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Foreword

When I was a young child, I would often enjoy taking things apart and
putting them back together again—old mobile phones, hi-fi stereos,
and anything else I could get my hands on. I was too young to really
use these devices, but whenever one broke, I would instantly ask if I
could figure out how it worked.

I remember once looking at a circuit board for an old radio. It had this
weird long tube with copper wire wrapped around it. I couldn’t work
out its purpose, but I immediately went into research mode. What does
it do? Why is it in a radio? It doesn’t look like the other parts of the
circuit board, why? Why does it have copper wrapped around it? What
happens if I remove the copper?! Now I know it was a loop antenna,
made by wrapping copper wire around a ferrite rod, which are often
used in transistor radios.

Did you ever become addicted to figuring out all of the answers to
every why question? Most children do. In fact it is probably my favorite
thing about children—their desire to learn.

Unfortunately, now I’m considered a professional and spend my days
making things. When I was young, I loved the idea of one day making
the things that I took apart. Of course, most things I make now are
with JavaScript and not ferrite rods…but close enough! However, de‐
spite once loving the idea of making things, I now find myself longing
for the desire to figure things out. Sure, I often figure out the best way
to solve a problem or fix a bug, but I rarely take the time to question
my tools.

And that is exactly why I am so excited about this “You Don’t Know
JS” series of books. Because it’s right. I don’t know JS. I use JavaScript
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day in, day out and have done for many years, but do I really under‐
stand it? No. Sure, I understand a lot of it and I often read the specs
and the mailing lists, but no, I don’t understand as much as my inner
six-year-old wishes I did.

Scope and Closures is a brilliant start to the series. It is very well targeted
at people like me (and hopefully you, too). It doesn’t teach JavaScript
as if you’ve never used it, but it does make you realize how little about
the inner workings you probably know. It is also coming out at the
perfect time: ES6 is finally settling down and implementation across
browsers is going well. If you’ve not yet made time for learning the
new features (such as let and const), this book will be a great intro‐
duction.

So I hope that you enjoy this book, but moreso, that Kyle’s way of
critically thinking about how every tiny bit of the language works will
creep into your mindset and general workflow. Instead of just using
the antenna, figure out how and why it works.

—Shane Hudson
www.shanehudson.net
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Preface

I’m sure you noticed, but “JS” in the book series title is not an abbre‐
viation for words used to curse about JavaScript, though cursing at the
language’s quirks is something we can probably all identify with!

From the earliest days of the Web, JavaScript has been a foundational
technology that drives interactive experience around the content we
consume. While flickering mouse trails and annoying pop-up
prompts may be where JavaScript started, nearly two decades later, the
technology and capability of JavaScript has grown many orders of
magnitude, and few doubt its importance at the heart of the world’s
most widely available software platform: the Web.

But as a language, it has perpetually been a target for a great deal of
criticism, owing partly to its heritage but even more to its design phi‐
losophy. Even the name evokes, as Brendan Eich once put it, “dumb
kid brother” status next to its more mature older brother, Java. But the
name is merely an accident of politics and marketing. The two lan‐
guages are vastly different in many important ways. “JavaScript” is as
related to “Java” as “Carnival” is to “Car.”

Because JavaScript borrows concepts and syntax idioms from several
languages, including proud C-style procedural roots as well as subtle,
less obvious Scheme/Lisp-style functional roots, it is exceedingly ap‐
proachable to a broad audience of developers, even those with just
little to no programming experience. The “Hello World” of JavaScript
is so simple that the language is inviting and easy to get comfortable
with in early exposure.

While JavaScript is perhaps one of the easiest languages to get up and
running with, its eccentricities make solid mastery of the language a
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vastly less common occurrence than in many other languages. Where
it takes a pretty in-depth knowledge of a language like C or C++ to
write a full-scale program, full-scale production JavaScript can, and
often does, barely scratch the surface of what the language can do.

Sophisticated concepts that are deeply rooted into the language tend
instead to surface themselves in seemingly simplistic ways, such as
passing around functions as callbacks, which encourages the Java‐
Script developer to just use the language as-is and not worry too much
about what’s going on under the hood.

It is simultaneously a simple, easy-to-use language that has broad ap‐
peal and a complex and nuanced collection of language mechanics that
without careful study will elude true understanding even for the most
seasoned of JavaScript developers.

Therein lies the paradox of JavaScript, the Achilles’ heel of the lan‐
guage, the challenge we are presently addressing. Because JavaScript
can be used without understanding, the understanding of the language
is often never attained.

Mission
If at every point that you encounter a surprise or frustration in Java‐
Script, your response is to add it to the blacklist, as some are accus‐
tomed to doing, you soon will be relegated to a hollow shell of the
richness of JavaScript.

While this subset has been famoulsy dubbed “The Good Parts,” I would
implore you, dear reader, to instead consider it the “The Easy Parts,”
“The Safe Parts,” or even “The Incomplete Parts.”

This “You Don’t Know JavaScript” book series offers a contrary chal‐
lenge: learn and deeply understand all of JavaScript, even and espe‐
cially “The Tough Parts.”

Here, we address head on the tendency of JS developers to learn “just
enough” to get by, without ever forcing themselves to learn exactly
how and why the language behaves the way it does. Furthermore, we
eschew the common advice to retreat when the road gets rough.

I am not content, nor should you be, at stopping once something just
works, and not really knowing why. I gently challenge you to journey
down that bumpy “road less traveled” and embrace all that JavaScript
is and can do. With that knowledge, no technique, no framework, no
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popular buzzword acronym of the week, will be beyond your under‐
standing.

These books each take on specific core parts of the language that are
most commonly misunderstood or under-understood, and dive very
deep and exhaustively into them. You should come away from reading
with a firm confidence in your understanding, not just of the theo‐
retical, but the practical “what you need to know” bits.

The JavaScript you know right now is probably parts handed down to
you by others who’ve been burned by incomplete understanding. That
JavaScript is but a shadow of the true language. You don’t really know
JavaScript, yet, but if you dig into this series, you will. Read on, my
friends. JavaScript awaits you.

Review
JavaScript is awesome. It’s easy to learn partially, but much harder to
learn completely (or even sufficiently). When developers encounter
confusion, they usually blame the language instead of their lack of
understanding. These books aim to fix that, inspiring a strong appre‐
ciation for the language you can now, and should, deeply know.

Many of the examples in this book assume modern (and future-
reaching) JavaScript engine environments, such as ECMA‐
Script version 6 (ES6). Some code may not work as described
if run in older (pre-ES6) environments.

Conventions Used in This Book
The following typographical conventions are used in this book:
Italic

Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to
program elements such as variable or function names, databases,
data types, environment variables, statements, and keywords.
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Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for
download at http://bit.ly/1c8HEWF.

This book is here to help you get your job done. In general, if example
code is offered with this book, you may use it in your programs and
documentation. You do not need to contact us for permission unless
you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book
does not require permission. Selling or distributing a CD-ROM of
examples from O’Reilly books does require permission. Answering a
question by citing this book and quoting example code does not re‐
quire permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require per‐
mission.
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We appreciate, but do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Scope
and Closures by Kyle Simpson (O’Reilly). Copyright 2014 Kyle Simp‐
son, 978-1-449-33558-8.”

If you feel your use of code examples falls outside fair use or the per‐
mission given above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital li‐
brary that delivers expert content in both book and
video form from the world’s leading authors in
technology and business.

Technology professionals, software developers, web designers, and
business and creative professionals use Safari Books Online as their
primary resource for research, problem solving, learning, and certif‐
ication training.

Safari Books Online offers a range of product mixes and pricing pro‐
grams for organizations, government agencies, and individuals. Sub‐
scribers have access to thousands of books, training videos, and pre‐
publication manuscripts in one fully searchable database from pub‐
lishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal
Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kaufmann,
IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New
Riders, McGraw-Hill, Jones & Bartlett, Course Technology, and doz‐
ens more. For more information about Safari Books Online, please
visit us online.

How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)
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We have a web page for this book, where we list errata, examples, and
any additional information. You can access this page at http://oreil.ly/
JS_scope_and_closures.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Check out the full You Don’t Know JS series: http://YouDont
KnowJS.com
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CHAPTER 1

What Is Scope?

One of the most fundamental paradigms of nearly all programming
languages is the ability to store values in variables, and later retrieve
or modify those values. In fact, the ability to store values and pull
values out of variables is what gives a program state.

Without such a concept, a program could perform some tasks, but
they would be extremely limited and not terribly interesting.

But the inclusion of variables into our program begets the most in‐
teresting questions we will now address: where do those variables
live? In other words, where are they stored? And, most important, how
does our program find them when it needs them?

These questions speak to the need for a well-defined set of rules for
storing variables in some location, and for finding those variables at a
later time. We’ll call that set of rules: scope.

But, where and how do these scope rules get set?

Compiler Theory
It may be self-evident, or it may be surprising, depending on your level
of interaction with various languages, but despite the fact that Java‐
Script falls under the general category of “dynamic” or “interpreted”
languages, it is in fact a compiled language. It is not compiled well in
advance, as are many traditionally compiled languages, nor are the
results of compilation portable among various distributed systems.
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But, nevertheless, the JavaScript engine performs many of the same
steps, albeit in more sophisticated ways than we may commonly be
aware, of any traditional language compiler.

In traditional compiled-language process, a chunk of source code,
your program, will undergo typically three steps before it is executed,
roughly called “compilation”:
Tokenizing/Lexing

Breaking up a string of characters into meaningful (to the lan‐
guage) chunks, called tokens. For instance, consider the program
var a = 2;. This program would likely be broken up into the
following tokens: var, a, =, 2, and ;. Whitespace may or may not
be persisted as a token, depending on whether its meaningful or
not.

The difference between tokenizing and lexing is subtle and
academic, but it centers on whether or not these tokens
are identified in a stateless or stateful way. Put simply, if
the tokenizer were to invoke stateful parsing rules to fig‐
ure out whether a should be considered a distinct token
or just part of another token, that would be lexing.

Parsing
taking a stream (array) of tokens and turning it into a tree of nested
elements, which collectively represent the grammatical structure
of the program. This tree is called an “AST” (abstract syntax tree).

The tree for var a = 2; might start with a top-level node called
VariableDeclaration, with a child node called Identifier
(whose value is a), and another child called AssignmentExpres
sion, which itself has a child called NumericLiteral (whose value
is 2).

Code-Generation
The process of taking an AST and turning it into executable code.
This part varies greatly depending on the language, the platform
it’s targeting, and so on.

So, rather than get mired in details, we’ll just handwave and say
that there’s a way to take our previously described AST for var a
= 2; and turn it into a set of machine instructions to actually create
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a variable called a (including reserving memory, etc.), and then
store a value into a.

The details of how the engine manages system resources
are deeper than we will dig, so we’ll just take it for gran‐
ted that the engine is able to create and store variables as
needed.

The JavaScript engine is vastly more complex than just those three
steps, as are most other language compilers. For instance, in the
process of parsing and code-generation, there are certainly steps to
optimize the performance of the execution, including collapsing re‐
dundant elements, etc.

So, I’m painting only with broad strokes here. But I think you’ll see
shortly why these details we do cover, even at a high level, are relevant.

For one thing, JavaScript engines don’t get the luxury (like other lan‐
guage compilers) of having plenty of time to optimize, because Java‐
Script compilation doesn’t happen in a build step ahead of time, as
with other languages.

For JavaScript, the compilation that occurs happens, in many cases,
mere microseconds (or less!) before the code is executed. To ensure
the fastest performance, JS engines use all kinds of tricks (like JITs,
which lazy compile and even hot recompile, etc.) that are well beyond
the “scope” of our discussion here.

Let’s just say, for simplicity sake, that any snippet of JavaScript has to
be compiled before (usually right before!) it’s executed. So, the JS com‐
piler will take the program var a = 2; and compile it first, and then
be ready to execute it, usually right away.

Understanding Scope
The way we will approach learning about scope is to think of the pro‐
cess in terms of a conversation. But, who is having the conversation?

The Cast
Let’s meet the cast of characters that interact to process the program
var a = 2;, so we understand their conversations that we’ll listen in
on shortly:

Understanding Scope | 3



Engine
Responsible for start-to-finish compilation and execution of our
JavaScript program.

Compiler
One of Engine’s friends; handles all the dirty work of parsing and
code-generation (see previous section).

Scope
Another friend of Engine; collects and maintains a look-up list of
all the declared identifiers (variables), and enforces a strict set of
rules as to how these are accessible to currently executing code.

For you to fully understand how JavaScript works, you need to begin
to think like Engine (and friends) think, ask the questions they ask,
and answer those questions the same.

Back and Forth
When you see the program var a = 2;, you most likely think of that
as one statement. But that’s not how our new friend Engine sees it. In
fact, Engine sees two distinct statements, one that Compiler will handle
during compilation, and one that Engine will handle during execution.

So, let’s break down how Engine and friends will approach the program
var a = 2;.

The first thing Compiler will do with this program is perform lexing
to break it down into tokens, which it will then parse into a tree. But
when Compiler gets to code generation, it will treat this program
somewhat differently than perhaps assumed.

A reasonable assumption would be that Compiler will produce code
that could be summed up by this pseudocode: “Allocate memory for
a variable, label it a, then stick the value 2 into that variable.” Unfortu‐
nately, that’s not quite accurate.

Compiler will instead proceed as:

1. Encountering var a, Compiler asks Scope to see if a variable a
already exists for that particular scope collection. If so, Compiler
ignores this declaration and moves on. Otherwise, Compiler asks
Scope to declare a new variable called a for that scope collection.

2. Compiler then produces code for Engine to later execute, to han‐
dle the a = 2 assignment. The code Engine runs will first ask Scope
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if there is a variable called a accessible in the current scope col‐
lection. If so, Engine uses that variable. If not, Engine looks else‐
where (see “Nested Scope” on page 8).

If Engine eventually finds a variable, it assigns the value 2 to it. If not,
Engine will raise its hand and yell out an error!

To summarize: two distinct actions are taken for a variable assignment:
First, Compiler declares a variable (if not previously declared) in the
current Scope, and second, when executing, Engine looks up the vari‐
able in Scope and assigns to it, if found.

Compiler Speak
We need a little bit more compiler terminology to proceed further with
understanding.

When Engine executes the code that Compiler produced for step 2, it
has to look up the variable a to see if it has been declared, and this
look-up is consulting Scope. But the type of look-up Engine performs
affects the outcome of the look-up.

In our case, it is said that Engine would be performing an LHS look-
up for the variable a. The other type of look-up is called RHS.

I bet you can guess what the “L” and “R” mean. These terms stand for
lefthand side and righthand side.

Side…of what? Of an assignment operation.

In other words, an LHS look-up is done when a variable appears on
the lefthand side of an assignment operation, and an RHS look-up is
done when a variable appears on the righthand side of an assignment
operation.

Actually, let’s be a little more precise. An RHS look-up is indistin‐
guishable, for our purposes, from simply a look-up of the value of some
variable, whereas the LHS look-up is trying to find the variable con‐
tainer itself, so that it can assign. In this way, RHS doesn’t really mean
“righthand side of an assignment” per se, it just, more accurately,
means “not lefthand side”.

Being slightly glib for a moment, you could think RHS instead means
“retrieve his/her source (value),” implying that RHS means “go get the
value of…”
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Let’s dig into that deeper.

When I say:

console.log( a );

The reference to a is an RHS reference, because nothing is being as‐
signed to a here. Instead, we’re looking up to retrieve the value of a,
so that the value can be passed to console.log(..).

By contrast:

a = 2;

The reference to a here is an LHS reference, because we don’t actually
care what the current value is, we simply want to find the variable as
a target for the = 2 assignment operation.

LHS and RHS meaning “left/righthand side of an assigment”
doesn’t necessarily literally mean “left/right side of the = as‐
signment operator.” There are several other ways that assign‐
ments happen, and so it’s better to conceptually think about it
as: “Who’s the target of the assignment (LHS)?” and “Who’s the
source of the assignment (RHS)?”

Consider this program, which has both LHS and RHS references:

function foo(a) {
    console.log( a ); // 2
}

foo( 2 );

The last line that invokes foo(..) as a function call requires an RHS
reference to foo, meaning, “Go look up the value of foo, and give it to
me.” Moreover, (..) means the value of foo should be executed, so
it’d better actually be a function!

There’s a subtle but important assignment here.

You may have missed the implied a = 2 in this code snippet. It happens
when the value 2 is passed as an argument to the foo(..) function, in
which case the 2 value is assigned to the parameter a. To (implicitly)
assign to parameter a, an LHS look-up is performed.

There’s also an RHS reference for the value of a, and that resulting
value is passed to console.log(..). console.log(..) needs a
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reference to execute. It’s an RHS look-up for the console object, then
a property resolution occurs to see if it has a method called log.

Finally, we can conceptualize that there’s an LHS/RHS exchange of
passing the value 2 (by way of variable a’s RHS look-up) into
log(..). Inside of the native implementation of log(..), we can as‐
sume it has parameters, the first of which (perhaps called arg1) has an
LHS reference look-up, before assigning 2 to it.

You might be tempted to conceptualize the function declara‐
tion function foo(a) {… as a normal variable declaration and
assignment, such as var foo and foo = function(a){…. In so
doing, it would be tempting to think of this function declara‐
tion as involving an LHS look-up.
However, the subtle but important difference is that Compil‐
er handles both the declaration and the value definition dur‐
ing code-generation, such that when Engine is executing code,
there’s no processing necessary to “assign” a function value to
foo. Thus, it’s not really appropriate to think of a function
declaration as an LHS look-up assignment in the way we’re
discussing them here.

Engine/Scope Conversation
function foo(a) {
    console.log( a ); // 2
}

foo( 2 );

Let’s imagine the above exchange (which processes this code snippet)
as a conversation. The conversation would go a little something like
this:

Engine: Hey Scope, I have an RHS reference for foo. Ever heard of it?
Scope: Why yes, I have. Compiler declared it just a second ago. It’s a
function. Here you go.
Engine: Great, thanks! OK, I’m executing foo.
Engine: Hey, Scope, I’ve got an LHS reference for a, ever heard of it?
Scope: Why yes, I have. Compiler declared it as a formal parameter
to foo just recently. Here you go.
Engine: Helpful as always, Scope. Thanks again. Now, time to assign
2 to a.
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Engine: Hey, Scope, sorry to bother you again. I need an RHS look-
up for console. Ever heard of it?
Scope: No problem, Engine, this is what I do all day. Yes, I’ve got
console. It’s built-in. Here ya go.
Engine: Perfect. Looking up log(..). OK, great, it’s a function.
Engine: Yo, Scope. Can you help me out with an RHS reference to a.
I think I remember it, but just want to double-check.
Scope: You’re right, Engine. Same variable, hasn’t changed. Here ya
go.
Engine: Cool. Passing the value of a, which is 2, into log(..).
…

Quiz
Check your understanding so far. Make sure to play the part of Engine
and have a “conversation” with Scope:

function foo(a) {
    var b = a;
    return a + b;
}

var c = foo( 2 );

1. Identify all the LHS look-ups (there are 3!).
2. Identify all the RHS look-ups (there are 4!).

See the chapter review for the quiz answers!

Nested Scope
We said that Scope is a set of rules for looking up variables by their
identifier name. There’s usually more than one scope to consider,
however.

Just as a block or function is nested inside another block or function,
scopes are nested inside other scopes. So, if a variable cannot be found
in the immediate scope, Engine consults the next outercontaining
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scope, continuing until is found or until the outermost (a.k.a., global)
scope has been reached.

Consider the following:

function foo(a) {
    console.log( a + b );
}

var b = 2;

foo( 2 ); // 4

The RHS reference for b cannot be resolved inside the function foo,
but it can be resolved in the scope surrounding it (in this case, the
global).

So, revisiting the conversations between Engine and Scope, we’d over‐
hear:

Engine: “Hey, Scope of foo, ever heard of b? Got an RHS reference for
it.”
Scope: “Nope, never heard of it. Go fish.”
Engine: “Hey, Scope outside of foo, oh you’re the global scope, OK
cool. Ever heard of b? Got an RHS reference for it.”
Scope: “Yep, sure have. Here ya go.”

The simple rules for traversing nested scope: Engine starts at the cur‐
rently executing scope, looks for the variable there, then if not found,
keeps going up one level, and so on. If the outermost global scope is
reached, the search stops, whether it finds the variable or not.

Building on Metaphors
To visualize the process of nested scope resolution, I want you to think
of this tall building:
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The building represents our program’s nested scope ruleset. The first
floor of the building represents your currently executing scope, wher‐
ever you are. The top level of the building is the global scope.

You resolve LHS and RHS references by looking on your current floor,
and if you don’t find it, taking the elevator to the next floor, looking
there, then the next, and so on. Once you get to the top floor (the global
scope), you either find what you’re looking for, or you don’t. But you
have to stop regardless.

Errors
Why does it matter whether we call it LHS or RHS?

Because these two types of look-ups behave differently in the circum‐
stance where the variable has not yet been declared (is not found in
any consulted scope).

Consider:
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1. See the MDN’s break down of Strict Mode

function foo(a) {
    console.log( a + b );
    b = a;
}

foo( 2 );

When the RHS look-up occurs for b the first time, it will not be found.
This is said to be an “undeclared” variable, because it is not found in
the scope.

If an RHS look-up fails to ever find a variable, anywhere in the nested
scopes, this results in a ReferenceError being thrown by the engine.
It’s important to note that the error is of the type ReferenceError.

By contrast, if the engine is performing an LHS look-up, and it arrives
at the top floor (global scope) without finding it, if the program is not
running in “Strict Mode,”1 then the global scope will create a new vari‐
able of that name in the global scope, and hand it back to Engine.

“No, there wasn’t one before, but I was helpful and created one for you.”

“Strict Mode,” which was added in ES5, has a number of different be‐
haviors from normal/relaxed/lazy mode. One such behavior is that it
disallows the automatic/implicit global variable creation. In that case,
there would be no global scoped variable to hand back from an LHS
look-up, and Engine would throw a ReferenceError similarly to the
RHS case.

Now, if a variable is found for an RHS look-up, but you try to do
something with its value that is impossible, such as trying to execute-
as-function a nonfunction value, or reference a property on a null or
undefined value, then Engine throws a different kind of error, called
a TypeError.

ReferenceError is scope resolution-failure related, whereas TypeEr
ror implies that scope resolution was successful, but that there was an
illegal/impossible action attempted against the result.

Review
Scope is the set of rules that determines where and how a variable
(identifier) can be looked up. This look-up may be for the purposes of
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assigning to the variable, which is an LHS (lefthand-side) reference,
or it may be for the purposes of retrieving its value, which is an RHS
(righthand-side) reference.

LHS references result from assignment operations. Scope-related as‐
signments can occur either with the = operator or by passing argu‐
ments to (assign to) function parameters.

The JavaScript engine first compiles code before it executes, and in so
doing, it splits up statements like var a = 2; into two separate steps:

1. First, var a to declare it in that scope. This is performed at the
beginning, before code execution.

2. Later, a = 2 to look up the variable (LHS reference) and assign to
it if found.

Both LHS and RHS reference look-ups start at the currently executing
scope, and if need be (that is, they don’t find what they’re looking for
there), they work their way up the nested scope, one scope (floor) at a
time, looking for the identifier, until they get to the global (top floor)
and stop, and either find it, or don’t.

Unfulfilled RHS references result in ReferenceErrors being thrown.
Unfulfilled LHS references result in an automatic, implicitly created
global of that name (if not in Strict Mode), or a ReferenceError (if in
Strict Mode).

Quiz Answers
function foo(a) {
    var b = a;
    return a + b;
}

var c = foo( 2 );

1. Identify all the LHS look-ups (there are 3!).
c = ..;, a = 2 (implicit param assignment) and b = ..

2. Identify all the RHS look-ups (there are 4!).
foo(2.., = a;, a .. and .. b
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CHAPTER 2

Lexical Scope

In Chapter 1, we defined “scope” as the set of rules that govern how
the engine can look up a variable by its identifier name and find it,
either in the current scope, or in any of the nested scopes it’s contained
within.

There are two predominant models for how scope works. The first of
these is by far the most common, used by the vast majority of pro‐
gramming languages. It’s called lexical scope, and we will examine it in
depth. The other model, which is still used by some languages (such
as Bash scripting, some modes in Perl, etc) is called dynamic scope.

Dynamic scope is covered in Appendix A. I mention it here only to
provide a contrast with lexical scope, which is the scope model that
JavaScript employs.

Lex-time
As we discussed in Chapter 1, the first traditional phase of a standard
language compiler is called lexing (a.k.a., tokenizing). If you recall, the
lexing process examines a string of source code characters and assigns
semantic meaning to the tokens as a result of some stateful parsing.

It is this concept that provides the foundation to understand what
lexical scope is and where the name comes from.

To define it somewhat circularly, lexical scope is scope that is defined
at lexing time. In other words, lexical scope is based on where variables
and blocks of scope are authored, by you, at write time, and thus is
(mostly) set in stone by the time the lexer processes your code.
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We will see in a little bit that there are some ways to cheat lexical
scope, thereby modifying it after the lexer has passed by, but
these are frowned upon. It is considered best practice to treat
lexical scope as, in fact, lexical-only, and thus entirely author-
time in nature.

Let’s consider this block of code:

function foo(a) {

    var b = a * 2;

    function bar(c) {
        console.log( a, b, c );
    }

    bar( b * 3 );
}

foo( 2 ); // 2, 4, 12

There are three nested scopes inherent in this code example. It may be
helpful to think about these scopes as bubbles inside of each other.

Bubble 1 encompasses the global scope and has just one identifier in
it: foo.

Bubble 2 encompasses the scope of foo, which includes the three
identifiers: a, bar, and b.

Bubble 3 encompasses the scope of bar, and it includes just one iden‐
tifier: c.

Scope bubbles are defined by where the blocks of scope are written,
which one is nested inside the other, etc. In the next chapter, we’ll
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discuss different units of scope, but for now, let’s just assume that each
function creates a new bubble of scope.

The bubble for bar is entirely contained within the bubble for foo,
because (and only because) that’s where we chose to define the function
bar.

Notice that these nested bubbles are strictly nested. We’re not talking
about Venn diagrams where the bubbles can cross boundaries. In other
words, no bubble for some function can simultaneously exist (parti‐
ally) inside two other outer scope bubbles, just as no function can
partially be inside each of two parent functions.

Look-ups
The structure and relative placement of these scope bubbles fully ex‐
plains to the engine all the places it needs to look to find an identifier.

In the previous code snippet, the engine executes the con

sole.log(..) statement and goes looking for the three referenced
variables a, b, and c. It first starts with the innermost scope bubble, the
scope of the bar(..) function. It won’t find a there, so it goes up one
level, out to the next nearest scope bubble, the scope of foo(..). It
finds a there, and so it uses that a. Same thing for b. But c, it does find
inside of bar(..).

Had there been a c both inside of bar(..) and inside of foo(..), the
console.log(..) statement would have found and used the one in
bar(..), never getting to the one in foo(..).

Scope look-up stops once it finds the first match. The same identifier
name can be specified at multiple layers of nested scope, which is called
“shadowing” (the inner identifer “shadows” the outer identifier). Re‐
gardless of shadowing, scope look-up always starts at the innermost
scope being executed at the time, and works its way outward/upward
until the first match, and stops.
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Global variables are automatically also properties of the glob‐
al object (window in browsers, etc.), so it is possible to refer‐
ence a global variable not directly by its lexical name, but in‐
stead indirectly as a property reference of the global object.

window.a

This technique gives access to a global variable that would
otherwise be inaccessible due to it being shadowed. However,
non-global shadowed variables cannot be accessed.

No matter where a function is invoked from, or even how it is invoked,
its lexical scope is only defined by where the function was declared.

The lexical scope look-up process only applies to first-class identifiers,
such as the a, b, and c. If you had a reference to foo.bar.baz in a piece
of code, the lexical scope look-up would apply to finding the foo
identifier, but once it locates that variable, object property-access rules
take over to resolve the bar and baz properties, respectively.

Cheating Lexical
If lexical scope is defined only by where a function is declared, which
is entirely an author-time decision, how could there possibly be a way
to “modify” (a.k.a., cheat) lexical scope at runtime?

JavaScript has two such mechanisms. Both of them are equally
frowned upon in the wider community as bad practices to use in your
code. But the typical arguments against them are often missing the
most important point: cheating lexical scope leads to poorer perfor‐
mance.

Before I explain the performance issue, though, let’s look at how these
two mechanisms work.

eval
The eval(..) function in JavaScript takes a string as an argument and
treats the contents of the string as if it had actually been authored code
at that point in the program. In other words, you can programatically
generate code inside of your authored code, and run the generated
code as if it had been there at author time.

Evaluating eval(..) (pun intended) in that light, it should be clear
how eval(..) allows you to modify the lexical scope environment by
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cheating and pretending that author-time (a.k.a., lexical) code was
there all along.

On subsequent lines of code after an eval(..) has executed, the engine
will not “know” or “care” that the previous code in question was dy‐
namically interpreted and thus modified the lexical scope
environment. The engine will simply perform its lexical scope look-
ups as it always does.

Consider the following code:

function foo(str, a) {
    eval( str ); // cheating!
    console.log( a, b );
}

var b = 2;

foo( "var b = 3;", 1 ); // 1, 3

The string "var b = 3;" is treated, at the point of the eval(..) call,
as code that was there all along. Because that code happens to declare
a new variable b, it modifies the existing lexical scope of foo(..). In
fact, as mentioned earlier, this code actually creates variable b inside
of foo(..) that shadows the b that was declared in the outer (global)
scope.

When the console.log(..) call occurs, it finds both a and b in the
scope of foo(..), and never finds the outer b. Thus, we print out “1,
3” instead of “1, 2” as would have normally been the case.

In this example, for simplicity sake, the string of “code” we pass
in was a fixed literal. But it could easily have been programat‐
ically created by adding characters together based on your
program’s logic. eval(..) is usually used to execute dynami‐
cally created code, as dynamically evaluating essentially static
code from a string literal would provide no real benefit to just
authoring the code directly.

By default, if a string of code that eval(..) executes contains one or
more declarations (either variables or functions), this action modifies
the existing lexical scope in which the eval(..) resides. Technically,
eval(..) can be invoked indirectly, through various tricks (beyond
our discussion here), which causes it to instead execute in the context
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of the global scope, thus modifying it. But in either case, eval(..) can
at runtime modify an author-time lexical scope.

eval(..) when used in a strict-mode program operates in its
own lexical scope, which means declarations made inside of
the eval() do not actually modify the enclosing scope.

function foo(str) {
   "use strict";
   eval( str );
   console.log( a ); // ReferenceError: a is not defined
}

foo( "var a = 2" );

There are other facilities in JavaScript that amount to a very similar
effect to eval(..). setTimeout(..) and setInterval(..) can take a
string for their respective first argument, the contents of which are
evaluated as the code of a dynamically generated function. This is old,
legacy behavior and long-since deprecated. Don’t do it!

The new Function(..) function constructor similarly takes a string
of code in its last argument to turn into a dynamically generated func‐
tion (the first argument(s), if any, are the named parameters for the
new function). This function-constructor syntax is slightly safer than
eval(..), but it should still be avoided in your code.

The use-cases for dynamically generating code inside your program
are incredibly rare, as the performance degradations are almost never
worth the capability.

with
The other frowned-upon (and now deprecated!) feature in JavaScript
that cheats lexical scope is the with keyword. There are multiple valid
ways that with can be explained, but I will choose here to explain it
from the perspective of how it interacts with and affects lexical scope.

with is typically explained as a shorthand for making multiple prop‐
erty references against an object without repeating the object reference
itself each time.

For example:

var obj = {
    a: 1,
    b: 2,
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    c: 3
};

// more "tedious" to repeat "obj"
obj.a = 2;
obj.b = 3;
obj.c = 4;

// "easier" short-hand
with (obj) {
    a = 3;
    b = 4;
    c = 5;
}

However, there’s much more going on here than just a convenient
shorthand for object property access. Consider:

function foo(obj) {
    with (obj) {
        a = 2;
    }
}

var o1 = {
    a: 3
};

var o2 = {
    b: 3
};

foo( o1 );
console.log( o1.a ); // 2

foo( o2 );
console.log( o2.a ); // undefined
console.log( a ); // 2—Oops, leaked global!

In this code example, two objects o1 and o2 are created. One has an a
property, and the other does not. The foo(..) function takes an object
reference obj as an argument, and calls with (obj) { .. } on the
reference. Inside the with block, we make what appears to be a normal
lexical reference to a variable a, an LHS reference in fact (see Chap‐
ter 1), to assign to it the value of 2.

When we pass in o1, the a = 2 assignment finds the property o1.a
and assigns it the value 2, as reflected in the subsequent con
sole.log(o1.a) statement. However, when we pass in o2, since it does
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not have an a property, no such property is created, and o2.a remains
undefined.

But then we note a peculiar side-effect, the fact that a global variable
a was created by the a = 2 assignment. How can this be?

The with statement takes an object, one that has zero or more prop‐
erties, and treats that object as if it is a wholly separate lexical scope,
and thus the object’s properties are treated as lexically defined identi‐
fiers in that scope.

Even though a with block treats an object like a lexical scope,
a normal var declaration inside that with block will not be
scoped to that with block, but instead the containing func‐
tion scope.

While the eval(..) function can modify existing lexical scope if it
takes a string of code with one or more declarations in it, the with
statement actually creates a whole new lexical scope out of thin air, from
the object you pass to it.

Understood in this way, the scope declared by the with statement when
we passed in o1 was o1, and that scope had an identifier in it which
corresponds to the o1.a property. But when we used o2 as the scope,
it had no such a identifier in it, and so the normal rules of LHS iden‐
tifier look-up (see Chapter 1) occurred.

Neither the scope of o2, nor the scope of foo(..), nor the global scope
even, has an a identifier to be found, so when a = 2 is executed, it
results in the automatic global being created (since we’re in non-strict
mode).

It is a strange sort of mind-bending thought to see with turning, at
runtime, an object and its properties into a scope with identifiers. But
that is the clearest explanation I can give for the results we see.

In addition to being a bad idea to use, both eval(..) and with
are affected (restricted) by Strict Mode. with is outright disal‐
lowed, whereas various forms of indirect or unsafe eval(..)
are disallowed while retaining the core functionality.
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Performance
Both eval(..) and with cheat the otherwise author-time defined lex‐
ical scope by modifying or creating new lexical scope at runtime.

So, what’s the big deal, you ask? If they offer more sophisticated func‐
tionality and coding flexibility, aren’t these good features? No.

The JavaScript engine has a number of performance optimizations that
it performs during the compilation phase. Some of these boil down to
being able to essentially statically analyze the code as it lexes, and pre‐
determine where all the variable and function declarations are, so that
it takes less effort to resolve identifiers during execution.

But if the engine finds an eval(..) or with in the code, it essentially
has to assume that all its awareness of identifier location may be invalid,
because it cannot know at lexing time exactly what code you may pass
to eval(..) to modify the lexical scope, or the contents of the object
you may pass to with to create a new lexical scope to be consulted.

In other words, in the pessimistic sense, most of those optimizations
it would make are pointless if eval(..) or with are present, so it simply
doesn’t perform the optimizations at all.

Your code will almost certainly tend to run slower simply by the fact
that you include an eval(..) or with anywhere in the code. No matter
how smart the engine may be about trying to limit the side-effects of
these pessmistic assumptions, there’s no getting around the fact that
without the optimizations, code runs slower.

Review
Lexical scope means that scope is defined by author-time decisions of
where functions are declared. The lexing phase of compilation is es‐
sentially able to know where and how all identifiers are declared, and
thus predict how they will be looked up during execution.

Two mechanisms in JavaScript can “cheat” lexical scope: eval(..) and
with. The former can modify existing lexical scope (at runtime) by
evaluating a string of “code” that has one or more declarations in it.
The latter essentially creates a whole new lexical scope (again, at run‐
time) by treating an object reference as a scope and that object’s prop‐
erties as scoped identifiers.
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The downside to these mechanisms is that it defeats the engine’s ability
to perform compile-time optimizations regarding scope look-up, be‐
cause the engine has to assume pessimistically that such optimizations
will be invalid. Code will run slower as a result of using either feature.
Don’t use them.
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CHAPTER 3

Function Versus Block Scope

As we explored in Chapter 2, scope consists of a series of “bubbles”
that each act as a container or bucket, in which identifiers (variables,
functions) are declared. These bubbles nest neatly inside each other,
and this nesting is defined at author time.

But what exactly makes a new bubble? Is it only the function? Can
other structures in JavaScript create bubbles of scope?

Scope From Functions
The most common answer to those questions is that JavaScript has
function-based scope. That is, each function you declare creates a
bubble for itself, but no other structures create their own scope bub‐
bles. As we’ll see in just a little bit, this is not quite true.

But first, let’s explore function scope and its implications.

Consider this code:

function foo(a) {
    var b = 2;

    // some code

    function bar() {
        // ...
    }

    // more code

    var c = 3;
}
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In this snippet, the scope bubble for foo(..) includes identifiers a, b,
c, and bar. It doesn’t matter where in the scope a declaration appears,
the variable or function belongs to the containing scope bubble, re‐
gardless. We’ll explore how exactly that works in the next chapter.

bar(..) has its own scope bubble. So does the global scope, which has
just one identifier attached to it: foo.

Because a, b, c, and bar all belong to the scope bubble of foo(..), they
are not accessible outside of foo(..). That is, the following code would
all result in ReferenceError errors, as the identifiers are not available
to the global scope:

bar(); // fails

console.log( a, b, c ); // all 3 fail

However, all these identifiers (a, b, c, foo, and bar) are accessible inside
of foo(..), and indeed also available inside of bar(..) (assuming
there are no shadow identifier declarations inside bar(..)).

Function scope encourages the idea that all variables belong to the
function, and can be used and reused throughout the entirety of the
function (and indeed, accessible even to nested scopes). This design
approach can be quite useful, and certainly can make full use of the
“dynamic” nature of JavaScript variables to take on values of different
types as needed.

On the other hand, if you don’t take careful precautions, variables ex‐
isting across the entirety of a scope can lead to some unexpected pit‐
falls.

Hiding in Plain Scope
The traditional way of thinking about functions is that you declare a
function and then add code inside it. But the inverse thinking is equally
powerful and useful: take any arbitrary section of code you’ve written
and wrap a function declaration around it, which in effect “hides” the
code.

The practical result is to create a scope bubble around the code in
question, which means that any declarations (variable or function) in
that code will now be tied to the scope of the new wrapping function,
rather than the previously enclosing scope. In other words, you can
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1. Principle of Least Privilege

“hide” variables and functions by enclosing them in the scope of a
function.

Why would “hiding” variables and functions be a useful technique?

There’s a variety of reasons motivating this scope-based hiding. They
tend to arise from the software design principle Principle of Least
Privilege1, also sometimes called Least Authority or Least Exposure.
This principle states that in the design of software, such as the API for
a module/object, you should expose only what is minimally necessary,
and “hide” everything else.

This principle extends to the choice of which scope to contain variables
and functions. If all variables and functions were in the global scope,
they would of course be accessible to any nested scope. But this would
violate the “Least…” principle in that you are (likely) exposing many
variables or functions that you should otherwise keep private, as prop‐
er use of the code would discourage access to those variables/func‐
tions.

For example:

function doSomething(a) {
    b = a + doSomethingElse( a * 2 );

    console.log( b * 3 );
}

function doSomethingElse(a) {
    return a - 1;
}

var b;

doSomething( 2 ); // 15

In this snippet, the b variable and the doSomethingElse(..) function
are likely “private” details of how doSomething(..) does its job. Giving
the enclosing scope “access” to b and doSomethingElse(..) is not only
unnecessary but also possibly “dangerous,” in that they may be used
in unexpected ways, intentionally or not, and this may violate pre-
condition assumptions of doSomething(..). A more “proper” design
would hide these private details inside the scope of doSometh
ing(..), such as:
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function doSomething(a) {
    function doSomethingElse(a) {
        return a - 1;
    }

    var b;

    b = a + doSomethingElse( a * 2 );

    console.log( b * 3 );
}

doSomething( 2 ); // 15

Now, b and doSomethingElse(..) are not accessible to any outside
influence, instead controlled only by doSomething(..). The func‐
tionality and end result has not been affected, but the design keeps
private details private, which is usually considered better software.

Collision Avoidance
Another benefit of “hiding” variables and functions inside a scope is
to avoid unintended collision between two different identifiers with
the same name but different intended usages. Collision results often
in unexpected overwriting of values.

For example:

function foo() {
    function bar(a) {
        i = 3; // changing the `i` in the enclosing scope's
               // for-loop
        console.log( a + i );
    }

    for (var i=0; i<10; i++) {
        bar( i * 2 ); // oops, inifinite loop ahead!
    }
}

foo();

The i = 3 assignment inside of bar(..) overwrites, unexpectedly, the
i that was declared in foo(..) at the for loop. In this case, it will result
in an infinite loop, because i is set to a fixed value of 3 and that will
forever remain < 10.

The assignment inside bar(..) needs to declare a local variable to use,
regardless of what identifier name is chosen. var i = 3; would fix
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the problem (and would create the previously mentioned “shadowed
variable” declaration for i). An additional, not alternate, option is to
pick another identifier name entirely, such as var j = 3;. But your
software design may naturally call for the same identifier name, so
utilizing scope to “hide” your inner declaration is your best/only op‐
tion in that case.

Global namespaces
A particularly strong example of (likely) variable collision occurs in
the global scope. Multiple libraries loaded into your program can quite
easily collide with each other if they don’t properly hide their internal/
private functions and variables.

Such libraries typically will create a single variable declaration, often
an object, with a sufficiently unique name, in the global scope. This
object is then used as a namespace for that library, where all specific
exposures of functionality are made as properties off that object
(namespace), rather than as top-level lexically scoped identifiers them‐
selves.

For example:

var MyReallyCoolLibrary = {
    awesome: "stuff",
    doSomething: function() {
        // ...
    },
    doAnotherThing: function() {
        // ...
    }
};

Module management
Another option for collision avoidance is the more modern module
approach, using any of various dependency managers. Using these
tools, no libraries ever add any identifiers to the global scope, but are
instead required to have their identifier(s) be explicitly imported into
another specific scope through usage of the dependency manager’s
various mechanisms.

It should be observed that these tools do not possess “magic” func‐
tionality that is exempt from lexical scoping rules. They simply use the
rules of scoping as explained here to enforce that no identifiers are
injected into any shared scope, and are instead kept in private,
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non-collision-susceptible scopes, which prevents any accidental scope
collisions.

As such, you can code defensively and achieve the same results as the
dependency managers do without actually needing to use them, if you
so choose. See the Chapter 5 for more information about the module
pattern.

Functions as Scopes
We’ve seen that we can take any snippet of code and wrap a function
around it, and that effectively “hides” any enclosed variable or function
declarations from the outside scope inside that function’s inner scope.

For example:

var a = 2;

function foo() { // <-- insert this

    var a = 3;
    console.log( a ); // 3

} // <-- and this
foo(); // <-- and this

console.log( a ); // 2

While this technique works, it is not necessarily very ideal. There are
a few problems it introduces. The first is that we have to declare a
named-function foo(), which means that the identifier name foo itself
“pollutes” the enclosing scope (global, in this case). We also have to
explicitly call the function by name (foo()) so that the wrapped code
actually executes.

It would be more ideal if the function didn’t need a name (or, rather,
the name didn’t pollute the enclosing scope), and if the function could
automatically be executed.

Fortunately, JavaScript offers a solution to both problems.

var a = 2;

(function foo(){ // <-- insert this

    var a = 3;
    console.log( a ); // 3
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})(); // <-- and this

console.log( a ); // 2

Let’s break down what’s happening here.

First, notice that the wrapping function statement starts with (func
tion… as opposed to just function…. While this may seem like a minor
detail, it’s actually a major change. Instead of treating the function as
a standard declaration, the function is treated as a function-
expression.

The easiest way to distinguish declaration vs. expression is the
position of the word function in the statement (not just a line,
but a distinct statement). If function is the very first thing in
the statement, then it’s a function declaration. Otherwise, it’s a
function expression.

The key difference we can observe here between a function declaration
and a function expression relates to where its name is bound as an
identifier.

Compare the previous two snippets. In the first snippet, the name foo
is bound in the enclosing scope, and we call it directly with foo(). In
the second snippet, the name foo is not bound in the enclosing scope,
but instead is bound only inside of its own function.

In other words, (function foo(){ .. }) as an expression means the
identifier foo is found only in the scope where the .. indicates, not in
the outer scope. Hiding the name foo inside itself means it does not
pollute the enclosing scope unnecessarily.

Anonymous Versus Named
You are probably most familiar with function expressions as callback
parameters, such as:

setTimeout( function(){
    console.log("I waited 1 second!");
}, 1000 );

This is called an anonymous function expression, because function()
… has no name identifier on it. Function expressions can be anony‐
mous, but function declarations cannot omit the name—that would
be illegal JS grammar.

Functions as Scopes | 29



Anonymous function expressions are quick and easy to type, and
many libraries and tools tend to encourage this idiomatic style of code.
However, they have several drawbacks to consider:

1. Anonymous functions have no useful name to display in stack
traces, which can make debugging more difficult.

2. Without a name, if the function needs to refer to itself, for recur‐
sion, etc., the deprecated arguments.callee reference is unfortu‐
nately required. Another example of needing to self-reference is
when an event handler function wants to unbind itself after it fires.

3. Anonymous functions omit a name, which is often helpful in
providing more readable/understandable code. A descriptive
name helps self-document the code in question.

Inline function expressions are powerful and useful—the question of
anonymous versus named doesn’t detract from that. Providing a name
for your function expression quite effectively addresses all these draw-
backs, but has no tangible downsides. The best practice is to always
name your function expressions:

setTimeout( function timeoutHandler(){ // <-- Look, I have a
                                       // name!
    console.log( "I waited 1 second!" );
}, 1000 );

Invoking Function Expressions Immediately
var a = 2;

(function foo(){

    var a = 3;
    console.log( a ); // 3

})();

console.log( a ); // 2

Now that we have a function as an expression by virtue of wrapping
it in a ( ) pair, we can execute that function by adding another () on
the end, like (function foo(){ .. })(). The first enclosing ( ) pair
makes the function an expression, and the second () executes the
function.
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This pattern is so common, a few years ago the community agreed on
a term for it: IIFE, which stands for immediately invoked function
expression.

Of course, IIFEs don’t need names, necessarily—the most common
form of IIFE is to use an anonymous function expression. While cer‐
tainly less common, naming an IIFE has all the aforementioned ben‐
efits over anonymous function expressions, so it’s a good practice to
adopt.

var a = 2;

(function IIFE(){

    var a = 3;
    console.log( a ); // 3

})();

console.log( a ); // 2

There’s a slight variation on the traditional IIFE form, which some
prefer: (function(){ .. }()). Look closely to see the difference. In
the first form, the function expression is wrapped in ( ), and then the
invoking () pair is on the outside right after it. In the second form, the
invoking () pair is moved to the inside of the outer ( ) wrapping pair.

These two forms are identical in functionality. It’s purely a stylistic
choice which you prefer.

Another variation on IIFEs that is quite common is to use the fact that
they are, in fact, just function calls, and pass in argument(s).

For instance:

var a = 2;

(function IIFE( global ){

    var a = 3;
    console.log( a ); // 3
    console.log( global.a ); // 2

})( window );

console.log( a ); // 2

We pass in the window object reference, but we name the parameter
global, so that we have a clear stylistic delineation for global versus

Functions as Scopes | 31



nonglobal references. Of course, you can pass in anything from an
enclosing scope you want, and you can name the parameter(s) any‐
thing that suits you. This is mostly just stylistic choice.

Another application of this pattern addresses the (minor niche) con‐
cern that the default undefined identifier might have its value incor‐
rectly overwritten, causing unexpected results. By naming a parameter
undefined, but not passing any value for that argument, we can guar‐
antee that the undefined identifier is in fact the undefined value in a
block of code:

undefined = true; // setting a land-mine for other code! avoid!

(function IIFE( undefined ){

    var a;
    if (a === undefined) {
        console.log( "Undefined is safe here!" );
    }

})();

Still another variation of the IIFE inverts the order of things, where
the function to execute is given second, after the invocation and pa‐
rameters to pass to it. This pattern is used in the UMD (Universal
Module Definition) project. Some people find it a little cleaner to un‐
derstand, though it is slightly more verbose.

var a = 2;

(function IIFE( def ){
    def( window );
})(function def( global ){

    var a = 3;
    console.log( a ); // 3
    console.log( global.a ); // 2

});

The def function expression is defined in the second-half of the snip‐
pet, and then passed as a parameter (also called def) to the IIFE func‐
tion defined in the first half of the snippet. Finally, the parameter def
(the function) is invoked, passing window in as the global parameter.
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Blocks as Scopes
While functions are the most common unit of scope, and certainly the
most widespread of the design approaches in the majority of JS in
circulation, other units of scope are possible, and the usage of these
other scope units can lead to even better, cleaner to maintain code.

Many languages other than JavaScript support block scope, and so
developers from those languages are accustomed to the mindset,
whereas those who’ve primarily only worked in JavaScript may find
the concept slightly foreign.

But even if you’ve never written a single line of code in block-scoped
fashion, you are still probably familiar with this extremely common
idiom in JavaScript:

for (var i=0; i<10; i++) {
    console.log( i );
}

We declare the variable i directly inside the for loop head, most likely
because our intent is to use i only within the context of that for loop,
and essentially ignore the fact that the variable actually scopes itself to
the enclosing scope (function or global).

That’s what block-scoping is all about. Declaring variables as close as
possible, as local as possible, to where they will be used. Another ex‐
ample:

var foo = true;

if (foo) {
    var bar = foo * 2;
    bar = something( bar );
    console.log( bar );
}

We are using a bar variable only in the context of the if statement, so
it makes a kind of sense that we would declare it inside the if block.
However, where we declare variables is not relevant when using var,
because they will always belong to the enclosing scope. This snippet is
essentially fake block-scoping, for stylistic reasons, and relying on self-
enforcement not to accidentally use bar in another place in that scope.

Block scope is a tool to extend the earlier Principle of Least Privilege
from hiding information in functions to hiding information in blocks
of our code.
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Consider the for loop example again:

for (var i=0; i<10; i++) {
    console.log( i );
}

Why pollute the entire scope of a function with the i variable that is
only going to be (or only should be, at least) used for the for loop?

But more important, developers may prefer to check themselves
against accidentally (re)using variables outside of their intended pur‐
pose, such being issued an error about an unknown variable if you try
to use it in the wrong place. Block-scoping (if it were possible) for the
i variable would make i available only for the for loop, causing an
error if i is accessed elsewhere in the function. This helps ensure vari‐
ables are not reused in confusing or hard-to-maintain ways.

But, the sad reality is that, on the surface, JavaScript has no facility for
block scope.

That is, until you dig a little further.

with
We learned about with in Chapter 2. While it is a frowned-upon con‐
struct, it is an example of (a form of) block scope, in that the scope
that is created from the object only exists for the lifetime of that with
statement, and not in the enclosing scope.

try/catch
It’s a very little known fact that JavaScript in ES3 specified the variable
declaration in the catch clause of a try/catch to be block-scoped to
the catch block.

For instance:

try {
    undefined(); // illegal operation to force an exception!
}
catch (err) {
    console.log( err ); // works!
}

console.log( err ); // ReferenceError: `err` not found

As you can see, err exists only in the catch clause, and throws an error
when you try to reference it elsewhere.
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While this behavior has been specified and true of practically
all standard JS environments (except perhaps old IE), many
linters seem to still complain if you have two or more catch
clauses in the same scope that each declare their error vari‐
able with the same identifier name. This is not actually a re‐
definition, since the variables are safely block-scoped, but the
linters still seem to, annoyingly, complain about this fact.
To avoid these unnecessary warnings, some devs will name
their catch variables err1, err2, etc. Other devs will simply
turn off the linting check for duplicate variable names.

The block-scoping nature of catch may seem like a useless academic
fact, but see Appendix B for more information on just how useful it
might be.

let
Thus far, we’ve seen that JavaScript only has some strange niche be‐
haviors that expose block scope functionality. If that were all we had,
and it was for many, many years, then block scoping would not be
terribly useful to the JavaScript developer.

Fortunately, ES6 changes that, and introduces a new keyword let,
which sits alongside var as another way to declare variables.

The let keyword attaches the variable declaration to the scope of
whatever block (commonly a { .. } pair) it’s contained in. In other
words, let implicitly hijacks any block’s scope for its variable decla‐
ration.

var foo = true;

if (foo) {
    let bar = foo * 2;
    bar = something( bar );
    console.log( bar );
}

console.log( bar ); // ReferenceError

Using let to attach a variable to an existing block is somewhat implicit.
It can confuse if you’re not paying close attention to which blocks have
variables scoped to them and are in the habit of moving blocks around,
wrapping them in other blocks, etc., as you develop and evolve code.
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Creating explicit blocks for block-scoping can address some of these
concerns, making it more obvious where variables are attached and
not. Usually, explicit code is preferable over implicit or subtle code.
This explicit block-scoping style is easy to achieve and fits more nat‐
urally with how block-scoping works in other languages:

var foo = true;

if (foo) {
    { // <-- explicit block
        let bar = foo * 2;
        bar = something( bar );
        console.log( bar );
    }
}

console.log( bar ); // ReferenceError

We can create an arbitrary block for let to bind to by simply including
a { .. } pair anywhere a statement is valid grammar. In this case,
we’ve made an explicit block inside the if statement, which may be
easier as a whole block to move around later in refactoring, without
affecting the position and semantics of the enclosing if statment.

For another way to express explicit block scopes, see Appen‐
dix B.

In Chapter 4, we will address hoisting, which talks about declarations
being taken as existing for the entire scope in which they occur.

However, declarations made with let will not hoist to the entire scope
of the block they appear in. Such declarations will not observably “ex‐
ist” in the block until the declaration statement.

{
   console.log( bar ); // ReferenceError!
   let bar = 2;
}

Garbage collection
Another reason block-scoping is useful relates to closures and garbage
collection to reclaim memory. We’ll briefly illustrate here, but the clo‐
sure mechanism is explained in detail in Chapter 5.
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Consider:

function process(data) {
    // do something interesting
}

var someReallyBigData = { .. };

process( someReallyBigData );

var btn = document.getElementById( "my_button" );

btn.addEventListener( "click", function click(evt){
    console.log("button clicked");
}, /*capturingPhase=*/false );

The click function click handler callback doesn’t need the someReal
lyBigData variable at all. That means, theoretically, after pro
cess(..) runs, the big memory-heavy data structure could be garbage
collected. However, it’s quite likely (though implementation depen‐
dent) that the JS engine will still have to keep the structure around,
since the click function has a closure over the entire scope.

Block-scoping can address this concern, making it clearer to the en‐
gine that it does not need to keep someReallyBigData around:

function process(data) {
    // do something interesting
}

// anything declared inside this block can go away after!
{
    let someReallyBigData = { .. };

    process( someReallyBigData );
}

var btn = document.getElementById( "my_button" );

btn.addEventListener( "click", function click(evt){
    console.log("button clicked");
}, /*capturingPhase=*/false );

Declaring explicit blocks for variables to locally bind to is a powerful
tool that you can add to your code toolbox.

let loops

A particular case where let shines is in the for loop case as we dis‐
cussed previously.
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for (let i=0; i<10; i++) {
    console.log( i );
}

console.log( i ); // ReferenceError

Not only does let in the for loop header bind the i to the for loop
body, but in fact, it rebinds it to each iteration of the loop, making sure
to reassign it the value from the end of the previous loop iteration.

Here’s another way of illustrating the per-iteration binding behavior
that occurs:

{
    let j;
    for (j=0; j<10; j++) {
        let i = j; // re-bound for each iteration!
        console.log( i );
    }
}

The reason why this per-iteration binding is interesting will become
clear in Chapter 5 when we discuss closures.

Because let declarations attach to arbitrary blocks rather than to the
enclosing function’s scope (or global), there can be gotchas where ex‐
isting code has a hidden reliance on function-scoped var declarations,
and replacing the var with let may require additional care when re‐
factoring code.

Consider:

var foo = true, baz = 10;

if (foo) {
    var bar = 3;

    if (baz > bar) {
        console.log( baz );
    }

    // ...
}

This code is fairly easily refactored as:

var foo = true, baz = 10;

if (foo) {
    var bar = 3;
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    // ...
}

if (baz > bar) {
    console.log( baz );
}

But, be careful of such changes when using block-scoped variables:

var foo = true, baz = 10;

if (foo) {
    let bar = 3;

    if (baz > bar) { // <-- don't forget `bar` when moving!
        console.log( baz );
    }
}

See Appendix B for an alternate (more explicit) style of block-scoping
that may provide easier to maintain/refactor code that’s more robust
to these scenarios.

const
In addition to let, ES6 introduces const, which also creates a block-
scoped variable, but whose value is fixed (constant). Any attempt to
change that value at a later time results in an error.

var foo = true;

if (foo) {
    var a = 2;
    const b = 3; // block-scoped to the containing `if`

    a = 3; // just fine!
    b = 4; // error!
}

console.log( a ); // 3
console.log( b ); // ReferenceError!

Review
Functions are the most common unit of scope in JavaScript. Variables
and functions that are declared inside another function are essentially
“hidden” from any of the enclosing scopes, which is an intentional
design principle of good software.
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But functions are by no means the only unit of scope. Block scope
refers to the idea that variables and functions can belong to an arbitrary
block (generally, any { .. } pair) of code, rather than only to the
enclosing function.

Starting with ES3, the try/catch structure has block scope in the
catch clause.

In ES6, the let keyword (a cousin to the var keyword) is introduced
to allow declarations of variables in any arbitrary block of code. if
(..) { let a = 2; } will declare a variable a that essentially hijacks
the scope of the if’s { .. } block and attaches itself there.

Though some seem to believe so, block scope should not be taken as
an outright replacement of var function scope. Both functionalities
co-exist, and developers can and should use both function-scope and
block-scope techniques where respectively appropriate to produce
better, more readable/maintainable code.
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CHAPTER 4

Hoisting

By now, you should be fairly comfortable with the idea of scope, and
how variables are attached to different levels of scope depending on
where and how they are declared. Both function scope and block scope
behave by the same rules in this regard: any variable declared within
a scope is attached to that scope.

But there’s a subtle detail of how scope attachment works with decla‐
rations that appear in various locations within a scope, and that detail
is what we will examine here.

Chicken or the Egg?
There’s a temptation to think that all of the code you see in a JavaScript
program is interpreted line-by-line, top-down in order, as the program
executes. While that is substantially true, there’s one part of that as‐
sumption that can lead to incorrect thinking about your program.

Consider this code:

a = 2;

var a;

console.log( a );

What do you expect to be printed in the console.log(..) statement?

Many developers would expect undefined, since the var a statement
comes after the a = 2, and it would seem natural to assume that the

41



variable is redefined, and thus assigned the default undefined. How‐
ever, the output will be 2.

Consider another piece of code:

console.log( a );

var a = 2;

You might be tempted to assume that, since the previous snippet ex‐
hibited some less-than-top-down looking behavior, perhaps in this
snippet, 2 will also be printed. Others may think that since the a vari‐
able is used before it is declared, this must result in a ReferenceEr
ror being thrown.

Unfortunately, both guesses are incorrect. undefined is the output.

So, what’s going on here? It would appear we have a chicken-and-the-
egg question. Which comes first, the declaration (“egg”), or the as‐
signment (“chicken”)?

The Compiler Strikes Again
To answer this question, we need to refer back to Chapter 1, and our
discussion of compilers. Recall that the engine actually will compile
your JavaScript code before it interprets it. Part of the compilation
phase was to find and associate all declarations with their appropriate
scopes. Chapter 2 showed us that this is the heart of lexical scope.

So, the best way to think about things is that all declarations, both
variables and functions, are processed first, before any part of your
code is executed.

When you see var a = 2;, you probably think of that as one statement.
But JavaScript actually thinks of it as two statements: var a; and a =
2;. The first statement, the declaration, is processed during the com‐
pilation phase. The second statement, the assignment, is left in place
for the execution phase.

Our first snippet then should be thought of as being handled like this:

var a;

a = 2;

console.log( a );
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…where the first part is the compilation and the second part is the
execution.

Similarly, our second snippet is actually processed as:

var a;

console.log( a );

a = 2;

So, one way of thinking, sort of metaphorically, about this process, is
that variable and function declarations are “moved” from where they
appear in the flow of the code to the top of the code. This gives rise to
the name hoisting.

In other words, the egg (declaration) comes before the chicken (assign‐
ment).

Only the declarations themselves are hoisted, while any as‐
signments or other executable logic are left in place. If hoist‐
ing were to re-arrange the executable logic of our code, that
could wreak havoc.

foo();

function foo() {
    console.log( a ); // undefined

    var a = 2;
}

The function foo’s declaration (which in this case includes the implied
value of it as an actual function) is hoisted, such that the call on the
first line is able to execute.

It’s also important to note that hoisting is per-scope. So while our pre‐
vious snippets were simplified in that they only included global scope,
the foo(..) function we are now examining itself exhibits that var
a is hoisted to the top of foo(..) (not, obviously, to the top of the
program). So the program can perhaps be more accurately interpreted
like this:

function foo() {
    var a;

    console.log( a ); // undefined

    a = 2;
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}

foo();

Function declarations are hoisted, as we just saw. But function ex‐
pressions are not.

foo(); // not ReferenceError, but TypeError!

var foo = function bar() {
    // ...
};

The variable identifier foo is hoisted and attached to the enclosing
scope (global) of this program, so foo() doesn’t fail as a ReferenceEr
ror. But foo has no value yet (as it would if it had been a true function
declaration instead of expression). So, foo() is attempting to invoke
the undefined value, which is a TypeError illegal operation.

Also recall that even though it’s a named function expression, the name
identifier is not available in the enclosing scope:

foo(); // TypeError
bar(); // ReferenceError

var foo = function bar() {
    // ...
};

This snippet is more accurately interpreted (with hoisting) as:

var foo;

foo(); // TypeError
bar(); // ReferenceError

foo = function() {
    var bar = ...self...
    // ...
}

Functions First
Both function declarations and variable declarations are hoisted. But
a subtle detail (that can show up in code with multiple “duplicate”
declarations) is that functions are hoisted first, and then variables.

Consider:
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foo(); // 1

var foo;

function foo() {
    console.log( 1 );
}

foo = function() {
    console.log( 2 );
};

1 is printed instead of 2! This snippet is interpreted by the Engine as:

function foo() {
    console.log( 1 );
}

foo(); // 1

foo = function() {
    console.log( 2 );
};

Notice that var foo was the duplicate (and thus ignored) declaration,
even though it came before the function foo()… declaration, because
function declarations are hoisted before normal variables.

While multiple/duplicate var declarations are effectively ignored,
subsequent function declarations do override previous ones.

foo(); // 3

function foo() {
    console.log( 1 );
}

var foo = function() {
    console.log( 2 );
};

function foo() {
    console.log( 3 );
}

While this all may sound like nothing more than interesting academic
trivia, it highlights the fact that duplicate definitions in the same scope
are a really bad idea and will often lead to confusing results.
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Function declarations that appear inside of normal blocks typically
hoist to the enclosing scope, rather than being conditional as this code
implies:

foo(); // "b"

var a = true;
if (a) {
   function foo() { console.log("a"); }
}
else {
   function foo() { console.log("b"); }
}

However, it’s important to note that this behavior is not reliable and is
subject to change in future versions of JavaScript, so it’s probably best
to avoid declaring functions in blocks.

Review
We can be tempted to look at var a = 2; as one statement, but the
JavaScript engine does not see it that way. It sees var a and a = 2 as
two separate statements, the first one a compiler-phase task, and the
second one an execution-phase task.

What this leads to is that all declarations in a scope, regardless of where
they appear, are processed first before the code itself is executed. You
can visualize this as declarations (variables and functions) being
“moved” to the top of their respective scopes, which we call hoisting.

Declarations themselves are hoisted, but assignments, even assign‐
ments of function expressions, are not hoisted.

Be careful about duplicate declarations, especially mixed between
normal var declarations and function declarations—peril awaits if you
do!
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CHAPTER 5

Scope Closure

We arrive at this point with hopefully a very healthy, solid under‐
standing of how scope works.

We turn our attention to an incredibly important, but persistently
elusive, almost mythological, part of the language: closure. If you have
followed our discussion of lexical scope thus far, the payoff is that
closure is going to be, largely, anticlimactic, almost self-obvious.
There’s a man behind the wizard’s curtain, and we’re about to see
him. No, his name is not Crockford!

If however you have nagging questions about lexical scope, now would
be a good time to go back and review Chapter 2 before proceeding.

Enlightenment
For those who are somewhat experienced in JavaScript but have per‐
haps never fully grasped the concept of closures, understanding clo‐
sure can seem like a special nirvana that one must strive and sacrifice
to attain.

I recall years back when I had a firm grasp on JavaScript but had no
idea what closure was. The hint that there was this other side to the
language, one that promised even more capability than I already pos‐
sessed, but it teased and taunted me. I remember reading through the
source code of early frameworks trying to understand how it actually
worked. I remember the first time something of the “module pattern”
began to emerge in my mind. I remember the aha! moments quite
vividly.
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What I didn’t know back then, what took me years to understand, and
what I hope to impart to you presently, is this secret: closure is all
around you in JavaScript, you just have to recognize and embrace it.
Closures are not a special opt-in tool that you must learn new syntax
and patterns for. No, closures are not even a weapon that you must
learn to wield and master as Luke trained in the Force.

Closures happen as a result of writing code that relies on lexical scope.
They just happen. You do not even really have to intentionally create
closures to take advantage of them. Closures are created and used for
you all over your code. What you are missing is the proper mental
context to recognize, embrace, and leverage closures for your own will.

The enlightenment moment should be: oh, closures are already oc‐
curring all over my code, I can finally see them now. Understanding
closures is like when Neo sees the Matrix for the first time.

Nitty Gritty
OK, enough hyperbole and shameless movie references.

Here’s a down-and-dirty definition of what you need to know to un‐
derstand and recognize closures:

Closure is when a function is able to remember and access its lexical
scope even when that function is executing outside its lexical scope.

Let’s jump into some code to illustrate that definition.

function foo() {
    var a = 2;

    function bar() {
        console.log( a ); // 2
    }

    bar();
}

foo();

This code should look familiar from our discussions of nested scope.
Function bar() has access to the variable a in the outer enclosing scope
because of lexical scope look-up rules (in this case, it’s an RHS refer‐
ence look-up).

Is this closure?
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Well, technically…perhaps. But by our what-you-need-to-know defi‐
nition above…not exactly. I think the most accurate way to explain
bar() referencing a is via lexical scope look-up rules, and those rules
are only (an important!) part of what closure is.

From a purely academic perspective, what is said of the above snippet
is that the function bar() has a closure over the scope of foo() (and
indeed, even over the rest of the scopes it has access to, such as the
global scope in our case). Put slightly differently, it’s said that bar()
closes over the scope of foo(). Why? Because bar() appears nested
inside of foo(). Plain and simple.

But, closure defined in this way is not directly observable, nor do we
see closure exercised in that snippet. We clearly see lexical scope, but
closure remains sort of a mysterious shifting shadow behind the code.

Let us then consider code that brings closure into full light:

function foo() {
    var a = 2;

    function bar() {
        console.log( a );
    }

    return bar;
}

var baz = foo();

baz(); // 2 -- Whoa, closure was just observed, man.

The function bar() has lexical scope access to the inner scope of
foo(). But then, we take bar(), the function itself, and pass it as a
value. In this case, we return the function object itself that bar refer‐
ences.

After we execute foo(), we assign the value it returned (our inner
bar() function) to a variable called baz, and then we actually invoke
baz(), which of course is invoking our inner function bar(), just by
a different identifier reference.

bar() is executed, for sure. But in this case, it’s executed outside of its
declared lexical scope.

After foo() executed, normally we would expect that the entirety of
the inner scope of foo() would go away, because we know that the
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engine employs a garbage collector that comes along and frees up
memory once it’s no longer in use. Since it would appear that the con‐
tents of foo() are no longer in use, it would seem natural that they
should be considered gone.

But the “magic” of closures does not let this happen. That inner scope
is in fact still in use, and thus does not go away. Who’s using it? The
function bar() itself.

By virtue of where it was declared, bar() has a lexical scope closure
over that inner scope of foo(), which keeps that scope alive for bar()
to reference at any later time.

bar() still has a reference to that scope, and that reference is called
closure.

So, a few microseconds later, when the variable baz is invoked (in‐
voking the inner function we initially labeled bar), it duly has access
to author-time lexical scope, so it can access the variable a just as we’d
expect.

The function is being invoked well outside of its author-time lexical
scope. Closure lets the function continue to access the lexical scope it
was defined in at author time.

Of course, any of the various ways that functions can be passed
around as values, and indeed invoked in other locations, are all ex‐
amples of observing/exercising closure.

function foo() {
    var a = 2;

    function baz() {
        console.log( a ); // 2
    }

    bar( baz );
}

function bar(fn) {
    fn(); // look ma, I saw closure!
}

We pass the inner function baz over to bar, and call that inner function
(labeled fn now), and when we do, its closure over the inner scope of
foo() is observed by accessing a.

These passings-around of functions can be indirect, too.
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var fn;

function foo() {
    var a = 2;

    function baz() {
        console.log( a );
    }

    fn = baz; // assign baz to global variable
}

function bar() {
    fn(); // look ma, I saw closure!
}

foo();

bar(); // 2

Whatever facility we use to transport an inner function outside of its
lexical scope, it will maintain a scope reference to where it was origi‐
nally declared, and wherever we execute him, that closure will be ex‐
ercised.

Now I Can See
The previous code snippets are somewhat academic and artifically
constructed to illustrate using closure. But I promised you something
more than just a cool new toy. I promised that closure was something
all around you in your existing code. Let us now see that truth.

function wait(message) {

    setTimeout( function timer(){
        console.log( message );
    }, 1000 );

}

wait( "Hello, closure!" );

We take an inner function (named timer) and pass it to setTime
out(..). But timer has a scope closure over the scope of wait(..),
indeed keeping and using a reference to the variable message.
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A thousand milliseconds after we have executed wait(..), and its
inner scope should otherwise be long gone, that anonymous function
still has closure over that scope.

Deep down in the guts of the engine, the built-in utility setTime
out(..) has reference to some parameter, probably called fn or func
or something like that. Engine goes to invoke that function, which is
invoking our inner timer function, and the lexical scope reference is
still intact.

Closure.

Or, if you’re of the jQuery persuasion (or any JS framework, for that
matter):

function setupBot(name,selector) {
    $( selector ).click( function activator(){
        console.log( "Activating: " + name );
    } );
}

setupBot( "Closure Bot 1", "#bot_1" );
setupBot( "Closure Bot 2", "#bot_2" );

I am not sure what kind of code you write, but I regularly write code
that is responsible for controlling an entire global drone army of clo‐
sure bots, so this is totally realistic!

(Some) joking aside, essentially whenever and wherever you treat func‐
tions (that access their own respective lexical scopes) as first-class val‐
ues and pass them around, you are likely to see those functions exer‐
cising closure. Be that timers, event handlers, Ajax requests, cross-
window messaging, web workers, or any of the other asynchronous
(or synchronous!) tasks, when you pass in a callback function, get ready
to sling some closure around!

Chapter 3 introduced the IIFE pattern. While it is often said
that IIFE (alone) is an example of observed closure, I would
somewhat disagree, by our previous definition.

var a = 2;

(function IIFE(){
    console.log( a );
})();
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This code works, but it’s not strictly an observation of closure. Why?
Because the function (which we named IIFE here) is not executed
outside its lexical scope. It’s still invoked right there in the same scope
as it was declared (then enclosing/global scope that also holds a). a is
found via normal lexical scope look-up, not really via closure.

While closure might technically be happening at declaration time, it
is not strictly observable, and so, as they say, it’s a tree falling in the
forest with no one around to hear it.

Though an IIFE is not itself an example of observed closure, it abso‐
lutely creates scope, and it’s one of the most common tools we use to
create scope which can be closed over. So IIFEs are indeed heavily
related to closure, even if not exercising closure themselves.

Put this book down right now, dear reader. I have a task for you. Go
open up some of your recent JavaScript code. Look for your functions-
as-values and identify where you are already using closure and maybe
didn’t even know it before.

I’ll wait.

Now you see!

Loops and Closure
The most common canonical example used to illustrate closure in‐
volves the humble for loop.

for (var i=1; i<=5; i++) {
    setTimeout( function timer(){
        console.log( i );
    }, i*1000 );
}

Linters often complain when you put functions inside of loops,
because the mistakes of not understanding closure are so com‐
mon among developers. We explain how to do so properly here,
leveraging the full power of closure. But that subtlety is often
lost on linters, and they will complain regardless, assuming you
don’t actually know what you’re doing.

The spirit of this code snippet is that we would normally expect for the
behavior to be that the numbers 1, 2,…5 would be printed out, one at
a time, one per second, respectively.
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In fact, if you run this code, you get 6 printed out five times, at the
one-second intervals.

Huh?

First, let’s explain where 6 comes from. The terminating condition of
the loop is when i is not <=5. The first time that’s the case is when i is
6. So, the output is reflecting the final value of the i after the loop
terminates.

This actually seems obvious on second glance. The timeout function
callbacks are all running well after the completion of the loop. In fact,
as timers go, even if it was setTimeout(.., 0) on each iteration, all
those function callbacks would still run strictly after the completion
of the loop, and thus print 6 each time.

But there’s a deeper question at play here. What’s missing from our
code to actually have it behave as we semantically have implied?

What’s missing is that we are trying to imply that each iteration of the
loop “captures” its own copy of i, at the time of the iteration. But, the
way scope works, all five of those functions, though they are defined
separately in each loop iteration, are closed over the same shared global
scope, which has, in fact, only one i in it.

Put that way, of course all functions share a reference to the same i.
Something about the loop structure tends to confuse us into thinking
there’s something else more sophisticated at work. There is not. There’s
no difference than if each of the five timeout callbacks were just de‐
clared one right after the other, with no loop at all.

OK, so, back to our burning question. What’s missing? We need more
closured scope. Specifically, we need a new closured scope for each
iteration of the loop.

We learned in Chapter 3 that the IIFE creates scope by declaring a
function and immediately executing it.

Let’s try:

for (var i=1; i<=5; i++) {
    (function(){
        setTimeout( function timer(){
            console.log( i );
        }, i*1000 );
    })();
}

54 | Chapter 5: Scope Closure



Does that work? Try it. Again, I’ll wait.

I’ll end the suspense for you. Nope. But why? We now obviously have
more lexical scope. Each timeout function callback is indeed closing
over its own per-iteration scope created respectively by each IIFE.

It’s not enough to have a scope to close over if that scope is empty. Look
closely. Our IIFE is just an empty do-nothing scope. It needs some‐
thing in it to be useful to us.

It needs its own variable, with a copy of the i value at each iteration.

for (var i=1; i<=5; i++) {
    (function(){
        var j = i;
        setTimeout( function timer(){
            console.log( j );
        }, j*1000 );
    })();
}

Eureka! It works!

A slight variation some prefer is:

for (var i=1; i<=5; i++) {
    (function(j){
        setTimeout( function timer(){
            console.log( j );
        }, j*1000 );
    })( i );
}

Of course, since these IIFEs are just functions, we can pass in i, and
we can call it j if we prefer, or we can even call it i again. Either way,
the code works now.

The use of an IIFE inside each iteration created a new scope for each
iteration, which gave our timeout function callbacks the opportunity
to close over a new scope for each iteration, one which had a variable
with the right per-iteration value in it for us to access.

Problem solved!

Block Scoping Revisited
Look carefully at our analysis of the previous solution. We used an
IIFE to create new scope per-iteration. In other words, we actually
needed a per-iteration block scope. Chapter 3 showed us the let
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declaration, which hijacks a block and declares a variable right there
in the block.

It essentially turns a block into a scope that we can close over. So, the
following awesome code just works:

for (var i=1; i<=5; i++) {
    let j = i; // yay, block-scope for closure!
    setTimeout( function timer(){
        console.log( j );
    }, j*1000 );
}

But, that’s not all! (in my best Bob Barker voice). There’s a special
behavior defined for let declarations used in the head of a for loop.
This behavior says that the variable will be declared not just once for
the loop, but each iteration. And, it will, helpfully, be initialized at
each subsequent iteration with the value from the end of the previous
iteration.

for (let i=1; i<=5; i++) {
    setTimeout( function timer(){
        console.log( i );
    }, i*1000 );
}

How cool is that? Block scoping and closure working hand-in-hand,
solving all the world’s problems. I don’t know about you, but that
makes me a happy JavaScripter.

Modules
There are other code patterns that leverage the power of closure but
that do not on the surface appear to be about callbacks. Let’s examine
the most powerful of them: the module.

function foo() {
    var something = "cool";
    var another = [1, 2, 3];

    function doSomething() {
        console.log( something );
    }

    function doAnother() {
        console.log( another.join( " ! " ) );
    }
}
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As this code stands right now, there’s no observable closure going on.
We simply have some private data variables something and another,
and a couple of inner functions doSomething() and doAnother(),
which both have lexical scope (and thus closure!) over the inner scope
of foo().

But now consider:

function CoolModule() {
    var something = "cool";
    var another = [1, 2, 3];

    function doSomething() {
        console.log( something );
    }

    function doAnother() {
        console.log( another.join( " ! " ) );
    }

    return {
        doSomething: doSomething,
        doAnother: doAnother
    };
}

var foo = CoolModule();

foo.doSomething(); // cool
foo.doAnother(); // 1 ! 2 ! 3

This is the pattern in JavaScript we call module. The most common
way of implementing the module pattern is often called revealing
module, and it’s the variation we present here.

Let’s examine some things about this code.

First, CoolModule() is just a function, but it has to be invoked for there
to be a module instance created. Without the execution of the outer
function, the creation of the inner scope and the closures would not
occur.

Second, the CoolModule() function returns an object, denoted by the
object-literal syntax { key: value, … }. The object we return has
references on it to our inner functions, but not to our inner data vari‐
ables. We keep those hidden and private. It’s appropriate to think of
this object return value as essentially a public API for our module.
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This object return value is ultimately assigned to the outer variable
foo, and then we can access those property methods on the API, like
foo.doSomething().

It is not required that we return an actual object (literal) from
our module. We could just return back an inner function di‐
rectly. jQuery is actually a good example of this. The jQuery
and $ identifiers are the public API for the jQuery module, but
they are, themselves, just functions (which can themselves have
properties, since all functions are objects).

The doSomething() and doAnother() functions have closure over the
inner scope of the module instance (arrived at by actually invoking
CoolModule()). When we transport those functions outside of the
lexical scope, by way of property references on the object we return,
we have now set up a condition by which closure can be observed and
exercised.

To state it more simply, there are two requirements for the module
pattern to be exercised:

1. There must be an outer enclosing function, and it must be invoked
at least once (each time creates a new module instance).

2. The enclosing function must return back at least one inner func‐
tion, so that this inner function has closure over the private scope,
and can access and/or modify that private state.

An object with a function property on it alone is not really a module.
An object that is returned from a function invocation that only has
data properties on it and no closured functions is not really a module,
in the observable sense.

The previous code snippet shows a standalone module creator called
CoolModule(), which can be invoked any number of times, each time
creating a new module instance. A slight variation on this pattern is
when you only care to have one instance, a singleton of sorts:

var foo = (function CoolModule() {
    var something = "cool";
    var another = [1, 2, 3];

    function doSomething() {
        console.log( something );
    }
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    function doAnother() {
        console.log( another.join( " ! " ) );
    }

    return {
        doSomething: doSomething,
        doAnother: doAnother
    };
})();

foo.doSomething(); // cool
foo.doAnother(); // 1 ! 2 ! 3

Here, we turned our module function into an IIFE (see Chapter 3),
and we immediately invoked it and assigned its return value directly
to our single module instance identifier foo.

Modules are just functions, so they can receive parameters:

function CoolModule(id) {
    function identify() {
        console.log( id );
    }

    return {
        identify: identify
    };
}

var foo1 = CoolModule( "foo 1" );
var foo2 = CoolModule( "foo 2" );

foo1.identify(); // "foo 1"
foo2.identify(); // "foo 2"

Another slight but powerful variation on the module pattern is to
name the object you are returning as your public API:

var foo = (function CoolModule(id) {
    function change() {
        // modifying the public API
        publicAPI.identify = identify2;
    }

    function identify1() {
        console.log( id );
    }

    function identify2() {
        console.log( id.toUpperCase() );
    }
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    var publicAPI = {
        change: change,
        identify: identify1
    };

    return publicAPI;
})( "foo module" );

foo.identify(); // foo module
foo.change();
foo.identify(); // FOO MODULE

By retaining an inner reference to the public API object inside your
module instance, you can modify that module instance from the in‐
side, including adding and removing methods and properties, and
changing their values.

Modern Modules
Various module dependency loaders/managers essentially wrap up
this pattern of module definition into a friendly API. Rather than ex‐
amine any one particular library, let me present a very simple proof of
concept for illustration purposes (only):

var MyModules = (function Manager() {
    var modules = {};

    function define(name, deps, impl) {
        for (var i=0; i<deps.length; i++) {
            deps[i] = modules[deps[i]];
        }
        modules[name] = impl.apply( impl, deps );
    }

    function get(name) {
        return modules[name];
    }

    return {
        define: define,
        get: get
    };
})();

The key part of this code is modules[name] = impl.apply(impl,
deps). This is invoking the definition wrapper function for a module
(passing in any dependencies), and storing the return value, the mod‐
ule’s API, into an internal list of modules tracked by name.
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And here’s how I might use it to define some modules:

MyModules.define( "bar", [], function(){
    function hello(who) {
        return "Let me introduce: " + who;
    }

    return {
        hello: hello
    };
} );

MyModules.define( "foo", ["bar"], function(bar){
    var hungry = "hippo";

    function awesome() {
        console.log( bar.hello( hungry ).toUpperCase() );
    }

    return {
        awesome: awesome
    };
} );

var bar = MyModules.get( "bar" );
var foo = MyModules.get( "foo" );

console.log(
    bar.hello( "hippo" )
); // Let me introduce: hippo

foo.awesome(); // LET ME INTRODUCE: HIPPO

Both the "foo" and "bar" modules are defined with a function that
returns a public API. "foo" even receives the instance of "bar" as a
dependency parameter, and can use it accordingly.

Spend some time examining these code snippets to fully understand
the power of closures put to use for our own good purposes. The key
take-away is that there’s not really any particular “magic” to module
managers. They fulfill both characteristics of the module pattern I lis‐
ted above: invoking a function definition wrapper, and keeping its
return value as the API for that module.

In other words, modules are just modules, even if you put a friendly
wrapper tool on top of them.
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Future Modules
ES6 adds first-class syntax support for the concept of modules. When
loaded via the module system, ES6 treats a file as a separate module.
Each module can both import other modules or specific API members,
as well export their own public API members.

Function-based modules aren’t a statically recognized pattern
(something the compiler knows about), so their API seman‐
tics aren’t considered until runtime. That is, you can actually
modify a module’s API during the runtime (see earlier publi
cAPI discussion).
By contrast, ES6 module APIs are static (the APIs don’t change
at runtime). Since the compiler knows that, it can (and does!)
check during (file loading and) compilation that a reference to
a member of an imported module’s API actually exists. If the
API reference doesn’t exist, the compiler throws an “early”
error at compile time, rather than waiting for traditional dy‐
namic runtime resolution (and errors, if any).

ES6 modules do not have an “inline” format, they must be defined in
separate files (one per module). The browsers/engines have a default
“module loader” (which is overridable, but that’s well-beyond our dis‐
cussion here), which synchronously loads a module file when it’s im‐
ported.

Consider:

bar.js
function hello(who) {
    return "Let me introduce: " + who;
}

export hello;

foo.js
// import only `hello()` from the "bar" module
import hello from "bar";

var hungry = "hippo";

function awesome() {
    console.log(
        hello( hungry ).toUpperCase()
    );
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}

export awesome;

baz.js
// import the entire "foo" and "bar" modules
module foo from "foo";
module bar from "bar";

console.log(
    bar.hello( "rhino" )
); // Let me introduce: rhino

foo.awesome(); // LET ME INTRODUCE: HIPPO

Separate files foo.js and bar.js would need to be created, with
the contents as shown in the first two snippets, respectively.
Then, your program baz.js would load/import those modules
to use them, as shown in the third snippet.

import imports one or more members from a module’s API into the
current scope, each to a bound variable (hello in our case). module
imports an entire module API to a bound variable (foo, bar in our
case). export exports an identifier (variable, function) to the public
API for the current module. These operators can be used as many times
in a module’s definition as is necessary.

The contents inside the module file are treated as if enclosed in a scope
closure, just like with the function-closure modules seen earlier.

Review
Closure seems to the unenlightened like a mystical world set apart
inside of JavaScript that only the few bravest souls can reach. But it’s
actually just a standard and almost obvious fact of how we write code
in a lexically scoped environment, where functions are values and can
be passed around at will.

Closure is when a function can remember and access its lexical scope
even when it’s invoked outside its lexical scope.

Closures can trip us up, for instance with loops, if we’re not careful to
recognize them and how they work. But they are also an immensely
powerful tool, enabling patterns like modules in their various forms.

Review | 63



Modules require two key characteristics: 1) an outer wrapping func‐
tion being invoked, to create the enclosing scope 2) the return value
of the wrapping function must include reference to at least one inner
function that then has closure over the private inner scope of the
wrapper.

Now we can see closures all around our existing code, and we have the
ability to recognize and leverage them to our own benefit!
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APPENDIX A

Dynamic Scope

In Chapter 2, we talked about dynamic scope as a contrast to the lexical
scope model, which is how scope works in JavaScript (and in fact, most
other languages).

We will briefly examine dynamic scope, to hammer home the contrast.
But, more important, dynamic scope actually is a near cousin to an‐
other mechanism (this) in JavaScript, which we cover in the this &
Object Prototypes title of the You Don’t Know JS book series.

As we saw in Chapter 2, lexical scope is the set of rules about how the
engine can look up a variable and where it will find it. The key char‐
acteristic of lexical scope is that it is defined at author time, when the
code is written (assuming you don’t cheat with eval() or with).

Dynamic scope seems to imply, and for good reason, that there’s a
model whereby scope can be determined dynamically at runtime,
rather than statically at author time. That is in fact the case. Let’s il‐
lustrate via code:

function foo() {
    console.log( a ); // 2
}

function bar() {
    var a = 3;
    foo();
}

var a = 2;

bar();
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Lexical scope holds that the RHS reference to a in foo() will be re‐
solved to the global variable a, which will result in value 2 being output.

Dynamic scope, by contrast, doesn’t concern itself with how and where
functions and scopes are declared, but rather where they are called
from. In other words, the scope chain is based on the call-stack, not
the nesting of scopes in code.

So, if JavaScript had dynamic scope, when foo() is executed, theoret‐
ically the code below would instead result in 3 as the output.

function foo() {
    console.log( a ); // 3  (not 2!)
}

function bar() {
    var a = 3;
    foo();
}

var a = 2;

bar();

How can this be? Because when foo() cannot resolve the variable
reference for a, instead of stepping up the nested (lexical) scope chain,
it walks up the call stack, to find where foo() was called from. Since
foo() was called from bar(), it checks the variables in scope for
bar(), and finds an a there with value 3.

Strange? You’re probably thinking so, at the moment.

But that’s just because you’ve probably only ever worked on (or at least
deeply considered) code that is lexically scoped. So dynamic scoping
seems foreign. If you had only ever written code in a dynamically
scoped language, it would seem natural, and lexical scope would be
the odd ball.

To be clear, JavaScript does not, in fact, have dynamic scope. It has
lexical scope. Plain and simple. But the this mechanism is kind of like
dynamic scope.
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The key contrast: lexical scope is write-time, whereas dynamic scope
(and this!) are runtime. Lexical scope cares where a function was
declared, but dynamic scope cares where a function was called from.

Finally, this cares how a function was called, which shows how closely
related the this mechanism is to the idea of dynamic scoping. To dig
more into this, read the You Don’t Know JS title this & Object Proto‐
types.
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APPENDIX B

Polyfilling Block Scope

In Chapter 3, we explored block scope. We saw that with and the catch
clause are both tiny examples of block scope that have existed in Java‐
Script since at least the introduction of ES3.

But it’s ES6’s introduction of let that finally gives full, unfettered block
scoping capability to our code. There are many exciting things, both
functionally and code-stylistically, that block scope will enable.

But what if we wanted to use block scope in pre-ES6 environments?

Consider this code:

{
    let a = 2;
    console.log( a ); // 2
}

console.log( a ); // ReferenceError

This will work great in ES6 environments. But can we do so pre-ES6?
catch is the answer.

try{throw 2}catch(a){
    console.log( a ); // 2
}

console.log( a ); // ReferenceError

Whoa! That’s some ugly, weird looking code. We see a try/catch that
appears to forcibly throw an error, but the “error” it throws is just a
value 2, and then the variable declaration that receives it is in the
catch(a) clause. Mind: blown.
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1. Google Traceur

That’s right, the catch clause has block-scoping to it, which means it
can be used as a polyfill for block scope in pre-ES6 environments.

“But”, you say, “no one wants to write ugly code like that!” That’s true.
No one writes (some of) the code output by the CoffeeScript compiler,
either. That’s not the point.

The point is that tools can transpile ES6 code to work in pre-ES6 en‐
vironments. You can write code using block scoping, and benefit from
such functionality, and let a build-step tool take care of producing code
that will actually work when deployed.

This is actually the preferred migration path for all (ahem, most) of
ES6: to use a code transpiler to take ES6 code and produce ES5-
compatible code during the transition from pre-ES6 to ES6.

Traceur
Google maintains a project called Traceur1, which is exactly tasked
with transpiling ES6 features into pre-ES6 (mostly ES5, but not all!)
for general usage. The TC39 committee relies on this tool (and others)
to test out the semantics of the features they specify.

What does Traceur produce from our snippet? You guessed it!

{
    try {
        throw undefined;
    } catch (a) {
        a = 2;
        console.log( a );
    }
}

console.log( a );

So, with the use of such tools, we can start taking advantage of block
scope regardless of if we are targeting ES6 or not, because try/
catch has been around (and worked this way) from ES3 days.
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Implicit Versus Explicit Blocks
In Chapter 3, we identified some potential pitfalls to code maintaina‐
bility/refactorability when we introduce block scoping. Is there
another way to take advantage of block scope but to reduce this down‐
side?

Consider this alternate form of let, called the let block or let state‐
ment (contrasted with let declarations from before).

let (a = 2) {
    console.log( a ); // 2
}

console.log( a ); // ReferenceError

Instead of implicitly hijacking an existing block, the let statement
creates an explicit block for its scope binding. Not only does the ex‐
plicit block stand out more, and perhaps fare more robustly in code
refactoring, it produces somewhat cleaner code by, grammatically,
forcing all the declarations to the top of the block. This makes it easier
to look at any block and know what’s scoped to it and not.

As a pattern, it mirrors the approach many people take in function
scoping when they manually move/hoist all their var declarations to
the top of the function. The let statement puts them there at the top
of the block by intent, and if you don’t use let declarations strewn
throughout, your block-scoping declarations are somewhat easier to
identify and maintain.

But, there’s a problem. The let statement form is not included in ES6.
Neither does the official Traceur compiler accept that form of code.

We have two options. We can format using ES6-valid syntax and a little
sprinkle of code discipline:

/*let*/ { let a = 2;
    console.log( a );
}

console.log( a ); // ReferenceError

But, tools are meant to solve our problems. So the other option is to
write explicit let statement blocks, and let a tool convert them to valid,
working code.
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2. let-er on GitHub

So, I built a tool called let-er2 to address just this issue. let-er is a build-
step code transpiler, but its only task is to find let statement forms
and transpile them. It will leave alone any of the rest of your code,
including any let declarations. You can safely use let-er as the first ES6
transpiler step, and then pass your code through something like Trace‐
ur if necessary.

Moreover, let-er has a configuration flag --es6, which when turned
on (off by default), changes the kind of code produced. Instead of the
try/catch ES3 polyfill hack, let-er would take our snippet and pro‐
duce the fully ES6-compliant, non-hacky:

{
    let a = 2;
    console.log( a );
}

console.log( a ); // ReferenceError

So, you can start using let-er right away, and target all pre-ES6 envi‐
ronments, and when you only care about ES6, you can add the flag
and instantly target only ES6.

And most important, you can use the more preferable and more ex‐
plicit let statement form even though it is not an official part of any
ES version (yet).

Performance
Let me add one last quick note on the performance of try/catch, and/
or to address the question, “Why not just use an IIFE to create the
scope?”

First, the performance of try/catch is slower, but there’s no reason‐
able assumption that it has to be that way, or even that it always will
be that way. Since the official TC39-approved ES6 transpiler uses try/
catch, the Traceur team has asked Chrome to improve the perfor‐
mance of try/catch, and they are obviously motivated to do so.

Secondly, IIFE is not a fair apples-to-apples comparison with try/
catch, because a function wrapped around any arbitrary code changes
the meaning, inside of that code, of this, return, break, and
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continue. IIFE is not a suitable general substitute. It could only be
used manually in certain cases.

The question really becomes: do you want block scoping, or not. If
you do, these tools provide you that option. If not, keep using var and
go on about your coding!
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APPENDIX C

Lexical this

Though this title does not address the this mechanism in any detail,
there’s one ES6 topic that relates this to lexical scope in an important
way, which we will quickly examine.

ES6 adds a special syntactic form of function declaration called the
arrow function. It looks like this:

var foo = a => {
    console.log( a );
};

foo( 2 ); // 2

The so-called “fat arrow” is often mentioned as a shorthand for the
tediously verbose (sarcasm) function keyword.

But there’s something much more important going on with arrow
functions that has nothing to do with saving keystrokes in your dec‐
laration. Briefly, this code suffers a problem:

var obj = {
    id: "awesome",
    cool: function coolFn() {
        console.log( this.id );
    }
};

var id = "not awesome"

obj.cool(); // awesome

setTimeout( obj.cool, 100 ); // not awesome
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The problem is the loss of this binding on the cool() function. There
are various ways to address that problem, but one often-repeated sol‐
ution is var self = this;.

That might look like:

var obj = {
    count: 0,
    cool: function coolFn() {
        var self = this;

        if (self.count < 1) {
            setTimeout( function timer(){
                self.count++;
                console.log( "awesome?" );
            }, 100 );
        }
    }
};

obj.cool(); // awesome?

Without getting too much into the weeds here, the var self =
this “solution” just ends-around the whole problem of understanding
and properly using this binding, and instead falls back to something
we’re perhaps more comfortable with: lexical scope. self becomes just
an identifier that can be resolved via lexical scope and closure, and
cares not what happened to the this binding along the way.

People don’t like writing verbose stuff, especially when they do it over
and over again. So, a motivation of ES6 is to help alleviate these sce‐
narios, and indeed, fix common idiom problems, such as this one.

The ES6 solution, the arrow function, introduces a behavior called
lexical this.

var obj = {
    count: 0,
    cool: function coolFn() {
        if (this.count < 1) {
            setTimeout( () => { // arrow-function ftw?
                this.count++;
                console.log( "awesome?" );
            }, 100 );
        }
    }
};

obj.cool(); // awesome?
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The short explanation is that arrow functions do not behave at all like
normal functions when it comes to their this binding. They discard
all the normal rules for this binding, and instead take on the this
value of their immediate lexical enclosing scope, whatever it is.

So, in that snippet, the arrow function doesn’t get its this unbound in
some unpredictable way, it just “inherits” the this binding of the
cool() function (which is correct if we invoke it as shown!).

While this makes for shorter code, my perspective is that arrow func‐
tions are really just codifying into the language syntax a common
mistake of developers, which is to confuse and conflate this binding
rules with lexical scope rules.

Put another way: why go to the trouble and verbosity of using the this
style coding paradigm, only to cut it off at the knees by mixing it with
lexical references. It seems natural to embrace one approach or the
other for any given piece of code, and not mix them in the same piece
of code.

One other detraction from arrow functions is that they are
anonymous, not named. See Chapter 3 for the reasons why
anonymous functions are less desirable than named functions.

A more appropriate approach, in my perspective, to this “problem,” is
to use and embrace the this mechanism correctly.

var obj = {
    count: 0,
    cool: function coolFn() {
        if (this.count < 1) {
            setTimeout( function timer(){
                this.count++; // `this` is safe
                              // because of `bind(..)`
                console.log( "more awesome" );
            }.bind( this ), 100 ); // look, `bind()`!
        }
    }
};

obj.cool(); // more awesome
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Whether you prefer the new lexical this behavior of arrow functions,
or you prefer the tried-and-true bind(), it’s important to note that
arrow functions are not just about less typing of function.

They have an intentional behavioral difference that we should learn
and understand, and if we so choose, leverage.

Now that we fully understand lexical scoping (and closure!), under‐
standing lexical this should be a breeze!
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