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Foreword

It was once said, “JavaScript is the only language developers don’t
learn to use before using it.”

I laugh each time I hear that quote because it was true for me and I
suspect it was for many other developers. JavaScript, and maybe
even CSS and HTML, were not among the core computer science
languages taught at college in the Internet’s early days, so personal
development was very much based on the budding developer’s
search and “view source” abilities to piece together these basic web
languages.

I still remember my first high school website project. The task was
to create any type of web store, and me being a James Bond fan, I
decided to create a Goldeneye store. It had everything: the Golden‐
eye MIDI theme song playing in the background, JavaScript-
powered crosshairs following the mouse around the screen, and a
gunshot sound that played upon every click. Q would have been
proud of this masterpiece of a website.

I tell that story because I did back then what many developers are
doing today: I copied-and-pasted chunks of JavaScript code into my
project without having a clue about what’s actually happening. The
widespread use of JavaScript toolkits like jQuery have, in their own
small way, perpetuated this pattern of not learning of core Java‐
Script.

I’m not disparaging JavaScript toolkit use; after all, I’m a member of
the MooTools JavaScript team! But the reason JavaScript toolkits are
as powerful as they are is because their developers know the funda‐
mentals, and their “gotchas,” and apply them magnificently. As use‐
ful as these toolkits are, it’s still incredibly important to know the
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basics of the language, and with books like Kyle Simpson’s You Don’t
Know JS series, there’s no excuse not to learn them.

Types & Grammar, the third installment of the series, is an excellent
look at the core JavaScript fundamentals that copy-and-paste and
JavaScript toolkits don’t and could never teach you. Coercion and its
pitfalls, natives as constructors, and the whole gamut of JavaScript
basics are thoroughly explained with focused code examples. Like
the other books in this series, Kyle cuts straight to the point, with no
fluff and wordsmithing—exactly the type of tech book I love.

Enjoy Types & Grammar and don’t let it get too far away from your
desk!

—David Walsh (http://davidwalsh.name),
Senior Web Developer at Mozilla
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Preface

I’m sure you noticed, but “JS” in the series title is not an abbrevia‐
tion for words used to curse about JavaScript, though cursing at the
language’s quirks is something we can probably all identify with!

From the earliest days of the Web, JavaScript has been a founda‐
tional technology that drives interactive experience around the con‐
tent we consume. While flickering mouse trails and annoying pop-
up prompts may be where JavaScript started, nearly two decades
later, the technology and capability of JavaScript has grown many
orders of magnitude, and few doubt its importance at the heart of
the world’s most widely available software platform: the Web.

But as a language, it has perpetually been a target for a great deal of
criticism, owing partly to its heritage but even more to its design
philosophy. Even the name evokes, as Brendan Eich once put it,
“dumb kid brother” status next to its more mature older brother
Java. But the name is merely an accident of politics and marketing.
The two languages are vastly different in many important ways.
“JavaScript” is as related to “Java” as “Carnival” is to “Car.”

Because JavaScript borrows concepts and syntax idioms from sev‐
eral languages, including proud C-style procedural roots as well as
subtle, less obvious Scheme/Lisp-style functional roots, it is exceed‐
ingly approachable to a broad audience of developers, even those
with little to no programming experience. The “Hello World” of
JavaScript is so simple that the language is inviting and easy to get
comfortable with in early exposure.

While JavaScript is perhaps one of the easiest languages to get up
and running with, its eccentricities make solid mastery of the lan‐
guage a vastly less common occurrence than in many other lan‐
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guages. Where it takes a pretty in-depth knowledge of a language
like C or C++ to write a full-scale program, full-scale production
JavaScript can, and often does, barely scratch the surface of what the
language can do.

Sophisticated concepts that are deeply rooted into the language tend
instead to surface themselves in seemingly simplistic ways, such as
passing around functions as callbacks, which encourages the Java‐
Script developer to just use the language as-is and not worry too
much about what’s going on under the hood.

It is simultaneously a simple, easy-to-use language that has broad
appeal, and a complex and nuanced collection of language mechan‐
ics that without careful study will elude true understanding even for
the most seasoned of JavaScript developers.

Therein lies the paradox of JavaScript, the Achilles’ heel of the lan‐
guage, the challenge we are presently addressing. Because JavaScript
can be used without understanding, the understanding of the lan‐
guage is often never attained.

Mission
If at every point that you encounter a surprise or frustration in Java‐
Script, your response is to add it to the blacklist (as some are accus‐
tomed to doing), you soon will be relegated to a hollow shell of the
richness of JavaScript.

While this subset has been famously dubbed “The Good Parts,” I
would implore you, dear reader, to instead consider it the “The Easy
Parts,” “The Safe Parts,” or even “The Incomplete Parts.”

This You Don’t Know JS series offers a contrary challenge: learn and
deeply understand all of JavaScript, even and especially “The Tough
Parts.”

Here, we address head-on the tendency of JS developers to learn
“just enough” to get by, without ever forcing themselves to learn
exactly how and why the language behaves the way it does. Further‐
more, we eschew the common advice to retreat when the road gets
rough.

I am not content, nor should you be, at stopping once something
just works and not really knowing why. I gently challenge you to
journey down that bumpy “road less traveled” and embrace all that
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JavaScript is and can do. With that knowledge, no technique, no
framework, no popular buzzword acronym of the week will be
beyond your understanding.

These books each take on specific core parts of the language that are
most commonly misunderstood or under-understood, and dive very
deep and exhaustively into them. You should come away from read‐
ing with a firm confidence in your understanding, not just of the
theoretical, but the practical “what you need to know” bits.

The JavaScript you know right now is probably parts handed down
to you by others who’ve been burned by incomplete understanding.
That JavaScript is but a shadow of the true language. You don’t really
know JavaScript, yet, but if you dig into this series, you will. Read
on, my friends. JavaScript awaits you.

Review
JavaScript is awesome. It’s easy to learn partially, and much harder to
learn completely (or even sufficiently). When developers encounter
confusion, they usually blame the language instead of their lack of
understanding. These books aim to fix that, inspiring a strong
appreciation for the language you can now, and should, deeply know.

Many of the examples in this book assume
modern (and future-reaching) JavaScript engine
environments, such as ES6. Some code may not
work as described if run in older (pre-ES6)
engines.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file
extensions.

Constant width

Used for program listings, as well as within paragraphs to refer
to program elements such as variable or function names, data‐
bases, data types, environment variables, statements, and key‐
words.
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Constant width bold

Shows commands or other text that should be typed literally by
the user.

Constant width italic

Shows text that should be replaced with user-supplied values or
by values determined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available
for download at http://bit.ly/ydkjs-types-code.

This book is here to help you get your job done. In general, if exam‐
ple code is offered with this book, you may use it in your programs
and documentation. You do not need to contact us for permission
unless you’re reproducing a significant portion of the code. For
example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-
ROM of examples from O’Reilly books does require permission.
Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation
does require permission.
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We appreciate, but do not require, attribution. An attribution usu‐
ally includes the title, author, publisher, and ISBN. For example:
“You Don’t Know JavaScript: Types & Grammar by Kyle Simpson
(O’Reilly). Copyright 2015 Getify Solutions, Inc.,
978-1-491-90419-0.”

If you feel your use of code examples falls outside fair use or the per‐
mission given above, feel free to contact us at permis‐
sions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital
library that delivers expert content in both
book and video form from the world’s lead‐
ing authors in technology and business.

Technology professionals, software developers, web designers, and
business and creative professionals use Safari Books Online as their
primary resource for research, problem solving, learning, and certif‐
ication training.

Safari Books Online offers a range of plans and pricing for enter‐
prise, government, education, and individuals.

Members have access to thousands of books, training videos, and
prepublication manuscripts in one fully searchable database from
publishers like O’Reilly Media, Prentice Hall Professional, Addison-
Wesley Professional, Microsoft Press, Sams, Que, Peachpit Press,
Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan
Kaufmann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress,
Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech‐
nology, and hundreds more. For more information about Safari
Books Online, please visit us online.

Preface | xi

mailto:permissions@oreilly.com
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/


How to Contact Us
Please address comments and questions concerning this book to the
publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples,
and any additional information. You can access this page at http://
bit.ly/ydkjs_types-and-grammar.

To comment or ask technical questions about this book, send email
to bookquestions@oreilly.com.

For more information about our books, courses, conferences, and
news, see our website at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia
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CHAPTER 1

Types

Most developers would say that a dynamic language (like JS) does
not have types. Let’s see what the ES5.1 specification has to say on
the topic:

Algorithms within this specification manipulate values each of
which has an associated type. The possible value types are exactly
those defined in this clause. Types are further sub-classified into
ECMAScript language types and specification types.
An ECMAScript language type corresponds to values that are
directly manipulated by an ECMAScript programmer using the
ECMAScript language. The ECMAScript language types are Unde‐
fined, Null, Boolean, String, Number, and Object.

Now, if you’re a fan of strongly typed (statically typed) languages,
you may object to this usage of the word “type.” In those languages,
“type” means a whole lot more than it does here in JS.

Some people say JS shouldn’t claim to have “types,” and they should
instead be called “tags” or perhaps “subtypes.”

Bah! We’re going to use this rough definition (the same one that
seems to drive the wording of the spec): a type is an intrinsic, built-
in set of characteristics that uniquely identifies the behavior of a par‐
ticular value and distinguishes it from other values, both to the
engine and to the developer.

In other words, if both the engine and the developer treat value 42
(the number) differently than they treat value "42" (the string), then
those two values have different types—number and string, respec‐
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tively. When you use 42, you are intending to do something numeric,
like math. But when you use "42", you are intending to do some‐
thing string’ish, like outputting to the page, etc. These two values
have different types.

That’s by no means a perfect definition. But it’s good enough for this
discussion. And it’s consistent with how JS describes itself.

A Type by Any Other Name…
Beyond academic definition disagreements, why does it matter if
JavaScript has types or not?

Having a proper understanding of each type and its intrinsic behav‐
ior is absolutely essential to understanding how to properly and
accurately convert values to different types (see Chapter 4). Nearly
every JS program ever written will need to handle value coercion in
some shape or form, so it’s important you do so responsibly and
with confidence.

If you have the number value 42, but you want to treat it like a
string, such as pulling out the "2" as a character in position 1, you
obviously must first convert (coerce) the value from number to
string.

That seems simple enough.

But there are many different ways that such coercion can happen.
Some of these ways are explicit, easy to reason about, and reliable.
But if you’re not careful, coercion can happen in very strange and
surprising ways.

Coercion confusion is perhaps one of the most profound frustra‐
tions for JavaScript developers. It has often been criticized as being
so dangerous as to be considered a flaw in the design of the language,
to be shunned and avoided.

Armed with a full understanding of JavaScript types, we’re aiming to
illustrate why coercion’s bad reputation is largely overhyped and
somewhat undeserved—to flip your perspective so you see coer‐
cion’s power and usefulness. But first, we have to get a much better
grip on values and types.
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Built-in Types
JavaScript defines seven built-in types:

• null

• undefined

• boolean

• number

• string

• object

• symbol—added in ES6!

All of these types except object are called
“primitives.”

The typeof operator inspects the type of the given value, and always
returns one of seven string values—surprisingly, there’s not an exact
1-to-1 match with the seven built-in types we just listed:

typeof undefined     === "undefined"; // true
typeof true          === "boolean";   // true
typeof 42            === "number";    // true
typeof "42"          === "string";    // true
typeof { life: 42 }  === "object";    // true

// added in ES6!
typeof Symbol()      === "symbol";    // true

These six listed types have values of the corresponding type and
return a string value of the same name, as shown. Symbol is a new
data type as of ES6, and will be covered in Chapter 3.

As you may have noticed, I excluded null from the above listing. It’s
special—special in the sense that it’s buggy when combined with the
typeof operator:

typeof null === "object"; // true

It would have been nice (and correct!) if it returned "null", but this
original bug in JS has persisted for nearly two decades, and will
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likely never be fixed because there’s so much existing web content
that relies on its buggy behavior that “fixing” the bug would create
more “bugs” and break a lot of web software.

If you want to test for a null value using its type, you need a com‐
pound condition:

var a = null;

(!a && typeof a === "object"); // true

null is the only primitive value that is “falsy” (aka false-like; see
Chapter 4) but which also returns "object" from the typeof check.

So what’s the seventh string value that typeof can return?

typeof function a(){ /* .. */ } === "function"; // true

It’s easy to think that function would be a top-level built-in type in
JS, especially given this behavior of the typeof operator. However, if
you read the spec, you’ll see it’s actually somewhat of a “subtype” of
object. Specifically, a function is referred to as a “callable object”—
an object that has an internal [[Call]] property that allows it to be
invoked.

The fact that functions are actually objects is quite useful. Most
importantly, they can have properties. For example:

function a(b,c) {
    /* .. */
}

The function object has a length property set to the number of for‐
mal parameters it is declared with:

a.length; // 2

Since you declared the function with two formal named parameters
(b and c), the “length of the function” is 2.

What about arrays? They’re native to JS, so are they a special type?

typeof [1,2,3] === "object"; // true

Nope, just objects. It’s most appropriate to think of them also as a
“subtype” of object (see Chapter 3), in this case with the additional
characteristics of being numerically indexed (as opposed to just
being string-keyed like plain objects) and maintaining an automati‐
cally updated .length property.
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Values as Types
In JavaScript, variables don’t have types—values have types. Variables
can hold any value, at any time.

Another way to think about JS types is that JS doesn’t have “type
enforcement,” in that the engine doesn’t insist that a variable always
holds values of the same initial type that it starts out with. A variable
can, in one assignment statement, hold a string, and in the next
hold a number, and so on.

The value 42 has an intrinsic type of number, and its type cannot be
changed. Another value, like "42" with the string type, can be cre‐
ated from the number value 42 through a process called coercion (see
Chapter 4).

If you use typeof against a variable, it’s not asking “What’s the type
of the variable?” as it may seem, since JS variables have no types.
Instead, it’s asking “What’s the type of the value in the variable?”

var a = 42;
typeof a; // "number"

a = true;
typeof a; // "boolean"

The typeof operator always returns a string. So:

typeof typeof 42; // "string"

The first typeof 42 returns "number", and typeof "number" is
"string".

undefined Versus “undeclared”
Variables that have no value currently actually have the undefined
value. Calling typeof against such variables will return "unde
fined":

var a;

typeof a; // "undefined"

var b = 42;
var c;

// later
b = c;
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typeof b; // "undefined"
typeof c; // "undefined"

It’s tempting for most developers to think of the word “undefined”
as a synonym for “undeclared.” However, in JS, these two concepts
are quite different.

An “undefined” variable is one that has been declared in the accessi‐
ble scope, but at the moment has no other value in it. By contrast, an
“undeclared” variable is one that has not been formally declared in
the accessible scope.

Consider:

var a;

a; // undefined
b; // ReferenceError: b is not defined

An annoying confusion is the error message that browsers assign to
this condition. As you can see, the message is “b is not defined,”
which is of course very easy and reasonable to confuse with “b is
undefined.” Yet again, “undefined” and “is not defined” are very dif‐
ferent things. It’d be nice if the browsers said something like “b is
not found” or “b is not declared” to reduce the confusion!

There’s also a special behavior associated with typeof as it relates to
undeclared variables that even further reinforces the confusion.
Consider:

var a;

typeof a; // "undefined"

typeof b; // "undefined"

The typeof operator returns "undefined" even for “undeclared” (or
“not defined”) variables. Notice that there was no error thrown
when we executed typeof b, even though b is an undeclared vari‐
able. This is a special safety guard in the behavior of typeof.

Similar to above, it would have been nice if typeof used with an
undeclared variable returned “undeclared” instead of conflating the
result value with the different “undefined” case.
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typeof Undeclared
Nevertheless, this safety guard is a useful feature when dealing with
JavaScript in the browser, where multiple script files can load vari‐
ables into the shared global namespace.

Many developers believe there should never be
any variables in the global namespace, and that
everything should be contained in modules and
private/separate namespaces. This is great in
theory but nearly impossible in practice; still, it’s
a good goal to strive toward! Fortunately, ES6
added first-class support for modules, which will
eventually make that much more practical.

As a simple example, imagine having a “debug mode” in your pro‐
gram that is controlled by a global variable (flag) called DEBUG. You’d
want to check if that variable was declared before performing a
debug task like logging a message to the console. A top-level global
var DEBUG = true declaration would only be included in a
“debug.js” file, which you only load into the browser when you’re in
development/testing, but not in production.

However, you have to take care in how you check for the global
DEBUG variable in the rest of your application code, so that you don’t
throw a ReferenceError. The safety guard on typeof is our friend
in this case:

// oops, this would throw an error!
if (DEBUG) {
    console.log( "Debugging is starting" );
}

// this is a safe existence check
if (typeof DEBUG !== "undefined") {
    console.log( "Debugging is starting" );
}

This sort of check is useful even if you’re not dealing with user-
defined variables (like DEBUG). If you are doing a feature check for a
built-in API, you may also find it helpful to check without throwing
an error:

if (typeof atob === "undefined") {
    atob = function() { /*..*/ };
}
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If you’re defining a “polyfill” for a feature if it
doesn’t already exist, you probably want to avoid
using var to make the atob declaration. If you
declare var atob inside the if statement, this
declaration is hoisted (see the Scope & Closures
title in this series) to the top of the scope, even if
the if condition doesn’t pass (because the global
atob already exists!). In some browsers and for
some special types of global built-in variables
(often called “host objects”), this duplicate dec‐
laration may throw an error. Omitting the var
prevents this hoisted declaration.

Another way of doing these checks against global variables but
without the safety guard feature of typeof is to observe that all
global variables are also properties of the global object, which in the
browser is basically the window object. So, the above checks could
have been done (quite safely) as:

if (window.DEBUG) {
    // ..
}

if (!window.atob) {
    // ..
}

Unlike referencing undeclared variables, there is no ReferenceEr
ror thrown if you try to access an object property (even on the
global window object) that doesn’t exist.

On the other hand, manually referencing the global variable with a
window reference is something some developers prefer to avoid,
especially if your code needs to run in multiple JS environments
(not just browsers, but server-side node.js, for instance), where the
global variable may not always be called window.

Technically, this safety guard on typeof is useful even if you’re not
using global variables, though these circumstances are less common,
and some developers may find this design approach less desirable.
Imagine a utility function that you want others to copy-and-paste
into their programs or modules, in which you want to check to see if
the including program has defined a certain variable (so that you
can use it) or not:
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function doSomethingCool() {
    var helper =
        (typeof FeatureXYZ !== "undefined") ?
        FeatureXYZ :
        function() { /*.. default feature ..*/ };

    var val = helper();
    // ..
}

doSomethingCool() tests for a variable called FeatureXYZ, and if
found, uses it, but if not, uses its own. Now, if someone includes this
utility into their module/program, it safely checks if they’ve defined
FeatureXYZ or not:

// an IIFE (see the "Immediately Invoked Function Expressions"
// discussion in the Scope & Closures title in this series)
(function(){
    function FeatureXYZ() { /*.. my XYZ feature ..*/ }

    // include `doSomethingCool(..)`
    function doSomethingCool() {
        var helper =
            (typeof FeatureXYZ !== "undefined") ?
            FeatureXYZ :
            function() { /*.. default feature ..*/ };

        var val = helper();
        // ..
    }

    doSomethingCool();
})();

Here, FeatureXYZ is not at all a global variable, but we’re still using
the safety guard of typeof to make it safe to check for. And impor‐
tantly, here there is no object we can use (like we did for global vari‐
ables with window.___) to make the check, so typeof is quite
helpful.

Other developers would prefer a design pattern called “dependency
injection,” where instead of doSomethingCool() inspecting implic‐
itly for FeatureXYZ to be defined outside/around it, it would need to
have the dependency explicitly passed in, like:

function doSomethingCool(FeatureXYZ) {
    var helper = FeatureXYZ ||
        function() { /*.. default feature ..*/ };

    var val = helper();
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    // ..
}

There’s lots of options when designing such functionality. No one
pattern here is “correct” or “wrong”—there are various trade-offs to
each approach. But overall, it’s nice that the typeof undeclared
safety guard gives us more options.

Review
JavaScript has seven built-in types: null, undefined, boolean, num
ber, string, object, and symbol. They can be identified by the
typeof operator.

Variables don’t have types, but the values in them do. These types
define the intrinsic behavior of the values.

Many developers will assume “undefined” and “undeclared” are
roughly the same thing, but in JavaScript, they’re quite different.
undefined is a value that a declared variable can hold. “Undeclared”
means a variable has never been declared.

JavaScript unfortunately kind of conflates these two terms, not only
in its error messages (“ReferenceError: a is not defined”) but also in
the return values of typeof, which is "undefined" for both cases.

However, the safety guard (preventing an error) on typeof when
used against an undeclared variable can be helpful in certain cases.
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CHAPTER 2

Values

arrays, strings, and numbers are the most basic building blocks of
any program, but JavaScript has some unique characteristics with
these types that may either delight or confound you.

Let’s look at several of the built-in value types in JS, and explore how
we can more fully understand and correctly leverage their behaviors.

Arrays
As compared to other type-enforced languages, JavaScript arrays
are just containers for any type of value, from string to number to
object to even another array (which is how you get multidimen‐
sional arrays):

var a = [ 1, "2", [3] ];

a.length;       // 3
a[0] === 1;     // true
a[2][0] === 3;  // true

You don’t need to presize your arrays (see “Array(..)” on page 44),
you can just declare them and add values as you see fit:
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var a = [ ];

a.length;   // 0

a[0] = 1;
a[1] = "2";
a[2] = [ 3 ];

a.length;   // 3

Using delete on an array value will remove
that slot from the array, but even if you remove
the final element, it does not update the length
property, so be careful! We’ll cover the delete
operator itself in more detail in Chapter 5.

Be careful about creating “sparse” arrays (leaving or creating empty/
missing slots):

var a = [ ];

a[0] = 1;
// no `a[1]` slot set here
a[2] = [ 3 ];

a[1];       // undefined

a.length;   // 3

While that works, it can lead to some confusing behavior with the
“empty slots” you leave in between. While the slot appears to have
the undefined value in it, it will not behave the same as if the slot is
explicitly set (a[1] = undefined). See “Array(..)” on page 44 for
more information.

arrays are numerically indexed (as you’d expect), but the tricky
thing is that they also are objects that can have string keys/proper‐
ties added to them (but which don’t count toward the length of the
array):

var a = [ ];

a[0] = 1;
a["foobar"] = 2;

a.length;       // 1
a["foobar"];    // 2
a.foobar;       // 2

12 | Chapter 2: Values



However, a gotcha to be aware of is that if a string value intended
as a key can be coerced to a standard base-10 number, then it is
assumed that you wanted to use it as a number index rather than as a
string key!

var a = [ ];

a["13"] = 42;

a.length; // 14

Generally, it’s not a great idea to add string keys/properties to
arrays. Use objects for holding values in keys/properties, and save
arrays for strictly numerically indexed values.

Array-Likes
There will be occasions where you need to convert an array-like
value (a numerically indexed collection of values) into a true array,
usually so you can call array utilities (like indexOf(..), concat(..),
forEach(..), etc.) against the collection of values.

For example, various DOM query operations return lists of DOM
elements that are not true arrays but are array-like enough for our
conversion purposes. Another common example is when functions
expose the arguments (array-like) object (as of ES6, deprecated) to
access the arguments as a list.

One very common way to make such a conversion is to borrow the
slice(..) utility against the value:

function foo() {
    var arr = Array.prototype.slice.call( arguments );
    arr.push( "bam" );
    console.log( arr );
}

foo( "bar", "baz" ); // ["bar","baz","bam"]

If slice() is called without any other parameters, as it effectively is
in the above snippet, the default values for its parameters have the
effect of duplicating the array (or, in this case, array-like).

As of ES6, there’s also a built-in utility called Array.from(..) that
can do the same task:
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...
var arr = Array.from( arguments );
...

Array.from(..) has several powerful capabili‐
ties, and will be covered in detail in the ES6 &
Beyond title in this series.

Strings
It’s a very common belief that strings are essentially just arrays of
characters. While the implementation under the covers may or may
not use arrays, it’s important to realize that JavaScript strings are
really not the same as arrays of characters. The similarity is mostly
just skin-deep.

For example, let’s consider these two values:

var a = "foo";
var b = ["f","o","o"];

Strings do have a shallow resemblance to arrays—they are array-
likes, as above. For instance, both of them have a length property,
an indexOf(..) method (array version only as of ES5), and a con
cat(..) method:

[source,js]

a.length;                           // 3
b.length;                           // 3

a.indexOf( "o" );                   // 1
b.indexOf( "o" );                   // 1

var c = a.concat( "bar" );          // "foobar"
var d = b.concat( ["b","a","r"] );  // ["f","o","o","b","a","r"]

a === c;                            // false
b === d;                            // false

a;                                  // "foo"
b;                                  // ["f","o","o"]

So, they’re both basically just “arrays of characters,” right? Not
exactly:
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a[1] = "O";
b[1] = "O";

a; // "foo"
b; // ["f","O","o"]

JavaScript strings are immutable, while arrays are quite mutable.
Moreover, the a[1] character position access form was not always
widely valid JavaScript. Older versions of IE did not allow that syn‐
tax (but now they do). Instead, the correct approach has been
a.charAt(1).

A further consequence of immutable strings is that none of the
string methods that alter its contents can modify in-place, but
rather must create and return new strings. By contrast, many of the
array methods that change array contents actually do modify in-
place:

c = a.toUpperCase();
a === c;    // false
a;          // "foo"
c;          // "FOO"

b.push( "!" );
b;          // ["f","O","o","!"]

Also, many of the array methods that could be helpful when dealing
with strings are not actually available for them, but we can “bor‐
row” nonmutation array methods against our string:

a.join;         // undefined
a.map;          // undefined

var c = Array.prototype.join.call( a, "-" );
var d = Array.prototype.map.call( a, function(v){
    return v.toUpperCase() + ".";
} ).join( "" );

c;              // "f-o-o"
d;              // "F.O.O."

Let’s take another example: reversing a string (incidentally, a com‐
mon JavaScript interview trivia question!). arrays have a reverse()
in-place mutator method, but strings do not:

a.reverse;      // undefined

b.reverse();    // ["!","o","O","f"]
b;              // ["!","o","O","f"]

Strings | 15



Unfortunately, this “borrowing” doesn’t work with array mutators,
because strings are immutable and thus can’t be modified in place:

Array.prototype.reverse.call( a );
// still returns a String object wrapper (see Chapter 3)
// for "foo" :(

Another workaround (aka hack) is to convert the string into an
array, perform the desired operation, then convert it back to a
string:

var c = a
    // split `a` into an array of characters
    .split( "" )
    // reverse the array of characters
    .reverse()
    // join the array of characters back to a string
    .join( "" );

c; // "oof"

If that feels ugly, it is. Nevertheless, it works for simple strings, so if
you need something quick-n-dirty, often such an approach gets the
job done.

Be careful! This approach doesn’t work for
strings with complex (unicode) characters in
them (astral symbols, multibyte characters, etc.).
You need more sophisticated library utilities that
are unicode-aware for such operations to be
handled accurately. Consult Mathias Bynens’
work on the subject: Esrever.

The other way to look at this is if you are more commonly doing
tasks on your “strings” that treat them as basically arrays of charac‐
ters, perhaps it’s better to just actually store them as arrays rather
than as strings. You’ll probably save yourself a lot of hassle of con‐
verting from string to array each time. You can always call
join("") on the array of characters whenever you actually need the
string representation.

Numbers
JavaScript has just one numeric type: number. This type includes
both “integer” values and fractional decimal numbers. I say “integer”
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in quotes because it’s long been a criticism of JS that there’s not true
integers, as there are in other languages. That may change at some
point in the future, but for now, we just have numbers for everything.

So, in JS, an “integer” is just a value that has no fractional decimal
value. That is, 42.0 is as much an “integer” as 42.

Like most modern languages, including practically all scripting lan‐
guages, the implementation of JavaScript’s numbers is based on the
“IEEE 754” standard, often called “floating-point.” JavaScript specifi‐
cally uses the “double precision” format (aka “64-bit binary”) of the
standard.

There are many great write-ups on the Web about the nitty-gritty
details of how binary floating-point numbers are stored in memory,
and the implications of those choices. Because understanding bit
patterns in memory is not strictly necessary to understand how to
correctly use numbers in JS, we’ll leave it as an exercise for the inter‐
ested reader if you’d like to dig further into IEEE 754 details.

Numeric Syntax
Number literals are expressed in JavaScript generally as base-10 dec‐
imal literals. For example:

var a = 42;
var b = 42.3;

The leading portion of a decimal value, if 0, is optional:

var a = 0.42;
var b = .42;

Similarly, the trailing portion (the fractional) of a decimal value after
the ., if 0, is optional:

var a = 42.0;
var b = 42.;

42. is pretty uncommon, and probably not a
great idea if you’re trying to avoid confusion
when other people read your code. But it is, nev‐
ertheless, valid.

By default, most numbers will be outputted as base-10 decimals, with
trailing fractional 0s removed. So:
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var a = 42.300;
var b = 42.0;

a; // 42.3
b; // 42

Very large or very small numbers will by default be outputted in
exponent form, the same as the output of the toExponential()
method, like:

var a = 5E10;
a;                  // 50000000000
a.toExponential();  // "5e+10"

var b = a * a;
b;                  // 2.5e+21

var c = 1 / a;
c;                  // 2e-11

Because number values can be boxed with the Number object wrapper
(see Chapter 3), number values can access methods that are built into
the Number.prototype (see Chapter 3). For example, the
toFixed(..) method allows you to specify how many fractional
decimal places you’d like the value to be represented with:

var a = 42.59;

a.toFixed( 0 ); // "43"
a.toFixed( 1 ); // "42.6"
a.toFixed( 2 ); // "42.59"
a.toFixed( 3 ); // "42.590"
a.toFixed( 4 ); // "42.5900"

Notice that the output is actually a string representation of the num
ber, and that the value is 0-padded on the righthand side if you ask
for more decimals than the value holds.

toPrecision(..) is similar, but specifies how many significant digits
should be used to represent the value:

var a = 42.59;

a.toPrecision( 1 ); // "4e+1"
a.toPrecision( 2 ); // "43"
a.toPrecision( 3 ); // "42.6"
a.toPrecision( 4 ); // "42.59"
a.toPrecision( 5 ); // "42.590"
a.toPrecision( 6 ); // "42.5900"
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You don’t have to use a variable with the value in it to access these
methods; you can access these methods directly on number literals.
But you have to be careful with the . operator. Since . is a valid
numeric character, it will first be interpreted as part of the number
literal, if possible, instead of being interpreted as a property acces‐
sor:

// invalid syntax:
42.toFixed( 3 );    // SyntaxError

// these are all valid:
(42).toFixed( 3 );  // "42.000"
0.42.toFixed( 3 );  // "0.420"
42..toFixed( 3 );   // "42.000"

42.toFixed(3) is invalid syntax, because the . is swallowed up as
part of the 42. literal (which is valid—see above!), and so then
there’s no . property operator present to make the .toFixed access.

42..toFixed(3) works because the first . is part of the number and
the second . is the property operator. But it probably looks strange,
and indeed it’s very rare to see something like that in actual Java‐
Script code. In fact, it’s pretty uncommon to access methods directly
on any of the primitive values. Uncommon doesn’t mean bad or
wrong.

There are libraries that extend the built-in Num
ber.prototype (see Chapter 3) to provide extra
operations on/with numbers, and so in those
cases, it’s perfectly valid to use something like
10..makeItRain() to set off a 10-second money
raining animation, or something else silly like
that.

This is also technically valid (notice the space):

42 .toFixed(3); // "42.000"

However, with the number literal specifically, this is a particularly
confusing coding style and will serve no other purpose but to con‐
fuse other developers (and your future self). Avoid it.

numbers can also be specified in exponent form, which is common
when representing larger numbers, such as:
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var onethousand = 1E3;                      // means 1 * 10^3
var onemilliononehundredthousand = 1.1E6;   // means 1.1 * 10^6

number literals can also be expressed in other bases, like binary,
octal, and hexadecimal.

These formats work in current versions of JavaScript:

0xf3; // hexadecimal for: 243
0Xf3; // ditto

0363; // octal for: 243

Starting with ES6 + strict mode, the 0363 form
of octal literals is no longer allowed (see below
for the new form). The 0363 form is still allowed
in non-strict mode, but you should stop using
it anyway, to be future-friendly (and because you
should be using strict mode by now!).

As of ES6, the following new forms are also valid:

0o363;      // octal for: 243
0O363;      // ditto

0b11110011; // binary for: 243
0B11110011; // ditto

Please do your fellow developers a favor: never use the 0O363 form.
0 next to capital O is just asking for confusion. Always use the lower‐
case predicates 0x, 0b, and 0o.

Small Decimal Values
The most (in)famous side effect of using binary floating-point num‐
bers (which, remember, is true of all languages that use IEEE 754—
not just JavaScript as many assume/pretend) is:

0.1 + 0.2 === 0.3; // false

Mathematically, we know that statement should be true. Why is it
false?

Simply put, the representations for 0.1 and 0.2 in binary floating
point are not exact, so when they are added, the result is not exactly
0.3. It’s really close, 0.30000000000000004, but if your comparison
fails, “close” is irrelevant.
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Should JavaScript switch to a different number
implementation that has exact representations
for all values? Some think so. There have been
many alternatives presented over the years.
None of them have been accepted, and perhaps
none will ever be. As easy as it may seem to just
wave a hand and say, “Fix that bug already!”, it’s
not nearly that easy. If it were, it most definitely
would have been changed a long time ago.

Now, the question is, if some numbers can’t be trusted to be exact,
does that mean we can’t use numbers at all? Of course not.

There are some applications where you need to be more careful,
especially when dealing with fractional decimal values. There are
also plenty of (maybe most?) applications that only deal with whole
numbers (“integers”), and moreover, only deal with numbers in the
millions or trillions at maximum. These applications have been, and
always will be, perfectly safe to use numeric operations in JS.

What if we did need to compare two numbers, like 0.1 + 0.2 to 0.3,
knowing that the simple equality test fails?

The most commonly accepted practice is to use a tiny “rounding
error” value as the tolerance for comparison. This tiny value is often
called “machine epsilon,” which is commonly 2^-52

(2.220446049250313e-16) for the kind of numbers in JavaScript.

As of ES6, Number.EPSILON is predefined with this tolerance value,
so you’d want to use it, but you can safely polyfill the definition for
pre-ES6:

if (!Number.EPSILON) {
    Number.EPSILON = Math.pow(2,-52);
}

We can use this Number.EPSILON to compare two numbers for
“equality” (within the rounding error tolerance):

function numbersCloseEnoughToEqual(n1,n2) {
    return Math.abs( n1 - n2 ) < Number.EPSILON;
}

var a = 0.1 + 0.2;
var b = 0.3;
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numbersCloseEnoughToEqual( a, b );                  // true
numbersCloseEnoughToEqual( 0.0000001, 0.0000002 );  // false

The maximum floating-point value that can be represented is
roughly 1.798e+308 (which is really, really, really huge!), predefined
for you as Number.MAX_VALUE. On the small end, Number.MIN_VALUE
is roughly 5e-324, which isn’t negative but is really close to zero!

Safe Integer Ranges
Because of how numbers are represented, there is a range of “safe”
values for the whole number “integers,” and it’s significantly less than
Number.MAX_VALUE.

The maximum integer that can “safely” be represented (that is,
there’s a guarantee that the requested value is actually representable
unambiguously) is 2^53 - 1, which is 9007199254740991. If you
insert your commas, you’ll see that this is just over 9 quadrillion. So
that’s pretty darn big for numbers to range up to.

This value is actually automatically predefined in ES6, as Num
ber.MAX_SAFE_INTEGER. Unsurprisingly, there’s a minimum value,
-9007199254740991, and it’s defined in ES6 as Num

ber.MIN_SAFE_INTEGER.

The main scenario in which JS programs are confronted with such
large numbers is when dealing with 64-bit IDs from databases, etc.
64-bit numbers cannot be represented accurately with the number
type, so they must be stored in (and transmitted to/from) JavaScript
using string representation.

Numeric operations on such large ID number values (besides com‐
parison, which will be fine with strings) aren’t all that common,
thankfully. But if you do need to perform math on these very large
values, for now you’ll need to use a big number utility. Big numbers
may get official support in a future version of JavaScript.

Testing for Integers
To test if a value is an integer, you can use the ES6-specified Num
ber.isInteger(..):

Number.isInteger( 42 );     // true
Number.isInteger( 42.000 ); // true
Number.isInteger( 42.3 );   // false
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To polyfill Number.isInteger(..) for pre-ES6:

if (!Number.isInteger) {
    Number.isInteger = function(num) {
        return typeof num == "number" && num % 1 == 0;
    };
}

To test if a value is a safe integer, use the ES6-specified Number.isSa
feInteger(..):

Number.isSafeInteger( Number.MAX_SAFE_INTEGER );    // true
Number.isSafeInteger( Math.pow( 2, 53 ) );          // false
Number.isSafeInteger( Math.pow( 2, 53 ) - 1 );      // true

To polyfill Number.isSafeInteger(..) in pre-ES6 browsers:

if (!Number.isSafeInteger) {
    Number.isSafeInteger = function(num) {
        return Number.isInteger( num ) &&
            Math.abs( num ) <= Number.MAX_SAFE_INTEGER;
    };
}

32-Bit (Signed) Integers
While integers can range up to roughly 9 quadrillion safely (53 bits),
there are some numeric operations (like the bitwise operators) that
are only defined for 32-bit numbers, so the “safe range” for numbers
used in that way must be much smaller.

The range then is Math.pow(-2,31) (-2147483648, about –2.1 bil‐
lion) up to Math.pow(2,31)-1 (2147483647, about +2.1 billion).

To force a number value in a to a 32-bit signed integer value, use a |
0. This works because the | bitwise operator only works for 32-bit
integer values (meaning it can only pay attention to 32 bits and any
other bits will be lost). Then, “or’ing” with zero is essentially a no-op
bitwise speaking.

Certain special values (which we will cover in
the next section) such as NaN and Infinity are
not “32-bit safe,” in that those values when
passed to a bitwise operator will pass through
the abstract operation ToInt32 (see Chapter 4)
and become simply the +0 value for the purpose
of that bitwise operation.
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Special Values
There are several special values spread across the various types that
the alert JS developer needs to be aware of, and use properly.

The Nonvalue Values
For the undefined type, there is one and only one value: undefined.
For the null type, there is one and only one value: null. So for both
of them, the label is both its type and its value.

Both undefined and null are often taken to be interchangeable as
either “empty” values or “non” values. Other developers prefer to
distinguish between them with nuance. For example:

• null is an empty value.
• undefined is a missing value.

Or:

• undefined hasn’t had a value yet.
• null had a value and doesn’t anymore.

Regardless of how you choose to “define” and use these two values,
null is a special keyword, not an identifier, and thus you cannot
treat it as a variable to assign to (why would you!?). However, unde
fined is (unfortunately) an identifier. Uh oh.

Undefined
In non-strict mode, it’s actually possible (though incredibly ill-
advised!) to assign a value to the globally provided undefined iden‐
tifier:

function foo() {
    undefined = 2; // really bad idea!
}

foo();

function foo() {
    "use strict";
    undefined = 2; // TypeError!
}
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foo();

In both non-strict mode and strict mode, however, you can cre‐
ate a local variable of the name undefined. But again, this is a terri‐
ble idea!

function foo() {
    "use strict";
    var undefined = 2;
    console.log( undefined ); // 2
}

foo();

Friends don’t let friends override undefined. Ever.

void operator

While undefined is a built-in identifier that holds (unless modified
—see above!) the built-in undefined value, another way to get this
value is the void operator.

The expression void ___ “voids” out any value, so that the result of
the expression is always the undefined value. It doesn’t modify the
existing value; it just ensures that no value comes back from the
operator expression:

var a = 42;

console.log( void a, a ); // undefined 42

By convention (mostly from C-language programming), to repre‐
sent the undefined value standalone by using void, you’d use void
0 (though clearly even void true or any other void expression does
the same thing). There’s no practical difference between void 0,
void 1, and undefined.

But the void operator can be useful in a few other circumstances, if
you need to ensure that an expression has no result value (even if it
has side effects).

For example:

function doSomething() {
    // note: `APP.ready` is provided by our application
    if (!APP.ready) {
        // try again later
        return void setTimeout( doSomething,100 );
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    }

    var result;

    // do some other stuff
    return result;
}

// were we able to do it right away?
if (doSomething()) {
    // handle next tasks right away
}

Here, the setTimeout(..) function returns a numeric value (the
unique identifier of the timer interval, if you wanted to cancel it),
but we want to void that out so that the return value of our function
doesn’t give a false positive with the if statement.

Many devs prefer to just do these actions separately, which works
the same but doesn’t use the void operator:

if (!APP.ready) {
    // try again later
    setTimeout( doSomething,100 );
    return;
}

In general, if there’s ever a place where a value exists (from some
expression) and you’d find it useful for the value to be undefined
instead, use the void operator. That probably won’t be terribly com‐
mon in your programs, but in the rare cases you do need it, it can be
quite helpful.

Special Numbers
The number type includes several special values. We’ll take a look at
each in detail.

The not number, number
Any mathematic operation you perform without both operands
being numbers (or values that can be interpreted as regular numbers
in base 10 or base 16) will result in the operation failing to produce a
valid number, in which case you will get the NaN value.

NaN literally stands for “not a number,” though this label/description
is very poor and misleading, as we’ll see shortly. It would be much
more accurate to think of NaN as being an “invalid number,” “failed
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number,” or even “bad number,” than to think of it as “not a num‐
ber.”

For example:

var a = 2 / "foo";      // NaN

typeof a === "number";  // true

In other words, “the type of not-a-number is number!” Hooray for
confusing names and semantics.

NaN is a kind of “sentinel value” (an otherwise normal value that’s
assigned a special meaning) that represents a special kind of error
condition within the number set. The error condition is, in essence,
“I tried to perform a mathematic operation but failed, so here’s the
failed number result instead.”

So, if you have a value in some variable and want to test to see if it’s
this special failed-number NaN, you might think you could directly
compare to NaN itself, as you can with any other value, like null or
undefined. Nope.

var a = 2 / "foo";

a == NaN;   // false
a === NaN;  // false

NaN is a very special value in that it’s never equal to another NaN
value (i.e., it’s never equal to itself). It’s the only value, in fact, that is
not reflexive (without the Identity characteristic x === x). So, NaN !
== NaN. A bit strange, huh?

So how do we test for it, if we can’t compare to NaN (since that com‐
parison would always fail)?

var a = 2 / "foo";

isNaN( a ); // true

Easy enough, right? We use the built-in global utility called
isNaN(..) and it tells us if the value is NaN or not. Problem solved!

Not so fast.

The isNaN(..) utility has a fatal flaw. It appears it tried to take the
meaning of NaN (“Not a Number”) too literally—that its job is basi‐
cally, “test if the thing passed in is either not a number or is a num
ber.” But that’s not quite accurate:
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var a = 2 / "foo";
var b = "foo";

a; // NaN
b; "foo"

window.isNaN( a ); // true
window.isNaN( b ); // true--ouch!

Clearly, "foo" is literally not a number, but it’s definitely not the NaN
value either! This bug has been in JS since the very beginning (over
19 years of ouch).

As of ES6, finally a replacement utility has been provided: Num
ber.isNaN(..). A simple polyfill for it so that you can safely check
NaN values now even in pre-ES6 browsers is:

if (!Number.isNaN) {
    Number.isNaN = function(n) {
        return (
            typeof n === "number" &&
            window.isNaN( n )
        );
    };
}

var a = 2 / "foo";
var b = "foo";

Number.isNaN( a ); // true
Number.isNaN( b ); // false--phew!

Actually, we can implement a Number.isNaN(..) polyfill even easier,
by taking advantage of that peculiar fact that NaN isn’t equal to itself.
NaN is the only value in the whole language where that’s true; every
other value is always equal to itself.

So:

if (!Number.isNaN) {
    Number.isNaN = function(n) {
        return n !== n;
    };
}

Weird, huh? But it works!

NaNs are probably a reality in a lot of real-world JS programs, either
on purpose or by accident. It’s a really good idea to use a reliable
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test, like Number.isNaN(..) as provided (or polyfilled), to recognize
them properly.

If you’re currently using just isNaN(..) in a program, the sad reality
is your program has a bug, even if you haven’t been bitten by it yet!

Infinities
Developers from traditional compiled languages like C are probably
used to seeing either a compiler error or runtime exception, like
“divide by zero,” for an operation like:

var a = 1 / 0;

However, in JS, this operation is well-defined and results in the
value Infinity (aka Number.POSITIVE_INFINITY). Unsurprisingly:

var a = 1 / 0;  // Infinity
var b = -1 / 0; // -Infinity

As you can see, -Infinity (aka Number.NEGATIVE_INFINITY) results
from a divide-by-zero where either (but not both!) of the divide
operands is negative.

JS uses finite numeric representations (IEEE 754 floating-point,
which we covered earlier), so contrary to pure mathematics, it seems
it is possible to overflow even with an operation like addition or
subtraction, in which case you’d get Infinity or -Infinity.

For example:

var a = Number.MAX_VALUE;   // 1.7976931348623157e+308
a + a;                      // Infinity
a + Math.pow( 2, 970 );     // Infinity
a + Math.pow( 2, 969 );     // 1.7976931348623157e+308

According to the specification, if an operation like addition results
in a value that’s too big to represent, the IEEE 754 “round-to-
nearest” mode specifies what the result should be. So, in a crude
sense, Number.MAX_VALUE + Math.pow( 2, 969 ) is closer to Num
ber.MAX_VALUE than to Infinity, so it “rounds down,” whereas Num
ber.MAX_VALUE + Math.pow( 2, 970 ) is closer to Infinity so it
“rounds up.”

If you think too much about that, it’s going to make your head hurt.
So don’t. Seriously, stop!
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Once you overflow to either one of the infinities, however, there’s no
going back. In other words, in an almost poetic sense, you can go
from finite to infinite but not from infinite back to finite.

It’s almost philosophical to ask: “What is infinity divided by infin‐
ity?” Our naive brains would likely say “1” or maybe “infinity.” Turns
out neither is true. Both mathematically and in JavaScript, Infin
ity / Infinity is not a defined operation. In JS, this results in NaN.

But what about any positive finite number divided by Infinity?
That’s easy! 0. And what about a negative finite number divided by
Infinity? Keep reading!

Zeros
While it may confuse the mathematics-minded reader, JavaScript
has both a normal zero 0 (otherwise known as a positive zero +0)
and a negative zero -0. Before we explain why the -0 exists, we
should examine how JS handles it, because it can be quite confusing.

Besides being specified literally as -0, negative zero also results from
certain mathematic operations. For example:

var a = 0 / -3; // -0
var b = 0 * -3; // -0

Addition and subtraction cannot result in a negative zero.

A negative zero when examined in the developer console will usu‐
ally reveal -0, though that was not the common case until fairly
recently, so some older browsers you encounter may still report it as
0.

However, if you try to stringify a negative zero value, it will always
be reported as "0", according to the spec:

var a = 0 / -3;

// (some browser) consoles at least get it right
a;                          // -0

// but the spec insists on lying to you!
a.toString();               // "0"
a + "";                     // "0"
String( a );                // "0"

// strangely, even JSON gets in on the deception
JSON.stringify( a );   // "0"

30 | Chapter 2: Values



Interestingly, the reverse operations (going from string to number)
don’t lie:

+"-0";              // -0
Number( "-0" );     // -0
JSON.parse( "-0" ); // -0

The JSON.stringify( -0 ) behavior of "0" is
particularly strange when you observe that it’s
inconsistent with the reverse:
JSON.parse( "-0" ) reports -0 as you’d cor‐
rectly expect.

In addition to stringification of negative zero being deceptive to hide
its true value, the comparison operators are also (intentionally) con‐
figured to lie:

var a = 0;
var b = 0 / -3;

a == b;     // true
-0 == 0;    // true

a === b;    // true
-0 === 0;   // true

0 > -0;     // false
a > b;      // false

Clearly, if you want to distinguish a -0 from a 0 in your code, you
can’t just rely on what the developer console outputs, so you’re going
to have to be a bit more clever:

function isNegZero(n) {
    n = Number( n );
    return (n === 0) && (1 / n === -Infinity);
}

isNegZero( -0 );        // true
isNegZero( 0 / -3 );    // true
isNegZero( 0 );         // false

Now, why do we need a negative zero, besides academic trivia?

There are certain applications where developers use the magnitude
of a value to represent one piece of information (like speed of move‐
ment per animation frame) and the sign of that number to represent
another piece of information (like the direction of that movement).

Special Values | 31



In those applications, as one example, if a variable arrives at zero
and it loses its sign, then you would lose the information of what
direction it was moving in before it arrived at zero. Preserving the
sign of the zero prevents potentially unwanted information loss.

Special Equality
As we saw above, the NaN value and the -0 value have special behav‐
ior when it comes to equality comparison. NaN is never equal to
itself, so you have to use ES6’s Number.isNaN(..) (or a polyfill).
Simlarly, -0 lies and pretends that it’s equal (even === strict equal—
see Chapter 4) to regular 0, so you have to use the somewhat hackish
isNegZero(..) utility we suggested above.

As of ES6, there’s a new utility that can be used to test two values for
absolute equality, without any of these exceptions. It’s called
Object.is(..):

var a = 2 / "foo";
var b = -3 * 0;

Object.is( a, NaN );    // true
Object.is( b, -0 );     // true

Object.is( b, 0 );      // false

There’s a pretty simple polyfill for Object.is(..) for pre-ES6 envi‐
ronments:

if (!Object.is) {
    Object.is = function(v1, v2) {
        // test for `-0`
        if (v1 === 0 && v2 === 0) {
            return 1 / v1 === 1 / v2;
        }
        // test for `NaN`
        if (v1 !== v1) {
            return v2 !== v2;
        }
        // everything else
        return v1 === v2;
    };
}

Object.is(..) probably shouldn’t be used in cases where == or ===
are known to be safe (see Chapter 4), as the operators are likely
much more efficient and certainly are more idiomatic/common.
Object.is(..) is mostly for these special cases of equality.
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Value Versus Reference
In many other languages, values can either be assigned/passed by
value-copy or by reference-copy depending on the syntax you use.

For example, in C++ if you want to pass a number variable into a
function and have that variable’s value updated, you can declare the
function parameter like int& myNum, and when you pass in a vari‐
able like x, myNum will be a reference to x; references are like a special
form of pointers, where you obtain a pointer to another variable
(like an alias). If you don’t declare a reference parameter, the value
passed in will always be copied, even if it’s a complex object.

In JavaScript, there are no pointers, and references work a bit differ‐
ently. You cannot have a reference from one JS variable to another
variable. That’s just not possible.

A reference in JS points at a (shared) value, so if you have 10 differ‐
ent references, they are all always distinct references to a single
shared value; none of them are references/pointers to each other.

Moreover, in JavaScript, there are no syntactic hints that control
value versus reference assignment/passing. Instead, the type of the
value solely controls whether that value will be assigned by value-
copy or by reference-copy.

Let’s illustrate:

var a = 2;
var b = a; // `b` is always a copy of the value in `a`
b++;
a; // 2
b; // 3

var c = [1,2,3];
var d = c; // `d` is a reference to the shared `[1,2,3]` value
d.push( 4 );
c; // [1,2,3,4]
d; // [1,2,3,4]

Simple values (aka scalar primitives) are always assigned/passed by
value-copy: null, undefined, string, number, boolean, and ES6’s
symbol.

Compound values—objects (including arrays, and all boxed object
wrappers—see Chapter 3) and functions—always create a copy of
the reference on assignment or passing.
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In the above snippet, because 2 is a scalar primitive, a holds one ini‐
tial copy of that value, and b is assigned another copy of the value.
When changing b, you are in no way changing the value in a.

But both c and d are separate references to the same shared value
[1,2,3], which is a compound value. It’s important to note that nei‐
ther c nor d more “owns” the [1,2,3] value—both are just equal
peer references to the value. So, when using either reference to mod‐
ify (.push(4)) the actual shared array value itself, it’s affecting just
the one shared value, and both references will reference the newly
modified value [1,2,3,4].

Since references point to the values themselves and not to the vari‐
ables, you cannot use one reference to change where another refer‐
ence is pointed:

var a = [1,2,3];
var b = a;
a; // [1,2,3]
b; // [1,2,3]

// later
b = [4,5,6];
a; // [1,2,3]
b; // [4,5,6]

When we make the assignment b = [4,5,6], we are doing abso‐
lutely nothing to affect where a is still referencing ([1,2,3]). To do
that, b would have to be a pointer to a rather than a reference to the
array—but no such capability exists in JS!

The most common way such confusion happens is with function
parameters:

function foo(x) {
    x.push( 4 );
    x; // [1,2,3,4]

    // later
    x = [4,5,6];
    x.push( 7 );
    x; // [4,5,6,7]
}

var a = [1,2,3];

foo( a );
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a; // [1,2,3,4]  not  [4,5,6,7]

When we pass in the argument a, it assigns a copy of the a reference
to x. x and a are separate references pointing at the same [1,2,3]
value. Now, inside the function, we can use that reference to mutate
the value itself (push(4)). But when we make the assignment x =
[4,5,6], this is in no way affecting where the initial reference a is
pointing—it still points at the (now modified) [1,2,3,4] value.

There is no way to use the x reference to change where a is pointing.
We could only modify the contents of the shared value that both a
and x are pointing to.

To accomplish changing a to have the [4,5,6,7] value contents,
you can’t create a new array and assign—you must modify the exist‐
ing array value:

function foo(x) {
    x.push( 4 );
    x; // [1,2,3,4]

    // later
    x.length = 0; // empty existing array in-place
    x.push( 4, 5, 6, 7 );
    x; // [4,5,6,7]
}

var a = [1,2,3];

foo( a );

a; // [4,5,6,7] not [1,2,3,4]

As you can see, x.length = 0 and x.push(4,5,6,7) were not creat‐
ing a new array, but modifying the existing shared array. So of
course, a references the new [4,5,6,7] contents.

Remember: you cannot directly control/override value-copy versus
reference—those semantics are controlled entirely by the type of the
underlying value.

To effectively pass a compound value (like an array) by value-copy,
you need to manually make a copy of it, so that the reference passed
doesn’t still point to the original. For example:

foo( a.slice() );
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slice(..) with no parameters by default makes an entirely new
(shallow) copy of the array. So, we pass in a reference only to the
copied array, and thus foo(..) cannot affect the contents of a.

To do the reverse—pass a scalar primitive value in a way where its
value updates can be seen, kinda like a reference—you have to wrap
the value in another compound value (object, array, etc.) that can
be passed by reference-copy:

function foo(wrapper) {
    wrapper.a = 42;
}

var obj = {
    a: 2
};

foo( obj );

obj.a; // 42

Here, obj acts as a wrapper for the scalar primitive property a.
When passed to foo(..), a copy of the obj reference is passed in
and set to the wrapper parameter. We now can use the wrapper ref‐
erence to access the shared object, and update its property. After the
function finishes, obj.a will see the updated value 42.

It may occur to you that if you wanted to pass in a reference to a
scalar primitive value like 2, you could just box the value in its Num
ber object wrapper (see Chapter 3).

It is true a copy of the reference to this Number object will be passed
to the function, but unfortunately, having a reference to the shared
object is not going to give you the ability to modify the shared prim‐
itive value, like you may expect:

function foo(x) {
    x = x + 1;
    x; // 3
}

var a = 2;
var b = new Number( a ); // or equivalently `Object(a)`

foo( b );
console.log( b ); // 2, not 3
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The problem is that the underlying scalar primitive value is not
mutable (same goes for String and Boolean). If a Number object
holds the scalar primitive value 2, that exact Number object can never
be changed to hold another value; you can only create a whole new
Number object with a different value.

When x is used in the expression x + 1, the underlying scalar prim‐
itive value 2 is unboxed (extracted) from the Number object automat‐
ically, so the line x = x + 1 very subtly changes x from being a
shared reference to the Number object, to just holding the scalar
primitive value 3 as a result of the addition operation 2 + 1. There‐
fore, b on the outside still references the original unmodified/
immutable Number object holding the value 2.

You can add properties on top of the Number object (just not change
its inner primitive value), so you could exchange information indi‐
rectly via those additional properties.

This is not all that common, however; it probably would not be con‐
sidered a good practice by most developers.

Instead of using the wrapper object Number in this way, it’s probably
much better to use the manual object wrapper (obj) approach in the
earlier snippet. That’s not to say that there are no clever uses for the
boxed object wrappers like Number—just that you should probably
prefer the scalar primitive value form in most cases.

References are quite powerful, but sometimes they get in your way,
and sometimes you need them where they don’t exist. The only con‐
trol you have over reference versus value-copy behavior is the type
of the value itself, so you must indirectly influence the assignment/
passing behavior by which value types you choose to use.

Review
In JavaScript, arrays are simply numerically indexed collections of
any value type. strings are somewhat "array-like,” but they have
distinct behaviors and care must be taken if you want to treat them
as arrays. Numbers in JavaScript include both “integers” and
floating-point values.

Several special values are defined within the primitive types.
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The null type has just one value, null, and likewise the undefined
type has just the undefined value. undefined is basically the default
value in any variable or property if no other value is present. The
void operator lets you create the undefined value from any other
value.

numbers include several special values, like NaN (supposedly “Not a
Number,” but really more appropriately “invalid number”); +Infin
ity and -Infinity; and -0.

Simple scalar primitives (strings, numbers, etc.) are assigned/passed
by value-copy, but compound values (objects, etc.) are assigned/
passed by reference-copy. References are not like references/pointers
in other languages—they’re never pointed at other variables/refer‐
ences, only at the underlying values.
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CHAPTER 3

Natives

Several times in Chapters 1 and 2, we alluded to various built-ins,
usually called “natives,” like String and Number. Let’s examine those
in detail now.

Here’s a list of the most commonly used natives:

• String()

• Number()

• Boolean()

• Array()

• Object()

• Function()

• RegExp()

• Date()

• Error()

• Symbol()—added in ES6!

As you can see, these natives are actually built-in functions.

If you’re coming to JS from a language like Java, JavaScript’s
String() will look like the String(..) constructor you’re used to
for creating string values. So, you’ll quickly observe that you can do
things like:
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var s = new String( "Hello World!" );

console.log( s.toString() ); // "Hello World!"

It is true that each of these natives can be used as a native construc‐
tor. But what’s being constructed may be different than you think:

var a = new String( "abc" );

typeof a;                            // "object" ... not "String"

a instanceof String;                 // true

Object.prototype.toString.call( a ); // "[object String]"

The result of the constructor form of value creation (new
String("abc")) is an object wrapper around the primitive ("abc")
value.

Importantly, typeof shows that these objects are not their own spe‐
cial types, but more appropriately they are subtypes of the object
type.

This object wrapper can further be observed with:

console.log( a );

The output of that statement varies depending on your browser, as
developer consoles are free to choose however they feel it’s appropri‐
ate to serialize the object for developer inspection.

At the time of writing, the latest Chrome prints
something like this: String {0: "a", 1: "b",
2: "c", length: 3, [[PrimitiveValue]]:

"abc"}. But older versions of Chrome used to
just print this: String {0: "a", 1: "b", 2:
"c"}. The latest Firefox currently prints String
["a","b","c"], but used to print "abc" in ital‐
ics, which was clickable to open the object
inspector. Of course, these results are subject to
rapid change and your experience may vary.

The point is, new String("abc") creates a string wrapper object
around "abc", not just the primitive "abc" value itself.
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Internal [[Class]]
Values that are typeof of "object" (such as an array) are addition‐
ally tagged with an internal [[Class]] property (think of this more
as an internal classification rather than related to classes from tradi‐
tional class-oriented coding). This property cannot be accessed
directly, but can generally can be revealed indirectly by borrowing
the default Object.prototype.toString(..) method called against
the value. For example:

Object.prototype.toString.call( [1,2,3] );
// "[object Array]"

Object.prototype.toString.call( /regex-literal/i );
// "[object RegExp]"

So, for the array in this example, the internal [[Class]] value is
"Array", and for the regular expression, it’s "RegExp". In most cases,
this internal [Class]] value corresponds to the built-in native con‐
structor (see below) that’s related to the value, but that’s not always
the case.

What about primitive values? First, null and undefined:

Object.prototype.toString.call( null );
// "[object Null]"

Object.prototype.toString.call( undefined );
// "[object Undefined]"

You’ll note that there are no Null() or Undefined() native con‐
structors, but nevertheless "Null" and "Undefined" are the internal
[[Class]] values exposed.

But for the other simple primitives like string, number, and
boolean, another behavior actually kicks in, which is usually called
“boxing” (see “Boxing Wrappers” on page 42):

Object.prototype.toString.call( "abc" );
// "[object String]"

Object.prototype.toString.call( 42 );
// "[object Number]"

Object.prototype.toString.call( true );
// "[object Boolean]"
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In this snippet, each of the simple primitives are automatically
boxed by their respective object wrappers, which is why "String",
"Number", and "Boolean" are revealed as the respective internal
[[Class]] values.

The behavior of toString() and [[Class]] as
illustrated here has changed a bit from ES5 to
ES6, but we cover those details in the ES6 &
Beyond title in this series.

Boxing Wrappers
These object wrappers serve a very important purpose. Primitive
values don’t have properties or methods, so to access .length
or .toString() you need an object wrapper around the value.
Thankfully, JS will automatically box (aka wrap) the primitive value
to fulfill such accesses:

var a = "abc";

a.length; // 3
a.toUpperCase(); // "ABC"

So, if you’re going to be accessing these properties/methods on your
string values regularly, like an i < a.length condition in a for loop
for instance, it might seem to make sense to just have the object
form of the value from the start, so the JS engine doesn’t need to
implicitly create it for you.

But it turns out that’s a bad idea. Browsers long ago performance-
optimized the common cases like .length, which means your pro‐
gram will actually go slower if you try to “preoptimize” by directly
using the object form (which isn’t on the optimized path).

In general, there’s basically no reason to use the object form directly.
It’s better to just let the boxing happen implicitly where necessary. In
other words, never do things like new String("abc"), new Num
ber(42), etc.—always prefer using the literal primitive values "abc"
and 42.

Object Wrapper Gotchas
There are even gotchas with using the object wrappers directly that
you should be aware of if you do choose to ever use them.
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For example, consider Boolean wrapped values:

var a = new Boolean( false );

if (!a) {
    console.log( "Oops" ); // never runs
}

The problem is that you’ve created an object wrapper around the
false value, but objects themselves are “truthy” (see Chapter 4), so
using the object behaves oppositely to using the underlying false
value itself, which is quite contrary to normal expectation.

If you want to manually box a primitive value, you can use the
Object(..) function (no new keyword):

var a = "abc";
var b = new String( a );
var c = Object( a );

typeof a; // "string"
typeof b; // "object"
typeof c; // "object"

b instanceof String; // true
c instanceof String; // true

Object.prototype.toString.call( b ); // "[object String]"
Object.prototype.toString.call( c ); // "[object String]"

Again, using the boxed object wrapper directly (like b and c above)
is usually discouraged, but there may be some rare occasions you’ll
run into where they may be useful.

Unboxing
If you have an object wrapper and you want to get the underlying
primitive value out, you can use the valueOf() method:

var a = new String( "abc" );
var b = new Number( 42 );
var c = new Boolean( true );

a.valueOf(); // "abc"
b.valueOf(); // 42
c.valueOf(); // true
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Unboxing can also happen implicitly, when using an object wrapper
value in a way that requires the primitive value. This process (coer‐
cion) will be covered in more detail in Chapter 4, but briefly:

var a = new String( "abc" );
var b = a + ""; // `b` has the unboxed primitive value "abc"

typeof a;       // "object"
typeof b;       // "string"

Natives as Constructors
For array, object, function, and regular-expression values, it’s
almost universally preferred that you use the literal form for creat‐
ing the values, but the literal form creates the same sort of object as
the constructor form does (that is, there is no nonwrapped value).

Just as we’ve seen above with the other natives, these constructor
forms should generally be avoided, unless you really know you need
them, mostly because they introduce exceptions and gotchas that
you probably don’t really want to deal with.

Array(..)
var a = new Array( 1, 2, 3 );
a; // [1, 2, 3]

var b = [1, 2, 3];
b; // [1, 2, 3]

The Array(..) constructor does not require the
new keyword in front of it. If you omit it, it will
behave as if you have used it anyway. So
Array(1,2,3) is the same outcome as new

Array(1,2,3).

The Array constructor has a special form where if only one number
argument is passed, instead of providing that value as contents of the
array, it’s taken as a length to “presize the array” (well, sorta).

This is a terrible idea. Firstly, you can trip over that form acciden‐
tally, as it’s easy to forget.

But more importantly, there’s no such thing as actually presizing the
array. Instead, what you’re creating is an otherwise empty array, but
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setting the length property of the array to the numeric value speci‐
fied.

An array that has no explicit values in its slots, but has a length
property that implies the slots exist, is a weird exotic type of data
structure in JS with some very strange and confusing behavior. The
capability to create such a value comes purely from old, deprecated,
historical functionalities (“array-like objects” like the arguments
object).

An array with at least one “empty slot” in it is
often called a “sparse array.”

It doesn’t help matters that this is yet another example where
browser developer consoles vary on how they represent such an
object, which breeds more confusion.

For example:

var a = new Array( 3 );

a.length; // 3
a;

The serialization of a in Chrome is (at the time of writing) [ unde
fined x 3 ]. This is really unfortunate. It implies that there are
three undefined values in the slots of this array, when in fact the
slots do not exist (so-called “empty slots”—also a bad name!).

To visualize the difference, try this:

var a = new Array( 3 );
var b = [ undefined, undefined, undefined ];
var c = [];
c.length = 3;

a;
b;
c;
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As you can see with c in this example, empty
slots in an array can happen after creation of the
array. When changing the length of an array to
go beyond its number of actually defined slot
values, you implicitly introduce empty slots. In
fact, you could even call delete b[1] in the
above snippet, and it would introduce an empty
slot into the middle of b.

For b (in Chrome, currently), you’ll find [ undefined, undefined,
undefined ] as the serialization, as opposed to [ undefined x 3 ]
for a and c. Confused? Yeah, so is everyone else.

Worse than that, at the time of writing, Firefox reports [ , , , ]
for a and c. Did you catch why that’s so confusing? Look closely.
Three commas implies four slots, not three slots like we’d expect.

What!? Firefox puts an extra , on the end of their serialization here
because as of ES5, trailing commas in lists (array values, property
lists, etc.) are allowed (and thus dropped and ignored). So if you
were to type a [ , , , ] value into your program or the console,
you’d actually get the underlying value that’s like [ , , ] (that is, an
array with three empty slots). This choice, while confusing if reading
the developer console, is defended as instead making copy-n-paste
behavior accurate.

If you’re shaking your head or rolling your eyes about now, you’re
not alone! Shrugs.

Firefox appears to be changing their output in
this scenario to Array [ <3 empty slots> ],
which is certainly a big improvement over
[ , , , ].

Unfortunately, it gets worse. More than just confusing console out‐
put, a and b from the above code snippet actually behave the same
in some cases but differently in others:

a.join( "-" ); // "--"
b.join( "-" ); // "--"

a.map(function(v,i){ return i; }); // [ undefined x 3 ]
b.map(function(v,i){ return i; }); // [ 0, 1, 2 ]
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Ugh.

The a.map(..) call fails because the slots don’t actually exist, so
map(..) has nothing to iterate over. join(..) works differently.
Basically, we can think of it implemented sort of like this:

function fakeJoin(arr,connector) {
    var str = "";
    for (var i = 0; i < arr.length; i++) {
        if (i > 0) {
            str += connector;
        }
        if (arr[i] !== undefined) {
            str += arr[i];
        }
    }
    return str;
}

var a = new Array( 3 );
fakeJoin( a, "-" ); // "--"

As you can see, join(..) works by just assuming the slots exist and
looping up to the length value. Whatever map(..) does internally, it
(apparently) doesn’t make such an assumption, so the result from
the strange “empty slots” array is unexpected and likely to cause fail‐
ure.

So, if you wanted to actually create an array of actual undefined val‐
ues (not just “empty slots”), how could you do it (besides manually)?

var a = Array.apply( null, { length: 3 } );
a; // [ undefined, undefined, undefined ]

Confused? Yeah. Here’s roughly how it works.

apply(..) is a utility available to all functions, which calls the func‐
tion it’s used with but in a special way.

The first argument is a this object binding (covered in the this &
Object Prototypes title in this series), which we don’t care about here,
so we set it to null. The second argument is supposed to be an array
(or something like an array—aka an “array-like object”). The con‐
tents of this “array” are “spread” out as arguments to the function in
question.

So, Array.apply(..) is calling the Array(..) function and spread‐
ing out the values (of the { length: 3 } object value) as its argu‐
ments.
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Inside of apply(..), we can envision there’s another for loop (kinda
like join(..) from above) that goes from 0 up to, but not including,
length (3 in our case).

For each index, it retrieves that key from the object. So if the array-
object parameter was named arr internally inside of the apply(..)
function, the property access would effectively be arr[0], arr[1],
and arr[2]. Of course, none of those properties exist on the
{ length: 3 } object value, so all three of those property accesses
would return the value undefined.

In other words, it ends up calling Array(..) basically like this:
Array(undefined,undefined,undefined), which is how we end up
with an array filled with undefined values, and not just those (crazy)
empty slots.

While Array.apply( null, { length: 3 } ) is a strange and ver‐
bose way to create an array filled with undefined values, it’s vastly
better and more reliable than what you get with the footgun’ish
Array(3) empty slots.

Bottom line: never ever, under any circumstances, should you inten‐
tionally create and use these exotic empty-slot arrays. Just don’t do
it. They’re nuts.

Object(..), Function(..), and RegExp(..)
The Object(..)/Function(..)/RegExp(..) constructors are also
generally optional (and thus should usually be avoided unless specif‐
ically called for):

var c = new Object();
c.foo = "bar";
c; // { foo: "bar" }

var d = { foo: "bar" };
d; // { foo: "bar" }

var e = new Function( "a", "return a * 2;" );
var f = function(a) { return a * 2; }
function g(a) { return a * 2; }

var h = new RegExp( "^a*b+", "g" );
var i = /^a*b+/g;
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There’s practically no reason to ever use the new Object() construc‐
tor form, especially since it forces you to add properties one by one
instead of many at once in the object literal form.

The Function constructor is helpful only in the rarest of cases,
where you need to dynamically define a function’s parameters
and/or its function body. Do not just treat Function(..) as an alter‐
nate form of eval(..). You will almost never need to dynamically
define a function in this way.

Regular expressions defined in the literal form (/^a*b+/g) are
strongly preferred, not just for ease of syntax but for performance
reasons—the JS engine precompiles and caches them before code
execution. Unlike the other constructor forms we’ve seen so far,
RegExp(..) has some reasonable utility: to dynamically define the
pattern for a regular expression:

var name = "Kyle";
var namePattern = new RegExp( "\\b(?:" + name + ")+\\b", "ig" );

var matches = someText.match( namePattern );

This kind of scenario legitimately occurs in JS programs from time
to time, so you’d need to use the new RegExp("pattern","flags")
form.

Date(..) and Error(..)
The Date(..) and Error(..) native constructors are much more
useful than the other natives, because there is no literal form for
either.

To create a date object value, you must use new Date(). The
Date(..) constructor accepts optional arguments to specify the
date/time to use, but if omitted, the current date/time is assumed.

By far the most common reason you construct a date object is to get
the current Unix timestamp value (an integer number of seconds
since Jan 1, 1970). You can do this by calling getTime() on a date
object instance.

But an even easier way is to just call the static helper function
defined as of ES5: Date.now(). And to polyfill that for pre-ES5 is
pretty easy:
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if (!Date.now) {
    Date.now = function(){
        return (new Date()).getTime();
    };
}

If you call Date() without new, you’ll get back a
string representation of the date/time at that
moment. The exact form of this representation
is not specified in the language spec, though
browsers tend to agree on something close to
"Fri Jul 18 2014 00:31:02 GMT-0500

(CDT)".

The Error(..) constructor (much like Array() above) behaves the
same with the new keyword present or omitted.

The main reason you’d want to create an error object is that it cap‐
tures the current execution stack context into the object (in most JS
engines, revealed as a read-only .stack property once constructed).
This stack context includes the function call stack and the line num‐
ber where the error object was created, which makes debugging that
error much easier.

You would typically use such an error object with the throw opera‐
tor:

function foo(x) {
    if (!x) {
        throw new Error( "x wasn't provided" );
    }
    // ..
}

Error object instances generally have at least a message property,
and sometimes other properties (which you should treat as read-
only), like type. However, other than inspecting the above-
mentioned stack property, it’s usually best to just call toString()
on the error object (either explicitly, or implicitly through coercion
—see Chapter 4) to get a friendly formatted error message.
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Technically, in addition to the general
Error(..) native, there are several other
specific-error-type natives: EvalError(..), Ran
geError(..), ReferenceError(..), SyntaxEr
ror(..), TypeError(..), and URIError(..).
But it’s very rare to manually use these specific
error natives. They are automatically used if
your program actually suffers from a real excep‐
tion (such as referencing an undeclared variable
and getting a ReferenceError error).

Symbol(..)
New as of ES6, an additional primitive value type has been added,
called “Symbol.” Symbols are special “unique” (not strictly guaran‐
teed!) values that can be used as properties on objects with little fear
of any collision. They’re primarily designed for special built-in
behaviors of ES6 constructs, but you can also define your own sym‐
bols.

Symbols can be used as property names, but you cannot see or
access the actual value of a symbol from your program, nor from the
developer console. If you evaluate a symbol in the developer con‐
sole, what’s shown looks like Symbol(Symbol.create), for example.

There are several predefined symbols in ES6, accessed as static prop‐
erties of the Symbol function object, like Symbol.create, Sym
bol.iterator, etc. To use them, do something like:

obj[Symbol.iterator] = function(){ /*..*/ };

To define your own custom symbols, use the Symbol(..) native.
The Symbol(..) native “constructor” is unique in that you’re not
allowed to use new with it, as doing so will throw an error:

var mysym = Symbol( "my own symbol" );
mysym;              // Symbol(my own symbol)
mysym.toString();   // "Symbol(my own symbol)"
typeof mysym;       // "symbol"

var a = { };
a[mysym] = "foobar";

Object.getOwnPropertySymbols( a );
// [ Symbol(my own symbol) ]
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While symbols are not actually private (Object.getOwnPropertySym
bols(..) reflects on the object and reveals the symbols quite pub‐
licly), using them for private or special properties is likely their
primary use case. For most developers, they may take the place of
property names with underscore (_) prefixes, which are almost
always by convention signals to say, “Hey, this is a private/special/
internal property, so leave it alone!”

Symbols are not objects, they are simple scalar
primitives.

Native Prototypes
Each of the built-in native constructors has its own .prototype
object — Array.prototype, String.prototype, etc.

These objects contain behavior unique to their particular object sub‐
type.

For example, all string objects, and by extension (via boxing) string
primitives, have access to default behavior as methods defined on
the String.prototype object.

By documentation convention, String.proto
type.XYZ is shortened to String#XYZ, and like‐
wise for all the other .prototypes.

String#indexOf(..)

Find the position in the string of another substring

String#charAt(..)

Access the character at a position in the string

String#substr(..), String#substring(..), and String#slice(..)
Extract a portion of the string as a new string

String#toUpperCase() and String#toLowerCase()
Create a new string that’s converted to either uppercase or low‐
ercase
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String#trim()

Create a new string that’s stripped of any trailing or leading
whitespace

None of the methods modify the string in place. Modifications (like
case conversion or trimming) create a new value from the existing
value.

By virtue of prototype delegation (see the this & Object Prototypes
title in this series), any string value can access these methods:

var a = " abc ";

a.indexOf( "c" ); // 3
a.toUpperCase();  // " ABC "
a.trim();         // "abc"

The other constructor prototypes contain behaviors appropriate to
their types, such as Number#toFixed(..) (stringifying a number
with a fixed number of decimal digits) and Array#concat(..)
(merging arrays). All functions have access to apply(..), call(..),
and bind(..) because Function.prototype defines them.

But, some of the native prototypes aren’t just plain objects:

typeof Function.prototype;          // "function"
Function.prototype();               // it's an empty function!

RegExp.prototype.toString();        // "/(?:)/" -- empty regex
"abc".match( RegExp.prototype );    // [""]

A particularly bad idea, you can even modify these native prototypes
(not just adding properties as you’re probably familiar with):

Array.isArray( Array.prototype );   // true
Array.prototype.push( 1, 2, 3 );    // 3
Array.prototype;                    // [1,2,3]

// don't leave it that way, though, or expect weirdness!
// reset the `Array.prototype` to empty
Array.prototype.length = 0;

As you can see, Function.prototype is a function, RegExp.proto
type is a regular expression, and Array.prototype is an array. Inter‐
esting and cool, huh?
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Prototypes as defaults

Function.prototype being an empty function, RegExp.prototype
being an “empty” (e.g., nonmatching) regex, and Array.prototype
being an empty array make them all nice “default” values to assign to
variables if those variables wouldn’t already have had a value of the
proper type.

For example:

function isThisCool(vals,fn,rx) {
    vals = vals || Array.prototype;
    fn = fn || Function.prototype;
    rx = rx || RegExp.prototype;

    return rx.test(
        vals.map( fn ).join( "" )
    );
}

isThisCool();       // true

isThisCool(
    ["a","b","c"],
    function(v){ return v.toUpperCase(); },
    /D/
);                  // false

As of ES6, we don’t need to use the vals = vals
|| .. default value syntax trick (see Chapter 4)
anymore, because default values can be set for
parameters via native syntax in the function dec‐
laration (see Chapter 5).

One minor side benefit of this approach is that the .prototypes are
already created and built-in; thus they are created only once. By con‐
trast, using [], function(){}, and /(?:)/ values themselves for
those defaults would (likely, depending on engine implementations)
be re-creating those values (and probably garbage-collecting them
later) for each call of isThisCool(..). That could waste memory/
CPU.

Also, be very careful not to use Array.prototype as a default value
that will subsequently be modified. In this example, vals is used
read-only, but if you were to instead make in-place changes to vals,
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you would actually be modifying Array.prototype itself, which
would lead to the gotchas mentioned earlier!

While we’re pointing out these native prototypes
and some usefulness, be cautious of relying on
them and even more wary of modifying them in
any way. See “Native Prototypes” on page 167 in
Appendix A for more discussion.

Review
JavaScript provides object wrappers around primitive values, known
as natives (String, Number, Boolean, etc). These object wrappers
give the values access to behaviors appropriate for each object sub‐
type (String#trim() and Array#concat(..)).

If you have a simple scalar primitive value like "abc" and you access
its length property or some String.prototype method, JS auto‐
matically “boxes” the value (wraps it in its respective object wrap‐
per) so that the property/method accesses can be fulfilled.
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CHAPTER 4

Coercion

Now that we much more fully understand JavaScript’s types and val‐
ues, we turn our attention to a very controversial topic: coercion.

As we mentioned in Chapter 1, the debates over whether coercion is
a useful feature or a flaw in the design of the language (or some‐
where in between!) have raged since day one. If you’ve read other
popular books on JS, you know that the overwhelmingly prevalent
message out there is that coercion is magical, evil, confusing, and
just downright a bad idea.

In the same overall spirit of this series, rather than running away
from coercion because everyone else does, or because you get bitten
by some quirk, I think you should run toward that which you don’t
understand and seek to get it more fully.

Our goal is to fully explore the pros and cons (yes, there are pros!) of
coercion, so that you can make an informed decision on its appro‐
priateness in your program.

Converting Values
Converting a value from one type to another is often called “type
casting,” when done explicitly, and “coercion” when done implicitly
(forced by the rules of how a value is used).
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It may not be obvious, but JavaScript coercions
always result in one of the scalar primitive (see
Chapter 2) values, like string, number, or
boolean. There is no coercion that results in a
complex value like object or function. Chap‐
ter 3 covers “boxing,” which wraps scalar primi‐
tive values in their object counterparts, but this
is not really coercion in an accurate sense.

Another way these terms are often distinguished is as follows: “type
casting” (or “type conversion”) occurs in statically typed languages
at compile time, while “type coercion” is a runtime conversion for
dynamically typed languages.

However, in JavaScript, most people refer to all these types of con‐
versions as coercion, so the way I prefer to distinguish is to say
“implicit coercion” versus “explicit coercion.”

The difference should be obvious: “explicit coercion” is when it is
obvious from looking at the code that a type conversion is intention‐
ally occurring, whereas “implicit coercion” is when the type conver‐
sion will occur as a less obvious side effect of some other intentional
operation.

For example, consider these two approaches to coercion:

var a = 42;

var b = a + "";         // implicit coercion

var c = String( a );    // explicit coercion

For b, the coercion that occurs happens implicitly, because the +
operator combined with one of the operands being a string value
("") will insist on the operation being a string concatenation
(adding two strings together), which as a (hidden) side effect will
force the 42 value in a to be coerced to its string equivalent: "42".

By contrast, the String(..) function makes it pretty obvious that
it’s explicitly taking the value in a and coercing it to a string repre‐
sentation.

Both approaches accomplish the same effect: "42" comes from 42.
But it’s the how that is at the heart of the heated debates over Java‐
Script coercion.
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Technically, there’s some nuanced behavioral
difference here beyond the stylistic difference.
We cover that in more detail later in the chapter,
in “Implicitly: Strings <--> Numbers” on page
87.

The terms “explicit” and “implicit,” or “obvious” and “hidden side
effect,” are relative.

If you know exactly what a + "" is doing and you’re intentionally
doing that to coerce to a string, you might feel the operation is suf‐
ficiently “explicit.” Conversely, if you’ve never seen the String(..)
function used for string coercion, its behavior might seem hidden
enough as to feel “implicit” to you.

But we’re having this discussion of “explicit” versus “implicit” based
on the likely opinions of an average, reasonably informed, but not
expert or JS specification devotee developer. To whatever extent you
do or do not find yourself fitting neatly in that bucket, you will need
to adjust your perspective on our observations here accordingly.

Just remember: it’s often rare that we write our code and are the only
ones who ever read it. Even if you’re an expert on all the ins and outs
of JS, consider how a less experienced teammate of yours will feel
when they read your code. Will it be “explicit” or “implicit” to them
in the same way it is for you?

Abstract Value Operations
Before we can explore explicit versus implicit coercion, we need to
learn the basic rules that govern how values become either a string,
number, or boolean. The ES5 spec in section 9 defines several
“abstract operations” (fancy spec-speak for “internal-only opera‐
tion”) with the rules of value conversion. We will specifically pay
attention to ToString, ToNumber, and ToBoolean, and to a lesser
extent, ToPrimitive.

ToString
When any non-string value is coerced to a string representation,
the conversion is handled by the ToString abstract operation in sec‐
tion 9.8 of the specification.
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Built-in primitive values have natural stringification: null becomes
"null", undefined becomes "undefined", and true becomes
"true". numbers are generally expressed in the natural way you’d
expect, but as we discussed in Chapter 2, very small or very large
numbers are represented in exponent form:

// multiplying `1.07` by `1000`, seven times over
var a = 1.07 * 1000 * 1000 * 1000 * 1000 * 1000 * 1000 * 1000;

// seven times three digits => 21 digits
a.toString(); // "1.07e21"

For regular objects, unless you specify your own, the default
toString() (located in Object.prototype.toString()) will return
the internal [[Class]] (see Chapter 3), like for instance "[object
Object]".

But as shown earlier, if an object has its own toString() method on
it, and you use that object in a string-like way, its toString() will
automatically be called, and the string result of that call will be
used instead.

The way an object is coerced to a string techni‐
cally goes through the ToPrimitive abstract
operation (ES5 spec, section 9.1), but those
nuanced details are covered in more detail in the
ToNumber section later in this chapter, so we will
skip over them here.

Arrays have an overridden default toString() that stringifies as the
(string) concatenation of all its values (each stringified themselves),
with "," in between each value:

var a = [1,2,3];

a.toString(); // "1,2,3"

Again, toString() can either be called explicitly, or it will automati‐
cally be called if a non-string is used in a string context.

JSON stringification

Another task that seems awfully related to ToString is when you use
the JSON.stringify(..) utility to serialize a value to a JSON-
compatible string value.
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It’s important to note that this stringification is not exactly the same
thing as coercion. But since it’s related to the ToString rules above,
we’ll take a slight diversion to cover JSON stringification behaviors
here.

For most simple values, JSON stringification behaves basically the
same as toString() conversions, except that the serialization result
is always a string:

JSON.stringify( 42 );   // "42"
JSON.stringify( "42" ); // ""42"" (a string with a
                        // quoted string value in it)
JSON.stringify( null ); // "null"
JSON.stringify( true ); // "true"

Any JSON-safe value can be stringified by JSON.stringify(..). But
what is JSON-safe? Any value that can be represented validly in a
JSON representation.

It may be easier to consider values that are not JSON-safe. Some
examples are undefineds, functions, (ES6+) symbols, and objects
with circular references (where property references in an object
structure create a never-ending cycle through each other). These are
all illegal values for a standard JSON structure, mostly because they
aren’t portable to other languages that consume JSON values.

The JSON.stringify(..) utility will automatically omit undefined,
function, and symbol values when it comes across them. If such a
value is found in an array, that value is replaced by null (so that the
array position information isn’t altered). If found as a property of an
object, that property will simply be excluded.

Consider:

JSON.stringify( undefined );      // undefined
JSON.stringify( function(){} );   // undefined

JSON.stringify(
   [1,undefined,function(){},4]
);                                // "[1,null,null,4]"
JSON.stringify(
   { a:2, b:function(){} }
);                                // "{"a":2}"

But if you try to JSON.stringify(..) an object with circular refer‐
ence(s) in it, an error will be thrown.
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JSON stringification has the special behavior that if an object value
has a toJSON() method defined, this method will be called first to
get a value to use for serialization.

If you intend to JSON stringify an object that may contain illegal
JSON value(s), or if you just have values in the object that aren’t
appropriate for the serialization, you should define a toJSON()
method for it that returns a JSON-safe version of the object.

For example:

var o = { };

var a = {
    b: 42,
    c: o,
    d: function(){}
};

// create a circular reference inside `a`
o.e = a;

// would throw an error on the circular reference
// JSON.stringify( a );

// define a custom JSON value serialization
a.toJSON = function() {
    // only include the `b` property for serialization
    return { b: this.b };
};

JSON.stringify( a ); // "{"b":42}"

It’s a very common misconception that toJSON() should return a
JSON stringification representation. That’s probably incorrect,
unless you’re wanting to actually stringify the string itself (usually
not!). toJSON() should return the actual regular value (of whatever
type) that’s appropriate, and JSON.stringify(..) itself will handle
the stringification.

In other words, toJSON() should be interpreted as “to a JSON-safe
value suitable for stringification,” not “to a JSON string” as many
developers mistakenly assume.
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Consider:

var a = {
    val: [1,2,3],

    // probably correct!
    toJSON: function(){
        return this.val.slice( 1 );
    }
};

var b = {
    val: [1,2,3],

    // probably incorrect!
    toJSON: function(){
        return "[" +
            this.val.slice( 1 ).join() +
        "]";
    }
};

JSON.stringify( a ); // "[2,3]"

JSON.stringify( b ); // ""[2,3]""

In the second call, we stringified the returned string rather than the
array itself, which was probably not what we wanted to do.

While we’re talking about JSON.stringify(..), let’s discuss some
lesser-known functionalities that can still be very useful.

An optional second argument can be passed to JSON.string
ify(..) that is called replacer. This argument can either be an array
or a function. It’s used to customize the recursive serialization of an
object by providing a filtering mechanism for which properties
should and should not be included, in a similar way to how
toJSON() can prepare a value for serialization.

If replacer is an array, it should be an array of strings, each of
which will specify a property name that is allowed to be included in
the serialization of the object. If a property exists that isn’t in this
list, it will be skipped.

If replacer is a function, it will be called once for the object itself,
and then once for each property in the object, and each time is
passed two arguments, key and value. To skip a key in the serializa‐
tion, return undefined. Otherwise, return the value provided.
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var a = {
    b: 42,
    c: "42",
    d: [1,2,3]
};

JSON.stringify( a, ["b","c"] ); // "{"b":42,"c":"42"}"

JSON.stringify( a, function(k,v){
    if (k !== "c") return v;
} );
// "{"b":42,"d":[1,2,3]}"

In the function replacer case, the key argument
k is undefined for the first call (where the a
object itself is being passed in). The if statement
filters out the property named "c". Stringifica‐
tion is recursive, so the [1,2,3] array has each
of its values (1, 2, and 3) passed as v to replacer,
with indexes (0, 1, and 2) as k.

A third optional argument can also be passed to JSON.string
ify(..), called space, which is used as indentation for prettier
human-friendly output. space can be a positive integer to indicate
how many space characters should be used at each indentation level.
Or, space can be a string, in which case up to the first 10 characters
of its value will be used for each indentation level:

var a = {
    b: 42,
    c: "42",
    d: [1,2,3]
};

JSON.stringify( a, null, 3 );
// "{
//    "b": 42,
//    "c": "42",
//    "d": [
//       1,
//       2,
//       3
//    ]
// }"

JSON.stringify( a, null, "-----" );
// "{
// -----"b": 42,
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// -----"c": "42",
// -----"d": [
// ----------1,
// ----------2,
// ----------3
// -----]
// }"

Remember, JSON.stringify(..) is not directly a form of coercion.
We covered it here, however, for two reasons that relate its behavior
to ToString coercion:

1. string, number, boolean, and null values all stringify for JSON
basically the same as how they coerce to string values via the
rules of the ToString abstract operation.

2. If you pass an object value to JSON.stringify(..), and that
object has a toJSON() method on it, toJSON() is automatically
called to (sort of) “coerce” the value to be JSON-safe before
stringification.

ToNumber
If any non-number value is used in a way that requires it to be a num
ber, such as a mathematical operation, the ES5 spec defines the
ToNumber abstract operation in section 9.3.

For example, true becomes 1 and false becomes 0. undefined
becomes NaN, but (curiously) null becomes 0.

ToNumber for a string value essentially works for the most part like
the rules/syntax for numeric literals (see Chapter 3). If it fails, the
result is NaN (instead of a syntax error as with number literals). One
difference is that 0-prefixed octal numbers are not handled as octals
(just as normal base-10 decimals) in this operation, though such
octals are valid as number literals (see Chapter 2).

The differences between number literal grammar
and ToNumber on a string value are subtle and
highly nuanced, and thus will not be covered
further here. Consult section 9.3.1 of the ES5
spec for more information.
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Objects (and arrays) will first be converted to their primitive value
equivalent, and the resulting value (if a primitive but not already a
number) is coerced to a number according to the ToNumber rules just
mentioned.

To convert to this primitive value equivalent, the ToPrimitive
abstract operation (ES5 spec, section 9.1) will consult the value in
question (using the internal DefaultValue operation—ES5 spec,
section 8.12.8) to see if it has a valueOf() method. If valueOf() is
available and it returns a primitive value, that value is used for the
coercion. If not, toString() will provide the value for the coercion,
if present.

If neither operation can provide a primitive value, a TypeError is
thrown.

As of ES5, you can create such a noncoercible object—one without
valueOf() and toString()—if it has a null value for its [[Proto
type]], typically created with Object.create(null). See the this &
Object Prototypes title in this series for more information on [[Pro
totype]]s.

We cover how to coerce to numbers later in this
chapter in detail, but for this next code snippet,
just assume the Number(..) function does so.

Consider:

var a = {
    valueOf: function(){
        return "42";
    }
};

var b = {
    toString: function(){
        return "42";
    }
};

var c = [4,2];
c.toString = function(){
    return this.join( "" ); // "42"
};
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Number( a );                // 42
Number( b );                // 42
Number( c );                // 42
Number( "" );               // 0
Number( [] );               // 0
Number( [ "abc" ] );        // NaN

ToBoolean
Next, let’s have a little chat about how booleans behave in JS. There’s
lots of confusion and misconception floating out there around this
topic, so pay close attention!

First and foremost, JS has actual keywords true and false, and they
behave exactly as you’d expect of boolean values. It’s a common mis‐
conception that the values 1 and 0 are identical to true/false.
While that may be true in other languages, in JS the numbers are num
bers and the booleans are booleans. You can coerce 1 to true (and
vice versa) or 0 to false (and vice versa). But they’re not the same.

Falsy values
But that’s not the end of the story. We need to discuss how values
other than the two booleans behave whenever you coerce to their
boolean equivalent.

All of JavaScript’s values can be divided into two categories:

1. Values that will become false if coerced to boolean
2. Everything else (which will obviously become true)

I’m not just being facetious. The JS spec defines a specific, narrow
list of values that will coerce to false when coerced to a boolean
value.

How do we know what the list of values is? In the ES5 spec, section
9.2 defines a ToBoolean abstract operation, which says exactly what
happens for all the possible values when you try to coerce them “to
boolean.”

From that table, we get the following as the so-called “falsy” values
list:

• undefined

• null
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• false

• +0, -0, and NaN
• ""

That’s it. If a value is on that list, it’s a “falsy” value, and it will coerce
to false if you force a boolean coercion on it.

By logical conclusion, if a value is not on that list, it must be on
another list, which we call the “truthy” values list. But JS doesn’t
really define a “truthy” list per se. It gives some examples, such as
saying explicitly that all objects are truthy, but mostly the spec just
implies that anything not explicitly on the falsy list is therefore truthy.

Falsy objects
Wait a minute, that section title even sounds contradictory. I literally
just said the spec calls all objects truthy, right? There should be no
such thing as a “falsy object.”

What could that possibly even mean?

You might be tempted to think it means an object wrapper (see
Chapter 3) around a falsy value (such as "", 0, or false). But don’t
fall into that trap.

That’s a subtle specification joke some of you
may get.

Consider:

var a = new Boolean( false );
var b = new Number( 0 );
var c = new String( "" );

We know all three values here are objects (see Chapter 3) wrapped
around obviously falsy values. But do these objects behave as true
or as false? That’s easy to answer:

var d = Boolean( a && b && c );

d; // true
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So, all three behave as true, as that’s the only way d could end up as
true.

Notice the way the Boolean( .. ) wrapped
around the a && b && c expression—you might
wonder why that’s there. We’ll come back to that
later in this chapter, so make a mental note of it.
For a sneak peek (trivia-wise), try for yourself
what d will be if you just do d = a && b && c
without the Boolean(..) call!

So, if “falsy objects” are not just objects wrapped around falsy values,
what the heck are they?

The tricky part is that they can show up in your JS program, but
they’re not actually part of JavaScript itself.

What!?

There are certain cases where browsers have created their own sort
of exotic values behavior, namely this idea of “falsy objects,” on top
of regular JS semantics.

A “falsy object” is a value that looks and acts like a normal object
(properties, etc.), but when you coerce it to a boolean, it coerces to a
false value.

Why!?

The most well-known case is document.all, an array-like (object)
provided to your JS program by the DOM (not the JS engine itself),
which exposes elements in your page to your JS program. It used to
behave like a normal object—it would act truthy. But not anymore.

document.all itself was never really “standard” and has long since
been deprecated/abandoned.

“Can’t they just remove it, then?” Sorry, nice try. Wish they could.
But there’s far too many legacy JS code bases out there that rely on
using it.

So, why make it act falsy? Because coercions of document.all to
boolean (like in if statements) were almost always used as a means
of detecting old, nonstandard IE. IE has long since come up to
standards compliance, and in many cases is pushing the Web for‐
ward as much or more than any other browser.
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But all that old if (document.all) { /* it's IE */ } code is still
out there, and much of it is probably never going away. All this leg‐
acy code is still assuming it’s running in decade-old IE, which just
leads to a bad browsing experience for IE users.

So, we can’t remove document.all completely, but IE doesn’t want
if (document.all) { .. } code to work anymore, so that users in
modern IE get new, standards-compliant code logic.

“What should we do?”

“I’ve got it! Let’s bastardize the JS type system and pretend that docu
ment.all is falsy!”

Ugh. That sucks. It’s a crazy gotcha that most JS developers don’t
understand. But the alternative (doing nothing about the above no-
win problems) sucks just a little bit more.

So… that’s what we’ve got: crazy, nonstandard “falsy objects” added
to JavaScript by the browsers. Yay!

Truthy values
Back to the truthy list. What exactly are the truthy values? Remem‐
ber: a value is truthy if it’s not on the falsy list.

Consider:

var a = "false";
var b = "0";
var c = "''";

var d = Boolean( a && b && c );

d;

What value do you expect d to have here? It’s gotta be either true or
false.

It’s true. Why? Because despite the contents of those string values
looking like falsy values, the string values themselves are all truthy,
because "" is the only string value on the falsy list.

What about these?

var a = [];             // empty array--truthy or falsy?
var b = {};             // empty object--truthy or falsy?
var c = function(){};   // empty function--truthy or falsy?
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var d = Boolean( a && b && c );

d;

Yep, you guessed it, d is still true here. Why? Same reason as before.
Despite what it may seem like, [], {}, and function(){} are not on
the falsy list, and thus are truthy values.

In other words, the truthy list is infinitely long. It’s impossible to
make such a list. You can only make a finite falsy list and consult it.

Take five minutes, write the falsy list on a Post-it note for your com‐
puter monitor, or memorize it if you prefer. Either way, you’ll easily
be able to construct a virtual truthy list whenever you need it by
simply asking if it’s on the falsy list or not.

The importance of truthy and falsy is in understanding how a value
will behave if you coerce it (either explicitly or implicitly) to a
boolean value. Now that you have those two lists in mind, we can
dive into coercion examples themselves.

Explicit Coercion
Explicit coercion refers to type conversions that are obvious and
explicit. There’s a wide range of type conversion usage that clearly
falls under the explicit coercion category for most developers.

The goal here is to identify patterns in our code where we can make
it clear and obvious that we’re converting a value from one type to
another, so as to not leave potholes for future developers to trip into.
The more explicit we are, the more likely someone later will be able
to read our code and understand without undue effort what our
intent was.

It would be hard to find any salient disagreements with explicit coer‐
cion, as it most closely aligns with how the commonly accepted
practice of type conversion works in statically typed languages. As
such, we’ll take for granted (for now) that explicit coercion can be
agreed upon to not be evil or controversial. We’ll revisit this later,
though.
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Explicitly: Strings <--> Numbers
We’ll start with the simplest and perhaps most common coercion
operation: coercing values between string and number representa‐
tion.

To coerce between strings and numbers, we use the built-in
String(..) and Number(..) functions (which we referred to as
“native constructors” in Chapter 3), but very importantly, we do not
use the new keyword in front of them. As such, we’re not creating
object wrappers.

Instead, we’re actually explicitly coercing between the two types:

var a = 42;
var b = String( a );

var c = "3.14";
var d = Number( c );

b; // "42"
d; // 3.14

String(..) coerces from any other value to a primitive string
value, using the rules of the ToString operation discussed earlier.
Number(..) coerces from any other value to a primitive number
value, using the rules of the ToNumber operation discussed earlier.

I call this explicit coercion because in general, it’s pretty obvious to
most developers that the end result of these operations is the appli‐
cable type conversion.

In fact, this usage actually looks a lot like it does in some other stati‐
cally typed languages.

For example, in C/C++, you can say either (int)x or int(x), and
both will convert the value in x to an integer. Both forms are valid,
but many prefer the latter, which kinda looks like a function call. In
JavaScript, when you say Number(x), it looks awfully similar. Does it
matter that it’s actually a function call in JS? Not really.

Besides String(..) and Number(..), there are other ways to
“explicitly” convert these values between string and number:

var a = 42;
var b = a.toString();

var c = "3.14";
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var d = +c;

b; // "42"
d; // 3.14

Calling a.toString() is ostensibly explicit (pretty clear that
“toString” means “to a string”), but there’s some hidden implicitness
here. toString() cannot be called on a primitive value like 42. So JS
automatically “boxes” (see Chapter 3) 42 in an object wrapper, so
that toString() can be called against the object. In other words,
you might call it “explicitly implicit.”

+c here is showing the unary operator form (operator with only one
operand) of the + operator. Instead of performing mathematic addi‐
tion (or string concatenation—see below), the unary + explicitly
coerces its operand (c) to a number value.

Is +c explicit coercion? Depends on your experience and perspective.
If you know (which you do, now!) that unary + is explicitly intended
for number coercion, then it’s pretty explicit and obvious. However,
if you’ve never seen it before, it can seem awfully confusing, implicit,
with hidden side effects, etc.

The generally accepted perspective in the open
source JS community is that unary + is an
accepted form of explicit coercion.

Even if you really like the +c form, there are definitely places where
it can look awfully confusing. Consider:

var c = "3.14";
var d = 5+ +c;

d; // 8.14

The unary - operator also coerces like + does, but it also flips the
sign of the number. However, you cannot put two (--) next to each
other to unflip the sign, as that’s parsed as the decrement operator.
Instead, you would need to do - -"3.14" with a space in between,
and that would result in coercion to 3.14.

You can probably dream up all sorts of hideous combinations of
binary operators (like + for addition) next to the unary form of an
operator. Here’s another crazy example:
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1 + - + + + - + 1;  // 2

You should strongly consider avoiding unary + (or -) coercion when
it’s immediately adjacent to other operators. While the above works,
it would almost universally be considered a bad idea. Even d = +c
(or d =+ c for that matter!) can far too easily be confused for d +=
c, which is entirely different!

Another extremely confusing place for unary +
to be used adjacent to another operator would
be the ++ increment operator and -- decrement
operator. For example, consider a +++b,
a + ++b, and a + + +b. See “Expression Side
Effects” on page 125 for more about ++.

Remember, we’re trying to be explicit and reduce confusion, not
make it much worse!

Date to number

Another common usage of the unary + operator is to coerce a Date
object into a number, because the result is the Unix timestamp (milli‐
seconds elapsed since 1 January 1970 00:00:00 UTC) representation
of the date/time value:

var d = new Date( "Mon, 18 Aug 2014 08:53:06 CDT" );

+d; // 1408369986000

The most common usage of this idiom is to get the current now
moment as a timestamp, such as:

var timestamp = +new Date();

Some developers are aware of a peculiar syntac‐
tic “trick” in JavaScript, which is that the () set
on a constructor call (a function called with new)
is optional only if there are no arguments to
pass. So you may run across the var timestamp
= +new Date; form. However, not all developers
agree that omitting the () improves readability,
as it’s an uncommon syntax exception that only
applies to the new fn() call form and not the
regular fn() call form.
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But coercion is not the only way to get the timestamp out of a Date
object. A noncoercion approach is perhaps even preferable, as it’s
even more explicit:

var timestamp = new Date().getTime();
// var timestamp = (new Date()).getTime();
// var timestamp = (new Date).getTime();

But an even more preferable noncoercion option is to use the
Date.now() static function added in ES5:

var timestamp = Date.now();

And if you want to polyfill Date.now() into older browsers, it’s
pretty simple:

if (!Date.now) {
    Date.now = function() {
        return +new Date();
    };
}

I’d recommend skipping the coercion forms related to dates. Use
Date.now() for current now timestamps, and new Date( .. ).get
Time() for getting a timestamp of a specific non-now date/time that
you need to specify.

The curious case of the ~
One coercive JS operator that is often overlooked and usually very
confused is the tilde ~ operator (aka “bitwise NOT”). Many of those
who even understand what it does will often still want to avoid it.
But sticking to the spirit of our approach in this book and series, let’s
dig into it to find out if ~ has anything useful to give us.

In “32-Bit (Signed) Integers” on page 23, we covered how bitwise
operators in JS are defined only for 32-bit operations, which means
they force their operands to conform to 32-bit value representations.
The rules for how this happens are controlled by the ToInt32
abstract operation (ES5 spec, section 9.5).

ToInt32 first does a ToNumber coercion, which means if the value is
"123", it’s going to first become 123 before the ToInt32 rules are
applied.

While not technically coercion itself (since the type doesn’t change!),
using bitwise operators (like | or ~) with certain special number val‐
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ues produces a coercive effect that results in a different number
value.

For example, let’s first consider the | “bitwise OR” operator used in
the otherwise no-op idiom 0 | x, which (as Chapter 2 showed)
essentially only does the ToInt32 conversion:

0 | -0;         // 0
0 | NaN;        // 0
0 | Infinity;   // 0
0 | -Infinity;  // 0

These special numbers aren’t 32-bit representable (since they come
from the 64-bit IEEE 754 standard—see Chapter 2), so ToInt32 just
specifies 0 as the result from these values.

It’s debatable if 0 | __ is an explicit form of this coercive ToInt32
operation or if it’s more implicit. From the spec perspective, it’s
unquestionably explicit, but if you don’t understand bitwise opera‐
tions at this level, it can seem a bit more implicitly magical. Never‐
theless, consistent with other assertions in this chapter, we will call it
explicit.

So, let’s turn our attention back to ~. The ~ operator first “coerces” to
a 32-bit number value, and then performs a bitwise negation (flip‐
ping each bit’s parity).

This is very similar to how ! not only coerces its
value to boolean but also flips its parity (see the
discussion of the “unary !" operator in “Explic‐
itly: * --> Boolean” on page 83).

But… what!? Why do we care about bits being flipped? That’s some
pretty specialized, nuanced stuff. It’s pretty rare for JS developers to
need to reason about individual bits.

Another way of thinking about the definition of ~ comes from old-
school computer science/discrete mathematics: ~ performs two’s
complement. Great, thanks, that’s totally clearer!

Let’s try again: ~x is roughly the same as -(x+1). That’s weird, but
slightly easier to reason about. So:

~42;    // -(42+1) ==> -43
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You’re probably still wondering what the heck all this ~ stuff is
about, or why it really matters for a coercion discussion. Let’s
quickly get to the point.

Consider -(x+1). What’s the only value that can you can perform
that operation on that will produce a 0 (or -0 technically!) result? -1.
In other words, ~ used with a range of number values will produce a
falsy (easily coercible to false) 0 value for the -1 input value, and
any other truthy number otherwise.

Why is that relevant?

-1 is commonly called a “sentinel value,” which basically means a
value that’s given an arbitrary semantic meaning within the greater
set of values of its same type (numbers). The C-language uses -1 sen‐
tinel values for many functions that return >= 0 values for “success”
and -1 for “failure.”

JavaScript adopted this precedent when defining the string opera‐
tion indexOf(..), which searches for a substring and if found
returns its zero-based index position, or -1 if not found.

It’s pretty common to try to use indexOf(..) not just as an opera‐
tion to get the position, but as a boolean check of presence/absence
of a substring in another string. Here’s how developers usually per‐
form such checks:

var a = "Hello World";

if (a.indexOf( "lo" ) >= 0) {   // true
    // found it!
}
if (a.indexOf( "lo" ) != -1) {  // true
    // found it
}

if (a.indexOf( "ol" ) < 0) {    // true
    // not found!
}
if (a.indexOf( "ol" ) == -1) {  // true
    // not found!
}

I find it kind of gross to look at >= 0 or == -1. It’s basically a “leaky
abstraction,” in that it’s leaking underlying implementation behavior
—the usage of sentinel -1 for “failure”—into my code. I would prefer
to hide such a detail.
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And now, finally, we see why ~ could help us! Using ~ with
indexOf() “coerces” (actually just transforms) the value to be appro‐
priately boolean-coercible:

var a = "Hello World";

~a.indexOf( "lo" ); // -4   <-- truthy!

if (~a.indexOf( "lo" )) {   // true
    // found it!
}

~a.indexOf( "ol" ); // 0    <-- falsy!
!~a.indexOf( "ol" ); // true

if (!~a.indexOf( "ol" )) {  // true
    // not found!
}

~ takes the return value of indexOf(..) and transforms it: for the
“failure” -1 we get the falsy 0, and every other value is truthy.

The -(x+1) pseudo-algorithm for ~ would imply
that ~-1 is -0, but actually it produces 0 because
the underlying operation is bitwise, not mathe‐
matic.

Technically, if (~a.indexOf(..)) is still relying on implicit coer‐
cion of its resultant 0 to false or nonzero to true. But overall, ~ still
feels to me more like an explicit coercion mechanism, as long as you
know what it’s intended to do in this idiom.

I find this to be cleaner code than the previous >= 0 / == -1 clutter.

Truncating bits

There’s one more place ~ may show up in code you run accross:
some developers use the double tilde ~~ to truncate the decimal part
of a number (i.e., “coerce” it to a whole number integer). It’s com‐
monly (though mistakenly) said that this is the same result as calling
Math.floor(..).

How ~~ works is that the first ~ applies the ToInt32 “coercion” and
does the bitwise flip, and then the second ~ does another bitwise flip,
flipping all the bits back to the original state. The end result is just
the ToInt32 “coercion” (aka truncation).
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The bitwise double-flip of ~~ is very similar to
the parity double-negate !! behavior, explained
in “Explicitly: * --> Boolean” on page 83.

However, ~~ needs some caution/clarification. First, it only works
reliably on 32-bit values. But more importantly, it doesn’t work the
same on negative numbers as Math.floor(..) does!

Math.floor( -49.6 );    // -50
~~-49.6;                // -49

Setting the Math.floor(..) difference aside, ~~x can truncate to a
(32-bit) integer. But so does x | 0, and seemingly with (slightly) less
effort.

So, why might you choose ~~x over x | 0, then? Operator prece‐
dence (see Chapter 5):

~~1E20 / 10;        // 166199296

1E20 | 0 / 10;      // 1661992960
(1E20 | 0) / 10;    // 166199296

Just as with all other advice here, use ~ and ~~ as explicit mecha‐
nisms for “coercion” and value transformation only if everyone who
reads/writes such code is properly aware of how these operators
work!

Explicitly: Parsing Numeric Strings
A similar outcome to coercing a string to a number can be achieved
by parsing a number out of a string’s character contents. There are,
however, distinct differences between this parsing and the type con‐
version we examined above.

Consider:

var a = "42";
var b = "42px";

Number( a );    // 42
parseInt( a );  // 42

Number( b );    // NaN
parseInt( b );  // 42
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Parsing a numeric value out of a string is tolerant of non-numeric
characters—it just stops parsing left-to-right when encountered—
whereas coercion is not tolerant and fails, resulting in the NaN value.

Parsing should not be seen as a substitute for coercion. These two
tasks, while similar, have different purposes. Parse a string as a num
ber when you don’t know/care what other non-numeric characters
there may be on the right-hand side. Coerce a string (to a number)
when the only acceptable values are numeric and something like
"42px" should be rejected as a number.

parseInt(..) has a twin, parseFloat(..),
which (as it sounds) pulls out a floating-point
number from a string.

Don’t forget that parseInt(..) operates on string values. It makes
absolutely no sense to pass a number value to parseInt(..). Nor
would it make sense to pass any other type of value, like true, func
tion(){..}, or [1,2,3].

If you pass a non-string, the value you pass will automatically be
coerced to a string first (see “ToString” on page 59), which would
clearly be a kind of hidden implicit coercion. It’s a really bad idea to
rely upon such behavior in your program, so never use par
seInt(..) with a non-string value.

Prior to ES5, another gotcha existed with parseInt(..), which was
the source of many JS programs’ bugs. If you didn’t pass a second
argument to indicate which numeric base (aka radix) to use for
interpreting the numeric string contents, parseInt(..) would
look at the first character to make a guess.

If the first character was x or X, the guess (by convention) was that
you wanted to interpret the string as a hexadecimal (base-16) num
ber. If the first character was 0, the guess (again, by convention) was
that you wanted to interpret the string as an octal (base-8) number.

Hexadecimal strings (with the leading x or X) aren’t terribly easy to
get mixed up. But the octal number guessing proved devilishly com‐
mon. For example:
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var hour = parseInt( selectedHour.value );
var minute = parseInt( selectedMinute.value );

console.log(
   "The time you selected was: " + hour + ":" + minute
);

Seems harmless, right? Try selecting 08 for the hour and 09 for the
minute. You’ll get 0:0. Why? because neither 8 nor 9 are valid char‐
acters in octal base-8.

The pre-ES5 fix was simple, but so easy to forget: always pass 10 as
the second argument. This was totally safe:

var hour = parseInt( selectedHour.value, 10 );
var minute = parseInt( selectedMiniute.value, 10 );

As of ES5, parseInt(..) no longer guesses. Unless you say other‐
wise, it assumes base-10. That’s much nicer. Just be careful if your
code has to run in pre-ES5 environments, in which case you still
need to pass 10 for the radix.

Parsing non-strings

One somewhat infamous example of parseInt(..)’s behavior is
highlighted in a sarcastic joke post a few years ago, poking fun at
this JS behavior:

parseInt( 1/0, 19 ); // 18

The assumptive (but totally invalid) assertion was, “If I pass in Infin‐
ity, and parse an integer out of that, I should get Infinity back, not
18.” Surely, JS must be crazy for this outcome, right?

Though this example is obviously contrived and unreal, let’s indulge
the madness for a moment and examine whether JS really is that
crazy.

First off, the most obvious sin committed here is to pass a non-
string to parseInt(..). That’s a no-no. Do it and you’re asking for
trouble. But even if you do, JS politely coerces what you pass in into
a string that it can try to parse.

Some would argue that this is unreasonable behavior, and that par
seInt(..) should refuse to operate on a non-string value. Should
it perhaps throw an error? That would be very Java-like, frankly. I
shudder at thinking JS should start throwing errors all over the place
so that try..catch is needed around almost every line.
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Should it return NaN? Maybe. But…what about:

parseInt( new String( "42") );

Should that fail, too? It’s a non-string value. If you want that
String object wrapper to be unboxed to "42", then is it really so
unusual for 42 to first become "42" so that 42 can be parsed back
out?

I would argue that this half-explicit, half-implicit coercion that can
occur can often be a very helpful thing. For example:

var a = {
    num: 21,
    toString: function() { return String( this.num * 2 ); }
};

parseInt( a ); // 42

The fact that parseInt(..) forcibly coerces its value to a string to
perform the parse on is quite sensible. If you pass in garbage, and
you get garbage back out, don’t blame the trash can—it just did its
job faithfully.

So, if you pass in a value like Infinity (the result of 1 / 0 obvi‐
ously), what sort of string representation would make the most
sense for its coercion? Only two reasonable choices come to mind:
"Infinity" and "∞". JS chose "Infinity". I’m glad it did.

I think it’s a good thing that all values in JS have some sort of default
string representation, so that they aren’t mysterious black boxes
that we can’t debug and reason about.

Now, what about base-19? Obviously, completely bogus and con‐
trived. No real JS programs use base-19. It’s absurd. But again, let’s
indulge the ridiulousness. In base-19, the valid numeric characters
are 0 - 9 and a - i (case insensitive).

So, back to our parseInt( 1/0, 19 ) example. It’s essentially par
seInt( "Infinity", 19 ). How does it parse? The first character is
"I", which is value 18 in the silly base-19. The second character "n"
is not in the valid set of numeric characters, and as such the parsing
simply politely stops, just like when it ran across "p" in "42px".

The result? 18. Exactly like it sensibly should be. The behaviors
involved to get us there, and not to an error or to Infinity itself, are
very important to JS, and should not be so easily discarded.
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Other examples of this behavior with parseInt(..) that may be
surprising but are quite sensible include:

parseInt( 0.000008 );       // 0   ("0" from "0.000008")
parseInt( 0.0000008 );      // 8   ("8" from "8e-7")
parseInt( false, 16 );      // 250 ("fa" from "false")
parseInt( parseInt, 16 );   // 15  ("f" from "function..")

parseInt( "0x10" );         // 16
parseInt( "103", 2 );       // 2

parseInt(..) is actually pretty predictable and consistent in its
behavior. If you use it correctly, you’ll get sensible results. If you use
it incorrectly, the crazy results you get are not the fault of JavaScript.

Explicitly: * --> Boolean
Now, let’s examine coercing from any non-boolean value to a
boolean.

Just like with String(..) and Number(..) above, Boolean(..)
(without the new, of course!) is an explicit way of forcing the ToBoo
lean coercion:

var a = "0";
var b = [];
var c = {};

var d = "";
var e = 0;
var f = null;
var g;

Boolean( a ); // true
Boolean( b ); // true
Boolean( c ); // true

Boolean( d ); // false
Boolean( e ); // false
Boolean( f ); // false
Boolean( g ); // false

While Boolean(..) is clearly explicit, it’s not at all common or
idiomatic.

Just like the unary + operator coerces a value to a number (see
above), the unary ! negate operator explicitly coerces a value to a
boolean. The problem is that it also flips the value from truthy to
falsy or vice versa. So, the most common way JS developers explic‐
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itly coerce to boolean is to use the !! double-negate operator,
because the second ! will flip the parity back to the original:

var a = "0";
var b = [];
var c = {};

var d = "";
var e = 0;
var f = null;
var g;

!!a;   // true
!!b;   // true
!!c;   // true

!!d;   // false
!!e;   // false
!!f;   // false
!!g;   // false

Any of these ToBoolean coercions would happen implicitly without
the Boolean(..) or !!, if used in a boolean context such as an if
(..) .. statement. But the goal here is to explicitly force the value
to a boolean to make it clearer that the ToBoolean coercion is
intended.

Another example use case for explicit ToBoolean coercion is if you
want to force a true/false value coercion in the JSON serialization
of a data structure:

var a = [
    1,
    function(){ /*..*/ },
    2,
    function(){ /*..*/ }
];

JSON.stringify( a ); // "[1,null,2,null]"

JSON.stringify( a, function(key,val){
    if (typeof val == "function") {

// force `ToBoolean` coercion of the function
return !!val;

    }
    else {

return val;
    }
} );
// "[1,true,2,true]"
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If you come to JavaScript from Java, you may recognize this idiom:

var a = 42;

var b = a ? true : false;

The ? : ternary operator will test a for truthiness, and based on that
test will either assign true or false to b, accordingly.

On its surface, this idiom looks like a form of explicit ToBoolean-
type coercion, since it’s obvious that only either true or false come
out of the operation.

However, there’s a hidden implicit coercion, in that the a expression
has to first be coerced to boolean to perform the truthiness test. I’d
call this idiom “explicitly implicit.” Furthermore, I’d suggest you
should avoid this idiom completely in JavaScript. It offers no real
benefit, and worse, masquerades as something it’s not.

Boolean(a) and !!a are far better as explicit coercion options.

Implicit Coercion
Implicit coercion refers to type conversions that are hidden, with
nonobvious side effects that implicitly occur from other actions. In
other words, implicit coercions are any type conversions that aren’t
obvious (to you).

While it’s clear what the goal of explicit coercion is (making code
explicit and more understandable), it might be too obvious that
implicit coercion has the opposite goal: making code harder to
understand.

Taken at face value, I believe that’s where much of the ire towards
coercion comes from. The majority of complaints about “JavaScript
coercion” are actually aimed (whether they realize it or not) at
implicit coercion.
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Douglas Crockford, author of JavaScript: The
Good Parts, has claimed in many conference
talks and writings that JavaScript coercion
should be avoided. But what he seems to mean is
that implicit coercion is bad (in his opinion).
However, if you read his own code, you’ll find
plenty of examples of coercion, both implicit and
explicit! In truth, his angst seems to primarily be
directed at the == operation, but as you’ll see in
this chapter, that’s only part of the coercion
mechanism.

So, is implicit coercion evil? Is it dangerous? Is it a flaw in JavaS‐
cript’s design? Should we avoid it at all costs?

I bet most of you readers are inclined to enthusiastically cheer,
“Yes!”

Not so fast. Hear me out.

Let’s take a different perspective on what implicit coercion is, and
can be, than just that it’s “the opposite of the good explicit kind of
coercion.” That’s far too narrow and misses an important nuance.

Let’s define the goal of implicit coercion as to reduce verbosity, boil‐
erplate, and/or unnecessary implementation detail that clutters up
our code with noise that distracts from the more important intent.

Simplifying Implicitly
Before we even get to JavaScript, let me suggest something pseudo-
code’ish from some theoretical strongly typed language to illustrate:

SomeType x = SomeType( AnotherType( y ) )

In this example, I have some arbitrary type of value in y that I want
to convert to the SomeType type. The problem is, this language can’t
go directly from whatever y currently is to SomeType. It needs an
intermediate step, where it first converts to AnotherType, and then
from AnotherType to SomeType.

Now, what if that language (or definition you could create yourself
with the language) did just let you say:

SomeType x = SomeType( y )
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Wouldn’t you generally agree that we simplified the type conversion
here to reduce the unnecessary “noise” of the intermediate conver‐
sion step? I mean, is it really all that important, right here at this
point in the code, to see and deal with the fact that y goes to Another
Type first before then going to SomeType?

Some would argue, at least in some circumstances, yes. But I think
an equal argument can be made of many other circumstances that
here, the simplification actually aids in the readability of the code by
abstracting or hiding away such details, either in the language itself
or in our own abstractions.

Undoubtedly, behind the scenes, somewhere, the intermediate con‐
version step is still happening. But if that detail is hidden from view
here, we can just reason about getting y to type SomeType as an
generic operation and hide the messy details.

While not a perfect analogy, what I’m going to argue throughout the
rest of this chapter is that JS implicit coercion can be thought of as
providing a similar aid to your code.

But, and this is very important, that is not an unbounded, absolute
statement. There are definitely plenty of evils lurking around implicit
coercion that will harm your code much more than any potential
readability improvements. Clearly, we have to learn how to avoid
such constructs so we don’t poison our code with all manner of
bugs.

Many developers believe that if a mechanism can do some useful
thing A but can also be abused or misused to do some awful thing Z,
then we should throw out that mechanism altogether, just to be safe.

My encouragement to you is: don’t settle for that. Don’t “throw the
baby out with the bathwater.” Don’t assume implicit coercion is all
bad because all you think you’ve ever seen is its “bad parts.” I think
there are “good parts” here, and I want to help and inspire more of
you to find and embrace them!

Implicitly: Strings <--> Numbers
Earlier in this chapter, we explored explicitly coercing between
string and number values. Now, let’s explore the same task but with
implicit coercion approaches. But before we do, we have to examine
some nuances of operations that will implicitly force coercion.
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The + operator is overloaded to serve the purposes of both number
addition and string concatenation. So how does JS know which
type of operation you want to use? Consider:

var a = "42";
var b = "0";

var c = 42;
var d = 0;

a + b; // "420"
c + d; // 42

What’s different that causes "420" versus 42? It’s a common miscon‐
ception that the difference is whether one or both of the operands is
a string, as that means + will assume string concatenation. While
that’s partially true, it’s more complicated than that.

Consider:

var a = [1,2];
var b = [3,4];

a + b; // "1,23,4"

Neither of these operands is a string, but clearly they were both
coerced to strings and then the string concatenation kicked in. So
what’s really going on?

Deeply nitty gritty spec-speak coming, so skip
the next two paragraphs if that intimidates you!

According to the ES5 spec, section 11.6.1, the + algorithm (when an
object value is an operand) will concatenate if either operand is
either already a string, or if the following steps produce a string
representation. So, when + receives an object (including array) for
either operand, it first calls the ToPrimitive abstract operation (sec‐
tion 9.1) on the value, which then calls the [[DefaultValue]] algo‐
rithm (section 8.12.8) with a context hint of number.

If you’re paying close attention, you’ll notice that this operation is
now identical to how the ToNumber abstract operation handles
objects (see “ToNumber” on page 65). The valueOf() operation on
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the array will fail to produce a simple primitive, so it then falls to a
toString() representation. The two arrays thus become "1,2" and
"3,4", respectively. Now, + concatenates the two strings as you’d
normally expect: "1,23,4".

Let’s set aside those messy details and go back to an earlier, simpli‐
fied explanation: if either operand to + is a string (or become one
with the above steps!), the operation will be string concatenation.
Otherwise, it’s always numeric addition.

A commonly cited coercion gotcha is [] + {}
versus {} + [], as those two expressions result,
respectively, in "[object Object]" and 0.
There’s more to it, though, and we cover those
details in “Blocks” on page 134.

What’s that mean for implicit coercion?

You can coerce a number to a string simply by “adding” the number
and the "" empty string:

var a = 42;
var b = a + "";

b; // "42"

Numeric addition with the + operator is com‐
mutative, which means 2 + 3 is the same as 3
+ 2. String concatenation with + is obviously not
generally commutative, but with the specific
case of "", it’s effectively commutative, as a + ""
and "" + a will produce the same result.

It’s extremely common/idiomatic to (implicitly) coerce number to
string with a + "" operation. In fact, interestingly, even some of the
most vocal crticics of implicit coercion still use that approach in
their own code, instead of one of its explicit alternatives.

I think this is a great example of a useful form in implicit coercion,
despite how frequently the mechanism gets criticized!

Comparing this implicit coercion of a + "" to our earlier example of
String(a) explicit coercion, there’s one additional quirk to be aware
of. Because of how the ToPrimitive abstract operation works,
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a + "" invokes valueOf() on the a value, whose return value is
then finally converted to a string via the internal ToString abstract
operation. But String(a) just invokes toString() directly.

Both approaches ultimately result in a string, but if you’re using an
object instead of a regular primitive number value, you may not
necessarily get the same string value!

Consider:

var a = {
    valueOf: function() { return 42; },
    toString: function() { return 4; }
};

a + "";         // "42"

String( a );    // "4"

Generally, this sort of gotcha won’t bite you unless you’re really try‐
ing to create confusing data structures and operations, but you
should be careful if you’re defining both your own valueOf() and
toString() methods for some object, as how you coerce the value
could affect the outcome.

What about the other direction? How can we implicitly coerce from
string to number?

var a = "3.14";
var b = a - 0;

b; // 3.14

The - operator is defined only for numeric subtraction, so a - 0
forces a’s value to be coerced to a number. While far less common, a
* 1 or a / 1 would accomplish the same result, as those operators
are also only defined for numeric operations.

What about object values with the - operator? Similar story as for +
above:

var a = [3];
var b = [1];

a - b; // 2

Both array values have to become numbers, but they end up first
being coerced to strings (using the expected toString() serializa‐
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tion), and then are coerced to numbers, for the - subtraction to per‐
form on.

So, is implicit coercion of string and number values the ugly evil
you’ve always heard horror stories about? I don’t personally think so.

Compare b = String(a) (explicit) to b = a + "" (implicit). I think
cases can be made for both approaches being useful in your code.
Certainly b = a + "" is quite a bit more common in JS programs,
proving its own utility regardless of feelings about the merits or haz‐
ards of implicit coercion in general.

Implicitly: Booleans --> Numbers
I think a case where implicit coercion can really shine is in simplify‐
ing certain types of complicated boolean logic into simple numeric
addition. Of course, this is not a general-purpose technique, but a
specific solution for specific cases.

Consider:

function onlyOne(a,b,c) {
    return !!((a && !b && !c) ||
        (!a && b && !c) || (!a && !b && c));
}

var a = true;
var b = false;

onlyOne( a, b, b ); // true
onlyOne( b, a, b ); // true

onlyOne( a, b, a ); // false

This onlyOne(..) utility should only return true if exactly one of
the arguments is true / truthy. It’s using implicit coercion on the tru‐
thy checks and explicit coercion on the others, including the final
return value.

But what if we needed that utility to be able to handle four, five, or
twenty flags in the same way? It’s pretty difficult to imagine imple‐
menting code that would handle all those permutations of compari‐
sons.

But here’s where coercing the boolean values to numbers (0 or 1,
obviously) can greatly help:
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function onlyOne() {
    var sum = 0;
    for (var i=0; i < arguments.length; i++) {
        // skip falsy values. same as treating
        // them as 0's, but avoids NaN's.
        if (arguments[i]) {
            sum += arguments[i];
        }
    }
    return sum == 1;
}

var a = true;
var b = false;

onlyOne( b, a );                // true
onlyOne( b, a, b, b, b );       // true

onlyOne( b, b );                // false
onlyOne( b, a, b, b, b, a );    // false

Of course, instead of the for loop in
onlyOne(..), you could more tersely use the
ES5 reduce(..) utility, but I didn’t want to
obscure the concepts.

What we’re doing here is relying on the 1 for true/truthy coercions,
and numerically adding them all up. sum += arguments[i] uses
implicit coercion to make that happen. If one and only one value in
the arguments list is true, then the numeric sum will be 1, otherwise
the sum will not be 1 and thus the desired condition is not met.

We could of course do this with explicit coercion instead:

function onlyOne() {
    var sum = 0;
    for (var i=0; i < arguments.length; i++) {
        sum += Number( !!arguments[i] );
    }
    return sum === 1;
}

We first use !!arguments[i] to force the coercion of the value to
true or false. That’s so you could pass non-boolean values in, like
onlyOne( "42", 0 ), and it would still work as expected (otherwise
you’d end up with string concatenation and the logic would be
incorrect).
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Once we’re sure it’s a boolean, we do another explicit coercion with
Number(..) to make sure the value is 0 or 1.

Is the explicit coercion form of this utility “better”? It does avoid the
NaN trap as explained in the code comments. But, ultimately, it
depends on your needs. I personally think the former version, rely‐
ing on implicit coercion, is more elegant (if you won’t be passing
undefined or NaN), and the explicit version is needlessly more ver‐
bose.

But as with almost everything we’re discussing here, it’s a judgment
call.

Regardless of implicit or explicit approaches, you
could easily make onlyTwo(..) or only

Five(..) variations by simply changing the
final comparison from 1, to 2 or 5, respectively.
That’s drastically easier than adding a bunch of
&& and || expressions. So, generally, coercion is
very helpful in this case.

Implicitly: * --> Boolean
Now, let’s turn our attention to implicit coercion to boolean values,
as it’s by far the most common and also by far the most potentially
troublesome.

Remember, implicit coercion is what kicks in when you use a value
in such a way that it forces the value to be converted. For numeric
and string operations, it’s fairly easy to see how the coercions can
occur.

But, what sort of expression operations require/force (implicitly) a
boolean coercion?

1. The test expression in an if (..) statement
2. The test expression (second clause) in a for ( .. ; .. ; .. )

header
3. The test expression in while (..) and do..while(..) loops
4. The test expression (first clause) in ? : ternary expressions
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5. The lefthand operand (which serves as a test expression—see
below!) to the || (“logical or”) and && (“logical and”) operators

Any value used in these contexts that is not already a boolean will be
implicitly coerced to a boolean using the rules of the ToBoolean
abstract operation covered earlier in this chapter.

Let’s look at some examples:

var a = 42;
var b = "abc";
var c;
var d = null;

if (a) {
    console.log( "yep" );       // yep
}

while (c) {
    console.log( "nope, never runs" );
}

c = d ? a : b;
c;                              // "abc"

if ((a && d) || c) {
    console.log( "yep" );       // yep
}

In all these contexts, the non-boolean values are implicitly coerced to
their boolean equivalents to make the test decisions.

Operators || and &&
It’s quite likely that you have seen the || (“logical or”) and && (“logi‐
cal and”) operators in most or all other languages you’ve used. So it’d
be natural to assume that they work basically the same in JavaScript
as in other similar languages.

There’s some very little known, but very important, nuance here.

In fact, I would argue these operators shouldn’t even be called “logi‐
cal ___ operators,” as that name is incomplete in describing what
they do. If I were to give them a more accurate (if more clumsy)
name, I’d call them “selector operators,” or more completely,
“operand selector operators.”
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Why? Because they don’t actually result in a logic value (aka
boolean) in JavaScript, as they do in some other languages.

So what do they result in? They result in the value of one (and only
one) of their two operands. In other words, they select one of the
two operand’s values.

Quoting the ES5 spec from section 11.11:
The value produced by a && or || operator is not necessarily of type
Boolean. The value produced will always be the value of one of the
two operand expressions.

Let’s illustrate:

var a = 42;
var b = "abc";
var c = null;

a || b;     // 42
a && b;     // "abc"

c || b;     // "abc"
c && b;     // null

Wait, what!? Think about that. In languages like C and PHP, those
expressions result in true or false, but in JS (and Python and Ruby,
for that matter!), the result comes from the values themselves.

Both || and && operators perform a boolean test on the first
operand (a or c). If the operand is not already boolean (as it’s not,
here), a normal ToBoolean coercion occurs, so that the test can be
performed.

For the || operator, if the test is true, the || expression results in
the value of the first operand (a or c). If the test is false, the ||
expression results in the value of the second operand (b).

Inversely, for the && operator, if the test is true, the && expression
results in the value of the second operand (b). If the test is false, the
&& expression results in the value of the first operand (a or c).

The result of a || or && expression is always the underlying value of
one of the operands, not the (possibly coerced) result of the test. In c
&& b, c is null, and thus falsy. But the && expression itself results in
null (the value in c), not in the coerced false used in the test.

Do you see how these operators act as “operand selectors,” now?
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Another way of thinking about these operators:

a || b;
// roughly equivalent to:
a ? a : b;

a && b;
// roughly equivalent to:
a ? b : a;

I call a || b “roughly equivalent” to a ? a : b
because the outcome is identical, but there’s a
nuanced difference. In a ? a : b, if a was a
more complex expression (like for instance one
that might have side effects like calling a func
tion, etc.), then the a expression would possibly
be evaluated twice (if the first evaluation was
truthy). By contrast, for a || b, the a expression
is evaluated only once, and that value is used
both for the coercive test as well as the result
value (if appropriate). The same nuance applies
to the a && b and a ? b : a expressions.

An extremely common and helpful usage of this behavior, which
there’s a good chance you may have used before and not fully under‐
stood, is:

function foo(a,b) {
    a = a || "hello";
    b = b || "world";

    console.log( a + " " + b );
}

foo();                  // "hello world"
foo( "yeah", "yeah!" ); // "yeah yeah!"

The a = a || "hello" idiom (sometimes said to be JavaScript’s
version of the C# “null coallescing operator”) acts to test a and if it
has no value (or only an undesired falsy value), provides a backup
default value ("hello").

Be careful, though!

foo( "That's it!", "" ); // "That's it! world" <-- Oops!

See the problem? "" as the second argument is a falsy value (see
“ToBoolean” on page 67), so the b = b || "world" test fails, and
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the "world" default value is substituted, even though the intent
probably was to have the explicitly passed "" be the value assigned
to b.

This || idiom is extremely common, and quite helpful, but you have
to use it only in cases where all falsy values should be skipped.
Otherwise, you’ll need to be more explicit in your test, and probably
use a ? : ternary instead.

This default value assignment idiom is so common (and useful!) that
even those who publicly and vehemently decry JavaScript coercion
often use it in their own code!

What about &&?

There’s another idiom that is quite a bit less commonly authored
manually, but which is used by JS minifiers frequently. The && oper‐
ator “selects” the second operand if and only if the first operand tests
as truthy, and this usage is sometimes called the “guard operator”
(see also “Short Circuited” on page 140 in Chapter 5)--the first
expression test “guards” the second expression:

function foo() {
    console.log( a );
}

var a = 42;

a && foo(); // 42

foo() gets called only because a tests as truthy. If that test failed, this
a && foo() expression statement would just silently stop (some‐
times called “short circuiting”) and never call foo().

Again, it’s not nearly as common for people to author such things.
Usually, they’d do if (a) { foo(); } instead. But JS minifiers
choose a && foo() because it’s much shorter. So, if you ever have to
decipher such code, you’ll know what it’s doing and why.

OK, so || and && have some neat tricks up their sleeve, as long as
you’re willing to allow the implicit coercion into the mix.

Both the a = b || "something" and a && b()
idioms rely on short circuiting behavior, which
we cover in more detail in “Short Circuited” on
page 140 in Chapter 5.
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The fact that these operators don’t actually result in true and false
is possibly messing with your head a little bit by now. You’re proba‐
bly wondering how all your if statements and for loops have been
working, if they’ve included compound logical expressions like a &&
(b || c).

Don’t worry! The sky is not falling. Your code is (probably) just fine.
It’s just that you probably never realized before that there was an
implicit coercion to boolean going on after the compound expres‐
sion was evaluated.

Consider:

var a = 42;
var b = null;
var c = "foo";

if (a && (b || c)) {
    console.log( "yep" );
}

This code still works the way you always thought it did, except for
one subtle extra detail. The a && (b || c) expression actually
results in "foo", not true. So, the if statement then forces the "foo"
value to coerce to a boolean, which of course will be true.

See? No reason to panic. Your code is probably still safe. But now
you know more about how it does what it does.

And now you also realize that such code is using implicit coercion. If
you’re in the “avoid (implicit) coercion camp” still, you’re going to
need to go back and make all of those tests explicit:

if (!!a && (!!b || !!c)) {
    console.log( "yep" );
}

Good luck with that! … Sorry, just teasing.

Symbol Coercion
Up to this point, there’s been almost no observable outcome differ‐
ence between explicit and implicit coercion—only the readability of
code has been at stake.

But ES6 Symbols introduce a gotcha into the coercion system that
we need to discuss briefly. For reasons that go well beyond the scope
of what we’ll discuss in this book, explicit coercion of a symbol to a
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string is allowed, but implicit coercion of the same is disallowed
and throws an error.

Consider:

var s1 = Symbol( "cool" );
String( s1 );     // "Symbol(cool)"

var s2 = Symbol( "not cool" );
s2 + "";      // TypeError

symbol values cannot coerce to number at all (throws an error either
way), but strangely they can both explicitly and implicitly coerce to
boolean (always true).

Consistency is always easier to learn, and exceptions are never fun
to deal with, but we just need to be careful around the new ES6 sym
bol values and how we coerce them.

The good news: it’s probably going to be exceedingly rare for you to
need to coerce a symbol value. The way they’re typically used (see
Chapter 3) will probably not call for coercion on a normal basis.

Loose Equals Versus Strict Equals
Loose equals is the == operator, and strict equals is the === operator.
Both operators are used for comparing two values for “equality,” but
the “loose” versus “strict” indicates a very important difference in
behavior between the two, specifically in how they decide “equality.”

A very common misconception about these two operators is: "==
checks values for equality and === checks both values and types for
equality.” While that sounds nice and reasonable, it’s inaccurate.
Countless well-respected JavaScript books and blogs have said
exactly that, but unfortunately they’re all wrong.

The correct description is: "== allows coercion in the equality com‐
parison and === disallows coercion.”

Equality Performance
Stop and think about the difference between the first (inaccurate)
explanation and this second (accurate) one.

In the first explanation, it seems obvious that === is doing more work
than ==, because it has to also check the type. In the second explana‐
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tion, == is the one doing more work because it has to follow through
the steps of coercion if the types are different.

Don’t fall into the trap, as many have, of thinking this has anything
to do with performance, though, as if == is going to be slower than
=== in any relevant way. While it’s measurable that coercion does
take a little bit of processing time, it’s mere microseconds (yes, that’s
millionths of a second!).

If you’re comparing two values of the same types, == and === use the
identical algorithm, and so other than minor differences in engine
implementation, they should do the same work.

If you’re comparing two values of different types, the performance
isn’t the important factor. What you should be asking yourself is,
when comparing these two values, do I want coercion or not?

If you want coercion, use == loose equality, but if you don’t want
coercion, use === strict equality.

The implication here then is that both == and
=== check the types of their operands. The dif‐
ference is in how they respond if the types don’t
match.

Abstract Equality
The == operator’s behavior is defined as “The Abstract Equality
Comparison Algorithm” in section 11.9.3 of the ES5 spec. What’s lis‐
ted there is a comprehensive but simple algorithm that explicitly
states every possible combination of types, and how the coercions (if
necessary) should happen for each combination.
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When (implicit) coercion is maligned as being
too complicated and too flawed to be a useful
good part, it is these rules of “abstract equality”
that are being condemned. Generally, they are
said to be too complex and too unintuitive for
developers to practically learn and use, and that
they are prone more to causing bugs in JS pro‐
grams than to enabling greater code readability.
I believe this is a flawed premise—that you read‐
ers are competent developers who write (and
read and understand!) algorithms (aka code) all
day long. So, what follows is a plain exposition
of the “abstract equality” in simple terms. But I
implore you to also read section 11.9.3 of the
ES5 spec. I think you’ll be surprised at just how
reasonable it is.

Basically, the first clause (11.9.3.1) says that if the two values being
compared are of the same type, they are simply and naturally com‐
pared via Identity as you’d expect. For example, 42 is only equal to
42, and "abc" is only equal to "abc".

Some minor exceptions to normal expectation to be aware of:

• NaN is never equal to itself (see Chapter 2).
• +0 and -0 are equal to each other (see Chapter 2).

The final provision in clause 11.9.3.1 is for == loose equality com‐
parison with objects (including functions and arrays). Two such
values are only equal if they are both references to the exact same
value. No coercion occurs here.

The === strict equality comparison is defined
identically to 11.9.3.1, including the provision
about two object values. It’s a very little known
fact that == and === behave identically in the
case where two objects are being compared!

The rest of the algorithm in 11.9.3 specifies that if you use == loose
equality to compare two values of different types, one or both of the
values will need to be implicitly coerced. This coercion happens so
that both values eventually end up as the same type, which can then
directly be compared for equality using simple value Identity.

Loose Equals Versus Strict Equals | 101



The != loose not-equality operation is defined
exactly as you’d expect, in that it’s literally the ==
operation comparison performed in its entirety,
then the negation of the result. The same goes
for the !== strict not-equality operation.

Comparing: strings to numbers

To illustrate == coercion, let’s first build off the string and number
examples earlier in this chapter:

var a = 42;
var b = "42";

a === b;    // false
a == b;     // true

As we’d expect, a === b fails, because no coercion is allowed, and
indeed the 42 and "42" values are different.

However, the second comparison a == b uses loose equality, which
means that if the types happen to be different, the comparison algo‐
rithm will perform implicit coercion on one or both values.

But exactly what kind of coercion happens here? Does the a value of
42 become a string, or does the b value of "42" become a number?

In the ES5 spec, clauses 11.9.3.4-5 say:

1. If Type(x) is Number and Type(y) is String, return the result of
the comparison x == ToNumber(y).

2. If Type(x) is String and Type(y) is Number, return the result of
the comparison ToNumber(x) == y.

The spec uses Number and String as the formal
names for the types, while this book prefers num
ber and string for the primitive types. Do not
let the capitalization of Number in the spec con‐
fuse you for the Number() native function. For
our purposes, the capitalization of the type name
is irrelevant—they have basically the same
meaning.

Clearly, the spec says the "42" value is coerced to a number for the
comparison. The how of that coercion has already been covered ear‐
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lier, specifically with the ToNumber abstract operation. In this case,
it’s quite obvious then that the resulting two 42 values are equal.

Comparing: anything to boolean

One of the biggest gotchas with the implicit coercion of == loose
equality pops up when you try to compare a value directly to true
or false.

Consider:

var a = "42";
var b = true;

a == b; // false

Wait, what happened here!? We know that "42" is a truthy value (see
earlier in this chapter). So, how come it’s not == loose equal to true?

The reason is both simple and deceptively tricky. It’s so easy to mis‐
understand, many JS developers never pay close enough attention to
fully grasp it.

Let’s again quote the spec, clauses 11.9.3.6-7:

1. If Type(x) is Boolean, return the result of the comparison
ToNumber(x) == y.

2. If Type(y) is Boolean, return the result of the comparison x ==
ToNumber(y).

Let’s break that down. First:

var x = true;
var y = "42";

x == y; // false

The Type(x) is indeed Boolean, so it performs ToNumber(x), which
coerces true to 1. Now, 1 == "42" is evaluated. The types are still
different, so (essentially recursively) we reconsult the algorithm,
which just as above will coerce "42" to 42, and 1 == 42 is clearly
false.

Reverse it, and we still get the same outcome:

var x = "42";
var y = false;

x == y; // false
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The Type(y) is Boolean this time, so ToNumber(y) yields 0. "42" ==
0 recursively becomes 42 == 0, which is of course false.

In other words, the value "42" is neither == true nor == false. At
first, that statement might seem crazy. How can a value be neither
truthy nor falsy?

But that’s the problem! You’re asking the wrong question, entirely.
It’s not your fault, really. Your brain is tricking you.

"42" is indeed truthy, but "42" == true is not performing a
boolean test/coercion at all, no matter what your brain says. "42" is
not being coerced to a boolean (true), but instead true is being
coerced to a 1, and then "42" is being coerced to 42.

Whether we like it or not, ToBoolean is not even involved here, so
the truthiness or falsiness of "42" is irrelevant to the == operation!

What is relevant is to understand how the == comparison algorithm
behaves with all the different type combinations. As it regards a
boolean value on either side of the ==, a boolean always coerces to a
number first.

If that seems strange to you, you’re not alone. I personally would
recommend to never, ever, under any circumstances, use == true or
== false. Ever.

But remember, I’m only talking about == here. === true and ===
false wouldn’t allow the coercion, so they’re safe from this hidden
ToNumber coercion.

Consider:

var a = "42";

// bad (will fail!):
if (a == true) {
    // ..
}

// also bad (will fail!):
if (a === true) {
    // ..
}

// good enough (works implicitly):
if (a) {
    // ..
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}

// better (works explicitly):
if (!!a) {
    // ..
}

// also great (works explicitly):
if (Boolean( a )) {
    // ..
}

If you avoid ever using == true or == false (aka loose equality
with booleans) in your code, you’ll never have to worry about this
truthiness/falsiness mental gotcha.

Comparing: nulls to undefineds

Another example of implicit coercion can be seen with == loose
equality between null and undefined values. Yet again quoting the
ES5 spec, clauses 11.9.3.2-3:

1. If x is null and y is undefined, return true.
2. If x is undefined and y is null, return true.

null and undefined, when compared with == loose equality, equate
to (aka coerce to) each other (as well as themselves, obviously), and
no other values in the entire language.

What this means is that null and undefined can be treated as indis‐
tinguishable for comparison purposes, if you use the == loose equal‐
ity operator to allow their mutual implicit coercion:

var a = null;
var b;

a == b;     // true
a == null;  // true
b == null;  // true

a == false; // false
b == false; // false
a == "";    // false
b == "";    // false
a == 0;     // false
b == 0;     // false
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The coercion between null and undefined is safe and predictable,
and no other values can give false positives in such a check. I recom‐
mend using this coercion to allow null and undefined to be indis‐
tinguishable and thus treated as the same value.

For example:

var a = doSomething();

if (a == null) {
    // ..
}

The a == null check will pass only if doSomething() returns either
null or undefined, and will fail with any other value, even other
falsy values like 0, false, and "".

The explicit form of the check, which disallows any such coercion, is
(I think) unnecessarily much uglier (and perhaps a tiny bit less per‐
formant!):

var a = doSomething();

if (a === undefined || a === null) {
    // ..
}

In my opinion, the form a == null is yet another example where
implicit coercion improves code readability, but does so in a reliably
safe way.

Comparing: objects to nonobjects

If an object/function/array is compared to a simple scalar primi‐
tive (string, number, or boolean), the ES5 spec says in clauses
11.9.3.8-9:

1. If Type(x) is either String or Number and Type(y) is Object,
return the result of the comparison x == ToPrimitive(y).

2. If Type(x) is Object and Type(y) is either String or Number,
return the result of the comparison ToPrimitive(x) == y.
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You may notice that these clauses only mention
String and Number, but not Boolean. That’s
because, as quoted earlier, clauses 11.9.3.6-7 take
care of coercing any Boolean operand presented
to a Number first.

Consider:

var a = 42;
var b = [ 42 ];

a == b; // true

The [ 42 ] value has its ToPrimitive abstract operation called (see
“Abstract Value Operations” on page 59), which results in the "42"
value. From there, it’s just "42" == 42, which as we’ve already cov‐
ered becomes 42 == 42, so a and b are found to be coercively equal.

All the quirks of the ToPrimitive abstract oper‐
ation that we discussed earlier in this chapter
(toString(), valueOf()) apply here as you’d
expect. This can be quite useful if you have a
complex data structure that you want to define a
custom valueOf() method on, to provide a sim‐
ple value for equality comparison purposes.

In Chapter 3, we covered “unboxing,” where an object wrapper
around a primitive value (like from new String("abc"), for
instance) is unwrapped, and the underlying primitive value ("abc")
is returned. This behavior is related to the ToPrimitive coercion in
the == algorithm:

var a = "abc";
var b = Object( a );    // same as `new String( a )`

a === b;                // false
a == b;                 // true

a == b is true because b is coerced (aka “unboxed,” unwrapped) via
ToPrimitive to its underlying "abc" simple scalar primitive value,
which is the same as the value in a.

There are some values where this is not the case, though, because of
other overriding rules in the == algorithm. Consider:
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var a = null;
var b = Object( a );    // same as `Object()`
a == b;                 // false

var c = undefined;
var d = Object( c );    // same as `Object()`
c == d;                 // false

var e = NaN;
var f = Object( e );    // same as `new Number( e )`
e == f;                 // false

The null and undefined values cannot be boxed—they have no
object wrapper equivalent—so Object(null) is just like Object() in
that both just produce a normal object.

NaN can be boxed to its Number object wrapper equivalent, but when
== causes an unboxing, the NaN == NaN comparison fails because
NaN is never equal to itself (see Chapter 2).

Edge Cases
Now that we’ve thoroughly examined how the implicit coercion of
== loose equality works (in both sensible and surprising ways), let’s
try to call out the worst, craziest corner cases so we can see what we
need to avoid to not get bitten with coercion bugs.

First, let’s examine how modifying the built-in native prototypes can
produce crazy results:

A number by any other value would…
Number.prototype.valueOf = function() {
    return 3;
};

new Number( 2 ) == 3;   // true

2 == 3 would not have fallen into this trap,
because neither 2 nor 3 would have invoked the
built-in Number.prototype.valueOf() method
because both are already primitive number val‐
ues and can be compared directly. However, new
Number(2) must go through the ToPrimitive
coercion, and thus invoke valueOf().
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Evil, huh? Of course it is. No one should ever do such a thing. The
fact that you can do this is sometimes used as a criticism of coercion
and ==. But that’s misdirected frustration. JavaScript is not bad
because you can do such things, a developer is bad if they do such
things. Don’t fall into the “my programming language should pro‐
tect me from myself ” fallacy.

Next, let’s consider another tricky example, which takes the evil
from the previous example to another level:

if (a == 2 && a == 3) {
    // ..
}

You might think this would be impossible, because a could never be
equal to both 2 and 3 at the same time. But “at the same time” is
inaccurate, since the first expression a == 2 happens strictly before a
== 3.

So, what if we make a.valueOf() have side effects each time it’s
called, such that the first time it returns 2 and the second time it’s
called it returns 3? Pretty easy:

var i = 2;

Number.prototype.valueOf = function() {
    return i++;
};

var a = new Number( 42 );

if (a == 2 && a == 3) {
    console.log( "Yep, this happened." );
}

Again, these are evil tricks. Don’t do them. But also don’t use them
as complaints against coercion. Potential abuses of a mechanism are
not sufficient evidence to condemn the mechanism. Just avoid these
crazy tricks, and stick only with valid and proper usage of coercion.

Falsy comparisons

The most common complaint against implicit coercion in == com‐
parisons comes from how falsy values behave surprisingly when
compared to each other.
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To illustrate, let’s look at a list of the corner cases around falsy value
comparisons, to see which ones are reasonable and which are trou‐
blesome:

"0" == null;            // false
"0" == undefined;       // false
"0" == false;           // true -- UH OH!
"0" == NaN;             // false
"0" == 0;               // true
"0" == "";              // false

false == null;          // false
false == undefined;     // false
false == NaN;           // false
false == 0;             // true -- UH OH!
false == "";            // true -- UH OH!
false == [];            // true -- UH OH!
false == {};            // false

"" == null;             // false
"" == undefined;        // false
"" == NaN;              // false
"" == 0;                // true -- UH OH!
"" == [];               // true -- UH OH!
"" == {};               // false

0 == null;              // false
0 == undefined;         // false
0 == NaN;               // false
0 == [];                // true -- UH OH!
0 == {};                // false

In this list of 24 comparisons, 17 of them are quite reasonable and
predictable. For example, we know that "" and NaN are not at all
equatable values, and indeed they don’t coerce to be loose equals,
whereas "0" and 0 are reasonably equitable and do coerce as loose
equals.

However, seven of the comparisons are marked with “UH OH!”
because as false positives, they are much more likely gotchas that
could trip you up. "" and 0 are definitely distinctly different values,
and it’s rare you’d want to treat them as equitable, so their mutual
coercion is troublesome. Note that there aren’t any false negatives
here.
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The crazy ones
We don’t have to stop there, though. We can keep looking for even
more troublesome coercions:

[] == ![];      // true

Oooo, that seems at a higher level of crazy, right!? Your brain may
likely trick you that you’re comparing a truthy to a falsy value, so the
true result is surprising, as we know a value can never be truthy and
falsy at the same time!

But that’s not what’s actually happening. Let’s break it down. What
do we know about the ! unary operator? It explicitly coerces to a
boolean using the ToBoolean rules (and it also flips the parity). So
before [] == ![] is even processed, it’s actually already translated to
[] == false. We already saw that form in our above list (false ==
[]), so its surprise result is not new to us.

How about other corner cases?

2 == [2];       // true
"" == [null];   // true

As we said earlier in our ToNumber discussion, the righthand side
[2] and [null] values will go through a ToPrimitive coercion so
they can be more readily compared to the simple primitives (2 and
"", respectively) on the lefthand side. Since the valueOf() for array
values just returns the array itself, coercion falls to stringifying the
array.

[2] will become "2", which then is ToNumber coerced to 2 for the
righthand side value in the first comparison. [null] just straight
becomes "".

So, 2 == 2 and "" == "" are completely understandable.

If your instinct is to still dislike these results, your frustration is not
actually with coercion like you probably think it is. It’s actually a
complaint against the default array values’ ToPrimitive behavior of
coercing to a string value. More likely, you’d just wish that
[2].toString() didn’t return "2", or that [null].toString()
didn’t return "".

But what exactly should these string coercions result in? I can’t
really think of any other appropriate string coercion of [2] than
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"2", except perhaps "[2]"—but that could be very strange in other
contexts!

You could rightly make the case that since String(null) becomes
"null", then String([null]) should also become "null". That’s a
reasonable assertion. So, that’s the real culprit.

Implicit coercion itself isn’t the evil here. Even an explicit coercion of
[null] to a string results in "". What’s at odds is whether it’s sensi‐
ble at all for array values to stringify to the equivalent of their con‐
tents, and exactly how that happens. So, direct your frustration at
the rules for String( [..] ), because that’s where the craziness
stems from. Perhaps there should be no stringification coercion of
arrays at all? But that would have lots of other downsides in other
parts of the language.

Another famously cited gotcha:

0 == "\n";      // true

As we discussed earlier with empty "", "\n" (or " " or any other
whitespace combination) is coerced via ToNumber, and the result is
0. What other number value would you expect whitespace to coerce
to? Does it bother you that explicit Number(" ") yields 0?

Really the only other reasonable number value that empty strings or
whitespace strings could coerce to is NaN. But would that really be
better? The comparison " " == NaN would of course fail, but it’s
unclear that we’d have really fixed any of the underlying concerns.

The chances that a real-world JS program fails because 0 == "\n"
are awfully rare, and such corner cases are easy to avoid.

Type conversions always have corner cases, in any language—noth‐
ing specific to coercion. The issues here are about second-guessing a
certain set of corner cases (and perhaps rightly so!?), but that’s not a
salient argument against the overall coercion mechanism.

Bottom line: almost any crazy coercion between normal values that
you’re likely to run into (aside from intentionally tricky valueOf()
or toString() hacks as earlier) will boil down to the short seven-
item list of gotcha coercions we’ve identified above.

To contrast against these 24 likely suspects for coercion gotchas,
consider another list like this:
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42 == "43";                         // false
"foo" == 42;                        // false
"true" == true;                     // false

42 == "42";                         // true
"foo" == [ "foo" ];                 // true

In these nonfalsy, noncorner cases (and there are literally an infinite
number of comparisons we could put on this list), the coercion
results are totally safe, reasonable, and explainable.

Sanity check
OK, we’ve definitely found some crazy stuff when we’ve looked
deeply into implicit coercion. No wonder that most developers claim
coercion is evil and should be avoided, right!?

But let’s take a step back and do a sanity check.

By way of magnitude comparison, we have a list of seven trouble‐
some gotcha coercions, but we have another list of (at least 17, but
actually infinite) coercions that are totally sane and explainable.

If you’re looking for a textbook example of “throwing the baby out
with the bathwater,” this is it: discarding the entirety of coercion (the
infinitely large list of safe and useful behaviors) because of a list of
literally just seven gotchas.

The more prudent reaction would be to ask, “How can I use the
countless good parts of coercion, but avoid the few bad parts?”

Let’s look again at the bad list:

"0" == false;           // true -- UH OH!
false == 0;             // true -- UH OH!
false == "";            // true -- UH OH!
false == [];            // true -- UH OH!
"" == 0;                // true -- UH OH!
"" == [];               // true -- UH OH!
0 == [];                // true -- UH OH!

Four of the seven items on this list involve == false comparison,
which we said earlier you should always, always avoid. That’s a
pretty easy rule to remember.

Now the list is down to three.

"" == 0;                // true -- UH OH!
"" == [];               // true -- UH OH!
0 == [];                // true -- UH OH!
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Are these reasonable coercions you’d do in a normal JavaScript pro‐
gram? Under what conditions would they really happen?

I don’t think it’s terribly likely that you’d literally use == [] in a
boolean test in your program, at least not if you know what you’re
doing. You’d probably instead be doing == "" or == 0, like:

function doSomething(a) {
    if (a == "") {
        // ..
    }
}

You’d have an oops if you accidentally called doSomething(0) or doS
omething([]). Another scenario:

function doSomething(a,b) {
    if (a == b) {
        // ..
    }
}

Again, this could break if you did something like doSomething("",
0) or doSomething([],"").

So, while the situations can exist where these coercions will bite you,
and you’ll want to be careful around them, they’re probably not
super common on the whole of your code base.

Safely using implicit coercion
The most important advice I can give you: examine your program
and reason about what values can show up on either side of an ==
comparison. To effectively avoid issues with such comparisons,
here’s some heuristic rules to follow:

• If either side of the comparison can have true or false values,
don’t ever, EVER use ==.

• If either side of the comparison can have [], "", or 0 values,
seriously consider not using ==.

In these scenarios, it’s almost certainly better to use === instead of
==, to avoid unwanted coercion. Follow those two simple rules and
pretty much all the coercion gotchas that could reasonably hurt you
will effectively be avoided.
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Being more explicit/verbose in these cases will save you from a lot of
headaches.

The question of == versus === is really appropriately framed as:
should you allow coercion for a comparison or not?

There’s lots of cases where such coercion can be helpful, allowing
you to more tersely express some comparison logic (like with null
and undefined, for example).

In the overall scheme of things, there’s relatively few cases where
implicit coercion is truly dangerous. But in those places, for safety
sake, definitely use ===.

Another place where coercion is guaranteed not
to bite you is with the typeof operator. typeof is
always going to return you one of seven strings
(see Chapter 1), and none of them are the empty
"" string. As such, there’s no case where check‐
ing the type of some value is going to run afoul
of implicit coercion. typeof x == "function" is
100% as safe and reliable as typeof x ===

"function". Literally, the spec says the algo‐
rithm will be identical in this situation. So, don’t
just blindly use === everywhere simply because
that’s what your code tools tell you to do, or
(worst of all) because you’ve been told in some
book to not think about it. You own the quality
of your code.

Is implicit coercion evil and dangerous? In a few cases, yes, but over‐
whelmingly, no.

Be a responsible and mature developer. Learn how to use the power
of coercion (both explicit and implicit) effectively and safely. And
teach those around you to do the same.

Figure 4-1 shows a handy table made by GitHub user Alex Dorey
(@dorey on GitHub) to visualize a variety of comparisons.
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Figure 4-1. Equality in JavaScript

Abstract Relational Comparison
While this part of implicit coercion often gets a lot less attention, it’s
important nonetheless to think about what happens with a < b
comparisons (similar to how we just examined a == b in depth).

The “Abstract Relational Comparison” algorithm in ES5 section
11.8.5 essentially divides itself into two parts: what to do if the com‐
parison involves both string values (second half), or anything else
(first half).

The algorithm is only defined for a < b. So, a >
b is handled as b < a.

The algorithm first calls ToPrimitive coercion on both values, and
if the return result of either call is not a string, then both values are
coerced to number values using the ToNumber operation rules, and
compared numerically.
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For example:

var a = [ 42 ];
var b = [ "43" ];

a < b;  // true
b < a;  // false

Similar caveats for -0 and NaN apply here as they
did in the == algorithm discussed earlier.

However, if both values are strings for the < comparison, simple
lexicographic (natural alphabetic) comparison on the characters is
performed:

var a = [ "42" ];
var b = [ "043" ];

a < b;  // false

a and b are not coerced to numbers, because both of them end up as
strings after the ToPrimitive coercion on the two arrays. So, "42"
is compared character by character to "043", starting with the first
characters "4" and "0", respectively. Since "0" is lexicographically
less than "4", the comparison returns false.

The exact same behavior and reasoning goes for:

var a = [ 4, 2 ];
var b = [ 0, 4, 3 ];

a < b;  // false

Here, a becomes "4,2" and b becomes "0,4,3", and those lexico‐
graphically compare identically to the previous snippet.

What about:

var a = { b: 42 };
var b = { b: 43 };

a < b;  // ??

a < b is also false, because a becomes [object Object] and b
becomes [object Object], and so clearly a is not lexicographically
less than b.
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But strangely:

var a = { b: 42 };
var b = { b: 43 };

a < b;  // false
a == b; // false
a > b;  // false

a <= b; // true
a >= b; // true

Why is a == b not true? They’re the same string value ("[object
Object]"), so it seems they should be equal, right? Nope. Recall the
previous discussion about how == works with object references.

But then how are a <= b and a >= b resulting in true, if a < b and
a == b and a > b are all false?

Because the spec says for a <= b, it will actually evaluate b < a first,
and then negate that result. Since b < a is also false, the result of a
<= b is true.

That’s probably awfully contrary to how you might have explained
what <= does up to now, which would likely have been the literal
“less than or equal to.” JS more accurately considers <= as “not
greater than” (!(a > b), which JS treats as !(b < a)). Moreover, a
>= b is explained by first considering it as b <= a, and then apply‐
ing the same reasoning.

Unfortunately, there is no “strict relational comparison” as there is
for equality. In other words, there’s no way to prevent implicit coer‐
cion from occurring with relational comparisons like a < b, other
than to ensure that a and b are of the same type explicitly before
making the comparison.

Use the same reasoning from our earlier == versus === sanity check
discussion. If coercion is helpful and reasonably safe, like in a 42 <
"43" comparison, use it. On the other hand, if you need to be safe
about a relational comparison, explicitly coerce the values first,
before using < (or its counterparts):

var a = [ 42 ];
var b = "043";

a < b;                      // false -- string comparison!
Number( a ) < Number( b );  // true -- number comparison!
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Review
In this chapter, we turned our attention to how JavaScript type con‐
versions happen, called coercion, which can be characterized as
either explicit or implicit.

Coercion gets a bad rap, but it’s actually quite useful in many cases.
An important task for the responsible JS developer is to take the
time to learn all the ins and outs of coercion to decide which parts
will help improve their code, and which parts they really should
avoid.

Explicit coercion is code where it is obvious that the intent is to con‐
vert a value from one type to another. The benefit is improvement in
readability and maintainability of code by reducing confusion.

Implicit coercion is coercion that is “hidden” as a side effect of some
other operation, where it’s not as obvious that the type conversion
will occur. While it may seem that implicit coercion is the opposite
of explicit and is thus bad (and indeed, many think so!), actually
implicit coercion is also about improving the readability of code.

Especially for the implicit type, coercion must be used responsibly
and consciously. Know why you’re writing the code you’re writing,
and how it works. Strive to write code that others will easily be able
to learn from and understand as well.
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CHAPTER 5

Grammar

The last major topic we want to tackle is how JavaScript’s language
syntax works (aka its grammar). You may think you know how to
write JS, but there’s an awful lot of nuance to various parts of the
language grammar that lead to confusion and misconception, so we
want to dive into those parts and clear some things up.

The term “grammar” may be a little less familiar
to readers than the term “syntax.” In many ways,
they are similar terms, describing the rules for
how the language works. There are nuanced dif‐
ferences, but they mostly don’t matter for our
discussion here. The grammar for JavaScript is a
structured way to describe how the syntax
(operators, keywords, etc.) fits together into
well-formed, valid programs. In other words,
discussing syntax without grammar would leave
out a lot of the important details. So our focus
here in this chapter is most accurately described
as grammar, even though the raw syntax of the
language is what developers directly interact
with.

Statements & Expressions
It’s fairly common for developers to assume that the term “state‐
ment” and “expression” are roughly equivalent. But here we need to
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distinguish between the two, because there are some very important
differences in our JS programs.

To draw the distinction, let’s borrow from terminology you may be
more familiar with: the English language.

A “sentence” is one complete formation of words that expresses a
thought. It’s comprised of one or more “phrases,” each of which can
be connected with punctuation marks or conjunctions (“and,” “or,”
etc.). A phrase can itself be made up of smaller phrases. Some
phrases are incomplete and don’t accomplish much by themselves,
while other phrases can stand on their own. These rules are collec‐
tively called the grammar of the English language.

And so it goes with JavaScript grammar. Statements are sentences,
expressions are phrases, and operators are conjunctions/punctua‐
tion.

Every expression in JS can be evaluated down to a single, specific
value result. For example:

var a = 3 * 6;
var b = a;
b;

In this snippet, 3 * 6 is an expression (evaluates to the value 18).
But a on the second line is also an expression, as is b on the third
line. The a and b expressions both evaluate to the values stored in
those variables at that moment, which also happens to be 18.

Moreover, each of the three lines is a statement containing expres‐
sions. var a = 3 * 6 and var b = a are called “declaration state‐
ments” because they each declare a variable (and optionally assign a
value to it). The a = 3 * 6 and b = a assignments (minus the vars)
are called assignment expressions.

The third line contains just the expression b, but it’s also a statement
all by itself (though not a terribly interesting one!). As such, this is
generally referred to as an “expression statement.”

Statement Completion Values
It’s a fairly little known fact that statements all have completion val‐
ues (even if that value is just undefined).
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How would you even go about seeing the completion value of a
statement?

The most obvious answer is to type the statement into your brows‐
er’s developer console, because when you execute it, the console by
default reports the completion value of the most recent statement it
executed.

Let’s consider var b = a. What’s the completion value of that state‐
ment?

The b = a assignment expression results in the value that was
assigned (18 above), but the var statement itself results in unde
fined. Why? Because var statements are defined that way in the
spec. If you put var a = 42; into your console, you’ll see undefined
reported back instead of 42.

Technically, it’s a little more complex than that.
In the ES5 spec, section 12.2 “Variable State‐
ment,” the VariableDeclaration algorithm
actually does return a value (a string containing
the name of the variable declared—weird,
huh!?), but that value is basically swallowed up
(except for use by the for..in loop) by the Vari
ableStatement algorithm, which forces an
empty (aka undefined) completion value.

In fact, if you’ve done much code experimenting in your console (or
in a JavaScript environment REPL—read/evaluate/print/loop tool),
you’ve probably seen undefined reported after many different stat‐
ments, and perhaps never realized why or what that was. Put simply,
the console is reporting the statement’s completion value.

But what the console prints out for the completion value isn’t some‐
thing we can use inside our program. So how can we capture the
completion value?

That’s a much more complicated task. Before we explain how, let’s
explore why would you want to do that.

We need to consider other types of statement completion values. For
example, any regular { .. } block has a completion value of the
completion value of its last contained statement/expression.

Consider:
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var b;

if (true) {
    b = 4 + 38;
}

If you typed that into your console/REPL, you’d probably see 42
reported, since 42 is the completion value of the if block, which
took on the completion value of its last expression statement b = 4
+ 38.

In other words, the completion value of a block is like an implicit
return of the last statement value in the block.

This is conceptually familiar in languages like
CoffeeScript, which have implicit return values
from functions that are the same as the last
statement value in the function.

But there’s an obvious problem. This kind of code doesn’t work:

var a, b;

a = if (true) {
    b = 4 + 38;
};

We can’t capture the completion value of a statement and assign it
into another variable in any easy syntactic/grammatical way (at least
not yet!).

So, what can we do?

For demo purposes only—don’t actually do the
following in your real code!

We could use the much maligned eval(..) (sometimes pronounced
“evil”) function to capture this completion value:

var a, b;

a = eval( "if (true) { b = 4 + 38; }" );

a;  // 42
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Yeeeaaahhhh. That’s terribly ugly. But it works! And it illustrates the
point that statement completion values are a real thing that can be
captured not just in our console but in our programs.

There’s a proposal for ES7 called the “do expression.” Here’s how it
might work:

var a, b;

a = do {
    if (true) {
        b = 4 + 38;
    }
};

a;  // 42

The do { .. } expression executes a block (with one or many state‐
ments in it), and the final statement completion value inside the
block becomes the completion value of the do expression, which can
then be assigned to a as shown.

The general idea is to be able to treat statements as expressions—
they can show up inside other statements—without needing to wrap
them in an inline function expression and perform an explicit
return ...

For now, statement completion values are not much more than
trivia. But they’re probably going to take on more significance as JS
evolves, and hopefully do { .. } expressions will reduce the temp‐
tation to use stuff like eval(..).

Repeating my earlier admonition: avoid
eval(..). Seriously. See the Scope & Closures
title in this series for more explanation.

Expression Side Effects
Most expressions don’t have side effects. For example:

var a = 2;
var b = a + 3;
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The expression a + 3 did not itself have a side effect, like for
instance changing a. It had a result, which is 5, and that result was
assigned to b in the statement b = a + 3.

The most common example of an expression with (possible) side
effects is a function call expression:

function foo() {
    a = a + 1;
}

var a = 1;
foo();      // result: `undefined`, side effect: changed `a`

There are other side-effecting expressions, though. For example:

var a = 42;
var b = a++;

The expression a++ has two separate behaviors. First, it returns the
current value of a, which is 42 (which then gets assigned to b). But
next, it changes the value of a itself, incrementing it by one:

var a = 42;
var b = a++;

a;  // 43
b;  // 42

Many developers would mistakenly believe that b has value 43 just
like a does. But the confusion comes from not fully considering the
when of the side effects of the ++ operator.

The ++ increment operator and the -- decrement operator are both
unary operators (see Chapter 4), which can be used in either a post‐
fix (“after”) position or prefix (“before”) position:

var a = 42;

a++;    // 42
a;      // 43

++a;    // 44
a;      // 44

When ++ is used in the prefix position as ++a, its side effect (incre‐
menting a) happens before the value is returned from the expression,
rather than after as with a++.
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Would you think ++a++ was legal syntax? If you
try it, you’ll get a ReferenceError error, but
why? Because side-effecting operators require a
variable reference to target their side effects to.
For ++a++, the a++ part is evaluated first
(because of operator precedence—see below),
which gives back the value of a before the incre‐
ment. But then it tries to evaluate ++42, which (if
you try it) gives the same ReferenceError error,
since ++ can’t have a side effect directly on a
value like 42.

It is sometimes mistakenly thought that you can encapsulate the
after side effect of a++ by wrapping it in a ( ) pair, like:

var a = 42;
var b = (a++);

a;  // 43
b;  // 42

Unfortunately, ( ) itself doesn’t define a new wrapped expression
that would be evaluated after the after side effect of the a++ expres‐
sion, as we might have hoped. In fact, even if it did, a++ returns 42
first, and unless you have another expression that reevaluates a after
the side effect of ++, you’re not going to get 43 from that expression,
so b will not be assigned 43.

There’s an option, though: the , statement-series comma operator.
This operator allows you to string together multiple standalone
expression statements into a single statement:

var a = 42, b;
b = ( a++, a );

a;  // 43
b;  // 43

The ( .. ) around a++, a is required here. The
reason is operator precedence, which we’ll cover
later in this chapter.
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The expression a++, a means that the second a statement expres‐
sion gets evaluated after the after side effects of the a++ expression,
which means it returns the 43 value for assignment to b.

Another example of a side-effecting operator is delete. As we
showed in Chapter 2, delete is used to remove a property from an
object or a slot from an array. But it’s usually just called as a stand‐
alone statement:

var obj = {
    a: 42
};

obj.a;          // 42
delete obj.a;   // true
obj.a;          // undefined

The result value of the delete operator is true if the requested
operation is valid/allowable, or false otherwise. But the side effect
of the operator is that it removes the property (or array slot).

What do we mean by valid/allowable? Nonexis‐
tent properties, or properties that exist and are
configurable (see Chapter 3 of the this & Object
Prototypes title in this series) will return true
from the delete operator. Otherwise, the result
will be false or an error.

One last example of a side-effecting operator, which may at once be
both obvious and nonobvious, is the = assignment operator.

Consider:

var a;

a = 42;     // 42
a;          // 42

It may not seem like = in a = 42 is a side-effecting operator for the
expression. But if we examine the result value of the a = 42 state‐
ment, it’s the value that was just assigned (42), so the assignment of
that same value into a is essentially a side effect.
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The same reasoning about side effects goes for
the compound-assignment operators like +=, -=,
etc. For example, a = b += 2 is processed first
as b += 2 (which is b = b + 2), and the result
of that = assignment is then assigned to a.

This behavior that an assignment expression (or statement) results
in the assigned value is primarily useful for chained assignments,
such as:

var a, b, c;

a = b = c = 42;

Here, c = 42 is evaluated to 42 (with the side effect of assigning 42
to c), then b = 42 is evaluated to 42 (with the side effect of assigning
42 to b), and finally a = 42 is evaluated (with the side effect of
assigning 42 to a).

A common mistake developers make with
chained assignments is like var a = b = 42.
While this looks like the same thing, it’s not. If
that statement were to happen without there
also being a separate var b (somewhere in the
scope) to formally declare b, then var a = b =
42 would not declare b directly. Depending on
strict mode, that would either throw an error
or create an accidental global (see the Scope &
Closures title in this series).

Another scenario to consider:

function vowels(str) {
    var matches;

    if (str) {
        // pull out all the vowels
        matches = str.match( /[aeiou]/g );

        if (matches) {
            return matches;
        }
    }
}

vowels( "Hello World" ); // ["e","o","o"]
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This works, and many developers prefer such. But using an idiom
where we take advantage of the assignment side effect, we can sim‐
plify by combining the two if statements into one:

function vowels(str) {
    var matches;

    // pull out all the vowels
    if (str && (matches = str.match( /[aeiou]/g ))) {
        return matches;
    }
}

vowels( "Hello World" ); // ["e","o","o"]

The ( .. ) around matches = str.match.. is
required. The reason is operator precedence,
which we’ll cover in “Operator Precedence” on
page 137.

I prefer this shorter style, as I think it makes it clearer that the two
conditionals are in fact related rather than separate. But as with
most stylistic choices in JS, it’s purely opinion which one is better.

Contextual Rules
There are quite a few places in the JavaScript grammar rules where
the same syntax means different things depending on where/how it’s
used. This kind of thing can, in isolation, cause quite a bit of confu‐
sion.

We won’t exhaustively list all such cases here, but just call out a few
of the common ones.

Curly braces
There’s two main places (and more coming as JS evolves!) that a pair
of curly braces { .. } will show up in your code. Let’s take a look at
each of them.

Object literals

First, as an object literal:

// assume there's a `bar()` function defined
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var a = {
    foo: bar()
};

How do we know this is an object literal? Because the { .. } pair
is a value that’s getting assigned to a.

The a reference is called an “l-value” (aka left-
hand value) since it’s the target of an assign‐
ment. The { .. } pair is an “r-value” (aka right-
hand value) since it’s used just as a value (in this
case as the source of an assignment).

Labels

What happens if we remove the var a = part of the above snippet?

// assume there's a `bar()` function defined

{
    foo: bar()
}

A lot of developers assume that the { .. } pair is just a standalone
object literal that doesn’t get assigned anywhere. But it’s actually
entirely different.

Here, { .. } is just a regular code block. It’s not very idiomatic in
JavaScript (much more so in other languages!) to have a standalone
{ .. } block like that, but it’s perfectly valid JS grammar. It can be
especially helpful when combined with let block-scoping declara‐
tions (see the Scope & Closures title in this series).

The { .. } code block here is functionally pretty much identical to
the code block being attached to some statement, like a for/while
loop, if conditional, etc.

But if it’s a normal block of code, what’s that bizarre looking foo:
bar() syntax, and how is that legal?

It’s because of a little known (and, frankly, discouraged) feature in
JavaScript called “labeled statements.” foo is a label for the statement
bar() (that has omitted its trailing ;—see “Automatic Semicolons”
on page 146 later in this chapter). But what’s the point of a labeled
statement?
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If JavaScript had a goto statement, you’d theoretically be able to say
goto foo and have execution jump to that location in code. gotos
are usually considered terrible coding idioms as they make code
much harder to understand (aka “spaghetti code”), so it’s a very good
thing that JavaScript doesn’t have a general goto.

However, JS does support a limited, special form of goto: labeled
jumps. Both the continue and break statements can optionally
accept a specified label, in which case the program flow “jumps”
kind of like a goto. Consider:

// `foo` labeled-loop
foo: for (var i=0; i<4; i++) {
    for (var j=0; j<4; j++) {
        // whenever the loops meet, continue outer loop
        if (j == i) {
            // jump to the next iteration of
            // the `foo` labeled-loop
            continue foo;
        }

        // skip odd multiples
        if ((j * i) % 2 == 1) {
            // normal (nonlabeled) `continue` of inner loop
            continue;
        }

        console.log( i, j );
    }
}
// 1 0
// 2 0
// 2 1
// 3 0
// 3 2

continue foo does not mean “go to the foo
labeled position to continue,” but rather, “con‐
tinue the loop that is labeled foo with its next
iteration.” So, it’s not really an arbitrary goto.

As you can see, we skipped over the odd-multiple 3 1 iteration, but
the labeled-loop jump also skipped iterations 1 1 and 2 2.

Perhaps a slightly more useful form of the labeled-loop jump is with
break __ from inside an inner loop where you want to break out of
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the outer loop. Without a labeled break, this same logic could some‐
times be rather awkward to write:

// `foo` labeled-loop
foo: for (var i=0; i<4; i++) {
    for (var j=0; j<4; j++) {
        if ((i * j) >= 3) {
            console.log( "stopping!", i, j );
            break foo;
        }

        console.log( i, j );
    }
}
// 0 0
// 0 1
// 0 2
// 0 3
// 1 0
// 1 1
// 1 2
// stopping! 1 3

break foo does not mean “go to the foo labeled
position to continue,” but rather, “break out of
the loop/block that is labeled foo and continue
after it.” Not exactly a goto in the traditional
sense, huh?

The nonlabeled break alternative to the above would probably need
to involve one or more functions, shared scope variable access, etc.
It would quite likely be more confusing than labeled break, so here
using a labeled break is perhaps the better option.

A label can apply to a nonloop block, but only break can reference
such a nonloop label. You can do a labeled break ___ out of any
labeled block, but you cannot continue ___ a nonloop label, nor
can you do a nonlabeled break out of a block:

// `bar` labeled-block
function foo() {
 bar: {
  console.log( "Hello" );
  break bar;
  console.log( "never runs" );
 }
 console.log( "World" );
}
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foo();
// Hello
// World

Labeled loops/blocks are extremely uncommon, and often frowned
upon. It’s best to avoid them if possible; for example, by using func‐
tion calls instead of the loop jumps. But there are perhaps some
limited cases where they might be useful. If you’re going to use a
labeled jump, make sure to document what you’re doing with plenty
of comments!

It’s a very common belief that JSON is a proper subset of JS, so a
string of JSON (like {"a":42}—notice the quotes around the prop‐
erty name as JSON requires!) is thought to be a valid JavaScript pro‐
gram. Not true! Try putting {"a":42} into your JS console, and
you’ll get an error.

That’s because statement labels cannot have quotes around them, so
"a" is not a valid label, and thus : can’t come right after it.

So, JSON is truly a subset of JS syntax, but JSON is not valid JS
grammar by itself.

One extremely common misconception along these lines is that if
you were to load a JS file into a <script src=..> tag that only has
JSON content in it (like from an API call), the data would be read as
valid JavaScript but just be inaccessible to the program. JSON-P (the
practice of wrapping the JSON data in a function call, like
foo({"a":42})) is usually said to solve this inaccessibility by send‐
ing the value to one of your program’s functions.

Not true! The totally valid JSON value {"a":42} by itself would
actually throw a JS error because it’d be interpreted as a statement
block with an invalid label. But foo({"a":42}) is valid JS because in
it, {"a":42} is an object literal value being passed to foo(..). So,
properly said, JSON-P makes JSON into valid JS grammar!

Blocks
Another commonly cited JS gotcha (related to coercion—see Chap‐
ter 4) is:

[] + {}; // "[object Object]"
{} + []; // 0
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This seems to imply the + operator gives different results depending
on whether the first operand is the [] or the {}. But that actually has
nothing to do with it!

On the first line, {} appears in the + operator’s expression, and is
therefore interpreted as an actual value (an empty object). Chap‐
ter 4 explained that [] is coerced to "" and thus {} is coerced to a
string value as well: "[object Object]".

But on the second line, {} is interpreted as a standalone {} empty
block (which does nothing). Blocks don’t need semicolons to termi‐
nate them, so the lack of one here isn’t a problem. Finally, + [] is an
expression that explicitly coerces (see Chapter 4) the [] to a number,
which is the 0 value.

Object destructuring

Starting with ES6, another place that you’ll see { .. } pairs showing
up is with “destructuring assignments” (see the ES6 & Beyond title in
this series for more info), specifically object destructuring. Con‐
sider:

function getData() {
    // ..
    return {
        a: 42,
        b: "foo"
    };
}

var { a, b } = getData();

console.log( a, b ); // 42 "foo"

As you can probably tell, var { a , b } = .. is a form of ES6
destructuring assignment, which is rougly equivalent to:

var res = getData();
var a = res.a;
var b = res.b;

{ a, b } is actually ES6 destructuring short‐
hand for { a: a, b: b }, so either will work,
but it’s expected that the shorter { a, b } will
be become the preferred form.
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Object destructuring with a { .. } pair can also be used for named
function arguments, which is sugar for this same sort of implicit
object property assignment:

function foo({ a, b, c }) {
    // no need for:
    // var a = obj.a, b = obj.b, c = obj.c
    console.log( a, b, c );
}

foo( {
    c: [1,2,3],
    a: 42,
    b: "foo"
} );    // 42 "foo" [1, 2, 3]

So, the context we use { .. } pairs in entirely determines what they
mean, which illustrates the difference between syntax and grammar.
It’s very important to understand these nuances to avoid unexpected
interpretations by the JS engine.

else if and optional blocks

It’s a common misconception that JavaScript has an else if clause,
because you can do:

if (a) {
    // ..
}
else if (b) {
    // ..
}
else {
    // ..
}

But there’s a hidden characteristic of the JS grammar here: there is
no else if. But if and else statements are allowed to omit the { }
around their attached block if they only contain a single statement.
You’ve seen this many times before, undoubtedly:

if (a) doSomething( a );

Many JS style guides will insist that you always use { } around a sin‐
gle statement block, like:

if (a) { doSomething( a ); }

However, the exact same grammar rule applies to the else clause, so
the else if form you’ve likely always coded is actually parsed as:
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if (a) {
    // ..
}
else {
    if (b) {
        // ..
    }
    else {
        // ..
    }
}

The if (b) { .. } else { .. } is a single statement that follows
the else, so you can either put the surrounding { } in or not. In
other words, when you use else if, you’re technically breaking that
common style guide rule and just defining your else with a single
if statement.

Of course, the else if idiom is extremely common and results in
one less level of indentation, so it’s attractive. Whichever way you do
it, just call out explicitly in your own style guide/rules and don’t
assume things like else if are direct grammar rules.

Operator Precedence
As we covered in Chapter 4, JavaScript’s version of && and || are
interesting in that they select and return one of their operands,
rather than just resulting in true or false. That’s easy to reason
about if there are only two operands and one operator:

var a = 42;
var b = "foo";

a && b; // "foo"
a || b; // 42

But what about when there’s two operators involved, and three
operands?

var a = 42;
var b = "foo";
var c = [1,2,3];

a && b || c; // ???
a || b && c; // ???
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To understand what those expressions result in, we’re going to need
to understand what rules govern how the operators are processed
when there’s more than one present in an expression.

These rules are called “operator precedence.”

I bet most readers feel they have a decent grasp on operator prece‐
dence. But as with everything else we’ve covered in this series, we’re
going to poke and prod at that understanding to see just how solid it
really is, and hopefully learn a few new things along the way.

Recall the example from above:

var a = 42, b;
b = ( a++, a );

a;  // 43
b;  // 43

But what would happen if we remove the ( )?

var a = 42, b;
b = a++, a;

a;  // 43
b;  // 42

Wait! Why did that change the value assigned to b?

Because the , operator has a lower precedence than the = operator.
So, b = a++, a is interpreted as (b = a++), a. Because (as we
explained earlier) a++ has after side effects, the assigned value to b is
the value 42 before the ++ changes a.

This is just a simple matter of needing to understand operator
precedence. If you’re going to use , as a statement-series operator,
it’s important to know that it actually has the lowest precedence.
Every other operator will more tightly bind than , will.

Now, recall this example from above:

if (str && (matches = str.match( /[aeiou]/g ))) {
    // ..
}

We said the ( ) around the assignment is required, but why?
Because && has higher precedence than =, so without the ( ) to force
the binding, the expression would instead be treated as (str &&
matches) = str.match... But this would be an error, because the
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result of (str && matches) isn’t going to be a variable, but instead a
value (in this case undefined), and so it can’t be the lefthand side of
an = assignment!

OK, so you probably think you’ve got this operator precedence thing
down.

Let’s move on to a more complex example (which we’ll carry
throughout the next several sections of this chapter) to really test
your understanding:

var a = 42;
var b = "foo";
var c = false;

var d = a && b || c ? c || b ? a : c && b : a;

d;      // ??

OK, evil, I admit it. No one would write a string of expressions like
that, right? Probably not, but we’re going to use it to examine various
issues around chaining multiple operators together, which is a very
common task.

The result above is 42. But that’s not nearly as interesting as how we
can figure out that answer without just plugging it into a JS program
to let JavaScript sort it out.

Let’s dig in.

The first question—it may not have even occurred to you to ask—is,
does the first part (a && b || c) behave like (a && b) || c or like
a && (b || c)? Do you know for certain? Can you even convince
yourself they are actually different?

(false && true) || true;    // true
false && (true || true);    // false

So, there’s proof they’re different. But still, how does false && true
|| true behave? The answer:

false && true || true;      // true
(false && true) || true;    // true

So we have our answer. The && operator is evaluated first and the ||
operator is evaluated second.

But is that just because of left-to-right processing? Let’s reverse the
order of operators:
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true || false && false;     // true

(true || false) && false;   // false--nope
true || (false && false);   // true--winner, winner!

Now we’ve proved that && is evaluated first and then ||, and in this
case that was actually counter to generally expected left-to-right pro‐
cessing.

So what caused the behavior? Operator precedence.

Every language defines its own operator precedence list. It’s dismay‐
ing, though, just how uncommon it is that JS developers have read
JS’s list.

If you knew it well, the above examples wouldn’t have tripped you
up in the slightest, because you’d already know that && is more prec‐
edent than ||. But I bet a fair amount of readers had to think about
it a little bit.

Unfortunately, the JS spec doesn’t really have its
operator precedence list in a convenient, single
location. You have to parse through and under‐
stand all the grammar rules. So we’ll try to lay
out the more common and useful bits here in a
more convenient format. For a complete list of
operator precedence, see “Operator Precedence”
on the MDN site.

Short Circuited
In Chapter 4, we mentioned the “short circuiting” nature of opera‐
tors like && and || in a sidenote. Let’s revisit that in more detail now.

For both && and || operators, the righthand operand will not be
evaluated if the lefthand operand is sufficient to determine the out‐
come of the operation. Hence, the name “short circuited” (in that if
possible, it will take an early shortcut out).

For example, with a && b, b is not evaluated if a is falsy, because the
result of the && operand is already certain, so there’s no point in
bothering to check b. Likewise, with a || b, if a is truthy, the result
of the operand is already certain, so there’s no reason to check b.

This short circuiting can be very helpful and is commonly used:
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function doSomething(opts) {
    if (opts && opts.cool) {
        // ..
    }
}

The opts part of the opts && opts.cool test acts as sort of a guard,
because if opts is unset (or is otherwise not an object), the expres‐
sion opts.cool would throw an error. The opts test failing plus the
short circuiting means that opts.cool won’t even be evaluated, thus
no error!

Similarly, you can use || short circuiting:

function doSomething(opts) {
    if (opts.cache || primeCache()) {
        // ..
    }
}

Here, we’re checking for opts.cache first, and if it’s present, we
don’t call the primeCache() function, thus avoiding potentially
unnecessary work.

Tighter Binding
But let’s turn our attention back to that earlier complex statement
example with all the chained operators, specifically the ? : ternary
operator parts. Does the ? : operator have more or less precedence
than the && and || operators?

a && b || c ? c || b ? a : c && b : a

Is that more like this?

a && b || (c ? c || (b ? a : c) && b : a)

Or more like this?

(a && b || c) ? (c || b) ? a : (c && b) : a

The answer is the second one. But why?

Because && is more precedent than ||, and || is more precedent
than ? :.

So, the expression (a && b || c) is evaluated first before the ? : it
participates in. Another way this is commonly explained is that &&
and || “bind more tightly” than ? :. If the reverse was true, then
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c ? c... would bind more tightly, and it would behave (as the first
choice) like a && b || (c ? c..).

Associativity
So, the && and || operators bind first, then the ? : operator. But
what about multiple operators of the same precedence? Do they
always process left-to-right or right-to-left?

In general, operators are either left-associative or right-associative,
referring to whether grouping happens from the left or from the
right.

It’s important to note that associativity is not the same thing as left-
to-right or right-to-left processing.

But why does it matter whether processing is left-to-right or right-
to-left? Because expressions can have side effects, like for instance
with function calls:

var a = foo() && bar();

Here, foo() is evaluated first, and then possibly bar() depending on
the result of the foo() expression. That definitely could result in dif‐
ferent program behavior than if bar() was called before foo().

But this behavior is just left-to-right processing (the default behavior
in JavaScript!)—it has nothing to do with the associativity of &&. In
that example, since there’s only one && and thus no relevant group‐
ing here, associativity doesn’t even come into play.

But with an expression like a && b && c, grouping will happen
implicitly, meaning that either a && b or b && c will be evaluated
first.

Technically, a && b && c will be handled as (a && b) && c,
because && is left-associative (so is ||, by the way). However, the
right-associative alternative a && (b && c) behaves observably the
same way. For the same values, the same expressions are evaluated
in the same order.
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If hypothetically && was right-associative, it
would be processed the same as if you manually
used ( ) to create a grouping like a && (b &&
c). But that still doesn’t mean that c would be
processed before b. Right-associativity does not
mean right-to-left evaluation, it means right-to-
left grouping. Either way, regardless of the
grouping/associativity, the strict ordering of
evaluation will be a, then b, then c (aka left-to-
right).

So it doesn’t really matter that much that && and || are left-
associative, other than to be accurate in how we discuss their defini‐
tions.

But that’s not always the case. Some operators would behave very
differently depending on left-associativity versus right-associativity.

Consider the ? : (“ternary” or “conditional”) operator:

a ? b : c ? d : e;

? : is right-associative, so which grouping represents how it will be
processed?

• a ? b : (c ? d : e)

• (a ? b : c) ? d : e

The answer is a ? b : (c ? d : e). Unlike with && and || above,
the right-associativity here actually matters, as (a ? b : c) ? d :
e will behave differently for some (but not all!) combinations of val‐
ues.

One such example:

true ? false : true ? true : true;      // false

true ? false : (true ? true : true);    // false
(true ? false : true) ? true : true;    // true

Even more nuanced differences lurk with other value combinations,
even if the end result is the same. Consider:

true ? false : true ? true : false;     // false

true ? false : (true ? true : false);   // false
(true ? false : true) ? true : false;   // false
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From that scenario, the same end result implies that the grouping is
moot. However:

var a = true, b = false, c = true, d = true, e = false;

a ? b : (c ? d : e); // false, evaluates only `a` and `b`
(a ? b : c) ? d : e; // false, evaluates `a`, `b` AND `e`

So, we’ve clearly proved that ? : is right-associative, and that it
actually matters with respect to how the operator behaves if chained
with itself.

Another example of right-associativity (grouping) is the = operator.
Recall the chained assignment example from earlier in the chapter:

var a, b, c;

a = b = c = 42;

We asserted earlier that a = b = c = 42 is processed by first evalu‐
ating the c = 42 assignment, then b = .., and finally a = ... Why?
Because of the right-associativity, which actually treats the statement
like this: a = (b = (c = 42)).

Remember our running complex assignment expression example
from earlier in the chapter?

var a = 42;
var b = "foo";
var c = false;

var d = a && b || c ? c || b ? a : c && b : a;

d;      // 42

Armed with our knowledge of precedence and associativity, we
should now be able to break the code down into its grouping behav‐
ior like this:

((a && b) || c) ? ((c || b) ? a : (c && b)) : a

Or, to present it indented if that’s easier to understand:

(
  (a && b)
    ||
  c
)
  ?
(
  (c || b)
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    ?
  a
    :
  (c && b)
)
  :
a

Let’s solve it now:

1. (a && b) is "foo".
2. "foo" || c is "foo".
3. For the first ? test, "foo" is truthy.
4. (c || b) is "foo".
5. For the second ? test, "foo" is truthy.
6. a is 42.

That’s it, we’re done! The answer is 42, just as we saw earlier. That
actually wasn’t so hard, was it?

Disambiguation
You should now have a much better grasp on operator precedence
(and associativity) and feel much more comfortable understanding
how code with multiple chained operators will behave.

But an important question remains: should we all write code under‐
standing and perfectly relying on all the rules of operator prece‐
dence/associativity? Should we only use ( ) manual grouping when
it’s necessary to force a different processing binding/order?

Or, on the other hand, should we recognize that even though such
rules are in fact learnable, there’s enough gotchas to warrant ignor‐
ing automatic precedence/associativity? If so, should we thus always
use ( ) manual grouping and remove all reliance on these auto‐
matic behaviors?

This debate is highly subjective, and heavily symmetrical to the
debate in Chapter 4 over implicit coercion. Most developers feel the
same way about both debates: either they accept both behaviors and
code expecting them, or they discard both behaviors and stick to
manual/explicit idioms.
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Of course, I cannot answer this question definitively for the reader
here anymore than I could in Chapter 4. But I’ve presented you the
pros and cons, and hopefully encouraged enough deeper under‐
standing that you can make informed rather than hype-driven deci‐
sions.

In my opinion, there’s an important middle ground. We should mix
both operator precedence/associativity and ( ) manual grouping
into our programs—I argue the same way in Chapter 4 for healthy/
safe usage of implicit coercion, but certainly don’t endorse it exclu‐
sively without bounds.

For example, if (a && b && c) .. is perfectly OK to me, and I
wouldn’t do if ((a && b) && c) .. just to explicitly call out the
associativity, because I think it’s overly verbose.

On the other hand, if I needed to chain two ? : conditional opera‐
tors together, I’d certainly use ( ) manual grouping to make it abso‐
lutely clear what my intended logic is.

Thus, my advice here is similar to that of Chapter 4: use operator
precedence/associativity where it leads to shorter and cleaner code,
but use ( ) manual grouping in places where it helps create clarity
and reduce confusion.

Automatic Semicolons
ASI (Automatic Semicolon Insertion) is when JavaScript assumes a ;
in certain places in your JS program even if you didn’t put one there.

Why would it do that? Because if you omit even a single required ;
your program would fail. Not very forgiving. ASI allows JS to be tol‐
erant of certain places where ; isn’t commonly thought to be neces‐
sary.

It’s important to note that ASI will only take effect in the presence of
a newline (aka line break). Semicolons are not inserted in the mid‐
dle of a line.

Basically, if the JS parser parses a line where a parser error would
occur (a missing expected ;), and it can reasonably insert one, it
does so. What’s reasonable for insertion? Only if there’s nothing but
whitespace and/or comments between the end of some statement
and that line’s newline/line break.
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Consider:

var a = 42, b
c;

Should JS treat the c on the next line as part of the var statement? It
certainly would if a , had come anywhere (even another line)
between b and c. But since there isn’t one, JS assumes instead that
there’s an implied ; (at the newline) after b. Thus, c; is left as a
standalone expression statement.

Similarly:

var a = 42, b = "foo";

a
b   // "foo"

That’s still a valid program without error, because expression state‐
ments also accept ASI.

There’s certain places where ASI is helpful, like for instance:

var a = 42;

do {
    // ..
} while (a) // <-- ; expected here!
a;

The grammar requires a ; after a do..while loop, but not after
while or for loops. But most developers don’t remember that! So,
ASI helpfully steps in and inserts one.

As we said earlier in the chapter, statement blocks do not require ;
termination, so ASI isn’t necessary:

var a = 42;

while (a) {
    // ..
} // <-- no ; expected here
a;

The other major case where ASI kicks in is with the break, con
tinue, return, and (ES6) yield keywords:

function foo(a) {
    if (!a) return
    a *= 2;
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    // ..
}

The return statement doesn’t carry across the newline to the a *= 2
expression, as ASI assumes the ; terminating the return statement.
Of course, return statements can easily break across multiple lines,
just not when there’s nothing after return but the newline/line
break:

function foo(a) {
    return (
        a * 2 + 3 / 12
    );
}

Identical reasoning applies to break, continue, and yield.

Error Correction
One of the most hotly contested religious wars in the JS community
(besides tabs versus spaces) is whether to rely heavily/exclusively on
ASI or not.

Most, but not all, semicolons are optional, but the two ;s in the for
( .. ) .. loop header are required.

On the pro side of this debate, many developers believe that ASI is a
useful mechanism that allows them to write more terse (and more
“beautiful”) code by omitting all but the strictly required ;s (which
are very few). It is often asserted that ASI makes many ;s optional,
so a correctly written program without them is no different than a
correctly written program with them.

On the con side of the debate, many other developers will assert that
there are too many places that can be accidental gotchas, especially
for newer, less experienced developers, where unintended ;s being
magically inserted change the meaning. Similarly, some developers
will argue that if they omit a semicolon, it’s a flat-out mistake, and
they want their tools (linters, etc.) to catch it before the JS engine
corrects the mistake under the covers.

Let me just share my perspective. A strict reading of the spec implies
that ASI is an “error correction” routine. What kind of error, you
may ask? Specifically, a parser error. In other words, in an attempt to
have the parser fail less, ASI lets it be more tolerant.
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But tolerant of what? In my view, the only way a parser error occurs
is if it’s given an incorrect/errored program to parse. So, while ASI is
strictly correcting parser errors, the only way it can get such errors is
if there were first program authoring errors—omitting semicolons
where the grammar rules require them.

So, to put it more bluntly, when I hear someone claim that they want
to omit “optional semicolons,” my brain translates that claim to “I
want to write the most parser-broken program I can that will still
work.”

I find that to be a ludicrous position to take and the arguments of
saving keystrokes and having more “beautiful code” to be weak at
best.

Furthermore, I don’t agree that this is the same thing as the spaces
versus tabs debate—that it’s purely cosmetic—but rather I believe it’s
a fundamental question of writing code that adheres to grammar
requirements versus code that relies on grammar exceptions to just
barely skate through.

Another way of looking at it is that relying on ASI is essentially con‐
sidering newlines to be significant “whitespace.” Other languages
like Python have true significant whitespace. But is it really appro‐
priate to think of JavaScript as having significant newlines as it
stands today?

My take: use semicolons wherever you know they are “required,”
and limit your assumptions about ASI to a minimum.

But don’t just take my word for it. Back in 2012, Brendan Eich, the
creator of JavaScript, said the following:

The moral of this story: ASI is (formally speaking) a syntactic error
correction procedure. If you start to code as if it were a universal
significant-newline rule, you will get into trouble….I wish I had
made newlines more significant in JS back in those ten days in May,
1995….Be careful not to use ASI as if it gave JS significant newlines.

Errors
Not only does JavaScript have different subtypes of errors (TypeEr
ror, ReferenceError, SyntaxError, etc.), but also the grammar
defines certain errors to be enforced at compile time, as compared
to all other errors that happen during runtime.
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In particular, there have long been a number of specific conditions
that should be caught and reported as “early errors” (during compi‐
lation). Any straight-up syntax error is an early error (e.g., a = ,),
but also the grammar defines things that are syntactically valid but
disallowed nonetheless.

Since execution of your code has not begun yet, these errors are not
catchable with try..catch; instead, they will just fail the parsing/
compilation of your program.

There’s no requirement in the spec about exactly
how browsers (and developer tools) should
report errors. So you may see variations across
browsers in the following error examples, in the
specific subtype of error that is reported or what
the included error message text will be.

One simple example is with syntax inside a regular expression lit‐
eral. There’s nothing wrong with the JS syntax here, but the invalid
regex will throw an early error:

var a = /+foo/;     // Error!

The target of an assignment must be an identifier (or an ES6
destructuring expression that produces one or more identifiers), so
a value like 42 in that position is illegal and can be reported right
away:

var a;
42 = a;     // Error!

ES5’s strict mode defines even more early errors. For example, in
strict mode, function parameter names cannot be duplicated:

function foo(a,b,a) { }                 // just fine

function bar(a,b,a) { "use strict"; }   // Error!

Another strict mode early error is an object literal having more
than one property of the same name:

(function(){
    "use strict";

    var a = {
        b: 42,
        b: 43
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    };          // Error!
})();

Semantically speaking, such errors aren’t techni‐
cally syntax errors but more grammar errors—
the above snippets are syntactically valid. But
since there is no GrammarError type, some
browsers use SyntaxError instead.

Using Variables Too Early
ES6 defines a (frankly confusingly named) new concept called the
TDZ (“Temporal Dead Zone”).

The TDZ refers to places in code where a variable reference cannot
yet be made, because it hasn’t reached its required initialization.

The most clear example of this is with ES6 let block-scoping:

{
    a = 2;      // ReferenceError!
    let a;
}

The assigment a = 2 is accessing the a variable (which is indeed
block-scoped to the { .. } block) before it’s been initialized by the
let a declaration, so it’s in the TDZ for a and throws an error.

Interestingly, while typeof has an exception to be safe for unde‐
clared variables (see Chapter 1), no such safety exception is made
for TDZ references:

{
    typeof a;   // undefined
    typeof b;   // ReferenceError! (TDZ)
    let b;
}

Function Arguments
Another example of a TDZ violation can be seen with ES6 default
parameter values (see the ES6 & Beyond title in this series):

var b = 3;

function foo( a = 42, b = a + b + 5 ) {
    // ..
}
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The b reference in the assignment would happen in the TDZ for the
parameter b (not pull in the outer b reference), so it will throw an
error. However, the a is fine since by that time it’s past the TDZ for
parameter a.

When using ES6’s default parameter values, the default value is
applied to the parameter if you either omit an argument, or you pass
an undefined value in its place:

function foo( a = 42, b = a + 1 ) {
    console.log( a, b );
}

foo();                  // 42 43
foo( undefined );       // 42 43
foo( 5 );               // 5 6
foo( void 0, 7 );       // 42 7
foo( null );            // null 1

null is coerced to a 0 value in the a + 1 expres‐
sion. See Chapter 4 for more info.

From the ES6 default parameter values perspective, there’s no differ‐
ence between omitting an argument and passing an undefined
value. However, there is a way to detect the difference in some cases:

function foo( a = 42, b = a + 1 ) {
    console.log(
        arguments.length, a, b,
        arguments[0], arguments[1]
    );
}

foo();                  // 0 42 43 undefined undefined
foo( 10 );              // 1 10 11 10 undefined
foo( 10, undefined );   // 2 10 11 10 undefined
foo( 10, null );        // 2 10 null 10 null

Even though the default parameter values are applied to the a and b
parameters, if no arguments were passed in those slots, the argu
ments array will not have entries.

Conversely, if you pass an undefined argument explicitly, an entry
will exist in the arguments array for that argument, but it will be
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undefined and not (necessarily) the same as the default value that
was applied to the named parameter for that same slot.

While ES6 default parameter values can create divergence between
the arguments array slot and the corresponding named parameter
variable, this same disjointedness can also occur in tricky ways in
ES5:

function foo(a) {
    a = 42;
    console.log( arguments[0] );
}

foo( 2 );   // 42 (linked)
foo();      // undefined (not linked)

If you pass an argument, the arguments slot and the named parame‐
ter are linked to always have the same value. If you omit the argu‐
ment, no such linkage occurs.

But in strict mode, the linkage doesn’t exist regardless:

function foo(a) {
    "use strict";
    a = 42;
    console.log( arguments[0] );
}

foo( 2 );   // 2 (not linked)
foo();      // undefined (not linked)

It’s almost certainly a bad idea to ever rely on any such linkage, and
in fact the linkage itself is a leaky abstraction that’s exposing an
underlying implementation detail of the engine, rather than a prop‐
erly designed feature.

Use of the arguments array has been deprecated (especially in favor
of ES6 ... rest parameters—see the ES6 & Beyond title in this ser‐
ies), but that doesn’t mean that it’s all bad.

Prior to ES6, arguments is the only way to get an array of all passed
arguments to pass along to other functions, which turns out to be
quite useful. You can also mix named parameters with the argu
ments array and be safe, as long as you follow one simple rule: never
refer to a named parameter and its corresponding arguments slot at
the same time. If you avoid that bad practice, you’ll never expose the
leaky linkage behavior:
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function foo(a) {
    console.log( a + arguments[1] ); // safe!
}

foo( 10, 32 );  // 42

try..finally
You’re probably familiar with how the try..catch block works. But
have you ever stopped to consider the finally clause that can be
paired with it? In fact, were you aware that try only requires either
catch or finally, though both can be present if needed?

The code in the finally clause always runs (no matter what), and it
always runs right after the try (and catch if present) finish, before
any other code runs. In one sense, you can kind of think of the code
in a finally clause as being in a callback function that will always
be called regardless of how the rest of the block behaves.

So what happens if there’s a return statement inside a try clause? It
obviously will return a value, right? But does the calling code that
receives that value run before or after the finally?

function foo() {
 try {
  return 42;
 }
 finally {
  console.log( "Hello" );
 }

 console.log( "never runs" );
}

console.log( foo() );
// Hello
// 42

The return 42 runs right away, which sets up the completion value
from the foo() call. This action completes the try clause and the
finally clause immediately runs next. Only then is the foo() func‐
tion complete, so that its completion value is returned back for the
console.log(..) statement to use.

The exact same behavior is true of a throw inside try:

 function foo() {
 try {
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  throw 42;
 }
 finally {
  console.log( "Hello" );
 }

 console.log( "never runs" );
}

console.log( foo() );
// Hello
// Uncaught Exception: 42

Now, if an exception is thrown (accidentally or intentionally) inside
a finally clause, it will override as the primary completion of that
function. If a previous return in the try block had set a completion
value for the function, that value will be abandoned:

function foo() {
 try {
  return 42;
 }
 finally {
  throw "Oops!";
 }

 console.log( "never runs" );
}

console.log( foo() );
// Uncaught Exception: Oops!

It shouldn’t be surprising that other nonlinear control statements
like continue and break exhibit similar behavior to return and
throw:

for (var i=0; i<10; i++) {
 try {
  continue;
 }
 finally {
  console.log( i );
 }
}
// 0 1 2 3 4 5 6 7 8 9

The console.log(i) statement runs at the end of the loop iteration,
which is caused by the continue statement. However, it still runs
before the i++ iteration update statement, which is why the values
printed are 0..9 instead of 1..10.
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ES6 adds a yield statement, in generators (see
the Async & Performance title in this series)
which in some ways can be seen as an inter‐
mediate return statement. However, unlike a
return, a yield isn’t complete until the genera‐
tor is resumed, which means a try { ..

yield .. } has not completed. So an attached
finally clause will not run right after the yield
like it does with return.

A return inside a finally has the special ability to override a previ‐
ous return from the try or catch clause, but only if return is
explicitly called:

function foo() {
 try {
  return 42;
 }
 finally {
  // no `return ..` here, so no override
 }
}

function bar() {
 try {
  return 42;
 }
 finally {
  // override previous `return 42`
  return;
 }
}

function baz() {
 try {
  return 42;
 }
 finally {
  // override previous `return 42`
  return "Hello";
 }
}

foo(); // 42
bar(); // undefined
baz(); // Hello
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Normally, the omission of return in a function is the same as
return; or even return undefined;, but inside a finally block the
omission of return does not act like an overriding return unde
fined; it just lets the previous return stand.

In fact, we can really up the craziness if we combine finally with
labeled break (see “Labels” on page 131):

function foo() {
 bar: {
  try {
   return 42;
  }
  finally {
   // break out of `bar` labeled block
   break bar;
  }
 }

 console.log( "Crazy" );

 return "Hello";
}

console.log( foo() );
// Crazy
// Hello

But… don’t do this. Seriously. Using a finally + labeled break to
effectively cancel a return is doing your best to create the most con‐
fusing code possible. I’d wager no amount of comments will redeem
this code.

switch
Let’s briefly explore the switch statement, a sort-of syntactic short‐
hand for an if..else if..else.. statement chain:

switch (a) {
 case 2:
  // do something
  break;
 case 42:
  // do another thing
  break;
 default:
  // fallback to here
}
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As you can see, it evaluates a once, then matches the resulting value
to each case expression (just simple value expressions here). If a
match is found, execution will begin in that matched case, and will
either go until a break is encountered or until the end of the switch
block is found.

That much may not surprise you, but there are several quirks about
switch you may not have noticed before.

First, the matching that occurs between the a expression and each
case expression is identical to the === algorithm (see Chapter 4).
Often times switches are used with absolute values in case state‐
ments, as shown above, so strict matching is appropriate.

However, you may wish to allow coercive equality (aka ==, see Chap‐
ter 4), and to do so you’ll need to sort of “hack” the switch state‐
ment a bit:

var a = "42";

switch (true) {
 case a == 10:
  console.log( "10 or '10'" );
  break;
 case a == 42:
  console.log( "42 or '42'" );
  break;
 default:
  // never gets here
}
// 42 or '42'

This works because the case clause can have any expression (not
just simple values), which means it will strictly match that expres‐
sion’s result to the test expression (true). Since a == 42 results in
true here, the match is made.

Despite ==, the switch matching itself is still strict, between true
and true here. If the case expression resulted in something that was
truthy but not strictly true (see Chapter 4), it wouldn’t work. This
can bite you if you’re for instance using a “logical operator” like ||
or && in your expression:

var a = "hello world";
var b = 10;

switch (true) {
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 case (a || b == 10):
  // never gets here
  break;
 default:
  console.log( "Oops" );
}
// Oops

Since the result of (a || b == 10) is "hello world" and not true,
the strict match fails. In this case, the fix is to force the expression
explicitly to be a true or false, such as case !!(a || b == 10):
(see Chapter 4).

Lastly, the default clause is optional, and it doesn’t necessarily have
to come at the end (although that’s the strong convention). Even in
the default clause, the same rules apply about encountering a break
or not:

var a = 10;

switch (a) {
 case 1:
 case 2:
  // never gets here
 default:
  console.log( "default" );
 case 3:
  console.log( "3" );
  break;
 case 4:
  console.log( "4" );
}
// default
// 3

As discussed previously about labeled breaks,
the break inside a case clause can also be
labeled.

The way this snippet processes is that it passes through all the case
clause matching first, finds no match, then goes back up to the
default clause and starts executing. Since there’s no break there, it
continues executing in the already skipped over case 3 block,
before stopping once it hits that break.
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While this sort of roundabout logic is clearly possible in JavaScript,
there’s almost no chance that it’s going to make for reasonable or
understandable code. Be very skeptical if you find yourself wanting
to create such circular logic flow, and if you really do, make sure you
include plenty of code comments to explain what you’re up to!

Review
JavaScript grammar has plenty of nuance that we as developers
should spend a little more time paying closer attention to than we
typically do. A little bit of effort goes a long way to solidifying your
deeper knowledge of the language.

Statements and expressions have analogs in English language—
statements are like sentences and expressions are like phrases.
Expressions can be pure/self-contained, or they can have side
effects.

The JavaScript grammar layers semantic usage rules (aka context)
on top of the pure syntax. For example, { } pairs used in various
places in your program can mean statement blocks, object literals,
(ES6) destructuring assignments, or (ES6) named function argu‐
ments.

JavaScript operators all have well-defined rules for precedence
(which ones bind first before others) and associativity (how multiple
operator expressions are implicitly grouped). Once you learn these
rules, it’s up to you to decide if precedence/associativity are too
implicit for their own good, or if they will aid in writing shorter,
clearer code.

ASI (Automatic Semicolon Insertion) is a parser-error-correction
mechanism built into the JS engine, which allows it under certain
circumstances to insert an assumed ; in places where it is required,
was omitted, and where insertion fixes the parser error. The debate
rages over whether this behavior implies that most ;s are optional
(and can/should be omitted for cleaner code) or whether it means
that omitting them is making mistakes that the JS engine merely
cleans up for you.

JavaScript has several types of errors, but it’s less known that it has
two classifications for errors: “early” (compiler thrown, uncatchable)
and “runtime” (try..catchable). All syntax errors are obviously
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early errors that stop the program before it runs, but there are oth‐
ers, too.

Function arguments have an interesting relationship to their formal
declared named parameters. Specifically, the arguments array has a
number of gotchas of leaky abstraction behavior if you’re not care‐
ful. Avoid arguments if you can, but if you must use it, by all means
avoid using the positional slot in arguments at the same time as
using a named parameter for that same argument.

The finally clause attached to a try (or try..catch) offers some
very interesting quirks in terms of execution processing order. Some
of these quirks can be helpful, but it’s possible to create lots of con‐
fusion, especially if combined with labeled blocks. As always, use
finally to make code better and clearer, not more clever or confus‐
ing.

The switch offers some nice shorthand for if..else if.. state‐
ments, but beware of many common simplifying assumptions about
its behavior. There are several quirks that can trip you up if you’re
not careful, but there’s also some neat hidden tricks that switch has
up its sleeve!
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APPENDIX A

Mixed Environment JavaScript

Beyond the core language mechanics we’ve fully explored in this
book, there are several ways that your JS code can behave differently
when it runs in the real world. If JS was executing purely inside an
engine, it’d be entirely predictable based on nothing but the black-
and-white of the spec. But JS pretty much always runs in the context
of a hosting environment, which exposes your code to some degree
of unpredictability.

For example, when your code runs alongside code from other sour‐
ces, or when your code runs in different types of JS engines (not just
browsers), there are some things that may behave differently.

We’ll briefly explore some of these concerns.

Annex B (ECMAScript)
It’s a little known fact that the official name of the language is
ECMAScript (referring to the ECMA standards body that manages
it). What then is “JavaScript”? JavaScript is the common tradename
of the language, of course, but more appropriately, JavaScript is basi‐
cally the browser implementation of the spec.

The official ECMAScript specification includes “Annex B,” which
discusses specific deviations from the official spec for the purposes
of JS compatibility in browsers.

The proper way to consider these deviations is that they are only
reliably present/valid if your code is running in a browser. If your
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code always runs in browsers, you won’t see any observable differ‐
ence. If not (like if it can run in node.js, Rhino, etc.), or you’re not
sure, tread carefully.

The main compatibility differences:

• Octal number literals are allowed, such as 0123 (decimal 83) in
non-strict mode.

• window.escape(..) and window.unescape(..) allow you to
escape or unescape strings with %-delimited hexadecimal
escape sequences. For example: window.escape( "?

foo=97%&bar=3%" ) produces "%3Ffoo%3D97%25%26bar

%3D3%25".
• String.prototype.substr is quite similar to String.proto
type.substring, except that instead of the second parameter
being the ending index (noninclusive), the second parameter is
the length (number of characters to include).

Web ECMAScript
The Web ECMAScript specification covers the differences between
the official ECMAScript specification and the current JavaScript
implementations in browsers.

In other words, these items are “required” of browsers (to be com‐
patible with each other) but are not (as of the time of writing) listed
in the “Annex B” section of the official spec:

• <!-- and --> are valid single-line comment delimiters.
• String.prototype additions for returning HTML-formatted

strings: anchor(..), big(..), blink(..), bold(..), fixed(..),
fontcolor(..), fontsize(..), italics(..), link(..),
small(..), strike(..), and sub(..).

These are very rarely used in practice, and
are generally discouraged in favor of other
built-in DOM APIs or user-defined utilit‐
ies.
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• RegExp extensions: RegExp.$1 .. RegExp.$9 (match groups) and
RegExp.lastMatch/RegExp["$&"] (most recent match).

• Function.prototype additions: Function.prototype.argu

ments (aliases internal arguments object) and Function.caller
(aliases internal arguments.caller).

arguments and thus arguments.caller are
deprecated, so you should avoid using them
if possible. That goes doubly so for these
aliases—don’t use them!

Some other minor and rarely used deviations are
not included in our list here. See the external
“Annex B” and “Web ECMAScript” documents
for more detailed information as needed.

Generally speaking, all these differences are rarely used, so the devi‐
ations from the specification are not significant concerns. Just be
careful if you rely on any of them.

Host Objects
The well-covered rules for how variables behave in JS have excep‐
tions to them when it comes to variables that are auto-defined, or
otherwise created and provided to JS by the environment that hosts
your code (browser, etc.)—so-called “host objects” (which include
both built-in objects and functions).

For example:

var a = document.createElement( "div" );

typeof a;                            // "object"--as expected
Object.prototype.toString.call( a ); // "[object HTMLDivElement]"

a.tagName;                           // "DIV"

a is not just an object, but a special host object because it’s a DOM
element. It has a different internal [[Class]] value ("HTMLDivEle
ment") and comes with predefined (and often unchangeable) prop‐
erties.
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Another such quirk has already been covered, in the “Falsy Objects”
section in Chapter 4: some objects can exist but when coerced to
boolean they (confoundingly) will coerce to false instead of the
expected true.

Other behavior variations with host objects to be aware of can
include:

• Not having access to normal object built-ins like toString()
• Not being overwritable
• Having certain predefined read-only properties
• Having methods that cannot be this-overridden to other

objects
• And more…

Host objects are critical to making our JS code work with its sur‐
rounding environment. But it’s important to note when you’re inter‐
acting with a host object and to be careful assuming its behaviors, as
they will quite often not conform to regular JS objects.

One notable example of a host object that you probably interact with
regularly is the console object and its various functions (log(..),
error(..), etc.). The console object is provided by the hosting
environment specifically so your code can interact with it for vari‐
ous development-related output tasks.

In browsers, console hooks up to the developer tools’ console dis‐
play, whereas in node.js and other server-side JS environments, con
sole is generally connected to the standard-output (stdout) and
standard-error (stderr) streams of the JavaScript environment sys‐
tem process.

Global DOM Variables
You’re probably aware that declaring a variable in the global scope
(with or without var) creates not only a global variable, but also its
mirror: a property of the same name on the global object (window
in the browser).

But what may be less common knowledge is that (because of legacy
browser behavior) creating DOM elements with id attributes creates
global variables of those same names. For example:
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<div id="foo"></div>

And:

if (typeof foo == "undefined") {
    foo = 42;        // will never run
}

console.log( foo );  // HTML element

You’re perhaps used to managing global variable tests (using typeof
or .. in window checks) under the assumption that only JS code
creates such variables, but as you can see, the contents of your host‐
ing HTML page can also create them, which can easily throw off
your existence check logic if you’re not careful.

This is yet one more reason why you should, if at all possible, avoid
using global variables, and if you have to, use variables with unique
names that won’t likely collide. But you also need to make sure not
to collide with the HTML content as well as any other code.

Native Prototypes
One of the most widely known and classic pieces of JavaScript best
practice wisdom is: never extend native prototypes.

Whatever method or property name you come up with to add to
Array.prototype that doesn’t (yet) exist, if it’s a useful addition,
well-designed, and properly named, there’s a strong chance it could
eventually end up being added to the spec—in which case your
extension is now in conflict.

Here’s a real example that actually happened to me that illustrates
this point well.

I was building an embeddable widget for other websites, and my
widget relied on jQuery (though pretty much any framework would
have suffered this gotcha). It worked on almost every site, but we
ran across one where it was totally broken.

After almost a week of analysis/debugging, I found that the site in
question had, buried deep in one of its legacy files, code that looked
like this:

// Netscape 4 doesn't have Array.push
Array.prototype.push = function(item) {
    this[this.length-1] = item;
};
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Aside from the crazy comment (who cares about Netscape 4 any‐
more!?), this looks reasonable, right?

The problem is, Array.prototype.push was added to the spec
sometime subsequent to this Netscape 4 era coding, but what was
added is not compatible with this code. The standard push(..)
allows multiple items to be pushed at once. This hacked one ignores
the subsequent items.

Basically all JS frameworks have code that relies on push(..) with
multiple elements. In my case, it was code around the CSS selector
engine that was completely busted. But there could conceivably be
dozens of other places susceptible.

The developer who originally wrote that push(..) hack had the
right instinct to call it push, but didn’t foresee pushing multiple ele‐
ments. They were certainly acting in good faith, but they created a
landmine that didn’t go off until almost 10 years later when I unwit‐
tingly came along.

There’s multiple lessons to take away on all sides.

First, don’t extend the natives unless you’re absolutely sure your
code is the only code that will ever run in that environment. If you
can’t say that 100%, then extending the natives is dangerous. You
must weigh the risks.

Next, don’t unconditionally define extensions (because you can
overwrite natives accidentally). For this particular example, consider
the following code:

if (!Array.prototype.push) {
    // Netscape 4 doesn't have Array.push
    Array.prototype.push = function(item) {

this[this.length-1] = item;
    };
}

Here, the if statement guard would have only defined this hacked
push() for JS environments where it didn’t exist. In my case, that
probably would have been OK. But even this approach is not
without risk:
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1. If the site’s code (for some crazy reason!) was relying on a
push(..) that ignored multiple items, that code would have
been broken years ago when the standard push(..) was rolled
out.

2. If any other library had come in and hacked in a push(..)
ahead of this if guard, and it did so in an incompatible way,
that would have broken the site at that time.

What that highlights is an interesting question that, frankly, doesn’t
get enough attention from JS developers: should you ever rely on
native built-in behavior if your code is running in any environment
where it’s not the only code present?

The strict answer is no, but that’s awfully impractical. Your code
usually can’t redefine its own private untouchable versions of all
built-in behavior relied on. Even if you could, that’s pretty wasteful.

So, should you feature-test for the built-in behavior as well as
compliance-test that it does what you expect? And what if that test
fails—should your code just refuse to run?

// don't trust Array.prototype.push
(function(){
    if (Array.prototype.push) {
        var a = [];
        a.push(1,2);
        if (a[0] === 1 && a[1] === 2) {
            // tests passed, safe to use!
            return;
        }
    }

    throw Error(
        "Array#push() is missing/broken!"
    );
})();

In theory, that sounds plausible, but it’s also pretty impractical to
design tests for every single built-in method.

So, what should we do? Should we trust but verify (feature- and
compliance-test) everything? Should we just assume existence is
compliance and let breakage (caused by others) bubble up as it will?

There’s no great answer. The only fact that can be observed is that
extending native prototypes is the only way these things bite you.
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If you don’t do it, and no one else does in the code in your applica‐
tion, you’re safe. Otherwise, you should build in at least a little bit of
skepticism, pessimism, and expectation of possible breakage.

Having a full set of unit/regression tests of your code that runs in all
known environments is one way to surface some of these issues ear‐
lier, but it doesn’t do anything to actually protect you from these
conflicts.

Shims/Polyfills
It’s usually said that the only safe place to extend a native is in an
older (non-spec-compliant) environment, since that’s unlikely to
ever change—new browsers with new spec features replace older
browsers rather than amending them.

If you could see into the future, and know for sure what a future
standard was going to be, like for Array.prototype.foobar, it’d be
totally safe to make your own compatible version of it to use now,
right?

if (!Array.prototype.foobar) {
    // silly, silly
    Array.prototype.foobar = function() {
        this.push( "foo", "bar" );
    };
}

If there’s already a spec for Array.prototype.foobar, and the speci‐
fied behavior is equal to this logic, you’re pretty safe in defining such
a snippet, and in that case it’s generally called a “polyfill” (or “shim”).

Such code is very useful to include in your code base to “patch”
older browser environments that aren’t updated to the newest specs.
Using polyfills is a great way to create predictable code across all
your supported environments.

ES5-Shim is a comprehensive collection of
shims/polyfills for bringing a project up to ES5
baseline, and similarly, ES6-Shim provides
shims for new APIs added as of ES6. While APIs
can be shimmed/polyfilled, new syntax generally
cannot. To bridge the syntactic divide, you’ll
want to also use an ES6-to-ES5 transpiler like
Traceur.
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If there’s likely a coming standard, and most discussions agree what
it’s going to be called and how it will operate, creating the ahead-of-
time polyfill for future-facing standards compliance is called “prol‐
lyfill” (probably fill).

The real catch is if some new standard behavior can’t be (fully) poly‐
filled/prollyfilled.

There’s debate in the community if a partial polyfill for the common
cases is acceptable (documenting the parts that cannot be polyfil‐
led), or if a polyfill should be avoided if it can’t be 100% compliant to
the spec.

Many developers at least accept some common partial polyfills (like
for instance Object.create(..)), because the parts that aren’t cov‐
ered are not parts they intend to use anyway.

Some developers believe that the if guard around a polyfill/shim
should include some form of conformance test, replacing the exist‐
ing method either if it’s absent or fails the tests. This extra layer of
compliance testing is sometimes used to distinguish a “shim” (com‐
pliance tested) from a “polyfill” (existence checked).

The only absolute takeaway is that there is no absolute right answer
here. Extending natives, even when done “safely” in older environ‐
ments, is not 100% safe. The same goes for relying upon (possibly
extended) natives in the presence of others’ code.

Either should always be done with caution, defensive code, and lots
of obvious documentation about the risks.

<script>s
Most browser-viewed websites/applications have more than one file
that contains their code, and it’s common to have a few or several
<script src=..></script> elements in the page that load these
files separately, and even a few inline-code <script> .. </script>
elements as well.

But do these separate files/code snippets constitute separate pro‐
grams or are they collectively one JS program?

The (perhaps surprising) reality is they act more like independent JS
programs in most, but not all, respects.
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The one thing they share is the single global object (window in the
browser), which means multiple files can append their code to that
shared namespace and they can all interact.

So, if one script element defines a global function foo(), when a
second script later runs, it can access and call foo() just as if it had
defined the function itself.

But global variable scope hoisting (see the Scope & Closures title of
this series) does not occur across these boundaries, so the following
code would not work (because foo()’s declaration isn’t yet declared),
regardless of if they are (as shown) inline <script> .. </script>
elements or externally loaded <script src=..></script> files:

<script>foo();</script>

<script>
  function foo() { .. }
</script>

But either of these would work instead:

<script>
  foo();
  function foo() { .. }
</script>

Or:

<script>
  function foo() { .. }
</script>

<script>foo();</script>

Also, if an error occurs in a script element (inline or external), as a
separate standalone JS program it will fail and stop, but any subse‐
quent scripts will run (still with the shared global) unimpeded.

You can create script elements dynamically from your code, and
inject them into the DOM of the page, and the code in them will
behave basically as if loaded normally in a separate file:

var greeting = "Hello World";

var el = document.createElement( "script" );

el.text = "function foo(){ alert( greeting );\
 } setTimeout( foo, 1000 );";
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document.body.appendChild( el );

Of course, if you tried the above snippet but set
el.src to some file URL instead of setting
el.text to the code contents, you’d be dynami‐
cally creating an externally loaded <script

src=..></script> element.

One difference between code in an inline code block and that same
code in an external file is that in the inline code block, the sequence
of characters </script> cannot appear together, as (regardless of
where it appears) it would be interpreted as the end of the code
block. So, beware of code like:

<script>
  var code = "<script>alert( 'Hello World' )</script>";
</script>

It looks harmless, but the </script> appearing inside the string
literal will terminate the script block abnormally, causing an error.
The most common workaround is:

"</sc" + "ript>";

Also, beware that code inside an external file will be interpreted in
the character set (UTF-8, ISO-8859-8, etc.) the file is served with (or
the default), but that same code in an inline script element in your
HTML page will be interpreted by the character set of the page (or
its default).

The charset attribute will not work on inline
script elements.

Another deprecated practice with inline script elements is includ‐
ing HTML-style or X(HT)ML-style comments around inline code,
like:

<script>
<!--
alert( "Hello" );
//-->
</script>
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<script>
<!--//--><![CDATA[//><!--
alert( "World" );
//--><!]]>
</script>

Both of these are totally unnecessary now, so if you’re still doing
that, stop it!

Both <!-- and --> (HTML-style comments) are
actually specified as valid single-line comment
delimiters (var x = 2; <!-- valid comment
and --> another valid line comment) in
JavaScript (see the “Web ECMAScript” section
earlier), purely because of this old technique.
But never use them.

Reserved Words
The ES5 spec defines a set of “reserved words” in Section 7.6.1 that
cannot be used as standalone variable names. Technically, there are
four categories: “keywords,” “future reserved words,” the null literal,
and the true/false boolean literals.

Keywords are the obvious ones like function and switch. Future
reserved words include things like enum, though many of the rest of
them (class, extends, etc.) are all now actually used by ES6; there
are other strict mode-only reserved words like interface.

StackOverflow user “art4theSould” creatively worked all these
reserved words into a fun little poem:

Let this long package float,
Goto private class if short.
While protected with debugger case,
Continue volatile interface.
Instanceof super synchronized throw,
Extends final export throws.

Try import double enum?
- False, boolean, abstract function,
Implements typeof transient break!
Void static, default do,
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Switch int native new.
Else, delete null public var
In return for const, true, char
…Finally catch byte.

This poem includes words that were reserved in
ES3 (byte, long, etc.) that are no longer reserved
as of ES5.

Prior to ES5, the reserved words also could not be property names
or keys in object literals, but that restriction no longer exists.

So, this is not allowed:

var import = "42";

But this is allowed:

var obj = { import: "42" };
console.log( obj.import );

You should be aware though that some older browser versions
(mainly older IE) weren’t completely consistent on applying these
rules, so there are places where using reserved words in object prop‐
erty name locations can still cause issues. Carefully test all supported
browser environments.

Implementation Limits
The JavaScript spec does not place arbitrary limits on things such as
the number of arguments to a function or the length of a string lit‐
eral, but these limits exist nonetheless, because of implementation
details in different engines.

For example:

function addAll() {
 var sum = 0;
 for (var i=0; i < arguments.length; i++) {
  sum += arguments[i];
 }
 return sum;
}

var nums = [];
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for (var i=1; i < 100000; i++) {
 nums.push(i);
}

addAll( 2, 4, 6 );           // 12
addAll.apply( null, nums );  // should be: 499950000

In some JS engines, you’ll get the correct 499950000 answer, but in
others (like Safari 6.x), you’ll get the error “RangeError: Maximum
call stack size exceeded.”

Examples of other limits known to exist:

• Maximum number of characters allowed in a string literal (not
just a string value)

• Size (bytes) of data that can be sent in arguments to a function
call (aka stack size)

• Number of parameters in a function declaration
• Maximum depth of nonoptimized call stack (i.e., with recur‐

sion): how long a chain of function calls from one to the other
can be

• Number of seconds a JS program can run continuously blocking
the browser

• Maximum length allowed for a variable name

It’s not very common at all to run into these limits, but you should
be aware that limits can and do exist, and importantly that they vary
between engines.

Review
We know and can rely upon the fact that the JS language itself has
one standard and is predictably implemented by all the modern
browsers/engines. This is a very good thing!

But JavaScript rarely runs in isolation. It runs in an environment
mixed in with code from third-party libraries, and sometimes it
even runs in engines/environments that differ from those found in
browsers.

Paying close attention to these issues improves the reliability and
robustness of your code.
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