Chapter 3, you can override if you want:

class MyCoolArray extends Array {
 // force `species` to be parent constructor
 static get [Symbol.species]() { return Array; }
}

var x = new MyCoolArray(1, 2, 3);

x.slice(1) instanceof MyCoolArray; // false
x.slice(1) instanceof Array; // true

It’s important to note that the @@species setting is only used for the
prototype methods, like slice(..). It’s not used by of(..) and
from(..); they both just use the this binding (whatever constructor
is used to make the reference). Consider:

class MyCoolArray extends Array {
 // force `species` to be parent constructor
 static get [Symbol.species]() { return Array; }
}

var x = new MyCoolArray(1, 2, 3);

MyCoolArray.from(x) instanceof MyCoolArray; // true
MyCoolArray.of([2, 3]) instanceof MyCoolArray; // true

copyWithin(..) Prototype Method
Array#copyWithin(..) is a new mutator method available to all
arrays (including typed arrays; see Chapter 5). copyWithin(..)

180 | Chapter 6: API Additions

copies a portion of an array to another location in the same array,
overwriting whatever was there before.

The arguments are target (the index to copy to), start (the inclusive
index to start the copying from), and optionally end (the exclusive
index to stop copying). If any of the arguments are negative, they’re
taken to be relative from the end of the array.

Consider:

[1,2,3,4,5].copyWithin(3, 0); // [1,2,3,1,2]

[1,2,3,4,5].copyWithin(3, 0, 1); // [1,2,3,1,5]

[1,2,3,4,5].copyWithin(0, -2); // [4,5,3,4,5]

[1,2,3,4,5].copyWithin(0, -2, -1); // [4,2,3,4,5]

The copyWithin(..) method does not extend the array’s length, as
the first example in the previous snippet shows. Copying simply
stops when the end of the array is reached.

Contrary to what you might think, the copying doesn’t always go in
left-to-right (ascending index) order. It’s possible this would result
in repeatedly copying an already copied value if the from and target
ranges overlap, which is presumably not desired behavior.

So internally, the algorithm avoids this case by copying in reverse
order to avoid that gotcha. Consider:

[1,2,3,4,5].copyWithin(2, 1); // ???

If the algorithm was strictly moving left to right, then the 2 should
be copied to overwrite the 3, then that copied 2 should be copied to
overwrite 4, then that copied 2 should be copied to overwrite 5, and
you’d end up with [1,2,2,2,2].

Instead, the copying algorithm reverses direction and copies 4 to
overwrite 5, then copies 3 to overwrite 4, then copies 2 to overwrite
3, and the final result is [1,2,2,3,4]. That’s probably more “cor‐
rect” in terms of expectation, but it can be confusing if you’re only
thinking about the copying algorithm in a naive left-to-right
fashion.

Array | 181

fill(..) Prototype Method
Filling an existing array entirely (or partially) with a specified value
is natively supported as of ES6 with the Array#fill(..) method:

var a = Array(4).fill(undefined);
a;
// [undefined,undefined,undefined,undefined]

fill(..) optionally takes start and end parameters, which indicate
a subset portion of the array to fill, such as:

var a = [null, null, null, null].fill(42, 1, 3);

a; // [null,42,42,null]

find(..) Prototype Method
The most common way to search for a value in an array has gener‐
ally been the indexOf(..) method, which returns the index the
value is found at or -1 if not found:

var a = [1,2,3,4,5];

(a.indexOf(3) != -1); // true
(a.indexOf(7) != -1); // false

(a.indexOf("2") != -1); // false

The indexOf(..) comparison requires a strict === match, so a
search for "2" fails to find a value of 2, and vice versa. There’s no
way to override the matching algorithm for indexOf(..). It’s also
unfortunate/ungraceful to have to make the manual comparison to
the -1 value.

See the Types & Grammar title of this series for
an interesting (and controversially confusing)
technique to work around the -1 ugliness with
the ~ operator.

Since ES5, the most common workaround to have control over the
matching logic has been the some(..) method. It works by calling a
function callback for each element, until one of those calls returns a
true/truthy value, and then it stops. Because you get to define the
callback function, you have full control over how a match is made:

182 | Chapter 6: API Additions

var a = [1,2,3,4,5];

a.some(function matcher(v){
 return v == "2";
}); // true

a.some(function matcher(v){
 return v == 7;
}); // false

But the downside to this approach is that you only get the true/
false indicating if a suitably matched value was found, but not what
the actual matched value was.

ES6’s find(..) addresses this. It works basically the same as
some(..), except that once the callback returns a true/truthy value,
the actual array value is returned:

var a = [1,2,3,4,5];

a.find(function matcher(v){
 return v == "2";
}); // 2

a.find(function matcher(v){
 return v == 7; // undefined
});

Using a custom matcher(..) function also lets you match against
complex values like objects:

var points = [
 { x: 10, y: 20 },
 { x: 20, y: 30 },
 { x: 30, y: 40 },
 { x: 40, y: 50 },
 { x: 50, y: 60 }
];

points.find(function matcher(point) {
 return (
 point.x % 3 == 0 &&
 point.y % 4 == 0
);
}); // { x: 30, y: 40 }

Array | 183

As with other array methods that take callbacks,
find(..) takes an optional second argument
that if set will specify the this binding for the
callback passed as the first argument. Otherwise,
this will be undefined.

findIndex(..) Prototype Method
While the previous section illustrates how some(..) yields a boolean
result for a search of an array, and find(..) yields the matched
value itself from the array search, there’s also a need to find the posi‐
tional index of the matched value.

indexOf(..) does that, but there’s no control over its matching
logic; it always uses === strict equality. So ES6’s findIndex(..) is the
answer:

var points = [
 { x: 10, y: 20 },
 { x: 20, y: 30 },
 { x: 30, y: 40 },
 { x: 40, y: 50 },
 { x: 50, y: 60 }
];

points.findIndex(function matcher(point) {
 return (
 point.x % 3 == 0 &&
 point.y % 4 == 0
);
}); // 2

points.findIndex(function matcher(point) {
 return (
 point.x % 6 == 0 &&
 point.y % 7 == 0
);
}); // -1

Don’t use findIndex(..) != -1 (the way it’s always been done with
indexOf(..)) to get a boolean from the search, because some(..)
already yields the true/false you want. And don’t do a[a.findIn
dex(..)] to get the matched value, because that’s what find(..)
accomplishes. And finally, use indexOf(..) if you need the index of
a strict match, or findIndex(..) if you need the index of a more
customized match.

184 | Chapter 6: API Additions

As with other array methods that take callbacks,
find(..) takes an optional second argument
that if set will specify the this binding for the
callback passed as the first argument. Otherwise,
this will be undefined.

entries(), values(), keys() Prototype Methods
In Chapter 3, we illustrated how data structures can provide a pat‐
terned item-by-item enumeration of their values, via an iterator. We
then expounded on this approach in Chapter 5, as we explored how
the new ES6 collections (Map, Set, etc.) provide several methods for
producing different kinds of iterations.

Because it’s not new to ES6, Array might not be thought of tradi‐
tionally as a “collection,” but it is one in the sense that it provides
these same iterator methods: entries(), values(), and keys().
Consider:

var a = [1,2,3];

[...a.values()]; // [1,2,3]
[...a.keys()]; // [0,1,2]
[...a.entries()]; // [[0,1], [1,2], [2,3]]

[...a[Symbol.iterator]()]; // [1,2,3]

Just like with Set, the default Array iterator is the same as what val
ues() returns.

In “String Inspection Functions” on page 196, we illustrated how
Array.from(..) treats empty slots in an array as just being present
slots with undefined in them. That’s actually because under the cov‐
ers, the array iterators behave that way:

var a = [];
a.length = 3;
a[1] = 2;

[...a.values()]; // [undefined,2,undefined]
[...a.keys()]; // [0,1,2]
[...a.entries()]; // [[0,undefined], [1,2], [2,undefined]]

Array | 185

Object
A few additional static helpers have been added to Object. Tradi‐
tionally, functions of this sort have been seen as focused on the
behaviors/capabilities of object values.

However, starting with ES6, Object static functions will also be for
general-purpose global APIs of any sort that don’t already belong
more naturally in some other location (i.e., Array.from(..)).

Object.is(..) Static Function
The Object.is(..) static function makes value comparisons in an
even more strict fashion than the === comparison.

Object.is(..) invokes the underlying SameValue algorithm (ES6
spec, section 7.2.9). The SameValue algorithm is basically the same
as the === Strict Equality Comparison Algorithm (ES6 spec, section
7.2.13), with two important exceptions.

Consider:

var x = NaN, y = 0, z = -0;

x === x; // false
y === z; // true

Object.is(x, x); // true
Object.is(y, z); // false

You should continue to use === for strict equality comparisons;
Object.is(..) shouldn’t be thought of as a replacement for the
operator. However, in cases where you’re trying to strictly identify a
NaN or -0 value, Object.is(..) is now the preferred option.

ES6 also adds a Number.isNaN(..) utility (dis‐
cussed later in this chapter), which may be a
slightly more convenient test; you may prefer
Number.isNaN(x) over Object.is(x,NaN). You
can accurately test for -0 with a clumsy x == 0
&& 1 / x === -Infinity, but in this case
Object.is(x,-0) is much better.

186 | Chapter 6: API Additions

Object.getOwnPropertySymbols(..) Static Function
“Symbols” on page 80 in Chapter 2 discusses the new Symbol primi‐
tive value type in ES6.

Symbols are likely going to be mostly used as special (meta) proper‐
ties on objects. So the Object.getOwnPropertySymbols(..) utility
was introduced, which retrieves only the symbol properties directly
on an object:

var o = {
 foo: 42,
 [Symbol("bar")]: "hello world",
 baz: true
};

Object.getOwnPropertySymbols(o); // [Symbol(bar)]

Object.setPrototypeOf(..) Static Function
Also in Chapter 2, we mentioned the Object.setPrototypeOf(..)
utility, which (unsurprisingly) sets the [[Prototype]] of an object
for the purposes of behavior delegation (see the this & Object Proto‐
types title of this series). Consider:

var o1 = {
 foo() { console.log("foo"); }
};
var o2 = {
 // .. o2's definition ..
};

Object.setPrototypeOf(o2, o1);

// delegates to `o1.foo()`
o2.foo(); // foo

Alternatively:

var o1 = {
 foo() { console.log("foo"); }
};

var o2 = Object.setPrototypeOf({
 // .. o2's definition ..
}, o1);

// delegates to `o1.foo()`
o2.foo(); // foo

Object | 187

In both previous snippets, the relationship between o2 and o1
appears at the end of the o2 definition. More commonly, the rela‐
tionship between an o2 and o1 is specified at the top of the o2 defini‐
tion, as it is with classes, and also with __proto__ in object literals
(see “Setting [[Prototype]]” on page 45 in Chapter 2).

Setting a [[Prototype]] right after object cre‐
ation is reasonable, as shown. But changing it
much later is generally not a good idea and will
usually lead to more confusion than clarity.

Object.assign(..) Static Function
Many JavaScript libraries/frameworks provide utilities for copying/
mixing one object’s properties into another (e.g., jQuery’s
extend(..)). There are various nuanced differences between these
different utilities, such as whether a property with value undefined
is ignored or not.

ES6 adds Object.assign(..), which is a simplified version of these
algorithms. The first argument is the target, and any other argu‐
ments passed are the sources, which will be processed in listed order.
For each source, its enumerable and own (e.g., not “inherited”) keys,
including symbols, are copied as if by plain = assignment.
Object.assign(..) returns the target object.

Consider this object setup:

var target = {},
 o1 = { a: 1 }, o2 = { b: 2 },
 o3 = { c: 3 }, o4 = { d: 4 };

// set up read-only property
Object.defineProperty(o3, "e", {
 value: 5,
 enumerable: true,
 writable: false,
 configurable: false
});

// set up non-enumerable property
Object.defineProperty(o3, "f", {
 value: 6,
 enumerable: false
});

188 | Chapter 6: API Additions

o3[Symbol("g")] = 7;

// set up non-enumerable symbol
Object.defineProperty(o3, Symbol("h"), {
 value: 8,
 enumerable: false
});

Object.setPrototypeOf(o3, o4);

Only the properties a, b, c, e, and Symbol("g") will be copied to tar
get:

Object.assign(target, o1, o2, o3);

target.a; // 1
target.b; // 2
target.c; // 3

Object.getOwnPropertyDescriptor(target, "e");
// { value: 5, writable: true, enumerable: true,
// configurable: true }

Object.getOwnPropertySymbols(target);
// [Symbol("g")]

The d, f, and Symbol("h") properties are omitted from copying;
non-enumerable properties and non-owned properties are all exclu‐
ded from the assignment. Also, e is copied as a normal property
assignment, not duplicated as a read-only property.

In an earlier section, we showed using setPrototypeOf(..) to set
up a [[Prototype]] relationship between an o2 and o1 object.
There’s another form that leverages Object.assign(..):

var o1 = {
 foo() { console.log("foo"); }
};

var o2 = Object.assign(
 Object.create(o1),
 {
 // .. o2's definition ..
 }
);

// delegates to `o1.foo()`
o2.foo(); // foo

Object | 189

Object.create(..) is the ES5 standard utility
that creates an empty object that is
[[Prototype]]-linked. See the this & Object
Prototypes title of this series for more informa‐
tion.

Math
ES6 adds several new mathematic utilities that fill in holes or aid
with common operations. All of these can be manually calculated,
but most of them are now defined natively so that in some cases the
JS engine can either more optimally perform the calculations, or
perform them with better decimal precision than their manual
counterparts.

It’s likely that asm.js/transpiled JS code (see the Async & Perfor‐
mance title of this series) is the more likely consumer of many of
these utilities rather than direct developers.

Trigonometry:

cosh(..)

Hyperbolic cosine

acosh(..)

Hyperbolic arccosine

sinh(..)

Hyperbolic sine

asinh(..)

Hyperbolic arcsine

tanh(..)

Hyperbolic tangent

atanh(..)

Hyperbolic arctangent

hypot(..)

The squareroot of the sum of the squares (i.e., the generalized
Pythagorean theorem)

190 | Chapter 6: API Additions

Arithmetic:

cbrt(..)

Cube root

clz32(..)

Count leading zeros in 32-bit binary representation

expm1(..)

The same as exp(x) - 1

log2(..)

Binary logarithm (log base 2)

log10(..)

Log base 10

log1p(..)

The same as log(x + 1)

imul(..)

32-bit integer multiplication of two numbers

Meta:

sign(..)

Returns the sign of the number

trunc(..)

Returns only the integer part of a number

fround(..)

Rounds to nearest 32-bit (single precision) floating-point value

Number
Importantly, for your program to properly work, it must accurately
handle numbers. ES6 adds some additional properties and functions
to assist with common numeric operations.

Two additions to Number are just references to the pre-existing glob‐
als: Number.parseInt(..) and Number.parseFloat(..).

Static Properties
ES6 adds some helpful numeric constants as static properties:

Number | 191

Number.EPSILON

The minimum value between any two numbers: 2^-52 (see
Chapter 2 of the Types & Grammar title of this series regarding
using this value as a tolerance for imprecision in floating-point
arithmetic)

Number.MAX_SAFE_INTEGER

The highest integer that can “safely” be represented unambigu‐
ously in a JS number value: 2^53 - 1

Number.MIN_SAFE_INTEGER

The lowest integer that can “safely” be represented unambigu‐
ously in a JS number value: -(2^53 - 1) or (-2)^53 + 1

See Chapter 2 of the Types & Grammar title of
this series for more information about “safe”
integers.

Number.isNaN(..) Static Function
The standard global isNaN(..) utility has been broken since its
inception, in that it returns true for things that are not numbers,
not just for the actual NaN value, because it coerces the argument to a
number type (which can falsely result in a NaN). ES6 adds a fixed
utility Number.isNaN(..) that works as it should:

var a = NaN, b = "NaN", c = 42;

isNaN(a); // true
isNaN(b); // true--oops!
isNaN(c); // false

Number.isNaN(a); // true
Number.isNaN(b); // false--fixed!
Number.isNaN(c); // false

Number.isFinite(..) Static Function
There’s a temptation to look at a function name like isFinite(..)
and assume it’s simply “not infinite”. That’s not quite correct, though.
There’s more nuance to this new ES6 utility. Consider:

var a = NaN, b = Infinity, c = 42;

192 | Chapter 6: API Additions

Number.isFinite(a); // false
Number.isFinite(b); // false

Number.isFinite(c); // true

The standard global isFinite(..) coerces its argument, but Num
ber.isFinite(..) omits the coercive behavior:

var a = "42";

isFinite(a); // true
Number.isFinite(a); // false

You may still prefer the coercion, in which case using the global
isFinite(..) is a valid choice. Alternatively, and perhaps more sen‐
sibly, you can use Number.isFinite(+x), which explicitly coerces x
to a number before passing it in (see Chapter 4 of the Types &
Grammar title of this series).

Integer-Related Static Functions
JavaScript number valuess are always floating point (IEE-754). So
the notion of determining if a number is an “integer” is not about
checking its type, because JS makes no such distinction.

Instead, you need to check if there’s any nonzero decimal portion of
the value. The easiest way to do that has commonly been:

x === Math.floor(x);

ES6 adds a Number.isInteger(..) helper utility that potentially can
determine this quality slightly more efficiently:

Number.isInteger(4); // true
Number.isInteger(4.2); // false

In JavaScript, there’s no difference between 4, 4.,
4.0, or 4.0000. All of these would be considered
an “integer,” and would thus yield true from
Number.isInteger(..).

In addition, Number.isInteger(..) filters out some clearly not-
integer values that x === Math.floor(x) could potentially mix up:

Number.isInteger(NaN); // false
Number.isInteger(Infinity); // false

Number | 193

Working with “integers” is sometimes an important bit of informa‐
tion, as it can simplify certain kinds of algorithms. JS code by itself
will not run faster just from filtering for only integers, but there are
optimization techniques the engine can take (e.g., asm.js) when only
integers are being used.

Because of Number.isInteger(..)’s handling of NaN and Infinity
values, defining a isFloat(..) utility would not be just as simple
as !Number.isInteger(..). You’d need to do something like:

function isFloat(x) {
 return Number.isFinite(x) && !Number.isInteger(x);
}

isFloat(4.2); // true
isFloat(4); // false

isFloat(NaN); // false
isFloat(Infinity); // false

It may seem strange, but Infinity should nei‐
ther be considered an integer nor a float.

ES6 also defines a Number.isSafeInteger(..) utility, which checks
to make sure the value is both an integer and within the range of
Number.MIN_SAFE_INTEGER-Number.MAX_SAFE_INTEGER (inclusive).

var x = Math.pow(2, 53),
 y = Math.pow(-2, 53);

Number.isSafeInteger(x - 1); // true
Number.isSafeInteger(y + 1); // true

Number.isSafeInteger(x); // false
Number.isSafeInteger(y); // false

String
Strings already have quite a few helpers prior to ES6, but even more
have been added to the mix.

194 | Chapter 6: API Additions

Unicode Functions
“Unicode-Aware String Operations” on page 75 in Chapter 2 dis‐
cusses String.fromCodePoint(..), String#codePointAt(..), and
String#normalize(..) in detail. They have been added to improve
Unicode support in JS string values.

String.fromCodePoint(0x1d49e); // "𝒞"
"ab𝒞d.codePointAt(2).toString(16); // "1d49e"

The normalize(..) string prototype method is used to perform
Unicode normalizations that either combine characters with adja‐
cent “combining marks” or decompose combined characters.

Generally, the normalization won’t create a visible effect on the con‐
tents of the string, but will change the contents of the string, which
can affect how things like the length property are reported, as well
as how character access by position behaves:

var s1 = "e\u0301";
s1.length; // 2

var s2 = s1.normalize();
s2.length; // 1
s2 === "\xE9"; // true

normalize(..) takes an optional argument that specifies the nor‐
malization form to use. This argument must be one of the following
four values: "NFC" (default), "NFD", "NFKC", or "NFKD".

Normalization forms and their effects on strings
is well beyond the scope of what we’ll discuss
here. See “Unicode Normalization Forms” for
more information.

String.raw(..) Static Function
The String.raw(..) utility is provided as a built-in tag function to
use with template string literals (see Chapter 2) for obtaining the
raw string value without any processing of escape sequences.

This function will almost never be called manually, but will be used
with tagged template literals:

String | 195

http://www.unicode.org/reports/tr15/

var str = "bc";

String.raw`\ta${str}d\xE9`;
// "\tabcd\xE9", not " abcdé"

In the resultant string, \ and t are separate raw characters, not the
one escape sequence character \t. The same is true of the Unicode
escape sequence.

repeat(..) Prototype Function
In languages like Python and Ruby, you can repeat a string as:

"foo" * 3; // "foofoofoo"

That doesn’t work in JS, because * multiplication is only defined for
numbers, and thus "foo" coerces to the NaN number.

However, ES6 defines a string prototype method repeat(..) to
accomplish the task:

"foo".repeat(3); // "foofoofoo"

String Inspection Functions
In addition to String#indexOf(..) and String#lastIndexOf(..)
from prior to ES6, three new methods for searching/inspection have
been added: startsWith(..), endsWidth(..), and includes(..).

var palindrome = "step on no pets";

palindrome.startsWith("step on"); // true
palindrome.startsWith("on", 5); // true

palindrome.endsWith("no pets"); // true
palindrome.endsWith("no", 10); // true

palindrome.includes("on"); // true
palindrome.includes("on", 6); // false

For all the string search/inspection methods, if you look for an
empty string "", it will either be found at the beginning or the end of
the string.

These methods will not by default accept a regu‐
lar expression for the search string. See “Regular
Expression Symbols” on page 208 in Chapter 7
for information about disabling the isRegExp
check that is performed on this first argument.

196 | Chapter 6: API Additions

Review
ES6 adds many extra API helpers on the various built-in native
objects:

• Array adds of(..) and from(..) static functions, as well as
prototype functions like copyWithin(..) and fill(..).

• Object adds static functions like is(..) and assign(..).
• Math adds static functions like acosh(..) and clz32(..).
• Number adds static properties like Number.EPSILON, as well as

static functions like Number.isFinite(..).
• String adds static functions like String.fromCodePoint(..)

and String.raw(..), as well as prototype functions like
repeat(..) and includes(..).

Most of these additions can be polyfilled (see ES6 Shim), and were
inspired by utilities in common JS libraries/frameworks.

Review | 197

CHAPTER 7

Meta Programming

Meta programming is programming where the operation targets the
behavior of the program itself. In other words, it’s programming the
programming of your program. Yeah, a mouthful, huh?

For example, if you probe the relationship between one object a and
another b—are they [[Prototype]] linked?—using a.isProto
type(b), this is commonly referred to as introspection, a form of
meta programming. Macros (which don’t exist in JS, yet)—where
the code modifies itself at compile time—are another obvious exam‐
ple of meta programming. Enumerating the keys of an object with a
for..in loop, or checking if an object is an instance of a “class con‐
structor,” are other common meta programming tasks.

Meta programming focuses on one or more of the following: code
inspecting itself, code modifying itself, or code modifying default
language behavior so other code is affected.

The goal of meta programming is to leverage the language’s own
intrinsic capabilities to make the rest of your code more descriptive,
expressive, and/or flexible. Because of the meta nature of meta pro‐
gramming, it’s somewhat difficult to put a more precise definition
on it than that. The best way to understand meta programming is to
see it through examples.

ES6 adds several new forms/features for meta programming on top
of what JS already had.

199

Function Names
There are cases where your code may want to introspect on itself
and ask what the name of some function is. If you ask what a func‐
tion’s name is, the answer is surprisingly somewhat ambiguous.
Consider:

function daz() {
 // ..
}

var obj = {
 foo: function() {
 // ..
 },
 bar: function baz() {
 // ..
 },
 bam: daz,
 zim() {
 // ..
 }
};

In this previous snippet, “what is the name of obj.foo()" is slightly
nuanced. Is it "foo", "", or undefined? And what about obj.bar()
—is it named "bar" or "baz"? Is obj.bam() named "bam" or "daz"?
What about obj.zim()?

Moreover, what about functions that are passed as callbacks, like:

function foo(cb) {
 // what is the name of `cb()` here?
}

foo(function(){
 // I'm anonymous!
});

There are quite a few ways that functions can be expressed in pro‐
grams, and it’s not always clear and unambiguous what the “name”
of that function should be.

More importantly, we need to distinguish whether the “name” of a
function refers to its name property—yes, functions have a property
called name—or whether it refers to the lexical binding name, such
as bar in function bar() { .. }.

The lexical binding name is what you use for things like recursion:

200 | Chapter 7: Meta Programming

function foo(i) {
 if (i < 10) return foo(i * 2);
 return i;
}

The name property is what you’d use for meta programming pur‐
poses, so that’s what we’ll focus on in this discussion.

The confusion comes because by default, the lexical name a function
has (if any) is also set as its name property. Actually, there was no
official requirement for that behavior by the ES5 (and prior) specifi‐
cations. The setting of the name property was nonstandard but still
fairly reliable. As of ES6, it has been standardized.

If a function has a name value assigned, that’s
typically the name used in stack traces in devel‐
oper tools.

Inferences
But what happens to the name property if a function has no lexical
name?

As of ES6, there are now inference rules that can determine a sensi‐
ble name property value to assign a function even if that function
doesn’t have a lexical name to use.

Consider:

var abc = function() {
 // ..
};

abc.name; // "abc"

Had we given the function a lexical name like abc = function
def() { .. }, the name property would of course be "def". But in
the absence of the lexical name, intuitively the "abc" name seems
appropriate.

Here are other forms that will infer a name (or not) in ES6:

(function(){ .. }); // name:
(function*(){ .. }); // name:
window.foo = function(){ .. }; // name:

class Awesome {

Function Names | 201

 constructor() { .. } // name: Awesome
 funny() { .. } // name: funny
}

var c = class Awesome { .. }; // name: Awesome

var o = {
 foo() { .. }, // name: foo
 *bar() { .. }, // name: bar
 baz: () => { .. }, // name: baz
 bam: function(){ .. }, // name: bam
 get qux() { .. }, // name: get qux
 set fuz() { .. }, // name: set fuz
 ["b" + "iz"]:
 function(){ .. }, // name: biz
 [Symbol("buz")]:
 function(){ .. } // name: [buz]
};

var x = o.foo.bind(o); // name: bound foo
(function(){ .. }).bind(o); // name: bound

export default function() { .. } // name: default

var y = new Function(); // name: anonymous
var GeneratorFunction =
 function*(){}.__proto__.constructor;
var z = new GeneratorFunction(); // name: anonymous

The name property is not writable by default, but it is configurable,
meaning you can use Object.defineProperty(..) to manually
change it if so desired.

Meta Properties
In “new.target” on page 143 in Chapter 3, we introduced a concept
new to JS in ES6: the meta property. As the name suggests, meta
properties are intended to provide special meta information in the
form of a property access that would otherwise not have been possi‐
ble.

In the case of new.target, the keyword new serves as the context for
a property access. Clearly new is itself not an object, which makes
this capability special. However, when new.target is used inside a
constructor call (a function/method invoked with new), new becomes
a virtual context, so that new.target can refer to the target con‐
structor that new invoked.

202 | Chapter 7: Meta Programming

This is a clear example of a meta programming operation, as the
intent is to determine from inside a constructor call what the origi‐
nal new target was, generally for the purposes of introspection
(examining typing/structure) or static property access.

For example, you may want to have different behavior in a construc‐
tor depending on if it’s directly invoked or invoked via a child class:

class Parent {
 constructor() {
 if (new.target === Parent) {
 console.log("Parent instantiated");
 }
 else {
 console.log("A child instantiated");
 }
 }
}

class Child extends Parent {}

var a = new Parent();
// Parent instantiated

var b = new Child();
// A child instantiated

There’s a slight nuance here, which is that the constructor() inside
the Parent class definition is actually given the lexical name of the
class (Parent), even though the syntax implies that the class is a sep‐
arate entity from the constructor.

As with all meta programming techniques, be
careful of creating code that’s too clever for your
future self or others maintaining your code to
understand. Use these tricks with caution.

Well-Known Symbols
In “Symbols” on page 80 in Chapter 2, we covered the new ES6
primitive type symbol. In addition to symbols you can define in
your own program, JS predefines a number of built-in symbols,
referred to as Well-Known Symbols (WKS).

Well-Known Symbols | 203

These symbol values are defined primarily to expose special meta
properties that are being exposed to your JS programs to give you
more control over JS’s behavior.

We’ll briefly introduce each and discuss their purpose.

Symbol.iterator
In Chapters 2 and 3, we introduced and used the @@iterator sym‐
bol, automatically used by ... spreads and for..of loops. We also
saw @@iterator as defined on the new ES6 collections as defined in
Chapter 5.

Symbol.iterator represents the special location (property) on any
object where the language mechanisms automatically look to find a
method that will construct an iterator instance for consuming that
object’s values. Many objects come with a default one defined.

However, we can define our own iterator logic for any object value
by setting the Symbol.iterator property, even if that’s overriding
the default iterator. The meta programming aspect is that we are
defining behavior that other parts of JS (namely, operators and loop‐
ing constructs) use when processing an object value we define.

Consider:

var arr = [4,5,6,7,8,9];

for (var v of arr) {
 console.log(v);
}
// 4 5 6 7 8 9

// define iterator that only produces values
// from odd indexes
arr[Symbol.iterator] = function*() {
 var idx = 1;
 do {
 yield this[idx];
 } while ((idx += 2) < this.length);
};

for (var v of arr) {
 console.log(v);
}
// 5 7 9

204 | Chapter 7: Meta Programming

Symbol.toStringTag and Symbol.hasInstance
One of the most common meta programming tasks is to introspect
on a value to find out what kind it is, usually to decide what opera‐
tions are appropriate to perform on it. With objects, the two most
common inspection techniques are toString() and instanceof.

Consider:

function Foo() {}

var a = new Foo();

a.toString(); // [object Object]
a instanceof Foo; // true

As of ES6, you can control the behavior of these operations:

function Foo(greeting) {
 this.greeting = greeting;
}

Foo.prototype[Symbol.toStringTag] = "Foo";

Object.defineProperty(Foo, Symbol.hasInstance, {
 value: function(inst) {
 return inst.greeting == "hello";
 }
});

var a = new Foo("hello"),
 b = new Foo("world");

b[Symbol.toStringTag] = "cool";

a.toString(); // [object Foo]
String(b); // [object cool]

a instanceof Foo; // true
b instanceof Foo; // false

The @@toStringTag symbol on the prototype (or instance itself)
specifies a string value to use in the [object ___] stringification.

The @@hasInstance symbol is a method on the constructor function
which receives the instance object value and lets you decide by
returning true or false if the value should be considered an
instance or not.

Well-Known Symbols | 205

To set @@hasInstance on a function, you must
use Object.defineProperty(..), as the default
one on Function.prototype is writable:

false. See the this & Object Prototypes title of
this series for more information.

Symbol.species
In “Classes” on page 135 in Chapter 3, we introduced the @@species
symbol, which controls which constructor is used by built-in meth‐
ods of a class that needs to spawn new instances.

The most common example is when subclassing Array and wanting
to define which constructor (Array(..) or your subclass) inherited
methods like slice(..) should use. By default, slice(..) called on
an instance of a subclass of Array would produce a new instance of
that subclass, which is frankly what you’ll likely often want.

However, you can meta program by overriding a class’s default
@@species definition:

class Cool {
 // defer `@@species` to derived constructor
 static get [Symbol.species]() { return this; }

 again() {
 return new this.constructor[Symbol.species]();
 }
}

class Fun extends Cool {}

class Awesome extends Cool {
 // force `@@species` to be parent constructor
 static get [Symbol.species]() { return Cool; }
}

var a = new Fun(),
 b = new Awesome(),
 c = a.again(),
 d = b.again();

c instanceof Fun; // true
d instanceof Awesome; // false
d instanceof Cool; // true

The Symbol.species setting defaults on the built-in native con‐
structors to the return this behavior as illustrated in the previous

206 | Chapter 7: Meta Programming

snippet in the Cool definition. It has no default on user classes, but
as shown that behavior is easy to emulate.

If you need to define methods that generate new instances, use the
meta programming of the new this.constructor[Symbol.spe

cies](..) pattern instead of the hard-wiring of new this.construc
tor(..) or new XYZ(..). Derived classes will then be able to
customize Symbol.species to control which constructor vends
those instances.

Symbol.toPrimitive
In the Types & Grammar title of this series, we discussed the ToPri
mitive abstract coercion operation, which is used when an object
must be coerced to a primitive value for some operation (such as ==
comparison or + addition). Prior to ES6, there was no way to control
this behavior.

As of ES6, the @@toPrimitive symbol as a property on any object
value can customize that ToPrimitive coercion by specifying a
method.

Consider:

var arr = [1,2,3,4,5];

arr + 10; // 1,2,3,4,510

arr[Symbol.toPrimitive] = function(hint) {
 if (hint == "default" || hint == "number") {
 // sum all numbers
 return this.reduce(function(acc,curr){
 return acc + curr;
 }, 0);
 }
};

arr + 10; // 25

The Symbol.toPrimitive method will be provided with a hint of
"string", "number", or "default" (which should be interpreted as
"number"), depending on what type the operation invoking ToPrimi
tive is expecting. In the previous snippet, the additive + operation
has no hint ("default" is passed). A multiplicative * operation
would hint "number" and a String(arr) would hint "string".

Well-Known Symbols | 207

The == operator will invoke the ToPrimitive
operation with no hint—the @@toPrimitive

method, if any is called with hint "default"—
on an object if the other value being compared is
not an object. However, if both comparison val‐
ues are objects, the behavior of == is identical to
===, which is that the references themselves are
directly compared. In this case, @@toPrimitive
is not invoked at all. See the Types & Grammar
title of this series for more information about
coercion and the abstract operations.

Regular Expression Symbols
There are four well-known symbols that can be overridden for regu‐
lar expression objects, which control how those regular expressions
are used by the four corresponding String.prototype functions of
the same name:

• @@match: The Symbol.match value of a regular expression is the
method used to match all or part of a string value with the given
regular expression. It’s used by String.prototype.match(..) if
you pass it a regular expression for the pattern matching.

The default algorithm for matching is laid out in section 21.2.5.6 of
the ES6 specification. You could override this default algorithm and
provide extra regex features, such as look-behind assertions.

Symbol.match is also used by the isRegExp abstract operation (see
the note in “String Inspection Functions” on page 196 in Chapter 6)
to determine if an object is intended to be used as a regular expres‐
sion. To force this check to fail for an object so it’s not treated as a
regular expression, set the Symbol.match value to false (or some‐
thing falsy). * @@replace: The Symbol.replace value of a regular
expression is the method used by String.prototype.replace(..)
to replace within a string one or all occurrences of character sequen‐
ces that match the given regular expression pattern.

The default algorithm for replacing is laid out in section 21.2.5.8 of
the ES6 specification.

One cool use for overriding the default algorithm is to provide addi‐
tional replacer argument options, such as supporting
"abaca".replace(/a/g,[1,2,3]) producing "1b2c3" by consum‐

208 | Chapter 7: Meta Programming

https://people.mozilla.org/~jorendorff/es6-draft.html#sec-regexp.prototype-@@match
https://people.mozilla.org/~jorendorff/es6-draft.html#sec-regexp.prototype-@@replace

ing the iterable for successive replacement values. * @@search: The
Symbol.search value of a regular expression is the method used by
String.prototype.search(..) to search for a substring within
another string as matched by the given regular expression.

The default algorithm for searching is laid out in section 21.2.5.9 of
the ES6 specification. * @@split: The Symbol.split value of a regu‐
lar expression is the method used by String.prototype.split(..)
to split a string into substrings at the location(s) of the delimiter as
matched by the given regular expression.

The default algorithm for splitting is laid out in section 21.2.5.11 of
the ES6 specification.

Overriding the built-in regular expression algorithms is not for the
faint of heart! JS ships with a highly optimized regular expression
engine, so your own user code will likely be a lot slower. This kind of
meta programming is neat and powerful, but it should only be used
in cases where it’s really necessary or beneficial.

Symbol.isConcatSpreadable
The @@isConcatSpreadable symbol can be defined as a boolean
property (Symbol.isConcatSpreadable) on any object (like an array
or other iterable) to indicate if it should be spread out if passed to an
array concat(..).

Consider:

var a = [1,2,3],
 b = [4,5,6];

b[Symbol.isConcatSpreadable] = false;

[].concat(a, b); // [1,2,3,[4,5,6]]

Symbol.unscopables
The @@unscopables symbol can be defined as an object property
(Symbol.unscopables) on any object to indicate which properties
can and cannot be exposed as lexical variables in a with statement.

Consider:

var o = { a:1, b:2, c:3 },
 a = 10, b = 20, c = 30;

Well-Known Symbols | 209

https://people.mozilla.org/~jorendorff/es6-draft.html#sec-regexp.prototype-@@search
https://people.mozilla.org/~jorendorff/es6-draft.html#sec-regexp.prototype-@@split

o[Symbol.unscopables] = {
 a: false,
 b: true,
 c: false
};

with (o) {
 console.log(a, b, c); // 1 20 3
}

A true in the @@unscopables object indicates the property should
be unscopable, and thus filtered out from the lexical scope variables.
false means it’s OK to be included in the lexical scope variables.

The with statement is disallowed entirely in
strict mode, and as such should be considered
deprecated from the language. Don’t use it. See
the Scope & Closures title of this series for more
information. Because with should be avoided,
the @@unscopables symbol is also moot.

Proxies
One of the most obviously meta programming features added to
ES6 is the Proxy feature.

A proxy is a special kind of object you create that “wraps”—or sits in
front of—another normal object. You can register special handlers
(aka traps) on the proxy object, which are called when various oper‐
ations are performed against the proxy. These handlers have the
opportunity to perform extra logic in addition to forwarding the
operations on to the original target/wrapped object.

One example of the kind of trap handler you can define on a proxy
is get that intercepts the [[Get]] operation—performed when you
try to access a property on an object. Consider:

var obj = { a: 1 },
 handlers = {
 get(target,key,context) {
 // note: target === obj,
 // context === pobj
 console.log("accessing: ", key);
 return Reflect.get(
 target, key, context
);
 }

210 | Chapter 7: Meta Programming

 },
 pobj = new Proxy(obj, handlers);

obj.a;
// 1

pobj.a;
// accessing: a
// 1

We declare a get(..) handler as a named method on the handler
object (second argument to Proxy(..)), that receives a reference to
the target object (obj), the key property name ("a"), and the self/
receiver/proxy (pobj).

After the console.log(..) tracing statement, we “forward” the
operation onto obj via Reflect.get(..). We will cover the Reflect
API in the next section, but note that each available proxy trap has a
corresponding Reflect function of the same name.

These mappings are symmetric on purpose. The proxy handlers
each intercept when a respective meta programming task is per‐
formed, and the Reflect utilities each perform the respective meta
programming task on an object. Each proxy handler has a default
definition that automatically calls the corresponding Reflect utility.
You will almost certainly use both Proxy and Reflect in tandem.

Here’s a list of handlers you can define on a proxy for a target object/
function, and how/when they are triggered:

get(..)

Via [[Get]], a property is accessed on the proxy
(Reflect.get(..), . property operator, or [..] property
operator)

set(..)

Via [[Set]], a property value is set on the proxy
(Reflect.set(..), the = assignment operator, or destructuring
assignment if it targets an object property)

deleteProperty(..)

Via [[Delete]], a property is deleted from the proxy
(Reflect.deleteProperty(..) or delete)

Proxies | 211

apply(..) (if target is a function)
Via [[Call]], the proxy is invoked as a normal function/
method (Reflect.apply(..), call(..), apply(..), or the (..)
call operator)

construct(..) (if target is a constructor function)
Via [[Construct]], the proxy is invoked as a constructor func‐
tion (Reflect.construct(..) or new)

getOwnPropertyDescriptor(..)

Via [[GetOwnProperty]], a property descriptor is retrieved
from the proxy (Object.getOwnPropertyDescriptor(..) or
Reflect.getOwnPropertyDescriptor(..))

defineProperty(..)

Via [[DefineOwnProperty]], a property descriptor is set on the
proxy (Object.defineProperty(..) or Reflect.defineProp
erty(..))

getPrototypeOf(..)

Via [[GetPrototypeOf]], the [[Prototype]] of the proxy is
retrieved (Object.getPrototypeOf(..), Reflect.getPrototy
peOf(..), __proto__, Object#isPrototypeOf(..), or instan
ceof)

setPrototypeOf(..)

Via [[SetPrototypeOf]], the [[Prototype]] of the proxy is set
(Object.setPrototypeOf(..), Reflect.setPrototypeOf(..),
or __proto__)

preventExtensions(..)

Via [[PreventExtensions]], the proxy is made non-extensible
(Object.preventExtensions(..) or Reflect.preventExten
sions(..))

isExtensible(..)

Via [[IsExtensible]], the extensibility of the proxy is probed
(Object.isExtensible(..) or Reflect.isExtensible(..))

ownKeys(..)

Via [[OwnPropertyKeys]], the set of owned properties and/or
owned symbol properties of the proxy is retrieved
(Object.keys(..), Object.getOwnPropertyNames(..),

212 | Chapter 7: Meta Programming

Object.getOwnSymbolProperties(..), Reflect.ownKeys(..),
or JSON.stringify(..))

enumerate(..)

Via [[Enumerate]], an iterator is requested for the proxy’s enu‐
merable owned and “inherited” properties (Reflect.enumer
ate(..) or for..in)

has(..)

Via [[HasProperty]], the proxy is probed to see if it has an
owned or “inherited” property (Reflect.has(..),
Object#hasOwnProperty(..), or "prop" in obj)

For more information about each of these meta
programming tasks, see “Reflect API” on page
224 later in this chapter.

In addition to the notations in the preceding list about actions that
will trigger the various traps, some traps are triggered indirectly by
the default actions of another trap. For example:

var handlers = {
 getOwnPropertyDescriptor(target,prop) {
 console.log(
 "getOwnPropertyDescriptor"
);
 return Object.getOwnPropertyDescriptor(
 target, prop
);
 },
 defineProperty(target,prop,desc){
 console.log("defineProperty");
 return Object.defineProperty(
 target, prop, desc
);
 }
 },
 proxy = new Proxy({}, handlers);

proxy.a = 2;
// getOwnPropertyDescriptor
// defineProperty

The getOwnPropertyDescriptor(..) and defineProperty(..)

handlers are triggered by the default set(..) handler’s steps when

Proxies | 213

setting a property value (whether newly adding or updating). If you
also define your own set(..) handler, you may or may not make
the corresponding calls against context (not target!), which would
trigger these proxy traps.

Proxy Limitations
These meta programming handlers trap a wide array of fundamental
operations you can perform against an object. However, there are
some operations that are not (yet, at least) available to intercept.

For example, none of these operations are trapped and forwarded
from pobj proxy to obj target:

var obj = { a:1, b:2 },
 handlers = { .. },
 pobj = new Proxy(obj, handlers);

typeof obj;
String(obj);
obj + "";
obj == pobj;
obj === pobj

Perhaps in the future, more of these underlying fundamental opera‐
tions in the language will be interceptable, giving us even more
power to extend JavaScript from within itself.

There are certain invariants—behaviors that
cannot be overridden—that apply to the use of
proxy handlers. For example, the result from the
isExtensible(..) handler is always coerced to
a boolean. These invariants restrict some of
your ability to customize behaviors with proxies,
but they do so only to prevent you from creating
strange and unusual (or inconsistent) behavior.
The conditions for these invariants are compli‐
cated so we won’t fully go into them here, but
this post does a great job of covering them.

Revocable Proxies
A regular proxy always traps for the target object, and cannot be
modified after creation—as long as a reference is kept to the proxy,
proxying remains possible. However, there may be cases where you

214 | Chapter 7: Meta Programming

http://www.2ality.com/2014/12/es6-proxies.html#invariants

want to create a proxy that can be disabled when you want to stop
allowing it to proxy. The solution is to create a revocable proxy:

var obj = { a: 1 },
 handlers = {
 get(target,key,context) {
 // note: target === obj,
 // context === pobj
 console.log("accessing: ", key);
 return target[key];
 }
 },
 { proxy: pobj, revoke: prevoke } =
 Proxy.revocable(obj, handlers);

pobj.a;
// accessing: a
// 1

// later:
prevoke();

pobj.a;
// TypeError

A revocable proxy is created with Proxy.revocable(..), which is a
regular function, not a constructor like Proxy(..). Otherwise, it
takes the same two arguments: target and handlers.

The return value of Proxy.revocable(..) is not the proxy itself as
with new Proxy(..). Instead, it’s an object with two properties:
proxy and revoke—we used object destructuring (see “Destructur‐
ing” on page 23 in Chapter 2) to assign these properties to pobj and
prevoke() variables, respectively.

Once a revocable proxy is revoked, any attempts to access it (trigger
any of its traps) will throw a TypeError.

An example of using a revocable proxy might be handing out a
proxy to another party in your application that manages data in
your model, instead of giving them a reference to the real model
object itself. If your model object changes or is replaced, you want to
invalidate the proxy you handed out so the other party knows (via
the errors!) to request an updated reference to the model.

Proxies | 215

Using Proxies
The meta programming benefits of these Proxy handlers should be
obvious. We can almost fully intercept (and thus override) the
behavior of objects, meaning we can extend object behavior beyond
core JS in some very powerful ways. We’ll look at a few example pat‐
terns to explore the possibilities.

Proxy First, Proxy Last
As we mentioned earlier, you typically think of a proxy as “wrap‐
ping” the target object. In that sense, the proxy becomes the primary
object the code interfaces with, and the actual target object remains
hidden/protected.

You might do this because you want to pass the object somewhere
that can’t be fully “trusted,” and so you need to enforce special rules
around its access rather than passing the object itself.

Consider:

var messages = [],
 handlers = {
 get(target,key) {
 // string value?
 if (typeof target[key] == "string") {
 // filter out punctuation
 return target[key]
 .replace(/[^\w]/g, "");
 }

 // pass everything else through
 return target[key];
 },
 set(target,key,val) {
 // only set unique strings, lowercased
 if (typeof val == "string") {
 val = val.toLowerCase();
 if (target.indexOf(val) == -1) {
 target.push(
 val.toLowerCase()
);
 }
 }
 return true;
 }
 },
 messages_proxy =
 new Proxy(messages, handlers);

216 | Chapter 7: Meta Programming

// elsewhere:
messages_proxy.push(
 "heLLo...", 42, "wOrlD!!", "WoRld!!"
);

messages_proxy.forEach(function(val){
 console.log(val);
});
// hello world

messages.forEach(function(val){
 console.log(val);
});
// hello... world!!

I call this proxy first design, as we interact first (primarily, entirely)
with the proxy.

We enforce some special rules on interacting with messages_proxy
that aren’t enforced for messages itself. We only add elements if the
value is a string and is also unique; we also lowercase the value.
When retrieving values from messages_proxy, we filter out any
punctuation in the strings.

Alternatively, we can completely invert this pattern, where the target
interacts with the proxy instead of the proxy interacting with the
target. Thus, code really only interacts with the main object. The
easiest way to accomplish this fallback is to have the proxy object in
the [[Prototype]] chain of the main object.

Consider:

var handlers = {
 get(target,key,context) {
 return function() {
 context.speak(key + "!");
 };
 }
 },
 catchall = new Proxy({}, handlers),
 greeter = {
 speak(who = "someone") {
 console.log("hello", who);
 }
 };

// set up `greeter` to fall back to `catchall`
Object.setPrototypeOf(greeter, catchall);

Proxies | 217

greeter.speak(); // hello someone
greeter.speak("world"); // hello world

greeter.everyone(); // hello everyone!

We interact directly with greeter instead of catchall. When we
call speak(..), it’s found on greeter and used directly. But when
we try to access a method like everyone(), that function doesn’t
exist on greeter.

The default object property behavior is to check up the [[Proto
type]] chain (see the this & Object Prototypes title of this series), so
catchall is consulted for an everyone property. The proxy get()
handler then kicks in and returns a function that calls speak(..)
with the name of the property being accessed ("everyone").

I call this pattern proxy last, as the proxy is used only as a last resort.

“No Such Property/Method”
A common complaint about JS is that objects aren’t by default very
defensive in the situation where you try to access or set a property
that doesn’t already exist. You may wish to predefine all the proper‐
ties/methods for an object, and have an error thrown if a nonexis‐
tent property name is subsequently used.

We can accomplish this with a proxy, either in proxy first or proxy
last design. Let’s consider both.

var obj = {
 a: 1,
 foo() {
 console.log("a:", this.a);
 }
 },
 handlers = {
 get(target,key,context) {
 if (Reflect.has(target, key)) {
 return Reflect.get(
 target, key, context
);
 }
 else {
 throw "No such property/method!";
 }
 },
 set(target,key,val,context) {
 if (Reflect.has(target, key)) {
 return Reflect.set(

218 | Chapter 7: Meta Programming

 target, key, val, context
);
 }
 else {
 throw "No such property/method!";
 }
 }
 },
 pobj = new Proxy(obj, handlers);

pobj.a = 3;
pobj.foo(); // a: 3

pobj.b = 4; // Error: No such property/method!
pobj.bar(); // Error: No such property/method!

For both get(..) and set(..), we only forward the operation if the
target object’s property already exists; an error is thrown otherwise.
The proxy object (pobj) is the main object code should interact
with, as it intercepts these actions to provide the protections.

Now, let’s consider inverting with proxy last design:

var handlers = {
 get() {
 throw "No such property/method!";
 },
 set() {
 throw "No such property/method!";
 }
 },
 pobj = new Proxy({}, handlers),
 obj = {
 a: 1,
 foo() {
 console.log("a:", this.a);
 }
 };

// set up `obj` to fall back to `pobj`
Object.setPrototypeOf(obj, pobj);

obj.a = 3;
obj.foo(); // a: 3

obj.b = 4; // Error: No such property/method!
obj.bar(); // Error: No such property/method!

The proxy last design here is a fair bit simpler with respect to how
the handlers are defined. Instead of needing to intercept the [[Get]]
and [[Set]] operations and only forward them if the target prop‐

Proxies | 219

erty exists, we instead rely on the fact that if either [[Get]] or
[[Set]] get to our pobj fallback, the action has already traversed
the whole [[Prototype]] chain and not found a matching property.
We are free at that point to unconditionally throw the error. Cool,
huh?

Proxy Hacking the [[Prototype]] Chain

The [[Get]] operation is the primary channel by which the [[Proto
type]] mechanism is invoked. When a property is not found on the
immediate object, [[Get]] automatically hands off the operation to
the [[Prototype]] object.

That means you can use the get(..) trap of a proxy to emulate or
extend the notion of this [[Prototype]] mechanism.

The first hack we’ll consider is creating two objects that are circu‐
larly linked via [[Prototype]] (or, at least it appears that way!). You
cannot actually create a real circular [[Prototype]] chain, as the
engine will throw an error. But a proxy can fake it!

Consider:

var handlers = {
 get(target,key,context) {
 if (Reflect.has(target, key)) {
 return Reflect.get(
 target, key, context
);
 }
 // fake circular `[[Prototype]]`
 else {
 return Reflect.get(
 target[
 Symbol.for("[[Prototype]]")
],
 key,
 context
);
 }
 }
 },
 obj1 = new Proxy(
 {
 name: "obj-1",
 foo() {
 console.log("foo:", this.name);
 }

220 | Chapter 7: Meta Programming

 },
 handlers
),
 obj2 = Object.assign(
 Object.create(obj1),
 {
 name: "obj-2",
 bar() {
 console.log("bar:", this.name);
 this.foo();
 }
 }
);

// fake circular `[[Prototype]]` link
obj1[Symbol.for("[[Prototype]]")] = obj2;

obj1.bar();
// bar: obj-1 <-- through proxy faking [[Prototype]]
// foo: obj-1 <-- `this` context still preserved

obj2.foo();
// foo: obj-2 <-- through [[Prototype]]

We didn’t need to proxy/forward [[Set]] in this
example, so we kept things simpler. To be fully
[[Prototype]] emulation compliant, you’d want
to implement a set(..) handler that searches
the [[Prototype]] chain for a matching prop‐
erty and respects its descriptor behavior (e.g.,
set, writable). See the this & Object Prototypes
title of this series.

In the previous snippet, obj2 is [[Prototype]] linked to obj1 by
virtue of the Object.create(..) statement. But to create the reverse
(circular) linkage, we create property on obj1 at the symbol location
Symbol.for("[[Prototype]]") (see “Symbols” on page 80 in Chap‐
ter 2). This symbol may look sort of special/magical, but it isn’t. It
just allows me a conveniently named hook that semantically appears
related to the task I’m performing.

Then, the proxy’s get(..) handler looks first to see if a requested
key is on the proxy. If not, the operation is manually handed off to
the object reference stored in the Symbol.for("[[Prototype]]")
location of target.

Proxies | 221

One important advantage of this pattern is that the definitions of
obj1 and obj2 are mostly not intruded by the setting up of this cir‐
cular relationship between them. Although the previous snippet has
all the steps intertwined for brevity’s sake, if you look closely, the
proxy handler logic is entirely generic (doesn’t know about obj1 or
obj2 specifically). So, that logic could be pulled out into a simple
helper that wires them up, like a setCircularPrototypeOf(..) for
example. We’ll leave that as an exercise for the reader.

Now that we’ve seen how we can use get(..) to emulate a [[Proto
type]] link, let’s push the hackery a bit further. Instead of a circular
[[Prototype]], what about multiple [[Prototype]] linkages (aka
“multiple inheritance”)? This turns out to be fairly straightforward:

var obj1 = {
 name: "obj-1",
 foo() {
 console.log("obj1.foo:", this.name);
 },
 },
 obj2 = {
 name: "obj-2",
 foo() {
 console.log("obj2.foo:", this.name);
 },
 bar() {
 console.log("obj2.bar:", this.name);
 }
 },
 handlers = {
 get(target,key,context) {
 if (Reflect.has(target, key)) {
 return Reflect.get(
 target, key, context
);
 }
 // fake multiple `[[Prototype]]`
 else {
 for (var P of target[
 Symbol.for("[[Prototype]]")
]) {
 if (Reflect.has(P, key)) {
 return Reflect.get(
 P, key, context
);
 }
 }
 }
 }

222 | Chapter 7: Meta Programming

 },
 obj3 = new Proxy(
 {
 name: "obj-3",
 baz() {
 this.foo();
 this.bar();
 }
 },
 handlers
);

// fake multiple `[[Prototype]]` links
obj3[Symbol.for("[[Prototype]]")] = [
 obj1, obj2
];

obj3.baz();
// obj1.foo: obj-3
// obj2.bar: obj-3

As mentioned in the note after the earlier circu‐
lar [[Prototype]] example, we didn’t imple‐
ment the set(..) handler, but it would be
necessary for a complete solution that emulates
[[Set]] actions as normal [[Prototype]]s
behave.

obj3 is set up to multiple-delegate to both obj1 and obj2. In
obj3.baz(), the this.foo() call ends up pulling foo() from obj1
(first-come, first-served, even though there’s also a foo() on obj2).
If we reordered the linkage as obj2, obj1, the obj2.foo() would
have been found and used.

But as is, the this.bar() call doesn’t find a bar() on obj1, so it falls
over to check obj2, where it finds a match.

obj1 and obj2 represent two parallel [[Prototype]] chains of obj3.
obj1 and/or obj2 could themselves have normal [[Prototype]]
delegation to other objects, or either could themself be a proxy (like
obj3 is) that can multiple-delegate.

Just as with the circular [[Prototype]] example earlier, the defini‐
tions of obj1, obj2, and obj3 are almost entirely separate from the
generic proxy logic that handles the multiple-delegation. It would be
trivial to define a utility like setPrototypesOf(..) (notice the “s”!)

Proxies | 223

that takes a main object and a list of objects to fake the multiple
[[Prototype]] linkage to. Again, we’ll leave that as an exercise for
the reader.

Hopefully the power of proxies is now becoming clearer after these
various examples. There are many other powerful meta program‐
ming tasks that proxies enable.

Reflect API
The Reflect object is a plain object (like Math), not a function/
constructor like the other built-in natives.

It holds static functions that correspond to various meta program‐
ming tasks you can control. These functions correspond one-to-one
with the handler methods (traps) that proxies can define.

Some of the functions will look familiar as functions of the same
names on Object:

• Reflect.getOwnPropertyDescriptor(..)

• Reflect.defineProperty(..)

• Reflect.getPrototypeOf(..)

• Reflect.setPrototypeOf(..)

• Reflect.preventExtensions(..)

• Reflect.isExtensible(..)

These utilities in general behave the same as their Object.* counter‐
parts. However, one difference is that the Object.* counterparts
attempt to coerce their first argument (the target object) to an object
if it’s not already one. The Reflect.* methods simply throw an
error in that case.

An object’s keys can be accessed/inspected using these utilities:

Reflect.ownKeys(..)

Returns the list of all owned keys (not “inherited”), as returned
by both Object.getOwnPropertyNames(..) and Object.getOwn
PropertySymbols(..). See “Property Ordering” on page 226
for information about the order of keys.

224 | Chapter 7: Meta Programming

Reflect.enumerate(..)

Returns an iterator that produces the set of all nonsymbol keys
(owned and “inherited”) that are enumerable (see the this &
Object Prototypes title of this series). Essentially, this set of keys
is the same as those processed by a for..in loop. See “Property
Ordering” on page 226 for information about the order of keys.

Reflect.has(..)

Essentially the same as the in operator for checking if a prop‐
erty is on an object or its [[Prototype]] chain. For example,
Reflect.has(o,"foo") essentially performs "foo" in o.

Function calls and constructor invocations can be performed man‐
ually, separate of the normal syntax (e.g., (..) and new) using these
utilities:

Reflect.apply(..)

For example, Reflect.apply(foo,thisObj,[42,"bar"]) calls
the foo(..) function with thisObj as its this, and passes in the
42 and "bar" arguments.

Reflect.construct(..)

For example, Reflect.construct(foo,[42,"bar"]) essentially
calls new foo(42,"bar").

Object property access, setting, and deletion can be performed man‐
ually using these utilities:

Reflect.get(..)

For example, Reflect.get(o,"foo") retrieves o.foo.

Reflect.set(..)

For example, Reflect.set(o,"foo",42) essentially performs
o.foo = 42.

Reflect.deleteProperty(..)

For example, Reflect.deleteProperty(o,"foo") essentially
performs delete o.foo.

The meta programming capabilities of Reflect give you program‐
matic equivalents to emulate various syntactic features, exposing
previously hidden-only abstract operations. For example, you can
use these capabilities to extend features and APIs for domain specific
languages (DSLs).

Reflect API | 225

Property Ordering
Prior to ES6, the order used to list an object’s keys/properties was
implementation dependent and undefined by the specification. Gen‐
erally, most engines have enumerated them in creation order,
though developers have been strongly encouraged not to ever rely
on this ordering.

As of ES6, the order for listing owned properties is now defined
(ES6 specification, section 9.1.12) by the [[OwnPropertyKeys]]
algorithm, which produces all owned properties (strings or sym‐
bols), regardless of enumerability. This ordering is only guaranteed
for Reflect.ownKeys(..) (and by extension, Object.getOwnProper
tyNames(..) and Object.getOwnPropertySymbols(..)).

The ordering is:

1. First, enumerate any owned properties that are integer indexes,
in ascending numeric order.

2. Next, enumerate the rest of the owned string property names in
creation order.

3. Finally, enumerate owned symbol properties in creation order.

Consider:

var o = {};

o[Symbol("c")] = "yay";
o[2] = true;
o[1] = true;
o.b = "awesome";
o.a = "cool";

Reflect.ownKeys(o); // [1,2,"b","a",Symbol(c)]
Object.getOwnPropertyNames(o); // [1,2,"b","a"]
Object.getOwnPropertySymbols(o); // [Symbol(c)]

On the other hand, the [[Enumerate]] algorithm (ES6 specification,
section 9.1.11) produces only enumerable properties, from the tar‐
get object as well as its [[Prototype]] chain. It is used by both
Reflect.enumerate(..) and for..in. The observable ordering is
implementation dependent and not controlled by the specification.

By contrast, Object.keys(..) invokes the [[OwnPropertyKeys]]
algorithm to get a list of all owned keys. However, it filters out non-
enumerable properties and then reorders the list to match legacy

226 | Chapter 7: Meta Programming

implementation-dependent behavior, specifically with JSON.string
ify(..) and for..in. So, by extension the ordering also matches
that of Reflect.enumerate(..).

In other words, all four mechanisms (Reflect.enumerate(..),
Object.keys(..), for..in, and JSON.stringify(..)) will match
with the same implementation-dependent ordering, though they
technically get there in different ways.

Implementations are allowed to match these four to the ordering of
[[OwnPropertyKeys]], but are not required to. Nevertheless, you
will likely observe the following ordering behavior from them:

var o = { a: 1, b: 2 };
var p = Object.create(o);
p.c = 3;
p.d = 4;

for (var prop of Reflect.enumerate(p)) {
 console.log(prop);
}
// c d a b

for (var prop in p) {
 console.log(prop);
}
// c d a b

JSON.stringify(p);
// {"c":3,"d":4}

Object.keys(p);
// ["c","d"]

Boiling this all down: as of ES6, Reflect.ownKeys(..),
Object.getOwnPropertyNames(..), and Object.getOwnProperty
Symbols(..) all have predictable and reliable ordering guaranteed
by the specification. So it’s safe to build code that relies on this
ordering.

Reflect.enumerate(..), Object.keys(..), and for..in (as well as
JSON.stringification(..) by extension) continue to share an
observable ordering with each other, as they always have. But that
ordering will not necessarily be the same as that of Reflect.own
Keys(..). Care should still be taken in relying on their
implementation-dependent ordering.

Reflect API | 227

Feature Testing
What is a feature test? It’s a test you run to determine if a feature is
available or not. Sometimes, the test is not just for existence, but for
conformance to specified behavior—features can exist but be buggy.

This is a meta programming technique, to test the environment
your program runs in to then determine how your program should
behave.

The most common use of feature tests in JS is checking for the exis‐
tence of an API and if it’s not present, defining a polyfill (see Chap‐
ter 1). For example:

if (!Number.isNaN) {
 Number.isNaN = function(x) {
 return x !== x;
 };
}

The if statement in this snippet is meta programming: we’re prob‐
ing our program and its runtime environment to determine if and
how we should proceed.

But what about testing for features that involve new syntax?

You might try something like:

try {
 a = () => {};
 ARROW_FUNCS_ENABLED = true;
}
catch (err) {
 ARROW_FUNCS_ENABLED = false;
}

Unfortunately, this doesn’t work, because our JS programs are com‐
piled. Thus, the engine will choke on the () => {} syntax if it is not
already supporting ES6 arrow functions. Having a syntax error in
your program prevents it from running, which prevents your pro‐
gram from subsequently responding differently if the feature is sup‐
ported or not.

To meta program with feature tests around syntax-related features,
we need a way to insulate the test from the initial compile step our
program runs through. For instance, if we could store the code for
the test in a string, then the JS engine wouldn’t by default try to
compile the contents of that string, until we asked it to.

228 | Chapter 7: Meta Programming

Did your mind just jump to using eval(..)?

Not so fast. See the Scope & Closures title of this series for why
eval(..) is a bad idea. But there’s another option with less down‐
sides: the Function(..) constructor.

Consider:

try {
 new Function("(() => {})");
 ARROW_FUNCS_ENABLED = true;
}
catch (err) {
 ARROW_FUNCS_ENABLED = false;
}

OK, so now we’re meta programming by determining if a feature
like arrow functions can compile in the current engine or not. You
might then wonder, what would we do with this information?

With existence checks for APIs, and defining fallback API polyfills,
there’s a clear path for what to do with either test success or failure.
But what can we do with the information we get from
ARROW_FUNCS_ENABLED being true or false?

Because the syntax can’t appear in a file if the engine doesn’t support
that feature, you can’t just have different functions defined in the file
with and without the syntax in question.

What you can do is use the test to determine which of a set of JS files
you should load. For example, if you had a set of these feature tests
in a bootstrapper for your JS application, it could then test the envi‐
ronment to determine if your ES6 code can be loaded and run
directly, or if you need to load a transpiled version of your code (see
Chapter 1).

This technique is called split delivery.

It recognizes the reality that your ES6 authored JS programs will
sometimes be able to entirely run “natively” in ES6+ browsers, but
other times need transpilation to run in pre-ES6 browsers. If you
always load and use the transpiled code, even in the new ES6-
compliant environments, you’re running suboptimal code at least
some of the time. This is not ideal.

Split delivery is more complicated and sophisticated, but it repre‐
sents a more mature and robust approach to bridging the gap

Feature Testing | 229

between the code you write and the feature support in browsers
your programs must run in.

FeatureTests.io
Defining feature tests for all of the ES6+ syntax, as well as the
semantic behaviors, is a daunting task you probably don’t want to
tackle yourself. Because these tests require dynamic compilation
(new Function(..)), there’s some unfortunate performance cost.

Moreover, running these tests every single time your app runs is
probably wasteful, as on average a user’s browser only updates once
in a several week period at most, and even then, new features aren’t
necessarily showing up with every update.

Finally, managing the list of feature tests that apply to your specific
code base—rarely will your programs use the entirety of ES6—is
unruly and error-prone.

FeatureTests.io offers solutions to these frustrations.

You can load the service’s library into your page, and it loads the lat‐
est test definitions and runs all the feature tests. It does so using
background processing with Web Workers, if possible, to reduce the
performance overhead. It also uses LocalStorage persistence to cache
the results in a way that can be shared across all sites you visit which
use the service, which drastically reduces how often the tests need to
run on each browser instance.

You get runtime feature tests in each of your users’ browsers, and
you can use those tests results dynamically to serve users the most
appropriate code (no more, no less) for their environments.

Moreover, the service provides tools and APIs to scan your files to
determine what features you need, so you can fully automate your
split delivery build processes.

FeatureTests.io makes it practical to use feature tests for all parts of
ES6 and beyond to make sure that only the best code is ever loaded
and run for any given environment.

Tail Call Optimization (TCO)
Normally, when a function call is made from inside another func‐
tion, a second stack frame is allocated to separately manage the vari‐

230 | Chapter 7: Meta Programming

https://featuretests.io

ables/state of that other function invocation. Not only does this
allocation cost some processing time, but it also takes up some extra
memory.

A call stack chain typically has at most 10-15 jumps from one func‐
tion to another and another. In those scenarios, the memory usage is
not likely any kind of practical problem.

However, when you consider recursive programming (a function
calling itself repeatedly)—or mutual recursion with two or more
functions calling each other—the call stack could easily be hun‐
dreds, thousands, or more levels deep. You can probably see the
problems that could cause, if memory usage grows unbounded.

JavaScript engines have to set an arbitrary limit to prevent such pro‐
gramming techniques from crashing by running the browser and
device out of memory. That’s why we get the frustrating “RangeEr‐
ror: Maximum call stack size exceeded” thrown if the limit is hit.

The limit of call stack depth is not controlled by
the specification. It’s implementation dependent,
and will vary between browsers and devices. You
should never code with strong assumptions of
exact observable limits, as they may very well
change from release to release.

Certain patterns of function calls, called tail calls, can be optimized
in a way to avoid the extra allocation of stack frames. If the extra
allocation can be avoided, there’s no reason to arbitrarily limit the
call stack depth, so the engines can let them run unbounded.

A tail call is a return statement with a function call, where nothing
has to happen after the call except returning its value.

This optimization can only be applied in strict mode. Yet another
reason to always write all your code as strict!

Here’s a function call that is not in tail position:

"use strict";

function foo(x) {
 return x * 2;
}

function bar(x) {

Tail Call Optimization (TCO) | 231

 // not a tail call
 return 1 + foo(x);
}

bar(10); // 21

1 + .. has to be performed after the foo(x) call completes, so the
state of that bar(..) invocation needs to be preserved.

But the following snippet demonstrates calls to foo(..) and
bar(..) where both are in tail position, as they’re the last thing to
happen in their code path (other than the return):

"use strict";

function foo(x) {
 return x * 2;
}

function bar(x) {
 x = x + 1;
 if (x > 10) {
 return foo(x);
 }
 else {
 return bar(x + 1);
 }
}

bar(5); // 24
bar(15); // 32

In this program, bar(..) is clearly recursive, but foo(..) is just a
regular function call. In both cases, the function calls are in proper
tail position. The x + 1 is evaluated before the bar(..) call, and
whenever that call finishes, all that happens is the return.

Proper Tail Calls (PTC) of these forms can be optimized—called Tail
Call Optimization (TCO)—so that the extra stack frame allocation is
unnecessary. Instead of creating a new stack frame for the next func‐
tion call, the engine just reuses the existing stack frame. That works
because a function doesn’t need to preserve any of the current state,
as nothing happens with that state after the PTC.

TCO means there’s practically no limit to how deep the call stack
can be. That trick slightly improves regular function calls in normal
programs, but more importantly opens the door to using recursion

232 | Chapter 7: Meta Programming

for program expression even if the call stack could be tens of thou‐
sands of calls deep.

We’re no longer relegated to simply theorizing about recursion for
problem solving, but can actually use it in real JavaScript programs!

As of ES6, all PTC should be optimizable in this way, recursion or
not.

Tail Call Rewrite
The hitch, however, is that only PTC can be optimized; non-PTC
will still work of course, but will cause stack frame allocation as they
always did. You’ll have to be careful about structuring your func‐
tions with PTC if you expect the optimizations to kick in.

If you have a function that’s not written with PTC, you may find the
need to manually rearrange your code to be eligible for TCO.

Consider:

"use strict";

function foo(x) {
 if (x <= 1) return 1;
 return (x / 2) + foo(x - 1);
}

foo(123456); // RangeError

The call to foo(x-1) isn’t a PTC because its result has to be added to
(x / 2) before returning.

However, to make this code eligible for TCO in an ES6 engine, we
can rewrite it as follows:

"use strict";

var foo = (function(){
 function _foo(acc,x) {
 if (x <= 1) return acc;
 return _foo((x / 2) + acc, x - 1);
 }

 return function(x) {
 return _foo(1, x);
 };
})();

foo(123456); // 3810376848.5

Tail Call Optimization (TCO) | 233

If you run the previous snippet in an ES6 engine that implements
TCO, you’ll get the 3810376848.5 answer as shown. However, it’ll
still fail with a RangeError in non-TCO engines.

Non-TCO Optimizations
There are other techniques to rewrite the code so that the call stack
isn’t growing with each call.

One such technique is called trampolining, which amounts to having
each partial result represented as a function that either returns
another partial result function or the final result. Then you can sim‐
ply loop until you stop getting a function, and you’ll have the result.
Consider:

"use strict";

function trampoline(res) {
 while (typeof res == "function") {
 res = res();
 }
 return res;
}

var foo = (function(){
 function _foo(acc,x) {
 if (x <= 1) return acc;
 return function partial(){
 return _foo((x / 2) + acc, x - 1);
 };
 }

 return function(x) {
 return trampoline(_foo(1, x));
 };
})();

foo(123456); // 3810376848.5

This reworking required minimal changes to factor out the recur‐
sion into the loop in trampoline(..):

1. First, we wrapped the return _foo .. line in the return par
tial() { .. function expression.

2. Then we wrapped the _foo(1,x) call in the trampoline(..)
call.

234 | Chapter 7: Meta Programming

The reason this technique doesn’t suffer the call stack limitation is
that each of those inner partial(..) functions is just returned back
to the while loop in trampoline(..), which runs it and then loop
iterates again. In other words, partial(..) doesn’t recursively call
itself, it just returns another function. The stack depth remains con‐
stant, so it can run as long as it needs to.

Trampolining expressed in this way uses the closure that the inner
partial() function has over the x and acc variables to keep the
state from iteration to iteration. The advantage is that the looping
logic is pulled out into a reusable trampoline(..) utility function,
which many libraries provide versions of. You can reuse trampo
line(..) multiple times in your program with different trampo‐
lined algorithms.

Of course, if you really wanted to deeply optimize (and the reusabil‐
ity wasn’t a concern), you could discard the closure state and inline
the state tracking of acc into just one function’s scope along with a
loop. This technique is generally called recursion unrolling:

"use strict";

function foo(x) {
 var acc = 1;
 while (x > 1) {
 acc = (x / 2) + acc;
 x = x - 1;
 }
 return acc;
}

foo(123456); // 3810376848.5

This expression of the algorithm is simpler to read, and will likely
perform the best (strictly speaking) of the various forms we’ve
explored. That may seem like a clear winner, and you may wonder
why you would ever try the other approaches.

There are some reasons why you might not want to always manually
unroll your recursions:

• Instead of factoring out the trampolining (loop) logic for
reusability, we’ve inlined it. This works great when there’s only
one example to consider, but as soon as you have a half dozen or
more of these in your program, there’s a good chance you’ll

Tail Call Optimization (TCO) | 235

want some reusability to keep things shorter and more manage‐
able.

• The example here is deliberately simple enough to illustrate the
different forms. In practice, there are many more complications
in recursion algorithms, such as mutual recursion (more than
just one function calling itself).

The farther you go down this rabbit hole, the more manual and
intricate the unrolling optimizations are. You’ll quickly lose all the
perceived value of readability. The primary advantage of recursion,
even in the PTC form, is that it preserves the algorithm readability,
and offloads the performance optimization to the engine.

If you write your algorithms with PTC, the ES6 engine will apply
TCO to let your code run in constant stack depth (by reusing stack
frames). You get the readability of recursion with most of the perfor‐
mance benefits and no limitations of run length.

Meta?
What does TCO have to do with meta programming?

As we covered in “Feature Testing” on page 228 earlier, you can
determine at runtime what features an engine supports. This
includes TCO, though determining it is quite brute force. Consider:

"use strict";

try {
 (function foo(x){
 if (x < 5E5) return foo(x + 1);
 })(1);

 TCO_ENABLED = true;
}
catch (err) {
 TCO_ENABLED = false;
}

In a non-TCO engine, the recursive loop will fail out eventually,
throwing an exception caught by the try..catch. Otherwise, the
loop completes easily thanks to TCO.

Yuck, right?

But how could meta programming around the TCO feature (or
rather, the lack thereof) benefit our code? The simple answer is that

236 | Chapter 7: Meta Programming

you could use such a feature test to decide to load a version of your
application’s code that uses recursion, or an alternative one that’s
been converted/transpiled to not need recursion.

Self-Adjusting Code
But here’s another way of looking at the problem:

"use strict";

function foo(x) {
 function _foo() {
 if (x > 1) {
 acc = acc + (x / 2);
 x = x - 1;
 return _foo();
 }
 }

 var acc = 1;

 while (x > 1) {
 try {
 _foo();
 }
 catch (err) { }
 }

 return acc;
}

foo(123456); // 3810376848.5

This algorithm works by attempting to do as much of the work with
recursion as possible, but keeping track of the progress via scoped
variables x and acc. If the entire problem can be solved with recur‐
sion without an error, great. If the engine kills the recursion at some
point, we simply catch that with the try..catch and then try again,
picking up where we left off.

I consider this a form of meta programming in that you are probing
during runtime the ability of the engine to fully (recursively) finish
the task, and working around any (non-TCO) engine limitations
that may restrict you.

At first (or even second!) glance, my bet is this code seems much
uglier to you compared to some of the earlier versions. It also runs a
fair bit slower (on larger runs in a non-TCO environment).

Tail Call Optimization (TCO) | 237

The primary advantage, other than it being able to complete any size
task even in non-TCO engines, is that this “solution” to the recur‐
sion stack limitation is much more flexible than the trampolining or
manual unrolling techniques shown previously.

Essentially, _foo() in this case is a sort of stand-in for practically
any recursive task, even mutual recursion. The rest is the boilerplate
that should work for just about any algorithm.

The only “catch” is that to be able to resume in the event of a recur‐
sion limit being hit, the state of the recursion must be in scoped
variables that exist outside the recursive function(s). We did that by
leaving x and acc outside of the _foo() function, instead of passing
them as arguments to _foo() as earlier.

Almost any recursive algorithm can be adapted to work this way.
That means it’s the most widely applicable way of leveraging TCO
with recursion in your programs, with minimal rewriting.

This approach still uses a PTC, meaning this code will progressively
enhance from running using the loop many times (recursion
batches) in an older browser to fully leveraging TCO’d recursion in
an ES6+ environment. I think that’s pretty cool!

Review
Meta programming is when you turn the logic of your program to
focus on itself (or its runtime environment), either to inspect its
own structure or to modify it. The primary value of meta program‐
ming is to extend the normal mechanisms of the language to pro‐
vide additional capabilities.

Prior to ES6, JavaScript already had quite a bit of meta program‐
ming capability, but ES6 significantly ramps that up with several
new features.

From function name inferences for anonymous functions to meta
properties that give you information about things like how a con‐
structor was invoked, you can inspect the program structure while it
runs more than ever before. Well-Known Symbols let you override
intrinsic behaviors, such as coercion of an object to a primitive
value. Proxies can intercept and customize various low-level opera‐
tions on objects, and Reflect provides utilities to emulate them.

238 | Chapter 7: Meta Programming

Feature testing, even for subtle semantic behaviors like Tail Call
Optimization, shifts the meta programming focus from your pro‐
gram to the JS engine capabilities itself. By knowing more about
what the environment can do, your programs can adjust themselves
to the best fit as they run.

Should you meta program? My advice is: first focus on learning how
the core mechanics of the language really work. But once you fully
know what JS itself can do, it’s time to start leveraging these power‐
ful meta programming capabilities to push the language further!

Review | 239

CHAPTER 8

Beyond ES6

At the time of this writing, the final draft of ES6 (ECMAScript 2015)
is shortly headed toward its final official vote of approval by ECMA.
But even as ES6 is being finalized, the TC39 committee is already
hard at work at on features for ES7/2016 and beyond.

As we discussed in Chapter 1, it’s expected that the cadence of pro‐
gress for JS is going to accelerate from updating once every several
years to having an official version update once per year (hence the
year-based naming). That alone is going to radically change how JS
developers learn about and keep up with the language.

But even more importantly, the committee is actually going to work
feature by feature. As soon as a feature is spec-complete and has its
kinks worked out through implementation experiments in a few
browsers, that feature will be considered stable enough to start
using. We’re all strongly encouraged to adopt features once they’re
ready instead of waiting for some official standards vote. If you
haven’t already learned ES6, the time is past due to get on board!

As the time of this writing, a list of future proposals and their status
can be seen here.

Transpilers and polyfills are how we’ll bridge to these new features
even before all browsers we support have implemented them. Babel,
Traceur, and several other major transpilers already have support for
some of the post-ES6 features that are most likely to stabilize.

With that in mind, it’s already time for us to look at some of them.
Let’s jump in!

241

https://github.com/tc39/ecma262#current-proposals

These features are all in various stages of devel‐
opment. While they’re likely to land, and proba‐
bly will look similar, take the contents of this
chapter with more than a few grains of salt. This
chapter will evolve in future editions of this title
as these (and other!) features finalize.

async functions
In “Generators + Promises” on page 155 in Chapter 4, we mentioned
that there’s a proposal for direct syntactic support for the pattern of
generators yielding promises to a runner-like utility that will
resume it on promise completion. Let’s take a brief look at that pro‐
posed feature, called async function.

Recall this generator example from Chapter 4:

run(function *main() {
 var ret = yield step1();

 try {
 ret = yield step2(ret);
 }
 catch (err) {
 ret = yield step2Failed(err);
 }

 ret = yield Promise.all([
 step3a(ret),
 step3b(ret),
 step3c(ret)
]);

 yield step4(ret);
})
.then(
 function fulfilled(){
 // `*main()` completed successfully
 },
 function rejected(reason){
 // Oops, something went wrong
 }
);

The proposed async function syntax can express this same flow
control logic without needing the run(..) utility, because JS will
automatically know how to look for promises to wait and resume.
Consider:

242 | Chapter 8: Beyond ES6

async function main() {
 var ret = await step1();

 try {
 ret = await step2(ret);
 }
 catch (err) {
 ret = await step2Failed(err);
 }

 ret = await Promise.all([
 step3a(ret),
 step3b(ret),
 step3c(ret)
]);

 await step4(ret);
}

main()
.then(
 function fulfilled(){
 // `main()` completed successfully
 },
 function rejected(reason){
 // Oops, something went wrong
 }
);

Instead of the function *main() { .. declaration, we declare with
the async function main() { .. form. And instead of yielding a
promise, we await the promise. The call to run the function main()
actually returns a promise that we can directly observe. That’s the
equivalent to the promise we get back from a run(main) call.

Do you see the symmetry? async function is essentially syntactic
sugar for the generators + promises + run(..) pattern; under the
covers, it operates the same!

If you’re a C# developer and this async/await looks familiar, it’s
because this feature is directly inspired by C#’s feature. It’s nice to see
language precedence informing convergence!

Babel, Traceur, and other transpilers already have early support for
the current status of async functions, so you can start using them
already. However, in the next section, we’ll see why you perhaps
shouldn’t jump on that ship quite yet.

async functions | 243

There’s also a proposal for async function*,
which would be called an “async generator.” You
can both yield and await in the same code, and
even combine those operations in the same
statement: x = await yield y. The “async gen‐
erator” proposal seems to be more in flux—
namely, its return value is not fully worked out
yet. Some feel it should be an observable, which
is kind of like the combination of an iterator and
a promise. For now, we won’t go further into
that topic, but stay tuned as it evolves.

Caveats
One unresolved point of contention with async function is that
because it only returns a promise, there’s no way from the outside to
cancel an async function instance that’s currently running. This
can be a problem if the async operation is resource-intensive, and
you want to free up the resources as soon as you’re sure the result
won’t be needed.

For example:

async function request(url) {
 var resp = await (
 new Promise(function(resolve,reject){
 var xhr = new XMLHttpRequest();
 xhr.open("GET", url);
 xhr.onreadystatechange = function(){
 if (xhr.readyState == 4) {
 if (xhr.status == 200) {
 resolve(xhr);
 }
 else {
 reject(xhr.statusText);
 }
 }
 };
 xhr.send();
 })
);

 return resp.responseText;
}

var pr = request("http://some.url.1");

pr.then(

244 | Chapter 8: Beyond ES6

 function fulfilled(responseText){
 // ajax success
 },
 function rejected(reason){
 // Oops, something went wrong
 }
);

This request(..) that I’ve conceived is somewhat like the
fetch(..) utility that’s recently been proposed for inclusion into the
web platform. So the concern is, what happens if you want to use the
pr value to somehow indicate that you want to cancel a long-
running Ajax request, for example?

Promises are not cancelable (at the time of writing, anyway). In my
opinion, as well as many others, they never should be (see the Async
& Performance title of this series). And even if a promise did have a
cancel() method on it, does that necessarily mean that calling
pr.cancel() should actually propagate a cancelation signal all the
way back up the promise chain to the async function?

Several possible resolutions to this debate have surfaced:

• async functions won’t be cancelable at all (status quo)
• A “cancel token” can be passed to an async function at call time
• Return value changes to a cancelable-promise type that’s added
• Return value changes to something else nonpromise (e.g.,

observable, or control token with promise and cancel capabili‐
ties)

At the time of this writing, async functions return regular prom‐
ises, so it’s less likely that the return value will entirely change. But
it’s too early to tell where things will land. Keep an eye on this
discussion.

Object.observe(..)
One of the holy grails of front-end web development is data binding
—listening for updates to a data object and syncing the DOM repre‐
sentation of that data. Most JS frameworks provide some mecha‐
nism for these sorts of operations.

It appears likely that post-ES6, we’ll see support added directly to the
language, via a utility called Object.observe(..). Essentially, the

Object.observe(..) | 245

idea is that you can set up a listener to observe an object’s changes,
and have a callback called any time a change occurs. You can then
update the DOM accordingly, for instance.

There are six types of changes that you can observe:

• add

• update

• delete

• reconfigure

• setPrototype

• preventExtensions

By default, you’ll be notified of all these change types, but you can
filter down to only the ones you care about.

Consider:

var obj = { a: 1, b: 2 };

Object.observe(
 obj,
 function(changes){
 for (var change of changes) {
 console.log(change);
 }
 },
 ["add", "update", "delete"]
);

obj.c = 3;
// { name: "c", object: obj, type: "add" }

obj.a = 42;
// { name: "a", object: obj, type: "update", oldValue: 1 }

delete obj.b;
// { name: "b", object: obj, type: "delete", oldValue: 2 }

In addition to the main "add", "update", and "delete" change
types:

• The "reconfigure" change event is fired if one of the object’s
properties is reconfigured with Object.defineProperty(..),
such as changing its writable attribute. See the this & Object
Prototypes title of this series for more information.

246 | Chapter 8: Beyond ES6

• The "preventExtensions" change event is fired if the object is
made non-extensible via Object.preventExtensions(..).

Because both Object.seal(..) and Object.freeze(..) also imply
Object.preventExtensions(..), they’ll also fire its corresponding
change event. In addition, "reconfigure" change events will also be
fired for each property on the object. * The "setPrototype" change
event is fired if the [[Prototype]] of an object is changed, either by
setting it with the __proto__ setter, or using Object.setPrototy
peOf(..).

Notice that these change events are notified immediately after said
change. Don’t confuse this with proxies (see Chapter 7) where you
can intercept the actions before they occur. Object observation lets
you respond after a change (or set of changes) occurs.

Custom Change Events
In addition to the six built-in change event types, you can also listen
for and fire custom change events.

Consider:

function observer(changes){
 for (var change of changes) {
 if (change.type == "recalc") {
 change.object.c =
 change.object.oldValue +
 change.object.a +
 change.object.b;
 }
 }
}

function changeObj(a,b) {
 var notifier = Object.getNotifier(obj);

 obj.a = a * 2;
 obj.b = b * 3;

 // queue up change events into a set
 notifier.notify({
 type: "recalc",
 name: "c",
 oldValue: obj.c
 });
}

Object.observe(..) | 247

var obj = { a: 1, b: 2, c: 3 };

Object.observe(
 obj,
 observer,
 ["recalc"]
);

changeObj(3, 11);

obj.a; // 12
obj.b; // 30
obj.c; // 3

The change set ("recalc" custom event) has been queued for deliv‐
ery to the observer, but not delivered yet, which is why obj.c is still
3.

The changes are by default delivered at the end of the current event
loop (see the Async & Performance title of this series). If you want to
deliver them immediately, use Object.deliverChangeRe

cords(observer). Once the change events are delivered, you can
observe obj.c updated as expected:

obj.c; // 42

In the previous example, we called notifier.notify(..) with the
complete change event record. An alternative form for queuing
change records is to use performChange(..), which separates speci‐
fying the type of the event from the rest of event record’s properties
(via a function callback). Consider:

notifier.performChange("recalc", function(){
 return {
 name: "c",
 // `this` is the object under observation
 oldValue: this.c
 };
});

In certain circumstances, this separation of concerns may map more
cleanly to your usage pattern.

Ending Observation
Just like with normal event listeners, you may wish to stop observing
an object’s change events. For that, you use Object.unobserve(..).

For example:

248 | Chapter 8: Beyond ES6

var obj = { a: 1, b: 2 };

Object.observe(obj, function observer(changes) {
 for (var change of changes) {
 if (change.type == "setPrototype") {
 Object.unobserve(
 change.object, observer
);
 break;
 }
 }
});

In this trivial example, we listen for change events until we see the
"setPrototype" event come through, at which time we stop observ‐
ing any more change events.

Exponentiation Operator
An operator has been proposed for JavaScript to perform exponen‐
tiation in the same way that Math.pow(..) does. Consider:

var a = 2;

a ** 4; // Math.pow(a, 4) == 16

a **= 3; // a = Math.pow(a, 3)
a; // 8

** is essentially the same as it appears in Python,
Ruby, Perl, and others.

Objects Properties and ...
As we saw in “Too Many, Too Few, Just Enough” on page 30 in
Chapter 2, the ... operator is pretty obvious in how it relates to
spreading or gathering arrays. But what about objects?

Such a feature was considered for ES6, but was deferred to be con‐
sidered after ES6 (aka “ES7” or “ES2016” or …). Here’s how it might
work in that “beyond ES6” timeframe:

var o1 = { a: 1, b: 2 },
 o2 = { c: 3 },
 o3 = { ...o1, ...o2, d: 4 };

Exponentiation Operator | 249

console.log(o3.a, o3.b, o3.c, o3.d);
// 1 2 3 4

The ... operator might also be used to gather an object’s destruc‐
tured properties back into an object:

var o1 = { b: 2, c: 3, d: 4 };
var { b, ...o2 } = o1;

console.log(b, o2.c, o2.d); // 2 3 4

Here, the ...o2 re-gathers the destructured c and d properties back
into an o2 object (o2 does not have a b property like o1 does).

Again, these are just proposals under consideration beyond ES6. But
it’ll be cool if they do land.

Array#includes(..)
One extremely common task JS developers need to perform is
searching for a value inside an array of values. The way this has
always been done is:

var vals = ["foo", "bar", 42, "baz"];

if (vals.indexOf(42) >= 0) {
 // found it!
}

The reason for the >= 0 check is because indexOf(..) returns a
numeric value of 0 or greater if found, or -1 if not found. In other
words, we’re using an index-returning function in a boolean context.
But because -1 is truthy instead of falsy, we have to be more manual
with our checks.

In the Types & Grammar title of this series, I explored another pat‐
tern that I slightly prefer:

var vals = ["foo", "bar", 42, "baz"];

if (~vals.indexOf(42)) {
 // found it!
}

The ~ operator here conforms the return value of indexOf(..) to a
value range that is suitably boolean coercible. That is, -1 produces 0
(falsy), and anything else produces a nonzero (truthy) value, which
is what we for deciding if we found the value or not.

250 | Chapter 8: Beyond ES6

While I think that’s an improvement, others strongly disagree. How‐
ever, no one can argue that indexOf(..)’s searching logic is perfect.
It fails to find NaN values in the array, for example.

So a proposal has surfaced and gained a lot of support for adding a
real boolean-returning array search method, called includes(..):

var vals = ["foo", "bar", 42, "baz"];

if (vals.includes(42)) {
 // found it!
}

Array#includes(..) uses matching logic that
will find NaN values, but will not distinguish
between -0 and 0 (see the Types & Grammar
title of this series). If you don’t care about -0 val‐
ues in your programs, this will likely be exactly
what you’re hoping for. If you do care about -0,
you’ll need to do your own searching logic,
likely using the Object.is(..) utility (see
Chapter 6).

SIMD
We cover Single Instruction, Multiple Data (SIMD) in more detail in
the Async & Performance title of this series, but it bears a brief men‐
tion here, as it’s one of the next likely features to land in a future JS.

The SIMD API exposes various low-level (CPU) instructions that
can operate on more than a single number value at a time. For
example, you’ll be able to specify two vectors of 4 or 8 numbers each,
and multiply the respective elements all at once (data parallelism!).

Consider:

var v1 = SIMD.float32x4(3.14159, 21.0, 32.3, 55.55);
var v2 = SIMD.float32x4(2.1, 3.2, 4.3, 5.4);

SIMD.float32x4.mul(v1, v2);
// [6.597339, 67.2, 138.89, 299.97]

SIMD will include several other operations besides mul(..) (multi‐
plication), such as sub(), div(), abs(), neg(), sqrt(), and many
more.

SIMD | 251

Parallel math operations are critical for the next generations of high
performance JS applications.

WebAssembly (WASM)
Brendan Eich made a late-breaking announcement near the comple‐
tion of the first edition of this title that has the potential to signifi‐
cantly impact the future path of JavaScript: WebAssembly (WASM).
We will not be able to cover WASM in detail here, as it’s extremely
early at the time of this writing. But this title would be incomplete
without at least a brief mention of it.

One of the strongest pressures on the recent (and near future)
design changes of the JS language has been the desire that it become
a more suitable target for transpilation/cross-compilation from
other languages (like C/C++, ClojureScript, etc.). Obviously, perfor‐
mance of code running as JavaScript has been a primary concern.

As discussed in the Async & Performance title of this series, a few
years ago a group of developers at Mozilla introduced an idea to
JavaScript called ASM.js. ASM.js is a subset of valid JS that most sig‐
nificantly restricts certain actions that make code hard for the JS
engine to optimize. The result is that ASM.js-compatible code run‐
ning in an ASM-aware engine can run remarkably faster, nearly on
par with native optimized C equivalents. Many viewed ASM.js as the
most likely backbone on which performance-hungry applications
would ride in JavaScript.

In other words, all roads to running code in the browser lead
through JavaScript.

That is, until the WASM announcement. WASM provides an alter‐
nate path for other languages to target the browser’s runtime envi‐
ronment without having to first pass through JavaScript. Essentially,
if WASM takes off, JS engines will gain an extra capability to execute
a binary format of code that can be seen as somewhat similar to a
bytecode (like that which runs on the JVM).

WASM proposes a format for a binary representation of a highly
compressed AST (syntax tree) of code, which can then give instruc‐
tions directly to the JS engine and its underpinnings, without having
to be parsed by JS, or even behave by the rules of JS. Languages like
C or C++ can be compiled directly to the WASM format instead of

252 | Chapter 8: Beyond ES6

ASM.js, and gain an extra speed advantage by skipping the JS pars‐
ing.

The near term goal for WASM is to have parity with ASM.js and
indeed JS. But eventually, it’s expected that WASM will grow new
capabilities that surpass anything JS could do. For example, the pres‐
sure for JS to evolve radical features like threads—a change that
would certainly send major shockwaves through the JS ecosystem—
has a more hopeful future as a future WASM extension, relieving the
pressure to change JS.

In fact, this new roadmap opens up many new roads for many lan‐
guages to target the web runtime. That’s an exciting new future path
for the web platform!

What does it mean for JS? Will JS become irrelevant or “die”? Abso‐
lutely not. ASM.js will likely not see much of a future beyond the
next couple of years, but the majority of JS is quite safely anchored
in the web platform story.

Proponents of WASM suggest its success will mean that the design
of JS will be protected from pressures that would have eventually
stretched it beyond assumed breaking points of reasonability. It is
projected that WASM will become the preferred target for high-
performance parts of applications, as authored in any of a myriad of
different languages.

Interestingly, JavaScript is one of the languages less likely to target
WASM in the future. There may be future changes that carve out
subsets of JS that might be tenable for such targeting, but that path
doesn’t seem high on the priority list.

While JS likely won’t be much of a WASM funnel, JS code and
WASM code will be able to interoperate in the most significant ways,
just as naturally as current module interactions. You can imagine
calling a JS function like foo() and having that actually invoke a
WASM function of that name with the power to run well outside the
constraints of the rest of your JS.

Things that are currently written in JS will probably continue to
always be written in JS, at least for the foreseeable future. Things
that are transpiled to JS will probably eventually at least consider
targeting WASM instead. For things that need the utmost in perfor‐
mance with minimal tolerance for layers of abstraction, the likely

WebAssembly (WASM) | 253

choice will be to find a suitable non-JS language to author in, and
then targeting WASM.

There’s a good chance that this shift will be slow, and will be years in
the making. WASM landing in all the major browser platforms is
probably a few years out at best. In the meantime, the WASM
project has an early polyfill to demonstrate proof-of-concept for its
basic tenets.

But as time goes on, and as WASM learns new non-JS tricks, it’s not
too much a stretch of imagination to see some currently-JS things
being refactored to a WASM-targetable language. For example, the
performance-sensitive parts of frameworks, game engines, and
other heavily used tools might very well benefit from such a shift.
Developers using these tools in their web applications likely won’t
notice much difference in usage or integration, but will just auto‐
matically take advantage of the performance and capabilities.

What’s certain is that the more real WASM becomes over time, the
more it means to the trajectory and design of JavaScript. It’s perhaps
one of the most important “beyond ES6” topics that developers
should keep an eye on.

Review
If all the other books in this series essentially propose this challenge,
“you (may) not know JS (as much as you thought),” this book has
instead suggested, “you don’t know JS anymore.” The book has cov‐
ered a ton of new stuff added to the language in ES6. It’s an exciting
collection of new language features and paradigms that will forever
improve our JS programs.

But JS is not done with ES6! Not even close. There’s already quite a
few features in various stages of development for the “beyond ES6”
timeframe. In this chapter, we briefly looked at some of the most
likely candidates to land in JS very soon.

async functions are powerful syntactic sugar on top of the genera‐
tors + promises pattern (see Chapter 4). Object.observe(..) adds
direct native support for observing object change events, which is
critical for implementing data binding. The ** exponentiation oper‐
ator, ... for object properties, and Array#includes(..) are all sim‐
ple but helpful improvements to existing mechanisms. Finally,
SIMD ushers in a new era in the evolution of high-performance JS.

254 | Chapter 8: Beyond ES6

https://github.com/WebAssembly
https://github.com/WebAssembly

Cliché as it sounds, the future of JS is really bright! The challenge of
this series, and indeed of this book, is incumbent on every reader
now. What are you waiting for? It’s time to get learning and explor‐
ing!

Review | 255

APPENDIX A

Acknowledgments

I have many people to thank for making this book title and the over‐
all series happen.

First, I must thank my wife Christen Simpson, and my two kids
Ethan and Emily, for putting up with Dad always pecking away at
the computer. Even when not writing books, my obsession with
JavaScript glues my eyes to the screen far more than it should. That
time I borrow from my family is the reason these books can so
deeply and completely explain JavaScript to you, the reader. I owe
my family everything.

I’d like to thank my editors at O’Reilly, namely Simon St.Laurent and
Brian MacDonald, as well as the rest of the editorial and marketing
staff. They are fantastic to work with, and have been especially
accommodating during this experiment into “open source” book
writing, editing, and production.

Thank you to the many folks who have participated in making this
book series better by providing editorial suggestions and correc‐
tions, including Shelley Powers, Tim Ferro, Evan Borden, Forrest L.
Norvell, Jennifer Davis, Jesse Harlin, and many others. A big thank
you to Rick Waldron for writing the Foreword for this title.

Thank you to the countless folks in the community, including mem‐
bers of the TC39 committee, who have shared so much knowledge
with the rest of us, and especially tolerated my incessant questions
and explorations with patience and detail. John-David Dalton, Juriy
“kangax” Zaytsev, Mathias Bynens, Axel Rauschmayer, Nicholas

257

Zakas, Angus Croll, Reginald Braithwaite, Dave Herman, Brendan
Eich, Allen Wirfs-Brock, Bradley Meck, Domenic Denicola, David
Walsh, Tim Disney, Peter van der Zee, Andrea Giammarchi, Kit
Cambridge, Eric Elliott, André Bargull, Caitlin Potter, Brian Terlson,
Ingvar Stepanyan, Chris Dickinson, Luke Hoban, and so many oth‐
ers, I can’t even scratch the surface.

The You Don’t Know JS book series was born on Kickstarter, so I also
wish to thank all my (nearly) 500 generous backers, without whom
this book series could not have happened:

Jan Szpila, nokiko, Murali Krishnamoorthy, Ryan Joy, Craig Patch‐
ett, pdqtrader, Dale Fukami, ray hatfield, R0drigo Perez [Mx], Dan
Petitt, Jack Franklin, Andrew Berry, Brian Grinstead, Rob Suther‐
land, Sergi Meseguer, Phillip Gourley, Mark Watson, Jeff Carouth,
Alfredo Sumaran, Martin Sachse, Marcio Barrios, Dan, AimelyneM,
Matt Sullivan, Delnatte Pierre-Antoine, Jake Smith, Eugen Tudoran‐
cea, Iris, David Trinh, simonstl, Ray Daly, Uros Gruber, Justin
Myers, Shai Zonis, Mom & Dad, Devin Clark, Dennis Palmer, Brian
Panahi Johnson, Josh Marshall, Marshall, Dennis Kerr, Matt Steele,
Erik Slagter, Sacah, Justin Rainbow, Christian Nilsson, Delapouite,
D.Pereira, Nicolas Hoizey, George V. Reilly, Dan Reeves, Bruno
Laturner, Chad Jennings, Shane King, Jeremiah Lee Cohick, od3n,
Stan Yamane, Marko Vucinic, Jim B, Stephen Collins, Ægir
Þorsteinsson, Eric Pederson, Owain, Nathan Smith, Jeanetteurphy,
Alexandre ELISÉ, Chris Peterson, Rik Watson, Luke Matthews, Jus‐
tin Lowery, Morten Nielsen, Vernon Kesner, Chetan Shenoy, Paul
Tregoing, Marc Grabanski, Dion Almaer, Andrew Sullivan, Keith
Elsass, Tom Burke, Brian Ashenfelter, David Stuart, Karl Swedberg,
Graeme, Brandon Hays, John Christopher, Gior, manoj reddy, Chad
Smith, Jared Harbour, Minoru TODA, Chris Wigley, Daniel Mee,
Mike, Handyface, Alex Jahraus, Carl Furrow, Rob Foulkrod, Max
Shishkin, Leigh Penny Jr., Robert Ferguson, Mike van Hoenselaar,
Hasse Schougaard, rajan venkataguru, Jeff Adams, Trae Robbins,
Rolf Langenhuijzen, Jorge Antunes, Alex Koloskov, Hugh Greenish,
Tim Jones, Jose Ochoa, Michael Brennan-White, Naga Harish
Muvva, Barkóczi Dávid, Kitt Hodsden, Paul McGraw, Sascha Gold‐
hofer, Andrew Metcalf, Markus Krogh, Michael Mathews, Matt
Jared, Juanfran, Georgie Kirschner, Kenny Lee, Ted Zhang, Amit
Pahwa, Inbal Sinai, Dan Raine, Schabse Laks, Michael Tervoort,
Alexandre Abreu, Alan Joseph Williams, NicolasD, Cindy Wong,
Reg Braithwaite, LocalPCGuy, Jon Friskics, Chris Merriman, John

258 | Appendix A: Acknowledgments

Pena, Jacob Katz, Sue Lockwood, Magnus Johansson, Jeremy Crap‐
sey, Grzegorz Pawłowski, nico nuzzaci, Christine Wilks, Hans Berg‐
ren, charles montgomery, Ariel לבב-בר Fogel, Ivan Kolev, Daniel
Campos, Hugh Wood, Christian Bradford, Frédéric Harper, Ionuţ
Dan Popa, Jeff Trimble, Rupert Wood, Trey Carrico, Pancho Lopez,
Joël kuijten, Tom A Marra, Jeff Jewiss, Jacob Rios, Paolo Di Stefano,
Soledad Penades, Chris Gerber, Andrey Dolganov, Wil Moore III,
Thomas Martineau, Kareem, Ben Thouret, Udi Nir, Morgan Lau‐
pies, jory carson-burson, Nathan L Smith, Eric Damon Walters,
Derry Lozano-Hoyland, Geoffrey Wiseman, mkeehner, KatieK,
Scott MacFarlane, Brian LaShomb, Adrien Mas, christopher ross,
Ian Littman, Dan Atkinson, Elliot Jobe, Nick Dozier, Peter Wooley,
John Hoover, dan, Martin A. Jackson, Héctor Fernando Hurtado,
andy ennamorato, Paul Seltmann, Melissa Gore, Dave Pollard, Jack
Smith, Philip Da Silva, Guy Israeli, @megalithic, Damian Crawford,
Felix Gliesche, April Carter Grant, Heidi, jim tierney, Andrea Giam‐
marchi, Nico Vignola, Don Jones, Chris Hartjes, Alex Howes, john
gibbon, David J. Groom, BBox, Yu Dilys Sun, Nate Steiner, Brandon
Satrom, Brian Wyant, Wesley Hales, Ian Pouncey, Timothy Kevin
Oxley, George Terezakis, sanjay raj, Jordan Harband, Marko
McLion, Wolfgang Kaufmann, Pascal Peuckert, Dave Nugent, Mar‐
kus Liebelt, Welling Guzman, Nick Cooley, Daniel Mesquita, Robert
Syvarth, Chris Coyier, Rémy Bach, Adam Dougal, Alistair Duggin,
David Loidolt, Ed Richer, Brian Chenault, GoldFire Studios, Carles
Andrés, Carlos Cabo, Yuya Saito, roberto ricardo, Barnett Klane,
Mike Moore, Kevin Marx, Justin Love, Joe Taylor, Paul Dijou,
Michael Kohler, Rob Cassie, Mike Tierney, Cody Leroy Lindley,
tofuji, Shimon Schwartz, Raymond, Luc De Brouwer, David Hayes,
Rhys Brett-Bowen, Dmitry, Aziz Khoury, Dean, Scott Tolinski -
Level Up, Clement Boirie, Djordje Lukic, Anton Kotenko, Rafael
Corral, Philip Hurwitz, Jonathan Pidgeon, Jason Campbell, Joseph
C., SwiftOne, Jan Hohner, Derick Bailey, getify, Daniel Cousineau,
Chris Charlton, Eric Turner, David Turner, Joël Galeran, Dharma
Vagabond, adam, Dirk van Bergen, dave ♥♫★ furf, Vedran Zakanj,
Ryan McAllen, Natalie Patrice Tucker, Eric J. Bivona, Adam Spoo‐
ner, Aaron Cavano, Kelly Packer, Eric J, Martin Drenovac, Emilis,
Michael Pelikan, Scott F. Walter, Josh Freeman, Brandon Hudgeons,
vijay chennupati, Bill Glennon, Robin R., Troy Forster, otaku_coder,
Brad, Scott, Frederick Ostrander, Adam Brill, Seb Flippence,
Michael Anderson, Jacob, Adam Randlett, Standard, Joshua Clan‐
ton, Sebastian Kouba, Chris Deck, SwordFire, Hannes Papenberg,

Acknowledgments | 259

Richard Woeber, hnzz, Rob Crowther, Jedidiah Broadbent, Sergey
Chernyshev, Jay-Ar Jamon, Ben Combee, luciano bonachela, Mark
Tomlinson, Kit Cambridge, Michael Melgares, Jacob Adams, Adrian
Bruinhout, Bev Wieber, Scott Puleo, Thomas Herzog, April Leone,
Daniel Mizieliński, Kees van Ginkel, Jon Abrams, Erwin Heiser, Avi
Laviad, David newell, Jean-Francois Turcot, Niko Roberts, Erik
Dana, Charles Neill, Aaron Holmes, Grzegorz Ziółkowski, Nathan
Youngman, Timothy, Jacob Mather, Michael Allan, Mohit Seth, Ryan
Ewing, Benjamin Van Treese, Marcelo Santos, Denis Wolf, Phil
Keys, Chris Yung, Timo Tijhof, Martin Lekvall, Agendine, Greg
Whitworth, Helen Humphrey, Dougal Campbell, Johannes Harth,
Bruno Girin, Brian Hough, Darren Newton, Craig McPheat, Olivier
Tille, Dennis Roethig, Mathias Bynens, Brendan Stromberger, sun‐
deep, John Meyer, Ron Male, John F Croston III, gigante, Carl Ber‐
genhem, B.J. May, Rebekah Tyler, Ted Foxberry, Jordan Reese, Terry
Suitor, afeliz, Tom Kiefer, Darragh Duffy, Kevin Vanderbeken, Andy
Pearson, Simon Mac Donald, Abid Din, Chris Joel, Tomas Theunis‐
sen, David Dick, Paul Grock, Brandon Wood, John Weis, dgrebb,
Nick Jenkins, Chuck Lane, Johnny Megahan, marzsman, Tatu Tam‐
minen, Geoffrey Knauth, Alexander Tarmolov, Jeremy Tymes, Chad
Auld, Sean Parmelee, Rob Staenke, Dan Bender, Yannick derwa,
Joshua Jones, Geert Plaisier, Tom LeZotte, Christen Simpson, Stefan
Bruvik, Justin Falcone, Carlos Santana, Michael Weiss, Pablo Villos‐
lada, Peter deHaan, Dimitris Iliopoulos, seyDoggy, Adam Jordens,
Noah Kantrowitz, Amol M, Matthew Winnard, Dirk Ginader, Phi‐
nam Bui, David Rapson, Andrew Baxter, Florian Bougel, Michael
George, Alban Escalier, Daniel Sellers, Sasha Rudan, John Green,
Robert Kowalski, David I. Teixeira (@ditma, Charles Carpenter, Jus‐
tin Yost, Sam S, Denis Ciccale, Kevin Sheurs, Yannick Croissant, Pau
Fracés, Stephen McGowan, Shawn Searcy, Chris Ruppel, Kevin
Lamping, Jessica Campbell, Christopher Schmitt, Sablons, Jonathan
Reisdorf, Bunni Gek, Teddy Huff, Michael Mullany, Michael Für‐
stenberg, Carl Henderson, Rick Yoesting, Scott Nichols, Hernán
Ciudad, Andrew Maier, Mike Stapp, Jesse Shawl, Sérgio Lopes, jsu‐
lak, Shawn Price, Joel Clermont, Chris Ridmann, Sean Timm, Jason
Finch, Aiden Montgomery, Elijah Manor, Derek Gathright, Jesse
Harlin, Dillon Curry, Courtney Myers, Diego Cadenas, Arne de
Bree, João Paulo Dubas, James Taylor, Philipp Kraeutli, Mihai Păun,
Sam Gharegozlou, joshjs, Matt Murchison, Eric Windham, Timo
Behrmann, Andrew Hall, joshua price, Théophile Villard

260 | Appendix A: Acknowledgments

This book series is being produced in an open source fashion,
including editing and production. We owe GitHub a debt of grati‐
tude for making that sort of thing possible for the community!

Thank you again to all the countless folks I didn’t name but who I
nonetheless owe thanks. May this book series be “owned” by all of us
and serve to contribute to increasing awareness and understanding
of the JavaScript language, to the benefit of all current and future
community contributors.

Acknowledgments | 261

About the Author
Kyle Simpson is an Open Web Evangelist who’s passionate about all
things JavaScript. He’s an author, workshop trainer, tech speaker,
and OSS contributor/leader.

Colophon
The cover font for ES6 & Beyond is Interstate. The text font is Adobe
Minion Pro; the heading font is Adobe Myriad Condensed; and the
code font is Dalton Maag’s Ubuntu Mono.

	Copyright
	Table of Contents
	Foreword
	Preface
	Mission
	Review
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us

	Chapter 1. ES? Now & Future
	Versioning
	Transpiling
	Shims/Polyfills

	Review

	Chapter 2. Syntax
	Block-Scoped Declarations
	let Declarations
	const Declarations
	Block-Scoped Functions

	Spread/Rest
	Default Parameter Values
	Default Value Expressions

	Destructuring
	Object Property Assignment Pattern
	Not Just Declarations
	Repeated Assignments
	Too Many, Too Few, Just Enough
	Default Value Assignment
	Nested Destructuring
	Destructuring Parameters

	Object Literal Extensions
	Concise Properties
	Concise Methods
	Computed Property Names
	Setting [[Prototype]]
	Object super

	Template Literals
	Interpolated Expressions
	Tagged Template Literals

	Arrow Functions
	Not Just Shorter Syntax, But this

	for..of Loops
	Regular Expressions
	Unicode Flag
	Sticky Flag
	Regular Expression flags

	Number Literal Extensions
	Unicode
	Unicode-Aware String Operations
	Character Positioning
	Unicode Identifier Names

	Symbols
	Symbol Registry
	Symbols as Object Properties

	Review

	Chapter 3. Organization
	Iterators
	Interfaces
	next() Iteration
	Optional: return(..) and throw(..)
	Iterator Loop
	Custom Iterators
	Iterator Consumption

	Generators
	Syntax
	Iterator Control
	Early Completion
	Error Handling
	Transpiling a Generator
	Generator Uses

	Modules
	The Old Way
	Moving Forward
	The New Way
	Circular Module Dependency
	Module Loading

	Classes
	class
	extends and super
	new.target
	static

	Review

	Chapter 4. Async Flow Control
	Promises
	Making and Using Promises
	Thenables
	Promise API

	Generators + Promises
	Review

	Chapter 5. Collections
	TypedArrays
	Endianness
	Multiple Views
	Typed Array Constructors

	Maps
	Map Values
	Map Keys

	WeakMaps
	Sets
	Set Iterators

	WeakSets
	Review

	Chapter 6. API Additions
	Array
	Array.of(..) Static Function
	Array.from(..) Static Function
	Creating Arrays and Subtypes
	copyWithin(..) Prototype Method
	fill(..) Prototype Method
	find(..) Prototype Method
	findIndex(..) Prototype Method
	entries(), values(), keys() Prototype Methods

	Object
	Object.is(..) Static Function
	Object.getOwnPropertySymbols(..) Static Function
	Object.setPrototypeOf(..) Static Function
	Object.assign(..) Static Function

	Math
	Number
	Static Properties
	Number.isNaN(..) Static Function
	Number.isFinite(..) Static Function
	Integer-Related Static Functions

	String
	Unicode Functions
	String.raw(..) Static Function
	repeat(..) Prototype Function
	String Inspection Functions

	Review

	Chapter 7. Meta Programming
	Function Names
	Inferences

	Meta Properties
	Well-Known Symbols
	Symbol.iterator
	Symbol.toStringTag and Symbol.hasInstance
	Symbol.species
	Symbol.toPrimitive
	Regular Expression Symbols
	Symbol.isConcatSpreadable
	Symbol.unscopables

	Proxies
	Proxy Limitations
	Revocable Proxies
	Using Proxies

	Reflect API
	Property Ordering

	Feature Testing
	FeatureTests.io

	Tail Call Optimization (TCO)
	Tail Call Rewrite
	Non-TCO Optimizations
	Meta?

	Review

	Chapter 8. Beyond ES6
	async functions
	Caveats

	Object.observe(..)
	Custom Change Events
	Ending Observation

	Exponentiation Operator
	Objects Properties and ...
	Array#includes(..)
	SIMD
	WebAssembly (WASM)
	Review

	Appendix A. Acknowledgments
	About the Author

