

React Material-UI Cookbook

Build captivating user experiences using React and Material-
UI

Adam Boduch

BIRMINGHAM - MUMBAI

React Material-UI Cookbook
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Content Development Editor: Pranay Fereira
Technical Editor: Aishwarya More
Copy Editor: Safis Editing
Project Coordinator: Pragati Shukla
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Graphics: Alishon Mendonsa
Production Coordinator: Jisha Chirayil

First published: March 2019

Production reference: 1290319

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78961-522-7

www.packtpub.com

http://www.packtpub.com

For anyone whose lives have been touched by autism. Never give up.

– Adam Boduch

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

Packt.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.packt.com
http://www.packt.com

Contributors

About the author
Adam Boduch has been involved with large-scale JavaScript development for nearly 10
years. Before moving to the frontend, he worked on several large-scale cloud computing
products using Python and Linux. No stranger to complexity, Adam has practical
experience with real-world software systems and the scaling challenges they pose. He is the
author of several JavaScript books, including React and React Native, by Packt Publishing
and is passionate about innovative user experiences and high performance.

About the reviewers
Michel Engelen started off as a web designer and soon began to realize that frontend
development is the course he wants to take. So, he started self-learning for the skills he
would need for that. Nearly 8 years later, he is now a full-fledged JavaScript React/Redux
developer and software architect with one additional year of experience in DevOps as well.

Jonatan Ezequiel Salas is a highly skilled developer and a passionate entrepreneur. He is
the founder and CTO of BlackBox Vision, a software agency focusing mainly on high-
quality products and user experience, and also working at Ingenia as a Software Architect.
He is currently focusing on growing his company, and has been working with some major
firms from Argentina. In his spare time, he loves contributing to open source software
related to DevOps, Kubernetes, JavaScript, Node.js, and React. Find him on GitHub,
Medium, or Twitter.

I would like to thank my family, my girlfriend, and my friends for their never-ending
support. Without them, I could have never reached where I am today. I am also thankful to
Packt Publishing and their amazing books. I'd especially like to thank the author of the
book, as well as Pragati Shukla for giving me the opportunity to review this book.

Olivier Tassinari is a curious and persevering person who has always loved solving
problems. His passion for building things started at a very young age, and he began to
launch websites 10 years ago while studying math, physics, and computer science. He is a
big fan of open source. He has been working on Material-UI since its inception.

I would like to thank all Material-UI's contributors for their devotion to the project.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Grids - Placing Components on the Page 7
Introduction 7
Applying breakpoints 7

How to do it... 7
How it works... 9
There's more... 11
See also 12

Filling space 12
How to do it... 12
How it works... 15
There's more... 17
See also 17

Abstracting containers and items 18
How to do it... 18
How it works... 19
There's more... 20
See also 21

Fixed column layout 21
How to do it... 21
How it works... 23
There's more... 24
See also 25

Changing column direction 25
How to do it... 26
How it works... 28
There's more... 29
See also 30

Chapter 2: App Bars - The Top Level of Every Page 31
Introduction 31
Fixed position 31

How to do it... 31
How it works... 33
There's more... 34
See also 36

Hide on scroll 36
How to do it... 36
How it works... 39

Table of Contents

[ii]

There's more... 40
See also 41

Toolbar abstraction 41
How to do it... 41
How it works... 44
There's more... 46
See also 47

With navigation 47
How to do it... 47
How it works... 51
There's more... 52
See also 53

Chapter 3: Drawers - A Place for Navigation Controls 54
Introduction 54
Drawer types 54

How to do it... 55
How it works... 56
There's more... 58
See also 59

Drawer item state 59
How to do it... 59
How it works... 62
There's more... 63
See also 65

Drawer item navigation 65
How to do it... 65
How it works... 68
There's more... 69
See also 74

Drawer sections 74
How to do it... 74
How it works... 77
There's more... 78
See also 81

AppBar interaction 82
How to do it... 82
How it works... 85
There's more... 87
See also 90

Chapter 4: Tabs - Grouping Content into Tab Sections 91
Introduction 91
AppBar integration 91

How to do it... 92
How it works... 93

Table of Contents

[iii]

There's more... 94
See also 95

Tab alignment 95
How to do it... 95
How it works... 97
There's more... 98
See also 99

Rendering tabs based on state 100
How to do it... 100
How it works... 102
There's more... 103
See also 104

Abstracting tab content 105
How to do it... 105
How it works... 106
There's more... 108
See also 109

Tab navigation with routes 109
How to do it... 109
How it works... 112
There's more... 113
See also 114

Chapter 5: Expansion Panels - Group Content into Panel Sections 115
Introduction 115
Stateful expansion panels 115

How to do it... 116
How it works... 118
There's more... 119
See also 120

Formatting panel headers 121
How to do it... 121
How it works... 123
There's more... 123
See also 125

Scrollable panel content 125
How to do it... 125
How it works... 129
See also 129

Lazy loading panel content 130
How to do it... 130
How it works... 132
There's more... 133
See also 135

Chapter 6: Lists - Display Simple Collection Data 136

Table of Contents

[iv]

Introduction 136
Using state to render list items 136

How to do it... 137
How it works... 138
There's more... 138
See also 140

List icons 140
How to do it... 140
How it works... 141
There's more... 142
See also 144

List avatars and text 144
How to do it... 144
How it works... 147
There's more... 147
See also 149

List sections 149
How to do it... 149
How it works... 151
There's more... 151
See also 152

Nested lists 152
How to do it... 153
How it works... 155
There's more... 156
See also 158

List controls 158
How to do it... 158
How it works... 160
There's more... 161
See also 163

Scrolling lists 164
How to do it... 164
How it works... 167
See also 168

Chapter 7: Tables - Display Complex Collection Data 169
Introduction 169
Stateful tables 169

How to do it... 170
How it works... 172
There's more... 174
See also 176

Sortable columns 176
How to do it... 176

Table of Contents

[v]

How it works... 181
There's more... 183
See also 183

Filtering rows 184
How to do it... 184
How it works... 188
See also 189

Selecting rows 189
How to do it... 190
How it works... 195
See also 197

Row actions 197
How to do it... 197
How it works... 201
See also 202

Chapter 8: Cards - Display Detailed Information 203
Introduction 203
Main content 203

How to do it... 204
How it works... 205
See also 205

Card header 206
How to do it... 206
How it works... 207
There's more... 208
See also 208

Performing actions 209
How to do it... 209
How it works... 211
There's more... 211
See also 213

Presenting media 213
How to do it... 213
How it works... 215
There's more... 215
See also 217

Expandable cards 217
How to do it... 217
How it works... 220
See also 222

Chapter 9: Snackbars - Temporary Messages 223
Introduction 223
Snackbar content 224

How to do it... 224

Table of Contents

[vi]

How it works... 224
There's more... 224
See also 225

Controlling visibility with state 226
How to do it... 226
How it works... 227
There's more... 227
See also 228

Snackbar transitions 228
How to do it... 228
How it works... 231
See also 232

Positioning snackbars 232
How to do it... 232
How it works... 235
There's more... 236
See also 237

Error boundaries and error snackbars 237
How to do it... 237
How it works... 239
There's more... 240
See also 241

Snackbars with actions 241
How to do it... 241
How it works... 242
There's more... 243
See also 244

Queuing snackbars 244
How to do it... 245
How it works... 247
See also 249

Chapter 10: Buttons - Initiating Actions 250
Introduction 250
Button variants 250

How to do it... 251
How it works... 252
See also 252

Button emphasis 252
How to do it... 253
How it works... 256
There's more... 257
See also 260

Link buttons 260
How to do it... 260

Table of Contents

[vii]

How it works... 262
There's more... 263
See also 264

Floating actions 264
How to do it... 264
How it works... 266
There's more... 266
See also 267

Icon buttons 267
How to do it... 268
How it works... 269
See also 270

Button sizes 270
How to do it... 270
How it works... 271
There's more... 271
See also 273

Chapter 11: Text - Collecting Text Input 274
Introduction 274
Controlling input with state 274

How to do it... 275
How it works... 276
There's more... 276
See also 278

Placeholder and helper text 278
How to do it... 278
How it works... 279
See also 281

Validation and error display 281
How to do it... 281
How it works... 284
There's more... 285
See also 287

Password fields 287
How to do it... 288
How it works... 289
There's more... 289
See also 290

Multiline input 290
How to do it... 290
How it works... 291
There's more... 292
See also 292

Input adornments 293

Table of Contents

[viii]

How to do it... 293
How it works... 294
There's more... 295
See also 297

Input masking 297
How to do it... 297
How it works... 300
See also 301

Chapter 12: Autocomplete and Chips - Text Input Suggestions for
Multiple Items 302

Introduction 302
Building an Autocomplete component 303

How to do it... 303
How it works... 305

Text input control 305
Options menu 306
No options available 306
Individual option 307
Placeholder text 307
SingleValue 308
ValueContainer 308
IndicatorSeparator 308
Clear option indicator 308
Show menu indicator 309
Styles 309
The Autocomplete 310

See also 312
Selecting autocomplete suggestions 312

How to do it... 312
How it works... 313
See also 314

API-driven Autocomplete 314
How to do it... 314
How it works... 316
See also 316

Highlighting search results 317
How to do it... 317
How it works... 318
See also 318

Standalone chip input 319
How to do it... 319
How it works... 321
See also 321

Chapter 13: Selection - Make Selections from Choices 322
Introduction 322

Table of Contents

[ix]

Abstracting checkbox groups 322
How to do it... 323
How it works... 324
There's more... 326
See also 327

Customizing checkbox items 328
How to do it... 328
How it works... 330
There's more... 332
See also 333

Abstracting radio button groups 333
How it works... 333
How it works... 335
There's more... 337
See also 338

Radio button types 338
How to do it... 339
How it works... 341
See also 342

Replacing checkboxes with switches 342
How to do it... 342
How it works... 344
There's more... 344
See also 346

Controlling selects with state 346
How to do it... 346
How it works... 350
See Also 352

Selecting multiple items 353
How to do it... 353
How it works... 355
There's more... 356
See also 357

Chapter 14: Pickers - Selecting Dates and Times 358
Introduction 358
Using date pickers 358

How to do it... 359
How it works... 361
There's more... 362
See also 363

Using time pickers 364
How to do it... 364
How it works... 366
See also 366

Table of Contents

[x]

Setting initial date and time values 366
How to do it... 367
How it works... 369
See also 371

Combining date and time components 371
How to do it... 372
How it works... 373
See also 374

Integrating other date and time packages 374
How to do it... 374
How it works... 377
See also 377

Chapter 15: Dialogs - Modal Screens for User Interactions 378
Introduction 378
Collecting form input 378

How to do it... 379
How it works... 382
See also 384

Confirming actions 384
How to do it... 385
How it works... 386
See also 387

Displaying alerts 387
How to do it... 387
How it works... 389
There's more... 389
See also 390

API integration 391
How to do it... 391
How it works... 395
See also 396

Creating fullscreen dialogs 396
How to do it... 396
How it works... 400
See also 401

Scrolling dialog content 401
How to do it... 401
How it works... 404
See also 405

Chapter 16: Menus - Display Actions That Pop Out 406
Introduction 406
Composing menus with state 406

How to do it... 407

Table of Contents

[xi]

How it works... 408
There's more... 410
See also 412

Menu scrolling options 413
How to do it... 413
How it works... 416
See also 417

Using menu transitions 417
How to do it... 417
How it works... 419
See also 419

Customizing menu items 419
How to do it... 420
How it works... 422
See also 423

Chapter 17: Typography - Control Font Look and Feel 424
Introduction 424
Types of typography 425

How to do it... 425
How it works... 427
There's more... 427
See also 428

Using theme colors 428
How to do it... 429
How it works... 430
See also 433

Aligning text 434
How to do it... 434
How it works... 435
See also 437

Wrapping text 437
How to do it... 437
How it works... 439
There's more... 439
See also 441

Chapter 18: Icons - Enhance Icons to Match Your Look and Feel 442
Introduction 442
Coloring icons 442

How to do it... 443
How it works... 444
See also 446

Scaling icons 446
How to do it... 446
How it works... 447

Table of Contents

[xii]

Default 447
Inherit 448
Small 448
Large 449

See also 449
Dynamically loading icons 449

How to do it... 449
How it works... 452
See also 453

Themed icons 453
How to do it... 454
How it works... 456
See also 459

Installing more icons 459
How to do it... 459
How it works... 460
See also 460

Chapter 19: Themes - Centralize the Look and Feel of Your App 461
Introduction 461
Understanding the palette 462

How to do it... 462
How it works... 467
See also 468

Comparing light and dark themes 468
How to do it... 468
How it works... 471
See also 471

Customizing typography 472
How to do it... 472
How it works... 473
See also 474

Nesting themes 474
How to do it... 474
How it works... 476
See also 477

Understanding component theme settings 477
How to do it 477
How it works... 479
See also 479

Chapter 20: Styles - Applying Styles to Components 480
Introduction 480
Basic component styles 481

How to do it... 481
How it works... 482

Table of Contents

[xiii]

There's more... 483
See also 484

Scoped component styles 484
How to do it... 485
How it works... 486
There's more... 486
See also 487

Extending component styles 488
How to do it... 488
How it works... 490
See also 491

Moving styles to themes 492
How to do it... 492
How it works... 494
See also 495

Other styling options 495
How to do it... 495
How it works... 496
See also 496

Other Books You May Enjoy 497

Index 500

Preface
Material-UI is the world's most popular React UI framework. It should come as no surprise
that Material-UI skills are a valuable asset to have. There are countless projects in the open
source space and in the commercial space that rely on this framework. So, what makes
Material-UI so popular?

First and foremost, Material-UI does an excellent job of bringing together two of the best
frontend technologies out there. In a nutshell, Material-UI exposes Google's Material
Design as components in Facebook's React. Many developers know enough React to build
something that works. Many designers know enough about Material Design to design an
experience that looks incredible. Material-UI is the bridge between these two worlds,
simplifying the task of shipping production applications that delight customers.

At a high level, this sales pitch is enough to intrigue developers at every level and of every
specialization. What keeps developers engaged with Material-UI is the breadth of
functionality and the depth of resources available to help you tackle any scenario. My hope
is that this book serves as a valuable contribution to those resources.

Who this book is for
This book is for any developer who thinks that Material-UI could potentially help them
produce a better user experience for their application. From seasoned professionals to the
junior developers of the world, this book has something to teach you about Material-UI.

No Material Design knowledge is assumed. To get the most out of this book, you should
have at least a working knowledge of React and modern JavaScript. While this book isn't
meant to teach you React, I do try to explain the React-specific mechanism at work in cases
where it might help illuminate the example as a whole.

What this book covers
Chapter 1, Grids – Placing Components on the Page, uses the grid system to place components
on the page.

Chapter 2, App Bars – The Top Level of Every Page, adds App Bars to the top of your UI.

Chapter 3, Drawers – A Place for Navigation Controls, uses drawers as a place to display your
main navigation.

Preface

[2]

Chapter 4, Tabs – Group Content into Tab Sections, organizes your content into tabs.

Chapter 5, Expansion Panels – Group Content into Panel Sections, organizes your content into
panels.

Chapter 6, Lists – Display Simple Collection Data, renders lists of items that the user can read
and interact with.

Chapter 7, Tables – Display Complex Collection Data, shows in-depth details about a data
collection.

Chapter 8, Cards – Display Detailed Information, uses cards to display details about a specific
entity/thing/object.

Chapter 9, Snackbars – Temporary Messages, notifies the user about what's going on in your
application.

Chapter 10, Buttons – Initiating Actions, explains how pressing buttons is the most common
way for users to do something.

Chapter 11, Text – Collecting Text Input, allows users to input information.

Chapter 12, Autocomplete and Chips – Text Input Suggestions for Multiple Items, gives the user
choices to select from as they type.

Chapter 13, Selection – Make Selections from Choices, allows the user to select from a
predefined set of options.

Chapter 14, Pickers – Selecting Dates and Times, chooses date and time values using easy-to-
read formats.

Chapter 15, Dialogs – Modal Screens for User Interactions, displays modal screens to collect
input or show information.

Chapter 16, Menus – Display Actions that Pop Out, saves space on the screen by putting
actions in menus.

Chapter 17, Typography – Control Font Look and Feel, controls the font of your UI in a
systematic way.

Chapter 18, Icons – Enhance Icons to Match Your Look and Feel, customizes Material-UI icons
and adds new ones.

Preface

[3]

Chapter 19, Themes – Centralize the Look and Feel of Your App, uses themes to change the look
and feel of components.

Chapter 20, Styles – Applying Styles to Components, uses one of many styling solutions to
design your UI.

To get the most out of this book
Make sure you understand the fundamentals of React. The tutorial is a good1.
starting point: https:/ /reactjs. org/ tutorial/ tutorial. html.
Clone the repository for this book: https:/ /github. com/PacktPublishing/2.
Material- UI- Cookbook.
Install the package by changing into the Material-UI-Cookbook directory and3.
running npm install.
Start Storybook by running npm run storybook. You can now navigate4.
through each of the examples as you read through the book. Some examples have
property editor controls in the Storybook UI, but feel free to tweak the code as
you learn!

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packt.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

https://reactjs.org/tutorial/tutorial.html
https://reactjs.org/tutorial/tutorial.html
https://reactjs.org/tutorial/tutorial.html
https://reactjs.org/tutorial/tutorial.html
https://reactjs.org/tutorial/tutorial.html
https://reactjs.org/tutorial/tutorial.html
https://reactjs.org/tutorial/tutorial.html
https://reactjs.org/tutorial/tutorial.html
https://reactjs.org/tutorial/tutorial.html
https://reactjs.org/tutorial/tutorial.html
https://reactjs.org/tutorial/tutorial.html
https://reactjs.org/tutorial/tutorial.html
https://reactjs.org/tutorial/tutorial.html
https://github.com/PacktPublishing/Material-UI-Cookbook
https://github.com/PacktPublishing/Material-UI-Cookbook
https://github.com/PacktPublishing/Material-UI-Cookbook
https://github.com/PacktPublishing/Material-UI-Cookbook
https://github.com/PacktPublishing/Material-UI-Cookbook
https://github.com/PacktPublishing/Material-UI-Cookbook
https://github.com/PacktPublishing/Material-UI-Cookbook
https://github.com/PacktPublishing/Material-UI-Cookbook
https://github.com/PacktPublishing/Material-UI-Cookbook
https://github.com/PacktPublishing/Material-UI-Cookbook
https://github.com/PacktPublishing/Material-UI-Cookbook
https://github.com/PacktPublishing/Material-UI-Cookbook
https://github.com/PacktPublishing/Material-UI-Cookbook
https://github.com/PacktPublishing/Material-UI-Cookbook
http://www.packt.com
http://www.packt.com/support
http://www.packt.com

Preface

[4]

The code bundle for the book is also hosted on GitHub at https:/ / github. com/
PacktPublishing/React- Material- UI- Cookbook. In case there's an update to the code, it
will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github. com/ PacktPublishing/ . Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: https:/ /www. packtpub. com/ sites/ default/ files/
downloads/9781789615227_ ColorImages. pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Mount the downloaded WebStorm-10*.dmg disk image file as another disk in
your system."

A block of code is set as follows:

const styles = theme => ({
 root: {
 flexGrow: 1
 },

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Select System info from the Administration panel."

Warnings or important notes appear like this.

Tips and tricks appear like this.

https://github.com/PacktPublishing/React-Material-UI-Cookbook
https://github.com/PacktPublishing/React-Material-UI-Cookbook
https://github.com/PacktPublishing/React-Material-UI-Cookbook
https://github.com/PacktPublishing/React-Material-UI-Cookbook
https://github.com/PacktPublishing/React-Material-UI-Cookbook
https://github.com/PacktPublishing/React-Material-UI-Cookbook
https://github.com/PacktPublishing/React-Material-UI-Cookbook
https://github.com/PacktPublishing/React-Material-UI-Cookbook
https://github.com/PacktPublishing/React-Material-UI-Cookbook
https://github.com/PacktPublishing/React-Material-UI-Cookbook
https://github.com/PacktPublishing/React-Material-UI-Cookbook
https://github.com/PacktPublishing/React-Material-UI-Cookbook
https://github.com/PacktPublishing/React-Material-UI-Cookbook
https://github.com/PacktPublishing/React-Material-UI-Cookbook
https://github.com/PacktPublishing/React-Material-UI-Cookbook
https://github.com/PacktPublishing/React-Material-UI-Cookbook
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://www.packtpub.com/sites/default/files/downloads/9781789615227_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789615227_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789615227_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789615227_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789615227_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789615227_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789615227_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789615227_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789615227_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789615227_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789615227_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789615227_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789615227_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789615227_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789615227_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789615227_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789615227_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789615227_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789615227_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789615227_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789615227_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/9781789615227_ColorImages.pdf

Preface

[5]

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do
it..., How it works..., There's more..., and See also).

To give clear instructions on how to complete a recipe, use these sections as follows:

Getting ready
This section tells you what to expect in the recipe and describes how to set up any software
or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Preface

[6]

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packt.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

http://www.packt.com/submit-errata
http://authors.packtpub.com/
http://authors.packtpub.com/
http://www.packt.com/

1
Grids - Placing Components on

the Page
In this chapter, we'll cover the following recipes:

Understanding breakpoints
Filling space
Abstracting containers and items
Fixed column layout
Column direction

Introduction
Material-UI grids are used to control the layout of screens in your app. Rather then
implement your own styles to manage the layout of your Material-UI components, you can
leverage the Grid component. Behind the scenes, it uses CSS flexbox properties to handle
flexible layouts.

Applying breakpoints
A breakpoint is used by Material-UI to determine at what point to break the flow of
content on the screen and continue it on the next line. Understanding how to apply
breakpoints with Grid components is fundamental to implementing layouts in Material-UI
applications.

Grids - Placing Components on the Page Chapter 1

[8]

How to do it...
Let's say that you have four elements that you want to lay out on the screen so that they're
evenly spaced and occupy all available horizontal space. The code for this is as follows:

import React from 'react';
import { withStyles } from '@material-ui/core/styles';
import Paper from '@material-ui/core/Paper';
import Grid from '@material-ui/core/Grid';

const styles = theme => ({
 root: {
 flexGrow: 1
 },
 paper: {
 padding: theme.spacing(2),
 textAlign: 'center',
 color: theme.palette.text.secondary
 }
});

const UnderstandingBreakpoints = withStyles(styles)(({ classes }) => (
 <div className={classes.root}>
 <Grid container spacing={4}>
 <Grid item xs={12} sm={6} md={3}>
 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>
 </Grid>
 <Grid item xs={12} sm={6} md={3}>
 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>
 </Grid>
 <Grid item xs={12} sm={6} md={3}>
 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>
 </Grid>
 <Grid item xs={12} sm={6} md={3}>
 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>
 </Grid>
 </Grid>
 </div>
));

export default UnderstandingBreakpoints;

Grids - Placing Components on the Page Chapter 1

[9]

This renders four Paper components. The labels indicate the values used for the xs, sm,
and md properties. Here's what the result looks like:

How it works...
Each of the breakpoint properties that you can pass to Grid components correspond to
screen widths, as follows:

xs >= 0px

sm >= 600px

md >= 960px

lg >= 1280px

xl >= 1920px

The screen shown previously had a pixel width of 725, which means that the Grid
components used the sm breakpoint. The value passed to this property was 6. This can be a
number from 1 to 12 and defines how many items will fit into the grid. This can be
confusing, so it's helpful to think of these numbers in terms of percentages. For example, 6
would be 50% and, as the preceding screenshot shows, the Grid items take up 50% of the
width.

For example, let's say that you want the width of each Grid item to take up 75% of the
screen width when the small breakpoint is active. You could set the sm value to 9 (9/12 =
0.75), as follows:

<div className={classes.root}>
 <Grid container spacing={4}>
 <Grid item xs={12} sm={9} md={3}>
 <Paper className={classes.paper}>xs=12 sm=9 md=3</Paper>
 </Grid>
 <Grid item xs={12} sm={9} md={3}>
 <Paper className={classes.paper}>xs=12 sm=9 md=3</Paper>
 </Grid>
 <Grid item xs={12} sm={9} md={3}>

Grids - Placing Components on the Page Chapter 1

[10]

 <Paper className={classes.paper}>xs=12 sm=9 md=3</Paper>
 </Grid>
 <Grid item xs={12} sm={9} md={3}>
 <Paper className={classes.paper}>xs=12 sm=9 md=3</Paper>
 </Grid>
 </Grid>
</div>

Here's the result when the screen width is still at 725 pixels:

This combination of screen width and breakpoint value isn't optimal – there's a lot of
wasted space to the right. By experimenting, you could make the sm value greater so that
there's less wasted space, or you could make the value smaller so that more items fit on the
row. For example, 6 looked better because exactly 2 items fit on the screen.

Let's take the screen width down to 575 pixels. This will activate the xs breakpoint with a
value of 12 (100%):

Grids - Placing Components on the Page Chapter 1

[11]

This layout works on smaller screens, because it doesn't try to fit too many grid items on
one row.

There's more...
You can use the auto value for every breakpoint value if you're unsure of which value to
use:

<div className={classes.root}>
 <Grid container spacing={4}>
 <Grid item xs="auto" sm="auto" md="auto">
 <Paper className={classes.paper}>
 xs=auto sm=auto md=auto
 </Paper>
 </Grid>
 <Grid item xs="auto" sm="auto" md="auto">
 <Paper className={classes.paper}>
 xs=auto sm=auto md=auto
 </Paper>
 </Grid>
 <Grid item xs="auto" sm="auto" md="auto">
 <Paper className={classes.paper}>
 xs=auto sm=auto md=auto
 </Paper>
 </Grid>
 <Grid item xs="auto" sm="auto" md="auto">
 <Paper className={classes.paper}>
 xs=auto sm=auto md=auto
 </Paper>
 </Grid>
 </Grid>
</div>

This will try to fit as many items as possible on each row. As the screen size changes, items
are rearranged so that they fit on the screen accordingly. Here's what this looks like at a
screen width of 725 pixels:

Grids - Placing Components on the Page Chapter 1

[12]

I would recommend replacing auto with a value from 1–12 at some point. The auto value
is good enough that you can get started on other things without worrying too much about
layout, but it's far from perfect for your production app. At least by setting up auto this
way, you have all of your Grid components and breakpoint properties in place. You just
need to play with the numbers until everything looks good.

See also
Grid API documentation: https:/ /material- ui.com/ api/ grid/

Grid demos: https:/ / material- ui.com/ layout/ grid/

Breakpoint documentation: https:/ / material- ui. com/ layout/ breakpoints/

Filling space
With some layouts, it is impossible to have your grid items occupy the entire width of the
screen. Using the justify property, you can control how grid items fill the available space
in the row.

How to do it...
Let's say that you have four Paper components to render in a grid. Inside each of these
Paper components, you have three Chip components, which are nested grid items.

Here's what the code looks like:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';
import Paper from '@material-ui/core/Paper';
import Grid from '@material-ui/core/Grid';
import Chip from '@material-ui/core/Chip';

const styles = theme => ({
 root: {
 flexGrow: 1
 },
 paper: {
 padding: theme.spacing(2),
 textAlign: 'center',

https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/breakpoints/
https://material-ui.com/layout/breakpoints/
https://material-ui.com/layout/breakpoints/
https://material-ui.com/layout/breakpoints/
https://material-ui.com/layout/breakpoints/
https://material-ui.com/layout/breakpoints/
https://material-ui.com/layout/breakpoints/
https://material-ui.com/layout/breakpoints/
https://material-ui.com/layout/breakpoints/
https://material-ui.com/layout/breakpoints/
https://material-ui.com/layout/breakpoints/
https://material-ui.com/layout/breakpoints/
https://material-ui.com/layout/breakpoints/
https://material-ui.com/layout/breakpoints/

Grids - Placing Components on the Page Chapter 1

[13]

 color: theme.palette.text.secondary
 }
});

const FillingSpace = withStyles(styles)(({ classes, justify }) => (
 <div className={classes.root}>
 <Grid container spacing={4}>
 <Grid item xs={12} sm={6} md={3}>
 <Paper className={classes.paper}>
 <Grid container justify={justify}>
 <Grid item>
 <Chip label="xs=12" />
 </Grid>
 <Grid item>
 <Chip label="sm=6" />
 </Grid>
 <Grid item>
 <Chip label="md=3" />
 </Grid>
 </Grid>
 </Paper>
 </Grid>
 <Grid item xs={12} sm={6} md={3}>
 <Paper className={classes.paper}>
 <Grid container justify={justify}>
 <Grid item>
 <Chip label="xs=12" />
 </Grid>
 <Grid item>
 <Chip label="sm=6" />
 </Grid>
 <Grid item>
 <Chip label="md=3" />
 </Grid>
 </Grid>
 </Paper>
 </Grid>
 <Grid item xs={12} sm={6} md={3}>
 <Paper className={classes.paper}>
 <Grid container justify={justify}>
 <Grid item>
 <Chip label="xs=12" />
 </Grid>
 <Grid item>
 <Chip label="sm=6" />
 </Grid>
 <Grid item>
 <Chip label="md=3" />

Grids - Placing Components on the Page Chapter 1

[14]

 </Grid>
 </Grid>
 </Paper>
 </Grid>
 <Grid item xs={12} sm={6} md={3}>
 <Paper className={classes.paper}>
 <Grid container justify={justify}>
 <Grid item>
 <Chip label="xs=12" />
 </Grid>
 <Grid item>
 <Chip label="sm=6" />
 </Grid>
 <Grid item>
 <Chip label="md=3" />
 </Grid>
 </Grid>
 </Paper>
 </Grid>
 </Grid>
 </div>
));

export default FillingSpace;

The justify property is specified on container Grid components. In this example, it's
the container that contains the Chip components as items. Each container is using the
flex-start value, which will align the Grid items at the start of the container. The result is
as follows:

Grids - Placing Components on the Page Chapter 1

[15]

How it works...
The flex-start value of the justify property aligns all of the Grid items at the start of the
container. In this case, the three Chip components in each of the four containers are all
crammed to the left of the row. None of the space to the left of the items is filled. Instead of
changing the breakpoint property values of these items, which results in changed widths,
you can change the justify property value to tell the Grid container how to fill empty
spaces.

For example, you could use the center value to align Grid items in the center of the
container as follows:

<div className={classes.root}>
 <Grid container spacing={4}>
 <Grid item xs={12} sm={6} md={3}>
 <Paper className={classes.paper}>
 <Grid container justify="center">
 <Grid item>
 <Chip label="xs=12" />
 </Grid>
 <Grid item>
 <Chip label="sm=6" />
 </Grid>
 <Grid item>
 <Chip label="md=3" />
 </Grid>
 </Grid>
 </Paper>
 </Grid>
 <Grid item xs={12} sm={6} md={3}>
 <Paper className={classes.paper}>
 <Grid container justify="center">
 <Grid item>
 <Chip label="xs=12" />
 </Grid>
 <Grid item>
 <Chip label="sm=6" />
 </Grid>
 <Grid item>
 <Chip label="md=3" />
 </Grid>
 </Grid>
 </Paper>
 </Grid>
 <Grid item xs={12} sm={6} md={3}>
 <Paper className={classes.paper}>

Grids - Placing Components on the Page Chapter 1

[16]

 <Grid container justify="center">
 <Grid item>
 <Chip label="xs=12" />
 </Grid>
 <Grid item>
 <Chip label="sm=6" />
 </Grid>
 <Grid item>
 <Chip label="md=3" />
 </Grid>
 </Grid>
 </Paper>
 </Grid>
 <Grid item xs={12} sm={6} md={3}>
 <Paper className={classes.paper}>
 <Grid container justify="center">
 <Grid item>
 <Chip label="xs=12" />
 </Grid>
 <Grid item>
 <Chip label="sm=6" />
 </Grid>
 <Grid item>
 <Chip label="md=3" />
 </Grid>
 </Grid>
 </Paper>
 </Grid>
 </Grid>
</div>

The following screenshot shows what this change to the justify property value results in:

Grids - Placing Components on the Page Chapter 1

[17]

This does a good job of evenly distributing the empty space to the left and right of the Grid
items. But the items still feel crowded because there's no space in between them. Here's
what it looks like if you use the space-around value of the justify property:

This value does the best job of filling all the available space in the Grid container,
without having to change the width of the Grid items.

There's more...
A variation on the space-around value is the space-between value. The two are similar
in that they're effective at filling all of the space in the row. Here's what the example in the
preceding section looks like using space-between:

All of the excess space in the row goes in between the Grid items instead of around them.
In other words, use this value when you want to make sure that there's no empty space to
the left and right of each row.

See also
Grid demos: https:/ / material- ui.com/ layout/ grid/

Grid API documentation: https:/ /material- ui.com/ api/ grid/

https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/

Grids - Placing Components on the Page Chapter 1

[18]

Abstracting containers and items
You have lots of screens in your app, each with lots of Grid components, used to create
complex layouts. Trying to read source code that has a ton of <Grid> elements in it can be
daunting. Especially when a Grid component is used for both containers and for items.

How to do it...
The container or the item property of Grid components determines the role of the
element. You can create two components that use these properties and create an element
name that's easier to read when you have lots of layout components:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';
import Paper from '@material-ui/core/Paper';
import Grid from '@material-ui/core/Grid';

const styles = theme => ({
 root: {
 flexGrow: 1
 },
 paper: {
 padding: theme.spacing(2),
 textAlign: 'center',
 color: theme.palette.text.secondary
 }
});

const Container = props => <Grid container {...props} />;
const Item = props => <Grid item {...props} />;

const AbstractingContainersAndItems = withStyles(styles)(
 ({ classes }) => (
 <div className={classes.root}>
 <Container spacing={4}>
 <Item xs={12} sm={6} md={3}>
 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>
 </Item>
 <Item xs={12} sm={6} md={3}>
 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>
 </Item>
 <Item xs={12} sm={6} md={3}>
 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>
 </Item>

Grids - Placing Components on the Page Chapter 1

[19]

 <Item xs={12} sm={6} md={3}>
 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>
 </Item>
 </Container>
 </div>
)
);

export default AbstractingContainersAndItems;

Here's what the resulting layout looks like:

How it works...
Let's take a closer look at the Container and Item components:

const Container = props => <Grid container {...props} />;
const Item = props => <Grid item {...props} />;

The Container component renders a Grid component with the container property set to
true, and the Item component does the same, except with the item property set to true.
Each component passes any additional properties to the Grid component, such as xs and
sm breakpoints.

When you have lots of Grid containers and items that make up your layout, being able to
see the difference between <Container> and <Item> elements makes your code that much
easier to read. Contrast this with having <Grid> elements everywhere.

Grids - Placing Components on the Page Chapter 1

[20]

There's more...
If you find that you're using the same breakpoints over and over in your layouts, you can
include them in in your higher-order Item component. Let's rewrite the example so that, in
addition to the Item property, the xs, sm, and md properties are included as well:

const Container = props => <Grid container {...props} />;
const Item = props => <Grid item xs={12} sm={6} md={3} {...props} />;

const AbstractingContainersAndItems = withStyles(styles)(
 ({ classes }) => (
 <div className={classes.root}>
 <Container spacing={4}>
 <Item>
 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>
 </Item>
 <Item>
 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>
 </Item>
 <Item>
 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>
 </Item>
 <Item>
 <Paper className={classes.paper}>xs=12 sm=6 md=3</Paper>
 </Item>
 </Container>
 </div>
)
);

Now, instead of four instances of <Item xs={12} sm={6} md={3}>, you have four
instances of <Item>. Component abstractions are a great tool for removing excess syntax
from your JavaScript XML (JSX) markup.

Any time you need to override any of the breakpoint properties that
you've set in the Item component, you just need to pass the property to
Item. For example, if you have a specific case where you need md to be 6,
you can just write <Item md={6}>. This works because, in the Item
component, {...props} is passed after the default values, meaning that
they override any properties with the same name.

Grids - Placing Components on the Page Chapter 1

[21]

See also
Grid demos: https:/ / material- ui.com/ layout/ grid/

Grid API documentation: https:/ /material- ui.com/ api/ grid/

Fixed column layout
When you use Grid components to build your layout, they often result in changes to your
layout, depending on your breakpoint settings and the width of the screen. For example, if
the user makes the browser window smaller, your layout might change from two columns
to three. There might be times, however, when you would prefer a fixed number of
columns, and that the width of each column changes in response to the screen size.

How to do it...
Let's say that you have eight Paper components that you want to render, but you also want
to make sure that there are no more than four columns. Use the following code to do this:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';
import Paper from '@material-ui/core/Paper';
import Grid from '@material-ui/core/Grid';

const styles = theme => ({
 root: {
 flexGrow: 1
 },
 paper: {
 padding: theme.spacing(2),
 textAlign: 'center',
 color: theme.palette.text.secondary
 }
});

const FixedColumnLayout = withStyles(styles)(({ classes, width }) => (
 <div className={classes.root}>
 <Grid container spacing={4}>
 <Grid item xs={width}>
 <Paper className={classes.paper}>xs={width}</Paper>
 </Grid>
 <Grid item xs={width}>

https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/

Grids - Placing Components on the Page Chapter 1

[22]

 <Paper className={classes.paper}>xs={width}</Paper>
 </Grid>
 <Grid item xs={width}>
 <Paper className={classes.paper}>xs={width}</Paper>
 </Grid>
 <Grid item xs={width}>
 <Paper className={classes.paper}>xs={width}</Paper>
 </Grid>
 <Grid item xs={width}>
 <Paper className={classes.paper}>xs={width}</Paper>
 </Grid>
 <Grid item xs={width}>
 <Paper className={classes.paper}>xs={width}</Paper>
 </Grid>
 <Grid item xs={width}>
 <Paper className={classes.paper}>xs={width}</Paper>
 </Grid>
 <Grid item xs={width}>
 <Paper className={classes.paper}>xs={width}</Paper>
 </Grid>
 </Grid>
 </div>
));

export default FixedColumnLayout;

Here's what the result looks like with a pixel width of 725:

Here's what the result looks like with a pixel width of 350:

Grids - Placing Components on the Page Chapter 1

[23]

How it works...
If you want a fixed number of columns, you should only specify the xs breakpoint
property. In this example, 3 is 25% of the screen width – or 4 columns. This will never
change because xs is the smallest breakpoint there is. Anything larger is applied to xs as
well, unless you specify a larger breakpoint.

Let's say that you want two columns. You can set the xs value to 6 as follows:

<div className={classes.root}>
 <Grid container spacing={4}>
 <Grid item xs={6}>
 <Paper className={classes.paper}>xs=6</Paper>
 </Grid>
 <Grid item xs={6}>
 <Paper className={classes.paper}>xs=6</Paper>
 </Grid>
 <Grid item xs={6}>
 <Paper className={classes.paper}>xs=6</Paper>
 </Grid>
 <Grid item xs={6}>
 <Paper className={classes.paper}>xs=6</Paper>
 </Grid>
 <Grid item xs={6}>
 <Paper className={classes.paper}>xs=6</Paper>
 </Grid>
 <Grid item xs={6}>
 <Paper className={classes.paper}>xs=6</Paper>
 </Grid>
 <Grid item xs={6}>
 <Paper className={classes.paper}>xs=6</Paper>
 </Grid>
 <Grid item xs={6}>
 <Paper className={classes.paper}>xs=6</Paper>
 </Grid>
 </Grid>
</div>

Grids - Placing Components on the Page Chapter 1

[24]

Here's what the result looks like at a pixel screen width of 960:

Because you've set the xs value to 6 (50%), these Grid items will only ever use two
columns. The items themselves will change their width to accommodate the screen width,
rather than changing the number of items per row.

There's more...
You can combine different widths in a fixed way. For example, you could have header and
footer Grid items that use a full-width layout, while the Grid items in between use two
columns:

<div className={classes.root}>
 <Grid container spacing={4}>
 <Grid item xs={12}>
 <Paper className={classes.paper}>xs=12</Paper>
 </Grid>
 <Grid item xs={6}>
 <Paper className={classes.paper}>xs=6</Paper>
 </Grid>
 <Grid item xs={6}>
 <Paper className={classes.paper}>xs=6</Paper>
 </Grid>
 <Grid item xs={6}>
 <Paper className={classes.paper}>xs=6</Paper>
 </Grid>
 <Grid item xs={6}>
 <Paper className={classes.paper}>xs=6</Paper>
 </Grid>
 <Grid item xs={6}>
 <Paper className={classes.paper}>xs=6</Paper>
 </Grid>

Grids - Placing Components on the Page Chapter 1

[25]

 <Grid item xs={6}>
 <Paper className={classes.paper}>xs=6</Paper>
 </Grid>
 <Grid item xs={12}>
 <Paper className={classes.paper}>xs=12</Paper>
 </Grid>
 </Grid>
</div>

The first and last Grid components have an xs value of 12 (100%), while the other Grid
items have xs values of 6 (50%) for a two-column layout. Here's what the result looks like
at a pixel width of 725:

See also
Grid demos: https:/ / material- ui.com/ layout/ grid/

Grid API documentation: https:/ /material- ui.com/ api/ grid/

Changing column direction
When using a fixed number of columns for your layout, content flows from left to right.
The first grid item goes in the first column, the second item in the second column, and so
on. There could be times when you need better control over which grid items go into which
columns.

https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/

Grids - Placing Components on the Page Chapter 1

[26]

How to do it...
Let's say that you have a four-column layout, but you want the first and second items to go
in the first column, the third and fourth items in the second, and so on. This involves using
nested Grid containers, and changing the direction property, as follows:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';
import Paper from '@material-ui/core/Paper';
import Grid from '@material-ui/core/Grid';
import Hidden from '@material-ui/core/Hidden';
import Typography from '@material-ui/core/Typography';

const styles = theme => ({
 root: {
 flexGrow: 1
 },
 paper: {
 padding: theme.spacing(2),
 textAlign: 'center',
 color: theme.palette.text.secondary
 }
});

const ColumnDirection = withStyles(styles)(({ classes }) => (
 <div className={classes.root}>
 <Grid container justify="space-around" spacing={4}>
 <Grid item xs={3}>
 <Grid container direction="column" spacing={2}>
 <Grid item>
 <Paper className={classes.paper}>
 <Typography>One</Typography>
 </Paper>
 </Grid>
 <Grid item>
 <Paper className={classes.paper}>
 <Typography>Two</Typography>
 </Paper>
 </Grid>
 </Grid>
 </Grid>
 <Grid item xs={3}>
 <Grid container direction="column" spacing={2}>
 <Grid item>
 <Paper className={classes.paper}>
 <Typography>Three</Typography>

Grids - Placing Components on the Page Chapter 1

[27]

 </Paper>
 </Grid>
 <Grid item>
 <Paper className={classes.paper}>
 <Typography>Four</Typography>
 </Paper>
 </Grid>
 </Grid>
 </Grid>
 <Grid item xs={3}>
 <Grid container direction="column" spacing={2}>
 <Grid item>
 <Paper className={classes.paper}>
 <Typography>Five</Typography>
 </Paper>
 </Grid>
 <Grid item>
 <Paper className={classes.paper}>
 <Typography>Six</Typography>
 </Paper>
 </Grid>
 </Grid>
 </Grid>
 <Grid item xs={3}>
 <Grid container direction="column" spacing={2}>
 <Grid item>
 <Paper className={classes.paper}>
 <Typography>Seven</Typography>
 </Paper>
 </Grid>
 <Grid item>
 <Paper className={classes.paper}>
 <Typography>Eight</Typography>
 </Paper>
 </Grid>
 </Grid>
 </Grid>
 </Grid>
 </div>
));

export default ColumnDirection;

Grids - Placing Components on the Page Chapter 1

[28]

Here's what the result looks like at a pixel width of 725:

Instead of values flowing from left to right, you have complete control over which column
the item is placed in.

You might have noticed that the font looks different, compared to other
examples in this chapter. This is because of the Typography component
used to style the text and apply Material-UI theme styles. Most Material-
UI components that display text don't require you to use Typography, but
Paper does.

How it works...
There's a lot going on with this example, so let's start by taking a look at just the first item in
the Grid code:

<Grid item xs={3}>
 <Grid container direction="column" spacing={2}>
 <Grid item>
 <Paper className={classes.paper}>
 <Typography>One</Typography>
 </Paper>
 </Grid>
 <Grid item>
 <Paper className={classes.paper}>
 <Typography>Two</Typography>
 </Paper>
 </Grid>
 </Grid>
</Grid>

The Grid item is using an xs value of 4, to create the four-column layout. Essentially, these
items are columns. Next, you have a nested Grid container. This container has a
direction property value of column. This is where you can place the Grid items that
belong in this column, and they'll flow from top to bottom, instead of from left to right.
Each column in this grid follows this pattern.

Grids - Placing Components on the Page Chapter 1

[29]

There's more...
There might be times when hiding the rightmost column makes more sense than trying to
accommodate it with the screen width. You can use the Hidden component for this. It's
already imported in the example, as follows:

import Hidden from '@material-ui/core/Hidden';

To use it, you wrap the last column with it. For example, here's what the last column looks
like now:

<Grid item xs={3}>
 <Grid container direction="column" spacing={2}>
 <Grid item>
 <Paper className={classes.paper}>
 <Typography>Seven</Typography>
 </Paper>
 </Grid>
 <Grid item>
 <Paper className={classes.paper}>
 <Typography>Eight</Typography>
 </Paper>
 </Grid>
 </Grid>
</Grid>

If you want to hide this column at a certain breakpoint, you can wrap the column with
Hidden, like this:

<Hidden smDown>
 <Grid item xs={3}>
 <Grid container direction="column" spacing={2}>
 <Grid item>
 <Paper className={classes.paper}>
 <Typography>Seven</Typography>
 </Paper>
 </Grid>
 <Grid item>
 <Paper className={classes.paper}>
 <Typography>Eight</Typography>
 </Paper>
 </Grid>
 </Grid>
 </Grid>
</Hidden>

Grids - Placing Components on the Page Chapter 1

[30]

The smDown property tells the Hidden component to hide its children when the sm
breakpoint or lower is reached. Here's what the result looks like at a pixel width of 1000:

The last column is displayed because the sm breakpoint is smaller than the screen size.
Here's the result at a pixel screen width of 550, without the last column displayed:

See also
Grid demos: https:/ / material- ui.com/ layout/ grid/

Grid API documentation: https:/ /material- ui.com/ api/ grid/

Hidden API documentation: https:/ /material- ui.com/ api/ hidden/

https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/layout/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/grid/
https://material-ui.com/api/hidden/
https://material-ui.com/api/hidden/
https://material-ui.com/api/hidden/
https://material-ui.com/api/hidden/
https://material-ui.com/api/hidden/
https://material-ui.com/api/hidden/
https://material-ui.com/api/hidden/
https://material-ui.com/api/hidden/
https://material-ui.com/api/hidden/
https://material-ui.com/api/hidden/
https://material-ui.com/api/hidden/
https://material-ui.com/api/hidden/
https://material-ui.com/api/hidden/
https://material-ui.com/api/hidden/

2
App Bars - The Top Level of

Every Page
In this chapter, you'll learn about the following recipes:

Fixed position
Hide on scroll
Toolbar abstraction
With navigation

Introduction
App Bars are the anchor point of any Material-UI application. They provide context and are
usually always visible as the user navigates around the application.

Fixed position
You probably want your AppBar component to stay visible at all times. By using fixed
positioning, AppBar components remain visible even as the user scrolls down the page.

How to do it...
You can use the fixed value of the position property. Here's how you do it:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';
import AppBar from '@material-ui/core/AppBar';
import Toolbar from '@material-ui/core/Toolbar';

App Bars - The Top Level of Every Page Chapter 2

[32]

import Typography from '@material-ui/core/Typography';
import Button from '@material-ui/core/Button';
import IconButton from '@material-ui/core/IconButton';
import MenuIcon from '@material-ui/icons/Menu';

const styles = theme => ({
 root: {
 flexGrow: 1
 },
 flex: {
 flex: 1
 },
 menuButton: {
 marginLeft: -12,
 marginRight: 20
 }
});

const FixedPosition = withStyles(styles)(({ classes }) => (
 <div className={classes.root}>
 <AppBar position="fixed">
 <Toolbar>
 <IconButton
 className={classes.menuButton}
 color="inherit"
 aria-label="Menu"
 >
 <MenuIcon />
 </IconButton>
 <Typography
 variant="title"
 color="inherit"
 className={classes.flex}
 >
 Title
 </Typography>
 <Button color="inherit">Login</Button>
 </Toolbar>
 </AppBar>

 {new Array(500).fill(null).map((v, i) => (
 <li key={i}>{i}
))}

 </div>
));

export default FixedPosition;

App Bars - The Top Level of Every Page Chapter 2

[33]

Here's what the resulting AppBar component looks like:

How it works...
If you scroll down, you'll see how the AppBar component stays fixed, and the content scrolls
behind it. Here's what it looks like if you scroll to the bottom of the page in this example:

The position property defaults to fixed. However, explicitly setting this property can
help readers better understand your code.

App Bars - The Top Level of Every Page Chapter 2

[34]

There's more...
When the screen in this example first loads, some of the content is hidden behind the
AppBar component. This is because the position is fixed and it has a higher z-index value
than the regular content. This is expected, so that when you scroll, the regular content goes
behind the AppBar component. The solution is to add a top margin to your content. The
problem is that you don't necessarily know the height of the AppBar.

You could just set a value that looks good. A better solution is to use the toolbar mixin
styles. You can access this mixin object by making styles a function that returns an object.
Then, you'll have access to the theme argument, which has a toolbar mixin object.

Here's what styles should be changed to:

const styles = theme => ({
 root: {
 flexGrow: 1
 },
 flex: {
 flex: 1
 },
 menuButton: {
 marginLeft: -12,
 marginRight: 20
 },
 toolbarMargin: theme.mixins.toolbar
});

The new style that's added is toolbarMargin. Notice that this is using the value from
theme.mixins.toolbar, which is why you're using a function now – so that you can
access theme. Here's what the theme.mixins.toolbar value looks like:

{
 "minHeight": 56,
 "@media (min-width:0px) and (orientation: landscape)": {
 "minHeight": 48
 },
 "@media (min-width:600px)": {
 "minHeight": 64
 }
}

App Bars - The Top Level of Every Page Chapter 2

[35]

The last step is to add a <div> element to the content underneath the AppBar component
where this new toolbarMargin style can be applied:

<div className={classes.root}>
 <AppBar position="fixed">
 <Toolbar>
 <IconButton
 className={classes.menuButton}
 color="inherit"
 aria-label="Menu"
 >
 <MenuIcon />
 </IconButton>
 <Typography
 variant="title"
 color="inherit"
 className={classes.flex}
 >
 Title
 </Typography>
 <Button color="inherit">Login</Button>
 </Toolbar>
 </AppBar>
 <div className={classes.toolbarMargin} />

 {new Array(500).fill(null).map((v, i) => <li key={i}>{i})}

</div>

Now, the beginning of the content is no longer hidden by the AppBar component when the
screen first loads:

App Bars - The Top Level of Every Page Chapter 2

[36]

See also
Guide to CSS positioning: https:/ /developer. mozilla. org/ en-US/ docs/ Learn/
CSS/CSS_ layout/ Positioning

AppBar demos: https:/ / material- ui.com/ demos/ app- bar/

AppBar API documentation: https:/ /material- ui.com/ api/ app- bar/

Toolbar API documentation: https:/ /material- ui.com/ api/ toolbar/

Hide on scroll
If you have a lot of content on your screen that requires the user to scroll vertically, the App
Bar could be a distraction. One solution is to hide the AppBar component while the user is
scrolling down.

How to do it...
To hide the AppBar component while the user is scrolling down, you have to know when
the user is scrolling. This requires listening to the scroll event on the window object. You
can implement a component that listens to this event and hides the AppBar component
while scrolling. Here's how it's done:

import React, { Component } from 'react';
import { withStyles } from '@material-ui/core/styles';
import AppBar from '@material-ui/core/AppBar';
import Toolbar from '@material-ui/core/Toolbar';
import Typography from '@material-ui/core/Typography';
import Button from '@material-ui/core/Button';
import IconButton from '@material-ui/core/IconButton';
import MenuIcon from '@material-ui/icons/Menu';
import Fade from '@material-ui/core/Fade';

const styles = theme => ({
 root: {
 flexGrow: 1
 },
 flex: {
 flex: 1
 },
 menuButton: {
 marginLeft: -12,
 marginRight: 20

https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://developer.mozilla.org/en-US/docs/Learn/CSS/CSS_layout/Positioning
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/

App Bars - The Top Level of Every Page Chapter 2

[37]

 },
 toolbarMargin: theme.mixins.toolbar
});

const ScrolledAppBar = withStyles(styles)(
 class extends Component {
 state = {
 scrolling: false,
 scrollTop: 0
 };

 onScroll = e => {
 this.setState(state => ({
 scrollTop: e.target.documentElement.scrollTop,
 scrolling:
 e.target.documentElement.scrollTop > state.scrollTop
 }));
 };

 shouldComponentUpdate(props, state) {
 return this.state.scrolling !== state.scrolling;
 }

 componentDidMount() {
 window.addEventListener('scroll', this.onScroll);
 }

 componentWillUnmount() {
 window.removeEventListener('scroll', this.onScroll);
 }

 render() {
 const { classes } = this.props;

 return (
 <Fade in={!this.state.scrolling}>
 <AppBar>
 <Toolbar>
 <IconButton
 className={classes.menuButton}
 color="inherit"
 aria-label="Menu"
 >
 <MenuIcon />
 </IconButton>
 <Typography
 variant="h6"
 color="inherit"

App Bars - The Top Level of Every Page Chapter 2

[38]

 className={classes.flex}
 >
 My Title
 </Typography>
 <Button color="inherit">Login</Button>
 </Toolbar>
 </AppBar>
 </Fade>
);
 }
 }
);

const AppBarWithButtons = withStyles(styles)(
 ({ classes, title, buttonText }) => (
 <div className={classes.root}>
 <ScrolledAppBar />
 <div className={classes.toolbarMargin} />

 {new Array(500).fill(null).map((v, i) => (
 <li key={i}>{i}
))}

 </div>
)
);

export default AppBarWithButtons;

When you first load the screen, the toolbar and content appear as usual:

App Bars - The Top Level of Every Page Chapter 2

[39]

When you scroll down, the AppBar component disappears, allowing more space for the
content to be viewed. Here's what the screen looks like when you scroll to the very bottom:

The AppBar component will reappear as soon as you start scrolling back up.

How it works...
Let's take a look at the state method and the onScroll() method of the
ScrolledAppBar component:

state = {
 scrolling: false,
 scrollTop: 0
};

onScroll = e => {
 this.setState(state => ({
 scrollTop: e.target.documentElement.scrollTop,
 scrolling:
 e.target.documentElement.scrollTop > state.scrollTop
 }));
};

componentDidMount() {
 window.addEventListener('scroll', this.onScroll);
}

componentWillUnmount() {
 window.removeEventListener('scroll', this.onScroll);
}

When the component mounts, the onScroll() method is added as a listener to the scroll
event on the window object. The scrolling state is a Boolean value that hides the
AppBar component when true. The scrollTop state is the position of the previous scroll
event. The onScroll() method figures out whether the user is scrolling by checking if the
new scroll position is greater than the last scroll position.

App Bars - The Top Level of Every Page Chapter 2

[40]

Next, let's take a look at the Fade component that's used to hide the AppBar component
when scrolling, as follows:

<Fade in={!this.state.scrolling}>
 <AppBar>
 <Toolbar>
 <IconButton
 className={classes.menuButton}
 color="inherit"
 aria-label="Menu"
 >
 <MenuIcon />
 </IconButton>
 <Typography
 variant="title"
 color="inherit"
 className={classes.flex}
 >
 My Title
 </Typography>
 <Button color="inherit">Login</Button>
 </Toolbar>
 </AppBar>
</Fade>

The in property tells the Fade component to fade its children, in, when the value is true. In
this example, the condition is true when the scrolling state is false.

There's more...
Instead of fading the AppBar component in and out when the user scrolls, you can use a
different effect. For example, the following code block demonstrates what it would look like
if you wanted to use the Grow effect:

<Grow in={!this.state.scrolling}>
 <AppBar>
 <Toolbar>
 <IconButton
 className={classes.menuButton}
 color="inherit"
 aria-label="Menu"
 >
 <MenuIcon />
 </IconButton>
 <Typography

App Bars - The Top Level of Every Page Chapter 2

[41]

 variant="title"
 color="inherit"
 className={classes.flex}
 >
 My Title
 </Typography>
 <Button color="inherit">Login</Button>
 </Toolbar>
 </AppBar>
</Grow>

See also
Fade API documentation: https:/ /material- ui.com/ api/ fade/

Grow API documentation: https:/ /material- ui.com/ api/ grow/

Slide API documentation: https:/ /material- ui.com/ api/ slide/

Toolbar abstraction
Toolbar code can get verbose if you have to render toolbars in several places. To address
this, you can create your own Toolbar component that encapsulates the content patterns of
toolbars, making it easier to render AppBar components in several places.

How to do it...
Let's assume that your app renders AppBar components on several screens. Each
AppBar component also renders Menu and title to the left, as well as Button to the right.
Here's how you can implement your own AppBar component so that it's easier to use on
several screens:

import React, { Fragment, Component } from 'react';

import { withStyles } from '@material-ui/core/styles';
import AppBar from '@material-ui/core/AppBar';
import Toolbar from '@material-ui/core/Toolbar';
import Typography from '@material-ui/core/Typography';
import Button from '@material-ui/core/Button';
import IconButton from '@material-ui/core/IconButton';
import MenuIcon from '@material-ui/icons/Menu';
import Menu from '@material-ui/core/Menu';

https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/

App Bars - The Top Level of Every Page Chapter 2

[42]

import MenuItem from '@material-ui/core/MenuItem';

const styles = theme => ({
 root: {
 flexGrow: 1
 },
 flex: {
 flex: 1
 },
 menuButton: {
 marginLeft: -12,
 marginRight: 20
 },
 toolbarMargin: theme.mixins.toolbar
});

const MyToolbar = withStyles(styles)(
 class extends Component {
 static defaultProps = {
 MenuItems: ({ closeMenu }) => (
 <Fragment>
 <MenuItem onClick={closeMenu}>Profile</MenuItem>
 <MenuItem onClick={closeMenu}>My account</MenuItem>
 <MenuItem onClick={closeMenu}>Logout</MenuItem>
 </Fragment>
),
 RightButton: () => <Button color="inherit">Login</Button>
 };

 state = { anchor: null };

 closeMenu = () => this.setState({ anchor: null });

 render() {
 const { classes, title, MenuItems, RightButton } = this.props;

 return (
 <Fragment>
 <AppBar>
 <Toolbar>
 <IconButton
 className={classes.menuButton}
 color="inherit"
 aria-label="Menu"
 onClick={e =>
 this.setState({ anchor: e.currentTarget })
 }
 >

App Bars - The Top Level of Every Page Chapter 2

[43]

 <MenuIcon />
 </IconButton>
 <Menu
 anchorEl={this.state.anchor}
 open={Boolean(this.state.anchor)}
 onClose={this.closeMenu}
 >
 <MenuItems closeMenu={this.closeMenu} />
 </Menu>
 <Typography
 variant="title"
 color="inherit"
 className={classes.flex}
 >
 {title}
 </Typography>
 <RightButton />
 </Toolbar>
 </AppBar>
 <div className={classes.toolbarMargin} />
 </Fragment>
);
 }
 }
);

const ToolbarAbstraction = withStyles(styles)(
 ({ classes, ...props }) => (
 <div className={classes.root}>
 <MyToolbar {...props} />
 </div>
)
);

export default ToolbarAbstraction;

Here's what the resulting toolbar looks like:

App Bars - The Top Level of Every Page Chapter 2

[44]

And here's what the menu looks like when the user clicks on the menu button beside the
title:

How it works...
Let's start by looking at the render() method of the MyToolbar component, as follows:

render() {
 const { classes, title, MenuItems, RightButton } = this.props;

 return (
 <Fragment>
 <AppBar>
 <Toolbar>
 <IconButton
 className={classes.menuButton}
 color="inherit"
 aria-label="Menu"
 onClick={e =>
 this.setState({ anchor: e.currentTarget })
 }
 >
 <MenuIcon />
 </IconButton>
 <Menu
 anchorEl={this.state.anchor}
 open={Boolean(this.state.anchor)}
 onClose={this.closeMenu}
 >
 <MenuItems closeMenu={this.closeMenu} />
 </Menu>
 <Typography
 variant="title"
 color="inherit"
 className={classes.flex}

App Bars - The Top Level of Every Page Chapter 2

[45]

 >
 {title}
 </Typography>
 <RightButton />
 </Toolbar>
 </AppBar>
 <div className={classes.toolbarMargin} />
 </Fragment>
);
}

This is where the AppBar component and the Toolbar components from Material-UI are
rendered. A Fragment component is used because two elements are returned: the
AppBar component and the <div> element that sets the top margin for the page content.
Within the toolbar, you have the following:

The menu button that displays the menu when clicked
The menu itself
The title
The right-side button

From the MyToolbar properties, there are two components that render() uses:
MenuItems and RightButton. In addition to the title prop, these are the parts of the
AppBar component that you want to customize. The approach here is to define default
values for these properties so that the AppBar component can be rendered:

static defaultProps = {
 MenuItems: ({ closeMenu }) => (
 <Fragment>
 <MenuItem onClick={closeMenu}>Profile</MenuItem>
 <MenuItem onClick={closeMenu}>My account</MenuItem>
 <MenuItem onClick={closeMenu}>Logout</MenuItem>
 </Fragment>
),
 RightButton: () => <Button color="inherit">Login</Button>
};

You can pass custom values to these properties when you render MyToolbar. The defaults
used here could be the values used for the home screen, for example.

You don't actually have to provide default values for these properties. But
if you do, for the home screen, say, then it's easier for other developers to
look at your code and understand how it works.

App Bars - The Top Level of Every Page Chapter 2

[46]

There's more...
Let's try setting some custom menu items and right-side buttons, using the MenuItems and
RightButton properties respectively:

const ToolbarAbstraction = withStyles(styles)(
 ({ classes, ...props }) => (
 <div className={classes.root}>
 <MyToolbar
 MenuItems={({ closeMenu }) => (
 <Fragment>
 <MenuItem onClick={closeMenu}>Page 1</MenuItem>
 <MenuItem onClick={closeMenu}>Page 2</MenuItem>
 <MenuItem onClick={closeMenu}>Page 3</MenuItem>
 </Fragment>
)}
 RightButton={() => (
 <Button color="secondary" variant="contained">
 Logout
 </Button>
)}
 {...props}
 />
 </div>
)
);

Here is what the toolbar looks like when rendered:

Here is what the menu looks like with the custom menu options:

App Bars - The Top Level of Every Page Chapter 2

[47]

The values that you're passing to MenuItems and RightButton are
functions that return React elements. These functions are actually
functional components that you're creating on the fly.

See also
AppBar demos: https:/ / material- ui.com/ demos/ app- bar/

AppBar API documentation: https:/ /material- ui.com/ api/ app- bar/

Toolbar API documentation: https:/ /material- ui.com/ api/ toolbar/

With navigation
Material-UI apps are typically made up of several pages that are linked together using a
router, such as react-router. Each page renders an App Bar that has information specific
to that page. This is one example of when the abstraction that you created in the Toolbar
abstraction recipe comes in handy.

How to do it...
Let's say that you're building an app that has three pages. On each page, you want to
render an App Bar with the title prop of the page. Furthermore, the menu in the App
Bar should contain links to the three pages. Here's how to do it:

import React, { Fragment, Component } from 'react';
import {
 BrowserRouter as Router,
 Route,
 Link
} from 'react-router-dom';

import { withStyles } from '@material-ui/core/styles';
import AppBar from '@material-ui/core/AppBar';
import Toolbar from '@material-ui/core/Toolbar';
import Typography from '@material-ui/core/Typography';
import Button from '@material-ui/core/Button';
import IconButton from '@material-ui/core/IconButton';
import MenuIcon from '@material-ui/icons/Menu';
import Menu from '@material-ui/core/Menu';
import MenuItem from '@material-ui/core/MenuItem';

https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/

App Bars - The Top Level of Every Page Chapter 2

[48]

const styles = theme => ({
 root: {
 flexGrow: 1
 },
 flex: {
 flex: 1
 },
 menuButton: {
 marginLeft: -12,
 marginRight: 20
 },
 toolbarMargin: theme.mixins.toolbar
});

const MyToolbar = withStyles(styles)(
 class extends Component {
 static defaultProps = {
 MenuItems: () => (
 <Fragment>
 <MenuItem component={Link} to="/">
 Home
 </MenuItem>
 <MenuItem component={Link} to="/page2">
 Page 2
 </MenuItem>
 <MenuItem component={Link} to="/page3">
 Page 3
 </MenuItem>
 </Fragment>
),
 RightButton: () => <Button color="inherit">Login</Button>
 };

 state = { anchor: null };

 closeMenu = () => this.setState({ anchor: null });

 render() {
 const { classes, title, MenuItems, RightButton } = this.props;

 return (
 <Fragment>
 <AppBar>
 <Toolbar>
 <IconButton
 className={classes.menuButton}
 color="inherit"
 aria-label="Menu"

App Bars - The Top Level of Every Page Chapter 2

[49]

 onClick={e =>
 this.setState({ anchor: e.currentTarget })
 }
 >
 <MenuIcon />
 </IconButton>
 <Menu
 anchorEl={this.state.anchor}
 open={Boolean(this.state.anchor)}
 onClose={this.closeMenu}
 >
 <MenuItems />
 </Menu>
 <Typography
 variant="title"
 color="inherit"
 className={classes.flex}
 >
 {title}
 </Typography>
 <RightButton />
 </Toolbar>
 </AppBar>
 <div className={classes.toolbarMargin} />
 </Fragment>
);
 }
 }
);

const WithNavigation = withStyles(styles)(({ classes }) => (
 <div className={classes.root}>
 <Route
 exact
 path="/"
 render={() => (
 <Fragment>
 <MyToolbar title="Home" />
 <Typography>Home</Typography>
 </Fragment>
)}
 />
 <Route
 exact
 path="/page2"
 render={() => (
 <Fragment>
 <MyToolbar title="Page 2" />

App Bars - The Top Level of Every Page Chapter 2

[50]

 <Typography>Page 2</Typography>
 </Fragment>
)}
 />
 <Route
 exact
 path="/page3"
 render={() => (
 <Fragment>
 <MyToolbar title="Page 3" />
 <Typography>Page 3</Typography>
 </Fragment>
)}
 />
 </div>
));

export default WithNavigation;

Here's what you'll see when you first load the app:

Here's what the menu in the App Bar looks like when it's opened:

Try clicking on Page 2; here's what you should see:

App Bars - The Top Level of Every Page Chapter 2

[51]

The title of the App Bar has changed to reflect the title of the page, and the content of the
page has also changed.

How it works...
Let's start by taking a look at the Routes component that define the pages in your app, as
follows:

const WithNavigation = withStyles(styles)(({ classes }) => (
 <div className={classes.root}>
 <Route
 exact
 path="/"
 render={() => (
 <Fragment>
 <MyToolbar title="Home" />
 <Typography>Home</Typography>
 </Fragment>
)}
 />
 <Route
 exact
 path="/page2"
 render={() => (
 <Fragment>
 <MyToolbar title="Page 2" />
 <Typography>Page 2</Typography>
 </Fragment>
)}
 />
 <Route
 exact
 path="/page3"
 render={() => (
 <Fragment>
 <MyToolbar title="Page 3" />
 <Typography>Page 3</Typography>
 </Fragment>
)}
 />
 </div>
));

App Bars - The Top Level of Every Page Chapter 2

[52]

Each Route component (from the react-router package) corresponds to a page in your
app. They have a path property that matches the path in the browser address bar. When
there's a match, this Routes component' content is rendered. For example, when the path is
/page3, the content for the Route component where path="/page3" is rendered.

Each Route component also defines a render() function. This is called when its path is
matched and the returned content is rendered. The Routes component in your app each
render MyToolbar with a different value for the title prop.

Next, let's take a look at the menu items that make up the MenuItems default property
value, as follows:

static defaultProps = {
 MenuItems: () => (
 <Fragment>
 <MenuItem component={Link} to="/">
 Home
 </MenuItem>
 <MenuItem component={Link} to="/page2">
 Page 2
 </MenuItem>
 <MenuItem component={Link} to="/page3">
 Page 3
 </MenuItem>
 </Fragment>
),
 RightButton: () => <Button color="inherit">Login</Button>
};

Each of these MenuItems properties is a link that points to each of the Routes component
declared by your app. The MenuItem component accepts a component property that is
used to render the link. In this example, you're passing it the Link component from the
react-router-dom package. The MenuItem component will forward any additional
properties to the Link component, which means that you can can pass the to property to
the MenuItem component and it's as though you're passing it to the Link component.

There's more...
Most of the time, the screens that make up your app will follow the same pattern. Rather
than have repetitive code in the render property of your routes, you can create a higher-
order function that accepts arguments for the unique parts of the screen and returns a new
component that can be used by the render prop.

App Bars - The Top Level of Every Page Chapter 2

[53]

In this example, the only two pieces of data that are unique to each screen are the title and
the content text. Here's a generic function that builds a new functional component that can
be used with every Route component in the app:

const screen = (title, content) => () => (
 <Fragment>
 <MyToolbar title={title} />
 <Typography>{content}</Typography>
 </Fragment>
);

To use this function, call it in the render property, such as in the following code block:

export default withStyles(styles)(({ classes }) => (
 <div className={classes.root}>
 <Route exact path="/" render={screen('Home', 'Home')} />
 <Route exact path="/page2" render={screen('Page 2', 'Page 2')} />
 <Route exact path="/page3" render={screen('Page 3', 'Page 3')} />
 </div>
));

Now you have a clear separation of the static screen structure that stays the same for
every screen in the app, and the pieces that are unique to each screen that passed as
arguments to the screen() function.

See also
React Router documentation: https:/ /reacttraining. com/ react- router/

AppBar demos: https:/ / material- ui.com/ demos/ app- bar/

AppBar API documentation: https://material-ui.com/api/app-bar/

https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/api/app-bar/

3
Drawers - A Place for

Navigation Controls
 In this chapter, you'll learn about the following recipes:

Drawer types
Drawer item state
Drawer item navigation
Drawer sections
AppBar interaction

Introduction
Material-UI uses drawers to present the user with the main navigation of the app. The
Drawer component acts like a physical drawer that can move out of view when it is not
being used.

Drawer types
There are three types of Drawer components that you'll use in your app, as follows:

Temporary: A transient drawer that closes when an action is taken.
Persistent: A drawer that can be opened and stays open until explicitly closed.
Permanent: A drawer that is always visible.

Drawers - A Place for Navigation Controls Chapter 3

[55]

How to do it...
Let's say that you want to support different types of drawers in your app. You can control
the Drawer component type using the variant property. Here's the code:

import React, { useState } from 'react';

import Drawer from '@material-ui/core/Drawer';
import Grid from '@material-ui/core/Grid';
import Button from '@material-ui/core/Button';
import List from '@material-ui/core/List';
import ListItem from '@material-ui/core/ListItem';
import ListItemIcon from '@material-ui/core/ListItemIcon';
import ListItemText from '@material-ui/core/ListItemText';

export default function DrawerTypes({ classes, variant }) {
 const [open, setOpen] = useState(false);

 return (
 <Grid container justify="space-between">
 <Grid item>
 <Drawer
 variant={variant}
 open={open}
 onClose={() => setOpen(false)}
 >
 <List>
 <ListItem
 button
 onClick={() => setOpen(false)}
 >
 <ListItemText>Home</ListItemText>
 </ListItem>
 <ListItem
 button
 onClick={() => setOpen(false)}
 >
 <ListItemText>Page 2</ListItemText>
 </ListItem>
 <ListItem
 button
 onClick={() => setOpen(false)}
 >
 <ListItemText>Page 3</ListItemText>
 </ListItem>
 </List>
 </Drawer>
 </Grid>

Drawers - A Place for Navigation Controls Chapter 3

[56]

 <Grid item>
 <Button onClick={() => setOpen(!open)}>
 {open ? 'Hide' : 'Show'} Drawer
 </Button>
 </Grid>
 </Grid>
);
}

The variant property defaults to temporary. When you first load this screen, you'll only
see the button to toggle the drawer display:

When you click on this button, you'll see a temporary drawer:

How it works...
Before you start changing the variant property, let's walk through the code in this
example, starting with the Drawer markup, as follows:

<Drawer
 variant={variant}
 open={open}
 onClose={() => setOpen(false)}
>
 <List>
 <ListItem
 button
 onClick={() => setOpen(false)}
 >
 <ListItemText>Home</ListItemText>
 </ListItem>
 <ListItem

Drawers - A Place for Navigation Controls Chapter 3

[57]

 button
 onClick={() => setOpen(false)}
 >
 <ListItemText>Page 2</ListItemText>
 </ListItem>
 <ListItem
 button
 onClick={() => setOpen(false)}
 >
 <ListItemText>Page 3</ListItemText>
 </ListItem>
 </List>
</Drawer>

The Drawer component takes an open property, which displays the drawer when true. The
variant property determines the type of drawer to render. The screenshot shown
previously is a temporary drawer, the default variant value. The Drawer component
has List as its child, where each of the items displayed in the drawer are rendered.

Next, let's take a look at the Button component that toggles the display of the Drawer
component:

<Button onClick={() => setOpen(!open)}>
 {open ? 'Hide' : 'Show'} Drawer
</Button>

When this button is clicked, the open state of your component is toggled. Likewise, the text
of the button is toggled depending on the value of the open state.

Now let's try changing the value of the variant property to permanent. Here's what the
drawer looks like when rendered:

Drawers - A Place for Navigation Controls Chapter 3

[58]

A permanent drawer, as the name suggests, is always visible and is always in the same
place on the screen. If you click on the SHOW DRAWER button, the open state of your
component is toggled to true. You'll see the text of the button change, but since the Drawer
component is using the permanent variant, the open property has no effect:

Next, let's try the persistent variant. Persistent drawers are similar to permanent
drawers in that they stay visible on the screen while the user interacts with the app, and
they're similar to temporary drawers in that they can be hidden by changing the open
property.

Let's change the variant property to persistent. When the screen first loads, the drawer
isn't visible because the open state of your component is false. Try clicking on the SHOW
DRAWER button. The drawer is displayed, and it looks like the permanent drawer. If you
click the HIDE DRAWER button, the open state of your component is toggled to false
and the drawer is hidden.

Persistent drawers should be used when you want the user to be able to control the
visibility of the drawer. For example, with temporary drawers the user can close the drawer
by clicking on the overlay or by hitting the Esc key. Permanent drawers are useful when
you want to use the left-hand navigation as an integral part of the page layout—they are
always visible and other items are laid out around them.

There's more...
When you click on any of the items in the drawer, the event handlers set the open state of
your component to false. This might not be what you want and could potentially confuse
your users. For example, if you're using a persistent drawer, your app probably has a
button outside of the drawer that controls the visibility of the drawer. If the user clicks on a
drawer item, they're probably not expecting the drawer to close.

Drawers - A Place for Navigation Controls Chapter 3

[59]

To address this issue, your event handlers can take into consideration a variant of the
Drawer component:

<List>
 <ListItem
 button
 onClick={() => setOpen(variant !== 'temporary')}
 >
 <ListItemText>Home</ListItemText>
 </ListItem>
 <ListItem
 button
 onClick={() => setOpen(variant !== 'temporary')}
 >
 <ListItemText>Page 2</ListItemText>
 </ListItem>
 <ListItem
 button
 onClick={() => setOpen(variant !== 'temporary')}
 >
 <ListItemText>Page 3</ListItemText>
 </ListItem>
</List>

Now, when you click on any of these items, the open state is only changed to false if the
variant property is temporary.

See also
Drawer demos: https:/ / material- ui.com/ demos/ drawers/

Drawer API documentation: https:/ /material- ui.com/ api/ drawer/

Drawer item state
The items that are rendered in Drawer components are rarely static. Instead, the drawer
items are rendered based on the state of your component, allowing for more control over
how items are displayed.

https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/

Drawers - A Place for Navigation Controls Chapter 3

[60]

How to do it...
Let's say that you have a component that renders drawer navigation using the Drawer
component. Instead of writing the items state directly in the component markup, you want
to have the items state stored in the state of the component. For example, in response to
permission checks on the user, items might be disabled or completely hidden.

Here's an example that uses an array of item objects from the component state:

import React, { useState } from 'react';

import Drawer from '@material-ui/core/Drawer';
import Grid from '@material-ui/core/Grid';
import Button from '@material-ui/core/Button';
import List from '@material-ui/core/List';
import ListItem from '@material-ui/core/ListItem';
import ListItemIcon from '@material-ui/core/ListItemIcon';
import ListItemText from '@material-ui/core/ListItemText';
import Typography from '@material-ui/core/Typography';

import HomeIcon from '@material-ui/icons/Home';
import WebIcon from '@material-ui/icons/Web';

export default function DrawerItemState() {
 const [open, setOpen] = useState(false);
 const [content, setContent] = useState('Home');
 const [items] = useState([
 { label: 'Home', Icon: HomeIcon },
 { label: 'Page 2', Icon: WebIcon },
 { label: 'Page 3', Icon: WebIcon, disabled: true },
 { label: 'Page 4', Icon: WebIcon },
 { label: 'Page 5', Icon: WebIcon, hidden: true }
]);

 const onClick = content => () => {
 setOpen(false);
 setContent(content);
 };

 return (
 <Grid container justify="space-between">
 <Grid item>
 <Typography>{content}</Typography>
 </Grid>
 <Grid item>
 <Drawer open={open} onClose={() => setOpen(false)}>
 <List>

Drawers - A Place for Navigation Controls Chapter 3

[61]

 {items
 .filter(({ hidden }) => !hidden)
 .map(({ label, disabled, Icon }, i) => (
 <ListItem
 button
 key={i}
 disabled={disabled}
 onClick={onClick(label)}
 >
 <ListItemIcon>
 <Icon />
 </ListItemIcon>
 <ListItemText>{label}</ListItemText>
 </ListItem>
))}
 </List>
 </Drawer>
 </Grid>

 <Grid item>
 <Button onClick={() => setOpen(!open)}>
 {open ? 'Hide' : 'Show'} Drawer
 </Button>
 </Grid>
 </Grid>
);
}

This is what the drawer looks like when you click on the SHOW DRAWER button:

If you select one of these items, the drawer will close and the content of the screen will be
updated; for example, after clicking on Page 2, you should see something similar to the
following screenshot:

Drawers - A Place for Navigation Controls Chapter 3

[62]

How it works...
Let's start by looking at the state of your component:

const [open, setOpen] = useState(false);
const [content, setContent] = useState('Home');
const [items] = useState([
 { label: 'Home', Icon: HomeIcon },
 { label: 'Page 2', Icon: WebIcon },
 { label: 'Page 3', Icon: WebIcon, disabled: true },
 { label: 'Page 4', Icon: WebIcon },
 { label: 'Page 5', Icon: WebIcon, hidden: true }
]);

The open state controls the visibility of the Drawer component, and the content state is
the text that's displayed on the screen depending on which drawer item is clicked on. The
items state is an array of objects that is used to render the drawer items. Every object has a
label property and an Icon property that are used to render the item text and icon
respectively.

The Icon property is capitalized in order to maintain the React
convention of capitalizing components. This makes it easier to
differentiate React components from other data when reading the code.

The disabled property is used to render the item as disabled; for example, Page 3 is
marked as disabled by setting this property to true:

This could be due to permission restrictions for the user on this particular page, or some
other reason. Because this is controlled through the component state instead of rendered
statically, you could update the disabled state for any menu item at any time using any
mechanism that you like, such as an API call. The hidden property uses the same principle,
except when this value is true, the item isn't rendered at all. In this example, Page 5 isn't
rendered because it's marked as hidden.

Drawers - A Place for Navigation Controls Chapter 3

[63]

Next, let's look at how the List items are rendered based on the items state, as follows:

<List>
 {items
 .filter(({ hidden }) => !hidden)
 .map(({ label, disabled, Icon }, i) => (
 <ListItem
 button
 key={i}
 disabled={disabled}
 onClick={onClick(label)}
 >
 <ListItemIcon>
 <Icon />
 </ListItemIcon>
 <ListItemText>{label}</ListItemText>
 </ListItem>
))}
</List>

First, the items array is filtered to remove hidden items. Then, map() is used to render
each ListItem component. The disabled property is passed to ListItem and it will be
visibly disabled when rendered. The Icon component also comes from the list item state.
The onClick() event handler hides the drawer and updates the content label.

The onClick() handler isn't executed when disabled list items are
clicked on.

There's more...
You might want to separate the rendering of list items into its own component. This way,
you can use the list items in other places. For example, you might want to use the same
rendering logic to render a list of buttons elsewhere in your app. Here's an example of how
you can extract the ListItems component into its own component:

const ListItems = ({ items, onClick }) =>
 items
 .filter(({ hidden }) => !hidden)
 .map(({ label, disabled, Icon }, i) => (
 <ListItem
 button
 key={i}
 disabled={disabled}

Drawers - A Place for Navigation Controls Chapter 3

[64]

 onClick={onClick(label)}
 >
 <ListItemIcon>
 <Icon />
 </ListItemIcon>
 <ListItemText>{label}</ListItemText>
 </ListItem>
));

The ListItems component will return an array of ListItem components. It takes the
items state to render as an array property. It also takes an onClick() function property.
This is a higher-order function that takes the label component to display as an argument
and returns a new function that will update the content when the item is clicked on.

Here's what the new JSX markup looks like, updated to use the new ListItems
component:

<Grid container justify="space-between">
 <Grid item>
 <Typography>{content}</Typography>
 </Grid>
 <Grid item>
 <Drawer open={open} onClose={() => setOpen(false)}>
 <List>
 <ListItems items={items} onClick={onClick} />
 </List>
 </Drawer>
 </Grid>

 <Grid item>
 <Button onClick={() => setOpen(!open)}>
 {open ? 'Hide' : 'Show'} Drawer
 </Button>
 </Grid>
</Grid>

There is no more list item rendering code in this component. Instead, ListItems is
rendered as the child of List. You pass it the items to render and the onClick() handler.
You now have a generic ListItems component that can be used anywhere that you show
lists in your app. It will consistently handle the Icon, disabled, and display logic
wherever it is used.

Drawers - A Place for Navigation Controls Chapter 3

[65]

See also
Drawer demos: https:/ / material- ui.com/ demos/ drawers/

Drawer API documentation: https:/ /material- ui.com/ api/ drawer/

Drawer item navigation
If your Material-UI app uses a router such as react-router to navigate from page to page,
you'll probably want links as your Drawer items. To do so, you have to integrate
components from the react-router-dom package.

How to do it...
Let's say that your app is composed of three pages. To navigate from page to page, you
want to provide your users with links in the Drawer component. Here's what the code
looks like:

import React, { useState } from 'react';
import { Route, Link } from 'react-router-dom';

import { withStyles } from '@material-ui/core/styles';
import Drawer from '@material-ui/core/Drawer';
import Grid from '@material-ui/core/Grid';
import Button from '@material-ui/core/Button';
import List from '@material-ui/core/List';
import ListItem from '@material-ui/core/ListItem';
import ListItemIcon from '@material-ui/core/ListItemIcon';
import ListItemText from '@material-ui/core/ListItemText';
import Typography from '@material-ui/core/Typography';

import HomeIcon from '@material-ui/icons/Home';
import WebIcon from '@material-ui/icons/Web';

const styles = theme => ({
 alignContent: {
 alignSelf: 'center'
 }
});

function DrawerItemNavigation({ classes }) {
 const [open, setOpen] = useState(false);

https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/

Drawers - A Place for Navigation Controls Chapter 3

[66]

 return (
 <Grid container justify="space-between">
 <Grid item className={classes.alignContent}>
 <Route
 exact
 path="/"
 render={() => <Typography>Home</Typography>}
 />
 <Route
 exact
 path="/page2"
 render={() => <Typography>Page 2</Typography>}
 />
 <Route
 exact
 path="/page3"
 render={() => <Typography>Page 3</Typography>}
 />
 </Grid>
 <Grid item>
 <Drawer
 className={classes.drawerWidth}
 open={open}
 onClose={() => setOpen(false)}
 >
 <List>
 <ListItem
 component={Link}
 to="/"
 onClick={() => setOpen(false)}
 >
 <ListItemIcon>
 <HomeIcon />
 </ListItemIcon>
 <ListItemText>Home</ListItemText>
 </ListItem>
 <ListItem
 component={Link}
 to="/page2"
 onClick={() => setOpen(false)}
 >
 <ListItemIcon>
 <WebIcon />
 </ListItemIcon>
 <ListItemText>Page 2</ListItemText>
 </ListItem>
 <ListItem
 component={Link}

Drawers - A Place for Navigation Controls Chapter 3

[67]

 to="/page3"
 onClick={() => setOpen(false)}
 >
 <ListItemIcon>
 <WebIcon />
 </ListItemIcon>
 <ListItemText>Page 3</ListItemText>
 </ListItem>
 </List>
 </Drawer>
 </Grid>
 <Grid item>
 <Button onClick={() => setOpen(!open)}>
 {open ? 'Hide' : 'Show'} Drawer
 </Button>
 </Grid>
 </Grid>
);
}

export default withStyles(styles)(DrawerItemNavigation);

When you first load the screen, you'll see the SHOW DRAWER button and the home
screen content:

Here's what the drawer looks like when it's opened:

If you click on Page 2, which points to /page2, the drawer should close and you should be
taken to the second page. Here's what it looks like:

Drawers - A Place for Navigation Controls Chapter 3

[68]

You should see something similar if you click on Page 3 or on Home. The content on the
left side of the screen is updated.

How it works...
Let's start by looking at the Route components that render content based on the active
the Route components:

<Grid item className={classes.alignContent}>
 <Route
 exact
 path="/"
 render={() => <Typography>Home</Typography>}
 />
 <Route
 exact
 path="/page2"
 render={() => <Typography>Page 2</Typography>}
 />
 <Route
 exact
 path="/page3"
 render={() => <Typography>Page 3</Typography>}
 />
</Grid>

There's a Route component used for each path in your app. The render() function
returns the content that should be rendered within this Grid item when the path property
matches the current URL.

Next, let's look at one of the ListItem components within the Drawer component, as
follows:

<ListItem
 component={Link}
 to="/"
 onClick={() => setOpen(false)}
>
 <ListItemIcon>
 <HomeIcon />
 </ListItemIcon>
 <ListItemText>Home</ListItemText>
</ListItem>

Drawers - A Place for Navigation Controls Chapter 3

[69]

By default, the ListItem component will render a div element. It accepts a button
property that when true, will render a button element. You don't want either of these.
Instead, you want the list items to be links that react-router will process. The
component property accepts a custom component to use; in this example, you want to use
the Link component from the react-router-dom package. This will render the
appropriate link while maintaining the proper styles.

The properties that you pass to ListItem are also passed to your custom component,
which, in this case, is Link. This means that the required to property is passed to Link,
pointing the link to /. Likewise, the onClick handler is also passed to the Link
component, which is important because you want to close the temporary drawer whenever
a link is clicked.

There's more...
When the items in your drawer are links, you probably want a visual indication for the
active link. The challenge is that you want to style the active link using Material-UI theme
styles. Here's what the modified example looks like:

import React, { useState } from 'react';
import clsx from 'clsx';
import { Switch, Route, Link, NavLink } from 'react-router-dom';

import { withStyles } from '@material-ui/core/styles';
import Drawer from '@material-ui/core/Drawer';
import Grid from '@material-ui/core/Grid';
import Button from '@material-ui/core/Button';
import List from '@material-ui/core/List';
import ListItem from '@material-ui/core/ListItem';
import ListItemIcon from '@material-ui/core/ListItemIcon';
import ListItemText from '@material-ui/core/ListItemText';
import Typography from '@material-ui/core/Typography';

import HomeIcon from '@material-ui/icons/Home';
import WebIcon from '@material-ui/icons/Web';

const styles = theme => ({
 alignContent: {
 alignSelf: 'center'
 },
 activeListItem: {
 color: theme.palette.primary.main
 }
});

Drawers - A Place for Navigation Controls Chapter 3

[70]

const NavListItem = withStyles(styles)(
 ({ classes, Icon, text, active, ...other }) => (
 <ListItem component={NavLink} {...other}>
 <ListItemIcon
 classes={{
 root: clsx({ [classes.activeListItem]: active })
 }}
 >
 <Icon />
 </ListItemIcon>
 <ListItemText
 classes={{
 primary: clsx({
 [classes.activeListItem]: active
 })
 }}
 >
 {text}
 </ListItemText>
 </ListItem>
)
);

const NavItem = props => (
 <Switch>
 <Route
 exact
 path={props.to}
 render={() => <NavListItem active={true} {...props} />}
 />
 <Route path="/" render={() => <NavListItem {...props} />} />
 </Switch>
);

function DrawerItemNavigation({ classes }) {
 const [open, setOpen] = useState(false);

 return (
 <Grid container justify="space-between">
 <Grid item className={classes.alignContent}>
 <Route
 exact
 path="/"
 render={() => <Typography>Home</Typography>}
 />
 <Route
 exact
 path="/page2"

Drawers - A Place for Navigation Controls Chapter 3

[71]

 render={() => <Typography>Page 2</Typography>}
 />
 <Route
 exact
 path="/page3"
 render={() => <Typography>Page 3</Typography>}
 />
 </Grid>
 <Grid item>
 <Drawer
 className={classes.drawerWidth}
 open={open}
 onClose={() => setOpen(false)}
 >
 <List>
 <NavItem
 to="/"
 text="Home"
 Icon={HomeIcon}
 onClick={() => setOpen(false)}
 />
 <NavItem
 to="/page2"
 text="Page 2"
 Icon={WebIcon}
 onClick={() => setOpen(false)}
 />
 <NavItem
 to="/page3"
 text="Page 3"
 Icon={WebIcon}
 onClick={() => setOpen(false)}
 />
 </List>
 </Drawer>
 </Grid>
 <Grid item>
 <Button onClick={() => setOpen(!open)}>
 {open ? 'Hide' : 'Show'} Drawer
 </Button>
 </Grid>
 </Grid>
);
}

export default withStyles(styles)(DrawerItemNavigation);

Drawers - A Place for Navigation Controls Chapter 3

[72]

Now, when the screen first loads and you open the drawer, it should look similar to the
following screenshot:

Since the Home link is active, it's styled using the primary color from the Material-UI
theme. If you click on the Page 2 link and then open the drawer again, it should look
similar to the following screenshot:

Let's take a look at the two new components that you've added, starting with NavItem:

const NavItem = props => (
 <Switch>
 <Route
 exact
 path={props.to}
 render={() => <NavListItem active={true} {...props} />}
 />
 <Route path="/" render={() => <NavListItem {...props} />} />
 </Switch>
);

This component is used to determine whether or not the item is active, based on the current
URL. It uses the Switch component from react-router-dom. Instead of just rendering
Route components, Switch will only render the first route whose path matches the current
URL. The first Route component in NavItem is the specific path (as it uses the exact
property). If this Route component matches, it renders a NavListItem component with
the active property set to true. Because it's in a Switch component, the second Route
component will not be rendered.

Drawers - A Place for Navigation Controls Chapter 3

[73]

If, on the other hand, the first Route component doesn't match, the second
Route component will always match. This will render a NavListItem component without
the active property. Now, let's take a look at the NavListItem component, as follows:

const NavListItem = withStyles(styles)(
 ({ classes, Icon, text, active, ...other }) => (
 <ListItem component={NavLink} {...other}>
 <ListItemIcon
 classes={{
 root: clsx({ [classes.activeListItem]: active })
 }}
 >
 <Icon />
 </ListItemIcon>
 <ListItemText
 classes={{
 primary: clsx({
 [classes.activeListItem]: active
 })
 }}
 >
 {text}
 </ListItemText>
 </ListItem>
)
);

The NavListItem component is now responsible for rendering the ListItem components
in the Drawer component. It takes a text property and an Icon property to render the
label and the icon respectively, just like before your enhancements. The active property is
used to determine the class that gets applied to the ListItemIcon and ListItemText
components. The activeListItem CSS class is applied to both of these components if
active is true. This is how you're able to style the active item based on the Material-UI
theme.

The clsx() function is used extensively by Material-UI–this isn't an extra
dependency. It allows you to dynamically change the class of an element
without introducing custom logic into your markup. For example,
the clsx({ [classes.activeListItem]: active }) syntax will
only apply the activeListItem class if active is true. The alternative
will involve introducing more logic into your component.

Drawers - A Place for Navigation Controls Chapter 3

[74]

Lastly, let's take a look at the activeListItem class, as follows:

const styles = theme => ({
 alignContent: {
 alignSelf: 'center'
 },
 activeListItem: {
 color: theme.palette.primary.main
 }
});

The activeListItem class sets the color CSS property by using the
theme.palette.primary.main value. This means that if the theme changes, your active
link in the drawer will be styled accordingly.

See also
React Router documentation: https://reacttraining.com/react-router/
Drawer demos: https:/ / material- ui.com/ demos/ drawers/

Drawer API documentation: https:/ /material- ui.com/ api/ drawer/

Drawer sections
When you have lots of items in your Drawer, you might want to divide your drawer into
sections. When you have lots of drawer items and no sections, you end up having to put
section names into the items themselves, which leads to messy and awkward drawer item
labels.

How to do it...
Let's say that you're working on an app that has screens for managing different aspects of
the CPU, memory, storage, and network. Instead of having a flat list of drawer items, you
could display drawer items in their relevant sections, making it easier to navigate. Here's
the code to do it:

import React, { useState } from 'react';

import { withStyles } from '@material-ui/core/styles';
import Drawer from '@material-ui/core/Drawer';
import Grid from '@material-ui/core/Grid';

https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/

Drawers - A Place for Navigation Controls Chapter 3

[75]

import Button from '@material-ui/core/Button';
import List from '@material-ui/core/List';
import ListItem from '@material-ui/core/ListItem';
import ListItemIcon from '@material-ui/core/ListItemIcon';
import ListItemText from '@material-ui/core/ListItemText';
import ListSubheader from '@material-ui/core/ListSubheader';
import Typography from '@material-ui/core/Typography';

import AddIcon from '@material-ui/icons/Add';
import RemoveIcon from '@material-ui/icons/Remove';
import ShowChartIcon from '@material-ui/icons/ShowChart';

const styles = theme => ({
 alignContent: {
 alignSelf: 'center'
 }
});

const ListItems = ({ items, onClick }) =>
 items
 .filter(({ hidden }) => !hidden)
 .map(({ label, disabled, Icon }, i) => (
 <ListItem
 button
 key={i}
 disabled={disabled}
 onClick={onClick(label)}
 >
 <ListItemIcon>
 <Icon />
 </ListItemIcon>
 <ListItemText>{label}</ListItemText>
 </ListItem>
));

const DrawerSections = withStyles(styles)(({ classes }) => {
 const [open, setOpen] = useState(false);
 const [content, setContent] = useState('Home');
 const [items] = useState({
 cpu: [
 { label: 'Add CPU', Icon: AddIcon },
 { label: 'Remove CPU', Icon: RemoveIcon },
 { label: 'Usage', Icon: ShowChartIcon }
],
 memory: [
 { label: 'Add Memory', Icon: AddIcon },
 { label: 'Usage', Icon: ShowChartIcon }
],

Drawers - A Place for Navigation Controls Chapter 3

[76]

 storage: [
 { label: 'Add Storage', Icon: AddIcon },
 { label: 'Usage', Icon: ShowChartIcon }
],
 network: [
 { label: 'Add Network', Icon: AddIcon, disabled: true },
 { label: 'Usage', Icon: ShowChartIcon }
]
 });

 const onClick = content => () => {
 setOpen(false);
 setContent(content);
 };

 return (
 <Grid container justify="space-between">
 <Grid item className={classes.alignContent}>
 <Typography>{content}</Typography>
 </Grid>
 <Grid item>
 <Drawer open={open} onClose={() => setOpen(false)}>
 <List>
 <ListSubheader>CPU</ListSubheader>
 <ListItems items={items.cpu} onClick={onClick} />
 <ListSubheader>Memory</ListSubheader>
 <ListItems items={items.memory} onClick={onClick} />
 <ListSubheader>Storage</ListSubheader>
 <ListItems items={items.storage} onClick={onClick} />
 <ListSubheader>Network</ListSubheader>
 <ListItems items={items.network} onClick={onClick} />
 </List>
 </Drawer>
 </Grid>

 <Grid item>
 <Button onClick={() => setOpen(!open)}>
 {open ? 'Hide' : 'Show'} Drawer
 </Button>
 </Grid>
 </Grid>
);
});

export default DrawerSections;

Drawers - A Place for Navigation Controls Chapter 3

[77]

When you click on the SHOW DRAWER button, your drawer should look like this:

There are lots of add and usage items in this drawer. The sections make the items easier for
your users to scan.

How it works...
Let's start by taking a look at the state of your component, as follows:

const [open, setOpen] = useState(false);
const [content, setContent] = useState('Home');
const [items] = useState({
 cpu: [
 { label: 'Add CPU', Icon: AddIcon },
 { label: 'Remove CPU', Icon: RemoveIcon },

Drawers - A Place for Navigation Controls Chapter 3

[78]

 { label: 'Usage', Icon: ShowChartIcon }
],
 memory: [
 { label: 'Add Memory', Icon: AddIcon },
 { label: 'Usage', Icon: ShowChartIcon }
],
 storage: [
 { label: 'Add Storage', Icon: AddIcon },
 { label: 'Usage', Icon: ShowChartIcon }
],
 network: [
 { label: 'Add Network', Icon: AddIcon, disabled: true },
 { label: 'Usage', Icon: ShowChartIcon }
]
});

Instead of the items state being a flat array of items, it's now an object with arrays grouped
by category. These are the drawer sections that you want to render. Next, let's look at the
List markup for rendering the items state and the section headers:

<List>
 <ListSubheader>CPU</ListSubheader>
 <ListItems items={items.cpu} onClick={onClick} />
 <ListSubheader>Memory</ListSubheader>
 <ListItems items={items.memory} onClick={onClick} />
 <ListSubheader>Storage</ListSubheader>
 <ListItems items={items.storage} onClick={onClick} />
 <ListSubheader>Network</ListSubheader>
 <ListItems items={items.network} onClick={onClick} />
</List>

The ListSubheader component is used when you need a label above the list items. For
example, underneath the Storage header, you have the ListItems component that renders
items from the items.storage state.

There's more...
When you have a lot of drawer items and sections, you can still overwhelm your users with
the amount of information to parse. One solution is to have collapsible sections. For this,
you can add a Button component to the ListSubheader component so that it's clickable.

Drawers - A Place for Navigation Controls Chapter 3

[79]

Here's what the code looks like:

<ListSubheader>
 <Button
 disableRipple
 classes={{ root: classes.listSubheader }}
 onClick={toggleSection('cpu')}
 >
 CPU
 </Button>
</ListSubheader>

The ripple effect that would normally happen when you click on a button is disabled here
because you want the header text to still look like header text. This also requires a little bit
of CSS customization in the listSubheader class:

const styles = theme => ({
 alignContent: {
 alignSelf: 'center'
 },
 listSubheader: {
 padding: 0,
 minWidth: 0,
 color: 'inherit',
 '&:hover': {
 background: 'inherit'
 }
 }
});

When the section header button is clicked, it toggles the state of the section, which in turn,
toggles the visibility of the section items. Here's the toggleSection() function:

const toggleSection = name => () => {
 setSections({ ...sections, [name]: !sections[name] });
};

This is a higher-order function that returns a new function as the onClick handler for the
button. The name argument is the name of the section state to toggle.

Drawers - A Place for Navigation Controls Chapter 3

[80]

Here's the new state that was added to support toggling sections:

const [sections, setSections] = useState({
 cpu: true,
 memory: false,
 storage: false,
 network: false
});

When the screen first loads, the CPU section will be the only section with visible items since
it's the only state that's true. Next, let's look at how the ListItems are actually collapsed
when their corresponding section state is false:

const ListItems = ({ items, visible, onClick }) => (
 <Collapse in={visible}>
 {items
 .filter(({ hidden }) => !hidden)
 .map(({ label, disabled, Icon }, i) => (
 <ListItem
 button
 key={i}
 disabled={disabled}
 onClick={onClick(label)}
 >
 <ListItemIcon>
 <Icon />
 </ListItemIcon>
 <ListItemText>{label}</ListItemText>
 </ListItem>
))}
 </Collapse>
);

The ListItems component now accepts a visible property. This is used by the
Collapse component, which will hide its children using a collapsing animation when
hiding components. Finally, here's how the new ListItems component is used:

<ListItems
 visible={sections.cpu}
 items={items.cpu}
 onClick={onClick}
/>

Drawers - A Place for Navigation Controls Chapter 3

[81]

When the screen first loads, and you click on the SHOW DRAWER button, you should see
something similar to this:

There's way less information for the user to parse now. They can click on the section
headers to see the list items, and they can click again to collapse the section; for example,
they could collapse the CPU section and expand the MEMORY section:

See also
Drawer demos: https:/ / material- ui.com/ demos/ drawers/

Drawer API documentation: https:/ /material- ui.com/ api/ drawer/

https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/

Drawers - A Place for Navigation Controls Chapter 3

[82]

AppBar interaction
A common place to put a button that toggles the visibility of Drawer components is the
AppBar component at the top of every page in your app. Furthermore, by selecting items in
a drawer, the title of the AppBar component needs to change to reflect this selection.
Drawer and AppBar components often need to interact with one another.

How to do it...
Let's say that you have a Drawer component with a few items in it. You also have an
AppBar component with a menu button and a title. The menu button should toggle the
visibility of the drawer, and clicking on a drawer item should update the title in the
AppBar. Here's the code to do it:

import React, { useState, Fragment } from 'react';

import { withStyles } from '@material-ui/core/styles';
import AppBar from '@material-ui/core/AppBar';
import Toolbar from '@material-ui/core/Toolbar';
import Typography from '@material-ui/core/Typography';
import Button from '@material-ui/core/Button';
import Drawer from '@material-ui/core/Drawer';
import List from '@material-ui/core/List';
import ListItem from '@material-ui/core/ListItem';
import ListItemIcon from '@material-ui/core/ListItemIcon';
import ListItemText from '@material-ui/core/ListItemText';
import IconButton from '@material-ui/core/IconButton';
import MenuIcon from '@material-ui/icons/Menu';

const styles = theme => ({
 root: {
 flexGrow: 1
 },
 flex: {
 flex: 1
 },
 menuButton: {
 marginLeft: -12,
 marginRight: 20
 },
 toolbarMargin: theme.mixins.toolbar
});

const MyToolbar = withStyles(styles)(

Drawers - A Place for Navigation Controls Chapter 3

[83]

 ({ classes, title, onMenuClick }) => (
 <Fragment>
 <AppBar>
 <Toolbar>
 <IconButton
 className={classes.menuButton}
 color="inherit"
 aria-label="Menu"
 onClick={onMenuClick}
 >
 <MenuIcon />
 </IconButton>
 <Typography
 variant="title"
 color="inherit"
 className={classes.flex}
 >
 {title}
 </Typography>
 </Toolbar>
 </AppBar>
 <div className={classes.toolbarMargin} />
 </Fragment>
)
);

const MyDrawer = withStyles(styles)(
 ({ classes, variant, open, onClose, setTitle }) => (
 <Drawer variant={variant} open={open} onClose={onClose}>
 <List>
 <ListItem
 button
 onClick={() => {
 setTitle('Home');
 onClose();
 }}
 >
 <ListItemText>Home</ListItemText>
 </ListItem>
 <ListItem
 button
 onClick={() => {
 setTitle('Page 2');
 onClose();
 }}
 >
 <ListItemText>Page 2</ListItemText>
 </ListItem>

Drawers - A Place for Navigation Controls Chapter 3

[84]

 <ListItem
 button
 onClick={() => {
 setTitle('Page 3');
 onClose();
 }}
 >
 <ListItemText>Page 3</ListItemText>
 </ListItem>
 </List>
 </Drawer>
)
);

function AppBarInteraction({ classes }) {
 const [drawer, setDrawer] = useState(false);
 const [title, setTitle] = useState('Home');

 const toggleDrawer = () => {
 setDrawer(!drawer);
 };

 return (
 <div className={classes.root}>
 <MyToolbar title={title} onMenuClick={toggleDrawer} />
 <MyDrawer
 open={drawer}
 onClose={toggleDrawer}
 setTitle={setTitle}
 />
 </div>
);
}

export default withStyles(styles)(AppBarInteraction);

Here's what the screen looks like when it first loads:

Drawers - A Place for Navigation Controls Chapter 3

[85]

When you click on the menu icon button to the left of the title, you'll see the drawer:

If you click on the Page 2 item, the drawer will close and the title of the AppBar will
change:

How it works...
This example defines three components, as follows:

The MyToolbar component
The MyDrawer component
The main app component

Let's walk through each of these individually, starting with MyToolbar:

const MyToolbar = withStyles(styles)(
 ({ classes, title, onMenuClick }) => (
 <Fragment>
 <AppBar>
 <Toolbar>
 <IconButton
 className={classes.menuButton}
 color="inherit"
 aria-label="Menu"
 onClick={onMenuClick}
 >
 <MenuIcon />
 </IconButton>
 <Typography
 variant="title"
 color="inherit"
 className={classes.flex}
 >

Drawers - A Place for Navigation Controls Chapter 3

[86]

 {title}
 </Typography>
 </Toolbar>
 </AppBar>
 <div className={classes.toolbarMargin} />
 </Fragment>
)
);

The MyToolbar component renders an AppBar component that accepts a title property
and a onMenuClick() property. Both of these properties are used to interact with the
MyDrawer component. The title property changes when a drawer item selection is made.
The onMenuClick() function changes state in your main app component, causing the
drawer to display. Next, let's take a look at MyDrawer:

const MyDrawer = withStyles(styles)(
 ({ classes, variant, open, onClose, setTitle }) => (
 <Drawer variant={variant} open={open} onClose={onClose}>
 <List>
 <ListItem
 button
 onClick={() => {
 setTitle('Home');
 onClose();
 }}
 >
 <ListItemText>Home</ListItemText>
 </ListItem>
 <ListItem
 button
 onClick={() => {
 setTitle('Page 2');
 onClose();
 }}
 >
 <ListItemText>Page 2</ListItemText>
 </ListItem>
 <ListItem
 button
 onClick={() => {
 setTitle('Page 3');
 onClose();
 }}
 >
 <ListItemText>Page 3</ListItemText>
 </ListItem>
 </List>

Drawers - A Place for Navigation Controls Chapter 3

[87]

 </Drawer>
)
);

The MyDrawer component is functional like MyToolbar. It accepts properties instead of
maintaining its own state. For example, the open property is how the visibility of the
drawer is controlled. The onClose() and setTitle() properties are functions that are
called when drawer items are clicked on.

Finally, let's look at the app component where all of the state lives:

function AppBarInteraction({ classes }) {
 const [drawer, setDrawer] = useState(false);
 const [title, setTitle] = useState('Home');

 const toggleDrawer = () => {
 setDrawer(!drawer);
 };

 return (
 <div className={classes.root}>
 <MyToolbar title={title} onMenuClick={toggleDrawer} />
 <MyDrawer
 open={drawer}
 onClose={toggleDrawer}
 setTitle={setTitle}
 />
 </div>
);
}

The title state is passed to the MyDrawer component, along with the toggleDrawer()
function. The MyDrawer component is passed the drawer state to control visibility, the
toggleDrawer() function to change visibility, and the setTitle() function to update the
title in MyToolbar.

There's more...
What if you want the flexibility of having a persistent drawer that can be toggled using the
same menu button in the App bar? Let's add a variant property to the
AppBarInteraction component that is passed to MyDrawer. This can be changed from
temporary to persistent and the menu button will still work as expected.

Drawers - A Place for Navigation Controls Chapter 3

[88]

Here's what a persistent drawer looks like when you click on the menu button:

The drawer overlaps the App bar. Another problem is that if you click on any of the drawer
items, the drawer is closed, which isn't ideal for a persistent drawer. Let's fix both of these
issues.

First, let's address the z-index issue that's causing the drawer to appear on top of the App
bar. You can create a CSS class that looks like this:

aboveDrawer: {
 zIndex: theme.zIndex.drawer + 1
}

You can apply this class to the AppBar component in MyToolbar, as follows:

<AppBar className={classes.aboveDrawer}>

Now when you open the drawer, it appears underneath the AppBar, as expected:

Now you just have to fix the margin. When the drawer uses the persistent variant, you
can add the toolbarMargin class to a <div> element as the first element in the
Drawer component:

<div
 className={clsx({
 [classes.toolbarMargin]: variant === 'persistent'
 })}
/>

Drawers - A Place for Navigation Controls Chapter 3

[89]

With the help of the clsx() function, the toolbarMargin class is only added when
needed – that is, when the drawer is persistent. Here's what it looks like now:

Lastly, let's fix the issue where the drawer closes when a drawer item is clicked on. In the
main app component, you can add a new method that looks like the following code block:

const onItemClick = title => () => {
 setTitle(title);
 setDrawer(variant === 'temporary' ? false : drawer);
};

The onItemClick() function takes care of setting the text in the App bar, as well as closing
the drawer if it's temporary. To use this new function, you can replace the setTitle
property in MyDrawer with an onItemClick property. You can then use it in your list
items, as follows:

<List>
 <ListItem button onClick={onItemClick('Home')}>
 <ListItemText>Home</ListItemText>
 </ListItem>
 <ListItem button onClick={onItemClick('Page 2')}>
 <ListItemText>Page 2</ListItemText>
 </ListItem>
 <ListItem button onClick={onItemClick('Page 3')}>
 <ListItemText>Page 3</ListItemText>
 </ListItem>
</List>

Now when you click on items in the drawer when it's persistent, the drawer will stay open.
The only way to close it is by clicking on the menu button beside the title in the App bar.

Drawers - A Place for Navigation Controls Chapter 3

[90]

See also
Drawer demos: https:/ / material- ui.com/ demos/ drawers/

AppBar demos: https:/ / material- ui.com/ demos/ app- bar/

Drawer API documentation: https:/ /material- ui.com/ api/ drawer/

AppBar API documentation: https:/ /material- ui.com/ api/ app- bar/

https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/drawers/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/demos/app-bar/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/drawer/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/

4
Tabs - Grouping Content into

Tab Sections
In this chapter, you'll learn about the following recipes:

AppBar integration
Tab alignment
Rendering tabs based on state
Abstracting tab content
Tab navigation with routes

Introduction
The Tabs Material-UI component is used to organize content on your screen. The tabs are
organized in a horizontal fashion and they should feel natural for your users. You can use
tabs any time your screen has lots of content that could be split into different category
sections.

AppBar integration
AppBar components can be used with the Tabs component. You can do this so that the tab
buttons are rendered within an App Bar. This provides a container for your tab
buttons—by default, there is nothing surrounding them.

Tabs - Grouping Content into Tab Sections Chapter 4

[92]

How to do it...
Let's say that you have a Tabs component with three Tab buttons. Instead of rendering the
tabs so that they look as though they're floating on the screen, you can wrap them in an
AppBar component to give them a contained look and feel. Here's the code:

import React, { useState } from 'react';

import { withStyles } from '@material-ui/core/styles';
import AppBar from '@material-ui/core/AppBar';
import Tabs from '@material-ui/core/Tabs';
import Tab from '@material-ui/core/Tab';
import Typography from '@material-ui/core/Typography';

const styles = theme => ({
 root: {
 flexGrow: 1,
 backgroundColor: theme.palette.background.paper
 },
 tabContent: {
 padding: theme.spacing.unit * 2
 }
});

function AppBarIntegration({ classes }) {
 const [value, setValue] = useState(0);

 const onChange = (e, value) => {
 setValue(value);
 };

 return (
 <div className={classes.root}>
 <AppBar position="static">
 <Tabs value={value} onChange={onChange}>
 <Tab label="Item One" />
 <Tab label="Item Two" />
 <Tab label="Item Three" />
 </Tabs>
 </AppBar>
 {value === 0 && (
 <Typography component="div" className={classes.tabContent}>
 Item One
 </Typography>
)}
 {value === 1 && (
 <Typography component="div" className={classes.tabContent}>

Tabs - Grouping Content into Tab Sections Chapter 4

[93]

 Item Two
 </Typography>
)}
 {value === 2 && (
 <Typography component="div" className={classes.tabContent}>
 Item Three
 </Typography>
)}
 </div>
);
}

export default withStyles(styles)(AppBarIntegration);

When the screen first loads, you'll see the following:

When you click on one of the tab buttons, the selected tab changes, along with the content
underneath the tabs. For example, clicking on the ITEM THREE tab results in this:

How it works...
The Tabs and Tab components are rendered inside the AppBar component. Usually,
AppBar has a Toolbar component as its child, but Tab can work too:

<AppBar position="static">
 <Tabs value={value} onChange={onChange}>
 <Tab label="Item One" />
 <Tab label="Item Two" />
 <Tab label="Item Three" />
 </Tabs>
</AppBar>

Tabs - Grouping Content into Tab Sections Chapter 4

[94]

Your component has a value state that is used to keep track of the selected tab. The
onChange() handler is used to update this state; it gets set to the current index of the
selected tab. Then, you can use the value state to determine which content to render below
the AppBar component:

{value === 0 && (
 <Typography
 component="div"
 className={classes.tabContent}
 >
 Item One
 </Typography>
)}
{value === 1 && (
 <Typography
 component="div"
 className={classes.tabContent}
 >
 Item Two
 </Typography>
)}
{value === 2 && (
 <Typography
 component="div"
 className={classes.tabContent}
 >
 Item Three
 </Typography>
)}

If the first tab is selected, then the value is 0 and the Item One text is rendered. The same
logic follows for the other two tabs.

There's more...
If you want tabs but you don't want the indicator that's rendered underneath the text, you
can set it to be the same color as the AppBar component. This is done using the
indicatorColor property, as follows:

<Tabs
 value={value}
 onChange={this.onChange}
 indicatorColor="primary"
>
 <Tab label="Item One" />

Tabs - Grouping Content into Tab Sections Chapter 4

[95]

 <Tab label="Item Two" />
 <Tab label="Item Three" />
</Tabs>

By setting the indicatorColor value to primary, the indicator should now be the same
color as the AppBar component:

See also
Tabs API documentation: https:/ /material- ui.com/ api/ tabs/

Tabs demos: https:/ / material- ui.com/ demos/ tabs/

Tab alignment
The Tabs component has two properties to help you align your tab buttons. The centered
property centers the tabs, while the fullWidth property spreads out the tabs.

How to do it...
Let's say that you have three basic tabs using the following code:

import React, { useState } from 'react';

import { withStyles } from '@material-ui/core/styles';
import Tabs from '@material-ui/core/Tabs';
import Tab from '@material-ui/core/Tab';

const styles = theme => ({
 root: {
 flexGrow: 1,
 backgroundColor: theme.palette.background.paper
 }
});

https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/

Tabs - Grouping Content into Tab Sections Chapter 4

[96]

function TabAlignment({ classes }) {
 const [value, setValue] = useState(0);

 const onChange = (e, value) => {
 setValue(value);
 };

 return (
 <div className={classes.root}>
 <Tabs value={value} onChange={onChange}>
 <Tab label="Item One" />
 <Tab label="Item Two" />
 <Tab label="Item Three" />
 </Tabs>
 </div>
);
}

export default withStyles(styles)(TabAlignment);

Here's what you should see when the screen first loads:

By default, tabs are aligned to the left. You can center your tabs by setting the centered
property, as follows:

<Tabs value={value} onChange={onChange} centered>
 <Tab label="Item One" />
 <Tab label="Item Two" />
 <Tab label="Item Three" />
</Tabs>

Here's what centered tabs look like:

Tabs - Grouping Content into Tab Sections Chapter 4

[97]

When your tabs are centered, all of the empty space goes to the left and right of the tabs.
The alternative is setting the variant property to fullWidth:

<Tabs value={value} onChange={onChange} variant="fullWidth">
 <Tab label="Item One" />
 <Tab label="Item Two" />
 <Tab label="Item Three" />
</Tabs>

Here's what full width tabs look like:

The tabs are centered, but they're spaced evenly to cover the width of the screen.

How it works...
The centered property is just a convenient way of specifying the justifyContent style
on the Tabs component. Whenever there is a property to style Material-UI components in a
specific way, you should use it instead of applying your own styles. Future versions of the
library could include fixes that rely on the property that you'll miss out on.

Another reason to style components using the property is that Material-UI might behave
differently depending on how other properties are set. For example, with the Tabs
component, you can't set the centered property while the scrollable property is set to
true; Material-UI checks for this and handles it.

The fullWidth value of the variant property is actually passed to the Tab component,
which alters the styles it uses based on this value. The result is the even spacing of tabs
within the container element.

You can set the centered and variant properties at the same time.
However, centered isn't necessary if variant has a value of fullWidth.
Using both is harmless though.

Tabs - Grouping Content into Tab Sections Chapter 4

[98]

There's more...
The centered layout for tabs works well on smaller screens, while the full width layout
looks good on larger screens. You can use Material-UI utilities that tell you about
breakpoint changes. You can then use this information to change the alignment of your
tabs.

Here's a modified version of this example:

import React, { useState } from 'react';
import compose from 'recompose/compose';

import { withStyles } from '@material-ui/core/styles';
import withWidth from '@material-ui/core/withWidth';
import Tabs from '@material-ui/core/Tabs';
import Tab from '@material-ui/core/Tab';

const styles = theme => ({
 root: {
 flexGrow: 1,
 backgroundColor: theme.palette.background.paper
 }
});

function TabAlignment({ classes, width }) {
 const [value, setValue] = useState(0);

 const onChange = (e, value) => {
 setValue(value);
 };

 return (
 <div className={classes.root}>
 <Tabs
 value={value}
 onChange={onChange}
 variant={['xs', 'sm'].includes(width) ? null : 'fullWidth'}
 centered
 >
 <Tab label="Item One" />
 <Tab label="Item Two" />
 <Tab label="Item Three" />
 </Tabs>
 </div>
);
}

Tabs - Grouping Content into Tab Sections Chapter 4

[99]

export default compose(
 withWidth(),
 withStyles(styles)
)(TabAlignment);

Now when you resize your screen, the alignment properties of the grid can change in
response to breakpoint changes. Let's break down these changes from the bottom up,
starting with the variant property value:

variant={['xs', 'sm'].includes(width) ? null : 'fullWidth'}

The value will be fullWidth if the width property is anything but the xs or sm breakpoint.
In other words, if it's a larger screen, the value will be fullWidth.

Next, you need the width property to be passed to your component somehow. You can use
the withWidth() utility from Material-UI. It works like withStyles() in that it returns a
new component with new properties assigned to it. The component returned by
withWidth() will update its width prop any time the breakpoint changes. For example, if
the user resizes their screen from sm to md, this will trigger a width change and fullWidth
will change from false to true.

To use the withWidth() component—along with the withStyles() component—you can
use the compose() function from recompose. This function makes your code more
readable when you're applying several higher-order functions that decorate your
component:

export default compose(
 withWidth(),
 withStyles(styles)
)(TabAlignment);

You could call withWidth(withStyles(styles))(TabAlignment) if you really don't
want to use recompose, but as a general rule, I like to use it any time more than one
higher-order function is involved.

See also
Tabs demos: https:/ / material- ui.com/ demos/ tabs/

Tabs API documentation: https:/ /material- ui.com/ api/ tabs/

Tools for composing React components: https:/ /github. com/ acdlite/
recompose/

https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://github.com/acdlite/recompose/
https://github.com/acdlite/recompose/
https://github.com/acdlite/recompose/
https://github.com/acdlite/recompose/
https://github.com/acdlite/recompose/
https://github.com/acdlite/recompose/
https://github.com/acdlite/recompose/
https://github.com/acdlite/recompose/
https://github.com/acdlite/recompose/
https://github.com/acdlite/recompose/
https://github.com/acdlite/recompose/

Tabs - Grouping Content into Tab Sections Chapter 4

[100]

Rendering tabs based on state
Tabs in your React application might be driven by data. If so, you can set tab data in the
state of your component to have them render initially and update if anything changes.

How to do it...
Let's say that you have some data that determines the tabs to render in your app. You can
set this data in the state of your component and use it to render the Tab components, as
well as the tab content when tab selections are made. Here's the code:

import React, { useState } from 'react';

import { makeStyles } from '@material-ui/styles';
import Tabs from '@material-ui/core/Tabs';
import Tab from '@material-ui/core/Tab';
import Typography from '@material-ui/core/Typography';

const useStyles = makeStyles(theme => ({
 root: {
 flexGrow: 1,
 backgroundColor: theme.palette.background.paper
 },
 tabContent: {
 padding: theme.spacing(2)
 }
}));

export default function RenderingTabsBasedOnState() {
 const classes = useStyles();
 const [tabs, setTabs] = useState([
 {
 active: true,
 label: 'Item One',
 content: 'Item One Content'
 },
 {
 active: false,
 label: 'Item Two',
 content: 'Item Two Content'
 },
 {
 active: false,
 label: 'Item Three',
 content: 'Item Three Content'

Tabs - Grouping Content into Tab Sections Chapter 4

[101]

 }
]);

 const onChange = (e, value) => {
 setTabs(
 tabs
 .map(tab => ({ ...tab, active: false }))
 .map((tab, index) => ({
 ...tab,
 active: index === value
 }))
);
 };

 const active = tabs.findIndex(tab => tab.active);
 const content = tabs[active].content;

 return (
 <div className={classes.root}>
 <Tabs value={active} onChange={onChange}>
 {tabs
 .map(tab => (
 <Tab
 key={tab.label}
 label={tab.label}
 />
))}
 </Tabs>
 <Typography component="div" className={classes.tabContent}>
 {content}
 </Typography>
 </div>
);
}

When you first load the screen, you'll see the following:

Tabs - Grouping Content into Tab Sections Chapter 4

[102]

If you click on the ITEM TWO tab, here's what you'll see:

How it works...
Let's start by looking at the state of your component that drives the tabs that are rendered:

const [tabs, setTabs] = useState([
 {
 active: true,
 label: 'Item One',
 content: 'Item One Content'
 },
 {
 active: false,
 label: 'Item Two',
 content: 'Item Two Content'
 },
 {
 active: false,
 label: 'Item Three',
 content: 'Item Three Content'
 }
]);

The tabs state is an array, and each object within it represents a tab to be rendered. The
active Boolean property determines which tab is active. The label property is what is
rendered as the actual tab button and the content is rendered below the tabs when the tab is
clicked on.

Next, let's take a look at the markup used to render the tabs and the content:

<Tabs value={active} onChange={onChange}>
 {tabs.map(tab => <Tab label={tab.label} />)}
</Tabs>
<Typography component="div" className={classes.tabContent}>
 {content}
</Typography>

Tabs - Grouping Content into Tab Sections Chapter 4

[103]

Instead of manually rendering Tab components, you're iterating over the tabs state to
render each tab. For the selected content, you now only have to render one Typography
component that references content.

Let's take a look at the two active and content values, as follows:

const active = tabs.findIndex(tab => tab.active);
const content = tabs[active].content;

The active constant is the index of the active tab. This value is passed to the value
property of the Tabs component. It's also used by the content value—the content of the
active tab. Both of these constants simplify the markup that your component needs to
render.

There's more...
Now that you're controlling your tabs with state, you can control more aspects of your
rendered tabs. For instance, you could add disabled and hidden states to each tab. You
could also place an icon property to render in your tab state. Here's a new version of the
tabs state:

const [tabs, setTabs] = useState([
 {
 active: true,
 label: 'Home',
 content: 'Home Content',
 icon: <HomeIcon />
 },
 {
 active: false,
 label: 'Settings',
 content: 'Settings Content',
 icon: <SettingsIcon />
 },
 {
 active: false,
 disabled: true,
 label: 'Search',
 content: 'Search Content',
 icon: <SearchIcon />
 },
 {
 active: false,
 hidden: true,
 label: 'Add',

Tabs - Grouping Content into Tab Sections Chapter 4

[104]

 content: 'AddContent',
 icon: <AddIcon />
 }
]);

Now you have the ability to render disabled tabs that cannot be clicked on—as is the case
with the SEARCH tab. You can also hide tabs completely by setting hidden to true—as is
the case with the Add tab. Every tab now has an icon as well. Let's see what this looks like
when you load the screen:

The icons for every tab are rendered as expected, even for the SEARCH tab, which has been
marked as disabled. There's no Add tab because it was marked as hidden. Let's take a
look at the changes to the Tabs markup that were necessary to accommodate these new
state values:

<Tabs value={active} onChange={onChange}>
 {tabs
 .filter(tab => !tab.hidden)
 .map(tab => (
 <Tab
 key={tab.label}
 disabled={tab.disabled}
 icon={tab.icon}
 label={tab.label}
 />
))}
</Tabs>

The disabled and icon properties of Tab are passed directly from the tab in your
component state. The filter() call was added to remove tabs that are marked as hidden.

See also
Tabs API documentation: https:/ /material- ui.com/ api/ tabs/

Tabs demos: https:/ / material- ui.com/ demos/ tabs/

https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/

Tabs - Grouping Content into Tab Sections Chapter 4

[105]

Abstracting tab content
If your application uses tabs in several places, you can create abstractions that simplify the
markup involved with rendering tabs and tab content. Instead of having tab content
defined outside of the tabs component, why not have everything be self-contained and
easier to read?

How to do it...
Let's say that your app uses tabs in several places throughout your app, and you want to
simplify the markup used to create the tabs and the tab content. In the places where you
use tabs, you just want to be able to render the content and not have to worry about
handing state for the active tab. Here's some code that creates two new components that
simplify the JavaScript XML (JSX) required for rendering tab content:

import React, { Fragment, Children, useState } from 'react';

import { withStyles } from '@material-ui/core/styles';
import Tabs from '@material-ui/core/Tabs';
import Tab from '@material-ui/core/Tab';
import Typography from '@material-ui/core/Typography';

const styles = theme => ({
 root: {
 flexGrow: 1,
 backgroundColor: theme.palette.background.paper
 },
 tabContent: {
 padding: theme.spacing(2)
 }
});

function TabContainer({ children }) {
 const [value, setValue] = useState(0);

 const onChange = (e, value) => {
 setValue(value);
 };

 return (
 <Fragment>
 <Tabs value={value} onChange={onChange}>
 {Children.map(children, child => (
 <Tab label={child.props.label} />
))}

Tabs - Grouping Content into Tab Sections Chapter 4

[106]

 </Tabs>
 {Children.map(children, (child, index) =>
 index === value ? child : null
)}
 </Fragment>
);
}

const TabContent = withStyles(styles)(({ classes, children }) => (
 <Typography component="div" className={classes.tabContent}>
 {children}
 </Typography>
));

const AbstractingTabContent = withStyles(styles)(({ classes }) => (
 <div className={classes.root}>
 <TabContainer>
 <TabContent label="Item One">Item One Content</TabContent>
 <TabContent label="Item Two">Item Two Content</TabContent>
 <TabContent label="Item Three">Item Three Content</TabContent>
 </TabContainer>
 </div>
));

export default AbstractingTabContent;

When you load the screen, you'll see three tabs rendered with the first tab selected by
default. The content of the first tab is also visible. The following screenshot shows what it
looks like:

How it works...
Let's start by looking at the markup used to render the tabs in this following example:

<TabContainer>
 <TabContent label="Item One">Item One Content</TabContent>
 <TabContent label="Item Two">Item Two Content</TabContent>
 <TabContent label="Item Three">Item Three Content</TabContent>
</TabContainer>

Tabs - Grouping Content into Tab Sections Chapter 4

[107]

This markup is much more concise than using the Tab and Tabs components directly. This
approach also handles rendering the content of the selected tab. Everything is self-
contained with this approach.

Next, let's take a look at the TabContainer component:

function TabContainer({ children }) {
 const [value, setValue] = useState(0);

 const onChange = (e, value) => {
 setValue(value);
 };

 return (
 <Fragment>
 <Tabs value={value} onChange={onChange}>
 {Children.map(children, child => (
 <Tab label={child.props.label} />
))}
 </Tabs>
 {Children.map(children, (child, index) =>
 index === value ? child : null
)}
 </Fragment>
);
}

The TabContainer component handles the state of the selected tab and changing the state
when a different tab is selected. This component renders a Fragment component so that it
can place the selected tab content after the Tabs component. It's using Children.map() to
render the individual Tab components. The label of the tab comes from the label property
of the child. In this example, there are three children (TabContent). The next call to
Children.map() renders the content of the selected tab. This is based on the value
state—if the child index matches, it's the active content. Otherwise, it gets mapped to
null and nothing is rendered.

Lastly, let's take a look at the TabContent component:

const TabContent = withStyles(styles)(({ classes, children }) => (
 <Typography component="div" className={classes.tabContent}>
 {children}
 </Typography>
));

Tabs - Grouping Content into Tab Sections Chapter 4

[108]

TabContent takes care of styling the Typography component and renders the child text
within. Although the label property is passed to TabContent, it doesn't actually use it;
instead, it's used by TabContainer when rendering tabs.

There's more...
You can add a value property to the TabsContainer component so that you can set
whichever tab to activate initially. For example, you might want the second tab to be
active instead of the first tab when the screen first loads. To do this, you'll have to add a
default property value for value, call setValue() if the value state hasn't been set yet,
and remove value from the initial state:

function TabContainer({ children, value: valueProp }) {
 const [value, setValue] = useState();

 const onChange = (e, value) => {
 setValue(value);
 };

 if (value === undefined) {
 setValue(valueProp);
 }

 return (
 <Fragment>
 <Tabs value={value} onChange={onChange}>
 {Children.map(children, child => (
 <Tab label={child.props.label} />
))}
 </Tabs>
 {Children.map(children, (child, index) =>
 index === value ? child : null
)}
 </Fragment>
);
}

TabContainer.defaultProps = {
 value: 0
};

Tabs - Grouping Content into Tab Sections Chapter 4

[109]

The default property is necessary because the value state is now undefined by default. The
setValue() method is called if the value state is undefined. If it is, then you can set it by
passing it the value property value.

Now, you can pass this property to your component to change the initially-active tab:

<TabContainer value={1}>
 <TabContent label="Item One">Item One Content</TabContent>
 <TabContent label="Item Two">Item Two Content</TabContent>
 <TabContent label="Item Three">Item Three Content</TabContent>
</TabContainer>

The value property is set to 1. It's a zero-based index, which means that the second tab will
be active by default:

When the user starts clicking on other tabs, the value state updates as expected—only the
initially-active tab is impacted by this change.

See also
Tabs API documentation: https:/ /material- ui.com/ api/ tabs/

Tabs demos: https:/ / material- ui.com/ demos/ tab/

Working with React child components: https:/ /reactjs. org/ docs/ react- api.
html#reactchildren

Tab navigation with routes
You can base your tab content on routes in a routing solution, such as react-router. To
do this, you have to make your tab buttons into links, and you need to have Route
components below the Tabs component to render the current URL.

https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/demos/tab/
https://material-ui.com/demos/tab/
https://material-ui.com/demos/tab/
https://material-ui.com/demos/tab/
https://material-ui.com/demos/tab/
https://material-ui.com/demos/tab/
https://material-ui.com/demos/tab/
https://material-ui.com/demos/tab/
https://material-ui.com/demos/tab/
https://material-ui.com/demos/tab/
https://material-ui.com/demos/tab/
https://material-ui.com/demos/tab/
https://material-ui.com/demos/tab/
https://material-ui.com/demos/tab/
https://reactjs.org/docs/react-api.html#reactchildren
https://reactjs.org/docs/react-api.html#reactchildren
https://reactjs.org/docs/react-api.html#reactchildren
https://reactjs.org/docs/react-api.html#reactchildren
https://reactjs.org/docs/react-api.html#reactchildren
https://reactjs.org/docs/react-api.html#reactchildren
https://reactjs.org/docs/react-api.html#reactchildren
https://reactjs.org/docs/react-api.html#reactchildren
https://reactjs.org/docs/react-api.html#reactchildren
https://reactjs.org/docs/react-api.html#reactchildren
https://reactjs.org/docs/react-api.html#reactchildren
https://reactjs.org/docs/react-api.html#reactchildren
https://reactjs.org/docs/react-api.html#reactchildren
https://reactjs.org/docs/react-api.html#reactchildren

Tabs - Grouping Content into Tab Sections Chapter 4

[110]

How to do it...
Let's say that your app has three URLs and you want tabs as the navigation mechanism to
navigate between the routes. The first step is turning the Tab buttons into links. The second
step is having Route components render the appropriate tab content, based on which one
was clicked on. Here's the code:

import React, { useState } from 'react';
import { Route, Link } from 'react-router-dom';

import { withStyles } from '@material-ui/core/styles';
import AppBar from '@material-ui/core/AppBar';
import Tabs from '@material-ui/core/Tabs';
import Tab from '@material-ui/core/Tab';
import Typography from '@material-ui/core/Typography';

const styles = theme => ({
 root: {
 flexGrow: 1,
 backgroundColor: theme.palette.background.paper
 },
 tabContent: {
 padding: theme.spacing(2)
 }
});

function TabNavigationWithRoutes({ classes }) {
 const [value, setValue] = useState(0);

 const onChange = (e, value) => {
 setValue(value);
 };

 return (
 <div className={classes.root}>
 <AppBar position="static">
 <Tabs value={value} onChange={onChange}>
 <Tab label="Item One" component={Link} to="/" />
 <Tab label="Item Two" component={Link} to="/page2" />
 <Tab label="Item Three" component={Link} to="/page3" />
 </Tabs>
 </AppBar>
 <Route
 exact
 path="/"
 render={() => (
 <Typography component="div" className={classes.tabContent}>

Tabs - Grouping Content into Tab Sections Chapter 4

[111]

 Item One
 </Typography>
)}
 />
 <Route
 exact
 path="/page2"
 render={() => (
 <Typography component="div" className={classes.tabContent}>
 Item Two
 </Typography>
)}
 />
 <Route
 exact
 path="/page3"
 render={() => (
 <Typography component="div" className={classes.tabContent}>
 Item Three
 </Typography>
)}
 />
 </div>
);
}

export default withStyles(styles)(TabNavigationWithRoutes);

When you load the screen, the first tab should be selected and the first tab content should
be rendered:

If you click on the ITEM TWO tab, you'll be taken to the /page2 URL. This results in the
active Route component changing the tab content, and the changed tab state changes the
selected tab:

Tabs - Grouping Content into Tab Sections Chapter 4

[112]

How it works...
The state portion of your component remains the same as any other component that uses
the Tabs component. The onChange event changes the value state, which is passed to
Tabs as a property to mark the selected tab.

Let's take a closer look at the Tab components:

<Tabs value={value} onChange={onChange}>
 <Tab label="Item One" component={Link} to="/" />
 <Tab label="Item Two" component={Link} to="/page2" />
 <Tab label="Item Three" component={Link} to="/page3" />
</Tabs>

A major difference with this implementation compared to something more standard is that
you're using Link as the component property value. The Link component, from react-
router-dom, is used to make the tab button into a link that the router will process. The to
property is actually passed to Link, which is how it knows where the link should take the
user.

Below the Tabs component are the routes that render the tab content, based on the tab that
the user has clicked on. Let's take a look at one of these Routes:

<Route
 exact
 path="/"
 render={() => (
 <Typography
 component="div"
 className={classes.tabContent}
 >
 Item One
 </Typography>
)}
/>

The content that is rendered below the tab is based on the current URL, not the value state
of your component. The value state is only used to control the state of the selected tab.

Tabs - Grouping Content into Tab Sections Chapter 4

[113]

There's more...
Given that the active tab depends on the active route, you could completely remove any
tab-related state. First, you create a TabContainer component to render the Tabs
component:

const TabContainer = ({ value }) => (
 <AppBar position="static">
 <Tabs value={value}>
 <Tab label="Item One" component={Link} to="/" />
 <Tab label="Item Two" component={Link} to="/page2" />
 <Tab label="Item Three" component={Link} to="/page3" />
 </Tabs>
 </AppBar>
);

Instead of supplying an onChange() handler to the Tabs component, the value property
is passed from TabContainer. Now, you can render this component in each
Route component, passing the appropriate value property:

const TabNavigationWithRoutes = withStyles(styles)(({ classes }) => (
 <div className={classes.root}>
 <Route
 exact
 path="/"
 render={() => (
 <Fragment>
 <TabContainer value={0} />
 <Typography component="div" className={classes.tabContent}>
 Item One
 </Typography>
 </Fragment>
)}
 />
 <Route
 exact
 path="/page2"
 render={() => (
 <Fragment>
 <TabContainer value={1} />
 <Typography component="div" className={classes.tabContent}>
 Item Two
 </Typography>
 </Fragment>
)}
 />
 <Route

Tabs - Grouping Content into Tab Sections Chapter 4

[114]

 exact
 path="/page3"
 render={() => (
 <Fragment>
 <TabContainer value={2} />
 <Typography component="div" className={classes.tabContent}>
 Item Three
 </Typography>
 </Fragment>
)}
 />
 </div>
));

export default TabNavigationWithRoutes;

There's no more confusing the component state with the current Route and how the two
interact. Everything is handled by the route.

See also
Tabs API documentation: https:/ /material- ui.com/ api/ tabs/

Tabs demos: https:/ / material- ui.com/ demos/ tabs/

React Router documentation: https:/ /reacttraining. com/ react- router/

https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/api/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://material-ui.com/demos/tabs/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/
https://reacttraining.com/react-router/

5
Expansion Panels - Group

Content into Panel Sections
In this chapter, you'll learn about the following:

Stateful expansion panels
Formatting panel headers
Scrollable panel content
Lazy loading panel content

Introduction
Expansion panels are containers for your content. Usually, screens in your Material-UI
applications are divided into sections so that users can mentally organize the information
that they're looking at. The ExpansionPanel component is one way that you can create
these sections. You can even combine expansion panels with other organizational
components, such as tabs, to provide a consistent organizational layout for your users.

Stateful expansion panels
You can use component the state to control every aspect of your expansion panels. For
example, each panel could be represented as an object in an array, where each object has
panel title and panel content properties. There are other aspects you can control, such as
visibility and disabled panels.

Expansion Panels - Group Content into Panel Sections Chapter 5

[116]

How to do it...
Let's say that your component has a state for rendering expansion panels. The panels
themselves are objects in an array. Here's the code to do this:

import React, { useState, Fragment } from 'react';

import ExpansionPanel from '@material-ui/core/ExpansionPanel';
import ExpansionPanelSummary from '@material-
ui/core/ExpansionPanelSummary';
import ExpansionPanelDetails from '@material-
ui/core/ExpansionPanelDetails';
import Typography from '@material-ui/core/Typography';
import ExpandMoreIcon from '@material-ui/icons/ExpandMore';

export default function StatefulExpansionPanels() {
 const [panels] = useState([
 {
 title: 'First Panel Title',
 content: 'First panel content...'
 },
 {
 title: 'Second Panel Title',
 content: 'Second panel content...'
 },
 {
 title: 'Third Panel Title',
 content: 'Third panel content...'
 },
 {
 title: 'Fourth Panel Title',
 content: 'Fourth panel content...'
 }
]);

 return (
 <Fragment>
 {panels
 .filter(panel => !panel.hidden)
 .map((panel, index) => (
 <ExpansionPanel
 key={index}
 disabled={panel.disabled}
 >
 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>
 <Typography>{panel.title}</Typography>
 </ExpansionPanelSummary>
 <ExpansionPanelDetails>

Expansion Panels - Group Content into Panel Sections Chapter 5

[117]

 <Typography>{panel.content}</Typography>
 </ExpansionPanelDetails>
 </ExpansionPanel>
))}
 </Fragment>
);
}

When you load the screen, here's what you'll see:

Here's what the first two panels look like when they're expanded:

The third panel cannot be expanded because it's disabled.

Expansion Panels - Group Content into Panel Sections Chapter 5

[118]

How it works...
The state defines everything about expansion panels. This includes the panel title, the
panel content that's displayed when the panel is expanded, the disabled property, and
whether or not the panel is hidden:

const [panels] = useState([
 {
 title: 'First Panel Title',
 content: 'First panel content...'
 },
 {
 title: 'Second Panel Title',
 content: 'Second panel content...'
 },
 {
 title: 'Third Panel Title',
 content: 'Third panel content...'
 },
 {
 title: 'Fourth Panel Title',
 content: 'Fourth panel content...'
 }
]);

The disabled property marks the panel as disabled. This means that the user can see the
panel title, but it cannot be expanded. It's also visually marked as not being expandable.
The hidden property ensures that the panel isn't rendered at all. This is useful for cases
when you don't want the user to know about it at all.

Next, let's look at the code that renders each panel based on the component state:

{panels
 .filter(panel => !panel.hidden)
 .map((panel, index) => (

 }>
 {panel.title}

 {panel.content}

))}

Expansion Panels - Group Content into Panel Sections Chapter 5

[119]

The filter() call removes panels from the array that have the hidden property set to
true.

An alternative to using a hidden property to hide panels is removing them completely
from the array. It really depends on personal preference—toggling a property value versus
adding and removing values from an array.

Each panel is mapped to ExpansionPanel components using map(). The expansion panel
uses an ExpansionPanelSummary component for the title and the content goes into the
ExpansionPanelDetails component.

There's more...
You can also use state to control whether or not a panel is expanded. For example, you can
use ExpansionPanel components to create an accordion widget—there's always one panel
open, and opening another panel closes anything that's open.

The first step is to add an expanded state to determine which panel is open at any given
time:

const [expanded, setExpanded] = useState(0);
const [panels] = useState([
 {
 title: 'First Panel Title',
 content: 'First panel content...'
 },
 {
 title: 'Second Panel Title',
 content: 'Second panel content...'
 },
 {
 title: 'Third Panel Title',
 content: 'Third panel content...'
 },
 {
 title: 'Fourth Panel Title',
 content: 'Fourth panel content...'
 }
]);

Expansion Panels - Group Content into Panel Sections Chapter 5

[120]

The expanded state defaults to 0, meaning that the first panel is expanded by default. As
the expanded panels change, the expanded state changes to reflect the index of the
expanded panel. Next, you'll add an onChange handler for the ExpansionPanel
component:

const onChange = expanded => () => {
 setExpanded(expanded);
};

This is a higher-order function—it takes the index of the panel you want to expand and
returns a function that sets the expanded state when the given panel is clicked on. Finally,
you can add the new expanded state and the onChange handler to the ExpansionPanel
component:

<ExpansionPanel
 key={index}
 expanded={index === expanded}
 disabled={panel.disabled}
 onChange={onChange(index)}
>
 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>
 <Typography>{panel.title}</Typography>
 </ExpansionPanelSummary>
 <ExpansionPanelDetails>
 <Typography>{panel.content}</Typography>
 </ExpansionPanelDetails>
</ExpansionPanel>

The expanded property is based on the index of the current panel, equaling the expanded
state of your component. If they're equal, the panel is expanded. The onChange handler is
also assigned to ExpansionPanel, which changes the expanded state when the panel is
clicked on.

See also
ExpansionPanel demos: https:/ /material- ui.com/ demos/ expansion- panels/

ExpansionPanel API documentation: https:/ /material- ui.com/ api/
expansion- panel/

ExpansionPanelSummary API documentation: https:/ /material- ui.com/ api/
expansion- panel- summary/

ExpansionPanelDetails API documentation: https:/ /material- ui.com/ api/
expansion- panel- details/

https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/

Expansion Panels - Group Content into Panel Sections Chapter 5

[121]

Formatting panel headers
Headers in ExpansionPanel components can be formatted. Typically, the Typography
component is used to render text within an expansion panel header. This means that you
can use properties of Typography to customize the way that your expansion panel headers
appear.

How to do it...
Let's say that you want the text within your ExpansionPanel headers to stand out relative
to the text in the content section of each panel. You can change the variant property of the
Typography component in the ExpansionPanelSummary component. Here's the code to
do it:

import React, { Fragment } from 'react';

import ExpansionPanel from '@material-ui/core/ExpansionPanel';
import ExpansionPanelSummary from '@material-
ui/core/ExpansionPanelSummary';
import ExpansionPanelDetails from '@material-
ui/core/ExpansionPanelDetails';
import Typography from '@material-ui/core/Typography';

import ExpandMoreIcon from '@material-ui/icons/ExpandMore';

const FormattingPanelHeaders = () => (
 <Fragment>
 <ExpansionPanel>
 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>
 <Typography variant="subtitle1">Devices</Typography>
 </ExpansionPanelSummary>
 <ExpansionPanelDetails>
 <Typography>Devices content...</Typography>
 </ExpansionPanelDetails>
 </ExpansionPanel>
 <ExpansionPanel>
 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>
 <Typography variant="subtitle1">Networks</Typography>
 </ExpansionPanelSummary>
 <ExpansionPanelDetails>
 <Typography>Networks content...</Typography>
 </ExpansionPanelDetails>
 </ExpansionPanel>
 <ExpansionPanel>
 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>

Expansion Panels - Group Content into Panel Sections Chapter 5

[122]

 <Typography variant="subtitle1">Storage</Typography>
 </ExpansionPanelSummary>
 <ExpansionPanelDetails>
 <Typography>Storage content...</Typography>
 </ExpansionPanelDetails>
 </ExpansionPanel>
 </Fragment>
);

export default FormattingPanelHeaders;

Here's what the panels look like when the screen loads:

Here's what the panels look like when they're expanded:

Expansion Panels - Group Content into Panel Sections Chapter 5

[123]

How it works...
To make the heading text stand out relative to the text in the ExpansionPanelDetails
component, you only had to change the variant property of the Typography component
used in the header. In this case, you're using the subtitle1 variant, but there are a number
of other variants that you can use here.

There's more...
In addition to formatting header text, you can add other components, such as icons. Let's
modify the example to include icons for each panel header. First, you'll import the icons
that you need:

import DevicesIcon from 'material-ui/icons/Devices';
import NetworkWifiIcon from 'material-ui/icons/NetworkWifi';
import StorageIcon from '@material-ui/icons/Storage';

Then, you'll add a new icon style that adds space between the icon and text in the panel
header:

const styles = theme => ({
 icon: {
 marginRight: theme.spacing(1)
 }
});

Lastly, here's the markup to include the icons that you've imported in the appropriate panel
header:

<Fragment>
 <ExpansionPanel>
 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>
 <DevicesIcon className={classes.icon} />
 <Typography variant="subtitle1">Devices</Typography>
 </ExpansionPanelSummary>
 <ExpansionPanelDetails>
 <Typography>Devices content...</Typography>
 </ExpansionPanelDetails>
 </ExpansionPanel>
 <ExpansionPanel>
 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>
 <NetworkWifiIcon className={classes.icon} />
 <Typography variant="subtitle1">Networks</Typography>
 </ExpansionPanelSummary>

Expansion Panels - Group Content into Panel Sections Chapter 5

[124]

 <ExpansionPanelDetails>
 <Typography>Networks content...</Typography>
 </ExpansionPanelDetails>
 </ExpansionPanel>
 <ExpansionPanel>
 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>
 <StorageIcon className={classes.icon} />
 <Typography variant="subtitle1">Storage</Typography>
 </ExpansionPanelSummary>
 <ExpansionPanelDetails>
 <Typography>Storage content...</Typography>
 </ExpansionPanelDetails>
 </ExpansionPanel>
</Fragment>

The icon comes before the Typography component in the ExpansionPanelSummary
component. Here's what the panels look like now:

Here's what they look like when they're expanded:

Expansion Panels - Group Content into Panel Sections Chapter 5

[125]

By combining iconography and typography, you can make the headers of your expansion
panels stand out, making your content easier to navigate.

See also
ExpansionPanel demos: https:/ /material- ui.com/ demos/ expansion- panels/

ExpansionPanel API documentation: https:/ /material- ui.com/ api/
expansion- panel/

ExpansionPanelSummary API documentation: https:/ /material- ui.com/ api/
expansion- panel- summary/

ExpansionPanelDetails API documentation: https:/ /material- ui.com/ api/
expansion- panel- details/

Scrollable panel content
The height of an ExpansionPanel component, when expanded, changes so that all of the
content is visible on the screen. In cases where you have a lot of content in your panels, this
isn't ideal because the panel headers aren't visible to the user. Instead of having to scroll
down the entire page, you can make the content within the panel scrollable.

How to do it...
Let's say that you have three panels, each with several paragraphs of text. Rather than
having each panel adjust its height to accommodate the content, you can make the panels a
fixed height and scrollable. Here's the code:

import React, { Fragment } from 'react';

import { withStyles } from '@material-ui/core/styles';
import ExpansionPanel from '@material-ui/core/ExpansionPanel';
import ExpansionPanelSummary from '@material-
ui/core/ExpansionPanelSummary';
import ExpansionPanelDetails from '@material-
ui/core/ExpansionPanelDetails';
import Typography from '@material-ui/core/Typography';

import ExpandMoreIcon from '@material-ui/icons/ExpandMore';

const styles = theme => ({

https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/

Expansion Panels - Group Content into Panel Sections Chapter 5

[126]

 panelDetails: {
 flexDirection: 'column',
 height: 150,
 overflow: 'auto'
 }
});

const IpsumContent = () => (
 <Fragment>
 <Typography paragraph>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit. Integer
 ultricies nibh ut ipsum placerat, eget egestas leo imperdiet.
 Etiam consectetur mollis ultrices. Fusce eu eros a dui maximus
 rutrum. Aenean at dolor eu nunc ultricies placerat. Sed finibus
 porta sapien eget euismod. Donec eget tortor non turpis
 hendrerit euismod. Phasellus at commodo augue. Maecenas
 scelerisque augue at mattis pharetra. Aenean fermentum sed neque
 id feugiat.
 </Typography>

 <Typography paragraph>
 Aliquam erat volutpat. Donec sit amet venenatis leo. Nullam
 tincidunt diam in nisi pretium, sit amet tincidunt nisi aliquet.
 Proin quis justo consectetur, congue nisi nec, pharetra erat. Ut
 volutpat pulvinar neque vitae vestibulum. Phasellus nisl risus,
 dapibus at sapien in, aliquam tempus tellus. Integer accumsan
 tortor id dolor lacinia, et pulvinar est porttitor. Mauris a est
 vitae arcu iaculis dictum. Sed posuere suscipit ultricies.
 Vivamus a lacus in dui vehicula tincidunt.
 </Typography>

 <Typography paragraph>
 In ut velit laoreet, blandit nisi id, tempus mi. Mauris interdum
 in turpis vel tempor. Vivamus tincidunt turpis vitae porta
 dignissim. Quisque condimentum augue arcu, quis tincidunt erat
 luctus sit amet. Sed quis ligula malesuada, sollicitudin nisl
 nec, molestie tellus. Donec commodo consequat gravida. Mauris in
 rhoncus tellus, eget posuere risus. Pellentesque eget lectus
 lorem. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
 Integer condimentum, sapien varius vulputate lobortis, urna elit
 vestibulum ligula, sit amet interdum lectus augue ac eros.
 Vestibulum lorem ante, tincidunt eget faucibus id, placerat non
 est. Vivamus pretium consectetur nunc at imperdiet. Nullam eu
 elit dui. In imperdiet magna ac dui aliquam gravida. Aenean
 ipsum ex, fermentum eu pretium quis, posuere et velit.
 </Typography>
 </Fragment>
);

Expansion Panels - Group Content into Panel Sections Chapter 5

[127]

const ScrollablePanelContent = withStyles(styles)(({ classes }) => (
 <Fragment>
 <ExpansionPanel>
 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>
 <Typography>First</Typography>
 </ExpansionPanelSummary>
 <ExpansionPanelDetails className={classes.panelDetails}>
 <IpsumContent />
 </ExpansionPanelDetails>
 </ExpansionPanel>
 <ExpansionPanel>
 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>
 <Typography>Second</Typography>
 </ExpansionPanelSummary>
 <ExpansionPanelDetails className={classes.panelDetails}>
 <IpsumContent />
 </ExpansionPanelDetails>
 </ExpansionPanel>
 <ExpansionPanel>
 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>
 <Typography>Third</Typography>
 </ExpansionPanelSummary>
 <ExpansionPanelDetails className={classes.panelDetails}>
 <IpsumContent />
 </ExpansionPanelDetails>
 </ExpansionPanel>
 </Fragment>
));

export default ScrollablePanelContent;

The paragraph content in the Typography components has been truncated for
brevity—you can view the full text in the GitHub repository for this book.

Expansion Panels - Group Content into Panel Sections Chapter 5

[128]

Here's what it looks like when the first panel is expanded:

If you move your mouse pointer over the content of the expanded panel, you can now
scroll the content to the bottom of the paragraph, within the panel. Here's what it looks like
when the content has been scrolled to the bottom:

Expansion Panels - Group Content into Panel Sections Chapter 5

[129]

How it works...
The IpsumContent component is just a convenience component that holds paragraphs of
content so that you don't have to repeat it in every panel. Let's start by looking at the styles
used in this example:

const styles = theme => ({
 panelDetails: {
 flexDirection: 'column',
 height: 150,
 overflow: 'auto'
 }
});

Panel content uses flex box styles to lay out its content. It flows according to row direction
by default, so you have to set the flexDirection style to column if you want the content
to flow in a top-down direction. Next, you can set a fixed height for your panel content—in
this case, it's 150px. Finally, the overflow style set to auto will enable vertical scrolling for
the panel content.

You can then apply the panelDetails class to each of your ExpansionPanelContent
components:

<ExpansionPanelDetails className={classes.panelDetails}>
 <IpsumContent />
</ExpansionPanelDetails>

See also
ExpansionPanel demos: https:/ /material- ui.com/ demos/ expansion- panels/

ExpansionPanel API documentation: https:/ /material- ui.com/ api/
expansion- panel/

ExpansionPanelSummary API documentation: https:/ /material- ui.com/ api/
expansion- panel- summary/

ExpansionPanelDetails API documentation: https:/ /material- ui.com/ api/
expansion- panel- details/

https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/

Expansion Panels - Group Content into Panel Sections Chapter 5

[130]

Lazy loading panel content
If you're rendering expansion panels that are all collapsed by default, you don't have to
populate the ExpansionPanelDetails component up front. Instead, you can wait for the
user to expand the panel—then you can make whatever API calls you need in order to
render the content.

How to do it...
Let's say that you have an API function that fetches content based on an index value. For
example, if the first panel is expanded, the index value will be 0. You need to be able to
call this function when the panel is expanded, supplying the corresponding index value.
Here's what the code looks like:

import React, { useState, Fragment } from 'react';

import ExpansionPanel from '@material-ui/core/ExpansionPanel';
import ExpansionPanelSummary from '@material-
ui/core/ExpansionPanelSummary';
import ExpansionPanelDetails from '@material-
ui/core/ExpansionPanelDetails';
import Typography from '@material-ui/core/Typography';
import ExpandMoreIcon from '@material-ui/icons/ExpandMore';

const fetchPanelContent = index =>
 new Promise(resolve =>
 setTimeout(
 () =>
 resolve(
 [
 'First panel content...',
 'Second panel content...',
 'Third panel content...',
 'Fourth panel content...'
][index]
),
 1000
)
);

export default function LazyLoadingPanelContent() {
 const [panels, setPanels] = useState([
 { title: 'First Panel Title' },
 { title: 'Second Panel Title' },
 { title: 'Third Panel Title' },

Expansion Panels - Group Content into Panel Sections Chapter 5

[131]

 { title: 'Fourth Panel Title' }
]);

 const onChange = index => e => {
 if (!panels[index].content) {
 fetchPanelContent(index).then(content => {
 const newPanels = [...panels];
 newPanels[index] = { ...newPanels[index], content };
 setPanels(newPanels);
 });
 }
 };

 return (
 <Fragment>
 {panels.map((panel, index) => (
 <ExpansionPanel key={index} onChange={onChange(index)}>
 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>
 <Typography>{panel.title}</Typography>
 </ExpansionPanelSummary>
 <ExpansionPanelDetails>
 <Typography>{panel.content}</Typography>
 </ExpansionPanelDetails>
 </ExpansionPanel>
))}
 </Fragment>
);
}

Here's what the four panels look like when the screen first loads:

Expansion Panels - Group Content into Panel Sections Chapter 5

[132]

Try expanding the first panel. It expands right away but, for about one second, there's
nothing there. Then the content appears:

How it works...
Let's start with the fetchPanelContent() API function:

const fetchPanelContent = index =>
 new Promise(resolve =>
 setTimeout(
 () =>
 resolve(
 [
 'First panel content...',
 'Second panel content...',
 'Third panel content...',
 'Fourth panel content...'
][index]
),
 1000
)
);

Since this is just a mock, it returns a promise directly. It uses setTimeout() to simulate
latency, similar to what you would experience using a real API. The promise resolves with
the string value that's looked up from an array, based on the index argument.

Expansion Panels - Group Content into Panel Sections Chapter 5

[133]

Next, let's look at the onChange handler function that's called when ExpansionPanel
expands:

const onChange = index => (e) => {
 if (!panels[index].content) {
 fetchPanelContent(index).then(content => {
 const newPanels = [...panels];
 newPanels[index] = { ...newPanels[index], content };
 setPanels(newPanels);
 });
 }
};

First, this function checks if the panel that's expanded has any content in its state. If not,
you know that you have to fetch it by calling fetchPanelContent(). When the returned
promise resolves, you can call setPanels() to update the panels array and set the content
at the appropriate index.

The rest of your component just renders the ExpansionPanel components based on the
panels array, using the content state as the panel content. When content is updated, it is
reflected in the rendered content.

There's more...
There are a couple of improvements that you could make with this example. First, you
could show a progress indicator within the panel while the content is loading so that the
user knows that something is happening. The second improvement can be made both when
the panel expands and when it collapses—this should be avoided.

Let's start with the progress indicator. For this, you'll need a utility component and a style
for the ExpansionPanelDetails component:

const MaybeProgress = ({ loading }) =>
 loading ? <LinearProgress /> : null;

const useStyles = makeStyles(theme => ({
 panelDetails: { flexDirection: 'column' }
}));

Expansion Panels - Group Content into Panel Sections Chapter 5

[134]

The MaybeProgress component takes a loading property that, when true, results in a
LinearProgress component. Otherwise, nothing is rendered. The flexDirection style
is set to column; otherwise, the LinearProgress component won't display. Now let's
modify the markup rendered by LazyLoadingPanelContent so it uses these two
additions:

return (
 <Fragment>
 {panels.map((panel, index) => (
 <ExpansionPanel key={index} onChange={onChange(index)}>
 <ExpansionPanelSummary expandIcon={<ExpandMoreIcon />}>
 <Typography>{panel.title}</Typography>
 </ExpansionPanelSummary>
 <ExpansionPanelDetails className={classes.panelDetails}>
 <MaybeProgress loading={!panel.content} />
 <Typography>{panel.content}</Typography>
 </ExpansionPanelDetails>
 </ExpansionPanel>
))}
 </Fragment>
);

The panelDetails class is now used by the ExpansionPanelDetails component. The
first child of this component is now MaybeProgress. The loading property is true until the
API call populates the content state for the given panel. This means that the progress
indicator will be visible until the content loads.

Here's what the first panel looks like when expanded, before the content has loaded:

Expansion Panels - Group Content into Panel Sections Chapter 5

[135]

Once loaded, the content is rendered in place of the progress indicator. Finally, let's make
sure that the API call to load content isn't made when the panel is collapsing. This requires
an adjustment to the onChange() handler:

const onChange = index => (e, expanded) => {
 if (!panels[index].content && expanded) {
 fetchPanelContent(index).then(content => {
 const newPanels = [...panels];
 newPanels[index] = { ...newPanels[index], content };
 setPanels(newPanels);
 });
 }
};

The second argument passed to this function, expanded, tells you whether or not the panel
is expanding. If this value is false, you know that the panel is collapsed and that the API
call shouldn't be made. This condition has been added to look for content that has already
been loaded for the panel.

See also
ExpansionPanel demos: https:/ /material- ui.com/ demos/ expansion- panels/

ExpansionPanel API documentation: https:/ /material- ui.com/ api/
expansion- panel/

ExpansionPanelSummary API documentation: https:/ /material- ui.com/ api/
expansion- panel- summary/

ExpansionPanelDetails API documentation: https:/ /material- ui.com/ api/
expansion- panel- details/

https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/demos/expansion-panels/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-summary/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/
https://material-ui.com/api/expansion-panel-details/

6
Lists - Display Simple

Collection Data
In this chapter, you'll cover the following recipes:

Using state to render list items
List icons
List avatars and text
List sections
Nested lists
List controls
Scrolling lists

Introduction
The List component in Material-UI is used to render data collections. Lists are like tables,
only simpler. If you need to display an array of users, for example, you can render them in
a list, showing only the most relevant data, instead of several properties in a tabular format.
Material-UI lists are generic and provide a lot of flexibility.

Using state to render list items
The data source used to render List components often comes from the state of your
component. A collection—usually an array of objects—is mapped to ListItem
components. As the objects in this array change, the Material-UI list items change on the
screen.

Lists - Display Simple Collection Data Chapter 6

[137]

How to do it...
Let's say that you have an array of three objects that you need to display as a list on one of
your screens. You can add this array to the state of your component, then map each array
item to a ListItem component. Here's the code:

import React, { useState } from 'react';

import List from '@material-ui/core/List';
import ListItem from '@material-ui/core/ListItem';
import ListItemText from '@material-ui/core/ListItemText';

export default function UsingStatetoRenderListItems() {
 const [items, setItems] = useState([
 { name: 'First Item', timestamp: new Date() },
 { name: 'Second Item', timestamp: new Date() },
 { name: 'Third Item', timestamp: new Date() }
]);

 return (
 <List>
 {items.map((item, index) => (
 <ListItem key={index} button dense>
 <ListItemText
 primary={item.name}
 secondary={item.timestamp.toLocaleString()}
 />
 </ListItem>
))}
 </List>
);
}

Here's what you'll see when you first load the screen:

Lists - Display Simple Collection Data Chapter 6

[138]

How it works...
Let's start by looking at the items state:

const [items, setItems] = useState([
 { name: 'First Item', timestamp: new Date() },
 { name: 'Second Item', timestamp: new Date() },
 { name: 'Third Item', timestamp: new Date() }
]);

The name property is the primary text, and the timestamp property is the secondary
text for each list item. Next, let's look at the List markup that transforms this state into
rendered list items:

<List>
 {items.map((item, index) => (
 <ListItem key={index} button dense>
 <ListItemText
 primary={item.name}
 secondary={item.timestamp.toLocaleString()}
 />
 </ListItem>
))}
</List>

The ListItem component has two Boolean properties passed to it – button and dense.
The button property makes the list item behave like a button. For example, if you move
your mouse pointer over an item in the list, you'll see the hover styles applied to it. The
dense property removes extra padding from the list item. Without this property, the list
takes up more space on the screen.

The ListItemText component uses the primary and secondary properties to render the
name and timestamp properties respectively. The primary text is meant to stand out
relative to the secondary information displayed in the item – in this case, the timestamp.

There's more...
This example could have used props instead of state, because the items never changed.
Let's modify it so that the user can select items from the list. Here's what the new List
markup looks like:

<List>
 {items.map((item, index) => (
 <ListItem

Lists - Display Simple Collection Data Chapter 6

[139]

 key={index}
 button
 dense
 selected={item.selected}
 onClick={onClick(index)}
 >
 <ListItemText
 primary={item.name}
 secondary={item.timestamp.toLocaleString()}
 primaryTypographyProps={{
 color: item.selected ? 'primary' : undefined
 }}
 />
 </ListItem>
))}
</List>

The selected property passed to the ListItem component will apply selected styles to
the item when true. This value comes from the item.selected state, which is false by
default for every item (nothing is selected). Next, the ListItem component has an
onClick handler.

The ListItemText component also has styles applied to it based on the selected state of
the item. Behind the scenes, item text is rendered using the Typography component. You
can use the primaryTypographyProps property to pass properties to the Typography
component. In this case, you're changing the color of the text to primary when it's
selected.

Let's look at the onClick() handler as follows:

const onClick = index => () => {
 const item = items[index];
 const newItems = [...items];

 newItems[index] = { ...item, selected: !item.selected };
 setItems(newItems);
};

This is a higher-order function, which returns an event handler function based on the
index argument. It toggles the selected state for the item at the given index.

The onClick property isn't a ListItem property. It's a button property.
Since you've set the button property to true, ListItem uses a
button property and passes it to your onClick property.

Lists - Display Simple Collection Data Chapter 6

[140]

Here's what the list looks like when First Item is selected:

The change to the background color is caused by the selected property of ListItem. The
change to the text color is caused by the primaryTypographyProps property of
ListItemText.

See also
List demos: https:/ / material- ui.com/ demos/ lists/

Typography API documentation: https:/ /material- ui.com/ api/ typography/

List icons
ListItem components have first-class support for icons. By rendering icons in each list
item, you can make it clear to the user what types of objects are displayed in the list.

How to do it...
Let's say that you have an array of user objects that you want to render in a List. You
could render each item with a user icon to make it clear what each item in the list is. The
code for this is as follows:

import React, { useState } from 'react';

import List from '@material-ui/core/List';
import ListItem from '@material-ui/core/ListItem';
import ListItemText from '@material-ui/core/ListItemText';
import ListItemIcon from '@material-ui/core/ListItemIcon';

https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/

Lists - Display Simple Collection Data Chapter 6

[141]

import AccountCircleIcon from '@material-ui/icons/AccountCircle';

export default function ListIcons() {
 const [items, setItems] = useState([
 { name: 'First User' },
 { name: 'Second User' },
 { name: 'Third User' }
]);

 return (
 <List>
 {items.map((item, index) => (
 <ListItem key={index} button>
 <ListItemIcon>
 <AccountCircleIcon />
 </ListItemIcon>
 <ListItemText primary={item.name} />
 </ListItem>
))}
 </List>
);
}

When you load the screen, this is what the list should look like:

How it works...
The ListItemIcon component can be used as a child of ListItem components. In the
previous example, it comes before the text, so it ends up to the left of the item text:

<ListItem button key={index}>
 <ListItemIcon>
 <AccountCircleIcon />
 </ListItemIcon>
 <ListItemText primary={item.name} />
</ListItem>

Lists - Display Simple Collection Data Chapter 6

[142]

You could place the icon after the text as well:

<ListItem button key={index}>
 <ListItemText primary={item.name} />
 <ListItemIcon>
 <AccountCircleIcon />
 </ListItemIcon>
</ListItem>

Here's how it looks:

There's more...
You can mark ListItem components as selected by setting the selected property to
true. You can also change the icon to give a better visual indication that an item has been
selected. Here's the updated code:

import React, { useState } from 'react';

import List from '@material-ui/core/List';
import ListItem from '@material-ui/core/ListItem';
import ListItemText from '@material-ui/core/ListItemText';
import ListItemIcon from '@material-ui/core/ListItemIcon';

import AccountCircleIcon from '@material-ui/icons/AccountCircle';
import CheckCircleOutlineIcon from '@material-ui/icons/CheckCircleOutline';

const MaybeSelectedIcon = ({ selected, Icon }) =>
 selected ? <CheckCircleOutlineIcon /> : <Icon />;

export default function ListIcons() {
 const [items, setItems] = useState([
 { name: 'First User' },
 { name: 'Second User' },
 { name: 'Third User' }
]);

Lists - Display Simple Collection Data Chapter 6

[143]

 const onClick = index => () => {
 const item = items[index];
 const newItems = [...items];

 newItems[index] = { ...item, selected: !item.selected };
 setItems(newItems);
 };

 return (
 <List>
 {items.map((item, index) => (
 <ListItem
 key={index}
 button
 selected={item.selected}
 onClick={onClick(index)}
 >
 <ListItemText primary={item.name} />
 <ListItemIcon>
 <MaybeSelectedIcon
 selected={item.selected}
 Icon={AccountCircleIcon}
 />
 </ListItemIcon>
 </ListItem>
))}
 </List>
);
}

Here's what the list looks like with First User selected:

The icon for the selected items changes into a circled checkmark. Let's break down the
changes that were introduced to make this happen, starting with the MaybeSelectedIcon
component:

const MaybeSelectedIcon = ({ selected, Icon }) =>
 selected ? <CheckCircleOutlineIcon /> : <Icon />;

Lists - Display Simple Collection Data Chapter 6

[144]

This component will render either CheckCircleOutlineIcon or the Icon component that
is passed in as a property. This depends on the selected property. Next, let's look at how
this component is used inside ListItemIcon:

<ListItemIcon>
 <MaybeSelectedIcon
 selected={item.selected}
 Icon={AccountCircleIcon}
 />
</ListItemIcon>

When a list item is clicked on, the selected state for that item is toggled. Then, the
selected state is passed to MaybeSelectedIcon. The AccountCircleIcon component is
the icon that's rendered when the list item isn't selected, because it's passed to the Icon
property.

See also
List demos: https:/ / material- ui.com/ demos/ lists/

ListItemIcon API documentation: https:/ /material- ui.com/ api/ list- item-
icon/

List avatars and text
If your list items have primary and secondary text, using an icon on its own can be less
visually appealing than with an avatar surrounding the icon. It fills the space within the list
item better.

How to do it...
Let's say that you have four categories of messages that can be displayed by your app. To
access a given category, the user clicks on one of the list items. To help the user understand
the categories, you'll use icons. And to make the icons stand out against the primary and
secondary text of the list item, you'll wrap it with an Avatar component. Here's the code:

import React, { useState } from 'react';
import clsx from 'clsx';

import Avatar from '@material-ui/core/Avatar';

https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/api/list-item-icon/
https://material-ui.com/api/list-item-icon/
https://material-ui.com/api/list-item-icon/
https://material-ui.com/api/list-item-icon/
https://material-ui.com/api/list-item-icon/
https://material-ui.com/api/list-item-icon/
https://material-ui.com/api/list-item-icon/
https://material-ui.com/api/list-item-icon/
https://material-ui.com/api/list-item-icon/
https://material-ui.com/api/list-item-icon/
https://material-ui.com/api/list-item-icon/
https://material-ui.com/api/list-item-icon/
https://material-ui.com/api/list-item-icon/
https://material-ui.com/api/list-item-icon/
https://material-ui.com/api/list-item-icon/
https://material-ui.com/api/list-item-icon/
https://material-ui.com/api/list-item-icon/

Lists - Display Simple Collection Data Chapter 6

[145]

import List from '@material-ui/core/List';
import ListItem from '@material-ui/core/ListItem';
import ListItemText from '@material-ui/core/ListItemText';
import ListItemIcon from '@material-ui/core/ListItemIcon';

import MarkunreadIcon from '@material-ui/icons/Markunread';
import PriorityHighIcon from '@material-ui/icons/PriorityHigh';
import LowPriorityIcon from '@material-ui/icons/LowPriority';
import DeleteIcon from '@material-ui/icons/Delete';

export default function ListAvatarsAndText({ classes }) {
 const [items] = useState([
 {
 name: 'Unread',
 updated: '2 minutes ago',
 Icon: MarkunreadIcon,
 notifications: 1
 },
 {
 name: 'High Priority',
 updated: '30 minutes ago',
 Icon: PriorityHighIcon
 },
 {
 name: 'Low Priority',
 updated: '3 hours ago',
 Icon: LowPriorityIcon
 },
 { name: 'Junk', updated: '6 days ago', Icon: DeleteIcon }
]);

 return (
 <List>
 {items.map(({ Icon, ...item }, index) => (
 <ListItem button>
 <ListItemIcon>
 <Avatar>
 <Icon />
 </Avatar>
 </ListItemIcon>
 <ListItemText
 primary={item.name}
 secondary={item.updated}
 />
 </ListItem>
))}
 </List>

Lists - Display Simple Collection Data Chapter 6

[146]

);
}

Here's what the list looks like when rendered:

The circle that surrounds the icon is the Avatar component, and it helps the icon stand out.
Here's what this list looks like without avatars:

It's the same content and the same icons, but because of the height of the list item text,
there's a lot of excess space surrounding the icon. The Avatar component helps fill this
space while drawing attention to the icon.

Lists - Display Simple Collection Data Chapter 6

[147]

How it works...
The Avatar component is used on icons with a circular shape. The color of the circle comes
from the theme palette – the shade of grey used depends on whether the theme is light or
dark. The icon itself is passed as the child element:

<ListItemIcon>
 <Avatar>
 <Icon />
 </Avatar>
</ListItemIcon>

There's more...
If you use an Avatar with the icons in your list items, you can change the color of the
Avatar and you can apply a badge to indicate unacknowledged actions to be taken. Let's
modify the example so that each item in the items state can have a notifications
property; that is, a number representing the number of unread messages for the category. If
this number is greater than 0, you can change the Avatar color and display number of
notifications in a badge. Here's what the result looks like:

The first item in the list has an Avatar that's using the primary theme color and a badge
showing the number of notifications. The rest of the items don't have any
notifications, so the Avatar color uses the default, and the badge isn't displayed.

Lists - Display Simple Collection Data Chapter 6

[148]

Let's see how this is done, starting with the styles:

const styles = theme => ({
 activeAvatar: {
 backgroundColor: theme.palette.primary[theme.palette.type]
 }
});

The activeAvatar style is applied to the Avatar component when the notifications
state is a number greater than 0. It looks up the primary theme color based on the theme
type (light or dark). Next, let's look at the state of the first item in the items array:

{
 name: 'Unread',
 updated: '2 minutes ago',
 Icon: MarkunreadIcon,
 notifications: 1
}

Because the notifications value is 1, the color of the avatar changes, and the badge is
displayed. Lastly, let's see how all of this comes together in the component markup using
the Badge and Avatar components:

<Badge
 color={item.notifications ? 'secondary' : undefined}
 badgeContent={
 item.notifications ? item.notifications : null
 }
>
 <Avatar
 className={clsx({
 [classes.activeAvatar]: item.notifications
 })}
 >
 <Icon />
 </Avatar>
</Badge>

The color property of Badge is based on the notifications state of the item being
greater than 0. If it is, the primary color is used. If it isn't, undefined is passed to Badge. In
this case, this is necessary so that an empty badge circle doesn't show up when there aren't
any notifications.

Lists - Display Simple Collection Data Chapter 6

[149]

Passing undefined as a property value is equivalent to not setting the
property at all.

Next, the badgeContent property is set based on the notifications state of the item. If
it's not greater than 0, then you don't want any value set. Finally, setting the color of the
Avatar component uses clsx() to apply the activeAvatar class if the notifications
state for the item is greater than 0.

See also
Badge demos: https:/ / material- ui.com/ demos/ badges/

Avatar demos: https:/ / material- ui.com/ demos/ avatars/

List demos: https:/ / material- ui.com/ demos/ lists/

List sections
Once your lists have more than just a few items in them, you might want to consider
organizing the items into sections. To do this, you split your lists into several smaller lists,
which are stacked on top of one another with a divider in between them.

How to do it...
Let's say that you have several list items that can be divided into three sections. You can use
three List components to group your items into their respective sections, and use a
Divider component to visually indicate the section boundary for the user. Here's what the
code looks like:

import React, { Fragment } from 'react';

import List from '@material-ui/core/List';
import ListItem from '@material-ui/core/ListItem';
import ListItemText from '@material-ui/core/ListItemText';
import Divider from '@material-ui/core/Divider';

const ListSections = () => (
 <Fragment>
 <List>

https://material-ui.com/demos/badges/
https://material-ui.com/demos/badges/
https://material-ui.com/demos/badges/
https://material-ui.com/demos/badges/
https://material-ui.com/demos/badges/
https://material-ui.com/demos/badges/
https://material-ui.com/demos/badges/
https://material-ui.com/demos/badges/
https://material-ui.com/demos/badges/
https://material-ui.com/demos/badges/
https://material-ui.com/demos/badges/
https://material-ui.com/demos/badges/
https://material-ui.com/demos/badges/
https://material-ui.com/demos/badges/
https://material-ui.com/demos/avatars/
https://material-ui.com/demos/avatars/
https://material-ui.com/demos/avatars/
https://material-ui.com/demos/avatars/
https://material-ui.com/demos/avatars/
https://material-ui.com/demos/avatars/
https://material-ui.com/demos/avatars/
https://material-ui.com/demos/avatars/
https://material-ui.com/demos/avatars/
https://material-ui.com/demos/avatars/
https://material-ui.com/demos/avatars/
https://material-ui.com/demos/avatars/
https://material-ui.com/demos/avatars/
https://material-ui.com/demos/avatars/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/

Lists - Display Simple Collection Data Chapter 6

[150]

 <ListItem>
 <ListItemText primary="First" />
 </ListItem>
 <ListItem>
 <ListItemText primary="Second" />
 </ListItem>
 </List>
 <Divider />
 <List>
 <ListItem>
 <ListItemText primary="Third" />
 </ListItem>
 <ListItem>
 <ListItemText primary="Fourth" />
 </ListItem>
 </List>
 <Divider />
 <List>
 <ListItem>
 <ListItemText primary="Fifth" />
 </ListItem>
 <ListItem>
 <ListItemText primary="Sixth" />
 </ListItem>
 </List>
 </Fragment>
));

export default ListSections;

Here's what the rendered list looks like:

Lists - Display Simple Collection Data Chapter 6

[151]

How it works...
Each section is its own List component, with its own ListItem components. The
Divider component separates the lists. For example, the first section looks like this:

<List>
 <ListItem>
 <ListItemText primary="First" />
 </ListItem>
 <ListItem>
 <ListItemText primary="Second" />
 </ListItem>
</List>

There's more...
Instead of having a Divider component separate your list sections, you can use
Typography to label your sections. This could help your users make sense of the items in
each section:

<Fragment>
 <Typography variant="title">First Section</Typography>
 <List>
 <ListItem>
 <ListItemText primary="First" />
 </ListItem>
 <ListItem>
 <ListItemText primary="Second" />
 </ListItem>
 </List>
 <Typography variant="title">Second Section</Typography>
 <List>
 <ListItem>
 <ListItemText primary="Third" />
 </ListItem>
 <ListItem>
 <ListItemText primary="Fourth" />
 </ListItem>
 </List>
 <Typography variant="title">Third Section</Typography>
 <List>
 <ListItem>
 <ListItemText primary="Fifth" />
 </ListItem>
 <ListItem>

Lists - Display Simple Collection Data Chapter 6

[152]

 <ListItemText primary="Sixth" />
 </ListItem>
 </List>
</Fragment>

Here's what the list looks like now:

See also
List demos: https:/ / material- ui.com/ demos/ lists/

Typography API documentation: https:/ /material- ui.com/ api/ typography/

Nested lists
Lists can be nested. This is useful when you have a large number of items to render. Instead
of showing everything all at once, you can only display those item categories. Then the user
can click on these categories to display the items.

https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/

Lists - Display Simple Collection Data Chapter 6

[153]

How to do it...
Let's say that you have two item categories. When the user clicks on a category, the items in
that category should be displayed. Here's the code to do this, by using the List
component:

import React, { useState, Fragment } from 'react';

import List from '@material-ui/core/List';
import ListItem from '@material-ui/core/ListItem';
import ListItemText from '@material-ui/core/ListItemText';
import ListItemIcon from '@material-ui/core/ListItemIcon';
import Collapse from '@material-ui/core/Collapse';

import ExpandLessIcon from '@material-ui/icons/ExpandLess';
import ExpandMoreIcon from '@material-ui/icons/ExpandMore';
import InboxIcon from '@material-ui/icons/Inbox';
import MailIcon from '@material-ui/icons/Mail';
import ContactsIcon from '@material-ui/icons/Contacts';
import ContactMailIcon from '@material-ui/icons/ContactMail';

const ExpandIcon = ({ expanded }) =>
 expanded ? <ExpandLessIcon /> : <ExpandMoreIcon />;

export default function NestedLists() {
 const [items, setItems] = useState([
 {
 name: 'Messages',
 Icon: InboxIcon,
 expanded: false,
 children: [
 { name: 'First Message', Icon: MailIcon },
 { name: 'Second Message', Icon: MailIcon }
]
 },
 {
 name: 'Contacts',
 Icon: ContactsIcon,
 expanded: false,
 children: [
 { name: 'First Contact', Icon: ContactMailIcon },
 { name: 'Second Contact', Icon: ContactMailIcon }
]
 }
]);

 const onClick = index => () => {

Lists - Display Simple Collection Data Chapter 6

[154]

 const newItems = [...items];
 const item = items[index];

 newItems[index] = { ...item, expanded: !item.expanded };

 setItems(newItems);
 };

 return (
 <List>
 {items.map(({ Icon, ...item }, index) => (
 <Fragment key={index}>
 <ListItem button onClick={onClick(index)}>
 <ListItemIcon>
 <Icon />
 </ListItemIcon>
 <ListItemText primary={item.name} />
 <ExpandIcon expanded={item.expanded} />
 </ListItem>
 <Collapse in={item.expanded}>
 {item.children.map(child => (
 <ListItem key={child.name} button dense>
 <ListItemIcon>
 <child.Icon />
 </ListItemIcon>
 <ListItemText primary={child.name} />
 </ListItem>
))}
 </Collapse>
 </Fragment>
))}
 </List>
);
}

When you first load the screen, you'll see the following:

Lists - Display Simple Collection Data Chapter 6

[155]

If you click on each of these categories, you'll see the following:

How it works...
When you click on a category, the down arrow icon changes to an up arrow. Beneath the
category, the list items belonging to that category are displayed. Let's break down what's
happening in this code, starting with the component state:

const [items, setItems] = useState([
 {
 name: 'Messages',
 Icon: InboxIcon,
 expanded: false,
 children: [
 { name: 'First Message', Icon: MailIcon },
 { name: 'Second Message', Icon: MailIcon }
]
 },
 {
 name: 'Contacts',
 Icon: ContactsIcon,
 expanded: false,
 children: [
 { name: 'First Contact', Icon: ContactMailIcon },
 { name: 'Second Contact', Icon: ContactMailIcon }
]
 }
]);

Lists - Display Simple Collection Data Chapter 6

[156]

Each object in the items array represents a list category. In this case, the categories are
Messages and Contacts. The Icon property is the icon component to render for the
category. The expanded property determines the state of the expand arrow icon, and
whether or not the items in the category should be displayed.

The children array contains the items that belong to the category. They have a name and
an Icon property just like the category items, because they're all rendered using ListItem
components.

Next, let's look at the markup used to render each category and its child items:

<Fragment key={index}>
 <ListItem button onClick={onClick(index)}>
 <ListItemIcon>
 <Icon />
 </ListItemIcon>
 <ListItemText primary={item.name} />
 <ExpandIcon expanded={item.expanded} />
 </ListItem>
 <Collapse in={item.expanded}>
 {item.children.map(child => (
 <ListItem key={child.name} button dense>
 <ListItemIcon>
 <child.Icon />
 </ListItemIcon>
 <ListItemText primary={child.name} />
 </ListItem>
))}
 </Collapse>
</Fragment>

The category ListItem component has an onClick handler that toggles the expanded
state of the category. Next, the Collapse component is used to control the visibility of the
child items of the category, based on the value of expanded.

There's more...
You can improve on the appearance of your nested list by differentiating the appearance of
the sub-items. Right now, the only difference between the category items and subitems is
that the category items have expand and collapse arrows.

Lists - Display Simple Collection Data Chapter 6

[157]

Typically, list items are indented to indicate that they're part of another item in the
hierarchy. Let's create a style that will allow you to indent subitems:

const useStyles = makeStyles(theme => ({
 subItem: { paddingLeft: theme.spacing(3) }
}));

The paddingLeft style property will shift everything in the list item to the right. Now, let's
apply this class to subItem while also making the item smaller than the category items:

<ListItem
 key={child.name}
 className={classes.subItem}
 button
 dense
>
 <ListItemIcon>
 <child.Icon />
 </ListItemIcon>
 <ListItemText primary={child.name} />
</ListItem>

By adding the dense and the className properties to ListItem, your users should be
more easily able to differentiate between the category and its subitems:

Lists - Display Simple Collection Data Chapter 6

[158]

See also
List demos: https:/ / material- ui.com/ demos/ lists/

Collapse API documentation: https:/ /material- ui.com/ api/ collapse/

List controls
List items can be clickable, resulting in a change in state, or a link being followed, or
something else entirely. This is the primary action of the item. You can have secondary
actions on lists called controls. These are common actions that you might perform,
depending on the type of item.

How to do it...
Let's say that you have a list of devices. When you click on a list item, it might take you to a
details page for the device. Each device has Bluetooth connectivity that can be toggled on or
off. This is a good candidate secondary action to render in the item. Here's the code to do
this:

import React, { useState } from 'react';

import List from '@material-ui/core/List';
import ListItem from '@material-ui/core/ListItem';
import ListItemText from '@material-ui/core/ListItemText';
import ListItemIcon from '@material-ui/core/ListItemIcon';
import ListItemSecondaryAction from '@material-
ui/core/ListItemSecondaryAction';
import IconButton from '@material-ui/core/IconButton';

import BluetoothIcon from '@material-ui/icons/Bluetooth';
import BluetoothDisabledIcon from '@material-ui/icons/BluetoothDisabled';
import DevicesIcon from '@material-ui/icons/Devices';

const MaybeBluetoothIcon = ({ bluetooth }) =>
 bluetooth ? <BluetoothIcon /> : <BluetoothDisabledIcon />;

export default function ListControls() {
 const [items, setItems] = useState([
 {
 name: 'Device 1',
 bluetooth: true,

https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/demos/lists/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/

Lists - Display Simple Collection Data Chapter 6

[159]

 Icon: DevicesIcon
 },
 {
 name: 'Device 2',
 bluetooth: true,

 Icon: DevicesIcon
 },
 {
 name: 'Device 3',
 bluetooth: true,

 Icon: DevicesIcon
 }
]);

 const onBluetoothClick = index => () => {
 const newItems = [...items];
 const item = items[index];

 newItems[index] = { ...item, bluetooth: !item.bluetooth };

 setItems(newItems);
 };

 return (
 <List>
 {items.map(({ Icon, ...item }, index) => (
 <ListItem key={index} button>
 <ListItemIcon>
 <Icon />
 </ListItemIcon>
 <ListItemText primary={item.name} />
 <ListItemSecondaryAction>
 <IconButton
 onClick={onBluetoothClick(index, 'bluetooth')}
 >
 <MaybeBluetoothIcon bluetooth={item.bluetooth} />
 </IconButton>
 </ListItemSecondaryAction>
 </ListItem>
))}
 </List>
);
}

Lists - Display Simple Collection Data Chapter 6

[160]

Here's what the screen looks like when it first loads:

You can toggle the Bluetooth state of one of the items by clicking on the icon buttons. Here's
what it looks like after toggling the Bluetooth state of the first item:

The Bluetooth icon has changed to indicate the disabled state. Clicking on the icon again
will enable Bluetooth.

How it works...
Let's look at the markup that's used to render each list item:

<ListItem key={index} button>
 <ListItemIcon>
 <Icon />
 </ListItemIcon>
 <ListItemText primary={item.name} />
 <ListItemSecondaryAction>
 <IconButton
 onClick={onBluetoothClick(index, 'bluetooth')}
 >
 <MaybeBluetoothIcon bluetooth={item.bluetooth} />
 </IconButton>

Lists - Display Simple Collection Data Chapter 6

[161]

 </ListItemSecondaryAction>
</ListItem>

The ListItemSecondaryAction component is used as a container for any controls in
your list item. In this example, an IconButton is used as the control. It shows a different
icon depending on the state of the item, using the MaybeBluetoothIcon component. The
onBluetoothClick() function is used to return the event handler function for the item.
Let's take a look at this function:

const onBluetoothClick = index => () => {
 const newItems = [...items];
 const item = items[index];

 newItems[index] = { ...item, bluetooth: !item.bluetooth };

 setItems(newItems);
};

The device item is looked up in the items array. Then, the Bluetooth state is toggled, and
the new items array is returned to set as the new state. This results in the updated icon in
the list item control.

There's more...
You can have more than one control in your list item. For example, let's say that in addition
to toggling the Bluetooth state of a device, another common action for your users is
toggling the power state of the device. When the device is powered off, the list item and the
Bluetooth control should be displayed.

Avoid having too many controls as secondary actions in your list items. Doing so detracts
from the convenience of having one or two common actions easily accessible by your users.

Let's start by adding a new power state to each item in your component state:

const [items, setItems] = useState([
 {
 name: 'Device 1',
 bluetooth: true,
 power: true,
 Icon: DevicesIcon
 },
 {
 name: 'Device 2',
 bluetooth: true,

Lists - Display Simple Collection Data Chapter 6

[162]

 power: true,
 Icon: DevicesIcon
 },
 {
 name: 'Device 3',
 bluetooth: true,
 power: true,
 Icon: DevicesIcon
 }
]);

Next, let's create a toggle click handler that can handle updating both the Bluetooth and the
power state of items:

const onToggleClick = (index, prop) => () => {
 const newItems = [...items];
 const item = items[index];

 newItems[index] = { ...item, [prop]: !item[prop] };

 setItems(newItems);
};

This is very similar to the onBluetoothClick() handler. Now, it accepts an additional
prop argument. This is used to tell the function which property to update – bluetooth or
power. Finally, let's look at the updated ListItem markup:

<ListItem key={index} disabled={!item.power} button>
 <ListItemIcon>
 <Icon />
 </ListItemIcon>
 <ListItemText primary={item.name} />
 <ListItemSecondaryAction>
 <IconButton
 onClick={onToggleClick(index, 'bluetooth')}
 disabled={!item.power}
 >
 <MaybeBluetoothIcon bluetooth={item.bluetooth} />
 </IconButton>
 <IconButton onClick={onToggleClick(index, 'power')}>
 <PowerSettingsNewIcon />
 </IconButton>
 </ListItemSecondaryAction>
</ListItem>

Lists - Display Simple Collection Data Chapter 6

[163]

The changes can be summarized as follows:

The disabled property of ListItem depends on the power state of the item.
There's another IconButton control for toggling the power state of the item.
The onToggleClick() function is used by both controls to toggle the state of the
item.

Here's how the screen looks now, when first loaded:

When you click on the power icon, the list item and the Bluetooth button become disabled.
Here's what it looks like when the first item is powered off:

See also
ListItemSecondaryAction API documentation: https:/ /material- ui.com/
api/list- item- secondary- action/

IconButton API documentation: https:/ /material- ui.com/ api/ icon- button/

https://material-ui.com/api/list-item-secondary-action/
https://material-ui.com/api/list-item-secondary-action/
https://material-ui.com/api/list-item-secondary-action/
https://material-ui.com/api/list-item-secondary-action/
https://material-ui.com/api/list-item-secondary-action/
https://material-ui.com/api/list-item-secondary-action/
https://material-ui.com/api/list-item-secondary-action/
https://material-ui.com/api/list-item-secondary-action/
https://material-ui.com/api/list-item-secondary-action/
https://material-ui.com/api/list-item-secondary-action/
https://material-ui.com/api/list-item-secondary-action/
https://material-ui.com/api/list-item-secondary-action/
https://material-ui.com/api/list-item-secondary-action/
https://material-ui.com/api/list-item-secondary-action/
https://material-ui.com/api/list-item-secondary-action/
https://material-ui.com/api/list-item-secondary-action/
https://material-ui.com/api/list-item-secondary-action/
https://material-ui.com/api/list-item-secondary-action/
https://material-ui.com/api/list-item-secondary-action/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/

Lists - Display Simple Collection Data Chapter 6

[164]

Scrolling lists
When your lists contain a limited number of items in them, you're safe to just iterate over
the item data, and render ListItem components. This becomes a problem when you have
the potential for lists with over 1,000 items in them. You can render these items fast enough,
but having this many items in the Document Object Model (DOM) eats a lot of browser
resources, and can lead to unpredictable performance challenges for the user. The solution
is to virtualize your Material-UI lists using react-virtualized.

How to do it...
Let's say that you have a list of 1,000 items in it. You want to render these items inside a list
with a fixed height. In order to provide predictable performance characteristics for your
users, you only want to render items that are actually visible to the user as they scroll
through the list. Here's the code:

import React, { useState } from 'react';
import { List as VirtualList, AutoSizer } from 'react-virtualized';

import { makeStyles } from '@material-ui/styles';
import List from '@material-ui/core/List';
import ListItem from '@material-ui/core/ListItem';
import ListItemText from '@material-ui/core/ListItemText';
import Paper from '@material-ui/core/Paper';

const useStyles = makeStyles(theme => ({
 list: {
 height: 300
 },
 paper: {
 margin: theme.spacing(3)
 }
}));

function* genItems() {
 for (let i = 1; i <= 1000; i++) {
 yield `Item ${i}`;
 }
}

export default function ScrollingLists() {
 const classes = useStyles();
 const [items] = useState([...genItems()]);

Lists - Display Simple Collection Data Chapter 6

[165]

 const rowRenderer = ({ index, isScrolling, key, style }) => {
 const item = items[index];

 return (
 <ListItem button key={key} style={style}>
 <ListItemText primary={isScrolling ? '...' : item} />
 </ListItem>
);
 };

 return (
 <Paper className={classes.paper}>
 <List className={classes.list}>
 <AutoSizer disableHeight>
 {({ width }) => (
 <VirtualList
 width={width}
 height={300}
 rowHeight={50}
 rowCount={items.length}
 rowRenderer={rowRenderer}
 />
)}
 </AutoSizer>
 </List>
 </Paper>
);
}

When you first load the screen, you'll see the following:

Lists - Display Simple Collection Data Chapter 6

[166]

As you scroll through the list, here's what you'll see:

Lastly, here's what the bottom of the list looks like:

Lists - Display Simple Collection Data Chapter 6

[167]

How it works...
First, let's take a look at how the items state is generated. First, there's a genItems()
generator function:

function* genItems() {
 for (let i = 1; i <= 1000; i++) {
 yield `Item ${i}`;
 }
}

Then, the spread operator is used to turn the generated items into an array for the
component state:

const [items] = useState([...genItems()]);

Next, let's look at the rowRenderer() function:

const rowRenderer = ({ index, isScrolling, key, style }) => {
 const item = items[index];

 return (
 <ListItem button key={key} style={style}>
 <ListItemText primary={isScrolling ? '...' : item} />
 </ListItem>
);
};

This function returns the ListItem component that should be rendered at the given index.
Instead of manually mapping this component to items, the List component from react-
virtualized orchestrates when to call it for you, based on how the user scrolls through
the list.

The key and the style values that are passed to this function are required by react-
virtualized in order to work correctly. For example, the style value is used to control
the visibility of the item as scrolling happens. The isScrolling value is used to render
different data while the list is actively being scrolled. For example, imagine that instead of
just a text label within the list item, you also had an icon, along with other controls that are
all based on state. Trying to render these things while scrolling is going on is expensive and
wasteful. Instead, you can render something that's less resource intensive, such as a
placeholder string: '...'.

Lists - Display Simple Collection Data Chapter 6

[168]

Finally, let's examine the markup used to render this list:

<List className={classes.list}>
 <AutoSizer disableHeight>
 {({ width }) => (
 <VirtualList
 width={width}
 height={300}
 rowHeight={50}
 rowCount={items.length}
 rowRenderer={rowRenderer}
 />
)}
 </AutoSizer>
</List>

The List component is the container for everything else. Next, the AutoSizer component
from react-virtualized figures out the width of the list, which is needed as
a VirtualList property.

List is imported from react-virtualized using the alias
VirtualList. This is to avoid the naming conflict with List from
material-ui. You could import List from material-ui as an alias
instead, if you prefer.

The List component from react-virtualized also takes the height of the list, the height
of each row, and the row count, in order to determine which rows to render. With this in
place, you never have to worry about the performance of your application because of a list
component with too many items.

See also
React Virtualized documentation: https:/ /bvaughn. github. io/react-
virtualized/

List demos: https://material-ui.com/demos/lists/

https://bvaughn.github.io/react-virtualized/
https://bvaughn.github.io/react-virtualized/
https://bvaughn.github.io/react-virtualized/
https://bvaughn.github.io/react-virtualized/
https://bvaughn.github.io/react-virtualized/
https://bvaughn.github.io/react-virtualized/
https://bvaughn.github.io/react-virtualized/
https://bvaughn.github.io/react-virtualized/
https://bvaughn.github.io/react-virtualized/
https://bvaughn.github.io/react-virtualized/
https://bvaughn.github.io/react-virtualized/
https://bvaughn.github.io/react-virtualized/
https://bvaughn.github.io/react-virtualized/

7
Tables - Display Complex

Collection Data
In this chapter, you'll learn about the following topics:

Stateful tables
Sortable columns
Filtering rows
Selecting rows
Row actions

Introduction
If your application needs to display tabular data, you can use the Material-
UI Table component, along with all of its supporting components. Unlike grid
components, which you might have seen or used in other React libraries, the Material-UI
component is unopinionated. This means that you have to write your own code to control
table data. On the plus side, the Table component stays out of your way and lets you
implement things your own way.

Stateful tables
With Table components, it's rare that you'll have static markup that defines the row data of
the table. Instead, component state will map to the rows that make up your table data. For
example, you might have a component that fetches API data that you want displayed in a
table.

Tables - Display Complex Collection Data Chapter 7

[170]

How to do it...
Let's say that you have a component that fetches data from an API endpoint. When the data
loads, you want to display the tabular data in a Material-UI Table component. Here's what
the code looks like:

import React, { useState, useEffect } from 'react';

import { makeStyles } from '@material-ui/styles';
import Table from '@material-ui/core/Table';
import TableBody from '@material-ui/core/TableBody';
import TableCell from '@material-ui/core/TableCell';
import TableHead from '@material-ui/core/TableHead';
import TableRow from '@material-ui/core/TableRow';
import Paper from '@material-ui/core/Paper';

const fetchData = () =>
 new Promise(resolve => {
 const items = [
 {
 id: 1,
 name: 'First Item',
 created: new Date(),
 high: 2935,
 low: 1924,
 average: 2429.5
 },
 {
 id: 2,
 name: 'Second Item',
 created: new Date(),
 high: 439,
 low: 231,
 average: 335
 },
 {
 id: 3,
 name: 'Third Item',
 created: new Date(),
 high: 8239,
 low: 5629,
 average: 6934
 },
 {
 id: 4,
 name: 'Fourth Item',
 created: new Date(),

Tables - Display Complex Collection Data Chapter 7

[171]

 high: 3203,
 low: 3127,
 average: 3165
 },
 {
 id: 5,
 name: 'Fifth Item',
 created: new Date(),
 high: 981,
 low: 879,
 average: 930
 }
];

 setTimeout(() => resolve(items), 1000);
 });

const usePaperStyles = makeStyles(theme => ({
 root: { margin: theme.spacing(2) }
}));

export default function StatefulTables() {
 const classes = usePaperStyles();

 const [items, setItems] = useState([]);

 useEffect(() => {
 fetchData().then(items => {
 setItems(items);
 });
 }, []);

 return (
 <Paper className={classes.root}>
 <Table>
 <TableHead>
 <TableRow>
 <TableCell>Name</TableCell>
 <TableCell>Created</TableCell>
 <TableCell align="right">High</TableCell>
 <TableCell align="right">Low</TableCell>
 <TableCell align="right">Average</TableCell>
 </TableRow>
 </TableHead>
 <TableBody>
 {items.map(item => {
 return (
 <TableRow key={item.id}>

Tables - Display Complex Collection Data Chapter 7

[172]

 <TableCell component="th" scope="row">
 {item.name}
 </TableCell>
 <TableCell>{item.created.toLocaleString()}</TableCell>
 <TableCell align="right">{item.high}</TableCell>
 <TableCell align="right">{item.low}</TableCell>
 <TableCell align="right">{item.average}</TableCell>
 </TableRow>
);
 })}
 </TableBody>
 </Table>
 </Paper>
);
}

When you load the screen, you'll see a table populated with data after one second:

How it works...
Let's start by looking at the fetchData() function, which resolves the data that is
eventually set as the component state:

const fetchData = () =>
 new Promise(resolve => {
 const items = [
 {

Tables - Display Complex Collection Data Chapter 7

[173]

 id: 1,
 name: 'First Item',
 created: new Date(),
 high: 2935,
 low: 1924,
 average: 2429.5
 },
 {
 id: 2,
 name: 'Second Item',
 created: new Date(),
 high: 439,
 low: 231,
 average: 335
 },
 ...
];

 setTimeout(() => resolve(items), 1000);
 });

This function returns a Promise that resolves an array of objects after one second. The idea
is to simulate a function that calls a real API using fetch().

The objects shown in the array are truncated for brevity.

Next, let's look at the initial component state and what happens when your component is
mounted:

const [items, setItems] = useState([]);

useEffect(() => {
 fetchData().then(items => {
 setItems(items);
 });
}, []);

The items state represents the table rows that are to be rendered within the Table
component. When your component is mounted, the fetchData() call is made, and when
the Promise resolves, the items state is set. Lastly, let's look at the markup that's
responsible for rendering the table rows:

<Table>
 <TableHead>

Tables - Display Complex Collection Data Chapter 7

[174]

 <TableRow>
 <TableCell>Name</TableCell>
 <TableCell>Created</TableCell>
 <TableCell align="right">High</TableCell>
 <TableCell align="right">Low</TableCell>
 <TableCell align="right">Average</TableCell>
 </TableRow>
 </TableHead>
 <TableBody>
 {items.map(item => {
 return (
 <TableRow key={item.id}>
 <TableCell component="th" scope="row">
 {item.name}
 </TableCell>
 <TableCell>{item.created.toLocaleString()}</TableCell>
 <TableCell align="right">{item.high}</TableCell>
 <TableCell align="right">{item.low}</TableCell>
 <TableCell align="right">{item.average}</TableCell>
 </TableRow>
);
 })}
 </TableBody>
</Table>

Table components typically have two children—a TableHead and a TableBody
component. Inside TableHead, you'll find a TableRow component with several TableCell
components. These are the table column headings. Inside TableBody, you'll see that the
items state is mapped to TableRow and TableCell components. When the items state
changes, the rows are changed too. You can already see this in action, because the items
state defaults to an empty array. After the API data resolves, the items state changes and
the rows are visible on the screen.

There's more...
One suboptimal aspect of this example is the user's experience while they wait for table
data to load. Showing the column headers upfront is fine, since you know what they are
ahead of time and the user might too. What's needed is some sort of indicator that the
actual row data is, in fact, loading.

Tables - Display Complex Collection Data Chapter 7

[175]

One way to fix this issue is to add a circular progress indicator underneath the column
headers. This should help the user understand that not only are they waiting for data to
load, but that it's the table row data specifically, thanks to the position of the progress
indicator.

First, let's introduce a new component for displaying a CircularProgress component
along with some new styles:

const usePaperStyles = makeStyles(theme => ({
 root: { margin: theme.spacing(2), textAlign: 'center' }
}));

const useProgressStyles = makeStyles(theme => ({
 progress: { margin: theme.spacing(2) }
}));

function MaybeLoading({ loading }) {
 const classes = useProgressStyles();
 return loading ? (
 <CircularProgress className={classes.progress} />
) : null;
}

There's a new progress style that's applied to the CircularProgress component. This
adds margin to the progress indicator. The textAlign property has been added to the
root style so that the progress indicator is horizontally centered within the Paper
component. The MaybeLoading component renders the CircularProgress component if
the loading property is true.

This means that you now have to keep track of the loading state of the API call. Here's the
new state, which defaults to true:

const [loading, setLoading] = useState(true);

When the API call returns, you can set the loading state to false:

useEffect(() => {
 fetchData().then(items => {
 setItems(items);
 setLoading(false);
 });
}, []);

Tables - Display Complex Collection Data Chapter 7

[176]

Lastly, you need to render the MaybeLoading component after the Table component:

<Paper className={classes.root}>
 <Table>
 ...
 </Table>
 <MaybeLoading loading={loading} />
</Paper>

Here's what your users will see while waiting for the table data to load:

See also
Table API documentation: https:/ /material- ui.com/ api/ table/

Sortable columns
Material-UI tables have tools that help you implement sortable columns. If you're rendering
a Table component in your application, your users will likely expect to be able to sort the
table data by column.

How to do it...
When the users clicks on a column header, there should be a visual indication that table
rows are now sorted by this column and the row order should change. When clicked on
again, the column should appear in reverse order. Here's the code:

import React, { useState } from 'react';

import { makeStyles } from '@material-ui/styles';
import Table from '@material-ui/core/Table';

https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/

Tables - Display Complex Collection Data Chapter 7

[177]

import TableBody from '@material-ui/core/TableBody';
import TableCell from '@material-ui/core/TableCell';
import TableHead from '@material-ui/core/TableHead';
import TableRow from '@material-ui/core/TableRow';
import TableSortLabel from '@material-ui/core/TableSortLabel';
import Paper from '@material-ui/core/Paper';

const comparator = (prop, desc = true) => (a, b) => {
 const order = desc ? -1 : 1;

 if (a[prop] < b[prop]) {
 return -1 * order;
 }

 if (a[prop] > b[prop]) {
 return 1 * order;
 }

 return 0 * order;
};

const useStyles = makeStyles(theme => ({
 root: { margin: theme.spacing(2), textAlign: 'center' }
}));

export default function SortableColumns() {
 const classes = useStyles();
 const [columns, setColumns] = useState([
 { name: 'Name', active: false },
 { name: 'Created', active: false },
 { name: 'High', active: false, numeric: true },
 { name: 'Low', active: false, numeric: true },
 { name: 'Average', active: false, numeric: true }
]);
 const [rows, setRows] = useState([
 {
 id: 1,
 name: 'First Item',
 created: new Date(),
 high: 2935,
 low: 1924,
 average: 2429.5
 },
 {
 id: 2,
 name: 'Second Item',
 created: new Date(),
 high: 439,

Tables - Display Complex Collection Data Chapter 7

[178]

 low: 231,
 average: 335
 },
 {
 id: 3,
 name: 'Third Item',
 created: new Date(),
 high: 8239,
 low: 5629,
 average: 6934
 },
 {
 id: 4,
 name: 'Fourth Item',
 created: new Date(),
 high: 3203,
 low: 3127,
 average: 3165
 },
 {
 id: 5,
 name: 'Fifth Item',
 created: new Date(),
 high: 981,
 low: 879,
 average: 930
 }
]);

 const onSortClick = index => () => {
 setColumns(
 columns.map((column, i) => ({
 ...column,
 active: index === i,
 order:
 (index === i &&
 (column.order === 'desc' ? 'asc' : 'desc')) ||
 undefined
 }))
);

 setRows(
 rows
 .slice()
 .sort(
 comparator(
 columns[index].name.toLowerCase(),
 columns[index].order === 'desc'

Tables - Display Complex Collection Data Chapter 7

[179]

)
)
);
 };

 return (
 <Paper className={classes.root}>
 <Table>
 <TableHead>
 <TableRow>
 {columns.map((column, index) => (
 <TableCell
 key={column.name}
 align={column.numeric ? 'right' : 'inherit'}
 >
 <TableSortLabel
 active={column.active}
 direction={column.order}
 onClick={onSortClick(index)}
 >
 {column.name}
 </TableSortLabel>
 </TableCell>
))}
 </TableRow>
 </TableHead>
 <TableBody>
 {rows.map(row => (
 <TableRow key={row.id}>
 <TableCell component="th" scope="row">
 {row.name}
 </TableCell>
 <TableCell>{row.created.toLocaleString()}</TableCell>
 <TableCell align="right">{row.high}</TableCell>
 <TableCell align="right">{row.low}</TableCell>
 <TableCell align="right">{row.average}</TableCell>
 </TableRow>
))}
 </TableBody>
 </Table>
 </Paper>
);
}

Tables - Display Complex Collection Data Chapter 7

[180]

If you click on the Name column header, here's what you'll see:

The column changes to indicate the sort order. If you click on the name column again, the
sort order will reverse:

Tables - Display Complex Collection Data Chapter 7

[181]

How it works...
Let's break down the code used to render this table, starting with the markup used to
render the column headers:

<TableHead>
 <TableRow>
 {columns.map((column, index) => (
 <TableCell
 key={column.name}
 align={column.numeric ? 'right' : 'inherit'}
 >
 <TableSortLabel
 active={column.active}
 direction={column.order}
 onClick={onSortClick(index)}
 >
 {column.name}
 </TableSortLabel>
 </TableCell>
))}
 </TableRow>
</TableHead>

Each column in the table is defined in the columns state. This array is mapped to
TableCell components. Inside each TableCell, there's a TableSortLabel component.
This component makes the column header text bold when it's the active column for sorting.
It also adds the sort arrow to the right of the text. TableSortLabel takes active,
direction, and onClick properties. The active property is based on the active state of
the column, which changes when the column is clicked on. The direction property
determines whether the rows are sorted in ascending or descending order for the given
column. The onClick property takes an event handler that makes the necessary state
changes when the column is clicked on. Here's the onSortClick() handler:

const onSortClick = index => () => {
 setColumns(
 columns.map((column, i) => ({
 ...column,
 active: index === i,
 order:
 (index === i &&
 (column.order === 'desc' ? 'asc' : 'desc')) ||
 undefined
 }))
);

Tables - Display Complex Collection Data Chapter 7

[182]

 setRows(
 rows
 .slice()
 .sort(
 comparator(
 columns[index].name.toLowerCase(),
 columns[index].order === 'desc'
)
)
);
};

This function takes an index argument—the column index—and returns a new function
for the column. The returned function has two purposes:

To update the column state so that the correct column is marked as active and1.
that it has the correct sort direction
To update the row state so that the table rows are in the correct order2.

Once these state changes have been made, the active column and the table rows will
reflect them. The last piece of code to look at is the comparator() function. This is another
higher-order function that takes the name of a column, and returns a new function that can
be passed to Array.sort() to sort an array of objects by the given column:

const comparator = (prop, desc = true) => (a, b) => {
 const order = desc ? -1 : 1;

 if (a[prop] < b[prop]) {
 return -1 * order;
 }

 if (a[prop] > b[prop]) {
 return 1 * order;
 }

 return 0 * order;
};

This function is generic enough that you can use it with any tables in your app. In this case,
the column name and order are passed to comparator() from the component state. As the
state of the component changes, so too does the sorting behavior in comparator().

Tables - Display Complex Collection Data Chapter 7

[183]

There's more...
What if your data is already sorted by a particular column when it arrives from the API? If
this is the case, you'll probably want to indicate which columns the rows are sorted by and
in what direction, before the user starts interacting with the table.

To do so, you just need to change the default column state. For example, let's say that the
Average column is sorted in descending order by default. Here's what your initial column
state would look like:

const [columns, setColumns] = useState([
 { name: 'Name', active: false },
 { name: 'Created', active: false },
 { name: 'High', active: false, numeric: true },
 { name: 'Low', active: false, numeric: true },
 { name: 'Average', active: true, numeric: true }
]);

The Average column is now active by default. You didn't need to specify the order since the
default is ascending. Here's what the table looks like when the screen first loads:

See also
Table demos: https:/ / material- ui.com/ demos/ tables/

https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/

Tables - Display Complex Collection Data Chapter 7

[184]

Filtering rows
Where there are tables, there's potential for too much information. This is why adding a
search feature to your tables is a good idea. It allows the user to remove irrelevant rows
from the table as they type.

How to do it...
Let's say that you have a table with lots of rows in it, meaning that the user is going to have
a tough time scrolling through the entire table. To make things easier for them, you decide
to add a search feature to your table that filters rows by checking whether the search text
exists within the name column. Here's the code:

import React, { useState, useEffect, Fragment } from 'react';

import { makeStyles } from '@material-ui/styles';
import { withStyles } from '@material-ui/core/styles';
import Table from '@material-ui/core/Table';
import TableBody from '@material-ui/core/TableBody';
import TableCell from '@material-ui/core/TableCell';
import TableHead from '@material-ui/core/TableHead';
import TableRow from '@material-ui/core/TableRow';
import Paper from '@material-ui/core/Paper';
import CircularProgress from '@material-ui/core/CircularProgress';
import Input from '@material-ui/core/Input';
import InputLabel from '@material-ui/core/InputLabel';
import InputAdornment from '@material-ui/core/InputAdornment';
import FormControl from '@material-ui/core/FormControl';
import TextField from '@material-ui/core/TextField';

import SearchIcon from '@material-ui/icons/Search';

const fetchData = () =>
 new Promise(resolve => {
 const items = [
 {
 id: 1,
 name: 'First Item',
 created: new Date(),
 high: 2935,
 low: 1924,
 average: 2429.5
 },
 {
 id: 2,

Tables - Display Complex Collection Data Chapter 7

[185]

 name: 'Second Item',
 created: new Date(),
 high: 439,
 low: 231,
 average: 335
 },
 {
 id: 3,
 name: 'Third Item',
 created: new Date(),
 high: 8239,
 low: 5629,
 average: 6934
 },
 {
 id: 4,
 name: 'Fourth Item',
 created: new Date(),
 high: 3203,
 low: 3127,
 average: 3165
 },
 {
 id: 5,
 name: 'Fifth Item',
 created: new Date(),
 high: 981,
 low: 879,
 average: 930
 }
];

 setTimeout(() => resolve(items), 1000);
 });

const styles = theme => ({
 root: { margin: theme.spacing(2), textAlign: 'center' },
 progress: { margin: theme.spacing(2) },
 search: { marginLeft: theme.spacing(2) }
});
const useStyles = makeStyles(styles);

const MaybeLoading = withStyles(styles)(({ classes, loading }) =>
 loading ? <CircularProgress className={classes.progress} /> : null
);

export default function FilteringRows() {
 const classes = useStyles();

Tables - Display Complex Collection Data Chapter 7

[186]

 const [search, setSearch] = useState('');
 const [items, setItems] = useState([]);
 const [loading, setLoading] = useState(true);

 useEffect(() => {
 fetchData().then(items => {
 setItems(items);
 setLoading(false);
 });
 }, []);

 const onSearchChange = e => {
 setSearch(e.target.value);
 };

 return (
 <Fragment>
 <TextField
 value={search}
 onChange={onSearchChange}
 className={classes.search}
 id="input-search"
 InputProps={{
 startAdornment: (
 <InputAdornment position="start">
 <SearchIcon />
 </InputAdornment>
)
 }}
 />
 <Paper className={classes.root}>
 <Table>
 <TableHead>
 <TableRow>
 <TableCell>Name</TableCell>
 <TableCell>Created</TableCell>
 <TableCell align="right">High</TableCell>
 <TableCell align="right">Low</TableCell>
 <TableCell align="right">Average</TableCell>
 </TableRow>
 </TableHead>
 <TableBody>
 {items
 .filter(item => !search || item.name.includes(search))
 .map(item => {
 return (
 <TableRow key={item.id}>
 <TableCell component="th" scope="row">

Tables - Display Complex Collection Data Chapter 7

[187]

 {item.name}
 </TableCell>
 <TableCell>
 {item.created.toLocaleString()}
 </TableCell>
 <TableCell align="right">{item.high}</TableCell>
 <TableCell align="right">{item.low}</TableCell>
 <TableCell align="right">
 {item.average}
 </TableCell>
 </TableRow>
);
 })}
 </TableBody>
 </Table>
 <MaybeLoading loading={loading} />
 </Paper>
 </Fragment>
);
}

Here's what the table and search input fields look like when the screen first loads:

Tables - Display Complex Collection Data Chapter 7

[188]

The search input is just above the table. Try typing in a filter string, such as Fourth—you
should see the following:

If you delete the filter text from the search input, all rows in the table data will be rendered
again.

How it works...
Let's start by looking at the state of the FilteringRows component:

const [search, setSearch] = useState('');
const [items, setItems] = useState([]);
const [loading, setLoading] = useState(true);

The search string is the actual filter that changes the rows that are rendered within the
Table element. Next, let's look at the TextField component that renders the search input:

<TextField
 value={search}
 onChange={onSearchChange}
 className={classes.search}
 id="input-search"
 InputProps={{
 startAdornment: (
 <InputAdornment position="start">
 <SearchIcon />
 </InputAdornment>
)
 }}
/>

The onSearchChange() function is responsible for maintaining the search state as the user
types. You should render the search input component close to the table that it filters. In this
example, the position of the search input feels like it belongs to the table.

Tables - Display Complex Collection Data Chapter 7

[189]

Lastly, let's look at how the table rows are filtered and rendered:

<TableBody>
 {items
 .filter(item => !search || item.name.includes(search))
 .map(item => {
 return (
 <TableRow key={item.id}>
 <TableCell component="th" scope="row">
 {item.name}
 </TableCell>
 <TableCell>
 {item.created.toLocaleString()}
 </TableCell>
 <TableCell align="right">{item.high}</TableCell>
 <TableCell align="right">{item.low}</TableCell>
 <TableCell align="right">
 {item.average}
 </TableCell>
 </TableRow>
);
 })}
</TableBody>

Instead of calling map() directly on the item's state, filter() is used to produce an array
of items that match the search criteria. As the search state changes, the filter() call is
repeated. The condition that checks whether the item matches what the user has typed
checks to see whether the name property of the item contains the search string. But first,
you have to make sure that the user is actually filtering. For example, if the search string is
empty, every item should be returned. How the item is searched is specific to your
application—you could search every item property if you wanted to.

See also
Table demos: https:/ / material- ui.com/ demos/ tables/

Selecting rows
Users often need to interact with specific rows in a table. For example, they might select a
row and then perform an action that uses data from the selected row. Or, the user selects
multiple rows, which produces new data related to their selection. With Material-UI tables,
you can mark rows as selected using a single TableRow property.

https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/

Tables - Display Complex Collection Data Chapter 7

[190]

How to do it...
In this example, let's assume that the user needs to be able to select multiple rows in your
table. As rows are selected, another section on the screen is updated with data that reflects
the selected rows. Let's start by looking at the Card component, which displays data from
the selected table rows:

<Card className={classes.card}>
 <CardHeader title={`(${selections()}) rows selected`} />
 <CardContent>
 <Grid container direction="column">
 <Grid item>
 <Grid container justify="space-between">
 <Grid item>
 <Typography>Low</Typography>
 </Grid>
 <Grid item>
 <Typography>{selectedLow()}</Typography>
 </Grid>
 </Grid>
 </Grid>
 <Grid item>
 <Grid container justify="space-between">
 <Grid item>
 <Typography>High</Typography>
 </Grid>
 <Grid item>
 <Typography>{selectedHigh()}</Typography>
 </Grid>
 </Grid>
 </Grid>
 <Grid item>
 <Grid container justify="space-between">
 <Grid item>
 <Typography>Average</Typography>
 </Grid>
 <Grid item>
 <Typography>{selectedAverage()}</Typography>
 </Grid>
 </Grid>
 </Grid>
 </Grid>
 </CardContent>
</Card>

Tables - Display Complex Collection Data Chapter 7

[191]

 Let's take a look at the rest of the components now:

import React, { useState, Fragment } from 'react';

import { makeStyles } from '@material-ui/styles';
import Typography from '@material-ui/core/Typography';
import Grid from '@material-ui/core/Grid';
import Table from '@material-ui/core/Table';
import TableBody from '@material-ui/core/TableBody';
import TableCell from '@material-ui/core/TableCell';
import TableHead from '@material-ui/core/TableHead';
import TableRow from '@material-ui/core/TableRow';
import Paper from '@material-ui/core/Paper';
import Card from '@material-ui/core/Card';
import CardContent from '@material-ui/core/CardContent';
import CardHeader from '@material-ui/core/CardHeader';

const useStyles = makeStyles(theme => ({
 root: { margin: theme.spacing.unit * 2, textAlign: 'center' },
 card: { margin: theme.spacing.unit * 2, maxWidth: 300 }
}));

export default function SelectingRows() {
 const classes = useStyles();
 const [columns, setColumns] = useState([
 { name: 'Name', active: false },
 { name: 'Created', active: false },
 { name: 'High', active: false, numeric: true },
 { name: 'Low', active: false, numeric: true },
 { name: 'Average', active: true, numeric: true }
]);
 const [rows, setRows] = useState([
 {
 id: 1,
 name: 'First Item',
 created: new Date(),
 high: 2935,
 low: 1924,
 average: 2429.5
 },
 {
 id: 2,
 name: 'Second Item',
 created: new Date(),
 high: 439,
 low: 231,
 average: 335
 },

Tables - Display Complex Collection Data Chapter 7

[192]

 {
 id: 3,
 name: 'Third Item',
 created: new Date(),
 high: 8239,
 low: 5629,
 average: 6934
 },
 {
 id: 4,
 name: 'Fourth Item',
 created: new Date(),
 high: 3203,
 low: 3127,
 average: 3165
 },
 {
 id: 5,
 name: 'Fifth Item',
 created: new Date(),
 high: 981,
 low: 879,
 average: 930
 }
]);

 const onRowClick = id => () => {
 const newRows = [...rows];
 const index = rows.findIndex(row => row.id === id);
 const row = rows[index];

 newRows[index] = { ...row, selected: !row.selected };
 setRows(newRows);
 };

 const selections = () => rows.filter(row => row.selected).length;

 const selectedLow = () =>
 rows
 .filter(row => row.selected)
 .reduce((total, row) => total + row.low, 0);

 const selectedHigh = () =>
 rows
 .filter(row => row.selected)
 .reduce((total, row) => total + row.high, 0);

 const selectedAverage = () => (selectedLow() + selectedHigh()) / 2;

Tables - Display Complex Collection Data Chapter 7

[193]

 return (
 <Fragment>
 <Card className={classes.card}>
 ...
 </Card>
 <Paper className={classes.root}>
 <Table>
 <TableHead>
 <TableRow>
 {columns.map(column => (
 <TableCell
 key={column.name}
 align={column.numeric ? 'right' : 'inherit'}
 >
 {column.name}
 </TableCell>
))}
 </TableRow>
 </TableHead>
 <TableBody>
 {rows.map(row => (
 <TableRow
 key={row.id}
 onClick={onRowClick(row.id)}
 selected={row.selected}
 >
 <TableCell component="th" scope="row">
 {row.name}
 </TableCell>
 <TableCell>{row.created.toLocaleString()}</TableCell>
 <TableCell align="right">{row.high}</TableCell>
 <TableCell align="right">{row.low}</TableCell>
 <TableCell align="right">{row.average}</TableCell>
 </TableRow>
))}
 </TableBody>
 </Table>
 </Paper>
 </Fragment>
);
}

Tables - Display Complex Collection Data Chapter 7

[194]

Here's what the screen looks like when it first loads:

Now, you can try making some row selections. Here's what you'll see if you select the
second and fourth rows:

Tables - Display Complex Collection Data Chapter 7

[195]

When you click on a table row, it changes visually so that the user can see that it is selected.
Also note that the Card component contents change to reflect the selected rows. It also tells
you how many rows are selected.

How it works...
The Card component relies on a few helper functions:

selectedLow

selectedHigh

selectedAverage

Tables - Display Complex Collection Data Chapter 7

[196]

The return values of these functions change when the table row selection changes. Let's
take a closer look at how these values are computed:

const selectedLow = () =>
 rows
 .filter(row => row.selected)
 .reduce((total, row) => total + row.low, 0);

const selectedHigh = () =>
 rows
 .filter(row => row.selected)
 .reduce((total, row) => total + row.high, 0);

const selectedAverage = () => (selectedLow() + selectedHigh()) / 2;

The selectedLow() and selectedHigh() functions work the same way—they just
operate on the low and high fields respectively. The filter() call is used to make sure
that you're only working with selected rows. The reduce() call adds the values of the
given field for the selected rows and returns the result as the property value. The
selectedAverage() function uses the selectedLow() and selectedHigh() functions
to compute a new average for the row selections.

Next, let's look at the handler that's called when a row is selected:

const onRowClick = id => () => {
 const newRows = [...rows];
 const index = rows.findIndex(row => row.id === id);
 const row = rows[index];

 newRows[index] = { ...row, selected: !row.selected };
 setRows(newRows);
};

The onRowClick() function finds the selected row in the rows state based on the id
argument. Then, it toggles the selected state of the row. As a result, the computed
properties that you just looked at are updated, and so is the appearance of the row itself:

<TableRow
 key={row.id}
 onClick={onRowClick(row.id)}
 selected={row.selected}
>

The TableRow component has a selected property, which changes the style of the row to
mark it as selected.

Tables - Display Complex Collection Data Chapter 7

[197]

See also
Table demos: https:/ / material- ui.com/ demos/ tables/

Row actions
Table rows often represent an object that you can perform actions on. For example, you
might have a table of servers where each row represents a server that can be turned on or
off. Instead of making your users click a link that takes them away from the table to
perform an action, you can include common actions directly in each table row.

How to do it...
Let's say that you have a table with rows that have servers that can be turned on or off,
depending on their current state. You want to include both of these actions as part of each
table row, so that the user can more easily control their servers without spending lots of
time navigating. The buttons also need to change their color and disabled state based on the
state of the row.

Here's the code to do this:

import React, { useState } from 'react';

import { makeStyles } from '@material-ui/styles';
import Table from '@material-ui/core/Table';
import TableBody from '@material-ui/core/TableBody';
import TableCell from '@material-ui/core/TableCell';
import TableHead from '@material-ui/core/TableHead';
import TableRow from '@material-ui/core/TableRow';
import Paper from '@material-ui/core/Paper';
import IconButton from '@material-ui/core/IconButton';

import PlayArrowIcon from '@material-ui/icons/PlayArrow';
import StopIcon from '@material-ui/icons/Stop';

const useStyles = makeStyles(theme => ({
 root: { margin: theme.spacing(2), textAlign: 'center' },
 button: {}
}));

const StartButton = ({ row, onClick }) => (
 <IconButton

https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/

Tables - Display Complex Collection Data Chapter 7

[198]

 onClick={onClick}
 color={row.status === 'off' ? 'primary' : 'default'}
 disabled={row.status === 'running'}
 >
 <PlayArrowIcon fontSize="small" />
 </IconButton>
);

const StopButton = ({ row, onClick }) => (
 <IconButton
 onClick={onClick}
 color={row.status === 'running' ? 'primary' : 'default'}
 disabled={row.status === 'off'}
 >
 <StopIcon fontSize="small" />
 </IconButton>
);

export default function RowActions() {
 const classes = useStyles();
 const [rows, setRows] = useState([
 {
 id: 1,
 name: 'First Item',
 status: 'running'
 },
 {
 id: 2,
 name: 'Second Item',
 status: 'off'
 },
 {
 id: 3,
 name: 'Third Item',
 status: 'off'
 },
 {
 id: 4,
 name: 'Fourth Item',
 status: 'running'
 },
 {
 id: 5,
 name: 'Fifth Item',
 status: 'off'
 }
]);

Tables - Display Complex Collection Data Chapter 7

[199]

 const toggleStatus = id => () => {
 const newRows = [...rows];
 const index = rows.findIndex(row => row.id === id);
 const row = rows[index];

 newRows[index] = {
 ...row,
 status: row.status === 'running' ? 'off' : 'running'
 };
 setRows(newRows);
 };

 return (
 <Paper className={classes.root}>
 <Table>
 <TableHead>
 <TableRow>
 <TableCell>Name</TableCell>
 <TableCell>Status</TableCell>
 <TableCell>Actions</TableCell>
 </TableRow>
 </TableHead>
 <TableBody>
 {rows.map(row => {
 return (
 <TableRow key={row.id}>
 <TableCell component="th" scope="row">
 {row.name}
 </TableCell>
 <TableCell>{row.status}</TableCell>
 <TableCell>
 <StartButton
 row={row}
 onClick={toggleStatus(row.id)}
 />
 <StopButton
 row={row}
 onClick={toggleStatus(row.id)}
 />
 </TableCell>
 </TableRow>
);
 })}
 </TableBody>
 </Table>
 </Paper>
);
}

Tables - Display Complex Collection Data Chapter 7

[200]

Here's what the screen looks like when it first loads:

Depending on the status of the row data, the action buttons will show differently. For
example, in the first row, the start button is disabled because status is running. The
second row has a disabled stop button because the status is off. Let's try clicking on the
stop button in the first row and the start button in the second row. Here's how the UI
changes once this is done:

Tables - Display Complex Collection Data Chapter 7

[201]

How it works...
Let's start by looking at the two components that are used as the row actions:

const StartButton = ({ row, onClick }) => (
 <IconButton
 onClick={onClick}
 color={row.status === 'off' ? 'primary' : 'default'}
 disabled={row.status === 'running'}
 >
 <PlayArrowIcon fontSize="small" />
 </IconButton>
);

const StopButton = ({ row, onClick }) => (
 <IconButton
 onClick={onClick}
 color={row.status === 'running' ? 'primary' : 'default'}
 disabled={row.status === 'off'}
 >
 <StopIcon fontSize="small" />
 </IconButton>
);

The StartButton and StopButton components are very similar. Both of these
components are rendered in every row of the table. There's the onClick property, a
function that changes the state of the row data when clicked. The color of the icon changes
based on the status of the row. Likewise, the disabled property changes based on the
status of the row.

Next, let's look at the toggleStatus() handler, which changes the status state of the row
when an action button is clicked:

const toggleStatus = id => () => {
 const newRows = [...rows];
 const index = rows.findIndex(row => row.id === id);
 const row = rows[index];

 newRows[index] = {
 ...row,
 status: row.status === 'running' ? 'off' : 'running'
 };
 setRows(newRows);
};

Tables - Display Complex Collection Data Chapter 7

[202]

The StartButton and StopButton components both use the same handler function—it
toggles the status value between running and off. Finally, let's look at the TableCell
component where these row actions are rendered:

<TableCell>
 <StartButton
 row={row}
 onClick={toggleStatus(row.id)}
 />
 <StopButton
 row={row}
 onClick={toggleStatus(row.id)}
 />
</TableCell>

The row data is passed as the row property. The toggleStatus() function takes a row id
argument and returns a new handler function that acts on this row.

See also
Table demos: https:/ / material- ui.com/ demos/ tables/

https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/
https://material-ui.com/demos/tables/

8
Cards - Display Detailed

Information
 In this chapter, you'll learn the following about Cards:

Main content
Card header
Performing actions
Presenting media
Expandable cards

Introduction
Cards are a Material Design concept used to display specific information on a given subject.
For example, the subject could be an object returned by an API endpoint. Or, the subject
could just be part of a complex object—in this case, you can use multiple cards to organize
information in a way that helps the user understand what they're looking at.

Main content
The main content of a Card component is where information concerning the subject is
placed. The CardContent component is a child of Card, and you can use it to render other
Material UI components, such as Typography.

Cards - Display Detailed Information Chapter 8

[204]

How to do it...
Let's say that you're working on a detail screen for some type of entity, such as a blog post.
You've decided to use a Card component to render some of the entity details since the
entity is the subject under consideration. Here's the code that will render a Card component
with information about a particular subject:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';
import Card from '@material-ui/core/Card';
import CardContent from '@material-ui/core/CardContent';
import Typography from '@material-ui/core/Typography';

const styles = theme => ({
 card: {
 maxWidth: 400
 },
 content: {
 marginTop: theme.spacing(1)
 }
});

const MainContent = withStyles(styles)(({ classes }) => (
 <Card className={classes.card}>
 <CardContent>
 <Typography variant="h4">Subject Title</Typography>
 <Typography variant="subtitle1">
 A little more about subject
 </Typography>
 <Typography className={classes.content}>
 Even more information on the subject, contained within the
 card. You can fit a lot of information here, but don't try to
 overdo it.
 </Typography>
 </CardContent>
 </Card>
));

export default MainContent;

Cards - Display Detailed Information Chapter 8

[205]

When you first load the screen, here's what you'll see:

The card's content is divided into three sections:

Subject Title: Tells the user what they're looking at
Subtitle: Gives the user a little more context
Content: The main content of the subject

How it works...
This example uses the CardContent component as the key organizational unit within
Card. Everything else is up to you. For example, the card in this example uses three
Typography components to render three different styles of text as the card's content.

The first Typography component uses the h4 variant and serves as the card's title. The
second Typography component serves as the subtitle of the card and uses the subtitle1
variant. Lastly, there's the main content of the card, which uses the Typography default
font. There is a marginTop style set on this text so that it's not pushed up against the
subtitle.

See also
Card reference: https:/ /material- ui.com/ demos/ cards/

https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/

Cards - Display Detailed Information Chapter 8

[206]

Card header
The CardHeader component is used to render the header of a card. This includes the title
text, as well as some other potential elements. The reason you might want to use a
CardHeader component is so that you can let it handle the layout styles of the header and
to keep the markup within your Card semantic.

How to do it...
Let's say that you're building a card component for users of your application. As the card
header, you want to display the user's name. Instead of using a Typography component to
render the title using a text variant, you could use a CardHeader component, placed
adjacent to the CardContent component. Here's how the code appears:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';
import Card from '@material-ui/core/Card';
import CardHeader from '@material-ui/core/CardHeader';
import CardContent from '@material-ui/core/CardContent';
import Typography from '@material-ui/core/Typography';
import Avatar from '@material-ui/core/Avatar';

import PersonIcon from '@material-ui/icons/Person';

const styles = theme => ({
 card: {
 maxWidth: 400
 }
});

const CardHeader = withStyles(styles)(({ classes }) => (
 <Card className={classes.card}>
 <CardHeader
 title="Ron Swanson"
 subheader="Legend"
 avatar={
 <Avatar>
 <PersonIcon />
 </Avatar>
 }
 />
 <CardContent>
 <Typography variant="caption">Joined 2009</Typography>

Cards - Display Detailed Information Chapter 8

[207]

 <Typography>
 Some filler text about the user. There doesn't have to be a
 lot - just enough so that the text spans at least two lines.
 </Typography>
 </CardContent>
 </Card>
));

export default CardHeader;

Here's what the screen looks like:

How it works...
Let's take a look at the markup used to render this card:

<Card className={classes.card}>
 <CardHeader title="Ron Swanson" />
 <CardContent>
 <Typography variant="caption">Joined 2009</Typography>
 <Typography>
 Some filler text about the user. There doesn't have to be a
 lot - just enough so that the text spans at least two lines.
 </Typography>
 </CardContent>

The CardHeader component is a sibling of CardContent. This makes the Card markup
semantic, as opposed to having to declare the card header within CardContent. The
CardHeader component takes a title string property, which is how the title of the card is
rendered.

Cards - Display Detailed Information Chapter 8

[208]

There's more...
You can add more than just a string to CardHeader components. You can also pass a sub-
header string and an avatar to help users identify the subject in the card. Let's modify this
example to add both of these things. First, here are the new component imports that you'll
need to add:

import Avatar from '@material-ui/core/Avatar';
import PersonIcon from '@material-ui/icons/Person';

Next, here's the updated CardHeader markup:

<CardHeader
 title="Ron Swanson"
 subheader="Legend"
 avatar={
 <Avatar>
 <PersonIcon />
 </Avatar>
 }
/>

And here's what the result looks like:

The CardHeader component handles alignment of the three header components—the
avatar, the title, and the sub-header.

See also
Card demos: https:/ / material- ui.com/ demos/ cards/

https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/

Cards - Display Detailed Information Chapter 8

[209]

Performing actions
Cards are used to display specific actions about a subject. Often, users take action on
subjects, such as sending a contact a message or deleting a contact. CardActions
components can be used by Card components to display actions that users can take on the
subject.

How to do it...
Let's say that you're using a Card component to display a contact. In addition to showing
information about the contact, you would like for your users to be able to take actions on
contacts from within the card. For example, you could provide two actions—one to
message the contact, and one to phone the contact. Here's the code to do this:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';
import Card from '@material-ui/core/Card';
import CardHeader from '@material-ui/core/CardHeader';
import CardContent from '@material-ui/core/CardContent';
import CardActions from '@material-ui/core/CardActions';
import Typography from '@material-ui/core/Typography';
import Avatar from '@material-ui/core/Avatar';
import IconButton from '@material-ui/core/IconButton';
import PersonIcon from '@material-ui/icons/Person';
import ContactMailIcon from '@material-ui/icons/ContactMail';
import ContactPhoneIcon from '@material-ui/icons/ContactPhone';

const styles = theme => ({
 card: {
 maxWidth: 400
 }
});

const PerformingActions = withStyles(styles)(({ classes }) => (
 <Card className={classes.card}>
 <CardHeader
 title="Ron Swanson"
 subheader="Legend"
 avatar={
 <Avatar>
 <PersonIcon />
 </Avatar>
 }
 />

Cards - Display Detailed Information Chapter 8

[210]

 <CardContent>
 <Typography variant="caption">Joined 2009</Typography>
 <Typography>
 Some filler text about the user. There doesn't have to be a
 lot - just enough so that the text spans at least two lines.
 </Typography>
 </CardContent>
 <CardActions disableActionSpacing>
 <IconButton>
 <ContactMailIcon />
 </IconButton>
 <IconButton>
 <ContactPhoneIcon />
 </IconButton>
 </CardActions>
 </Card>
));

export default PerformingActions;

Here's what the card looks like when the screen first loads:

The two actions that users can take on the subject are rendered as icon buttons at the
bottom of the card.

Cards - Display Detailed Information Chapter 8

[211]

How it works...
The CardActions component handles aligning the button items inside of it, both
horizontally, and making sure they're placed at the bottom of the card. The
disableActionSpacing property removes the extra margin added by CardActions.
Typically, you'll use this property any time you're using an IconButton component for
your actions.

Let's take a closer look at the markup:

<CardActions disableActionSpacing>
 <IconButton>
 <ContactMailIcon />
 </IconButton>
 <IconButton>
 <ContactPhoneIcon />
 </IconButton>
</CardActions>

Like the other child components of Card, the CardActions component makes the overall
card structure semantic, as it is a sibling of related card functionality. The items placed
within CardActions can be anything you want, but common practice is to use icon
buttons.

There's more...
You can change the alignment of the items in the CardActions component. Since it uses
flexbox as its display, you can use any of the justify-content values. Here's an updated
version that aligns the action buttons to the right of the card:

const styles = theme => ({
 card: {
 maxWidth: 400
 },
 actions: {
 justifyContent: 'flex-end'
 }
});

const PerformingActions = withStyles(styles)(({ classes }) => (
 <Card className={classes.card}>
 <CardHeader
 title="Ron Swanson"
 subheader="Legend"

Cards - Display Detailed Information Chapter 8

[212]

 avatar={
 <Avatar>
 <PersonIcon />
 </Avatar>
 }
 />
 <CardContent>
 <Typography variant="caption">Joined 2009</Typography>
 <Typography>
 Some filler text about the user. There doesn't have to be a
 lot - just enough so that the text spans at least two lines.
 </Typography>
 </CardContent>
 <CardActions disableActionSpacing className={classes.actions}>
 <IconButton>
 <ContactMailIcon />
 </IconButton>
 <IconButton>
 <ContactPhoneIcon />
 </IconButton>
 </CardActions>
 </Card>
));

export default PerformingActions;

The justify-content property is part of the actions style, which is then applied to the
CardActions component. Here's what the result looks like:

Cards - Display Detailed Information Chapter 8

[213]

Here's another version showing center as the justify-content value:

See also
Card demos: https:/ / material- ui.com/ demos/ cards/

Presenting media
Cards have built-in capabilities for displaying media. This includes things such as images
and videos that become the focal point of the card.

How to do it...
Let's say that you have an image of the subject that the Card component is displaying. You
can use the CardMedia component to render the image. You should use this component
instead of something like because it will handle a number of styling issues for you.
Here's the code:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';
import Card from '@material-ui/core/Card';
import CardHeader from '@material-ui/core/CardHeader';
import CardContent from '@material-ui/core/CardContent';
import CardMedia from '@material-ui/core/CardMedia';

https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/

Cards - Display Detailed Information Chapter 8

[214]

import CardActions from '@material-ui/core/CardActions';
import Button from '@material-ui/core/Button';
import Typography from '@material-ui/core/Typography';

const styles = theme => ({
 card: {
 maxWidth: 322
 },
 media: {
 width: 322,
 height: 322
 }
});

const PresentingMedia = withStyles(styles)(({ classes }) => (
 <Card className={classes.card}>
 <CardHeader title="Grapefruit" subheader="Red" />
 <CardMedia
 className={classes.media}
 image="grapefruit-slice-332-332.jpg"
 title="Grapefruit"
 />
 <CardContent>
 <Typography>Mmmm. Grapefruit.</Typography>
 </CardContent>
 </Card>
));

export default PresentingMedia;

Here's what the card looks like when it's rendered:

Cards - Display Detailed Information Chapter 8

[215]

How it works...
The CardMedia component is just like other components that make up cards – just another
part. In this example, CardMedia is placed below CardHeader and above CardContent.
But it doesn't have to be this way. You can rearrange the order of these components.

There's more...
You can rearrange your card items in a way that makes the most sense for your app. For
example, your card with media might not have any content and you might want to display
the header text at the bottom of the card, below the media, and with the text centered.
Here's the modified code:

const styles = theme => ({
 card: {
 maxWidth: 322
 },
 media: {
 width: 322,
 height: 322

Cards - Display Detailed Information Chapter 8

[216]

 },
 header: {
 textAlign: 'center'
 }
});

const PresentingMedia = withStyles(styles)(({ classes }) => (
 <Card className={classes.card}>
 <CardMedia
 className={classes.media}
 image="https://interactive-grapefruit-slice-332-332.jpg"
 title="Grapefruit"
 />
 <CardHeader
 className={classes.header}
 title="Grapefruit"
 subheader="Red"
 />
 </Card>
));

export default PresentingMedia;

Here's what the resulting card looks like:

Cards - Display Detailed Information Chapter 8

[217]

See also
The img HTML tag reference: https:/ /developer. mozilla. org/ en-US/ docs/
Web/HTML/ Element/ img

Expandable cards
Sometimes, you can't fit everything into a card that you might want to. To accommodate,
you can make your cards expandable, meaning that the user can click on an expand button
to reveal additional content.

If you're trying to fit too much content into a Card, making the card
expandable just masks the problem. Instead, consider a different approach
to displaying information about the subject in question. For example,
maybe, instead of a card, the subject is worthy of its own page.

How to do it...
Let's see that there's additional content about a subject within a card that does the
following:

Takes up a little too much vertical space
Isn't very important and doesn't need to be shown by default

You can deal with both of these challenges by putting the content into an expandable
region of the card. Then, the vertical space isn't an issue and the user can look at the content
if they deem it relevant. Here's an example that builds on an earlier example from this
chapter to make part of the card content hidden by default:

import React, { useState } from 'react';

import { makeStyles } from '@material-ui/styles';
import Card from '@material-ui/core/Card';
import CardHeader from '@material-ui/core/CardHeader';
import CardContent from '@material-ui/core/CardContent';
import CardActions from '@material-ui/core/CardActions';
import Typography from '@material-ui/core/Typography';
import Avatar from '@material-ui/core/Avatar';
import IconButton from '@material-ui/core/IconButton';
import Collapse from '@material-ui/core/Collapse';

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/img

Cards - Display Detailed Information Chapter 8

[218]

import PersonIcon from '@material-ui/icons/Person';
import ContactMailIcon from '@material-ui/icons/ContactMail';
import ContactPhoneIcon from '@material-ui/icons/ContactPhone';
import ExpandLessIcon from '@material-ui/icons/ExpandLess';
import ExpandMoreIcon from '@material-ui/icons/ExpandMore';

const useStyles = makeStyles(theme => ({
 card: {
 maxWidth: 400
 },
 expand: {
 marginLeft: 'auto'
 }
}));

const ExpandIcon = ({ expanded }) =>
 expanded ? <ExpandLessIcon /> : <ExpandMoreIcon />;

export default function ExpandableCards() {
 const classes = useStyles();
 const [expanded, setExpanded] = useState(false);

 const toggleExpanded = () => {
 setExpanded(!expanded);
 };

 return (
 <Card className={classes.card}>
 <CardHeader
 title="Ron Swanson"
 subheader="Legend"
 avatar={
 <Avatar>
 <PersonIcon />
 </Avatar>
 }
 />
 <CardContent>
 <Typography variant="caption">Joined 2009</Typography>
 <Typography>
 Some filler text about the user. There doesn't have to be a
 lot - just enough so that the text spans at least two lines.
 </Typography>
 </CardContent>
 <CardActions disableActionSpacing>
 <IconButton>
 <ContactMailIcon />
 </IconButton>

Cards - Display Detailed Information Chapter 8

[219]

 <IconButton>
 <ContactPhoneIcon />
 </IconButton>
 <IconButton
 className={classes.expand}
 onClick={toggleExpanded}
 >
 <ExpandIcon expanded={expanded} />
 </IconButton>
 </CardActions>
 <Collapse in={expanded}>
 <CardContent>
 <Typography>
 Even more filler text about the user. It doesn't fit in
 the main content area of the card, so this is what the
 user will see when they click the expand button.
 </Typography>
 </CardContent>
 </Collapse>
 </Card>
);
}

When you first load the screen, here's what the card looks like:

Cards - Display Detailed Information Chapter 8

[220]

To the right of the action buttons in the card, there is now an expand button with a down
arrow. If you click on the expand button, here's what the card looks like when it's
expanded:

The expand icon has now changed to a collapse icon—clicking on it will collapse the card
into its original state.

How it works...
Let's break down the additions in this example that added the expandable card region.
First, there's the expand style:

expand: {
 marginLeft: 'auto'
}

This is used to align the expand/collapse icon button to the left of the other actions. Next,
let's look at the ExpandIcon component:

const ExpandIcon = ({ expanded }) =>
 expanded ? <ExpandLessIcon /> : <ExpandMoreIcon />;

Cards - Display Detailed Information Chapter 8

[221]

This utility component is used to render either the correct icon component, depending on
the expanded state of the component. Next, let's take a look at the toggleExpanded()
function:

const toggleExpanded = () => {
 setExpanded(!expanded);
};

This handler, when called, will toggle the expanded state. This state is then passed to the
ExpandIcon component, which will render the appropriate icon. Next, let's take a closer
look at the actions markup for this card:

<CardActions disableActionSpacing>
 <IconButton>
 <ContactMailIcon />
 </IconButton>
 <IconButton>
 <ContactPhoneIcon />
 </IconButton>
 <IconButton
 className={classes.expand}
 onClick={toggleExpanded}
 >
 <ExpandIcon expanded={expanded} />
 </IconButton>
</CardActions>

The expand/collapse button is the last IconButton component shown here. It's using the
expand style, the toggleExpanded() click handler, and the expanded state. Finally, let's
take a look at the card content that can be expanded and collapsed when the button is
clicked on:

<Collapse in={expanded}>
 <CardContent>
 <Typography>
 Even more filler text about the user. It doesn't fit
 in the main content area of the card, so this is what
 the user will see when they click the expand button.
 </Typography>
 </CardContent>
</Collapse>

The Collapse component is used to show or hide the additional card content based on the
expanded state. Note that the CardContent component is used here so that once the
additional content is shown, it is styled consistently with the rest of the card content.

Cards - Display Detailed Information Chapter 8

[222]

See also
Card demos: https:/ / material- ui.com/ demos/ cards/

Card API documentation: https:/ /material- ui.com/ api/ card/

CardHeader API documentation: https:/ /material- ui.com/ api/ card- header/

CardContent API documentation: https:/ /material- ui.com/ api/ card-
content/

CardActions API documentation: https:/ /material- ui.com/ api/ card-
actions/

IconButton API documentation: https:/ /material- ui.com/ api/ icon- button/

Collapse API documentation: https:/ /material- ui.com/ api/ collapse/

https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/demos/cards/
https://material-ui.com/api/card/
https://material-ui.com/api/card/
https://material-ui.com/api/card/
https://material-ui.com/api/card/
https://material-ui.com/api/card/
https://material-ui.com/api/card/
https://material-ui.com/api/card/
https://material-ui.com/api/card/
https://material-ui.com/api/card/
https://material-ui.com/api/card/
https://material-ui.com/api/card/
https://material-ui.com/api/card/
https://material-ui.com/api/card/
https://material-ui.com/api/card/
https://material-ui.com/api/card-header/
https://material-ui.com/api/card-header/
https://material-ui.com/api/card-header/
https://material-ui.com/api/card-header/
https://material-ui.com/api/card-header/
https://material-ui.com/api/card-header/
https://material-ui.com/api/card-header/
https://material-ui.com/api/card-header/
https://material-ui.com/api/card-header/
https://material-ui.com/api/card-header/
https://material-ui.com/api/card-header/
https://material-ui.com/api/card-header/
https://material-ui.com/api/card-header/
https://material-ui.com/api/card-header/
https://material-ui.com/api/card-header/
https://material-ui.com/api/card-header/
https://material-ui.com/api/card-content/
https://material-ui.com/api/card-content/
https://material-ui.com/api/card-content/
https://material-ui.com/api/card-content/
https://material-ui.com/api/card-content/
https://material-ui.com/api/card-content/
https://material-ui.com/api/card-content/
https://material-ui.com/api/card-content/
https://material-ui.com/api/card-content/
https://material-ui.com/api/card-content/
https://material-ui.com/api/card-content/
https://material-ui.com/api/card-content/
https://material-ui.com/api/card-content/
https://material-ui.com/api/card-content/
https://material-ui.com/api/card-content/
https://material-ui.com/api/card-actions/
https://material-ui.com/api/card-actions/
https://material-ui.com/api/card-actions/
https://material-ui.com/api/card-actions/
https://material-ui.com/api/card-actions/
https://material-ui.com/api/card-actions/
https://material-ui.com/api/card-actions/
https://material-ui.com/api/card-actions/
https://material-ui.com/api/card-actions/
https://material-ui.com/api/card-actions/
https://material-ui.com/api/card-actions/
https://material-ui.com/api/card-actions/
https://material-ui.com/api/card-actions/
https://material-ui.com/api/card-actions/
https://material-ui.com/api/card-actions/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/

9
Snackbars - Temporary

Messages
In this chapter, you'll learn about the following:

Snackbar content
Controlling visibility with state
Snackbar transitions
Positioning Snackbars
Error boundaries and error Snackbars
Snackbars with actions
Queuing Snackbars

Introduction
Material-UI comes with a Snackbar component that's used to display messages for users.
These messages are brief, short-lived, and don't interfere with the main application
components.

Snackbars - Temporary Messages Chapter 9

[224]

Snackbar content
Text is the most common form of Snackbar message content that you'll display for your
users. Because of this, the Snackbar component makes it straightforward to set message
content and display the snackbar.

How to do it...
The message property of the Snackbar component accepts a string value, or any other
valid React element. Here's the code that shows you how to set the content of the
Snackbar component and display it:

import React from 'react';
import Snackbar from '@material-ui/core/Snackbar';

const MySnackbarContent = () => <Snackbar open={true} message="Test" />;
export default MySnackbarContent;

When the page first loads, you'll see a snackbar that looks like this:

How it works...
By default, a snackbar is nothing fancy, but it renders your text content as specified in the
message property. The open property is set to true because any other value hides the
snackbar.

There's more...
The Snackbar components use SnackbackContent components to render the actual
content that's displayed. In turn, SnackbarContent uses Paper, which uses Typography.
It's kind of tricky to navigate through all of this indirection, but, thankfully, you don't have
to. Instead, you can pass properties all the way to the Typography component from
Snackbar via the ContentProps property.

Snackbars - Temporary Messages Chapter 9

[225]

Let's say that you wanted to use the h6 typography variant. Here's how you could do this:

import React from 'react';
import Snackbar from '@material-ui/core/Snackbar';

const MySnackbarContent () => (
 <Snackbar
 open={true}
 message="Test"
 ContentProps={{ variant: 'h6' }}
 />
);

export default MySnackbarContent;

Any properties that you want to pass to the component used by Paper can be set by
ContentProps. Here, you're passing the variant property—which results in the
following visual change:

The end result is larger text and a wider margin. The aim of this example isn't this
particular typography change, but rather the idea that you can customize Snackbar text
in the exact same way as you would Typography components.

You can put as many or as few components as you want into your
snackbar content. For example, you can pass child components to
Snackbar instead of in the message property. However, I would advise
keeping your snackbar content as simple as possible. The last place where
you want to go down a design rabbit hole is in a component that's already
been designed to handle simple text.

See also
Snackbar demos: https:/ / material- ui.com/ demos/ snackbars/

Snackbar API documentation: https:/ /material- ui.com/ api/ snackbar/

https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/

Snackbars - Temporary Messages Chapter 9

[226]

Controlling visibility with state
Snackbars are displayed in response to something. For example, if a new resource in your
application is created, then using a Snackbar component to relay this information to the
user is a good choice. If you need to control the state of your snackbars, then you need to
add a state that controls the visibility of the snackbar.

How to do it...
The open property is used to control the visibility of the snackbar. All you need in order to
control this property value is a state value that's passed to it. Then, when this state changes,
so does the visibility of the snackbar. Here's some code that illustrates the basic idea of
state-controlling snackbars:

import React, { Fragment, useState } from 'react';

import Button from '@material-ui/core/Button';
import Snackbar from '@material-ui/core/Snackbar';

export default function ControllingVisibilityWithState() {
 const [open, setOpen] = useState(false);

 const showSnackbar = () => {
 setOpen(true);
 };

 return (
 <Fragment>
 <Button variant="contained" onClick={showSnackbar}>
 Show Snackbar
 </Button>
 <Snackbar open={open} message="Visible Snackbar!" />
 </Fragment>
);
}

When you first load the screen, all you'll see is a SHOW SNACKBAR button:

Clicking on this button shows the snackbar:

Snackbars - Temporary Messages Chapter 9

[227]

How it works...
The component has an open state that determines the visibility of the snackbar. The value
of open is passed to the open property of Snackbar. When the user clicks on the SHOW
SNACKBAR button, the showSnackbar() function sets the open state to true. As a result,
the true value is passed to the open property of Snackbar.

There's more...
Once you've displayed a snackbar, you're going to need to be able to close it somehow.
Once again, the open state can hide the snackbar. But how do you change the open state
back to false? The typical pattern with snackbar messages is to have them appear only
briefly, after which they're automatically hidden.

By passing two more properties to Snackbar, you can enhance this example so that the
snackbar automatically hides itself after a certain time. Here's the updated code:

import React, { Fragment, useState } from 'react';

import Button from '@material-ui/core/Button';
import Snackbar from '@material-ui/core/Snackbar';

export default function ControllingVisibilityWithState() {
 const [open, setOpen] = useState(false);
 const showSnackbar = () => {
 setOpen(true);
 };
 const hideSnackbar = () => {
 setOpen(false);
 };

 return (
 <Fragment>
 <Button variant="contained" onClick={showSnackbar}>
 Show Snackbar
 </Button>
 <Snackbar

Snackbars - Temporary Messages Chapter 9

[228]

 open={open}
 onClose={hideSnackbar}
 autoHideDuration={5000}
 message="Visible Snackbar!"
 />
 </Fragment>
);
}

A new function—hideSnackbar()—was added to the component. This is passed to the
onClose property of Snackbar. The autoHideDuration component is the number of
milliseconds that you want the snackbar to stay visible. In this example, after five seconds,
the Snackbar component will call the function passed to its onClose property. This sets
the open state to false, which is in turn passed to the open property of Snackbar.

See also
Snackbar demos: https:/ / material- ui.com/ demos/ snackbars/

Snackbar API documentation: https:/ /material- ui.com/ api/ snackbar/

Button API documentation: https:/ /material- ui.com/ api/ button/

Snackbar transitions
You can control the transitions used by Snackbar components when it is displayed and
hidden. The Snackbar component directly supports transition customization through
properties, so you don't have to spend too much time thinking about how to implement
your snackbar transitions.

How to do it...
Let's say that you want to make it easier to change the transition used by snackbars
throughout your application. You could create a thin wrapper component around
Snackbar that takes care of setting the appropriate properties. Here's what the code looks
like:

import React, { Fragment, useState } from 'react';

import Grid from '@material-ui/core/Grid';
import Button from '@material-ui/core/Button';

https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/

Snackbars - Temporary Messages Chapter 9

[229]

import Snackbar from '@material-ui/core/Snackbar';
import Slide from '@material-ui/core/Slide';
import Grow from '@material-ui/core/Grow';
import Fade from '@material-ui/core/Fade';

const MySnackbar = ({ transition, direction, ...rest }) => (
 <Snackbar
 TransitionComponent={
 { slide: Slide, grow: Grow, fade: Fade }[transition]
 }
 TransitionProps={{ direction }}
 {...rest}
 />
);

export default function SnackbarTransitions() {
 const [first, setFirst] = useState(false);
 const [second, setSecond] = useState(false);
 const [third, setThird] = useState(false);
 const [fourth, setFourth] = useState(false);

 return (
 <Fragment>
 <Grid container spacing={8}>
 <Grid item>
 <Button variant="contained" onClick={() => setFirst(true)}>
 Slide Down
 </Button>
 </Grid>
 <Grid item>
 <Button variant="contained" onClick={() => setSecond(true)}>
 Slide Up
 </Button>
 </Grid>
 <Grid item>
 <Button variant="contained" onClick={() => setThird(true)}>
 Grow
 </Button>
 </Grid>
 <Grid item>
 <Button variant="contained" onClick={() => setFourth(true)}>
 Fade
 </Button>
 </Grid>
 </Grid>
 <MySnackbar
 open={first}
 onClose={() => setFirst(false)}

Snackbars - Temporary Messages Chapter 9

[230]

 autoHideDuration={5000}
 message="Slide Down"
 transition="slide"
 direction="down"
 />
 <MySnackbar
 open={second}
 onClose={() => setSecond(false)}
 autoHideDuration={5000}
 message="Slide Up"
 transition="slide"
 direction="up"
 />
 <MySnackbar
 open={third}
 onClose={() => setThird(false)}
 autoHideDuration={5000}
 message="Grow"
 transition="grow"
 />
 <MySnackbar
 open={fourth}
 onClose={() => setFourth(false)}
 autoHideDuration={5000}
 message="Fade"
 transition="fade"
 />
 </Fragment>
);
}

This code renders four buttons and four snackbars. When you first load the screen, you'll
only see buttons:

Clicking on each of these buttons will display their corresponding Snackbar component at
the bottom of the screen. If you pay attention to the transitions used when each of the
snackbars is displayed, you'll notice the difference depending on the buttons you press. For
example, clicking on the Fade button will use the fade transition, resulting in the following
snackbar:

Snackbars - Temporary Messages Chapter 9

[231]

How it works...
Let's start by looking at the MySnackbar component that was created in this example:

const MySnackbar = ({ transition, direction, ...rest }) => (
 <Snackbar
 TransitionComponent={
 { slide: Slide, grow: Grow, fade: Fade }[transition]
 }
 TransitionProps={{ direction }}
 {...rest}
 />
);

There are two properties of interest here. The first is the transition string. This is used to
look up the transition component to use. For example, the string slide will use the Slide
component. The resulting component is used by the TransitionComponent property.
The Snackbar components will use this component internally to apply the desired
transition to your snackbars. The direction property is used with the Slide transition,
which is why this property is passed to TransitionProps. These property values are
passed directly to the component that's passed to TransitionComponent.

The alternative to using TransitionProps is to create a higher-order component that
wraps its own property customization values. But since Snackbar is already set up to help
you pass properties, there's no need to create yet another component if you want to avoid
doing so.

Next, let's look at the component state and the functions that change it:

const [first, setFirst] = useState(false);
const [second, setSecond] = useState(false);
const [third, setThird] = useState(false);
const [fourth, setFourth] = useState(false);

The first, second, third, and fourth states correspond to their own Snackbar
components. These state values control the visibility of each function, and their
corresponding setter functions show or hide the snackbars.

Finally, let's look at two of the MySnackbar components being rendered:

<MySnackbar
 open={first}
 onClose={() => setFirst(false)}
 autoHideDuration={5000}
 message="Slide Down"
 transition="slide"

Snackbars - Temporary Messages Chapter 9

[232]

 direction="down"
/>
<MySnackbar
 open={second}
 onClose={() => setSecond(false)}
 autoHideDuration={5000}
 message="Slide Up"
 transition="slide"
 direction="up"
/>

Both of these instances use the slide transition. However, the direction property is
different for each. The MySnackbar abstraction makes it a little simpler for you to specify
transitions and transition arguments.

See also
Snackbar demos: https:/ / material- ui.com/ demos/ snackbars/

Snackbar API documentation: https:/ /material- ui.com/ api/ snackbar/

Slide API documentation: https:/ /material- ui.com/ api/ slide/

Grow API documentation: https:/ /material- ui.com/ api/ grow/

Fade API documentation: https:/ /material- ui.com/ api/ fade/

Positioning snackbars
Material-UI Snackbar components have an anchorOrigin property that allows you to
change the position of the snackbar when it's displayed. You might be fine using the default
positioning of snackbars, but sometimes you'll need this level of customization to stay
consistent with other parts of your application.

How to do it...
While you can't arbitrarily position snackbars on the screen, there are a number of options
that allow you to change the position of the snackbar. Here's some code that allows you to
play around with the anchorOrigin property values:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';

https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/demos/snackbars/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/
https://material-ui.com/api/fade/

Snackbars - Temporary Messages Chapter 9

[233]

import Snackbar from '@material-ui/core/Snackbar';
import Radio from '@material-ui/core/Radio';
import RadioGroup from '@material-ui/core/RadioGroup';
import FormControlLabel from '@material-ui/core/FormControlLabel';
import FormControl from '@material-ui/core/FormControl';
import FormLabel from '@material-ui/core/FormLabel';

const useStyles = makeStyles(theme => ({
 formControl: {
 margin: theme.spacing(3)
 }
}));

export default function PositioningSnackbars() {
 const classes = useStyles();
 const [vertical, setVertical] = useState('bottom');
 const [horizontal, setHorizontal] = useState('left');

 const onVerticalChange = event => {
 setVertical(event.target.value);
 };

 const onHorizontalChange = event => {
 setHorizontal(event.target.value);
 };

 return (
 <Fragment>
 <FormControl
 component="fieldset"
 className={classes.formControl}
 >
 <FormLabel component="legend">Vertical</FormLabel>
 <RadioGroup
 name="vertical"
 className={classes.group}
 value={vertical}
 onChange={onVerticalChange}
 >
 <FormControlLabel
 value="top"
 control={<Radio />}
 label="Top"
 />
 <FormControlLabel
 value="bottom"
 control={<Radio />}
 label="Bottom"

Snackbars - Temporary Messages Chapter 9

[234]

 />
 </RadioGroup>
 </FormControl>
 <FormControl
 component="fieldset"
 className={classes.formControl}
 >
 <FormLabel component="legend">Horizontal</FormLabel>
 <RadioGroup
 name="horizontal"
 className={classes.group}
 value={horizontal}
 onChange={onHorizontalChange}
 >
 <FormControlLabel
 value="left"
 control={<Radio />}
 label="Left"
 />
 <FormControlLabel
 value="center"
 control={<Radio />}
 label="Center"
 />
 <FormControlLabel
 value="right"
 control={<Radio />}
 label="Right"
 />
 </RadioGroup>
 </FormControl>
 <Snackbar
 anchorOrigin={{
 vertical,
 horizontal
 }}
 open={true}
 message="Positioned Snackbar"
 />
 </Fragment>
);
}

When the screen first loads, you'll see controls for changing the position of the snackbar,
and the Snackbar component in its default position:

Snackbars - Temporary Messages Chapter 9

[235]

If you change any of the position control values, the snackbar will move to the new
position. For example, if you changed the vertical anchor to top and the horizontal anchor
to the right, here's what you'd see:

How it works...
The two radio button groups in this example are only used to illustrate the different
position value combinations that are available. In a real application where you show
snackbars, you wouldn't have the configurable state to change the positioning of your
snackbars. Instead, you should think of a value passed to the anchorOrigin property as a
configuration value that is set once during startup.

Snackbars - Temporary Messages Chapter 9

[236]

It isn't good to rely on state values, as is the case in this example:

<Snackbar
 anchorOrigin={{
 vertical,
 horizontal
 }}
 open={true}
 message="Positioned Snackbar"
/>

Instead, you would set the anchorOrigin values statically:

<Snackbar
 anchorOrigin={{
 vertical: 'top'
 horizontal: 'right'
 }}
 open={true}
 message="Positioned Snackbar"
/>

There's more...
Once you know where you want to position your snackbars, you can create your own
Snackbar component that has the anchorOrigin values defined. Here's an example:

const MySnackbar = props => (
 <Snackbar
 anchorOrigin={{
 vertical: 'top',
 horizontal: 'right'
 }}
 {...props}
 />
);

Anywhere in your app that MySnackbar is used, the snackbars will be displayed in the top-
right corner of the screen. Otherwise, MySnackbar is just like a regular Snackbar
component.

Snackbars - Temporary Messages Chapter 9

[237]

See also
Snackbar demos: https://material-ui.com/demos/snackbars/
Snackbar API documentation: https:/ /material- ui.com/ api/ snackbar/

Error boundaries and error snackbars
Error boundaries in React enable you to capture errors that happen when your components
attempt to render. You can use the Snackbar components in your error boundaries to
display captured errors. Furthermore, you can style snackbars so that errors are visually
distinctive from normal messages.

How to do it...
Let's say that you have an error boundary at the top level of your application and you want
to use the Snackbar component to display error messages to users. Here's an example that
shows how you can do this:

import React, { Fragment, Component } from 'react';

import { withStyles } from '@material-ui/core/styles';
import Snackbar from '@material-ui/core/Snackbar';
import Button from '@material-ui/core/Button';

const styles = theme => ({
 error: {
 backgroundColor: theme.palette.error.main,
 color: theme.palette.error.contrastText
 }
});

const ErrorBoundary = withStyles(styles)(
 class extends Component {
 state = { error: null };

 onClose = () => {
 this.setState({ error: null });
 };

 componentDidCatch(error) {
 this.setState({ error });
 }

https://material-ui.com/demos/snackbars/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/

Snackbars - Temporary Messages Chapter 9

[238]

 render() {
 const { classes } = this.props;

 return (
 <Fragment>
 {this.state.error === null && this.props.children}
 <Snackbar
 open={Boolean(this.state.error)}
 message={
 this.state.error !== null && this.state.error.toString()
 }
 ContentProps={{ classes: { root: classes.error } }}
 />
 </Fragment>
);
 }
 }
);

const MyButton = () => {
 throw new Error('Random error');
};

export default () => (
 <ErrorBoundary>
 <MyButton />
 </ErrorBoundary>
);

When you load this screen, the MyButton component throws an error when it is rendered.
Here's what you'll see:

It explicitly throws an error so that you can see the error boundary
mechanism in action. In a real application, the error could be triggered by
any function that's called during the rendering process.

Snackbars - Temporary Messages Chapter 9

[239]

How it works...
Let's start by taking a closer look at the ErrorBoundary component. It has an error state
that is initially null. The componentDidCatch() life cycle method changes this state when
an error happens:

componentDidCatch(error) {
 this.setState({ error });
}

Next, let's take a closer look at the render() method:

render() {
 const { classes } = this.props;

 return (
 <Fragment>
 {this.state.error === null && this.props.children}
 <Snackbar
 open={Boolean(this.state.error)}
 message={
 this.state.error !== null && this.state.error.toString()
 }
 ContentProps={{ classes: { root: classes.error } }}
 />
 </Fragment>
);
}

It uses the error state to determine whether children should be rendered. When the error
state is non-null, it doesn't make sense to render child components because you'll be stuck
in an infinite loop of error being thrown and handled. The error state is also used as the
open property to determine whether the snackbar should be displayed, and as the message
text.

The ContentProps property is used to style the snackbar so that it looks like an error. The
error class uses theme values to change the background and text color:

const styles = theme => ({
 error: {
 backgroundColor: theme.palette.error.main,
 color: theme.palette.error.contrastText
 }
});

Snackbars - Temporary Messages Chapter 9

[240]

There's more...
The error boundary used in this example covered the entire application. This is good in the
sense that you can blanket the entire application with error handling in one shot. But this is
also bad, because the entire user interface vanishes, as the error boundary has no idea
which component failed.

Because error boundaries are components, you can place as many of them as you like at any
level of your component tree. This way, you can show Material-UI error snackbars while
keeping the parts of the UI that haven't failed visible on the screen.

Let's change the scope of the error boundary used in the example. First, you can change the
MyButton implementation so that it only throws an error when a Boolean property is true:

const MyButton = ({ label, throwError }) => {
 if (throwError) {
 throw new Error('Random error');
 }
 return <Button>{label}</Button>;
};

Now you can render a button with a given label. If throwError is true, then nothing is
rendering due to the error. Next, let's change the markup of the example to include
multiple buttons and multiple error boundaries:

export default () => (
 <Fragment>
 <ErrorBoundary>
 <MyButton label="First Button" />
 </ErrorBoundary>
 <ErrorBoundary>
 <MyButton label="Second Button" throwError />
 </ErrorBoundary>
 </Fragment>
);

The first button renders without any issues. However, if the error boundary were all-
encompassing as was the case earlier, then this button wouldn't be displayed. The second
button throws an error because the throwError property is true. Because this button has
its own error boundary, it doesn't prevent other parts of the UI that are working fine from
rendering. Here's what you'll see when you run the example now:

Snackbars - Temporary Messages Chapter 9

[241]

See also
React error boundaries: https:/ /reactjs. org/ docs/ error- boundaries. html

Snackbar demos: https://material-ui.com/demos/snackbars/
Snackbar API documentation: https:/ /material- ui.com/ api/ snackbar/

Snackbars with actions
The purpose of Material-UI snackbars is to display brief messages for the user.
Additionally, you can embed the next course of action for the user in the snackbar.

How to do it...
Let's say that you want a simple button in your snackbar that closes the snackbar. This
could be useful for closing the snackbar before it automatically closes. Alternatively, you
might want to require the user to explicitly acknowledge the message by having to close it
manually. Here's the code to add a close button to a Snackbar component:

import React, { Fragment, useState } from 'react';
import { Route, Link } from 'react-router-dom';

import Snackbar from '@material-ui/core/Snackbar';
import Button from '@material-ui/core/Button';
import IconButton from '@material-ui/core/IconButton';
import Typography from '@material-ui/core/Typography';

import CloseIcon from '@material-ui/icons/Close';

export default function Snackbars() {
 const [open, setOpen] = useState(false);

https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://reactjs.org/docs/error-boundaries.html
https://material-ui.com/demos/snackbars/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/

Snackbars - Temporary Messages Chapter 9

[242]

 return (
 <Fragment>
 <Button onClick={() => setOpen(true)}>Do Something</Button>
 <Snackbar
 open={open}
 onClose={() => setOpen(false)}
 message="All done doing the thing"
 action={[
 <IconButton color="inherit" onClick={() => setOpen(false)}>
 <CloseIcon />
 </IconButton>
]}
 />
 </Fragment>
);
}

When the screen first loads, you'll only see a button:

Clicking on this button will display the snackbar:

The close icon button on the right side of the snackbar, when clicked on, closes the
snackbar.

How it works...
The close button is added to the Snackbar component via the action property, which
accepts either a node or an array of nodes. The SnackbarContent component takes care of
applying styles to align the actions within the snackbar.

Snackbars - Temporary Messages Chapter 9

[243]

There's more...
When users create new resources in your application, you probably want to let them know
when the resource is created successfully. Snackbars are a good tool for this because they
don't force the user away from anything that they might be in the middle of. What would
be nice is if you included an action button in the snackbar that linked to the newly created
resource.

Let's modify this example so that, when the user clicks on the CREATE button, they'll see a
snackbar with the following:

A brief message
A close action
A link to the new resource

Let's add routes from react-router-dom and then add the link to the snackbar. Here's the
new markup:

<Fragment>
 <Route
 exact
 path="/"
 render={() => (
 <Button onClick={() => setOpen(true)}>create thing</Button>
)}
 />
 <Route
 exact
 path="/thing"
 render={() => <Typography>The Thing</Typography>}
 />
 <Snackbar
 open={open}
 onClose={() => setOpen(false)}
 message="Finished creating thing"
 action={[
 <Button
 color="secondary"
 component={Link}
 to="/thing"
 onClick={() => setOpen(false)}
 >
 The Thing
 </Button>,
 <IconButton color="inherit" onClick={() => setOpen(false)}>
 <CloseIcon />

Snackbars - Temporary Messages Chapter 9

[244]

 </IconButton>
]}
 />
</Fragment>

The first route is for the index page, so, when the screen first loads, the user will see the
button that's rendered by this route:

When you click on this button, you'll see the snackbar that includes a link to the newly-
created resource:

Now you've given the user an easy way to navigate to the resource without disrupting
what they're currently doing.

See also
React router guide: https:/ / reacttraining. com/ react- router/ web/guides/
quick-start

Snackbar demos: https://material-ui.com/demos/snackbars/
Snackbar API documentation: https:/ /material- ui.com/ api/ snackbar/

Button API documentation: https:/ /material- ui.com/ api/ button/

IconButton API documentation: https:/ /material- ui.com/ api/ icon- button/

Queuing snackbars
With larger Material-UI applications, you're likely to find yourself in a situation where
more than one snackbar message is sent in a very short period of time. To deal with this,
you can create a queue for all snackbar messages so that only the most recent notification is
displayed, and so that the transitions are handled properly.

https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://material-ui.com/demos/snackbars/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/

Snackbars - Temporary Messages Chapter 9

[245]

How to do it...
Let's say that you have several components throughout your application that need to send
snackbar messages to your users. Having to manually render Snackbar components
everywhere would be cumbersome—especially if all you're trying to do is display simple
text snackbars.

One alternative approach is to implement a higher-order component that wraps your
components with the ability to display messages by calling a function and then passing the
text as the argument. Then, you can wrap any components that need the snackbar
capability. Here's what the code looks like:

import React, { Fragment, useState } from 'react';

import Snackbar from '@material-ui/core/Snackbar';
import Button from '@material-ui/core/Button';
import IconButton from '@material-ui/core/IconButton';

import CloseIcon from '@material-ui/icons/Close';

const withMessage = Wrapped =>
 function WithMessage(props) {
 const [queue, setQueue] = useState([]);
 const [open, setOpen] = useState(false);
 const [message, setMessage] = useState('');

 const sendMessage = msg => {
 const newQueue = [...queue, msg];
 if (newQueue.length === 1) {
 setOpen(true);
 setMessage(msg);
 }
 };

 const onClose = () => {
 setOpen(false);
 };

 const onExit = () => {
 const [msg, ...rest] = queue;

 if (msg) {
 setQueue(rest);
 setOpen(true);
 setMessage(msg);
 }
 };

Snackbars - Temporary Messages Chapter 9

[246]

 return (
 <Fragment>
 <Wrapped message={sendMessage} {...props} />
 <Snackbar
 key={message}
 open={open}
 message={message}
 autoHideDuration={4000}
 onClose={onClose}
 onExit={onExit}
 />
 </Fragment>
);
 };

const QueuingSnackbars = withMessage(({ message }) => {
 const [counter, setCounter] = useState(0);

 const onClick = () => {
 const newCounter = counter + 1;
 setCounter(newCounter);
 message(`Message ${newCounter}`);
 };

 return <Button onClick={onClick}>Message</Button>;
});

export default QueuingSnackbars;

When the screen first loads, you'll see a message button. Clicking on it will display a
snackbar message that looks like this:

Clicking on the message button again will clear the current snackbar by visually
transitioning it off of the screen before transitioning the new snackbar onto the screen. Even
if you click the button several times in rapid succession, everything works smoothly and
you'll always see the latest message:

Snackbars - Temporary Messages Chapter 9

[247]

How it works...
Let's start by looking at the QueuingSnackbars component that renders the button that
sends messages when clicked:

const QueuingSnackbars = withMessage(({ message }) => {
 const [counter, setCounter] = useState(0);

 const onClick = () => {
 const newCounter = counter + 1;
 setCounter(newCounter);
 message(`Message ${newCounter}`);
 };

 return <Button onClick={onClick}>Message</Button>;
});

The withMessage() wrapper provides the component with a message() function as a
property. If you look at the onClick() handler, you can see the message() function in
action.

Next, let's break down the withMessage() higher-order component. We'll start with the
markup and work our way downward:

<Fragment>
 <Wrapped message={sendMessage} {...props} />
 <Snackbar
 key={message}
 open={open}
 message={message}
 autoHideDuration={4000}
 onClose={onClose}
 onExit={onExit}
 />
</Fragment>

The Wrapped component is the component that withMessage() was called on. It's passed
the normal props that it would be called with normally, plus the message() function.
Adjacent to this is the Snackbar component. There are two interesting properties that are
worth pointing out here:

key: This value is used internally by Snackbar to determine whether a new
message is being displayed. It should be a unique value.
onExit: This is called when the transition of a snackbar that is closing completes.

Snackbars - Temporary Messages Chapter 9

[248]

Next, let's look at the sendMessage() function:

const sendMessage = msg => {
 const newQueue = [...queue, msg];
 if (newQueue.length === 1) {
 setOpen(true);
 setMessage(msg);
 }
};

This function is called whenever a component wants to display a snackbar message. It puts
the message string into the queue. If the message is the only item in the queue, then the
open and message states are updated right away.

Next, let's look at the onClose() function. This is called when the snackbar is closed:

const onClose = () => {
 setOpen(false);
};

The only job of this function is to make sure that the open state is false.

Lastly, let's look at the onExit() function that's called when a snackbar has completed its
exit transition:

const onExit = () => {
 const [msg, ...rest] = queue;

 if (msg) {
 setQueue(rest);
 setOpen(true);
 setMessage(msg);
 }
};

The fist message in the queue is assigned to the message constant. If there's a message, it
becomes the active message state and the next snackbar is opened. The item is also
removed from the queue at this point.

Snackbars - Temporary Messages Chapter 9

[249]

See also
Snackbar demos: https://material-ui.com/demos/snackbars/
Snackbar API documentation: https:/ /material- ui.com/ api/ snackbar/

Button API documentation: https:/ /material- ui.com/ api/ button/

IconButton API documentation: https:/ /material- ui.com/ api/ icon- button/

https://material-ui.com/demos/snackbars/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/

10
Buttons - Initiating Actions

 In this chapter, you'll learn about the following topics:

Button variants
Button emphasis
Link buttons
Floating actions
Icon buttons
Button sizes

Introduction
Buttons in Material-UI applications are used to initiate actions. The user clicks on a button
and something happens. What happens when a button is activated is entirely up to you.
Material-UI buttons range in complexity from simple text buttons to floating action buttons.

Button variants
The Material-UI Button component exists as one of three variants. These are as follows:

Text

Outlined

Contained

Buttons - Initiating Actions Chapter 10

[251]

How to do it...
Here's some code that renders three Button components, each explicitly setting their
variant property:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';
import Button from '@material-ui/core/Button';
import Grid from '@material-ui/core/Grid';

const styles = theme => ({
 container: {
 margin: theme.spacing(1)
 }
});

const ButtonVariants = withStyles(styles)(({ classes }) => (
 <Grid
 container
 direction="column"
 spacing={2}
 className={classes.container}
 >
 <Grid item>
 <Button variant="text">Text</Button>
 </Grid>
 <Grid item>
 <Button variant="outlined">Outlined</Button>
 </Grid>
 <Grid item>
 <Button variant="contained">Contained</Button>
 </Grid>
 </Grid>
));

export default ButtonVariants;

Buttons - Initiating Actions Chapter 10

[252]

When you load the screen, here's what you'll see:

How it works...
The variant property controls the type of button that's rendered. The three variants can be
used in different scenarios or contexts as you see fit. For example, TEXT buttons draw less
attention if this is what you need. Conversely, CONTAINED buttons try to stand out as an
obvious interaction point for the user.

The default variant is text. I find Button markup easier to read when
you explicitly include the variant. This way, you or anyone else reading
the code don't have to remember what the default variant is.

See also
Button demos: https:/ / material- ui.com/ demos/ buttons/

Button API documentation: https:/ /material- ui.com/ api/ button/

Button emphasis
The color and disabled properties of Button let you control the emphasis of a button
relative to its surroundings. For example, you can specify that a button should use the
primary color value. The emphasis of a button is the cumulative result of the variant and
color properties. You can adjust both until the button has the appropriate emphasis.

There is no right level of emphasis. Use what makes sense in the context of
your application.

https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/

Buttons - Initiating Actions Chapter 10

[253]

How to do it...
Here's some code that shows the different color values that you can apply to Button
components:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';
import Button from '@material-ui/core/Button';
import Grid from '@material-ui/core/Grid';
import Typography from '@material-ui/core/Typography';

const styles = theme => ({
 container: {
 margin: theme.spacing(1)
 }
});

const ButtonEmphasis = withStyles(styles)(({ classes, disabled }) => (
 <Grid
 container
 direction="column"
 spacing={16}
 className={classes.container}
 >
 <Grid item>
 <Typography variant="h6">Default</Typography>
 </Grid>
 <Grid item>
 <Grid container spacing={16}>
 <Grid item>
 <Button variant="text" disabled={disabled}>
 Text
 </Button>
 </Grid>
 <Grid item>
 <Button variant="outlined" disabled={disabled}>
 Outlined
 </Button>
 </Grid>
 <Grid item>
 <Button variant="contained" disabled={disabled}>
 Contained
 </Button>
 </Grid>
 </Grid>
 </Grid>
 <Grid item>

Buttons - Initiating Actions Chapter 10

[254]

 <Typography variant="h6">Primary</Typography>
 </Grid>
 <Grid item>
 <Grid container spacing={16}>
 <Grid item>
 <Button variant="text" color="primary" disabled={disabled}>
 Text
 </Button>
 </Grid>
 <Grid item>
 <Button
 variant="outlined"
 color="primary"
 disabled={disabled}
 >
 Outlined
 </Button>
 </Grid>
 <Grid item>
 <Button
 variant="contained"
 color="primary"
 disabled={disabled}
 >
 Contained
 </Button>
 </Grid>
 </Grid>
 </Grid>
 <Grid item>
 <Typography variant="h6">Secondary</Typography>
 </Grid>
 <Grid item>
 <Grid container spacing={16}>
 <Grid item>
 <Button
 variant="text"
 color="secondary"
 disabled={disabled}
 >
 Text
 </Button>
 </Grid>
 <Grid item>
 <Button
 variant="outlined"
 color="secondary"
 disabled={disabled}

Buttons - Initiating Actions Chapter 10

[255]

 >
 Outlined
 </Button>
 </Grid>
 <Grid item>
 <Button
 variant="contained"
 color="secondary"
 disabled={disabled}
 >
 Contained
 </Button>
 </Grid>
 </Grid>
 </Grid>
 </Grid>
));

export default ButtonEmphasis;

Here's what you'll see when the screen first loads:

Buttons - Initiating Actions Chapter 10

[256]

And if the disabled property is true, here's what you'll see:

How it works...
This example serves to illustrate the combinatorial result of the variant and color
properties. Alternatively, you can completely disable buttons and yet still control the
variant aspect of their emphasis (the color property has no effect on disabled buttons).

The order of most to least emphatic variant values is as follows:

contained1.
outlined2.
text3.

The order of most to least emphatic color values is as follows:

primary1.
secondary2.
default3.

By combining these two property values, you can control the emphasis of your buttons.
Sometimes, you really need a button to stand out, so you can combine contained and
primary:

Buttons - Initiating Actions Chapter 10

[257]

If you want your button to not stand out at all, you can combine the text variant with
default color:

There's more...
If your button is placed in another Material-UI component, it can be difficult to ensure the
correct color choice. For example, let's say that you have some buttons in an AppBar
component, as follows:

<AppBar color={appBarColor}>
 <Toolbar>
 <Grid container spacing={16}>
 <Grid item>
 <Button variant="text" disabled={disabled}>
 Text
 </Button>
 </Grid>
 <Grid item>
 <Button variant="outlined" disabled={disabled}>
 Outlined
 </Button>
 </Grid>
 <Grid item>
 <Button variant="contained" disabled={disabled}>
 Contained
 </Button>
 </Grid>
 </Grid>
 </Toolbar>
</AppBar>

If the AppBar color value is default, here's what you'll see:

Buttons - Initiating Actions Chapter 10

[258]

This doesn't actually look too bad because the buttons themselves are using the default
color. But what happens if you change the AppBar color to primary:

The contained variant is the only button that even comes close to looking like it belongs in
the App Bar. Let's modify the buttons so that they all use the inherit color property value,
as follows:

<AppBar color={appBarColor}>
 <Toolbar>
 <Grid container spacing={16}>
 <Grid item>
 <Button
 variant="text"
 disabled={disabled}
 color="inherit"
 >
 Text
 </Button>
 </Grid>
 <Grid item>
 <Button
 variant="outlined"
 disabled={disabled}
 color="inherit"
 >
 Outlined
 </Button>
 </Grid>
 <Grid item>
 <Button
 variant="contained"
 disabled={disabled}
 color="inherit"
 >
 Contained
 </Button>
 </Grid>
 </Grid>
 </Toolbar>
</AppBar>

Buttons - Initiating Actions Chapter 10

[259]

Now, your App Bar and buttons look like this:

The TEXT and OUTLINE buttons look much better now. They've inherited the theme font
color from their parent component. The CONTAINED button actually looks worse, now
that it's using inherited as its font color. This is because the background color of
CONTAINED buttons doesn't change when inheriting colors. So instead, you have to
change the color of CONTAINED buttons yourself.

Let's see whether we can automatically set the color of a CONTAINED button based on the
color of its parent by implementing a function that returns the color to use:

function buttonColor(parentColor) {
 if (parentColor === 'primary') {
 return 'secondary';
 }

 if (parentColor === 'secondary') {
 return 'primary';
 }

 return 'default';
}

Now, you can use this function when you're setting the color of your contained
buttons. Just make sure that you pass it the color of the parent as an argument, as follows:

<Button
 variant="contained"
 disabled={disabled}
 color={buttonColor(appBarColor)}
>
 Contained
</Button>

Now, if you change your App Bar color to primary, here's what your buttons look like:

Buttons - Initiating Actions Chapter 10

[260]

Here's what your buttons look like if you change the App Bar color to secondary:

To quickly recap: TEXT and OUTLINED buttons can safely use inherit as a color. If
you're working with CONTAINED buttons, you need to take extra steps to use the correct
color, like you did with the buttonColor() function.

See also
Button demos: https:/ / material- ui.com/ demos/ buttons/

Button API documentation: https:/ /material- ui.com/ api/ button/

AppBar API documentation: https:/ /material- ui.com/ api/ app- bar/

Toolbar API documentation: https:/ /material- ui.com/ api/ toolbar/

Link buttons
Material-UI Button components can also be used as links to other locations in your app.
The most common example is using a button as a link to a route declared using react-
router.

How to do it...
Let's say that your application has three pages, and you need three buttons that link to each
of them. You'll probably need buttons to link to them from arbitrary places too, as the
application grows. Here's the code to do it:

import React from 'react';
import { Switch, Route, Link } from 'react-router-dom';

import { withStyles } from '@material-ui/core/styles';
import Grid from '@material-ui/core/Grid';
import Button from '@material-ui/core/Button';
import Typography from '@material-ui/core/Typography';

const styles = theme => ({

https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/

Buttons - Initiating Actions Chapter 10

[261]

 content: {
 margin: theme.spacing(2)
 }
});

const LinkButtons = withStyles(styles)(({ classes }) => (
 <Grid container direction="column" className={classes.container}>
 <Grid item>
 <Grid container>
 <Grid item>
 <Button component={Link} to="/">
 Home
 </Button>
 </Grid>
 <Grid item>
 <Button component={Link} to="/page1">
 Page 1
 </Button>
 </Grid>
 <Grid item>
 <Button component={Link} to="/page2">
 Page 2
 </Button>
 </Grid>
 </Grid>
 </Grid>
 <Grid item className={classes.content}>
 <Switch>
 <Route
 exact
 path="/"
 render={() => <Typography>home content</Typography>}
 />
 <Route
 path="/page1"
 render={() => <Typography>page 1 content</Typography>}
 />
 <Route
 path="/page2"
 render={() => <Typography>page 2 content</Typography>}
 />
 </Switch>
 </Grid>
 </Grid>
));

export default LinkButtons;

Buttons - Initiating Actions Chapter 10

[262]

The Storybook code that sets up this example to run includes a
BrowserRouter component. In your code, you'll need to include this
component as a parent of any of your Route components.

When the screen first loads, you'll see the following:

If you click on the Page 2 button, you'll be taken to /page2, and the content will update
accordingly:

How it works...
When you use react-router as the router for your application, you can render links
using the Link component from react-router-dom. Since you want to render Material-
UI buttons in order to get the consistent Material-UI theme and user interaction behavior,
you can't render Link components directly. Instead, you can make the underlying Button
component a Link component, as follows:

<Button component={Link} to="/">
 Home
</Button>

By using the component property, you can tell the Button component to apply styles and
event handling logic to this component instead of the default. Then, any additional
properties that you would normally pass to Link are set on the Button component—which
forwards them to Link. For example, the to property isn't a Button property, so it gets
passed to Link, which requires it in order to work.

Buttons - Initiating Actions Chapter 10

[263]

There's more...
One problem with this example is that there's no visual indication that a button links to the
current URL. For example, when the app first loads the / URL, the Home button should
stand out from the other buttons. One way to do this would be to change the color
property to primary if the button is considered active.

You could use the NavLink component from react-router-dom. This component lets you
set styles or class names that are only applied when the link is active. The challenge with
doing this is that you only need to change a simple Button property when it is active.
Having to maintain styles for active buttons seems like a bit much, especially if you want
to make your UI easy to theme.

Instead, you can create a button abstraction that uses react-router tools to render the
appropriate Button property when it's active, as follows:

const NavButton = ({ color, ...props }) => (
 <Switch>
 <Route
 exact
 path={props.to}
 render={() => (
 <Button color="primary" component={Link} {...props} />
)}
 />
 <Route
 path="/"
 render={() => <Button component={Link} {...props} />}
 />
 </Switch>
);

The NavButton component uses Switch and Route components to determine the active
route. It does this by comparing the to property passed to NavButton against the current
URL. If a match is found, the Button component is rendered with the color property set
to primary. Otherwise, no color is specified (if the first Route in Switch doesn't match, the
second Route matches everything). Here's what the new component looks like in action:

<Grid container>
 <Grid item>
 <NavButton to="/">Home</NavButton>
 </Grid>
 <Grid item>
 <NavButton to="/page1">Page 1</NavButton>
 </Grid>

Buttons - Initiating Actions Chapter 10

[264]

 <Grid item>
 <NavButton to="/page2">Page 2</NavButton>
 </Grid>
</Grid>

Here's what the screen looks like when it first loads:

Because the initial URL is /, and the first NavButton component has a to property of /, the
Home button color is marked as primary.

See also
Button demos: https:/ / material- ui.com/ demos/ buttons/

Button API documentation: https:/ /material- ui.com/ api/ button/

React Router Guide: https:/ /reacttraining. com/ react- router/ web/ guides/
quick-start

Floating actions
Some screens in your application will have one primary action. For example, if you're on a
screen that lists items, the primary action might be to add a new item. If you're on an item
details page, the primary action might be to edit the item. Material-UI provides a Fab
component (floating action button) to show primary screen actions in a prominent way.

How to do it...
The common case for floating action buttons is to show the user a round button with an
icon representing the action to perform, positioned in the bottom right of the screen. Also,
the position of floating action buttons is fixed, meaning that as the user scrolls down the
page, the primary action is always visible.

https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start
https://reacttraining.com/react-router/web/guides/quick-start

Buttons - Initiating Actions Chapter 10

[265]

Let's write some code to position a floating action button at the bottom right of the screen
that indicates an add action, as follows:

import React, { Fragment } from 'react';

import { withStyles } from '@material-ui/core/styles';
import Fab from '@material-ui/core/Fab';
import AddIcon from '@material-ui/icons/Add';

const styles = theme => ({
 fab: {
 margin: 0,
 top: 'auto',
 left: 'auto',
 bottom: 20,
 right: 20,
 position: 'fixed'
 }
});

const FloatingActions = withStyles(styles)(({ classes, fabColor }) => (
 <Fragment>
 <Fab className={classes.fab} color={fabColor}>
 <AddIcon />
 </Fab>
 </Fragment>
));

export default FloatingActions;

When you load the screen, you'll see the following in the bottom right-hand corner:

The component for this screen has a fabColor property that is used to set the color of the
Fab component. Here's what the primary color looks like:

Buttons - Initiating Actions Chapter 10

[266]

Lastly, here's what the floating action button looks like with secondary as the color:

How it works...
The Fab component is very similar to a Button component. In fact, you used to use Button
to render floating action buttons, using the fab variant. The rounded styling of the button
is handled by Fab. You just need to support the icon and any other button properties, such
as onClick handlers. Additionally, you can include text in your floating action buttons. If
you do, you should use the extended variant so that the shape of the button is styled
correctly (flat top and bottom instead of rounded).

There's more...
Let's create a small abstraction for Fab components that applies the fab style and uses the
correct variant. Since the extended variant is only useful when there's text in the button,
you shouldn't have to remember to set it every time you want to use it. This can be
especially confusing if your application has both icon and icon plus text floating action
buttons.

Here's the code to implement the new Fab component:

const ExtendedFab = withStyles(styles)(({ classes, ...props }) => {
 const isExtended = React.Children.toArray(props.children).find(
 child => typeof child === 'string'
);

 return (
 <Fab
 className={classes.fab}
 variant={isExtended && 'extended'}
 {...props}
 />
);
});

Buttons - Initiating Actions Chapter 10

[267]

The className property is set in the same way as before. The variant property is set to
extended when isExtended is true. To figure this out, it uses the
React.Children.toArray() function to convert the children property into a plain
array. Then, the find() method looks for any text elements. If one is found, isExtended
will be true and the extended variant is used.

Here's how the new ExtendedFab button can be used:

export default ({ fabColor }) => (
 <ExtendedFab color={fabColor}>
 Add
 <AddIcon />
 </ExtendedFab>
);

The Add text is placed before the AddIcon component. This ExtendedFab component has
two children, and one of them is text, which means that the extended variant will be used.
Here's what it looks like:

See also
Button demos: https:/ / material- ui.com/ demos/ buttons/

Fab API documentation: https:/ /material- ui.com/ api/ fab/

Icon buttons
Sometimes, you need a button that's just an icon. This is where the IconButton component
comes in handy. You can pass it any icon component as a child, and then you have an icon
button.

https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/

Buttons - Initiating Actions Chapter 10

[268]

How to do it...
Icon buttons are especially useful when you're working with restricted screen real estate or
when you want to visually show the toggled state of something. For example, it might be
easier for a user to toggle the state of a microphone if the enabled/disabled state indicates
the actual microphone.

Let's build on this idea and implement toggle controls for the microphone and volume in an
app, using icon buttons. Here's the code:

import React, { useState } from 'react';

import IconButton from '@material-ui/core/IconButton';
import Grid from '@material-ui/core/Grid';

import MicIcon from '@material-ui/icons/Mic';
import MicOffIcon from '@material-ui/icons/MicOff';
import VolumeUpIcon from '@material-ui/icons/VolumeUp';
import VolumeOffIcon from '@material-ui/icons/VolumeOff';

export default function IconButtons({ iconColor }) {
 const [mic, setMic] = useState(true);
 const [volume, setVolume] = useState(true);

 return (
 <Grid container>
 <Grid item>
 <IconButton color={iconColor} onClick={() => setMic(!mic)}>
 {mic ? <MicIcon /> : <MicOffIcon />}
 </IconButton>
 </Grid>
 <Grid item>
 <IconButton
 color={iconColor}
 onClick={() => setVolume(!volume)}
 >
 {volume ? <VolumeUpIcon /> : <VolumeOffIcon />}
 </IconButton>
 </Grid>
 </Grid>
);
}

Buttons - Initiating Actions Chapter 10

[269]

When you first load the screen, here's what you'll see:

If you click on both icon buttons, here's what you'll see:

No matter the state of the microphone or volume, the user can still have a visual indication
of the item and its state.

How it works...
The component for this screen maintains two pieces of state: mic and volume. Both of these
are Booleans that control the icon that's displayed in the IconButton component:

const [mic, setMic] = useState(true);
const [volume, setVolume] = useState(true);

Then, based on these states, the icon is swapped as the state changes, giving useful visual
feedback to the user:

<Grid item>
 <IconButton color={iconColor} onClick={() => setMic(!mic)}>
 {mic ? <MicIcon /> : <MicOffIcon />}
 </IconButton>
</Grid>
<Grid item>
 <IconButton
 color={iconColor}
 onClick={() => setVolume(!volume)}
 >
 {volume ? <VolumeUpIcon /> : <VolumeOffIcon />}
 </IconButton>
</Grid>

Buttons - Initiating Actions Chapter 10

[270]

Additionally, the component for this screen takes an iconColor property, which can be
either default, primary, or secondary. Here's what the primary color looks like:

See also
Button demos: https:/ / material- ui.com/ demos/ buttons/

IconButton API documentation: https:/ /material- ui.com/ api/ icon- button/

Button sizes
Material-UI buttons support tee shirt-style sizing. Rather than try to find the perfect size for
your buttons, you can use one of the predefined sizes that comes closest to what you need.

How to do it...
If you need to adjust the size of your buttons, you can use small, medium (the default), or
large. Here's an example of how to set the size of a Button component:

import React from 'react';

import Button from '@material-ui/core/Button';

export default function ButtonSizes({ size, color }) {
 return (
 <Button variant="contained" size={size} color={color}>
 Add
 </Button>
);
}

https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/

Buttons - Initiating Actions Chapter 10

[271]

Here's what the various sizes look like:

How it works...
The distinction between sizes is greatest between medium and large. Using a large
button, in conjunction with other Button properties, such as color and Icons, can really
make a button stand out.

There's more...
The one downside to using tee shirt sizes with buttons is when you combine text and icon
images. The icon doesn't scale the same as the text, so the button never looks quite right,
unless the medium default size is used.

Let's implement a button abstraction that makes it easier to use text buttons or icon buttons
that can be resized consistently. Here's the code:

import React from 'react';

import Grid from '@material-ui/core/Grid';
import Button from '@material-ui/core/Button';
import IconButton from '@material-ui/core/IconButton';
import Fab from '@material-ui/core/Fab';

import AddIcon from '@material-ui/icons/Add';

const MyButton = ({ fab, ...props }) => {
 const [child] = React.Children.toArray(props.children);
 let ButtonComponent;

 if (React.isValidElement(child) && fab) {
 ButtonComponent = Fab;
 } else if (React.isValidElement(child)) {

Buttons - Initiating Actions Chapter 10

[272]

 ButtonComponent = IconButton;
 } else {
 ButtonComponent = Button;
 }

 return <ButtonComponent {...props} />;
};

export default function ButtonSizes({ size, color }) {
 return (
 <Grid container spacing={16} alignItems="center">
 <Grid item>
 <MyButton variant="contained" size={size} color={color}>
 Add
 </MyButton>
 </Grid>
 <Grid item>
 <MyButton size={size} color={color}>
 <AddIcon />
 </MyButton>
 </Grid>
 <Grid item>
 <MyButton fab size={size} color={color}>
 <AddIcon />
 </MyButton>
 </Grid>
 </Grid>
);
}

Here's what the three buttons on the screen look like when the size property is set to
small:

And here's the large size:

Buttons - Initiating Actions Chapter 10

[273]

Let's break down what's going on in the MyButton component. It expects a single child
node, which it gets by turning the children property into an array and assigning the first
element to the child constant:

const [child] = React.Children.toArray(props.children);

The idea is to render the appropriate Button element, depending on the child element
and the fab property. Here's how the correct component is assigned to ButtonComponent:

if (React.isValidElement(child) && fab) {
 ButtonComponent = Fab;
} else if (React.isValidElement(child)) {
 ButtonComponent = IconButton;
} else {
 ButtonComponent = Button;
}

If the child is an element and the fab property is true, then the Fab component is used. If
the child is an element and fab is false, IconButton is used. Otherwise, Button is used.
This means that you can pass either a valid icon element or text as a child to MyButton.
Setting the size on any buttons rendered with this component will be consistent.

See also
Button demos: https:/ / material- ui.com/ demos/ buttons/

Button API documentation: https:/ /material- ui.com/ api/ button/

IconButton API documentation: https:/ /material- ui.com/ api/ icon- button/

Fab API documentation: https:/ /material- ui.com/ api/ fab/

https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/demos/buttons/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/
https://material-ui.com/api/fab/

11
Text - Collecting Text Input

In this chapter, you'll learn about the following topics:

Controlling input with state
Placeholder and helper text
Validation and error display
Password fields
Multiline input
Input adornments
Input masking

Introduction
Material-UI has a flexible text input component that can be used in a variety of ways to
collect user input. Its usages range from collecting simple one-liner text input to masked
input adorned with icons.

Controlling input with state
The TextField component can be controlled by the React component, state, just like
regular HTML text input elements. As with other types of form controls, the actual value is
often the starting point—the state for each form control grows more complex as more
functionality is added.

Text - Collecting Text Input Chapter 11

[275]

How to do it...
Just like any other text input element, you need to provide the TextField component with
an onChange event handler that updates the state for the input. Without this handler, the
value of the input won't change as the user types. Let's look at an example where three text
fields are rendered and they're each controlled by their own piece of state:

import React, { useState } from 'react';

import { makeStyles } from '@material-ui/styles';
import TextField from '@material-ui/core/TextField';
import Grid from '@material-ui/core/Grid';

const useStyles = makeStyles(theme => ({
 container: { margin: theme.spacing.unit * 2 }
}));

export default function ControllingInputWithState() {
 const classes = useStyles();
 const [first, setFirst] = useState('');
 const [second, setSecond] = useState('');
 const [third, setThird] = useState('');

 return (
 <Grid container spacing={4} className={classes.container}>
 <Grid item>
 <TextField
 id="first"
 label="First"
 value={first}
 onChange={e => setFirst(e.target.value)}
 />
 </Grid>
 <Grid item>
 <TextField
 id="second"
 label="Second"
 value={second}
 onChange={e => setSecond(e.target.value)}
 />
 </Grid>
 <Grid item>
 <TextField
 id="third"
 label="Third"
 value={third}
 onChange={e => setThird(e.target.value)}

Text - Collecting Text Input Chapter 11

[276]

 />
 </Grid>
 </Grid>
);
}

When you first load the screen, here's what you'll see:

If you type in each of the text fields, you'll update the state of the component for the screen:

How it works...
The setter functions that are created with useState(): setFirst(), setSecond(), and
setThird(), change the value of the TextField component by changing the state that's
used by the component in the onChange event.

The TextField component is a convenient abstraction that builds on
other Material-UI components, such as FormControl and Input. You
could achieve the exact same result by replacing TextField with each of
these components. But all you would get is more code to maintain.

There's more...
What if, instead of only keeping the TextField value in the component state, you also kept
the id and label information as well? It might seem confusing to store values that never
change as a state, but the trade-off is that you can have the state data drive what's rendered
by the component instead of having to repeat the same TextField components over and
over.

Text - Collecting Text Input Chapter 11

[277]

First, let's change the shape of the component state, as follows:

const [inputs, setInputs] = useState([
 { id: 'first', label: 'First', value: '' },
 { id: 'second', label: 'Second', value: '' },
 { id: 'third', label: 'Third', value: '' }
]);

Instead of an object with string properties to hold the text field values, the inputs state is
an array of objects. It's an array so that the component can iterate over the values while
maintaining their order. Each object has everything necessary to render TextField. Let's
look at the updated markup next:

<Grid container spacing={4} className={classes.container}>
 {inputs.map(input => (
 <Grid item key={input.id}>
 <TextField
 id={input.id}
 label={input.label}
 value={input.value}
 onChange={onChange}
 />
 </Grid>
))}
</Grid>

Each Grid item now maps to an element from the inputs array. If you need to add,
remove, or change something about one of these text fields, you can do so by updating the
state. Finally, let's see what the onChange() implementation looks like:

const onChange = ({ target: { id, value } }) => {
 const newInputs = [...inputs];
 const index = inputs.findIndex(input => input.id === id);

 newInputs[index] = { ...inputs[index], value };

 setInputs(newInputs);
};

The onChange() function updates an item in an array, the inputs array. First, it finds the
index of the item to update, based on the text field id. Then, it updates the value property
with the value of the text field.

The functionality is the exact same as before, with a different approach that requires less
JSX markup.

Text - Collecting Text Input Chapter 11

[278]

See also
TextField demos: https:/ / material- ui.com/ demos/ text- fields/

TextField API documentation: https:/ /material- ui.com/ api/ text- field/

Placeholder and helper text
At a minimum, text fields should have a label so that the user knows what to type. But a
label on its own can be downright confusing—especially if you have several text fields on
the same screen. To help the user understand what to type, you can utilize placeholder
and helperText in addition to label.

How to do it...
Let's write some code that showcases various label, placeholder, and helperText
configurations you can use with the TextField component:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';
import Grid from '@material-ui/core/Grid';
import TextField from '@material-ui/core/TextField';

const styles = theme => ({
 container: { margin: theme.spacing(2) }
});

const PlaceholderAndHelperText = withStyles(styles)(({ classes }) => (
 <Grid container spacing={4} className={classes.container}>
 <Grid item>
 <TextField label="The Value" />
 </Grid>
 <Grid item>
 <TextField placeholder="Example Value" />
 </Grid>
 <Grid item>
 <TextField helperText="Brief explanation of the value" />
 </Grid>
 <Grid item>
 <TextField
 label="The Value"
 placeholder="Example Value"

https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/

Text - Collecting Text Input Chapter 11

[279]

 helperText="Brief explanation of the value"
 />
 </Grid>
 </Grid>
));

export default PlaceholderAndHelperText;

Here's what the four text fields look like:

How it works...
Let's take a look at each of these text fields and break down their strengths and weaknesses.

First, there's a text field with a label component only:

<TextField label="The Value" />

When you only have label, it is displayed where the user would enter text:

When the user navigates to the text field and it receives focus, the label shrinks and moves
out of the way:

The next text field specifies placeholder text using the placeholder property:

<TextField placeholder="Example Value" />

Text - Collecting Text Input Chapter 11

[280]

The placeholder text should provide the user with an example of a valid value if possible:

When the user starts entering text, the placeholder value goes away:

The next text field provides the helperText property with a value:

The helper text of a text field is static in the sense that it's always visible and doesn't move,
even after the user starts typing. Lastly, text fields can have all three properties that help the
user figure out what value to provide:

A label that tells the user what the value is
Placeholder text that provides an example value
Helper text that gives more of an explanation of why the value is needed

When you combine these three properties, you're increasing the likelihood that the user
will understand what to type. When the text field is unfocused, the label and the helper text
are visible:

When the text field receives focus, the label shrinks and the placeholder value is revealed:

Text - Collecting Text Input Chapter 11

[281]

See also
TextField demos: https:/ / material- ui.com/ demos/ text- fields/

TextField API documentation: https:/ /material- ui.com/ api/ text- field/

Validation and error display
Even with helper text, placeholders, and labels, users will inevitably enter something that's
not quite right. It's not that they are trying to mess things up (some are, to be fair); it's that
mistakes happen. When mistakes are made, text input fields need to be marked as being in
an error state.

How to do it...
Let's say that you have two inputs: a phone number and an email address, and you want to
make sure that the values provided by the user are correct.

Please note: Validation isn't perfect. Thankfully, this piece can work,
however, you need it to and you'll still get all of the Material-UI pieces.

Here's the code to do it:

import React, { useState } from 'react';

import { makeStyles } from '@material-ui/styles';
import Grid from '@material-ui/core/Grid';
import TextField from '@material-ui/core/TextField';

const useStyles = makeStyles(theme => ({
 container: { margin: theme.spacing(2) }
}));

export default function ValidationAndErrorDisplay() {
 const classes = useStyles();
 const [inputs, setInputs] = useState([
 {
 id: 'phone',
 label: 'Phone',
 placeholder: '999-999-9999',
 value: '',

https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/

Text - Collecting Text Input Chapter 11

[282]

 error: false,
 helperText: 'Any valid phone number will do',
 getHelperText: error =>
 error
 ? 'Woops. Not a valid phone number'
 : 'Any valid phone number will do',
 isValid: value =>
 /^[\+]?[(]?[0-9]{3}[)]?[-\s\.]?[0-9]{3}[-\s\.]?[0-9]{4,6}$/.test(
 value
)
 },
 {
 id: 'email',
 label: 'Email',
 placeholder: 'john@acme.com',
 value: '',
 error: false,
 helperText: 'Any valid email address will do',
 getHelperText: error =>
 error
 ? 'Woops. Not a valid email address'
 : 'Any valid email address will do',
 isValid: value => /\S+@\S+\.\S+/.test(value)
 }
]);

 const onChange = ({ target: { id, value } }) => {
 const newInputs = [...inputs];
 const index = inputs.findIndex(input => input.id === id);
 const input = inputs[index];
 const isValid = input.isValid(value);

 newInputs[index] = {
 ...input,
 value: value,
 error: !isValid,
 helperText: input.getHelperText(!isValid)
 };

 setInputs(newInputs);
 };

 return (
 <Grid container spacing={4} className={classes.container}>
 {inputs.map(input => (
 <Grid item key={input.id}>
 <TextField
 id={input.id}

Text - Collecting Text Input Chapter 11

[283]

 label={input.label}
 placeholder={input.placeholder}
 helperText={input.helperText}
 value={input.value}
 onChange={onChange}
 error={input.error}
 />
 </Grid>
))}
 </Grid>
);
}

The ValidationAndErrorDisplay component will render two TextField components
on the screen. This is what they look like when the screen first loads:

The Phone and Email text fields are just regular text fields with labels, helper text, and
placeholders. For example, when the Phone field receives focus, it looks like this:

As you start typing, the value of the text field is validated against a phone format regular
expression. Here's what the field looks like when it has an invalid phone number value:

Then, once you have a valid phone number value, the state of the text field goes back to
normal:

Text - Collecting Text Input Chapter 11

[284]

The Email field works the same way—the only difference is the regular expression used to
validate the format of the value.

How it works...
Let's start by taking a look at the state of the ValidationAndErrorDisplay component:

const [inputs, setInputs] = useState([
 {
 id: 'phone',
 label: 'Phone',
 placeholder: '999-999-9999',
 value: '',
 error: false,
 helperText: 'Any valid phone number will do',
 getHelperText: error =>
 error
 ? 'Woops. Not a valid phone number'
 : 'Any valid phone number will do',
 isValid: value =>
 /^[\+]?[(]?[0-9]{3}[)]?[-\s\.]?[0-9]{3}[-\s\.]?[0-9]{4,6}$/.test(
 value
)
 },
 {
 id: 'email',
 label: 'Email',
 placeholder: 'john@acme.com',
 value: '',
 error: false,
 helperText: 'Any valid email address will do',
 getHelperText: error =>
 error
 ? 'Woops. Not a valid email address'
 : 'Any valid email address will do',
 isValid: value => /\S+@\S+\.\S+/.test(value)
 }
]);

Text - Collecting Text Input Chapter 11

[285]

The inputs array is mapped to TextField components by the render() method. Each
object in this array has properties that map directly to the TextField component. For
instance, id, label, placeholder—these are all TextField properties. The objects each
have two functions that help with validating the text field values. First, getHelperText()
returns either the default helper text, or error text that replaces the helper text if the error
argument is true. The isValid() function validates the value argument against a regular
expression and returns true if it matches.

Next, let's look at the onChange() handler:

const onChange = ({ target: { id, value } }) => {
 const newInputs = [...inputs];
 const index = inputs.findIndex(input => input.id === id);
 const input = inputs[index];
 const isValid = input.isValid(value);

 newInputs[index] = {
 ...input,
 value: value,
 error: !isValid,
 helperText: input.getHelperText(!isValid)
 };

 setInputs(newInputs);
};

As the user types, this function updates the value state of the given text field. It also calls
the isValid() function, passing it the updated value. The error state is set to true if the
value is invalid. The helperText state is also updated using getHelperText(), which
also depends on the validity of the value.

There's more...
What if this example could be modified so that you didn't have to store error messages as a
state, or have a function to change the helper text of the text field? To do this, you could
introduce a new TextField abstraction that handles setting the error property and
changes the helperText component when the value is invalid. Here's the new
component:

const MyTextField = ({ isInvalid, ...props }) => {
 const invalid = isInvalid(props.value);

 return (
 <TextField

Text - Collecting Text Input Chapter 11

[286]

 {...props}
 error={invalid}
 helperText={invalid || props.helperText}
 />
);
};

Instead of having a function that returns true if the data is valid, the MyTextField
component expects an isInvalid() property that returns false if the data is valid and an
error message when it's invalid. Then, the error property can use this value, which
changes the color of the text field to indicate that it's in an error state and the helperText
property can use either the string that is returned by the isInvalid() function, or the
helperText property that was passed to the component.

Next, let's look at the state that the ValidationAndErrorDisplay component uses now:

const [inputs, setInputs] = useState([
 {
 id: 'phone',
 label: 'Phone',
 placeholder: '999-999-9999',
 value: '',
 helperText: 'Any valid phone number will do',
 isInvalid: value =>
 value === '' ||
 /^[\+]?[(]?[0-9]{3}[)]?[-\s\.]?[0-9]{3}[-\s\.]?[0-9]{4,6}$/.test(
 value
)
 ? false
 : 'Woops. Not a valid phone number'
 },
 {
 id: 'email',
 label: 'Email',
 placeholder: 'john@acme.com',
 value: '',
 helperText: 'Any valid email address will do',
 isInvalid: value =>
 value === '' || /\S+@\S+\.\S+/.test(value)
 ? false
 : 'Woops. Not a valid email address'
 }
]);

Text - Collecting Text Input Chapter 11

[287]

The inputs no longer need the getHelperText() function or the error state. The
isInvalid() function returns the error helper text when the value is invalid. Next, let's
look at the onChange() handler:

const onChange = ({ target: { id, value } }) => {
 const newInputs = [...inputs];
 const index = inputs.findIndex(input => input.id === id);

 newInputs[index] = {
 ...inputs[index],
 value: value
 };

 setInputs(newInputs);
};

Now, it doesn't have to touch the error state, or worry about updating the helper text, or
about calling any validation functions—this is all handled by MyTextField now.

See also
TextField demos: https:/ / material- ui.com/ demos/ text- fields/

TextField API documentation: https:/ /material- ui.com/ api/ text- field/

Password fields
Password fields are a special type of text input that hides the individual characters on the
screen as they are typed. Material-UI TextField components support this type of field by
changing the value of the type property.

https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/

Text - Collecting Text Input Chapter 11

[288]

How to do it...
Here's a simple example that changes a regular text input into a password input that
prevents the value from displaying on the screen:

import React, { useState } from 'react';

import TextField from '@material-ui/core/TextField';

export default function PasswordFields() {
 const [password, setPassword] = useState('12345');

 const onChange = e => {
 setPassword(e.target.value);
 };

 return (
 <TextField
 type="password"
 label="Password"
 value={password}
 onChange={onChange}
 />
);
}

Here's what the screen looks like when it first loads:

If you change the value of the Password field, any new characters remain hidden, even
though the actual value typed is stored in the password state of the PasswordFields
component.

Text - Collecting Text Input Chapter 11

[289]

How it works...
The type property tells the TextField component to use a password HTML input
element. This is how the value remains hidden as the user types it, or if the field is pre-
populated with a password value. Sometimes, Password fields can be autofilled.

There's more...
You can use the autoComplete property to control how password values are automatically
filled by the browser. A common case for this value is to have the Password field
automatically filled on a login screen once the Username field is filled. Here's an example
of how you can use this property when you have Username and Password fields on the
screen:

import React, { useState } from 'react';

import { makeStyles } from '@material-ui/styles';
import Grid from '@material-ui/core/Grid';
import TextField from '@material-ui/core/TextField';

const useStyles = makeStyles(theme => ({
 container: { margin: theme.spacing(2) }
}));

export default function PasswordFields() {
 const classes = useStyles();
 const [username, setUsername] = useState('');
 const [password, setPassword] = useState('');

 return (
 <Grid container spacing={4} className={classes.container}>
 <Grid item>
 <TextField
 id="username"
 label="Username"
 autoComplete="username"
 InputProps={{ name: 'username' }}
 value={username}
 onChange={e => setUsername(e.target.value)}
 />
 </Grid>
 <Grid item>
 <TextField
 id="password"
 type="password"

Text - Collecting Text Input Chapter 11

[290]

 label="Password"
 autoComplete="current-password"
 value={password}
 onChange={e => setPassword(e.target.value)}
 />
 </Grid>
 </Grid>
);
}

The first TextField component uses the autoComplete value of username. It also passes
{ name: 'username' } to InputProps so that the name property is set on the <input>
element. The reason you need to do this is so that, in the second TextField component,
the autoComplete value of current-password tells the browser to look up the password
based on the username field value.

Not all browsers implement this functionality the same. In order for any
credentials to be automatically filled in text fields, they have to be saved
using the native browser credential remembering tool.

See also
TextField demos: https:/ / material- ui.com/ demos/ text- fields/

TextField API documentation: https:/ /material- ui.com/ api/ text- field/

Multiline input
For some fields, users need the ability to provide text values that span multiple lines. The
multiline property helps accomplish this goal.

How to do it...
Let's say that you have a field that could require multiple lines of text, provided by the
user. You can specify the multiline property to allow for this:

import React, { useState } from 'react';

import TextField from '@material-ui/core/TextField';

https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/

Text - Collecting Text Input Chapter 11

[291]

export default function MultilineInput() {
 const [multiline, setMultiline] = useState('');

 return (
 <TextField
 multiline
 value={multiline}
 onChange={e => setMultiline(e.target.value)}
 />
);
}

The text field looks like a normal field when the screen first loads, because it has one row
by default:

You can enter as many lines as you need to in this text field. New lines are started by
pressing Enter:

How it works...
The multiline Boolean property is used to indicate to the TextField component that
multiline support is needed for the field. With the preceding example, you might run
into a couple of issues if you're planning on using the multiline input in a crowded
space, such as a screen with many other fields on it or in a dialog:

The height of the field changes as the user presses Enter, adding more rows to the
component. This might cause layout problems as other elements are moved
around.

Text - Collecting Text Input Chapter 11

[292]

If the field starts with one row and looks like a regular single-line text input, then
the user might not realize that they can enter multiple lines of text in the field.

There's more...
To help prevent scenarios where a dynamically-sized multiline text field might cause
problems, you can specify the number of rows used by a multiline text field. Here's an
example of how to use the rows property:

<TextField
 multiline
 rows={5}
 label="Address"
 value={multiline}
 onChange={e => setMultiline(e.target.value)}
/>

Now, the text field will have exactly five rows:

If the user enters more than five lines of text, a vertical scrollbar will be displayed—the
height of the text doesn't change and can't impact the layout of other surrounding
components. You can impose the same type of height restriction on the TextField
component by using the rowsMax property instead of rows. The difference is that the text
field will start out with one row and will grow as the user adds new lines. But if you set
rowsMax to 5, the text field will not exceed five rows.

See also
TextField demos: https:/ / material- ui.com/ demos/ text- fields/

TextField API documentation: https:/ /material- ui.com/ api/ text- field/

https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/

Text - Collecting Text Input Chapter 11

[293]

Input adornments
Material-UI Input components have properties that allow you to customize the way that
they look and behave. The idea is that you can adorn inputs with other Material-UI
components to extend the functionality of basic text inputs in a way that makes sense for
the users of your application.

How to do it...
Let's say that your app has several screens that have password inputs. The users of your
app like the ability to see passwords as they're typed. By default, values will be hidden, but
if the input component itself had a button that toggles the visibility of the value, that would
make your users happy.

Here's an example of a generic component that will adorn password fields with a visibility
toggle button:

import React, { useState } from 'react';

import TextField from '@material-ui/core/TextField';
import IconButton from '@material-ui/core/IconButton';
import InputAdornment from '@material-ui/core/InputAdornment';

import VisibilityIcon from '@material-ui/icons/Visibility';
import VisibilityOffIcon from '@material-ui/icons/VisibilityOff';

function PasswordField() {
 const [visible, setVisible] = useState(false);

 const toggleVisibility = () => {
 setVisible(!visible);
 };

 return (
 <TextField
 type={visible ? 'text' : 'password'}
 InputProps={{
 endAdornment: (
 <InputAdornment position="end">
 <IconButton onClick={toggleVisibility}>
 {visible ? <VisibilityIcon /> : <VisibilityOffIcon />}
 </IconButton>
 </InputAdornment>
)
 }}

Text - Collecting Text Input Chapter 11

[294]

 />
);
}

export default function InputAdornments() {
 const [password, setPassword] = useState('');

 return (
 <PasswordField
 value={password}
 onChange={e => setPassword(e.target.value)}
 />
);
}

Here is what you'll see if you start typing without clicking on the toggle visibility button:

Here's what the Password field looks like if we click on the toggle visibility button:

How it works...
Let's take a closer look at the PasswordField component:

function PasswordField() {
 const [visible, setVisible] = useState(false);

 const toggleVisibility = () => {
 setVisible(!visible);
 };

 return (
 <TextField
 type={visible ? 'text' : 'password'}
 InputProps={{
 endAdornment: (
 <InputAdornment position="end">
 <IconButton onClick={toggleVisibility}>
 {visible ? <VisibilityIcon /> : <VisibilityOffIcon />}

Text - Collecting Text Input Chapter 11

[295]

 </IconButton>
 </InputAdornment>
)
 }}
 />
);
}

This component maintains a piece of state called visible. The reason that
PasswordField maintains this state instead of the parent component is because of the
separation of concerns principle. The parent component, for example, probably needs
access to the value of the password field. This value gets passed into PasswordField as a
property. However, only PasswordField cares about the visibility state. So, by
keeping it encapsulated within this component, you've simplified any code that uses
PasswordField.

The other valuable aspect of this abstraction is the adornment itself. The type property
changes as the visible state changes—this is the mechanism that reveals or hides the
password value. The endAdornment property is passed to the Input component that
TextField renders, passed via InputProps. This is how you can add components to the
field. In this example, you're adding an icon button to the right-hand side (end) of the
input. The icon here changes based on the visible state and, when clicked, the
toggleVisible() method is called to actually change the visible state.

There's more...
You can use input adornments for more than buttons that reveal the value of a password
field. For example, in a field that is validated, you can use input adornments to help
visualize the validation state of the field. Let's say that you need to validate an email field
as the user types. You could create an abstraction in the form of a component that changes
the color and the adornment of the component based on the result of validating what the
user has provided. Here's what that component looks like:

const ValidationField = props => {
 const { isValid, ...rest } = props;
 const empty = props.value === '';
 const valid = isValid(props.value);
 let startAdornment;

 if (empty) {
 startAdornment = null;
 } else if (valid) {
 startAdornment = (

Text - Collecting Text Input Chapter 11

[296]

 <InputAdornment position="start">
 <CheckCircleIcon color="primary" />
 </InputAdornment>
);
 } else {
 startAdornment = (
 <InputAdornment position="start">
 <ErrorIcon color="error" />
 </InputAdornment>
);
 }

 return (
 <TextField
 {...rest}
 error={!empty && !valid}
 InputProps={{ startAdornment }}
 />
);
};

The idea with ValidationField is to take an isValid() function property and use it to
test the value property. If it returns true, then startAdornment is a checkmark. If
isValid() returns false, then startAdornment is a red x. Here's how the component is
used:

<ValidationField
 label="Email"
 value={this.state.email}
 onChange={this.onEmailChange}
 isValid={v => /\S+@\S+\.\S+/.test(v)}
/>

The ValidationField component can be used almost identically to TextField. The one
addition is the isValid property. Any state is handled outside of ValidationField,
which means that isValid() is called any time the value changes, and will update the
appearance of the component to reflect the validity of the data. By way of an added bonus:
you don't actually have to store any kind of error state anywhere, because
ValidationField derives everything that it needs from the value and isValid
properties.

Here's what the field looks like with an invalid email address:

Text - Collecting Text Input Chapter 11

[297]

Here's what the field looks like with a valid email address:

See also
TextField demos: https:/ / material- ui.com/ demos/ text- fields/

TextField API documentation: https:/ /material- ui.com/ api/ text- field/

IconButton API documentation: https:/ /material- ui.com/ api/ icon- button/

InputAdornment API documentation: https:/ /material- ui.com/ api/ input-
adornment/

Input masking
Some text inputs require values with a specific format. With Material-UI TextField
components, you can add masking capabilities that help guide the user toward providing
the correct format.

How to do it...
Let's say that you have phone number and email fields and you want to provide an input
mask for each. Here's how you can use the MaskedInput component from react-text-
mask with TextField components to add masking abilities:

import React, { Fragment, useState } from 'react';
import MaskedInput from 'react-text-mask';
import emailMask from 'text-mask-addons/dist/emailMask';

import { makeStyles } from '@material-ui/styles';
import TextField from '@material-ui/core/TextField';

const useStyles = makeStyles(theme => ({
 input: { margin: theme.spacing.unit * 3 }
}));

const PhoneInput = ({ inputRef, ...props }) => (
 <MaskedInput

https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/input-adornment/
https://material-ui.com/api/input-adornment/
https://material-ui.com/api/input-adornment/
https://material-ui.com/api/input-adornment/
https://material-ui.com/api/input-adornment/
https://material-ui.com/api/input-adornment/
https://material-ui.com/api/input-adornment/
https://material-ui.com/api/input-adornment/
https://material-ui.com/api/input-adornment/
https://material-ui.com/api/input-adornment/
https://material-ui.com/api/input-adornment/
https://material-ui.com/api/input-adornment/
https://material-ui.com/api/input-adornment/
https://material-ui.com/api/input-adornment/
https://material-ui.com/api/input-adornment/

Text - Collecting Text Input Chapter 11

[298]

 {...props}
 ref={ref => {
 inputRef(ref ? ref.inputElement : null);
 }}
 mask={[
 '(',
 /[1-9]/,
 /\d/,
 /\d/,
 ')',
 ' ',
 /\d/,
 /\d/,
 /\d/,
 '-',
 /\d/,
 /\d/,
 /\d/,
 /\d/
]}
 placeholderChar={'\u2000'}
 />
);

const EmailInput = ({ inputRef, ...props }) => (
 <MaskedInput
 {...props}
 ref={ref => {
 inputRef(ref ? ref.inputElement : null);
 }}
 mask={emailMask}
 placeholderChar={'\u2000'}
 />
);

export default function InputMasking() {
 const classes = useStyles();
 const [phone, setPhone] = useState('');
 const [email, setEmail] = useState('');

 return (
 <Fragment>
 <TextField
 label="Phone"
 className={classes.input}
 value={phone}
 onChange={e => setPhone(e.target.value)}
 InputProps={{ inputComponent: PhoneInput }}

Text - Collecting Text Input Chapter 11

[299]

 />
 <TextField
 label="Email"
 className={classes.input}
 value={email}
 onChange={e => setEmail(e.target.value)}
 InputProps={{ inputComponent: EmailInput }}
 />
 </Fragment>
);
}

Here's what the screen looks like when it first loads:

Once you start typing a value into the Phone field, the format mask appears:

Here's what the completed value looks like—the user never has to type (,), or -:

Here's what the completed Email value looks like:

With the email input, the user will actually have to type @ and . because the mask doesn't
know how many characters are in any part of the email address. It does, however, prevent
the user from putting either of these characters in the wrong place.

Text - Collecting Text Input Chapter 11

[300]

How it works...
To make this work, you created a PhoneInput component and an EmailInput
component. The idea of each is to provide a basic abstraction around the MaskedInput
component. Let's take a closer look at each, starting with PhoneInput:

const PhoneInput = ({ inputRef, ...props }) => (
 <MaskedInput
 {...props}
 ref={ref => {
 inputRef(ref ? ref.inputElement : null);
 }}
 mask={[
 '(',
 /[1-9]/,
 /\d/,
 /\d/,
 ')',
 ' ',
 /\d/,
 /\d/,
 /\d/,
 '-',
 /\d/,
 /\d/,
 /\d/,
 /\d/
]}
 placeholderChar={'\u2000'}
 />
);

The properties that are passed to PhoneInput are forwarded to MaskedInput for the most
part. The ref property needs to be set explicitly because it's named differently. The
placeholder property is set to be whitespace. The mask property is the most
important—this is what determines the pattern that the user sees as they start typing. The
value passed to mask is an array with regular expressions and string characters. The string
characters are what show up when the user starts typing—in the case of phone number,
these are the (,), and - characters. The regular expressions are the dynamic pieces that
match against what the user types. With a phone number, any digit will do, but symbols
and letters aren't allowed.

Text - Collecting Text Input Chapter 11

[301]

Let's look at the EmailInput component now:

const EmailInput = ({ inputRef, ...props }) => (
 <MaskedInput
 {...props}
 ref={ref => {
 inputRef(ref ? ref.inputElement : null);
 }}
 mask={emailMask}
 placeholderChar={'\u2000'}
 />
);

This follows the same approach as PhoneInput. The main difference is that, instead of
passing an array of strings and regular expressions, the emailMask function (imported
from react-text-mask) is used.

Now that you have these two masked inputs, you use them by passing them to the
inputComponent property:

<TextField
 label="Phone"
 className={classes.input}
 value={phone}
 onChange={e => setPhone(e.target.value)}
 InputProps={{ inputComponent: PhoneInput }}
/>
<TextField
 label="Email"
 className={classes.input}
 value={email}
 onChange={e => setEmail(e.target.value)}
 InputProps={{ inputComponent: EmailInput }}
/>

See also
TextField demos: https:/ / material- ui.com/ demos/ text- fields/

TextField API documentation: https:/ /material- ui.com/ api/ text- field/

React text mask: https:/ / github. com/ text- mask/ text- mask

https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/demos/text-fields/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://github.com/text-mask/text-mask
https://github.com/text-mask/text-mask
https://github.com/text-mask/text-mask
https://github.com/text-mask/text-mask
https://github.com/text-mask/text-mask
https://github.com/text-mask/text-mask
https://github.com/text-mask/text-mask
https://github.com/text-mask/text-mask
https://github.com/text-mask/text-mask
https://github.com/text-mask/text-mask
https://github.com/text-mask/text-mask
https://github.com/text-mask/text-mask
https://github.com/text-mask/text-mask
https://github.com/text-mask/text-mask
https://github.com/text-mask/text-mask

12
Autocomplete and Chips - Text
Input Suggestions for Multiple

Items
In this chapter, you will learn the following topics:

Building an Autocomplete component
Selecting Autocomplete suggestions
API-driven Autocomplete
Highlighting search results
Standalone chip input

Introduction
Web applications typically provide autocomplete input fields when there are too many
choices to select from. Autocomplete fields are like text input fields—as users starts typing,
they are given a smaller list of choices based on what they've typed. Once the user is ready
to make a selection, the actual input is filled with components called Chips—especially
relevant when the user needs to be able to make multiple selections.

Autocomplete and Chips - Text Input Suggestions for Multiple Items Chapter 12

[303]

Building an Autocomplete component
Material-UI doesn't actually come with an Autocomplete component. The reason is that,
since there are so many different implementations of autocomplete selection components in
the React ecosystem already, it doesn't make sense to provide another one. Instead, you can
pick an existing implementation and augment it with Material-UI components so that it can
integrate nicely with your Material-UI application.

How to do it...
Let's say that you have a selector for a hockey team. But there are too many teams to
reasonably fit in a simple select component—you need autocomplete capabilities. You can
use the Select component from the react-select package to provide the autocomplete
functionality that you need. You can use Select properties to replace key autocomplete
components with Material-UI components so that the autocomplete matches the look and
feel of the rest of your app.

Let's make a reusable Autocomplete component. The Select component allows you to
replace certain aspects of the autocomplete experience. In particular, following are the
components that you'll be replacing:

Control: The text input component to use
Menu: A menu with suggestions, displayed when the user starts typing
NoOptionsMessage: The message that's displayed when there aren't any
suggestions to display
Option: The component used for each suggestion in Menu
Placeholder: The placeholder text component for the text input
SingleValue: The component for showing a value once it's selected
ValueContainer: The component that wraps SingleValue
IndicatorSeparator: Separates buttons on the right side of the autocomplete
ClearIndicator: The component used for the button that clears the current
value
DropdownIndicator: The component used for the button that shows Menu

Each of these components is replaced with Material-UI components that change the look
and feel of the autocomplete. Moreover, you'll have all of this as new Autocomplete
components that you can reuse throughout your app.

Autocomplete and Chips - Text Input Suggestions for Multiple Items Chapter 12

[304]

Let's look at the result before diving into the implementation of each replacement
component. Following is what you'll see when the screen first loads:

If you click on the down arrow, you'll see a menu with all the values, as follows:

Try typing tor into the autocomplete text field, as follows:

Autocomplete and Chips - Text Input Suggestions for Multiple Items Chapter 12

[305]

If you make a selection, the menu is closed and the text field is populated with the selected
value, as follows:

You can change your selection by opening the menu and selecting another value, or you
can clear the selection by clicking on the clear button to the right of the text.

How it works...
Let's break down the source by looking at the individual components that make up the
Autocomplete component and replacing pieces of the Select component. Then, we'll look
at the final Autocomplete component.

Text input control
Here's the source for the Control component:

const inputComponent = ({ inputRef, ...props }) => (
 <div ref={inputRef} {...props} />
);

const Control = props => (
 <TextField
 fullWidth
 InputProps={{
 inputComponent,
 inputProps: {
 className: props.selectProps.classes.input,
 inputRef: props.innerRef,
 children: props.children,
 ...props.innerProps
 }
 }}
 {...props.selectProps.textFieldProps}
 />
);

Autocomplete and Chips - Text Input Suggestions for Multiple Items Chapter 12

[306]

The inputComponent() function is a component that passes the inputRef value—a
reference to the underlying input element—to the ref prop. Then, inputComponent is
passed to InputProps to set the input component used by TextField. This component is
a little bit confusing because it's passing references around and it uses a helper component
for this purpose. The important thing to remember is that the job of Control is to set up the
Select component to use a Material-UITextField component.

Options menu
Here's the component that displays the autocomplete options when the user starts typing or
clicks on the down arrow:

const Menu = props => (
 <Paper
 square
 className={props.selectProps.classes.paper}
 {...props.innerProps}
 >
 {props.children}
 </Paper>
);

The Menu component renders a Material-UI Paper component so that the element
surrounding the options is themed accordingly.

No options available
Here's the NoOptionsMessage component. It is rendered when there aren't any
autocomplete options to display, as follows:

const NoOptionsMessage = props => (
 <Typography
 color="textSecondary"
 className={props.selectProps.classes.noOptionsMessage}
 {...props.innerProps}
 >
 {props.children}
 </Typography>
);

This renders a Typography component with textSecondary as the color property value.

Autocomplete and Chips - Text Input Suggestions for Multiple Items Chapter 12

[307]

Individual option
Individual options that are displayed in the autocomplete menu are rendered using the
MenuItem component, as follows:

const Option = props => (
 <MenuItem
 buttonRef={props.innerRef}
 selected={props.isFocused}
 component="div"
 style={{
 fontWeight: props.isSelected ? 500 : 400
 }}
 {...props.innerProps}
 >
 {props.children}
 </MenuItem>
);

The selected and style properties alter the way that the item is displayed, based on the
isSelected and isFocused properties. The children property sets the value of the item.

Placeholder text
The Placeholder text of the Autocomplete component is shown before the user types
anything or makes a selection, as follows:

const Placeholder = props => (
 <Typography
 color="textSecondary"
 className={props.selectProps.classes.placeholder}
 {...props.innerProps}
 >
 {props.children}
 </Typography>
);

The Material-UI Typography component is used to theme the Placeholder text.

Autocomplete and Chips - Text Input Suggestions for Multiple Items Chapter 12

[308]

SingleValue
Once again, the Material-UI Typography component is used to render the selected value
from the menu within the autocomplete input, as follows:

const SingleValue = props => (
 <Typography
 className={props.selectProps.classes.singleValue}
 {...props.innerProps}
 >
 {props.children}
 </Typography>
);

ValueContainer
The ValueContainer component is used to wrap the SingleValue component with a div
and the valueContainer CSS class, as follows:

const ValueContainer = props => (
 <div className={props.selectProps.classes.valueContainer}>
 {props.children}
 </div>
);

IndicatorSeparator
By default, the Select component uses a pipe character as a separator between the buttons
on the right side of the autocomplete menu. Since they're going to be replaced by Material-
UI button components, this separator is no longer necessary, as follows:

const IndicatorSeparator = () => null;

By having the component return null, nothing is rendered.

Clear option indicator
This button is used to clear any selection made previously by the user, as follows:

const ClearIndicator = props => (
 <IconButton {...props.innerProps}>
 <CancelIcon />
 </IconButton>
);

Autocomplete and Chips - Text Input Suggestions for Multiple Items Chapter 12

[309]

The purpose of this component is to use the Material-UI IconButton component and to
render a Material-UI icon. The click handler is passed in through innerProps.

Show menu indicator
Just like the ClearIndicator component, the DropdownIndicator component replaces
the button used to show the autocomplete menu with an icon from Material-UI, as follows:

const DropdownIndicator = props => (
 <IconButton {...props.innerProps}>
 <ArrowDropDownIcon />
 </IconButton>
);

Styles
Here are the styles used by the various sub-components of the autocomplete:

const useStyles = makeStyles(theme => ({
 root: {
 flexGrow: 1,
 height: 250
 },
 input: {
 display: 'flex',
 padding: 0
 },
 valueContainer: {
 display: 'flex',
 flexWrap: 'wrap',
 flex: 1,
 alignItems: 'center',
 overflow: 'hidden'
 },
 noOptionsMessage: {
 padding: `${theme.spacing(1)}px ${theme.spacing(2)}px`
 },
 singleValue: {
 fontSize: 16
 },
 placeholder: {
 position: 'absolute',
 left: 2,
 fontSize: 16
 },

Autocomplete and Chips - Text Input Suggestions for Multiple Items Chapter 12

[310]

 paper: {
 position: 'absolute',
 zIndex: 1,
 marginTop: theme.spacing(1),
 left: 0,
 right: 0
 }
}));

The Autocomplete
Finally, following is the Autocomplete component that you can reuse throughout your
application:

export default function Autocomplete(props) {
 const classes = useStyles();
 const [value, setValue] = useState(null);

 return (
 <div className={classes.root}>
 <Select
 value={value}
 onChange={v => setValue(v)}
 textFieldProps={{
 label: 'Team',
 InputLabelProps: {
 shrink: true
 }
 }}
 {...{ ...props, classes }}
 />
 </div>
);
}

Autocomplete.defaultProps = {
 isClearable: true,
 components: {
 Control,
 Menu,
 NoOptionsMessage,
 Option,
 Placeholder,
 SingleValue,
 ValueContainer,
 IndicatorSeparator,
 ClearIndicator,

Autocomplete and Chips - Text Input Suggestions for Multiple Items Chapter 12

[311]

 DropdownIndicator
 },
 options: [
 { label: 'Boston Bruins', value: 'BOS' },
 { label: 'Buffalo Sabres', value: 'BUF' },
 { label: 'Detroit Red Wings', value: 'DET' },
 { label: 'Florida Panthers', value: 'FLA' },
 { label: 'Montreal Canadiens', value: 'MTL' },
 { label: 'Ottawa Senators', value: 'OTT' },
 { label: 'Tampa Bay Lightning', value: 'TBL' },
 { label: 'Toronto Maple Leafs', value: 'TOR' },
 { label: 'Carolina Hurricanes', value: 'CAR' },
 { label: 'Columbus Blue Jackets', value: 'CBJ' },
 { label: 'New Jersey Devils', value: 'NJD' },
 { label: 'New York Islanders', value: 'NYI' },
 { label: 'New York Rangers', value: 'NYR' },
 { label: 'Philadelphia Flyers', value: 'PHI' },
 { label: 'Pittsburgh Penguins', value: 'PIT' },
 { label: 'Washington Capitals', value: 'WSH' },
 { label: 'Chicago Blackhawks', value: 'CHI' },
 { label: 'Colorado Avalanche', value: 'COL' },
 { label: 'Dallas Stars', value: 'DAL' },
 { label: 'Minnesota Wild', value: 'MIN' },
 { label: 'Nashville Predators', value: 'NSH' },
 { label: 'St. Louis Blues', value: 'STL' },
 { label: 'Winnipeg Jets', value: 'WPG' },
 { label: 'Anaheim Ducks', value: 'ANA' },
 { label: 'Arizona Coyotes', value: 'ARI' },
 { label: 'Calgary Flames', value: 'CGY' },
 { label: 'Edmonton Oilers', value: 'EDM' },
 { label: 'Los Angeles Kings', value: 'LAK' },
 { label: 'San Jose Sharks', value: 'SJS' },
 { label: 'Vancouver Canucks', value: 'VAN' },
 { label: 'Vegas Golden Knights', value: 'VGK' }
]
};

The piece that ties all of the previous components together is the components property
that's passed to Select. This is actually set as a default property in Autocomplete, so it
can be further overridden. The value passed to components is a simple object that maps
the component name to its implementation.

Autocomplete and Chips - Text Input Suggestions for Multiple Items Chapter 12

[312]

See also
Select components for React: https://react-select.com/
Autocomplete demos: https:/ /material- ui.com/ demos/ autocomplete/

TextField API documentation: https:/ /material- ui.com/ api/ text- field/

Typography API documentation: https:/ /material- ui.com/ api/ typography/

Paper API documentation: https:/ /material- ui.com/ api/ paper/

MenuItem API documentation: https:/ /material- ui.com/ api/ menu- item/

IconButton API documentation: https:/ /material- ui.com/ api/ icon- button/

Selecting autocomplete suggestions
In the previous section, you built an Autocomplete component capable of selecting a
single value. Sometimes, you need the ability to select multiple values from an
Autocomplete component. The good news is that, with a few small additions, the
component that you created in the previous section already does most of the work.

How to do it...
Let's walk through the additions that need to be made in order to support multi-value
selection in the Autocomplete component, starting with the new MultiValue component,
as follows:

const MultiValue = props => (
 <Chip
 tabIndex={-1}
 label={props.children}
 className={clsx(props.selectProps.classes.chip, {
 [props.selectProps.classes.chipFocused]: props.isFocused
 })}
 onDelete={props.removeProps.onClick}
 deleteIcon={<CancelIcon {...props.removeProps} />}
 />
);

https://react-select.com/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/

Autocomplete and Chips - Text Input Suggestions for Multiple Items Chapter 12

[313]

The MultiValue component uses the Material-UI Chip component to render a selected
value. In order to pass MultiValue to Select, add it to the components object that's
passed to Select:

components: {
 Control,
 Menu,
 NoOptionsMessage,
 Option,
 Placeholder,
 SingleValue,
 MultiValue,
 ValueContainer,
 IndicatorSeparator,
 ClearIndicator,
 DropdownIndicator
},

Now you can use your Autocomplete component for single value selection, or for multi-
value selection. You can add the isMulti property with a default value of true to
defaultProps, as follows:

isMulti: true,

Now, you should be able to select multiple values from the autocomplete.

How it works...
Nothing looks different about the autocomplete when it's first rendered, or when you show
the menu. When you make a selection, the Chip component is used to display the value.
Chips are ideal for displaying small pieces of information like this. Furthermore, the close
button integrates nicely with it, making it easy for the user to remove individual selections
after they've been made.

Here's what the autocomplete looks like after multiple selections have been made:

Autocomplete and Chips - Text Input Suggestions for Multiple Items Chapter 12

[314]

Values that have been selected are removed from the menu.

See also
Select components for React: https://react-select.com/
Autocomplete demos: https:/ /material- ui.com/ demos/ autocomplete/

TextField API documentation: https:/ /material- ui.com/ api/ text- field/

Typography API documentation: https:/ /material- ui.com/ api/ typography/

Paper API documentation: https:/ /material- ui.com/ api/ paper/

MenuItem API documentation: https:/ /material- ui.com/ api/ menu- item/

IconButton API documentation: https:/ /material- ui.com/ api/ icon- button/

Chip API documentation: https:/ /material- ui.com/ api/ chip/

API-driven Autocomplete
You can't always have your autocomplete data ready to render on the initial page load.
Imagine trying to load hundreds or thousands of items before the user can interact with
anything. The better approach is to keep the data on the server and supply an API endpoint
with the autocomplete text as the user types. Then you only need to load a smaller set of
data returned by the API.

How to do it...
Let's rework the example from the previous section. We'll keep all of the same
autocomplete functionality, except that, instead of passing an array to the options
property, we'll pass in an API function that returns a Promise. Here's the API function that
mocks an API call that resolves a Promise:

const someAPI = searchText =>
 new Promise(resolve => {
 setTimeout(() => {
 const teams = [
 { label: 'Boston Bruins', value: 'BOS' },
 { label: 'Buffalo Sabres', value: 'BUF' },

https://react-select.com/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/

Autocomplete and Chips - Text Input Suggestions for Multiple Items Chapter 12

[315]

 { label: 'Detroit Red Wings', value: 'DET' },
 ...
];

 resolve(
 teams.filter(
 team =>
 searchText &&
 team.label
 .toLowerCase()
 .includes(searchText.toLowerCase())
)
);
 }, 1000);
 });

This function takes a search string argument and returns a Promise. The same data that
would otherwise be passed to the Select component in the options property is filtered
here instead. Think of anything that happens in this function as happening behind an API
in a real app. The returned Promise is then resolved with an array of matching items
following a simulated latency of one second.

You also need to add a couple of components to the composition of the Select component
(we're up to 13 now!), as follows:

const LoadingIndicator = () => <CircularProgress size={20} />;

const LoadingMessage = props => (
 <Typography
 color="textSecondary"
 className={props.selectProps.classes.noOptionsMessage}
 {...props.innerProps}
 >
 {props.children}
 </Typography>
);

The LoadingIndicator component is shown on the right the autocomplete text input. It's
using the CircularProgress component from Material-UI to indicate that the
autocomplete is doing something. The LoadingMessage component follows the same
pattern as the other text replacement components used with Select in this example. The
loading text is displayed when the menu is shown, but the Promise that resolves the
options is still pending.

Autocomplete and Chips - Text Input Suggestions for Multiple Items Chapter 12

[316]

Lastly, there's the Select component. Instead of using Select, you need to use the
AsyncSelect version, as follows:

import AsyncSelect from 'react-select/lib/Async';

Otherwise, AsyncSelect works the same as Select, as follows:

<AsyncSelect
 value={value}
 onChange={value => setValue(value)}
 textFieldProps={{
 label: 'Team',
 InputLabelProps: {
 shrink: true
 }
 }}
 {...{ ...props, classes }}
/>

How it works...
The only difference between a Select autocomplete and an AsyncSelect autocomplete is
what happens while the request to the API is pending. Here is what the autocomplete looks
like while this is happening:

As the user types the CircularProgress component is rendered to the right, while the
loading message is rendered in the menu using a Typography component.

See also
Select components for React: https://react-select.com/
Autocomplete demos: https:/ /material- ui.com/ demos/ autocomplete/

TextField API documentation: https:/ /material- ui.com/ api/ text- field/

https://react-select.com/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/

Autocomplete and Chips - Text Input Suggestions for Multiple Items Chapter 12

[317]

Typography API documentation: https:/ /material- ui.com/ api/ typography/

Paper API documentation: https:/ /material- ui.com/ api/ paper/

MenuItem API documentation: https:/ /material- ui.com/ api/ menu- item/

IconButton API documentation: https:/ /material- ui.com/ api/ icon- button/

Chip API documentation: https:/ /material- ui.com/ api/ chip/

Highlighting search results
When the user starts typing in an autocomplete and the results are displayed in the
dropdown, it isn't always obvious how a given item matches the search criteria. You can
help your users better understand the results by highlighting the matched portion of the
string value.

How to do it...
You'll want to use two functions from the autosuggest-highlight package to help
highlight the text presented in the autocomplete dropdown, as follows:

import match from 'autosuggest-highlight/match';
import parse from 'autosuggest-highlight/parse';

Now, you can build a new component that will render the item text, highlighting as and
when necessary, as follows:

const ValueLabel = ({ label, search }) => {
 const matches = match(label, search);
 const parts = parse(label, matches);

 return parts.map((part, index) =>
 part.highlight ? (

 {part.text}

) : (
 {part.text}
)
);
};

https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/

Autocomplete and Chips - Text Input Suggestions for Multiple Items Chapter 12

[318]

The end result is that ValueLabel renders an array of span elements, determined by the
parse() and match() functions. One of the spans will be bolded if part.highlight is
true. Now, you can use ValueLabel in the Option component, as follows:

const Option = props => (
 <MenuItem
 buttonRef={props.innerRef}
 selected={props.isFocused}
 component="div"
 style={{
 fontWeight: props.isSelected ? 500 : 400
 }}
 {...props.innerProps}
 >
 <ValueLabel
 label={props.children}
 search={props.selectProps.inputValue}
 />
 </MenuItem>
);

How it works...
Now, when you search for values in the autocomplete text input, the results will highlight
the search criteria in each item, as follows:

See also
Autosuggest for React: https:/ /github. com/ moroshko/ autosuggest- highlight

Select components for React: https://react-select.com/
Autocomplete demos: https:/ /material- ui.com/ demos/ autocomplete/

TextField API documentation: https:/ /material- ui.com/ api/ text- field/

https://github.com/moroshko/autosuggest-highlight
https://github.com/moroshko/autosuggest-highlight
https://github.com/moroshko/autosuggest-highlight
https://github.com/moroshko/autosuggest-highlight
https://github.com/moroshko/autosuggest-highlight
https://github.com/moroshko/autosuggest-highlight
https://github.com/moroshko/autosuggest-highlight
https://github.com/moroshko/autosuggest-highlight
https://github.com/moroshko/autosuggest-highlight
https://github.com/moroshko/autosuggest-highlight
https://github.com/moroshko/autosuggest-highlight
https://github.com/moroshko/autosuggest-highlight
https://github.com/moroshko/autosuggest-highlight
https://react-select.com/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/demos/autocomplete/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/

Autocomplete and Chips - Text Input Suggestions for Multiple Items Chapter 12

[319]

Typography API documentation: https:/ /material- ui.com/ api/ typography/

Paper API documentation: https:/ /material- ui.com/ api/ paper/

MenuItem API documentation: https:/ /material- ui.com/ api/ menu- item/

IconButton API documentation: https:/ /material- ui.com/ api/ icon- button/

Chip API documentation: https:/ /material- ui.com/ api/ chip/

Standalone chip input
Some applications require multi-value inputs but don't have a predefined list for the user to
choose from. This rules out the possibility of using an autocomplete or a select
component, for example, if you're asking the user for a list of names.

How to do it...
You can install the material-ui-chip-input package and use the ChipInput
component, which brings together the Chip and TextInput components from Material-UI.
The code is as follows:

import React, { useState } from 'react';

import { makeStyles } from '@material-ui/styles';
import ChipInput from 'material-ui-chip-input';

const useStyles = makeStyles(theme => ({
 chipInput: { minWidth: 300 }
}));

export default function StandaloneChipInput() {
 const classes = useStyles();
 const [values, setValues] = useState([]);

 const onAdd = chip => {
 setValues([...values, chip]);
 };

 const onDelete = (chip, index) => {
 setValues(values.slice(0, index).concat(values.slice(index + 1)));
 };

 return (
 <ChipInput

https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/paper/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/icon-button/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/

Autocomplete and Chips - Text Input Suggestions for Multiple Items Chapter 12

[320]

 className={classes.chipInput}
 helperText="Type name, hit enter to type another"
 value={values}
 onAdd={onAdd}
 onDelete={onDelete}
 />
);
}

When the screen first loads, the field looks like a regular text field that you can type in, as
follows:

As the helper text indicates, you can hit Enter to add the item and enter more text, as
follows:

You can keep adding items to the field as you please, as follows:

It's important that the helper text mentions the enter key. Otherwise, the
user might not be able to figure out that they can enter multiple values.

Autocomplete and Chips - Text Input Suggestions for Multiple Items Chapter 12

[321]

How it works...
The state that holds the value of the chip input field is an array—because there are
multiple values. The two actions involved with the chip input state are adding and
removing strings from this array. Let's take a closer look at the onAdd() and onDelete()
functions, as follows:

const onAdd = chip => {
 setValues([...values, chip]);
};

const onDelete = (chip, index) => {
 setValues(values.slice(0, index).concat(values.slice(index + 1)));
};

The onAdd() function adds the chip to the array, while the onDelete() function deletes
the chip at the given index. The chips are deleted when the Delete icon in the chip is
clicked on by the user. Lastly, let's look at the ChipInput component itself, as follows:

<ChipInput
 className={classes.chipInput}
 helperText="Type name, hit enter to type another"
 value={values}
 onAdd={onAdd}
 onDelete={onDelete}
/>

It's very similar to a TextInput component. It actually takes the same properties, such as
helperText. It also takes additional properties not found in TextInput, such as onAdd
and onDelete.

See also
A Material-UI ChipInput
component: https://www.npmjs.com/package/material-ui-chip-input

https://www.npmjs.com/package/material-ui-chip-input

13
Selection - Make Selections

from Choices
In this chapter, you'll learn about the following:

Abstracting checkbox groups
Customizing checkbox items
Abstracting radio button groups
Using radio button types
Replacing checkboxes with switches
Controlling selects with state
Selecting multiple items

Introduction
Any application that includes user interactions involves user making selections. This could
range from a simple on/off switch to selection with several items that allow more than one
item to be selected. Material-UI has different selection components that best fit a given user
scenario.

Abstracting checkbox groups
Checkboxes often provide the user with a group of related options that can be checked or
unchecked. The Material-UI Checkbox component provides the base functionality, but you
might want something a little more high level that can be reused throughout your
application.

Selection - Make Selections from Choices Chapter 13

[323]

How to do it...
Let's create an abstraction for groups of checkbox options. Here's the code for a
CheckboxGroup component:

import React, { useState } from 'react';

import FormLabel from '@material-ui/core/FormLabel';
import FormControl from '@material-ui/core/FormControl';
import FormGroup from '@material-ui/core/FormGroup';
import FormControlLabel from '@material-ui/core/FormControlLabel';
import FormHelperText from '@material-ui/core/FormHelperText';
import Checkbox from '@material-ui/core/Checkbox';

const CheckboxGroup = ({ values, label, onChange }) => (
 <FormControl component="fieldset">
 <FormLabel component="legend">{label}</FormLabel>
 <FormGroup>
 {values.map((value, index) => (
 <FormControlLabel
 key={index}
 control={
 <Checkbox
 checked={value.checked}
 onChange={onChange(index)}
 />
 }
 label={value.label}
 />
))}
 </FormGroup>
 </FormControl>
);

export default function AbstractingCheckboxGroups() {
 const [values, setValues] = useState([
 { label: 'First', checked: false },
 { label: 'Second', checked: false },
 { label: 'Third', checked: false }
]);

 const onChange = index => ({ target: { checked } }) => {
 const newValues = [...values];
 const value = values[index];

 newValues[index] = { ...value, checked };

 setValues(newValues);

Selection - Make Selections from Choices Chapter 13

[324]

 };

 return (
 <CheckboxGroup
 label="Choices"
 values={values}
 onChange={onChange}
 />
);
}

When you first load the screen, here's what you'll see:

Here's what it looks like when you select the first two choices:

How it works...
Let's take a closer look at the CheckboxGroup component:

const CheckboxGroup = ({ values, label, onChange }) => (
 <FormControl component="fieldset">
 <FormLabel component="legend">{label}</FormLabel>
 <FormGroup>
 {values.map((value, index) => (
 <FormControlLabel

Selection - Make Selections from Choices Chapter 13

[325]

 key={index}
 control={
 <Checkbox
 checked={value.checked}
 onChange={onChange(index)}
 />
 }
 label={value.label}
 />
))}
 </FormGroup>
 </FormControl>
);

This is the abstraction that allows you to render groups of checkbox options on the various
screens throughout your app. There are several Material-UI components involved with
rendering a group of checkboxes—CheckboxGroup takes care of this for you so that you
just need to worry about passing it an array of values, label, and an onChange handler.

Next, let's look at how CheckboxGroup is rendered by your application component:

<CheckboxGroup
 label="Choices"
 values={values}
 onChange={onChange}
/>

You only need to worry about structuring the values array and passing it to the
CheckboxGroup component whenever your application needs to render a group of related
checkbox options. Lastly, let's look at state and the onChange() handler used to toggle
the checked state of the value:

const [values, setValues] = useState([
 { label: 'First', checked: false },
 { label: 'Second', checked: false },
 { label: 'Third', checked: false }
]);

const onChange = index => ({ target: { checked } }) => {
 const newValues = [...values];
 const value = values[index];

 newValues[index] = { ...value, checked };

 setValues(newValues);
};

Selection - Make Selections from Choices Chapter 13

[326]

The checked property is changed based on the index argument and the target.checked
value.

There's more...
Let's add a List component to this example so that you can better visualize the state
changes that happen when checkboxes are checked/unchecked. Here's the additional
Material-UI components that you'll need to import:

import List from '@material-ui/core/List';
import ListItem from '@material-ui/core/ListItem';
import ListItemIcon from '@material-ui/core/ListItemIcon';
import ListItemText from '@material-ui/core/ListItemText';
import Typography from '@material-ui/core/Typography';

The idea is to have this list render the labels of checked items. Let's render this list right
below the CheckboxGroup component:

<Fragment>
 <CheckboxGroup
 label="Choices"
 values={values}
 onChange={onChange}
 />
 <Typography variant="h6">Selection</Typography>
 <List>
 {values
 .filter(value => value.checked)
 .map((value, index) => (
 <ListItem key={index}>
 <ListItemText>{value.label}</ListItemText>
 </ListItem>
))}
 </List>
</Fragment>

Selection - Make Selections from Choices Chapter 13

[327]

The filter() call on values will only include values where the checked property is
true. When the screen first loads, you'll see an empty list because nothing is checked by
default:

As you start making selections, you'll see the selection list change as a reflection of the
application state changes:

See also
Selection demos: https://material-ui.com/demos/selection-controls/
Checkbox API documentation: https:/ /material- ui.com/ api/ checkbox/

FormHelperText API documentation: https:/ /material- ui.com/ api/ form-
helper-text/

https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/

Selection - Make Selections from Choices Chapter 13

[328]

FormControlLabel API documentation: https:/ /material- ui.com/ api/ form-
control- label/

FormGroup API documentation: https:/ /material- ui.com/ api/ form- group/

FormControl API documentation: https:/ /material- ui.com/ api/ form-
control/

FormLabel API documentation: https:/ /material- ui.com/ api/ form- label/

Customizing checkbox items
The default appearance of Material-UI Checkbox components tries to resemble the native
browser checkbox input element. You can change the icon that's used for both the checked
and the unchecked state of the component. Even after you change the icons used by
Checkbox, any color changes are still honored.

How to do it...
Here's some code that imports several Material-UI icons and uses them to configure the
icons used by the Checkbox components:

import React, { useState, useEffect } from 'react';

import FormGroup from '@material-ui/core/FormGroup';
import FormControlLabel from '@material-ui/core/FormControlLabel';
import Checkbox from '@material-ui/core/Checkbox';

import AccountBalance from '@material-ui/icons/AccountBalance';
import AccountBalanceOutlined from '@material-
ui/icons/AccountBalanceOutlined';
import Backup from '@material-ui/icons/Backup';
import BackupOutlined from '@material-ui/icons/BackupOutlined';
import Build from '@material-ui/icons/Build';
import BuildOutlined from '@material-ui/icons/BuildOutlined';

const initialItems = [
 {
 name: 'AccountBalance',
 Icon: AccountBalanceOutlined,
 CheckedIcon: AccountBalance
 },
 {
 name: 'Backup',
 Icon: BackupOutlined,

https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/

Selection - Make Selections from Choices Chapter 13

[329]

 CheckedIcon: Backup
 },
 {
 name: 'Build',
 Icon: BuildOutlined,
 CheckedIcon: Build
 }
];

export default function CustomizingCheckboxItems() {
 const [items, setItems] = useState({});

 useEffect(() => {
 setItems(
 initialItems.reduce(
 (state, item) => ({ ...state, [item.name]: false }),
 {}
)
);
 }, []);

 const onChange = e => {
 setItems({ [e.target.name]: e.target.checked });
 };

 return (
 <FormGroup>
 {initialItems.map(({ name, Icon, CheckedIcon }, index) => (
 <FormControlLabel
 key={index}
 control={
 <Checkbox
 checked={items[name]}
 onChange={onChange}
 inputProps={{ name }}
 icon={<Icon fontSize="small" />}
 checkedIcon={<CheckedIcon fontSize="small" />}
 />
 }
 label={name}
 />
))}
 </FormGroup>
);
}

Selection - Make Selections from Choices Chapter 13

[330]

Here's what the checkboxes look like when the screen first loads:

These checkboxes are unchecked. Here's what they look like when they're checked:

How it works...
Let's walk through what's happening here. The initialItems array is the starting point
for the construction of the checkboxes:

const initialItems = [
 {
 name: 'AccountBalance',
 Icon: AccountBalanceOutlined,
 CheckedIcon: AccountBalance
 },
 {
 name: 'Backup',
 Icon: BackupOutlined,
 CheckedIcon: Backup
 },
 {
 name: 'Build',
 Icon: BuildOutlined,
 CheckedIcon: Build
 }
];

Selection - Make Selections from Choices Chapter 13

[331]

Each item has a name component to identify the checkbox, as well as checked/unchecked
Icon components. Next, let's take a look at how the state of the
CustomizingCheckboxItems component is initialized:

const [items, setItems] = useState({});

useEffect(() => {
 setItems(
 initialItems.reduce(
 (state, item) => ({ ...state, [item.name]: false }),
 {}
)
);
}, []);

The state is initialized to an object by reducing the initialItems array. For each item in
the array, the state of this component will have a property that's initialized to false. The
name of the property is based on the name property of the item. So, for example, the
component state will look something like this after it's reduced:

{
 AccountBalance: false,
 Backup: false,
 Build: false
}

These properties are used to store the checked state of each checkbox. Next, let's look at
how each Checkbox component is rendered based on the initialItems array:

<FormGroup>
 {initialItems.map(({ name, Icon, CheckedIcon }, index) => (
 <FormControlLabel
 key={index}
 control={
 <Checkbox
 checked={items[name]}
 onChange={onChange}
 inputProps={{ name }}
 icon={<Icon fontSize="small" />}
 checkedIcon={<CheckedIcon fontSize="small" />}
 />
 }
 label={name}
 />
))}
</FormGroup>

Selection - Make Selections from Choices Chapter 13

[332]

The key properties that customize each of the checkboxes are icon and checkedIcon.
These properties use the Icon and CheckIcon properties from the items array,
respectively.

There's more...
Because the icons that you're using to customize the Checkbox component are Material-UI
components, you can change the color of the checkbox and have it work the same as would
without custom icons. For example, you could set the color of the checkboxes in this
example to default:

<Checkbox
 color="default"
 checked={items[name]}
 onChange={onChange}
 inputProps={{ name }}
 icon={<Icon fontSize="small" />}
 checkedIcon={<CheckedIcon fontSize="small" />}
/>

Here's how this would look with every checkbox checked:

With the color set to the default, the color doesn't change when a checkbox goes from
unchecked to checked. This doesn't matter much, though, because the icons go from an
outline theme to a filled theme. Just the shape change is enough to indicate that the item is
checked.

Let's try it out with primary, just for fun:

<Checkbox
 color="primary"
 checked={items[name]}
 onChange={onChange}
 inputProps={{ name }}
 icon={<Icon fontSize="small" />}

Selection - Make Selections from Choices Chapter 13

[333]

 checkedIcon={<CheckedIcon fontSize="small" />}
/>

Here's how this looks with everything checked:

See also
Selection demos: https:/ / material- ui.com/ demos/ selection- controls/

Checkbox API documentation: https:/ /material- ui.com/ api/ checkbox/

FormControlLabel API documentation: https:/ /material- ui.com/ api/ form-
control- label/

FormGroup API documentation: https:/ /material- ui.com/ api/ form- group/

Abstracting radio button groups
Radio button groups are similar to checkbox groups. The key difference is that radios are
used when only one value should be selected. Also, like checkbox groups, radio button
groups require several Material-UI components that can be encapsulated and reused
throughout an application.

How it works...
Here's some code that captures all of the pieces required to put together a radio button
group into a single component:

import React, { useState } from 'react';

import Radio from '@material-ui/core/Radio';
import { default as MaterialRadioGroup } from '@material-
ui/core/RadioGroup';

https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/checkbox/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/
https://material-ui.com/api/form-group/

Selection - Make Selections from Choices Chapter 13

[334]

import FormControlLabel from '@material-ui/core/FormControlLabel';
import FormControl from '@material-ui/core/FormControl';
import FormLabel from '@material-ui/core/FormLabel';

const options = [
 { label: 'First', value: 'first' },
 { label: 'Second', value: 'second' },
 { label: 'Third', value: 'third' }
];

const RadioGroup = ({ value, options, name, label, onChange }) => (
 <FormControl component="fieldset">
 <FormLabel component="legend">{label}</FormLabel>
 <MaterialRadioGroup
 name={name}
 value={value}
 onChange={onChange}
 disabled
 >
 {options.map((option, index) => (
 <FormControlLabel
 key={index}
 control={<Radio />}
 value={option.value}
 label={option.label}
 />
))}
 </MaterialRadioGroup>
 </FormControl>
);

export default function AbstractingRadioButtonGroups() {
 const [value, setValue] = useState('first');

 const onChange = e => {
 setValue(e.target.value);
 };

 return (
 <RadioGroup
 value={value}
 options={options}
 name="radio1"
 label="Pick One"
 onChange={onChange}
 />
);
}

Selection - Make Selections from Choices Chapter 13

[335]

Here's what you'll see when you first load the screen:

Here's what the component looks like if you were to click on the third option:

Because these options all belong to the same radio group, only one option can be checked at
a time.

How it works...
Let's take a closer look at the RadioGroup component in this example:

const RadioGroup = ({ value, options, name, label, onChange }) => (
 <FormControl component="fieldset">
 <FormLabel component="legend">{label}</FormLabel>
 <MaterialRadioGroup name={name} value={value} onChange={onChange}>
 {options.map((option, index) => (
 <FormControlLabel
 key={index}
 control={<Radio />}
 value={option.value}
 label={option.label}
 />
))}
 </MaterialRadioGroup>
 </FormControl>
);

Selection - Make Selections from Choices Chapter 13

[336]

The options property should have an array value, which is then mapped to
the FormControlLabel components. The control property uses the Radio component to
render each radio control. Unlike checkbox groups, the onChange property is on the
MaterialRadioGroup component instead of on each individual Radio. This is because
there's only ever a single active value, which is managed by MaterialRadioGroup.

The Material-UI RadioGroup component is imported with
the MaterialRadioGroup alias because we're creating a component of
the same name. This is fine, as long as you're clear about which packages
own which components.

Next, let's see how the RadioGroup component is rendered:

<RadioGroup
 value={value}
 options={options}
 name="radio1"
 label="Pick One"
 onChange={onChange}
/>

The name property is what ties everything together. It's important that radio buttons that
are part of the same group have the same name. This abstraction takes care of this for you
by only requiring the name in one place. Here's what the options array looks like:

const options = [
 { label: 'First', value: 'first' },
 { label: 'Second', value: 'second' },
 { label: 'Third', value: 'third' }
];

The idea with radio groups is that they only ever have one value. The value properties in
the options array are the allowed values—but only one is active. The last thing worth
looking at with this example is the onChange handler and the state structure of the
application component:

const [value, setValue] = useState('first');

const onChange = e => {
 setValue(e.target.value);
};

This is how the initial radio selection is set. When it changes, the value state is updated to
the value of the selected radio.

Selection - Make Selections from Choices Chapter 13

[337]

There's more...
You can disable the entire radio button group by setting the disabled property on the
FormControl component:

<FormControl component="fieldset" disabled>
 ...
</FormControl>

When you disable the control, you can't interact with it at all. Here's what this looks like:

In other scenarios, you will only want to disable one of the options. You can support this in
the RadioGroup component by checking for a disabled property in the options array:

<FormControlLabel
 key={index}
 control={<Radio disabled={option.disabled} />}
 value={option.value}
 label={option.label}
/>

Here is how you would disable an option in the options array:

const options = [
 { label: 'First', value: 'first' },
 { label: 'Second', value: 'second', disabled: true },
 { label: 'Third', value: 'third' }
];

Selection - Make Selections from Choices Chapter 13

[338]

Here's how the radio group looks with the Second option disabled:

While the Second option is disabled, there's no way to activate it because the user cannot
interact with it.

Be careful about disabling the option that's active by default. There's no
way for this to not cause confusion for the user. You can activate another
option in the group, but then you can't activate the option that was active
to begin with.

See also
Selection demos: https:/ / material- ui.com/ demos/ selection- controls/

Radio API documentation: https:/ /material- ui.com/ api/ radio/

RadioGroup API documentation: https:/ /material- ui.com/ api/ radio- group/

FormControlLabel API documentation: https:/ /material- ui.com/ api/ form-
control- label/

FormControl API documentation: https:/ /material- ui.com/ api/ form-
control/

FormLabel API documentation: https:/ /material- ui.com/ api/ form- label/

Radio button types
There are a number of radio button aspects that you can customize to create your own type
of radio button group. While the underlying principle of selecting a single value from
several options doesn't change, you can make the radio button group design fit any
application.

https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/

Selection - Make Selections from Choices Chapter 13

[339]

How to do it...
Let's say that, based on the layout of your screen, and in order to stay consistent with other
screens in your app, you need to create a radio group with the following design traits:

A single row is used to present options
There are icons and text for each option
The primary theme color is used for selected options

Here's some code that does this:

import React, { Fragment, useState } from 'react';

import Radio from '@material-ui/core/Radio';
import RadioGroup from '@material-ui/core/RadioGroup';
import FormControlLabel from '@material-ui/core/FormControlLabel';
import FormControl from '@material-ui/core/FormControl';
import FormLabel from '@material-ui/core/FormLabel';

import Car from '@material-ui/icons/DirectionsCar';
import CarOutlined from '@material-ui/icons/DirectionsCarOutlined';
import Bus from '@material-ui/icons/DirectionsBus';
import BusOutlined from '@material-ui/icons/DirectionsBusOutlined';
import Train from '@material-ui/icons/Train';
import TrainOutlined from '@material-ui/icons/TrainOutlined';

export default function RadioButtonTypes() {
 const [value, setValue] = useState('train');

 const onChange = e => {
 setValue(e.target.value);
 };

 return (
 <FormControl component="fieldset">
 <FormLabel component="legend">Travel Mode</FormLabel>
 <RadioGroup name="travel" value={value} onChange={onChange} row>
 <FormControlLabel
 value="car"
 control={
 <Radio
 color="primary"
 icon={<CarOutlined />}
 checkedIcon={<Car />}
 />
 }
 label="Car"

Selection - Make Selections from Choices Chapter 13

[340]

 labelPlacement="bottom"
 />
 <FormControlLabel
 value="bus"
 control={
 <Radio
 color="primary"
 icon={<BusOutlined />}
 checkedIcon={<Bus />}
 />
 }
 label="Bus"
 labelPlacement="bottom"
 />
 <FormControlLabel
 value="train"
 control={
 <Radio
 color="primary"
 icon={<TrainOutlined />}
 checkedIcon={<Train />}
 />
 }
 label="Train"
 labelPlacement="bottom"
 />
 </RadioGroup>
 </FormControl>
);
}

Here's what the radio group looks like when the screen first loads:

Selection - Make Selections from Choices Chapter 13

[341]

You can change the default selection by clicking on any of the other icons or labels. The icon
state is updated to reflect the change:

How it works...
It seems that we were able to meet the criteria set forth for the radio button group. Let's
walk through the code to see how each requirement was met. First, the group is rendered
horizontally with each radio button on the same row. This is done by passing the row
property to the RadioGroup component:

<RadioGroup
 name="travel"
 value={value}
 onChange={onChange}
 row
>

The label of each radio is displayed underneath each radio button because this works better
with the row layout of the group. This is done by setting the labelPlacement property
value of FormControlLabel. The radio color uses the primary color from the Material-UI
theme when selected. It's also using custom icons for checked and unchecked states:

<Radio
 color="primary"
 icon={<BusOutlined />}
 checkedIcon={<Bus />}
/>

Both of these enhancements are handled by the Radio component.

Selection - Make Selections from Choices Chapter 13

[342]

See also
Selection demos: https://material-ui.com/demos/selection-controls/
Radio API documentation: https:/ /material- ui.com/ api/ radio/

RadioGroup API documentation: https:/ /material- ui.com/ api/ radio- group/

FormControlLabel API documentation: https:/ /material- ui.com/ api/ form-
control- label/

FormControl API documentation: https:/ /material- ui.com/ api/ form-
control/

FormLabel API documentation: https:/ /material- ui.com/ api/ form- label/

Replacing checkboxes with switches
Material-UI has a control which is very similar to a checkbox, called a switch. The main
visual distinction between the two components is that a switch has more emphasis on the
toggling on/off action. In a mobile environment, users might feel more accustomed to the
Switch component. In any other environment, you're probably best sticking with regular
Checkbox components.

How to do it...
Let's say that, instead of creating a component that abstracts a group of Checkbox
components, you you want want to do the same thing with the Switch components. Here's
the code:

import React, { Fragment, useState } from 'react';

import FormLabel from '@material-ui/core/FormLabel';
import FormControl from '@material-ui/core/FormControl';
import FormGroup from '@material-ui/core/FormGroup';
import FormControlLabel from '@material-ui/core/FormControlLabel';
import FormHelperText from '@material-ui/core/FormHelperText';
import Switch from '@material-ui/core/Switch';

const SwitchGroup = ({ values, label, onChange }) => (
 <FormControl component="fieldset">
 <FormLabel component="legend">{label}</FormLabel>
 <FormGroup>
 {values.map((value, index) => (
 <FormControlLabel

https://material-ui.com/demos/selection-controls/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/radio-group/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control-label/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/
https://material-ui.com/api/form-label/

Selection - Make Selections from Choices Chapter 13

[343]

 key={index}
 control={
 <Switch
 checked={value.checked}
 onChange={onChange(index)}
 />
 }
 label={value.label}
 />
))}
 </FormGroup>
 </FormControl>
);

export default function ReplacingCheckboxesWithSwitches() {
 const [values, setValues] = useState([
 { label: 'First', checked: false },
 { label: 'Second', checked: false },
 { label: 'Third', checked: false }
]);

 const onChange = index => ({ target: { checked } }) => {
 const newValues = [...values];
 const value = values[index];

 newValues[index] = { ...value, checked };
 setValues(newValues);
 };

 return (
 <SwitchGroup
 label="Choices"
 values={values}
 onChange={onChange}
 />
);
}

Selection - Make Selections from Choices Chapter 13

[344]

Here's what the switch group looks like when the screen first loads:

Here's what the switch group looks like with every switch turned on:

How it works...
Anywhere that you can use a Checkbox component, you can also use a Switch
component. This code was taken from the Abstracting checkbox groups section from earlier in
this chapter. The Checkbox components were replaced with Switch components.

There's more...
Rather than having divergent code paths for handling Checkbox versus Switch
components, you could enhance the SwitchGroup component to accept a checkbox
Boolean property that, when true, uses Checkbox as the control instead of Switch. Here's
what the new SwitchGroup looks like:

const SwitchGroup = ({ values, label, onChange }) => (
 <FormControl component="fieldset">
 <FormLabel component="legend">{label}</FormLabel>
 <FormGroup>
 {values.map((value, index) => (
 <FormControlLabel
 key={index}

Selection - Make Selections from Choices Chapter 13

[345]

 control={
 <Switch
 checked={value.checked}
 onChange={onChange(index)}
 />
 }
 label={value.label}
 />
))}
 </FormGroup>
 </FormControl>
);

And here's an example that shows both versions of the control being rendered side by side:

<Fragment>
 <SwitchGroup
 label="Switch Choices"
 values={values}
 onChange={this.onChange}
 />
 <SwitchGroup
 label="Switch Choices"
 values={values}
 onChange={onChange}
 checkbox
 />
</Fragment>

The second SwitchGroup component uses the checkbox property to render the Checkbox
components instead of the Switch components. Here's what the result looks like:

Selection - Make Selections from Choices Chapter 13

[346]

Here's what you'll see if you select the first option in either the switch choices or the
checkbox choices group:

They are both updated because both fields share the same application state.

See also
Selection demos: https:/ / material- ui.com/ demos/ selection- controls/

Controlling selects with state
Some forms involve making selections from a list of values. This is kind of like choosing a
radio button option from a radio button group. With the Material-UI Select component,
you get something that looks more like a traditional HTML select element. Often, web
application forms have several selects that depend on one another. In React/Material-UI
applications, these selects are controlled through the state component.

How to do it...
Let's say that your screen has two selects—a category select and a product select. Initially,
only the category select is populated and enabled. The product select depends on the
category select—once a category is selected, the product select is enabled and populated
with the appropriate products. Here's the code to do this:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';

https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/
https://material-ui.com/demos/selection-controls/

Selection - Make Selections from Choices Chapter 13

[347]

import InputLabel from '@material-ui/core/InputLabel';
import MenuItem from '@material-ui/core/MenuItem';
import FormHelperText from '@material-ui/core/FormHelperText';
import FormControl from '@material-ui/core/FormControl';
import Select from '@material-ui/core/Select';

const useStyles = makeStyles(theme => ({
 control: { margin: theme.spacing(2), minWidth: 200 }
}));

export default function ControllingSelectsWithState() {
 const classes = useStyles();

 const [categories, setCategories] = useState([
 { label: 'Category 1', id: 1 },
 { label: 'Category 2', id: 2 },
 { label: 'Category 3', id: 3 }
]);

 const [products, setProducts] = useState([
 { label: 'Product 1', id: 1, category: 1 },
 { label: 'Product 2', id: 2, category: 1 },
 { label: 'Product 3', id: 3, category: 1 },
 { label: 'Product 4', id: 4, category: 2 },
 { label: 'Product 5', id: 5, category: 2 },
 { label: 'Product 6', id: 6, category: 2 },
 { label: 'Product 7', id: 7, category: 3 },
 { label: 'Product 8', id: 8, category: 3 },
 { label: 'Product 9', id: 9, category: 3 }
]);

 const setters = {
 categories: setCategories,
 products: setProducts
 };
 const collections = { categories, products };

 const onChange = e => {
 const setCollection = setters[e.target.name];
 const collection = collections[e.target.name].map(item => ({
 ...item,
 selected: false
 }));
 const index = collection.findIndex(
 item => item.id === e.target.value
);

 collection[index] = { ...collection[index], selected: true };

Selection - Make Selections from Choices Chapter 13

[348]

 setCollection(collection);
 };

 const category = categories.find(category => category.selected) || {
 id: ''
 };
 const product = products.find(product => product.selected) || {
 id: ''
 };

 return (
 <Fragment>
 <FormControl className={classes.control}>
 <InputLabel htmlFor="categories">Category</InputLabel>
 <Select
 value={category.id}
 onChange={onChange}
 inputProps={{
 name: 'categories',
 id: 'categories'
 }}
 >
 <MenuItem value="">
 None
 </MenuItem>
 {categories.map(category => (
 <MenuItem key={category.id} value={category.id}>
 {category.label}
 </MenuItem>
))}
 </Select>
 </FormControl>
 <FormControl
 className={classes.control}
 disabled={category.id === ''}
 >
 <InputLabel htmlFor="Products">Product</InputLabel>
 <Select
 value={product.id}
 onChange={onChange}
 inputProps={{
 name: 'products',
 id: 'values'
 }}
 >
 <MenuItem value="">
 None
 </MenuItem>

Selection - Make Selections from Choices Chapter 13

[349]

 {products
 .filter(product => product.category === category.id)
 .map(product => (
 <MenuItem key={product.id} value={product.id}>
 {product.label}
 </MenuItem>
))}
 </Select>
 </FormControl>
 </Fragment>
);
}

Here's what you'll see when the screen first loads:

The category select is populated with options for you to choose from. The product select is
disabled because no category has been selected. Here's what the category select looks like
when it's open:

Selection - Make Selections from Choices Chapter 13

[350]

Once you select a category, you should be able to open the product select and make a
product selection:

How it works...
The two Select components in this example have state dependencies. That is, the state of
the product select depends on the state of the category select. This is because the options
displayed in the product select are filtered based on the chosen category. Let's take a closer
look at the state:

const [categories, setCategories] = useState([
 { label: 'Category 1', id: 1 },
 { label: 'Category 2', id: 2 },
 { label: 'Category 3', id: 3 }
]);

const [products, setProducts] = useState([
 { label: 'Product 1', id: 1, category: 1 },
 { label: 'Product 2', id: 2, category: 1 },
 { label: 'Product 3', id: 3, category: 1 },
 { label: 'Product 4', id: 4, category: 2 },
 { label: 'Product 5', id: 5, category: 2 },
 { label: 'Product 6', id: 6, category: 2 },
 { label: 'Product 7', id: 7, category: 3 },
 { label: 'Product 8', id: 8, category: 3 },
 { label: 'Product 9', id: 9, category: 3 }
]);

Selection - Make Selections from Choices Chapter 13

[351]

The categories and products arrays represent the options of the two selects on the
screen. The selected option is marked with a selected Boolean property value of true. No
options are selected by default. Both selects use the same onChange() handler:

const setters = {
 categories: setCategories,
 products: setProducts
};
const collections = { categories, products };

const onChange = e => {
 const setCollection = setters[e.target.name];
 const collection = collections[e.target.name].map(item => ({
 ...item,
 selected: false
 }));
 const index = collection.findIndex(
 item => item.id === e.target.value
);

 collection[index] = { ...collection[index], selected: true };
 setCollection(collection);
};

The array to use depends on the value of e.target.name—which will be either categories
or products. Once the collection value is initialized with the appropriate array, the
selected property is set to false for every value. Then, the selected value is looked up
based on e.target.value, and the selected property is set to true for this value.

Next, let's break down what's happening in the rest of the
ControllingSelectsWithState component. First, the category and product selections
are looked up from the component state:

const category = categories.find(category => category.selected) || {
 id: ''
};
const product = products.find(product => product.selected) || {
 id: ''
};

Selection - Make Selections from Choices Chapter 13

[352]

You have to make sure that an object with an id property is always assigned to these
constants, because this is expected later on. The empty string will match the empty value
option, so that it is selected by default. Next, let's see how the category options are
rendered:

{categories.map(category => (
 <MenuItem key={category.id} value={category.id}>
 {category.label}
 </MenuItem>
))}

This is a straightforward mapping of values in the categories array to the MenuItem
components. The options in the select category never change; in other words, the product
options change based on the selected category—let's see how this is done:

{products
 .filter(product => product.category === category.id)
 .map(product => (
 <MenuItem key={product.id} value={product.id}>
 {product.label}
 </MenuItem>
))}

Before each product is mapped to a MenuItem component, the products array is filtered
based on the selected category using filter().

See Also
Selection demos: https:/ / material- ui.com/ demos/ selects/

InputLabel API documentation: https:/ /material- ui.com/ api/ input- label/

MenuItem API documentation: https:/ /material- ui.com/ api/ menu- item/

FormHelperText API documentation: https:/ /material- ui.com/ api/ form-
helper-text/

FormControl API documentation: https:/ /material- ui.com/ api/ form-
control/

Select API documentation: https:/ /material- ui.com/ api/ select/

https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-helper-text/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/

Selection - Make Selections from Choices Chapter 13

[353]

Selecting multiple items
Users can select multiple values from the Select components. This involves using an array
as the selected value state.

How to do it...
Here's some code that renders Select with several values. You can select as many values
as you like:

import React, { useState } from 'react';

import { makeStyles } from '@material-ui/styles';
import Select from '@material-ui/core/Select';
import Input from '@material-ui/core/Input';
import InputLabel from '@material-ui/core/InputLabel';
import MenuItem from '@material-ui/core/MenuItem';
import FormControl from '@material-ui/core/FormControl';

const options = [
 { id: 1, label: 'First' },
 { id: 2, label: 'Second' },
 { id: 3, label: 'Third' },
 { id: 4, label: 'Fourth' },
 { id: 5, label: 'Fifth' }
];

const useStyles = makeStyles(theme => ({
 formControl: {
 margin: theme.spacing(1),
 minWidth: 100,
 maxWidth: 280
 }
}));

export default function SelectingMultipleItems() {
 const classes = useStyles();
 const [selected, setSelected] = useState([]);

 const onChange = e => {
 setSelected(e.target.value);
 };

 return (
 <FormControl className={classes.formControl}>

Selection - Make Selections from Choices Chapter 13

[354]

 <InputLabel htmlFor="multi">Value</InputLabel>
 <Select
 multiple
 value={selected}
 onChange={onChange}
 input={<Input id="multi" />}
 >
 {options.map(option => (
 <MenuItem key={option.id} value={option.id}>
 {option.label}
 </MenuItem>
))}
 </Select>
 </FormControl>
);
}

Here's what the selection looks like when it's first opened:

Here's what the select looks like with the first, third, and fifth options selected:

Selection - Make Selections from Choices Chapter 13

[355]

Now that you've made your selections, you can click somewhere on the screen outside the
menu to close it, or you can hit the Esc key. You'll be able to see your selections in the text
input:

How it works...
Let's start by taking a look at how the Select component is rendered:

<Select
 multiple
 value={selected}
 onChange={onChange}
 input={<Input id="multi" />}
>
 {options.map(option => (
 <MenuItem key={option.id} value={option.id}>
 {option.label}
 </MenuItem>
))}
</Select>

The options array values are mapped to MenuItem components, just like any other
Select. The multiple property tells the component to allow the user to make multiple
selections. The selected state of the SelectingMultipleItems component is an array,
which holds the selected values. This array is populated by the onChange handler:

const onChange = e => {
 setSelected(e.target.value);
};

Because the multiple property was used, e.target.value is an array of selected
values—you can just update the selected state using this value as is.

Selection - Make Selections from Choices Chapter 13

[356]

There's more...
Rather than having the selected items show up as a comma-separated list of test, you can
make the items stand out by mapping the selected values to Chip components. Let's make a
component that will handle this:

function Selected({ selected }) {
 const classes = useStyles();

 return selected.map(value => (
 <Chip
 key={value}
 label={options.find(option => option.id === value).label}
 className={classes.chip}
 />
));
}

This code block shows how you can use this component in the renderValue property of
the Select component:

<Select
 multiple
 value={selected}
 onChange={onChange}
 input={<Input id="multi" />}
 renderValue={selected => <Selected selected={selected} />}
>
 {options.map(option => (
 <MenuItem key={option.id} value={option.id}>
 {option.label}
 </MenuItem>
))}
</Select>

Now, when you make multiple selections, they'll render as Chip components:

Selection - Make Selections from Choices Chapter 13

[357]

See also
Selection demos: https:/ / material- ui.com/ demos/ selects/

Select API documentation: https:/ /material- ui.com/ api/ select/

Input API documentation: https:/ /material- ui.com/ api/ input/

InputLabel API documentation: https:/ /material- ui.com/ api/ input- label/

MenuItem API documentation: https:/ /material- ui.com/ api/ menu- item/

FormControl API documentation: https:/ /material- ui.com/ api/ form-
control/

Chip API documentation: https:/ /material- ui.com/ api/ chip/

https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/demos/selects/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/input/
https://material-ui.com/api/input/
https://material-ui.com/api/input/
https://material-ui.com/api/input/
https://material-ui.com/api/input/
https://material-ui.com/api/input/
https://material-ui.com/api/input/
https://material-ui.com/api/input/
https://material-ui.com/api/input/
https://material-ui.com/api/input/
https://material-ui.com/api/input/
https://material-ui.com/api/input/
https://material-ui.com/api/input/
https://material-ui.com/api/input/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/input-label/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/form-control/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/
https://material-ui.com/api/chip/

14
Pickers - Selecting Dates and

Times
In this chapter, we will cover the following topics:

Using date pickers
Using time pickers
Setting initial date and time values
Combining date and time components
Integrating other date and time packages

Introduction
Most applications need to allow the user to select date and time values. For example, if a
form includes a scheduling piece, the user needs an intuitive way to select date and time
values. With Material-UI applications, you can use the date and time picker components
that ship with the library.

Using date pickers
To use a date picker in Material-UI applications, you can leverage the TextField
component. It accepts a type property that you can set to date. However, you have to take
care of a few other things in addition to changing the text field type.

Pickers - Selecting Dates and Times Chapter 14

[359]

How to do it...
Here's some code that renders a date picker text field for the user, and another text field
that displays the date in another format as the date selection changes:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';
import TextField from '@material-ui/core/TextField';

const useStyles = makeStyles(theme => ({
 textField: { margin: theme.spacing(1) }
}));

export default function UsingDatePickers() {
 const classes = useStyles();
 const [date, setDate] = useState('');

 const onChange = e => {
 setDate(e.target.value);
 };

 const dateFormatted = date
 ? new Date(`${date}T00:00:00`).toLocaleDateString()
 : null;

 return (
 <Fragment>
 <TextField
 value={date}
 onChange={onChange}
 label="My Date"
 type="date"
 className={classes.textField}
 InputLabelProps={{
 shrink: true
 }}
 />
 <TextField
 value={dateFormatted}
 label="Updated Date Value"
 className={classes.textField}
 InputLabelProps={{
 shrink: true
 }}
 InputProps={{ readOnly: true }}
 />
 </Fragment>

Pickers - Selecting Dates and Times Chapter 14

[360]

);
}

Here's what you'll see when the page first loads:

The My Date field to the left is the date picker. The Updated Date Value field to the right
shows the selected date in a different format. Here's what the date picker looks like when it
receives focus:

The year portion of the date is highlighted. You can type the year, or you can use the
up/down arrow button to change the selected value. You change to the month or day
portion of the date by hitting the Tab key or by using your mouse pointer. The drop-down
arrow to the far right will display the following native browser date picker when clicked:

Pickers - Selecting Dates and Times Chapter 14

[361]

Once you've made a date selection, here's what the My Date and Updated Date Value
fields look like:

How it works...
Let's start by taking a look at the date picker TextField component:

<TextField
 value={date}
 onChange={onChange}
 label="My Date"
 type="date"
 className={classes.textField}
 InputLabelProps={{
 shrink: true
 }}
/>

Most of the date picker functionality comes from the type property that is set to date. This
applies the input mask and the native browser date picker control. Because of the input
mask value, the shrink input property needs to be true to avoid overlap. The value
property comes from the state of the UsingDatePickers component. This value defaults
to an empty string, but it needs to be in a specific format. The date picker text field will put
the date value in the correct format, so the onChange() handler doesn't actually have to do
anything other than set the date state.

The Updated Date Value field uses a different format for the date. Let's take a look at how
this is done:

const dateFormatted = date
 ? new Date(`${date}T00:00:00`).toLocaleDateString()
 : null;

First, you have to take the date string from the component state and use it to construct a
new Date instance. To do this, you need to append the time string to the date string. This
makes it a valid ISO string, and enables the date to be constructed without any surprises.
Now you can use any of the date formatting functions available to date instances, such
as toLocaleDateString().

Pickers - Selecting Dates and Times Chapter 14

[362]

Now you can pass dateFormatted to the second text field, which is read-only since it's
only used to display values:

<TextField
 value={dateFormatted}
 label="Updated Date Value"
 className={classes.textField}
 InputLabelProps={{
 shrink: true
 }}
 InputProps={{ readOnly: true }}
/>

There's more...
There are a couple of improvements that could be made to the preceding example. For
starters, you could have a DatePicker component that hides some of the details about
turning a TextField component into something that picks dates. Further, it would be nice
if the new DatePicker component supported actual Date instances as values.

First, you'll need a utility function that can format Date instances into the string format
expected by the TextField component when it's being used as a date picker:

function formatDate(date) {
 const year = date.getFullYear();
 const month = date.getMonth() + 1;
 const day = date.getDate();

 return [
 year,
 month < 10 ? `0${month}` : month,
 day < 10 ? `0${day}` : day
].join('-');
}

The formatDate() function takes a Date instance and returns a string in the format of
YYYY-MM-dd. Now, you're ready to build the DatePicker component:

const DatePicker = ({ date, ...props }) => (
 <TextField
 value={date instanceof Date ? formatDate(date) : date}
 type="date"
 InputLabelProps={{
 shrink: true
 }}

Pickers - Selecting Dates and Times Chapter 14

[363]

 {...props}
 />
);

The DatePicker component renders a TextField component. It has the type property
value set to date and the shrink input property set to true. It also sets the value – first it
checks whether the date property is a Date instance, and if it is, calls formatDate().
Otherwise, the date argument is used as is.

Now, let's replace the TextField component in the previous example with the
DatePicker component:

<Fragment>
 <DatePicker
 date={date}
 onChange={onChange}
 label="My Date"
 className={classes.textField}
 />
 <TextField
 value={dateFormatted}
 label="Updated Date Value"
 className={classes.textField}
 InputLabelProps={{
 shrink: true
 }}
 InputProps={{ readOnly: true }}
 />
</Fragment>

The onChange, label, and className properties are passed to the TextField component
as they were before. The big difference with the DatePicker component is that you don't
need to pass type or InputProps, and that date is used instead of value.

See also
Picker demos: https://material-ui.com/demos/pickers/
TextField API documentation: https:/ /material- ui.com/ api/ text- field/

https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/

Pickers - Selecting Dates and Times Chapter 14

[364]

Using time pickers
Like date pickers, time pickers help users input time values. Also like date pickers, time
pickers in Material-UI applications are derived from the TextInput components.

How to do it...
Let's create the same abstraction that's used in the Using date pickers section, only this time,
it's meant for the time pickers:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';
import TextField from '@material-ui/core/TextField';

const useStyles = makeStyles(theme => ({
 textField: { margin: theme.spacing(1) }
}));

const TimePicker = ({ time, ...props }) => (
 <TextField
 value={time}
 type="time"
 InputLabelProps={{
 shrink: true
 }}
 inputProps={{
 step: 300
 }}
 {...props}
 />
);

export default function UsingTimePickers() {
 const classes = useStyles();
 const [time, setTime] = useState('');

 const onChange = e => {
 setTime(e.target.value);
 };

 return (
 <Fragment>
 <TimePicker
 time={time}

Pickers - Selecting Dates and Times Chapter 14

[365]

 onChange={onChange}
 label="My Time"
 className={classes.textField}
 />
 <TextField
 value={time}
 label="Updated Time Value"
 className={classes.textField}
 InputLabelProps={{
 shrink: true
 }}
 InputProps={{ readOnly: true }}
 />
 </Fragment>
);
}

Here's what you'll see when the page first loads:

Once the My Time field receives focus, you can change the individual time pieces using the
up/down arrow keys or the up/down arrow buttons that are displayed to the right of the
time value:

The Updated Time Value field doesn't get updated until the full time is selected in the My
Time field, because there's no time value until this happens:

Pickers - Selecting Dates and Times Chapter 14

[366]

How it works...
The structure of the TimePicker component is very similar to the DatePicker component
from the previous recipe. The main difference is that TimePicker doesn't support the Date
instances because it only deals with time. Because there's no date piece, using the Date
instances to express only time is a lot more difficult than expressing only the date:

const TimePicker = ({ time, ...props }) => (
 <TextField
 value={time}
 type="time"
 InputLabelProps={{
 shrink: true
 }}
 inputProps={{
 step: 300
 }}
 {...props}
 />
);

The TimePicker component sets the same properties on TextField as the DatePicker
component. Additionally, the step value of 300 makes the minute portion of the time
move by five minutes at a time.

See also
Picker demos: https:/ / material- ui. com/ demos/ pickers/

TextField API documentation: https:/ /material- ui.com/ api/ text- field/

Setting initial date and time values
Date and time pickers can have default date and time values, respectively. For example, a
common scenario is to have these inputs default to the current date and time.

https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/

Pickers - Selecting Dates and Times Chapter 14

[367]

How to do it...
Let's say that you have a date picker and a time picker on a screen in your app. You want
the date field to default to the current date and the time field to default to the current
time. To do this, it's best to rely on the Date instances to set the initial Date/Time value.
However, a little work is involved, since you can't natively pass the Date instances to
the TextField components. Here's an example that shows how this can work:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';
import TextField from '@material-ui/core/TextField';

const useStyles = makeStyles(theme => ({
 textField: { margin: theme.spacing.unit }
}));

function formatDate(date) {
 const year = date.getFullYear();
 const month = date.getMonth() + 1;
 const day = date.getDate();

 return [
 year,
 month < 10 ? `0${month}` : month,
 day < 10 ? `0${day}` : day
].join('-');
}

function formatTime(date) {
 const hours = date.getHours();
 const minutes = date.getMinutes();

 return [
 hours < 10 ? `0${hours}` : hours,
 minutes < 10 ? `0${minutes}` : minutes
].join(':');
}

const DatePicker = ({ date, ...props }) => (
 <TextField
 value={date instanceof Date ? formatDate(date) : date}
 type="date"
 InputLabelProps={{
 shrink: true
 }}
 {...props}

Pickers - Selecting Dates and Times Chapter 14

[368]

 />
);

const TimePicker = ({ time, ...props }) => (
 <TextField
 value={time instanceof Date ? formatTime(time) : time}
 type="time"
 InputLabelProps={{
 shrink: true
 }}
 inputProps={{
 step: 300
 }}
 {...props}
 />
);

export default function SettingInitialDateAndTimeValues() {
 const classes = useStyles();
 const [datetime, setDatetime] = useState(new Date());

 const onChangeDate = e => {
 if (!e.target.value) {
 return;
 }

 const [year, month, day] = e.target.value
 .split('-')
 .map(n => Number(n));

 const newDatetime = new Date(datetime);
 newDatetime.setYear(year);
 newDatetime.setMonth(month - 1);
 newDatetime.setDate(day);

 setDatetime(newDatetime);
 };

 const onChangeTime = e => {
 const [hours, minutes] = e.target.value
 .split(':')
 .map(n => Number(n));

 const newDatetime = new Date(datetime);
 newDatetime.setHours(hours);
 newDatetime.setMinutes(minutes);

 setDatetime(newDatetime);

Pickers - Selecting Dates and Times Chapter 14

[369]

 };

 return (
 <Fragment>
 <DatePicker
 date={datetime}
 onChange={onChangeDate}
 label="My Date"
 className={classes.textField}
 />
 <TimePicker
 time={datetime}
 onChange={onChangeTime}
 label="My Time"
 className={classes.textField}
 />
 </Fragment>
);
}

Here's what you'll see when the screen first loads:

The date and time that you see will depend on when you load the screen. You can then
change the date and time values.

How it works...
What's nice about this approach is that you only have one piece of state to work
with, datetime, which is a Date instance. Let's step through the code to see how this is
made possible, starting with the initial state of the UsingDatePickers component:

const [datetime, setDatetime] = useState(new Date());

The current date and time is assigned to the datetime state. Next, let's look at the two
formatting functions that enable the Date instances to work with the TextField
components:

function formatDate(date) {
 const year = date.getFullYear();

Pickers - Selecting Dates and Times Chapter 14

[370]

 const month = date.getMonth() + 1;
 const day = date.getDate();

 return [
 year,
 month < 10 ? `0${month}` : month,
 day < 10 ? `0${day}` : day
].join('-');
}

function formatTime(date) {
 const hours = date.getHours();
 const minutes = date.getMinutes();

 return [
 hours < 10 ? `0${hours}` : hours,
 minutes < 10 ? `0${minutes}` : minutes
].join(':');
}

Both of these functions, formatDate() and formatTime(), take a Date instance as an
argument, and return a string-formatted value that works with the TextField
component. Next, let's look at the onChangeDate() handler:

const onChangeDate = e => {
 if (!e.target.value) {
 return;
 }

 const [year, month, day] = e.target.value
 .split('-')
 .map(n => Number(n));

 const newDatetime = new Date(datetime);
 newDatetime.setYear(year);
 newDatetime.setMonth(month - 1);
 newDatetime.setDate(day);

 setDatetime(newDatetime);
};

The first check that happens in onChangeDate() is for the value property. The reason this
check needs to happen is so that the date picker can actually allow the user to select an
invalid date, such as Feb 31. By not changing the state when this invalid date is selected,
you're actually preventing invalid dates from being selected.

Pickers - Selecting Dates and Times Chapter 14

[371]

Next, the year, month, and day values are split and mapped to numbers. Then, the new
newDatetime value is initialized by creating a new Date instance using datetime as the
value. This is done to preserve the time selection. Finally, setYear(), setMonth(), and
setDate() are used to update the Date instance without changing the time.

Lastly, let's go over the onChangeTime() handler:

const onChangeTime = e => {
 const [hours, minutes] = e.target.value
 .split(':')
 .map(n => Number(n));

 const newDatetime = new Date(datetime);
 newDatetime.setHours(hours);
 newDatetime.setMinutes(minutes);

 setDatetime(newDatetime);
};

The onChangeTime() handler follows the same general pattern as onChangeDate(). It's
simpler because there are fewer values and no need to check for invalid times – every day
has 24 hours.

See also
Picker demos: https:/ / material- ui. com/ demos/ pickers/

TextField API documentation: https:/ /material- ui.com/ api/ text- field/

Combining date and time components
If your application needs to collect the date and time from the user, you don't necessarily
need two TextField components. Instead, you can combine them both into a single field.

https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/

Pickers - Selecting Dates and Times Chapter 14

[372]

How to do it...
You can use a single TextInput component to collect date and time input from the user by
setting the type property to datetime-local:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';
import TextField from '@material-ui/core/TextField';

const useStyles = makeStyles(theme => ({
 textField: { margin: theme.spacing(1) }
}));

const formatDate = date =>
 date
 .toISOString()
 .split(':')
 .slice(0, 2)
 .join(':');

const DateTimePicker = ({ date, ...props }) => (
 <TextField
 value={
 date instanceof Date
 ? date.toISOString().replace('Z', '')
 : date
 }
 type="datetime-local"
 InputLabelProps={{
 shrink: true
 }}
 {...props}
 />
);

export default function CombiningDateAndTimeComponents() {
 const classes = useStyles();
 const [datetime, setDatetime] = useState(new Date());

 const onChangeDate = e => {
 setDatetime(new Date(`${e.target.value}Z`));
 };

 return (
 <DateTimePicker
 date={formatDate(datetime)}

Pickers - Selecting Dates and Times Chapter 14

[373]

 onChange={onChangeDate}
 label="My Date/Time"
 className={classes.textField}
 />
);
}

Here's what you'll see when the screen first loads:

This is how the field looks when the field has focus and the controls for changing the
Date/Time are shown:

How it works...
When you use the datetime-local type of input, it simplifies working with the Date
instances. Let's take a look at the onChangeDate() handler:

const onChangeDate = e => {
 setDatetime(new Date(`${e.target.value}Z`));
};

You can pass e.target.value as the argument to a new Date instance, which then
becomes the new datetime state value. Finally, let's take a look at the formatDate()
function that's used to pass the correct value to the value property of TextField:

const formatDate = date =>
 date
 .toISOString()
 .split(':')
 .slice(0, 2)
 .join(':');

Pickers - Selecting Dates and Times Chapter 14

[374]

The reason to use this function is to remove the seconds and milliseconds from the
value property. Otherwise, these will show up as values in the input field that the user can
then select. It's very uncommon to have the user select seconds or milliseconds when
choosing a time.

See also
Picker demos: https:/ / material- ui. com/ demos/ pickers/

TextField API documentation: https:/ /material- ui.com/ api/ text- field/

Integrating other date and time packages
You aren't stuck with only using TextField components for Date/Time selection in your
Material-UI application. There are packages available that make the Date/Time selection
experience feel more like traditional Material Design components.

How to do it...
The material-ui-pickers package has a DatePicker component and a TimePicker
component. Here's some code that shows you how to use both components:

import React, { useState } from 'react';
import 'date-fns';
import DateFnsUtils from '@date-io/date-fns';

import { makeStyles } from '@material-ui/styles';
import Grid from '@material-ui/core/Grid';

import {
 MuiPickersUtilsProvider,
 TimePicker,
 DatePicker
} from 'material-ui-pickers';

const useStyles = makeStyles(theme => ({
 grid: {
 width: '65%'
 }
}));

https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/

Pickers - Selecting Dates and Times Chapter 14

[375]

export default function IntegratingWithOtherDateAndTimePackages() {
 const classes = useStyles();
 const [datetime, setDatetime] = useState(new Date());

 const onChange = datetime => {
 setDatetime(datetime);
 };

 return (
 <MuiPickersUtilsProvider utils={DateFnsUtils}>
 <Grid container className={classes.grid} justify="space-around">
 <DatePicker
 margin="normal"
 label="Date picker"
 value={datetime}
 onChange={onChange}
 />
 <TimePicker
 margin="normal"
 label="Time picker"
 value={datetime}
 onChange={onChange}
 />
 </Grid>
 </MuiPickersUtilsProvider>
);
}

Here's what you'll see when the screen first loads:

Pickers - Selecting Dates and Times Chapter 14

[376]

Here's what you'll see when you click on the Date picker field:

Pickers - Selecting Dates and Times Chapter 14

[377]

You can use this dialog to make your date selection, then click on OK to change it. Here's
what you'll see when you click on the Time picker field:

How it works...
The DatePicker and TimePicker components from the material-ui-pickers package
display dialogs that render other Material-UI components, which makes selecting a
date/time easier. Rather than having to interact with text inputs directly, you can show
your users dialogs such as these that are themed to look like the rest of your application
and provide a visual interaction for selecting dates/times.

See also
Picker demos: https:/ / material- ui. com/ demos/ pickers/

Material-UI pickers: https:/ /github. com/chingyawhao/ material- ui-next-
pickers

https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://material-ui.com/demos/pickers/
https://github.com/chingyawhao/material-ui-next-pickers
https://github.com/chingyawhao/material-ui-next-pickers
https://github.com/chingyawhao/material-ui-next-pickers
https://github.com/chingyawhao/material-ui-next-pickers
https://github.com/chingyawhao/material-ui-next-pickers
https://github.com/chingyawhao/material-ui-next-pickers
https://github.com/chingyawhao/material-ui-next-pickers
https://github.com/chingyawhao/material-ui-next-pickers
https://github.com/chingyawhao/material-ui-next-pickers
https://github.com/chingyawhao/material-ui-next-pickers
https://github.com/chingyawhao/material-ui-next-pickers
https://github.com/chingyawhao/material-ui-next-pickers
https://github.com/chingyawhao/material-ui-next-pickers
https://github.com/chingyawhao/material-ui-next-pickers
https://github.com/chingyawhao/material-ui-next-pickers
https://github.com/chingyawhao/material-ui-next-pickers

15
Dialogs - Modal Screens for

User Interactions
In this chapter, we will cover the following topics:

Collecting form input
Confirming actions
Displaying alerts
API integration
Creating fullscreen dialogs
Scrolling dialog content

Introduction
At some point during interactions with your application, the user is going to have to supply
some information to the application, make a yes/no decision, or acknowledge important
information. Material-UI has a dialog component that is ideally suited for these types of
scenarios—when you need a modal display that doesn't disrupt the current screen content.

Collecting form input
Dialogs can come in handy when you need to collect input from the user, but you don't
want to lose the current screen. For example, the user is looking at a screen that shows a list
of items and wants to create a new item. A dialog could display the necessary form fields
and, once the new item is created, the dialog closes and the user is right back at their item
list.

Dialogs - Modal Screens for User Interactions Chapter 15

[379]

How to do it...
Let's say that your application allows for the creation of new users. For example, from the
screen that shows a list of users, the user clicks on a button that shows a dialog containing
the fields for creating a new user. Here's an example of how to do this:

import React, { Fragment, useState } from 'react';

import Button from '@material-ui/core/Button';
import TextField from '@material-ui/core/TextField';
import Dialog from '@material-ui/core/Dialog';
import DialogActions from '@material-ui/core/DialogActions';
import DialogContent from '@material-ui/core/DialogContent';
import DialogContentText from '@material-ui/core/DialogContentText';
import DialogTitle from '@material-ui/core/DialogTitle';
import Snackbar from '@material-ui/core/Snackbar';

export default function CollectingFormInput() {
 const [dialogOpen, setDialogOpen] = useState(false);
 const [snackbarOpen, setSnackbarOpen] = useState(false);
 const [snackbarMessage, setSnackbarMessage] = useState('');
 const [first, setFirst] = useState('');
 const [last, setLast] = useState('');
 const [email, setEmail] = useState('');

 const onDialogOpen = () => {
 setDialogOpen(true);
 };

 const onDialogClose = () => {
 setDialogOpen(false);
 setFirst('');
 setLast('');
 setEmail('');
 };

 const onSnackbarClose = (e, reason) => {
 if (reason === 'clickaway') {
 return;
 }

 setSnackbarOpen(false);
 setSnackbarMessage('');
 };

 const onCreate = () => {
 setSnackbarOpen(true);

Dialogs - Modal Screens for User Interactions Chapter 15

[380]

 setSnackbarMessage(`${first} ${last} created`);
 onDialogClose();
 };

 return (
 <Fragment>
 <Button color="primary" onClick={onDialogOpen}>
 New User
 </Button>
 <Dialog open={dialogOpen} onClose={onDialogClose}>
 <DialogTitle>New User</DialogTitle>
 <DialogContent>
 <TextField
 autoFocus
 margin="normal"
 label="First Name"
 InputProps={{ name: 'first' }}
 onChange={e => setFirst(e.target.value)}
 value={first}
 fullWidth
 />
 <TextField
 margin="normal"
 label="Last Name"
 InputProps={{ name: 'last' }}
 onChange={e => setLast(e.target.value)}
 value={last}
 fullWidth
 />
 <TextField
 margin="normal"
 label="Email Address"
 type="email"
 InputProps={{ name: 'email' }}
 onChange={e => setEmail(e.target.value)}
 value={email}
 fullWidth
 />
 </DialogContent>
 <DialogActions>
 <Button onClick={onDialogClose} color="primary">
 Cancel
 </Button>
 <Button
 variant="contained"
 onClick={onCreate}
 color="primary"
 >

Dialogs - Modal Screens for User Interactions Chapter 15

[381]

 Create
 </Button>
 </DialogActions>
 </Dialog>
 <Snackbar
 open={snackbarOpen}
 message={snackbarMessage}
 onClose={onSnackbarClose}
 autoHideDuration={4000}
 />
 </Fragment>
);
}

Here's the button you'll see when the screen first loads:

Here's the dialog that you'll see when you click on the NEW USER button:

You can then fill out the three fields for creating a new user and click the CREATE button.
The dialog will close, and you'll see the following Snackbar component displayed:

Dialogs - Modal Screens for User Interactions Chapter 15

[382]

How it works...
The visibility of the dialog and the snackbar are controlled by Boolean state
values, dialogOpen and snackbarOpen, respectively. The values of the fields within the
dialog component are also stored in the state of the CollectingFormInput component.
Let's take a closer look at the dialog markup:

<Dialog open={dialogOpen} onClose={onDialogClose}>
 <DialogTitle>New User</DialogTitle>
 <DialogContent>
 <TextField
 autoFocus
 margin="normal"
 label="First Name"
 InputProps={{ name: 'first' }}
 onChange={e => setFirst(e.target.value)}
 value={first}
 fullWidth
 />
 <TextField
 margin="normal"
 label="Last Name"
 InputProps={{ name: 'last' }}
 onChange={e => setLast(e.target.value)}
 value={last}
 fullWidth
 />
 <TextField
 margin="normal"
 label="Email Address"
 type="email"
 InputProps={{ name: 'email' }}
 onChange={e => setEmail(e.target.value)}
 value={email}
 fullWidth
 />
 </DialogContent>
 <DialogActions>
 <Button onClick={onDialogClose} color="primary">
 Cancel
 </Button>
 <Button
 variant="contained"
 onClick={onCreate}
 color="primary"
 >
 Create

Dialogs - Modal Screens for User Interactions Chapter 15

[383]

 </Button>
 </DialogActions>
</Dialog>

The Dialog component is the parent for several other components that make up the
various pieces of dialog. The DialogTitle component renders the dialog title, while the
DialogActions component is used to render action buttons at the bottom of the dialog.
The DialogContent component is used to render the main content of the dialog—the three
text fields for creating a new user.

There are two properties for each of these TextField components that are relevant for
rendering inside of a dialog. First, the fullWidth property extends the field horizontally so
that it's the same width as the dialog. This generally works well with forms that only have a
few fields. Second, the margin property is set to normal, which provides the appropriate
vertical spacing between fields in the dialog.

Next, let's walk through the event handlers of this component, starting with
onDialogOpen():

const onDialogOpen = () => {
 setDialogOpen(true);
};

This will show the dialog by changing the dialogOpen state to true. Next, let's look
at onDialogClose():

const onDialogClose = () => {
 setDialogOpen(false);
 setFirst('');
 setLast('');
 setEmail('');
};

This will close the dialog by setting the dialogOpen state to false. It also resets the form
field values to empty strings so that they're empty the next time the dialog is displayed. Up
next, we have onSnackbarClose():

const onSnackbarClose = (e, reason) => {
 if (reason === 'clickaway') {
 return;
 }

 setSnackbarOpen(false);
 setSnackbarMessage('');
};

Dialogs - Modal Screens for User Interactions Chapter 15

[384]

If the reason argument is clickaway, then there's nothing to do. Otherwise, the
snackbarOpen state changes to false, which will hide the snackbar. The
snackbarMessage state is set to an empty string so that the message doesn't display again
in case the snackbar is opened without setting a new message first. Finally, we have the
onCreate() handler:

const onCreate = () => {
 setSnackbarOpen(true);
 setSnackbarMessage(`${first} ${last} created`);
 onDialogClose();
};

This will show the snackbar by setting snackbarOpen to true. It also sets the
snackbarMessage value that includes accessing the first and last state values. Then,
onDialogClose() is called to hide the dialog and reset the form fields. The snackbar is
closed after four seconds because the autoHideDuration value was set to 4000.

See also
Dialog demos: https://material-ui.com/demos/dialogs/
Dialog API documentation: https:/ /material- ui.com/ api/ dialog/

DialogActions API documentation: https:/ /material- ui.com/ api/ dialog-
actions/

DialogContent API documentation: https:/ /material- ui.com/ api/ dialog-
content/

DialogContentText API documentation: https:/ /material- ui.com/ api/
dialog-content- text/

Snackbar API documentation: https:/ /material- ui.com/ api/ snackbar/

TextField API documentation: https:/ /material- ui.com/ api/ text- field/

Button API documentation: https:/ /material- ui.com/ api/ button/

Confirming actions
Confirmation dialogs act as a safety net for your users. They're useful when the user is
about to perform something that could potentially be dangerous, but not for every
conceivable action in the app. An action can be considered dangerous if, once performed, it
cannot be reverted. An example of a dangerous action would be deleting an account or
processing a payment. In these cases, you should always use a confirmation dialog.

https://material-ui.com/demos/dialogs/
https://material-ui.com/demos/dialogs/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/snackbar/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/text-field/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/

Dialogs - Modal Screens for User Interactions Chapter 15

[385]

How to do it...
Confirmation dialogs should be straightforward so that the user can easily read what is
about to happen and can decide whether to cancel the action or to continue. Here's some
code that shows a confirmation dialog before executing an action:

import React, { Fragment, useState } from 'react';

import Button from '@material-ui/core/Button';
import DialogTitle from '@material-ui/core/DialogTitle';
import DialogContent from '@material-ui/core/DialogContent';
import DialogContentText from '@material-ui/core/DialogContentText';
import DialogActions from '@material-ui/core/DialogActions';
import Dialog from '@material-ui/core/Dialog';

export default function ConfirmingActions() {
 const [open, setOpen] = useState(false);

 const onShowConfirm = () => {
 setOpen(true);
 };

 const onConfirm = () => {
 setOpen(false);
 };

 return (
 <Fragment>
 <Button color="primary" onClick={onShowConfirm}>
 Confirm Action
 </Button>
 <Dialog
 disableBackdropClick
 disableEscapeKeyDown
 maxWidth="xs"
 open={open}
 >
 <DialogTitle>Confirm Delete Asset</DialogTitle>
 <DialogContent>
 <DialogContentText>
 Are you sure you want to delete the asset? This action
 cannot be undone.
 </DialogContentText>
 </DialogContent>
 <DialogActions>
 <Button onClick={onDialogClose} color="primary">
 Cancel

Dialogs - Modal Screens for User Interactions Chapter 15

[386]

 </Button>
 <Button
 variant="contained"
 onClick={onConfirm}
 color="primary"
 >
 Confirm
 </Button>
 </DialogActions>
 </Dialog>
 </Fragment>
);
}

Here's what the confirmation dialog looks like when it's displayed by clicking on the
CONFIRM button:

You can either click on the CANCEL dialog action to close the dialog without doing
anything, or you can click on the CONFIRM dialog action that will actually execute the
action before closing the dialog.

How it works...
The DialogContentText component is used to render the confirmation message in the
dialog. It's really just a thin wrapper around a Typography component. The two interesting
properties passed to the dialog component are disableBackdropClick
and disableEscapeKeyDown, which prevent the confirmation dialog from being closed by
clicking somewhere on the screen outside of the dialog or by hitting the Esc key,
respectively.

Dialogs - Modal Screens for User Interactions Chapter 15

[387]

The idea with these two properties is to get the user to explicitly acknowledge that they're
performing an action that requires their close attention, or that they're opting out of
performing it.

See also
Dialog demos: https://material-ui.com/demos/dialogs/
Dialog API documentation: https:/ /material- ui.com/ api/ dialog/

DialogActions API documentation: https:/ /material- ui.com/ api/ dialog-
actions/

DialogContent API documentation: https:/ /material- ui.com/ api/ dialog-
content/

DialogContentText API documentation: https:/ /material- ui.com/ api/
dialog-content- text/

Button API documentation: https:/ /material- ui.com/ api/ button/

Displaying alerts
Alert dialogs are similar to confirmation dialogs. You can think of alerts as really important
snackbars that cannot be ignored. Like confirmations, alerts cause interruption and have to
be explicitly acknowledged to get rid of them. Furthermore, alert dialogs might not be
displayed as the direct result of an action taken by the user. Alerts can be displayed as the
result of changes to the environment the user is interacting with.

How to do it...
Let's say that your application needs to be able to alert users when their allotted disk space
is running low. Here's an example that shows what the alert might look like:

import React, { Fragment, useState } from 'react';

import Button from '@material-ui/core/Button';
import DialogContent from '@material-ui/core/DialogContent';
import DialogContentText from '@material-ui/core/DialogContentText';
import DialogActions from '@material-ui/core/DialogActions';
import Dialog from '@material-ui/core/Dialog';

export default function ConfirmingActions() {

https://material-ui.com/demos/dialogs/
https://material-ui.com/demos/dialogs/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/

Dialogs - Modal Screens for User Interactions Chapter 15

[388]

 const [open, setOpen] = useState(false);

 return (
 <Fragment>
 <Button color="primary" onClick={() => setOpen(true)}>
 Show Alert
 </Button>
 <Dialog open={open}>
 <DialogContent>
 <DialogContentText>
 Disk space critically low. You won't be able to perform
 any actions until you free up some space by deleting
 assets.
 </DialogContentText>
 </DialogContent>
 <DialogActions>
 <Button
 variant="contained"
 onClick={() => setOpen(false)}
 color="primary"
 >
 Got It
 </Button>
 </DialogActions>
 </Dialog>
 </Fragment>
);
}

And here's what the alert dialog looks like when it's displayed by clicking on the show alert
button:

Dialogs - Modal Screens for User Interactions Chapter 15

[389]

How it works...
Alerts aren't much different from regular dialogs in that you use them to collect input from
the user. The principle with alerts is to keep them short and to the point. For example, this
alert dialog doesn't have a title. It's able to get the point across without a title – if the user
doesn't start deleting stuff, they're not going to be able to do anything.

There's more...
You can make your alerts a little more eye-catching by adding an icon to the alert message
and the button that dismisses the alert. Here's the modified example:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';
import Button from '@material-ui/core/Button';
import DialogContent from '@material-ui/core/DialogContent';
import DialogContentText from '@material-ui/core/DialogContentText';
import DialogActions from '@material-ui/core/DialogActions';
import Dialog from '@material-ui/core/Dialog';
import Grid from '@material-ui/core/Grid';

import WarningIcon from '@material-ui/icons/Warning';
import CheckIcon from '@material-ui/icons/Check';

const useStyles = makeStyles(theme => ({
 rightIcon: {
 marginLeft: theme.spacing(1)
 }
}));

export default function ConfirmingActions() {
 const classes = useStyles();
 const [open, setOpen] = useState(false);

 return (
 <Fragment>
 <Button color="primary" onClick={() => setOpen(true)}>
 Show Alert
 </Button>
 <Dialog open={open}>
 <DialogContent>
 <Grid container>
 <Grid item xs={2}>
 <WarningIcon fontSize="large" color="secondary" />

Dialogs - Modal Screens for User Interactions Chapter 15

[390]

 </Grid>
 <Grid item xs={10}>
 <DialogContentText>
 Disk space critically low. You won't be able to
 perform any actions until you free up some space by
 deleting assets.
 </DialogContentText>
 </Grid>
 </Grid>
 </DialogContent>
 <DialogActions>
 <Button
 variant="contained"
 onClick={() => setOpen(false)}
 color="primary"
 >
 Got It
 <CheckIcon className={classes.rightIcon} />
 </Button>
 </DialogActions>
 </Dialog>
 </Fragment>
);
}

Here's what the new alert looks like:

See also
Dialog demos: https://material-ui.com/demos/dialogs/
Dialog API documentation: https:/ /material- ui.com/ api/ dialog/

DialogActions API documentation: https:/ /material- ui.com/ api/ dialog-
actions/

https://material-ui.com/demos/dialogs/
https://material-ui.com/demos/dialogs/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/

Dialogs - Modal Screens for User Interactions Chapter 15

[391]

DialogContent API documentation: https:/ /material- ui.com/ api/ dialog-
content/

DialogContentText API documentation: https:/ /material- ui.com/ api/
dialog-content- text/

Button API documentation: https:/ /material- ui.com/ api/ button/

API integration
Dialogs often need data supplied to it from an API endpoint. The challenge is displaying
the dialog in a loading state while the user waits for the API data to load behind the scenes.

How to do it...
Let's say that your application needs to display a dialog with a Select component for
selecting an item. The options for the select are populated from an API endpoint, so you
need to handle the latency between the user opening the dialog and the API data arriving.
Here's an example that shows one way to do this:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';
import Button from '@material-ui/core/Button';
import DialogTitle from '@material-ui/core/DialogTitle';
import DialogContent from '@material-ui/core/DialogContent';
import DialogContentText from '@material-ui/core/DialogContentText';
import DialogActions from '@material-ui/core/DialogActions';
import Dialog from '@material-ui/core/Dialog';
import LinearProgress from '@material-ui/core/LinearProgress';
import MenuItem from '@material-ui/core/MenuItem';
import Select from '@material-ui/core/Select';

const useStyles = makeStyles(theme => ({
 dialog: { minHeight: 200 },
 select: { width: '100%' }
}));

const fetchItems = () =>
 new Promise(resolve => {
 setTimeout(() => {
 resolve([
 { id: 1, name: 'Item 1' },
 { id: 2, name: 'Item 2' },

https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/

Dialogs - Modal Screens for User Interactions Chapter 15

[392]

 { id: 3, name: 'Item 3' }
]);
 }, 3000);
 });

const MaybeLinearProgress = ({ loading, ...props }) =>
 loading ? <LinearProgress {...props} /> : null;

const MaybeSelect = ({ loading, ...props }) =>
 loading ? null : <Select {...props} />;

export default function APIIntegration() {
 const classes = useStyles();
 const [open, setOpen] = useState(false);
 const [loading, setLoading] = useState(false);
 const [items, setItems] = useState([]);
 const [selected, setSelected] = useState('');

 const onShowItems = () => {
 setOpen(true);
 setLoading(true);

 fetchItems().then(items => {
 setLoading(false);
 setItems(items);
 });
 };

 const onClose = () => {
 setOpen(false);
 };

 const onSelect = e => {
 setSelected(e.target.value);
 };

 return (
 <Fragment>
 <Button color="primary" onClick={onShowItems}>
 Select Item
 </Button>
 <Dialog
 open={open}
 classes={{ paper: classes.dialog }}
 maxWidth="xs"
 fullWidth
 >
 <DialogTitle>Select Item</DialogTitle>

Dialogs - Modal Screens for User Interactions Chapter 15

[393]

 <DialogContent>
 <MaybeLinearProgress loading={loading} />
 <MaybeSelect
 value={selected}
 onChange={onSelect}
 className={classes.select}
 loading={loading}
 >
 <MenuItem value="">
 None
 </MenuItem>
 {items.map(item => (
 <MenuItem key={item.id} index={item.id} value={item.id}>
 {item.name}
 </MenuItem>
))}
 </MaybeSelect>
 </DialogContent>
 <DialogActions>
 <Button
 disabled={loading}
 onClick={onClose}
 color="primary"
 >
 Cancel
 </Button>
 <Button
 disabled={loading}
 variant="contained"
 onClick={onClose}
 color="primary"
 >
 Select
 </Button>
 </DialogActions>
 </Dialog>
 </Fragment>
);
}

Dialogs - Modal Screens for User Interactions Chapter 15

[394]

Here's what the dialog looks like when it's first opened:

The dialog displays a LinearProgress component and disables the dialog action buttons
while the API data is loading. Once the response arrives, here's what the dialog looks like:

The linear progress bar is gone, the dialog action buttons are enabled, and there's a Select
Item field visible for the user to select an item. Here's the Select Item showing the items
that are loading from the API:

Dialogs - Modal Screens for User Interactions Chapter 15

[395]

How it works...
Let's walk through the major parts of this code, starting with the mock API function:

const fetchItems = () =>
 new Promise(resolve => {
 setTimeout(() => {
 resolve([
 { id: 1, name: 'Item 1' },
 { id: 2, name: 'Item 2' },
 { id: 3, name: 'Item 3' }
]);
 }, 3000);
 });

The fetchItems() function simulates an API function by returning a promise that
resolves an array of data after three seconds. This allows you to see what users will see
while waiting for an actual API endpoint to respond. Next, let's look at the two utility
components that help with rendering or hiding the select and the progress indicators:

const MaybeLinearProgress = ({ loading, ...props }) =>
 loading ? <LinearProgress {...props} /> : null;

const MaybeSelect = ({ loading, ...props }) =>
 loading ? null : <Select {...props} />;

The idea is that you don't want to render the LinearProgress component while loading is
false. Conversely, you don't want to render the Select component while loading is true.
Let's take a look at onShowItems() next:

const onShowItems = () => {
 setOpen(true);
 setLoading(true);

 fetchItems().then(items => {
 setLoading(false);
 setItems(items);
 });
};

First, the dialog is opened by setting open to true and the progress indicator is displayed
by setting loading to true. Then, the API fetchItems() function is called, and when the
Promise it returns is resolved, loading is set to false and the items array is updated.
This hides the progress indicator and shows the select that is now populated with items.

Dialogs - Modal Screens for User Interactions Chapter 15

[396]

See also
Dialog demos: https://material-ui.com/demos/dialogs/
Dialog API documentation: https:/ /material- ui.com/ api/ dialog/

DialogActions API documentation: https:/ /material- ui.com/ api/ dialog-
actions/

DialogContent API documentation: https:/ /material- ui.com/ api/ dialog-
content/

DialogContentText API documentation: https:/ /material- ui.com/ api/
dialog-content- text/

Button API documentation: https:/ /material- ui.com/ api/ button/

LinearProgress API documentation: https:/ /material- ui.com/ api/ linear-
progress/

MenuItem API documentation: https:/ /material- ui.com/ api/ menu- item/

Select API documentation: https:/ /material- ui.com/ api/ select/

Creating fullscreen dialogs
With fullscreen dialogs, you have more space to render information. Most of the time, you
won't need full screen dialogs. In less common cases, your dialog needs as much space as
possible to render information.

How to do it...
Let's say that, from some screen in your application, there's a button that exports data for
the user. When clicked, you want to give the user a preview of the data that's about to be
exported before they confirm. Here's what the code looks like:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';
import Button from '@material-ui/core/Button';
import Dialog from '@material-ui/core/Dialog';
import AppBar from '@material-ui/core/AppBar';
import Toolbar from '@material-ui/core/Toolbar';
import IconButton from '@material-ui/core/IconButton';
import Typography from '@material-ui/core/Typography';
import Slide from '@material-ui/core/Slide';
import Table from '@material-ui/core/Table';

https://material-ui.com/demos/dialogs/
https://material-ui.com/demos/dialogs/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-actions/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/dialog-content-text/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/button/
https://material-ui.com/api/linear-progress/
https://material-ui.com/api/linear-progress/
https://material-ui.com/api/linear-progress/
https://material-ui.com/api/linear-progress/
https://material-ui.com/api/linear-progress/
https://material-ui.com/api/linear-progress/
https://material-ui.com/api/linear-progress/
https://material-ui.com/api/linear-progress/
https://material-ui.com/api/linear-progress/
https://material-ui.com/api/linear-progress/
https://material-ui.com/api/linear-progress/
https://material-ui.com/api/linear-progress/
https://material-ui.com/api/linear-progress/
https://material-ui.com/api/linear-progress/
https://material-ui.com/api/linear-progress/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/
https://material-ui.com/api/select/

Dialogs - Modal Screens for User Interactions Chapter 15

[397]

import TableBody from '@material-ui/core/TableBody';
import TableCell from '@material-ui/core/TableCell';
import TableHead from '@material-ui/core/TableHead';
import TableRow from '@material-ui/core/TableRow';

import CloseIcon from '@material-ui/icons/Close';

const useStyles = makeStyles(theme => ({
 appBar: {
 position: 'relative'
 },
 flex: {
 flex: 1
 }
}));

const Transition = props => <Slide direction="up" {...props} />;

const id = (function*() {
 let id = 0;
 while (true) {
 id += 1;
 yield id;
 }
})();

const rowData = (name, calories, fat, carbs, protein) => ({
 id: id.next().value,
 name,
 calories,
 fat,
 carbs,
 protein
});

const rows = [
 rowData('Frozen yoghurt', 159, 6.0, 24, 4.0),
 rowData('Ice cream sandwich', 237, 9.0, 37, 4.3),
 rowData('Eclair', 262, 16.0, 24, 6.0),
 rowData('Cupcake', 305, 3.7, 67, 4.3),
 rowData('Gingerbread', 356, 16.0, 49, 3.9)
];

export default function FullScreenDialogs() {
 const classes = useStyles();
 const [open, setOpen] = useState(false);

 const onOpen = () => {

Dialogs - Modal Screens for User Interactions Chapter 15

[398]

 setOpen(true);
 };

 const onClose = () => {
 setOpen(false);
 };

 return (
 <Fragment>
 <Button variant="outlined" color="primary" onClick={onOpen}>
 Export Data
 </Button>
 <Dialog
 fullScreen
 open={open}
 onClose={onClose}
 TransitionComponent={Transition}
 >
 <AppBar className={classes.appBar}>
 <Toolbar>
 <IconButton
 color="inherit"
 onClick={onClose}
 aria-label="Close"
 >
 <CloseIcon />
 </IconButton>
 <Typography
 variant="h6"
 color="inherit"
 className={classes.flex}
 >
 Export Data
 </Typography>
 <Button color="inherit" onClick={onClose}>
 Export
 </Button>
 </Toolbar>
 </AppBar>
 <Table className={classes.table}>
 <TableHead>
 <TableRow>
 <TableCell>Dessert (100g serving)</TableCell>
 <TableCell align="right">Calories</TableCell>
 <TableCell align="right">Fat (g)</TableCell>
 <TableCell align="right">Carbs (g)</TableCell>
 <TableCell align="right">Protein (g)</TableCell>
 </TableRow>

Dialogs - Modal Screens for User Interactions Chapter 15

[399]

 </TableHead>
 <TableBody>
 {rows.map(row => (
 <TableRow key={row.id}>
 <TableCell component="th" scope="row">
 {row.name}
 </TableCell>
 <TableCell align="right">{row.calories}</TableCell>
 <TableCell align="right">{row.fat}</TableCell>
 <TableCell align="right">{row.carbs}</TableCell>
 <TableCell align="right">{row.protein}</TableCell>
 </TableRow>
))}
 </TableBody>
 </Table>
 </Dialog>
 </Fragment>
);
}

Here is what the dialog looks like when it's opened:

You can click on the X button beside the dialog title to close the dialog, or you can click on
the EXPORT button to the right.

Dialogs - Modal Screens for User Interactions Chapter 15

[400]

How it works...
Let's look at the properties that are passed to the Dialog component:

<Dialog
 fullScreen
 open={open}
 onClose={onClose}
 TransitionComponent={Transition}
>

The fullScreen Boolean property is how the dialog is rendered in fullscreen mode. The
TransitionComponent property changes the way that dialog is transitioned onto the
screen.

Because the dialog is displayed in fullscreen mode, you might want to change the way that
the title and actions are displayed to the user, as is shown in this example. Instead of using
the DialogTitle and DialogAction components, you can use the AppBar and Toolbar
components:

<AppBar className={classes.appBar}>
 <Toolbar>
 <IconButton
 color="inherit"
 onClick={onClose}
 aria-label="Close"
 >
 <CloseIcon />
 </IconButton>
 <Typography
 variant="h6"
 color="inherit"
 className={classes.flex}
 >
 Export Data
 </Typography>
 <Button color="inherit" onClick={onClose}>
 Export
 </Button>
 </Toolbar>
</AppBar>

This makes the title, close action, and main action more visible to the user.

Dialogs - Modal Screens for User Interactions Chapter 15

[401]

See also
Dialog demos: https://material-ui.com/demos/dialogs/
Dialog API documentation: https:/ /material- ui.com/ api/ dialog/

AppBar API documentation: https:/ /material- ui.com/ api/ app- bar/

Toolbar API documentation: https:/ /material- ui.com/ api/ toolbar/

Table API documentation: https:/ /material- ui.com/ api/ table/

Scrolling dialog content
It can be hard to find enough vertical space to fit all of your content into a dialog. When the
dialog runs out of space, a vertical scrollbar is added.

How to do it...
Let's say that you have a long table of data that you need to display in a dialog for the user
before exporting to another format. The user will need the ability to scroll through the table
rows. Here's an example:

import React, { Fragment, useState } from 'react';

import Button from '@material-ui/core/Button';
import Dialog from '@material-ui/core/Dialog';
import DialogTitle from '@material-ui/core/DialogTitle';
import DialogContent from '@material-ui/core/DialogContent';
import DialogActions from '@material-ui/core/DialogActions';
import Table from '@material-ui/core/Table';
import TableBody from '@material-ui/core/TableBody';
import TableCell from '@material-ui/core/TableCell';
import TableHead from '@material-ui/core/TableHead';
import TableRow from '@material-ui/core/TableRow';

const id = (function*() {
 let id = 0;
 while (true) {
 id += 1;
 yield id;
 }
})();

const rowData = (name, calories, fat, carbs, protein) => ({

https://material-ui.com/demos/dialogs/
https://material-ui.com/demos/dialogs/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/app-bar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/toolbar/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/

Dialogs - Modal Screens for User Interactions Chapter 15

[402]

 id: id.next().value,
 name,
 calories,
 fat,
 carbs,
 protein
});

const rows = new Array(50)
 .fill(null)
 .reduce(
 result =>
 result.concat([
 rowData('Frozen yoghurt', 159, 6.0, 24, 4.0),
 rowData('Ice cream sandwich', 237, 9.0, 37, 4.3),
 rowData('Eclair', 262, 16.0, 24, 6.0),
 rowData('Cupcake', 305, 3.7, 67, 4.3),
 rowData('Gingerbread', 356, 16.0, 49, 3.9)
]),
 []
);

export default function FullScreenDialogs() {
 const [open, setOpen] = useState(false);

 const onOpen = () => {
 setOpen(true);
 };

 const onClose = () => {
 setOpen(false);
 };

 return (
 <Fragment>
 <Button variant="outlined" color="primary" onClick={onOpen}>
 Export Data
 </Button>
 <Dialog open={open} onClose={onClose}>
 <DialogTitle>Desserts</DialogTitle>
 <DialogContent>
 <Table>
 <TableHead>
 <TableRow>
 <TableCell>Dessert (100g serving)</TableCell>
 <TableCell align="right">Calories</TableCell>
 <TableCell align="right">Fat (g)</TableCell>
 <TableCell align="right">Carbs (g)</TableCell>

Dialogs - Modal Screens for User Interactions Chapter 15

[403]

 <TableCell align="right">Protein (g)</TableCell>
 </TableRow>
 </TableHead>
 <TableBody>
 {rows.map(row => (
 <TableRow key={row.id}>
 <TableCell component="th" scope="row">
 {row.name}
 </TableCell>
 <TableCell align="right">{row.calories}</TableCell>
 <TableCell align="right">{row.fat}</TableCell>
 <TableCell align="right">{row.carbs}</TableCell>
 <TableCell align="right">{row.protein}</TableCell>
 </TableRow>
))}
 </TableBody>
 </Table>
 </DialogContent>
 <DialogActions>
 <Button onClick={onClose} color="primary">
 Cancel
 </Button>
 <Button
 variant="contained"
 onClick={onClose}
 color="primary"
 >
 Export
 </Button>
 </DialogActions>
 </Dialog>
 </Fragment>
);
}

Here's what the dialog looks like when it's opened:

Dialogs - Modal Screens for User Interactions Chapter 15

[404]

If you move your mouse pointer over the table rows and start scrolling, the table rows
scroll up and down in between the dialog title and the dialog action buttons.

Dialogs - Modal Screens for User Interactions Chapter 15

[405]

How it works...
By default, dialog content will scroll within the Paper component of the dialog (the
DialogContent component), so there's no need to specify a property. However, you can
pass the body value to the scroll property of the Dialog component. This will make the
height of the dialog change to accommodate the content.

See also
Dialog demos: https://material-ui.com/demos/dialogs/
Dialog API documentation: https:/ /material- ui.com/ api/ dialog/

Table API documentation: https:/ /material- ui.com/ api/ table/

https://material-ui.com/demos/dialogs/
https://material-ui.com/demos/dialogs/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/dialog/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/
https://material-ui.com/api/table/

16
Menus - Display Actions That

Pop Out
In this chapter, we will cover the following topics:

Composing menus with state
Menu scrolling options
Using menu transitions
Customizing menu items

Introduction
Menus are used to organize a set of commands that can be executed by the user. Typically,
a menu has some context, such as a details screen for some resource in the application.
Material-UI comes with a Menu component that enables you to organize commands for a
given screen.

Composing menus with state
The Menu components are used to perform some actions. Think of menus as a combination
of lists and buttons. Menus are best suited for scenarios when you only want to show the
menu items temporarily. The visibility of the menu and the menu items can be controlled
via the component state.

Menus - Display Actions That Pop Out Chapter 16

[407]

How to do it...
Let's say that a component in your application has a menu button that, when clicked,
displays a menu with several options in it. The options could change based on other pieces
of state in the application, such as permissions, or the state of another resource. Here's the
source to build this component:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';
import Button from '@material-ui/core/Button';
import Menu from '@material-ui/core/Menu';
import MenuItem from '@material-ui/core/MenuItem';
import MenuIcon from '@material-ui/icons/Menu';

const useStyles = makeStyles(theme => ({
 rightIcon: {
 marginLeft: theme.spacing(1)
 }
}));

export default function ComposingMenusWithState() {
 const onOpen = e => {
 setAnchorEl(e.currentTarget);
 };

 const onClose = () => {
 setAnchorEl(null);
 };

 const classes = useStyles();
 const [anchorEl, setAnchorEl] = useState(null);
 const [items, setItems] = useState([
 { name: 'First', onClick: onClose },
 { name: 'Second', onClick: onClose },
 { name: 'Third', onClick: onClose },
 { name: 'Fourth', onClick: onClose, disabled: true }
]);

 return (
 <Fragment>
 <Button onClick={onOpen}>
 Menu
 <MenuIcon className={classes.rightIcon} />
 </Button>
 <Menu
 anchorEl={anchorEl}

Menus - Display Actions That Pop Out Chapter 16

[408]

 open={Boolean(anchorEl)}
 onClose={onClose}
 >
 {items.map((item, index) => (
 <MenuItem
 key={index}
 onClick={item.onClick}
 disabled={item.disabled}
 >
 {item.name}
 </MenuItem>
))}
 </Menu>
 </Fragment>
);
}

Here's what you'll see when the screen first loads:

When you click on the MENU button, the menu is displayed as follows:

How it works...
Let's start by looking at the state of the ComposingMenusWithState component:

const [anchorEl, setAnchorEl] = useState(null);
const [items, setItems] = useState([
 { name: 'First', onClick: onClose },
 { name: 'Second', onClick: onClose },
 { name: 'Third', onClick: onClose },

Menus - Display Actions That Pop Out Chapter 16

[409]

 { name: 'Fourth', onClick: onClose, disabled: true }
]);

The anchorEl state references the element that the menu is anchored to when the menu is
open. When it's null, the menu are closed. The items array contains the menu items. The
name property is rendered as the menu item text. The onClick function is called when the
menu item is selected. The disabled property disables the item when true. Next, let's
look at the onOpen() and onClose() handlers:

 const onOpen = e => {
 setAnchorEl(e.currentTarget);
 };

 const onClose = () => {
 setAnchorEl(null);
 };

When the user clicks on the menu button, the anchorEl state is set to
e.currentTarget—this is the button that was clicked and is how the menu knows where
to render itself. When the menu is closed, this is set to null and results in the menu being
hidden. Finally, let's look at the Menu markup:

<Menu
 anchorEl={anchorEl}
 open={Boolean(anchorEl)}
 onClose={onClose}
>
 {items.map((item, index) => (
 <MenuItem
 key={index}
 onClick={item.onClick}
 disabled={item.disabled}
 >
 {item.name}
 </MenuItem>
))}
</Menu>

The open property expects a Boolean, which is why changing the anchorEl state results in
Boolean(anchorEL) either opening or closing the menu as the user interacts with it. The
items state is then mapped to the MenuItem components.

Menus - Display Actions That Pop Out Chapter 16

[410]

There's more...
If your application has several screens you could make your own Menu component that
takes care of mapping items to the MenuItem components. Let's modify this example to
build a menu abstraction and to further illustrate how menu items can change state as the
application data changes over time. Here's the modified example:

import React, { Fragment, useState, useEffect } from 'react';

import { makeStyles } from '@material-ui/styles';
import Button from '@material-ui/core/Button';
import Menu from '@material-ui/core/Menu';
import MenuItem from '@material-ui/core/MenuItem';
import MenuIcon from '@material-ui/icons/Menu';

const useStyles = makeStyles(theme => ({
 rightIcon: {
 marginLeft: theme.spacing.unit
 }
}));

const MyMenu = ({ items, onClose, anchorEl }) => (
 <Menu
 anchorEl={anchorEl}
 open={Boolean(anchorEl)}
 onClose={onClose}
 >
 {items.map((item, index) => (
 <MenuItem
 key={index}
 onClick={item.onClick}
 disabled={item.disabled}
 >
 {item.name}
 </MenuItem>
))}
 </Menu>
);

export default function ComposingMenusWithState() {
 const classes = useStyles();
 const [anchorEl, setAnchorEl] = useState(null);
 const [items, setItems] = useState([
 { name: 'Enable Fourth' },
 { name: 'Second', onClick: onClose },
 { name: 'Third', onClick: onClose },
 { name: 'Fourth', onClick: onClose, disabled: true }

Menus - Display Actions That Pop Out Chapter 16

[411]

]);

 useEffect(() => {
 const toggleFourth = () => {
 let newItems = [...items];

 newItems[3] = { ...items[3], disabled: !items[3].disabled };
 newItems[0] = {
 ...items[0],
 name: newItems[3].disabled
 ? 'Enable Fourth'
 : 'Disable Fourth'
 };

 setItems(newItems);
 };

 const newItems = [...items];
 newItems[0] = { ...items[0], onClick: toggleFourth };
 setItems(newItems);
 });

 const onOpen = e => {
 setAnchorEl(e.currentTarget);
 };

 const onClose = () => {
 setAnchorEl(null);
 };

 return (
 <Fragment>
 <Button onClick={onOpen}>
 Menu
 <MenuIcon className={classes.rightIcon} />
 </Button>
 <MyMenu items={items} onClose={onClose} anchorEl={anchorEl} />
 </Fragment>
);
}

Menus - Display Actions That Pop Out Chapter 16

[412]

The MyMenu component takes the onClose handler, the anchorEl state, and the items
array as properties. To show how you can update the menu item state and have them
render (even while the menu is open), there's a new toggleFourth() handler that's
applied to the onClick property of the first menu item. It's applied inside of useEffect(),
because this is the only way for toggleFourth() to get the new items value; when it
changes, we have to redefine the function and then reassign it to onClick. This will toggle
the text of the first menu item and the disabled state of the Fourth item. Here's what the
menu looks when it's first opened:

Here's what the menu looks like after clicking on the first menu item:

The text of the first item has been toggled, and the fourth item is now enabled. You can
keep clicking on the first item to keep toggling the states of these two items.

See also
Menu demos: https://material-ui.com/demos/menus/
Menu API documentation: https:/ /material- ui.com/ api/ menu/

MenuItem API documentation: https:/ /material- ui.com/ api/ menu- item/

https://material-ui.com/demos/menus/
https://material-ui.com/demos/menus/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/

Menus - Display Actions That Pop Out Chapter 16

[413]

Menu scrolling options
Sometimes menus have lots of options. This can pose a problem with regard to the height of
the menu. Instead of having really long menus displayed, you can place a maximum height
on the menu and have it scroll vertically.

How to do it...
Let's say that you need to render a menu with more options than can reasonably be
rendered at once on the screen. Also, one of the menu items can be in a selected state.
Here's some code that shows how to deal with this situation:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';
import IconButton from '@material-ui/core/IconButton';
import Menu from '@material-ui/core/Menu';
import MenuItem from '@material-ui/core/MenuItem';
import MenuIcon from '@material-ui/icons/Menu';

const items = [
 'None',
 'Atria',
 'Callisto',
 'Dione',
 'Ganymede',
 'Hangouts Call',
 'Luna',
 'Oberon',
 'Phobos',
 'Pyxis',
 'Sedna',
 'Titania',
 'Triton',
 'Umbriel'
];

const ITEM_HEIGHT = 48;

const useStyles = makeStyles(theme => ({
 menuPaper: { maxHeight: ITEM_HEIGHT * 4.5, width: 200 }
}));

export default function MenuScrollingOptions() {
 const classes = useStyles();

Menus - Display Actions That Pop Out Chapter 16

[414]

 const [anchorEl, setAnchorEl] = useState(null);
 const [selected, setSelected] = useState('');

 const onOpen = e => {
 setAnchorEl(e.currentTarget);
 };

 const onClose = () => {
 setAnchorEl(null);
 };

 const onSelect = selected => () => {
 setSelected(selected);
 setAnchorEl(null);
 };

 return (
 <Fragment>
 <IconButton onClick={onOpen}>
 <MenuIcon />
 </IconButton>
 <Menu
 anchorEl={anchorEl}
 open={Boolean(anchorEl)}
 onClose={onClose}
 PaperProps={{
 classes: { elevation8: classes.menuPaper }
 }}
 >
 {items.map((item, index) => (
 <MenuItem
 key={index}
 selected={index === selected}
 onClick={onSelect(index)}
 >
 {item}
 </MenuItem>
))}
 </Menu>
 </Fragment>
);
}

Menus - Display Actions That Pop Out Chapter 16

[415]

Initially, no item is selected. Here's what the menu looks like when it's opened for the first
time:

You can scroll through the menu items. Here's what the bottom of the menu looks like:

You can make a selection that closes the menu. The selection is preserved, so that the next
time you open the menu, you'll see the selected item:

Menus - Display Actions That Pop Out Chapter 16

[416]

When the menu has a selected item, the Menu component will scroll to the selected item
automatically. You can test this by scrolling the selected item out of view before closing the
menu then reopening it. You'll see the selected item in the middle of the menu.

How it works...
Let's start by looking at the menuPaper style used in this example:

const ITEM_HEIGHT = 48;

const useStyles = makeStyles(theme => ({
 menuPaper: { maxHeight: ITEM_HEIGHT * 4.5, width: 200 }
}));

The ITEM_HEIGHT value is an approximation of the height of each menu item. The
multiplier (4.5) is an approximation of how many menu items should fit on the screen.
Now, let's jump into the Menu component markup:

<Menu
 anchorEl={anchorEl}
 open={Boolean(anchorEl)}
 onClose={onClose}
 PaperProps={{
 classes: { elevation8: classes.menuPaper }
 }}
>
 {items.map((item, index) => (
 <MenuItem
 key={index}
 selected={index === selected}
 onClick={onSelect(index)}
 >
 {item}
 </MenuItem>
))}
</Menu>

The selected property of each MenuItem component is set to true if the selected state
matches the index of the current item. The menuPaper class is applied via the PaperProps
property, but there's an elevation8 property inside where the class is actually applied.
This is because if you just assign the class via className, the Menu component will just
override the maxHeight style. To get around this, you have to use a more specific CSS API.
The Paper component has several elevation points—the higher the number, the more
shadow that is applied (giving the element the appearance of being higher).

Menus - Display Actions That Pop Out Chapter 16

[417]

The default elevation of Paper is 2. But the Menu component uses a Popover component to
render Paper that changes the elevation to 8. Long story short, the elevation8 CSS API
enabled you to apply styles from a class that override the defaults. This is how you get a
scrollable menu.

See also
Menu demos: https://material-ui.com/demos/menus/
Menu API documentation: https:/ /material- ui.com/ api/ menu/

MenuItem API documentation: https:/ /material- ui.com/ api/ menu- item/

Using menu transitions
You can change the transition that's used by the Menu component. By default, Menu uses the
Grow transition component.

How to do it...
To demonstrate how to apply different transitions to the Menu component, we'll add some
transition options to Storybook for this example. You can change the transition component
that's used, as well as the duration of the transition using the following code:

import React, { Fragment, useState } from 'react';

import { makeStyles } from '@material-ui/styles';
import Button from '@material-ui/core/Button';
import Menu from '@material-ui/core/Menu';
import MenuItem from '@material-ui/core/MenuItem';
import Collapse from '@material-ui/core/Collapse';
import Fade from '@material-ui/core/Fade';
import Grow from '@material-ui/core/Grow';
import Slide from '@material-ui/core/Slide';

import MenuIcon from '@material-ui/icons/Menu';

const useStyles = makeStyles(theme => ({
 rightIcon: {
 marginLeft: theme.spacing.unit
 }
}));

https://material-ui.com/demos/menus/
https://material-ui.com/demos/menus/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/

Menus - Display Actions That Pop Out Chapter 16

[418]

export default function UsingMenuTransitions({
 transition,
 duration
}) {
 const classes = useStyles();
 const [anchorEl, setAnchorEl] = useState(null);

 const onOpen = e => {
 setAnchorEl(e.currentTarget);
 };

 const onClose = () => {
 setAnchorEl(null);
 };

 return (
 <Fragment>
 <Button onClick={onOpen}>
 Menu
 <MenuIcon className={classes.rightIcon} />
 </Button>
 <Menu
 anchorEl={anchorEl}
 open={Boolean(anchorEl)}
 onClose={onClose}
 transitionDuration={duration}
 TransitionComponent={
 {
 collapse: Collapse,
 fade: Fade,
 grow: Grow,
 slide: Slide
 }[transition]
 }
 >
 <MenuItem onClick={onClose}>Profile</MenuItem>
 <MenuItem onClick={onClose}>My account</MenuItem>
 <MenuItem onClick={onClose}>Logout</MenuItem>
 </Menu>
 </Fragment>
);
}

You'll see the different transition options in the Storybook Knobs panel. When you change
the transition, you'll notice the difference when you open and close the menu.
Unfortunately, I can't capture a screenshot of these transitions.

Menus - Display Actions That Pop Out Chapter 16

[419]

How it works...
The transition property passed to the UsingMenuTransitions component comes from
Storybook and is used to determine the transition used. Let's take a closer look at the
TransitionComponent property that's used by Menu to determine which transition to use:

TransitionComponent={
 {
 collapse: Collapse,
 fade: Fade,
 grow: Grow,
 slide: Slide
 }[transition]
}

The transition string maps to a Material-UI transition component that you can pass to
Menu.

See also
Menu demos: https://material-ui.com/demos/menus/
Menu API documentation: https:/ /material- ui.com/ api/ menu/

MenuItem API documentation: https:/ /material- ui.com/ api/ menu- item/

Collapse API documentation: https:/ /material- ui.com/ api/ collapse/

Fade API documentation: https:/ /material- ui.com/ api/ collapse/

Grow API documentation: https:/ /material- ui.com/ api/ grow/

Slide API documentation: https:/ /material- ui.com/ api/ slide/

Customizing menu items
You can change regular menu items that have onClick handlers into something more
elaborate. For example, you might want a menu with links to other screens in your app.

https://material-ui.com/demos/menus/
https://material-ui.com/demos/menus/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/collapse/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/grow/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/
https://material-ui.com/api/slide/

Menus - Display Actions That Pop Out Chapter 16

[420]

How to do it...
Let's say that you're using react-router in your application to control the navigation
from one screen to another, and you would like to use a Menu component to render links.
Here's an example that shows how to do this:

import React, { Fragment, useState } from 'react';
import { Switch, Route, Link } from 'react-router-dom';

import { makeStyles } from '@material-ui/styles';
import Button from '@material-ui/core/Button';
import Menu from '@material-ui/core/Menu';
import MenuItem from '@material-ui/core/MenuItem';
import Typography from '@material-ui/core/Typography';
import MenuIcon from '@material-ui/icons/Menu';

const NavMenuItem = ({ color, ...props }) => (
 <Switch>
 <Route
 exact
 path={props.to}
 render={() => <MenuItem selected component={Link} {...props} />}
 />
 <Route
 path="/"
 render={() => <MenuItem component={Link} {...props} />}
 />
 </Switch>
);

const useStyles = makeStyles(theme => ({
 rightIcon: {
 marginLeft: theme.spacing(1)
 }
}));

export default function CustomizingMenuItems() {
 const classes = useStyles();
 const [anchorEl, setAnchorEl] = useState(null);

 const onOpen = e => {
 setAnchorEl(e.currentTarget);
 };

 const onClose = () => {
 setAnchorEl(null);
 };

Menus - Display Actions That Pop Out Chapter 16

[421]

 return (
 <Fragment>
 <Button onClick={onOpen}>
 Menu
 <MenuIcon className={classes.rightIcon} />
 </Button>
 <Menu
 anchorEl={anchorEl}
 open={Boolean(anchorEl)}
 onClose={onClose}
 >
 <NavMenuItem to="/" onClick={onClose}>
 Home
 </NavMenuItem>
 <NavMenuItem to="/page1" onClick={onClose}>
 Page 1
 </NavMenuItem>
 <NavMenuItem to="/page2" onClick={onClose}>
 Page 2
 </NavMenuItem>
 </Menu>
 <Switch>
 <Route
 exact
 path="/"
 render={() => <Typography>home content</Typography>}
 />
 <Route
 path="/page1"
 render={() => <Typography>page 1 content</Typography>}
 />
 <Route
 path="/page2"
 render={() => <Typography>page 2 content</Typography>}
 />
 </Switch>
 </Fragment>
);
}

Here's what you'll see when the screen first loads:

Menus - Display Actions That Pop Out Chapter 16

[422]

Here's what the MENU looks like when it's opened:

Try clicking on Page 1. This should close the MENU and change the content rendered
below the MENU, because you just navigated to another screen, as shown in the following
screenshot:

The active link is reflected in the menu. Here's what the menu looks like if you open it from
Page 1:

How it works...
Let's start by looking at the NavMenuItem component:

const NavMenuItem = ({ color, ...props }) => (
 <Switch>
 <Route
 exact
 path={props.to}
 render={() => <MenuItem selected component={Link} {...props} />}

Menus - Display Actions That Pop Out Chapter 16

[423]

 />
 <Route
 path="/"
 render={() => <MenuItem component={Link} {...props} />}
 />
 </Switch>
);

This will render a MenuItem component based on the current route. If the to property
value matches the current route, then the selected property will be true—this is how the
menu item appears to be selected when you open the menu. Next, let's look at the Menu
markup:

<Menu
 anchorEl={anchorEl}
 open={Boolean(anchorEl)}
 onClose={onClose}
>
 <NavMenuItem to="/" onClick={onClose}>
 Home
 </NavMenuItem>
 <NavMenuItem to="/page1" onClick={onClose}>
 Page 1
 </NavMenuItem>
 <NavMenuItem to="/page2" onClick={onClose}>
 Page 2
 </NavMenuItem>
</Menu>

Instead of rendering the MenuItem components, you can render the NavMenuItem
components. These result in links being rendered with the selected property set to true for
the current route. Note that the to property is required here in order to link to another
page, and the onClick handler is necessary in order to close the menu as the page
transition happens.

See also
Menu demos: https://material-ui.com/demos/menus/
Menu API documentation: https:/ /material- ui.com/ api/ menu/

MenuItem API documentation: https:/ /material- ui.com/ api/ menu- item/

https://material-ui.com/demos/menus/
https://material-ui.com/demos/menus/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/
https://material-ui.com/api/menu-item/

17
Typography - Control Font Look

and Feel
In this chapter, we will cover the following topics:

Types of typography
Using theme colors
Aligning text
Wrapping text

Introduction
The Typography component is used by Material-UI to render text on the screen. You can
use Typography on its own, but it is also used internally by other Material-UI components
that render text. Instead of using other HTML elements to render your text,
using Typography components allows Material-UI to handle the application of theme
styles using consistent font types, and also handle font behavior in a uniform way.

Typography - Control Font Look and Feel Chapter 17

[425]

Types of typography
The Typography component is used any time you want to render text in a Material-UI
application. The type of text, or variant, is specified as a string value that's passed to the
variant property.

How to do it...
Here's an example that shows how to render all of the available Typography variants:

import React, { Fragment } from 'react';

import Typography from '@material-ui/core/Typography';

const MyTypography = ({ variant, ...props }) => (
 <Typography variant={variant || 'inherit'} {...props} />
);

const TypesOfTypography = () => (
 <Fragment>
 <Typography variant="h1">h1 variant</Typography>
 <Typography variant="h2">h2 variant</Typography>
 <Typography variant="h3">h3 variant</Typography>
 <Typography variant="h4">h4 variant</Typography>
 <Typography variant="h5">h5 variant</Typography>
 <Typography variant="h6">h6 variant</Typography>
 <Typography variant="subtitle1">subtitle1 variant</Typography>
 <Typography variant="subtitle2">subtitle2 variant</Typography>
 <Typography variant="body1">body1 variant</Typography>
 <Typography variant="body2">body2 variant</Typography>
 <Typography variant="subtitle1">subtitle1 variant</Typography>
 <Typography variant="caption">caption variant</Typography>
 <Typography variant="button">button variant</Typography>
 <Typography variant="overline">overline variant</Typography>
 <Typography variant="title" component="div">
 <Typography variant="inherit">
 inherited title variant
 </Typography>
 <Typography variant="inherit">
 another inherited title variant
 </Typography>
 <Typography variant="caption">
 overridden caption variant
 </Typography>
 </Typography>

Typography - Control Font Look and Feel Chapter 17

[426]

 <MyTypography variant="title" component="div">
 <MyTypography>inherited title variant</MyTypography>
 <MyTypography>another inherited title variant</MyTypography>
 <MyTypography variant="caption">
 overridden caption variant
 </MyTypography>
 </MyTypography>
 </Fragment>
);

export default TypesOfTypography;

Here's what the heading variants look like:

Finally, here are what the remaining variants look like:

Typography - Control Font Look and Feel Chapter 17

[427]

How it works...
The value that you pass to the variant property determines the styles that are applied to
the text. The styles for each of these variants are defined by the theme, and can be
customized from theme to theme.

It can be tempting to add your own variant names, or to add font styles
outside of the typography variants. I would advise against this, because
doing so breaks the common font vocabulary based on Material Design. If
you stray from the typography variant conventions, you'll end up with
variant names that only make sense to you, or worse, variants that don't
work because of font styles applied to text from outside of the typography
system.

There's more...
If you want your Typography component to inherit the variant styles from its parent, you
can use the inherit variant value, as shown in the following example:

<Typography variant="title" component="div">
 <Typography variant="inherit">
 inherited title variant
 </Typography>
 <Typography variant="inherit">
 another inherited title variant
 </Typography>
 <Typography variant="caption">
 overridden caption variant
 </Typography>
</Typography>

The parent Typography component uses the title variant. It also changes its component
to be a div element, because it's not actually rendering text as direct children—think of it as
a container for font styles. Inside, there are three child Typography components. The first
two have inherit as the variant property value, so they'll actually get the title variant.
The third Typography child uses caption as its variant, so it will not inherit title.

Typography - Control Font Look and Feel Chapter 17

[428]

Here's what the result looks like:

One adjustment to this approach that you might consider is to have inherit as the default
variant. This way, you don't have to keep typing variant="inherit" if you have lots of
child Typography components that need to inherit font styles. Here's a component that
does this:

const MyTypography = ({ variant, ...props }) => (
 <Typography variant={variant || 'inherit'} {...props} />
);

The MyTypography component will render a Typography component with a variant
value of inherit, but only if the variant property wasn't passed. Let's change the
preceding code to use this new component:

<MyTypography variant="title" component="div">
 <MyTypography>inherited title variant</MyTypography>
 <MyTypography>another inherited title variant</MyTypography>
 <MyTypography variant="caption">
 overridden caption variant
 </MyTypography>
</MyTypography>

The result is exactly the same. The only difference is that now you don't need to provide the
variant property for variants that you want to inherit.

See also
Typography demos: https:/ / material- ui.com/ style/ typography/

Typography API documentation: https:/ /material- ui.com/ api/ typography/

Using theme colors
Text that is rendered using the Typography component can use colors from the Material-UI
theme used by the app.

https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/

Typography - Control Font Look and Feel Chapter 17

[429]

How to do it...
For this example, you'll find a Storybook control that allows you to change the color of the
text using predefined Color names from the theme, as shown in the following screenshot:

Here's the source for the example that uses the selected color by passing it to the color
property of each Typography component:

import React, { Fragment } from 'react';

import Typography from '@material-ui/core/Typography';

const UsingThemeColors = ({ color }) => (
 <Fragment>
 <Typography variant="h1" color={color}>
 h1 variant
 </Typography>
 <Typography variant="h2" color={color}>
 h2 variant
 </Typography>
 <Typography variant="h3" color={color}>
 h3 variant
 </Typography>
 <Typography variant="h4" color={color}>
 h4 variant
 </Typography>
 <Typography variant="h5" color={color}>
 h5 variant
 </Typography>
 <Typography variant="h6" color={color}>
 h6 variant
 </Typography>
 <Typography variant="subtitle1" color={color}>
 subtitle1 variant

Typography - Control Font Look and Feel Chapter 17

[430]

 </Typography>
 <Typography variant="subtitle2" color={color}>
 subtitle2 variant
 </Typography>
 <Typography variant="body1" color={color}>
 body1 variant
 </Typography>
 <Typography variant="body2" color={color}>
 body2 variant
 </Typography>
 <Typography variant="caption" color={color}>
 caption variant
 </Typography>
 <Typography variant="button" color={color}>
 button variant
 </Typography>
 <Typography variant="overline" color={color}>
 overline variant
 </Typography>
 </Fragment>
);

export default UsingThemeColors;

How it works...
Let's walk through how each of these colors change the appearance of the different
Typography variants:

Default
The default color uses whatever color is
defined in the styles for
the Typography variant in question

Typography - Control Font Look and Feel Chapter 17

[431]

Error
The error color applies
the palette.error.main theme color to the
text

Inherit The Typography component will inherit the
font color of its parent component

Typography - Control Font Look and Feel Chapter 17

[432]

Primary
The primary color applies
the palette.primary.main theme color to
the text

Secondary
The secondary color applies
the palette.secondary.main theme color
to the text

Typography - Control Font Look and Feel Chapter 17

[433]

Text Primary
The textPrimary color applies
the palette.text.primary theme color to
the text

Text Secondary
The textSecondary color applies
the palette.text.secondary theme color
to the text

See also
Typography demos: https:/ / material- ui.com/ style/ typography/

Typography API documentation: https:/ /material- ui.com/ api/ typography/

https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/

Typography - Control Font Look and Feel Chapter 17

[434]

Aligning text
Aligning text in user interfaces is common. Unfortunately, it isn't easy. With Material-UI
grids and typography, you can create abstractions that make it a little easier to align text.

How to do it...
If you're trying to align your text horizontally to the left, right, or center, then you can use
the align property of your Typography component, as demonstrated in the following
code:

<Typography align="center">My Centered Text</Typography>

This is shorthand for using the text-align style, so that you don't have to keep adding
CSS to your components for the more common alignment scenarios. However, sometimes
you need the ability to align your text both horizontally and vertically.

For example, let's say that you have a 200x200 Paper element, and you need the ability to
render text in the bottom-right corner. Let's illustrate this example with some code:

import React from 'react';

import { withStyles } from '@material-ui/core/styles';
import Typography from '@material-ui/core/Typography';
import Paper from '@material-ui/core/Paper';
import Grid from '@material-ui/core/Grid';

const styles = theme => ({
 paper: {
 width: 200,
 height: 200,
 padding: theme.spacing(1)
 }
});

const MyPaper = withStyles(styles)(
 ({ horizontalAlign, verticalAlign, classes, ...props }) => (
 <Grid
 container
 component={Paper}
 className={classes.paper}
 alignContent={verticalAlign}
 justify={horizontalAlign}
 {...props}
 />

Typography - Control Font Look and Feel Chapter 17

[435]

)
);

const MyTypography = ({ ...props }) => (
 <Grid item component={Typography} {...props} />
);

const AligningText = ({ ...props }) => (
 <MyPaper {...props}>
 <MyTypography {...props}>Text</MyTypography>
 </MyPaper>
);

export default AligningText;

Here's what you'll see when the screen first loads:

How it works...
There are two Storybook controls for aligning the text, as follows:

Typography - Control Font Look and Feel Chapter 17

[436]

The horizontal alignment control changes the horizontalAlign property that is passed to
the MyPaper component. Likewise, the vertical alignment control changes the
verticalAlign property value. The horizontalAlign value is passed to the justify
property of the Grid component, while the verticalAlign property goes to the
alignContent property.

What's neat about the Grid components is that you can pass them a component property
and this will be rendered instead of the div element that's rendered by default. In other
words, you can make the Paper component a grid container and the Typography
component that you're trying to align a grid item. You don't have to render the Grid
components and then your actual content as children. You can make your content the grid.

Here's what the grid looks like when you set justify="center" and
alignContent="flex-end":

And here's what it looks like what you set justify="flex-end" and
alignContent="flex-start":

Typography - Control Font Look and Feel Chapter 17

[437]

See also
Typography demos: https:/ / material- ui.com/ style/ typography/

Typography API documentation: https:/ /material- ui.com/ api/ typography/

Wrapping text
The Typography components that you use to render text in your application need to be
aware of scenarios where text wraps. This means that, when there isn't enough horizontal
space to render a line of text, it continues onto the next line. This can have undesirable
layout consequences if you don't anticipate how text might wrap.

How to do it...
Let's look at an example where you have two Paper components that render text using
Typography components:

import React, { Fragment } from 'react';
import clsx from 'clsx';

import { withStyles } from '@material-ui/core/styles';
import Typography from '@material-ui/core/Typography';
import Paper from '@material-ui/core/Paper';

const styles = theme => ({
 paper: {
 minWidth: 300,
 padding: theme.spacing(2),
 margin: theme.spacing(3)
 },
 fixedHeight: { height: 100 },
 responsive: {
 [theme.breakpoints.down('xs')]: {
 overflow: 'hidden',
 textOverflow: 'ellipsis',
 whiteSpace: 'nowrap'
 }
 }
});

const WrappingText = withStyles(styles)(({ classes }) => (
 <Fragment>

https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/

Typography - Control Font Look and Feel Chapter 17

[438]

 <Paper className={classes.paper}>
 <Typography noWrap>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed
 do eiusmod tempor incididunt ut labore
 </Typography>
 </Paper>
 <Paper className={clsx(classes.paper, classes.fixedHeight)}>
 <Typography className={classes.responsive}>
 Sed ut perspiciatis unde omnis iste natus error sit voluptatem
 accusantium doloremque laudantium, totam rem aperiam, eaque
 ipsa quae ab illo inventore veritatis et quasi architecto
 beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem
 quia voluptas sit aspernatur aut odit aut fugit, sed quia
 consequuntur magni dolores eos qui ratione voluptatem sequi
 nesciunt.
 </Typography>
 </Paper>
 </Fragment>
));

export default WrappingText;

Here's what you'll see when the screen first loads:

The first Paper component doesn't have a set the height component, and has a single line
of text that fits within the current screen width. The second Paper component does have a
set height, and the text in the second Paper component is wrapped so that it fits on the
screen.

Typography - Control Font Look and Feel Chapter 17

[439]

How it works...
Now, let's try changing the screen resolution, making the available width in which to
render text smaller. Here's what you'll see:

There are wrapping issues in both Paper components. In the first, the wrapped text causes
the the height of the component to change because it doesn't have a fixed height. This has a
domino effect with regard to layout that may or may not be problematic, depending on
your design. In the second Paper component, height is fixed, which means that the
wrapped text overflows out of the component, which looks terrible.

There's more...
Let's fix the text wrapping in both of the Paper components in this example. The following
is a modified version:

import React, { Fragment } from 'react';
import clsx from 'clsx';

import { withStyles } from '@material-ui/core/styles';
import Typography from '@material-ui/core/Typography';
import Paper from '@material-ui/core/Paper';

const styles = theme => ({
 paper: {
 minWidth: 300,

Typography - Control Font Look and Feel Chapter 17

[440]

 padding: theme.spacing(2),
 margin: theme.spacing(3)
 },
 fixedHeight: { height: 100 },
 responsive: {
 [theme.breakpoints.down('xs')]: {
 overflow: 'hidden',
 textOverflow: 'ellipsis',
 whiteSpace: 'nowrap'
 }
 }
});

const WrappingText = withStyles(styles)(({ classes }) => (
 <Fragment>
 <Paper className={classes.paper}>
 <Typography noWrap>
 Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed
 do eiusmod tempor incididunt ut labore
 </Typography>
 </Paper>
 <Paper className={clsx(classes.paper, classes.fixedHeight)}>
 <Typography className={classes.responsive}>
 Sed ut perspiciatis unde omnis iste natus error sit voluptatem
 accusantium doloremque laudantium, totam rem aperiam, eaque
 ipsa quae ab illo inventore veritatis et quasi architecto
 beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem
 quia voluptas sit aspernatur aut odit aut fugit, sed quia
 consequuntur magni dolores eos qui ratione voluptatem sequi
 nesciunt.
 </Typography>
 </Paper>
 </Fragment>
));

export default WrappingText;

Typography - Control Font Look and Feel Chapter 17

[441]

Now, when you shrink the width of the screen, this is what the two components look like:

The first Paper component was fixed by adding the noWrap property to the Typography
component. This will ensure that the height component of the component never changes,
by hiding text overflow and adding an ellipsis to indicate that the text has been truncated.
This works because you know ahead of time that this is just a single line of text that will
never need to wrap when shown on wider displays. The second Paper component, on the
other hand, needs a different approach, because it does need the ability to wrap.

The solution was to use the Material-UI media query functionality. The call
to theme.breakpoints.down('xs') results in a class name that's prefixed by a media
query for the specified breakpoint, in this case, xs. Now, when the screen width shrinks to
the xs breakpoint, the same styles used for the noWrap property are applied to the
component.

See also
Typography demos: https:/ / material- ui.com/ style/ typography/

Typography API documentation: https:/ /material- ui.com/ api/ typography/

https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/style/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/
https://material-ui.com/api/typography/

18
Icons - Enhance Icons to Match

Your Look and Feel
In this chapter, you'll learn about the following:

Coloring icons
Scaling icons
Dynamically loading icons
Themed icons
Installing more icons

Introduction
Icons play a big part in any Material-UI application. Even if you don't set out to explicitly
use them, icons are used by many components by default. If a Material-UI component
doesn't use icons by default, you can often find direct support for integrating Material-UI
icons. Icons play an important role in the usability of your application—they provide a
means to quickly scan the screen for meaning, instead of having to parse text all of the
time.

Coloring icons
Material-UI icon components accept a color property that takes a named theme color and
applies it to the icon.

Icons - Enhance Icons to Match Your Look and Feel Chapter 18

[443]

How to do it...
This example uses a Storybook control to change the color property of the icons that are
rendered:

Here's some code that renders several icons that use the selected color value:

import React, { Fragment } from 'react';

import { withStyles } from '@material-ui/core/styles';

import Cast from '@material-ui/icons/Cast';
import CastConnected from '@material-ui/icons/CastConnected';
import CastForEducation from '@material-ui/icons/CastForEducation';
import Computer from '@material-ui/icons/Computer';
import DesktopMac from '@material-ui/icons/DesktopMac';
import DesktopWindows from '@material-ui/icons/DesktopWindows';
import DeveloperBoard from '@material-ui/icons/DeveloperBoard';
import DeviceHub from '@material-ui/icons/DeviceHub';
import DeviceUnknown from '@material-ui/icons/DeviceUnknown';
import DevicesOther from '@material-ui/icons/DevicesOther';
import Dock from '@material-ui/icons/Dock';
import Gamepad from '@material-ui/icons/Gamepad';

const styles = theme => ({
 icon: { margin: theme.spacing(3) }
});

const IconColorAndState = withStyles(styles)(({ color, classes }) => (
 <Fragment>
 <Cast className={classes.icon} color={color} />
 <CastConnected className={classes.icon} color={color} />
 <CastForEducation className={classes.icon} color={color} />
 <Computer className={classes.icon} color={color} />
 <DesktopMac className={classes.icon} color={color} />
 <DesktopWindows className={classes.icon} color={color} />

Icons - Enhance Icons to Match Your Look and Feel Chapter 18

[444]

 <DeveloperBoard className={classes.icon} color={color} />
 <DeviceHub className={classes.icon} color={color} />
 <DeviceUnknown className={classes.icon} color={color} />
 <DevicesOther className={classes.icon} color={color} />
 <Dock className={classes.icon} color={color} />
 <Gamepad className={classes.icon} color={color} />
 </Fragment>
));

export default IconColorAndState;

How it works...
The color property defaults to inherit, which means that icons will be the same color as
their parent components. Let's walk through the different color values and see what these
icons from the example look like:

Inherit The inherit color value will use the color value
from the parent component style:

Primary
The primary color applies
the palette.primary.main theme color to
the icon:

Icons - Enhance Icons to Match Your Look and Feel Chapter 18

[445]

Secondary
The secondary color applies
the palette.secondary.main theme color
to the icon:

Action
The action color applies
the palette.action.active theme color to
the icon:

Error
The error color applies
the palette.error.main theme color to the
icon:

Disabled
The disabled color applies
the palette.action.disabled theme color
to the icon:

Icons - Enhance Icons to Match Your Look and Feel Chapter 18

[446]

See also
Icon demos: https://material-ui.com/style/icons/
Icon API documentation: https:/ / material- ui. com/ api/ icon/

Scaling icons
The fontSize property of the Material-UI icon components accepts a string value that
represents a predetermined icon size. The reason the property is called fontSize instead
of size is because the fontSize CSS property is what determines the size of an icon. The
default is 24px.

How to do it...
This example uses a Storybook control to change the fontSize property of the icons that
are rendered:

Here's some code that renders several icons that use the selected fontSize value:

import React, { Fragment } from 'react';

import { withStyles } from '@material-ui/core/styles';

import Cast from '@material-ui/icons/Cast';
import CastConnected from '@material-ui/icons/CastConnected';
import CastForEducation from '@material-ui/icons/CastForEducation';
import Computer from '@material-ui/icons/Computer';
import DesktopMac from '@material-ui/icons/DesktopMac';
import DesktopWindows from '@material-ui/icons/DesktopWindows';
import DeveloperBoard from '@material-ui/icons/DeveloperBoard';
import DeviceHub from '@material-ui/icons/DeviceHub';

https://material-ui.com/style/icons/
https://material-ui.com/style/icons/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/

Icons - Enhance Icons to Match Your Look and Feel Chapter 18

[447]

import DeviceUnknown from '@material-ui/icons/DeviceUnknown';
import DevicesOther from '@material-ui/icons/DevicesOther';
import Dock from '@material-ui/icons/Dock';
import Gamepad from '@material-ui/icons/Gamepad';

const styles = theme => ({
 icon: { margin: theme.spacing(3) }
});

const ScalingIcons = withStyles(styles)(({ fontSize, classes }) => (
 <Fragment>
 <Cast className={classes.icon} fontSize={fontSize} />
 <CastConnected className={classes.icon} fontSize={fontSize} />
 <CastForEducation className={classes.icon} fontSize={fontSize} />
 <Computer className={classes.icon} fontSize={fontSize} />
 <DesktopMac className={classes.icon} fontSize={fontSize} />
 <DesktopWindows className={classes.icon} fontSize={fontSize} />
 <DeveloperBoard className={classes.icon} fontSize={fontSize} />
 <DeviceHub className={classes.icon} fontSize={fontSize} />
 <DeviceUnknown className={classes.icon} fontSize={fontSize} />
 <DevicesOther className={classes.icon} fontSize={fontSize} />
 <Dock className={classes.icon} fontSize={fontSize} />
 <Gamepad className={classes.icon} fontSize={fontSize} />
 </Fragment>
));

export default ScalingIcons;

How it works...
The default value of fontSize is default. Let's walk through the different size options of
Material-UI icons and see how they look.

Default
The default value sets the icon size to 24 pixels:

Icons - Enhance Icons to Match Your Look and Feel Chapter 18

[448]

Inherit
The inherit value sets the icon to whatever fontSize its parent component is set to. In
this example, the icons inherit 16 pixels as the fontSize:

Small
The small value sets the icon size to 20 pixels:

Icons - Enhance Icons to Match Your Look and Feel Chapter 18

[449]

Large
The large value sets the icon size to 36 pixels:

See also
Icon demos: https://material-ui.com/style/icons/
Icon API documentation: https:/ / material- ui. com/ api/ icon/

Dynamically loading icons
On screens that only have a handful of icons on them, you can directly import them as
components without any issues. This can be challenging if you have a screen with many
icons or if your application as a whole uses lots of icons (the latter case increases the bundle
size). The answer, in both cases, is to load Material-UI icons lazily/dynamically.

How to do it...
You can leverage the lazy() higher-order component from React. Also from React, the
Suspense component provides placeholders in your UI while your lazy components are
fetched and rendered. This overall approach is how code-splitting is handled in
React—Material-UI icons happen to be a good use case.

https://material-ui.com/style/icons/
https://material-ui.com/style/icons/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/

Icons - Enhance Icons to Match Your Look and Feel Chapter 18

[450]

This example uses a Storybook control to select the icon category to load:

Here's the code to create lazy icon components that load dynamically:

import React, { lazy, Suspense, Fragment } from 'react';

import { withStyles } from '@material-ui/core/styles';
import CircularProgress from '@material-ui/core/CircularProgress';

const categories = {
 Action: [
 lazy(() => import('@material-ui/icons/ThreeDRotation')),
 lazy(() => import('@material-ui/icons/Accessibility')),
 lazy(() => import('@material-ui/icons/AccessibilityNew')),
 lazy(() => import('@material-ui/icons/Accessible')),
 lazy(() => import('@material-ui/icons/AccessibleForward')),
 lazy(() => import('@material-ui/icons/AccountBalance')),
 lazy(() => import('@material-ui/icons/AccountBalanceWallet')),
 lazy(() => import('@material-ui/icons/AccountBox')),
 lazy(() => import('@material-ui/icons/AccountCircle'))
],
 Alert: [
 lazy(() => import('@material-ui/icons/AddAlert')),
 lazy(() => import('@material-ui/icons/Error')),
 lazy(() => import('@material-ui/icons/ErrorOutline')),
 lazy(() => import('@material-ui/icons/NotificationImportant')),
 lazy(() => import('@material-ui/icons/Warning'))
],
 Av: [
 lazy(() => import('@material-ui/icons/FourK')),
 lazy(() => import('@material-ui/icons/AddToQueue')),
 lazy(() => import('@material-ui/icons/Airplay')),
 lazy(() => import('@material-ui/icons/Album')),
 lazy(() => import('@material-ui/icons/ArtTrack')),
 lazy(() => import('@material-ui/icons/AvTimer')),
 lazy(() => import('@material-ui/icons/BrandingWatermark')),
 lazy(() => import('@material-ui/icons/CallToAction')),

Icons - Enhance Icons to Match Your Look and Feel Chapter 18

[451]

 lazy(() => import('@material-ui/icons/ClosedCaption'))
],
 Communication: [
 lazy(() => import('@material-ui/icons/AlternateEmail')),
 lazy(() => import('@material-ui/icons/Business')),
 lazy(() => import('@material-ui/icons/Call')),
 lazy(() => import('@material-ui/icons/CallEnd')),
 lazy(() => import('@material-ui/icons/CallMade')),
 lazy(() => import('@material-ui/icons/CallMerge')),
 lazy(() => import('@material-ui/icons/CallMissed')),
 lazy(() => import('@material-ui/icons/CallMissedOutgoing')),
 lazy(() => import('@material-ui/icons/CallReceived'))
]
};

const styles = theme => ({
 icon: { margin: theme.spacing(3) }
});

const DynamicallyLoadingIcons = withStyles(styles)(
 ({ category, classes }) => (
 <Suspense fallback={<CircularProgress />}>
 {categories[category].map((Icon, index) => (
 <Icon key={index} className={classes.icon} />
))}
 </Suspense>
)
);

export default DynamicallyLoadingIcons;

Here's what you'll see when the screen first loads:

Icons - Enhance Icons to Match Your Look and Feel Chapter 18

[452]

Here's what you'll see if you select the Av category:

How it works...
The lazy() function takes a function that returns a call to import(). It returns a lazy
component:

const LazyIcon = lazy(() => import('@material-ui/icons/ThreeDRotation'))

This code doesn't actually import the ThreeDRotation icon. It builds a new component
that imports the icon when it's rendered. For example, the following will cause the icon to
be imported:

<LazyIcon />

You can actually see this for yourself if you look at the Network tab in dev tools while
running this example. The Action category is selected by default, so you can see the
network requests to load the lazy components that are being rendered:

Icons - Enhance Icons to Match Your Look and Feel Chapter 18

[453]

Then, if you change the selected category to Communication, you'll see several more
network requests to load the lazy icons in this category that are now being rendered:

See also
Icon demos: https://material-ui.com/style/icons/
Icon API documentation: https:/ / material- ui. com/ api/ icon/

Themed icons
Material-UI icons have themes that can be applied to them. They are not to be confused
with Material-UI themes that apply styles to every Material-UI component that you use;
icon themes are specifically for icons. To use a themed icon, you have to import a different
version of it.

https://material-ui.com/style/icons/
https://material-ui.com/style/icons/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/

Icons - Enhance Icons to Match Your Look and Feel Chapter 18

[454]

How to do it...
To help explore the different icon themes, this example uses a Storybook control that allows
you to change the icon theme:

Here's the source:

import React, { lazy, Suspense, Fragment } from 'react';

import { withStyles } from '@material-ui/core/styles';
import CircularProgress from '@material-ui/core/CircularProgress';

const themes = {
 Filled: [
 lazy(() => import('@material-ui/icons/Attachment')),
 lazy(() => import('@material-ui/icons/Cloud')),
 lazy(() => import('@material-ui/icons/CloudCircle')),
 lazy(() => import('@material-ui/icons/CloudDone')),
 lazy(() => import('@material-ui/icons/CloudDownload')),
 lazy(() => import('@material-ui/icons/CloudOff')),
 lazy(() => import('@material-ui/icons/CloudQueue')),
 lazy(() => import('@material-ui/icons/CloudUpload')),
 lazy(() => import('@material-ui/icons/CreateNewFolder')),
 lazy(() => import('@material-ui/icons/Folder')),
 lazy(() => import('@material-ui/icons/FolderOpen')),
 lazy(() => import('@material-ui/icons/FolderShared'))
],
 Outlined: [
 lazy(() => import('@material-ui/icons/AttachmentOutlined')),
 lazy(() => import('@material-ui/icons/CloudOutlined')),
 lazy(() => import('@material-ui/icons/CloudCircleOutlined')),
 lazy(() => import('@material-ui/icons/CloudDoneOutlined')),
 lazy(() => import('@material-ui/icons/CloudDownloadOutlined')),
 lazy(() => import('@material-ui/icons/CloudOffOutlined')),
 lazy(() => import('@material-ui/icons/CloudQueueOutlined')),

Icons - Enhance Icons to Match Your Look and Feel Chapter 18

[455]

 lazy(() => import('@material-ui/icons/CloudUploadOutlined')),
 lazy(() => import('@material-ui/icons/CreateNewFolderOutlined')),
 lazy(() => import('@material-ui/icons/FolderOutlined')),
 lazy(() => import('@material-ui/icons/FolderOpenOutlined')),
 lazy(() => import('@material-ui/icons/FolderSharedOutlined'))
],
 Rounded: [
 lazy(() => import('@material-ui/icons/AttachmentRounded')),
 lazy(() => import('@material-ui/icons/CloudRounded')),
 lazy(() => import('@material-ui/icons/CloudCircleRounded')),
 lazy(() => import('@material-ui/icons/CloudDoneRounded')),
 lazy(() => import('@material-ui/icons/CloudDownloadRounded')),
 lazy(() => import('@material-ui/icons/CloudOffRounded')),
 lazy(() => import('@material-ui/icons/CloudQueueRounded')),
 lazy(() => import('@material-ui/icons/CloudUploadRounded')),
 lazy(() => import('@material-ui/icons/CreateNewFolderRounded')),
 lazy(() => import('@material-ui/icons/FolderRounded')),
 lazy(() => import('@material-ui/icons/FolderOpenRounded')),
 lazy(() => import('@material-ui/icons/FolderSharedRounded'))
],
 TwoTone: [
 lazy(() => import('@material-ui/icons/AttachmentTwoTone')),
 lazy(() => import('@material-ui/icons/CloudTwoTone')),
 lazy(() => import('@material-ui/icons/CloudCircleTwoTone')),
 lazy(() => import('@material-ui/icons/CloudDoneTwoTone')),
 lazy(() => import('@material-ui/icons/CloudDownloadTwoTone')),
 lazy(() => import('@material-ui/icons/CloudOffTwoTone')),
 lazy(() => import('@material-ui/icons/CloudQueueTwoTone')),
 lazy(() => import('@material-ui/icons/CloudUploadTwoTone')),
 lazy(() => import('@material-ui/icons/CreateNewFolderTwoTone')),
 lazy(() => import('@material-ui/icons/FolderTwoTone')),
 lazy(() => import('@material-ui/icons/FolderOpenTwoTone')),
 lazy(() => import('@material-ui/icons/FolderSharedTwoTone'))
],
 Sharp: [
 lazy(() => import('@material-ui/icons/AttachmentSharp')),
 lazy(() => import('@material-ui/icons/CloudSharp')),
 lazy(() => import('@material-ui/icons/CloudCircleSharp')),
 lazy(() => import('@material-ui/icons/CloudDoneSharp')),
 lazy(() => import('@material-ui/icons/CloudDownloadSharp')),
 lazy(() => import('@material-ui/icons/CloudOffSharp')),
 lazy(() => import('@material-ui/icons/CloudQueueSharp')),
 lazy(() => import('@material-ui/icons/CloudUploadSharp')),
 lazy(() => import('@material-ui/icons/CreateNewFolderSharp')),
 lazy(() => import('@material-ui/icons/FolderSharp')),
 lazy(() => import('@material-ui/icons/FolderOpenSharp')),
 lazy(() => import('@material-ui/icons/FolderSharedSharp'))
]

Icons - Enhance Icons to Match Your Look and Feel Chapter 18

[456]

};

const styles = theme => ({
 icon: { margin: theme.spacing(3) }
});

const ThemedIcons = withStyles(styles)(({ theme, classes }) => (
 <Suspense fallback={<CircularProgress />}>
 {themes[theme].map((Icon, index) => (
 <Icon fontSize="large" key={index} className={classes.icon} />
))}
 </Suspense>
));

export default ThemedIcons;

How it works...
If you take a look at the themes object, you can see that each theme has the same icons in it,
but their import paths are slightly different. For example, the Attachment icon is
imported by the Filled theme, as follows:

import('@material-ui/icons/Attachment')

In the Rounded theme, here's how the same icon is imported:

import('@material-ui/icons/AttachmentOutlined')

You append the theme name to the icon name to change the theme of the icon. The same
pattern follows for each of them.

Not every icon changes when the theme changes. It really just depends on
the icon shape and whether it makes sense to, with the given theme. The
import will still work, but there isn't always a visual change.

Icons - Enhance Icons to Match Your Look and Feel Chapter 18

[457]

Let's explore them now:

Filled
The Filled theme is the default.
Here's what it looks like when applied
to the example:

Outlined

Take a look at the
preceding Filled theme—notice
that some icons are actually
outlined by default.
Here's what the Outlined theme
looks like when applied to the
example:

Icons - Enhance Icons to Match Your Look and Feel Chapter 18

[458]

Rounded
Here's what the Rounded theme
looks like when applied to the
example:

Two
tone

Here's what the TwoTone theme
looks like when applied to the
example:

Sharp Here's what the Sharp theme looks
like when applied to the example:

Icons - Enhance Icons to Match Your Look and Feel Chapter 18

[459]

See also
Icon demos: https://material-ui.com/style/icons/
Icon API documentation: https:/ / material- ui. com/ api/ icon/

Installing more icons
The mdi-material-ui package provides a staggering number of icons, available for you
to use in your Material-UI applications in the same way as you would use the built-in icons.

How to do it...
The first step is to install the package and make it available in your project:

npm install --save mdi-material-ui

Now you're ready to import icons from this package and use them:

import React, { Fragment } from 'react';

import { withStyles } from '@material-ui/core/styles';

import Apple from 'mdi-material-ui/Apple';
import Facebook from 'mdi-material-ui/Facebook';
import Google from 'mdi-material-ui/Google';
import Hulu from 'mdi-material-ui/Hulu';
import Linkedin from 'mdi-material-ui/Linkedin';
import Lyft from 'mdi-material-ui/Lyft';
import Microsoft from 'mdi-material-ui/Microsoft';
import Netflix from 'mdi-material-ui/Netflix';
import Npm from 'mdi-material-ui/Npm';
import Reddit from 'mdi-material-ui/Reddit';
import Twitter from 'mdi-material-ui/Twitter';
import Uber from 'mdi-material-ui/Uber';

const styles = theme => ({
 icon: { margin: theme.spacing(3) }
});

const InstallingMoreIcons = withStyles(styles)(({ classes }) => (
 <Fragment>
 <Apple className={classes.icon} />
 <Facebook className={classes.icon} />

https://material-ui.com/style/icons/
https://material-ui.com/style/icons/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/

Icons - Enhance Icons to Match Your Look and Feel Chapter 18

[460]

 <Google className={classes.icon} />
 <Hulu className={classes.icon} />
 <Linkedin className={classes.icon} />
 <Lyft className={classes.icon} />
 <Microsoft className={classes.icon} />
 <Netflix className={classes.icon} />
 <Npm className={classes.icon} />
 <Reddit className={classes.icon} />
 <Twitter className={classes.icon} />
 <Uber className={classes.icon} />
 </Fragment>
));

export default InstallingMoreIcons;

Here's what the icons look like when you load the screen:

How it works...
The icons from mdi-material-design are just like the icons from @material-ui/icons.
They're imported and rendered as React components. You find the name of the icon that
you need by looking it up on https:/ / materialdesignicons. com/ . Anywhere you can use
the official Material-UI icons, such as in buttons, you can also use icons from mdi-
material-ui.

See also
The Material Design icons package: https:/ /materialdesignicons. com/

Icon demos: https://material-ui.com/style/icons/
Icon API documentation: https:/ / material- ui. com/ api/ icon/

https://materialdesignicons.com/
https://materialdesignicons.com/
https://materialdesignicons.com/
https://materialdesignicons.com/
https://materialdesignicons.com/
https://materialdesignicons.com/
https://materialdesignicons.com/
https://materialdesignicons.com/
https://materialdesignicons.com/
https://materialdesignicons.com/
https://materialdesignicons.com/
https://materialdesignicons.com/
https://materialdesignicons.com/
https://materialdesignicons.com/
https://materialdesignicons.com/
https://materialdesignicons.com/
https://material-ui.com/style/icons/
https://material-ui.com/style/icons/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/
https://material-ui.com/api/icon/

19
Themes - Centralize the Look

and Feel of Your App
Here's what you'll learn in this chapter:

Understanding the palette
Comparing light and dark themes
Customizing typography
Nesting themes
Understanding component theme settings

Introduction
Material-UI applications all share a common look and feel—to an extent. This doesn't mean
that your banking application is going to look and feel the same as my music library
application just because we're both using the same library. The common aspect is that both
apps follow Material Design principles. I'm not going to go into depth on Material Design
here, because there are ample resources out there that do a much better job than I could
ever hope to do. Instead, I want to focus on the fact that Material-UI applications can be
themed with a high degree of flexibility, and without the need to sacrifice the principles of
Material Design.

Themes - Centralize the Look and Feel of Your App Chapter 19

[462]

Understanding the palette
The first place most people start when building a new Material-UI theme is with the color
palette. Color palettes can be very complex with a lot of moving parts: Material-UI themes
are no exception, but Material-UI hides a lot of the complexity. Your focus is on the color
intentions of the theme while Material-UI uses these color intentions to compute other
colors where necessary. Taken straight from the Material-UI theme documentation, the
intentions are as follows:

Primary: Used to represent primary interface elements
Secondary: Used to represent secondary interface elements
Error: Used to represent interface elements that the user should be made aware
of

How to do it...
Let's build a new theme that sets color intentions using the built-in color objects of Material-
UI. To help tweak your theme, this example uses Hue and Shade Storybook controls:

The three color intentions are represented as tabs across the top. The PRIMARY intention is
currently selected and it has a Hue selector and a Shade number range. Each intention has
the same controls. The Hue selector is populated with the same colors available to import
from Material-UI:

Themes - Centralize the Look and Feel of Your App Chapter 19

[463]

Here's the source that uses these Storybook controls to build a new theme and render some
Button and Typography components:

import React, { Fragment } from 'react';

import {
 withStyles,
 createMuiTheme,
 MuiThemeProvider
} from '@material-ui/core/styles';
import Button from '@material-ui/core/Button';
import Typography from '@material-ui/core/Typography';

import red from '@material-ui/core/colors/red';
import pink from '@material-ui/core/colors/pink';
import purple from '@material-ui/core/colors/purple';
import deepPurple from '@material-ui/core/colors/deepPurple';
import indigo from '@material-ui/core/colors/indigo';
import blue from '@material-ui/core/colors/blue';
import lightBlue from '@material-ui/core/colors/lightBlue';
import cyan from '@material-ui/core/colors/cyan';
import teal from '@material-ui/core/colors/teal';
import green from '@material-ui/core/colors/green';
import lightGreen from '@material-ui/core/colors/lightGreen';

Themes - Centralize the Look and Feel of Your App Chapter 19

[464]

import lime from '@material-ui/core/colors/lime';
import yellow from '@material-ui/core/colors/yellow';
import amber from '@material-ui/core/colors/amber';
import orange from '@material-ui/core/colors/orange';
import deepOrange from '@material-ui/core/colors/deepOrange';
import brown from '@material-ui/core/colors/brown';
import grey from '@material-ui/core/colors/grey';
import blueGrey from '@material-ui/core/colors/blueGrey';

const styles = theme => ({
 button: { margin: theme.spacing(2) }
});

const hues = {
 red,
 pink,
 purple,
 deepPurple,
 indigo,
 blue,
 lightBlue,
 cyan,
 teal,
 green,
 lightGreen,
 lime,
 yellow,
 amber,
 orange,
 deepOrange,
 brown,
 grey,
 blueGrey
};

const UnderstandingThePallette = withStyles(styles)(
 ({
 primaryHue,
 primaryShade,
 secondaryHue,
 secondaryShade,
 errorHue,
 errorShade,
 classes
 }) => {
 const theme = createMuiTheme({
 palette: {
 primary: { main: hues[primaryHue][primaryShade] },

Themes - Centralize the Look and Feel of Your App Chapter 19

[465]

 secondary: { main: hues[secondaryHue][secondaryShade] },
 error: { main: hues[errorHue][errorShade] }
 }
 });

 return (
 <MuiThemeProvider theme={theme}>
 <Button className={classes.button} variant="contained">
 Default
 </Button>
 <Button
 className={classes.button}
 variant="contained"
 color="primary"
 >
 Primary
 </Button>
 <Button
 className={classes.button}
 variant="contained"
 color="secondary"
 >
 Secondary
 </Button>
 <Typography className={classes.button} color="error">
 Error
 </Typography>
 </MuiThemeProvider>
);
 }
);

export default UnderstandingThePallette;

Here's what you'll see when you first load the screen with the DEFAULT theme values
selected:

Themes - Centralize the Look and Feel of Your App Chapter 19

[466]

Now, let's change the DEFAULT theme color intentions, starting with PRIMARY:

The Primary Hue is now Cyan with a shade value of 300. Next, we'll change the
SECONDARY intention:

The Secondary Hue is now Teal with a shade value of 100. Lastly, we'll change the ERROR
intention:

The Error Hue is still Red for this theme, but slightly lighter with a shade value of 400.
Here's what the end result looks like:

Themes - Centralize the Look and Feel of Your App Chapter 19

[467]

How it works...
Material-UI has core hues that can be imported and can help you with building your
theme:

import red from '@material-ui/core/colors/red';
import pink from '@material-ui/core/colors/pink';
import purple from '@material-ui/core/colors/purple';
import deepPurple from '@material-ui/core/colors/deepPurple';
import indigo from '@material-ui/core/colors/indigo';
import blue from '@material-ui/core/colors/blue';
import lightBlue from '@material-ui/core/colors/lightBlue';
import cyan from '@material-ui/core/colors/cyan';
import teal from '@material-ui/core/colors/teal';
import green from '@material-ui/core/colors/green';
import lightGreen from '@material-ui/core/colors/lightGreen';
import lime from '@material-ui/core/colors/lime';
import yellow from '@material-ui/core/colors/yellow';
import amber from '@material-ui/core/colors/amber';
import orange from '@material-ui/core/colors/orange';
import deepOrange from '@material-ui/core/colors/deepOrange';
import brown from '@material-ui/core/colors/brown';
import grey from '@material-ui/core/colors/grey';
import blueGrey from '@material-ui/core/colors/blueGrey';

You don't have to import every hue—this is done here because of the Storybook controls
that dynamically change the color palette values. Each color value that is imported is an
object indexed by the shade value, such as 500, for example. The values are colors
expressed in hex, such as #fffffff, for example. When using a color expressed in hex, you
have to pass it to the main property when creating your theme:

const theme = createMuiTheme({
 palette: {
 primary: { main: hues[primaryHue][primaryShade] },
 secondary: { main: hues[secondaryHue][secondaryShade] },
 error: { main: hues[errorHue][errorShade] }
 }
});

The properties primaryHue, primaryShade, and so on, are the values set by the Storybook
controls. The MuiThemeProvider component is how the theme is actually applied to your
Material-UI components. It doesn't have to be the root component of your app, but any
Material-UI components that depend on theme styles (Button, Typography, and so on)
need to be children of this component.

Themes - Centralize the Look and Feel of Your App Chapter 19

[468]

The createMuiTheme() function is called every time the main
application component in this example is rendered. In practice, this
shouldn't happen. Instead, the theme is created once and passed to the
MuiThemeProvider component. The reason this is happening here, is so
that the theme updates when you change the color values using the
Storybook controls.

See also
Material-UI theme documentation: https:/ /material- ui.com/ customization/
themes/

Material-UI color documentation: https:/ /material- ui.com/ style/ color/

Comparing light and dark themes
The color palette of a theme takes a type property value that can be either light or dark. By
default, themes are light. Changing the theme to dark does not change the other palette
values of your theme (primary, secondary, error).

How to do it...
Let's create a dark theme and a light theme. Both themes will use the same color values for
the intentions (primary, secondary, error). The example will use a Storybook control to
change themes:

https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/style/color/
https://material-ui.com/style/color/
https://material-ui.com/style/color/
https://material-ui.com/style/color/
https://material-ui.com/style/color/
https://material-ui.com/style/color/
https://material-ui.com/style/color/
https://material-ui.com/style/color/
https://material-ui.com/style/color/
https://material-ui.com/style/color/
https://material-ui.com/style/color/
https://material-ui.com/style/color/
https://material-ui.com/style/color/
https://material-ui.com/style/color/

Themes - Centralize the Look and Feel of Your App Chapter 19

[469]

Here's the source that uses this value to choose between a light and dark theme and
apply it to the Material-UI components:

import React, { Fragment } from 'react';

import {
 withStyles,
 createMuiTheme,
 MuiThemeProvider
} from '@material-ui/core/styles';
import Button from '@material-ui/core/Button';
import Dialog from '@material-ui/core/Dialog';
import DialogActions from '@material-ui/core/DialogActions';
import DialogContent from '@material-ui/core/DialogContent';
import DialogContentText from '@material-ui/core/DialogContentText';
import DialogTitle from '@material-ui/core/DialogTitle';

import red from '@material-ui/core/colors/red';
import pink from '@material-ui/core/colors/pink';
import blue from '@material-ui/core/colors/blue';

const styles = theme => ({
 button: { margin: theme.spacing(2) }
});

const light = createMuiTheme({
 palette: {
 type: 'light',
 primary: blue,
 secondary: pink,
 error: { main: red[600] }
 }
});

const dark = createMuiTheme({
 palette: {
 type: 'dark',
 primary: blue,
 secondary: pink,
 error: { main: red[600] }
 }
});

const LightVersusDarkThemes = withStyles(styles)(
 ({ themeType, classes }) => {
 return (
 <MuiThemeProvider theme={{ dark, light }[themeType]}>
 <Dialog open={true}>

Themes - Centralize the Look and Feel of Your App Chapter 19

[470]

 <DialogTitle>Use Google's location service?</DialogTitle>
 <DialogContent>
 <DialogContentText id="alert-dialog-description">
 Let Google help apps determine location. This means
 sending anonymous location data to Google, even when no
 apps are running.
 </DialogContentText>
 </DialogContent>
 <DialogActions>
 <Button color="secondary">Disagree</Button>
 <Button variant="contained" color="primary" autoFocus>
 Agree
 </Button>
 </DialogActions>
 </Dialog>
 </MuiThemeProvider>
);
 }
);

export default LightVersusDarkThemes;

Here's the dialog that you'll see when the screen first loads:

Here's the same dialog with the theme type changed to dark:

Themes - Centralize the Look and Feel of Your App Chapter 19

[471]

How it works...
When the palette.type theme value changes from light to dark, the following palette
values change:

palette.text

palette.divider

palette.background

palette.action

Let's take a look at the two themes used in this example:

const light = createMuiTheme({
 palette: {
 type: 'light',
 primary: blue,
 secondary: pink,
 error: { main: red[600] }
 }
});

const dark = createMuiTheme({
 palette: {
 type: 'dark',
 primary: blue,
 secondary: pink,
 error: { main: red[600] }
 }
});

These two themes are the same except for the palette.type value. Whenever you change
this value, new color values are computed for the theme. For example, the new text color
that you see in the dialog isn't static—it's a color that's computed by Material-UI in order to
provide the optimal contrast between the text color and the background color.

See also
Material-UI theme documentation: https:/ /material- ui.com/ customization/
themes/

https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/

Themes - Centralize the Look and Feel of Your App Chapter 19

[472]

Customizing typography
The preferred typeface for Material-UI themes is Roboto. This is by no means the only
option, and, indeed, you can install new typefaces and use them in your custom Material-
UI theme.

How to do it...
Let's install a couple of new typeface packages so that they're available for use in your
application:

npm install --save typeface-exo typeface-ubuntu

Next, you can add a Storybook control for the example that allows you to switch themes,
and, as a result, switch fonts:

Here's what the Dialog component looks like when you first load the screen:

Here's what the Dialog component looks like when you change the font type to Exo:

Themes - Centralize the Look and Feel of Your App Chapter 19

[473]

Lastly, here's what the Dialog component looks like when you change the font type to
Ubuntu:

How it works...
The two typefaces that are used in this example are imported:

import 'typeface-exo';
import 'typeface-ubuntu';

In practice, you'll only import the font that your active theme uses, to reduce the size of
your build. The roboto font that's used all throughout the examples in this book is
imported by the Storybook index file, since this font is the default theme font and used in
every example in this book.

Now that you've imported the typefaces, you've made the font family names available to
the theme:

const roboto = createMuiTheme({
 typography: {
 fontFamily: '"Roboto", "Helvetica", "Arial", sans-serif'

Themes - Centralize the Look and Feel of Your App Chapter 19

[474]

 }
});

const exo = createMuiTheme({
 typography: {
 fontFamily: '"Exo", "Roboto", "Helvetica", "Arial", sans-serif'
 }
});

const ubuntu = createMuiTheme({
 typography: {
 fontFamily: '"Ubuntu", "Roboto", "Helvetica", "Arial", sans-serif'
 }
});

Note that, in the exo and ubuntu themes, roboto is still used as part of the font family,
since it's the preferred font for Material-UI; it makes a good fallback.

See also
Material-UI theme documentation: https:/ /material- ui.com/ customization/
themes/

Nesting themes
By nesting MuiThemeProvider components, you can compose multiple themes that handle
different aspects of a theme into a single theme that's suitable for use in your application.

How to do it...
Let's say that you have a theme that sets the color palette and another theme that changes
the border radius. You can merge both themes by nesting the MuiThemeProvider
components. Here's an example:

import React from 'react';

import {
 createMuiTheme,
 MuiThemeProvider
} from '@material-ui/core/styles';
import Button from '@material-ui/core/Button';

https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/

Themes - Centralize the Look and Feel of Your App Chapter 19

[475]

import Dialog from '@material-ui/core/Dialog';
import DialogActions from '@material-ui/core/DialogActions';
import DialogContent from '@material-ui/core/DialogContent';
import DialogContentText from '@material-ui/core/DialogContentText';
import DialogTitle from '@material-ui/core/DialogTitle';

import red from '@material-ui/core/colors/red';
import pink from '@material-ui/core/colors/pink';
import blue from '@material-ui/core/colors/blue';

const Blue = createMuiTheme({
 palette: {
 type: 'light',
 primary: blue,
 secondary: pink,
 error: { main: red[600] }
 }
});

const Rounded = theme =>
 createMuiTheme({
 ...theme,
 shape: {
 borderRadius: 8
 }
 });

const NestingThemes = () => (
 <MuiThemeProvider theme={Blue}>
 <MuiThemeProvider theme={Rounded}>
 <Dialog open={true}>
 <DialogTitle>Use Google's location service?</DialogTitle>
 <DialogContent>
 <DialogContentText>
 Let Google help apps determine location. This means
 sending anonymous location data to Google, even when no
 apps are running.
 </DialogContentText>
 </DialogContent>
 <DialogActions>
 <Button color="secondary">Disagree</Button>
 <Button variant="contained" color="primary" autoFocus>
 Agree
 </Button>
 </DialogActions>
 </Dialog>
 </MuiThemeProvider>
 </MuiThemeProvider>

Themes - Centralize the Look and Feel of Your App Chapter 19

[476]

);

export default NestingThemes;

Here's what you'll see when the screen loads:

How it works...
The Blue theme applies the color palette theme settings, while the Rounded theme changes
the borderRadius settings. Both themes are applied to the Dialog component—you can
see the blue primary button, and the round corners are even more round. Let's take a closer
look at the Rounded theme:

const Rounded = theme =>
 createMuiTheme({
 ...theme,
 shape: {
 borderRadius: 8
 }
 });

Instead of being an object, Rounded is a function that returns a theme object. When you
pass a function to the theme property of MuiThemeProvider, a theme argument is passed.
This is the outer theme, or, in this example, the Blue theme. The theme is extended by
applying the spread operator to the theme argument, and then passing additional theme
values to createMuiTheme().

Themes - Centralize the Look and Feel of Your App Chapter 19

[477]

See also
Material-UI theme documentation: https:/ /material- ui.com/ customization/
themes/

Understanding component theme settings
Themes can override styles that are specific to component types, such as buttons or
drawers. This is useful when you need to apply a style change to every instance of the
component in the app. In other words, the style is part of the overall theme, but it applies to
just one type of component instead of the color palette for example, which applies to almost
every Material-UI component.

How to do it
Let's say that you want the title and the actions of Dialog components centered. Since you
want the same style applied for every Dialog component in your app, the theme is the
right place to override this setting. Here's how to do it:

import React from 'react';

import {
 createMuiTheme,
 MuiThemeProvider
} from '@material-ui/core/styles';
import Button from '@material-ui/core/Button';
import Dialog from '@material-ui/core/Dialog';
import DialogActions from '@material-ui/core/DialogActions';
import DialogContent from '@material-ui/core/DialogContent';
import DialogContentText from '@material-ui/core/DialogContentText';
import DialogTitle from '@material-ui/core/DialogTitle';

const theme = createMuiTheme({
 overrides: {
 MuiDialogTitle: { root: { textAlign: 'center' } },
 MuiDialogActions: { root: { justifyContent: 'center' } }
 }
});

const ComponentThemeSettings = () => (
 <MuiThemeProvider theme={theme}>
 <Dialog open={true}>

https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/
https://material-ui.com/customization/themes/

Themes - Centralize the Look and Feel of Your App Chapter 19

[478]

 <DialogTitle>Use Google's location service?</DialogTitle>
 <DialogContent>
 <DialogContentText>
 Let Google help apps determine location. This means sending
 anonymous location data to Google, even when no apps are
 running.
 </DialogContentText>
 </DialogContent>
 <DialogActions>
 <Button color="secondary">Disagree</Button>
 <Button color="primary" autoFocus>
 Agree
 </Button>
 </DialogActions>
 </Dialog>
 </MuiThemeProvider>
);

export default ComponentThemeSettings;

Here's what the custom dialog looks like:

Themes - Centralize the Look and Feel of Your App Chapter 19

[479]

How it works...
Let's take a closer look at the overrides section of the theme:

overrides: {
 MuiDialogTitle: { root: { textAlign: 'center' } },
 MuiDialogActions: { root: { justifyContent: 'center' } }
},

The MuiDialogTitle key corresponds to the DialogTitle component, while the
MuiDialogActions key corresponds to the DialogActions component. The root key
used in both objects is the name of the rule. In more complex components, you can use
these keys to target specific parts of the component. The API documentation for each
component spells out each of these style rule names that you can target. Then, it's a matter
of overriding or providing new styles. The textAlign property isn't set by default on the
DialogTitle component, so you're adding it. The justifyContent is set to the right of
the DialogActions component, which means that you're overriding an existing value.

See also
Theme override documentation: https:/ /material- ui.com/ customization/
overrides/

https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/

20
Styles - Applying Styles to

Components
In this chapter, you'll learn about the following topics:

Basic component styles
Scoped component styles
Extending component styles
Moving styles to themes
Other styling options

Introduction
The majority of styles that are applied to Material-UI components are part of the theme
styles. In some cases, you need the ability to style individual components without changing
the theme. For example, a button in one feature might need a specific style applied to it that
shouldn't change every other button in the app. Material-UI provides several ways to apply
custom styles to components as a whole, or to specific parts of components.

Styles - Applying Styles to Components Chapter 20

[481]

Basic component styles
Material uses JavaScript Style Sheets (JSS) to style its components. You can apply your
own JSS using the utilities provided by Material-UI.

How to do it...
The withStyles() function is a higher-order function that takes a style object as an
argument. The function that it returns takes the component to style as an argument. Here's
an example:

import React, { useState } from 'react';

import { withStyles } from '@material-ui/core/styles';
import Card from '@material-ui/core/Card';
import CardActions from '@material-ui/core/CardActions';
import CardContent from '@material-ui/core/CardContent';
import Button from '@material-ui/core/Button';
import Typography from '@material-ui/core/Typography';

const styles = theme => ({
 card: {
 width: 135,
 height: 135,
 textAlign: 'center'
 },
 cardActions: {
 justifyContent: 'center'
 }
});

const BasicComponentStyles = withStyles(styles)(({ classes }) => {
 const [count, setCount] = useState(0);

 const onIncrement = () => {
 setCount(count + 1);
 };

 return (
 <Card className={classes.card}>
 <CardContent>
 <Typography variant="h2">{count}</Typography>
 </CardContent>
 <CardActions className={classes.cardActions}>
 <Button size="small" onClick={onIncrement}>

Styles - Applying Styles to Components Chapter 20

[482]

 Increment
 </Button>
 </CardActions>
 </Card>
);
});

export default BasicComponentStyles;

Here's what this component looks like:

How it works...
Let's take a closer look at the styles defined by this example:

const styles = theme => ({
 card: {
 width: 135,
 height: 135,
 textAlign: 'center'
 },
 cardActions: {
 justifyContent: 'center'
 }
});

The styles that you pass to withStyles() can be either a plain object or a function that
returns a plain object, as is the case with this example. The benefit of using a function is that
the theme values are passed to the function as an argument, in case your styles need
access to the theme values. There are two styles defined in this example: card and
cardActions. You can think of these as Cascading Style Sheets (CSS) classes. Here's what
these two styles would look like as CSS:

.card {
 width: 135
 height: 135

Styles - Applying Styles to Components Chapter 20

[483]

 text-align: center
}

.cardActions {
 justify-content: center
}

By calling withStyles(styles)(MyComponent), you're returning a new component that
has a classes property. This object has all of the classes that you can apply to components
now. You can't just do something such as this:

<Card className="card" />

When you define your styles, they have their own build process and every class ends up
getting its own generated name. This generated name is what you'll find in the classes
object, so this is why you would want to use it.

There's more...
Instead of working with higher-order functions that return new components, you can
leverage Material-UI style hooks. This example already relies on the useState() hook
from React, so using another hook in the component feels like a natural extension of the
same pattern that is already in place. Here's what the example looks like when refactored to
take advantage of the makeStyles() function:

import React, { useState } from 'react';

import { makeStyles } from '@material-ui/styles';
import Card from '@material-ui/core/Card';
import CardActions from '@material-ui/core/CardActions';
import CardContent from '@material-ui/core/CardContent';
import Button from '@material-ui/core/Button';
import Typography from '@material-ui/core/Typography';

const useStyles = makeStyles(theme => ({
 card: {
 width: 135,
 height: 135,
 textAlign: 'center'
 },
 cardActions: {
 justifyContent: 'center'
 }
}));

Styles - Applying Styles to Components Chapter 20

[484]

export default function BasicComponentStyles() {
 const classes = useStyles();
 const [count, setCount] = useState(0);

 const onIncrement = () => {
 setCount(count + 1);
 };

 return (
 <Card className={classes.card}>
 <CardContent>
 <Typography variant="h2">{count}</Typography>
 </CardContent>
 <CardActions className={classes.cardActions}>
 <Button size="small" onClick={onIncrement}>
 Increment
 </Button>
 </CardActions>
 </Card>
);
}

The useStyles() hook is built using the makeStyles() function—which takes the exact
same styles argument as withStyles(). By calling useStyles() within the component,
you have your classes object. Another important thing to point out is that makeStyles is
imported from @material-ui/styles, not @material-ui/core/styles.

See also
Material-UI CSS in JS documentation: https:/ /material- ui.com/ css- in- js/
basics/.

Scoped component styles
Most Material-UI components have a CSS API that is specific to the component. This means
that instead of having to assign a class name to the className property for every
component that you need to customize, you can target specific aspects of the component
that you want to change. Material-UI has laid the foundation for scoping component styles;
you just need to leverage the APIs.

https://material-ui.com/css-in-js/basics/
https://material-ui.com/css-in-js/basics/
https://material-ui.com/css-in-js/basics/
https://material-ui.com/css-in-js/basics/
https://material-ui.com/css-in-js/basics/
https://material-ui.com/css-in-js/basics/
https://material-ui.com/css-in-js/basics/
https://material-ui.com/css-in-js/basics/
https://material-ui.com/css-in-js/basics/
https://material-ui.com/css-in-js/basics/
https://material-ui.com/css-in-js/basics/
https://material-ui.com/css-in-js/basics/
https://material-ui.com/css-in-js/basics/
https://material-ui.com/css-in-js/basics/
https://material-ui.com/css-in-js/basics/
https://material-ui.com/css-in-js/basics/
https://material-ui.com/css-in-js/basics/

Styles - Applying Styles to Components Chapter 20

[485]

How to do it...
Let's say that you have the following style customizations that you want to apply to the
Button components used throughout your application:

Every button needs a margin by default.
Every button that uses the contained variant should have additional top and
bottom padding.
Every button that uses the contained variant and the primary color should have
additional top and bottom padding, as well as additional left and right padding.

Here's an example that shows how to use the Button CSS API to target these three
different Button types with styles:

import React, { Fragment } from 'react';

import { withStyles } from '@material-ui/core/styles';
import Button from '@material-ui/core/Button';

const styles = theme => ({
 root: {
 margin: theme.spacing(2)
 },
 contained: {
 paddingTop: theme.spacing(2),
 paddingBottom: theme.spacing(2)
 },
 containedPrimary: {
 paddingLeft: theme.spacing(4),
 paddingRight: theme.spacing(4)
 }
});

const ScopedComponentStyles = withStyles(styles)(
 ({ classes: { root, contained, containedPrimary } }) => (
 <Fragment>
 <Button classes={{ root }}>My Default Button</Button>
 <Button classes={{ root, contained }} variant="contained">
 My Contained Button
 </Button>
 <Button
 classes={{ root, contained, containedPrimary }}
 variant="contained"
 color="primary"
 >
 My Contained Primary Button

Styles - Applying Styles to Components Chapter 20

[486]

 </Button>
 </Fragment>
)
);

export default ScopedComponentStyles;

Here's what the three rendered buttons look like:

How it works...
The Button CSS API takes named styles and applies them to the component. These same
names are used in the styles in this code. For example, root applies to every Button
component, whereas contained only applies the styles to the Button components that use
the contained variant and the containedPrimary style only applies to Button
components that use the contained variant and the primary color.

There's more...
Each style is destructured from the classes property, then applied to the appropriate
Button component. However, you don't actually need to do all of this work. Since the
Material-UI CSS API takes care of applying styles to components in a way that matches
what you're actually targeting, you can just pass the classes directly to the buttons and get
the same result. Here's a simplified version of this example:

import React, { Fragment } from 'react';

import { withStyles } from '@material-ui/core/styles';
import Button from '@material-ui/core/Button';

Styles - Applying Styles to Components Chapter 20

[487]

const styles = theme => ({
 root: {
 margin: theme.spacing(2)
 },
 contained: {
 paddingTop: theme.spacing(2),
 paddingBottom: theme.spacing(2)
 },
 containedPrimary: {
 paddingLeft: theme.spacing(4),
 paddingRight: theme.spacing(4)
 }
});

const ScopedComponentStyles = withStyles(styles)(({ classes }) => (
 <Fragment>
 <Button classes={classes}>My Default Button</Button>
 <Button classes={classes} variant="contained">
 My Contained Button
 </Button>
 <Button classes={classes} variant="contained" color="primary">
 My Contained Primary Button
 </Button>
 </Fragment>
));

export default ScopedComponentStyles;

The output looks the same because only buttons that match the constraints of the CSS API
get the styles applied to them. For example, the first Button has the root, contained, and
containedPrimary styles passed to the classes property, but only root is applied because
it isn't using the contained variant of the primary color. The second Button also has all
three styles passed to it, but only root and contained are applied. The third Button has
all three styles applied to it because it meets the criteria of each style.

See also
Material-UI style override documentation: https:/ / material- ui. com/
customization/ overrides/ .

https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/

Styles - Applying Styles to Components Chapter 20

[488]

Extending component styles
You can extend styles that you apply to one component with styles that you apply to
another component. Since your styles are JavaScript objects, one option is to extend one
style object with another. The only problem with this approach is that you end up with a lot
of duplicate styles properties in the CSS output. A better alternative is to use the jss
extend plugin.

How to do it...
Let's say that you want to render three buttons and share some of the styles among them.
One approach is to extend generic styles with more specific styles using the jss extend
plugin. Here's how to do it:

import React, { Fragment } from 'react';
import { JssProvider, jss } from 'react-jss';

import {
 withStyles,
 createGenerateClassName
} from '@material-ui/styles';
import {
 createMuiTheme,
 MuiThemeProvider
} from '@material-ui/core/styles';
import Button from '@material-ui/core/Button';

const styles = theme => ({
 root: {
 margin: theme.spacing(2)
 },
 contained: {
 extend: 'root',
 paddingTop: theme.spacing(2),
 paddingBottom: theme.spacing(2)
 },
 containedPrimary: {
 extend: 'contained',
 paddingLeft: theme.spacing(4),
 paddingRight: theme.spacing(4)
 }
});

const App = ({ children }) => (
 <JssProvider

Styles - Applying Styles to Components Chapter 20

[489]

 jss={jss}
 generateClassName={createGenerateClassName()}
 >
 <MuiThemeProvider theme={createMuiTheme()}>
 {children}
 </MuiThemeProvider>
 </JssProvider>
);

const Buttons = withStyles(styles)(({ classes }) => (
 <Fragment>
 <Button className={classes.root}>My Default Button</Button>
 <Button className={classes.contained} variant="contained">
 My Contained Button
 </Button>
 <Button
 className={classes.containedPrimary}
 variant="contained"
 color="primary"
 >
 My Contained Primary Button
 </Button>
 </Fragment>
));

const ExtendingComponentStyles = () => (
 <App>
 <Buttons />
 </App>
);

export default ExtendingComponentStyles;

Here's what the rendered buttons look like:

Styles - Applying Styles to Components Chapter 20

[490]

How it works...
The easiest way to use the jss extend plugin in your Material-UI application is to use the
default JSS plugin presets, which includes jss extend. Material-UI has several JSS plugins
installed by default, but jss extend isn't one of them. Let's take a look at the App
component in this example to see how this JSS plugin is made available:

const App = ({ children }) => (
 <JssProvider
 jss={jss}
 generateClassName={createGenerateClassName()}
 >
 <MuiThemeProvider theme={createMuiTheme()}>
 {children}
 </MuiThemeProvider>
 </JssProvider>
);

The JssProvider component is how JSS is enabled in Material-UI applications. Normally,
you wouldn't have to interface with it directly, but this is necessary when adding a new JSS
plugin. The jss property takes the JSS preset object that includes the jss extend plugin.
The generateClassName property takes a function from Material-UI that helps generate
class names that are specific to Material-UI.

Next, let's take a closer look at some styles:

const styles = theme => ({
 root: {
 margin: theme.spacing(2)
 },
 contained: {
 extend: 'root',
 paddingTop: theme.spacing(2),
 paddingBottom: theme.spacing(2)
 },
 containedPrimary: {
 extend: 'contained',
 paddingLeft: theme.spacing(4),
 paddingRight: theme.spacing(4)
 }
});

Styles - Applying Styles to Components Chapter 20

[491]

The extend property takes the name of a style that you want to extend. In this case, the
contained style extends root. The containedPrimary extends contained and root.
Now let's take a look at how this translates into CSS. Here's what the root style looks like:

.Component-root-1 {
 margin: 16px;
}

Next, here's the contained style:

.Component-contained-2 {
 margin: 16px;
 padding-top: 16px;
 padding-bottom: 16px;
}

Finally, here's the containedPrimary style:

.Component-containedPrimary-3 {
 margin: 16px;
 padding-top: 16px;
 padding-left: 32px;
 padding-right: 32px;
 padding-bottom: 16px;
}

Note that the properties from the more-generic properties are included in the more-specific
styles. There are some properties duplicated, but this is in CSS, instead of having to
duplicate JavaScript object properties. Furthermore, you could put these extended styles
in a more central location in your code base, so that multiple components could use them.

See also
Material-UI JSS documentation: https:/ / material- ui. com/ customization/ css-
in-js/ .

https://material-ui.com/customization/css-in-js/
https://material-ui.com/customization/css-in-js/
https://material-ui.com/customization/css-in-js/
https://material-ui.com/customization/css-in-js/
https://material-ui.com/customization/css-in-js/
https://material-ui.com/customization/css-in-js/
https://material-ui.com/customization/css-in-js/
https://material-ui.com/customization/css-in-js/
https://material-ui.com/customization/css-in-js/
https://material-ui.com/customization/css-in-js/
https://material-ui.com/customization/css-in-js/
https://material-ui.com/customization/css-in-js/
https://material-ui.com/customization/css-in-js/
https://material-ui.com/customization/css-in-js/
https://material-ui.com/customization/css-in-js/
https://material-ui.com/customization/css-in-js/
https://material-ui.com/customization/css-in-js/

Styles - Applying Styles to Components Chapter 20

[492]

Moving styles to themes
As you develop your Material-UI application, you'll start to notice style patterns that repeat
themselves. In particular, styles that apply to one type of component, such as buttons,
evolve into a theme.

How to do it...
Let's revisit the example from the Scoped component styles section:

import React, { Fragment } from 'react';

import { withStyles } from '@material-ui/core/styles';
import Button from '@material-ui/core/Button';

const styles = theme => ({
 root: {
 margin: theme.spacing(2)
 },
 contained: {
 paddingTop: theme.spacing(2),
 paddingBottom: theme.spacing(2)
 },
 containedPrimary: {
 paddingLeft: theme.spacing(4),
 paddingRight: theme.spacing(4)
 }
});

const ScopedComponentStyles = withStyles(styles)(({ classes }) => (
 <Fragment>
 <Button classes={classes}>My Default Button</Button>
 <Button classes={classes} variant="contained">
 My Contained Button
 </Button>
 <Button classes={classes} variant="contained" color="primary">
 My Contained Primary Button
 </Button>
 </Fragment>
));

export default ScopedComponentStyles;

Styles - Applying Styles to Components Chapter 20

[493]

Here's what these buttons look like after they have these styles applied to them:

Now, let's say you've implemented these same styles in several places throughout your app
because this is how you want your buttons to look. At this point, you've evolved a simple
component customization into a theme. When this happens, you shouldn't have to keep
implementing the same styles over and over again. Instead, the styles should be applied
automatically by using the correct component and the correct property values. Let's move
these styles into theme:

import React from 'react';

import {
 createMuiTheme,
 MuiThemeProvider
} from '@material-ui/core/styles';
import Button from '@material-ui/core/Button';

const defaultTheme = createMuiTheme();

const theme = createMuiTheme({
 overrides: {
 MuiButton: {
 root: {
 margin: 16
 },
 contained: {
 paddingTop: defaultTheme.spacing(2),
 paddingBottom: defaultTheme.spacing(2)
 },
 containedPrimary: {
 paddingLeft: defaultTheme.spacing(4),
 paddingRight: defaultTheme.spacing(4)
 }
 }
 }

Styles - Applying Styles to Components Chapter 20

[494]

});

const MovingStylesToThemes = ({ classes }) => (
 <MuiThemeProvider theme={theme}>
 <Button>My Default Button</Button>
 <Button variant="contained">My Contained Button</Button>
 <Button variant="contained" color="primary">
 My Contained Primary Button
 </Button>
 </MuiThemeProvider>
);

export default MovingStylesToThemes;

Now, you can use Button components without having to apply the same styles every time.

How it works...
Let's take a closer look at how your styles fit into a Material-UI theme:

overrides: {
 MuiButton: {
 root: {
 margin: 16
 },
 contained: {
 paddingTop: defaultTheme.spacing(2),
 paddingBottom: defaultTheme.spacing(2)
 },
 containedPrimary: {
 paddingLeft: defaultTheme.spacing(4),
 paddingRight: defaultTheme.spacing(4)
 }
 }
}

The overrides property is an object that allows you to override component-specific
properties of the theme. In this case, it's the MuiButton component styles that you want to
override. Within MuiButton, you have the same CSS API that is used to target specific
aspects of components. This makes moving your styles into the theme straightforward,
because there isn't much to change.

Styles - Applying Styles to Components Chapter 20

[495]

One thing that did have to change in this example is the way spacing works. In normal
styles that are applied via withStyles(), you have access to the current theme because
it's passed in as an argument. You still need access to the spacing data, but there's no theme
argument because you're not in a function. Since you're just extending the default theme,
you can access it by calling createMuiTheme() without any arguments, as this example
shows.

See also
Material-UI style overrides documentation: https:/ /material- ui.com/
customization/ overrides/ .

Other styling options
There are other styling options available to your Material-UI app beyond withStyles().
There's the styled() higher-order component function that emulates styled components.
You can also jump outside the Material-UI style system and use inline CSS styles or import
CSS modules and apply those styles.

How to do it...
Here's a modified version of the Scoped component styles example that showcases a few of
the alternative style mechanisms available to you in your Material-UI applications:

import React, { Fragment } from 'react';

import { styled } from '@material-ui/styles';
import Button from '@material-ui/core/Button';

import styles from './OtherStylingOptions.module.css';

const MyStyledButton = styled(Button)({
 margin: 16,
 paddingTop: 16,
 paddingBottom: 16
});

const OtherStylingOptions = () => (
 <Fragment>
 <Button style={{ margin: 16 }}>My Default Button</Button>

https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/

Styles - Applying Styles to Components Chapter 20

[496]

 <MyStyledButton variant="contained">
 My Contained Button
 </MyStyledButton>
 <Button
 className={styles.primaryContained}
 variant="contained"
 color="primary"
 >
 My Contained Primary Button
 </Button>
 </Fragment>
);

export default OtherStylingOptions;

How it works...
The first button uses inline CSS properties, expressed as a plain JavaScript object and
passed to the style property of the Button component. The second Button uses the
styled() function to build a MyStyledButton component. This function works in much
the same way as withStyles, the main difference being that its signature is geared toward
people used to the styled-component's approach to styling components.

The third button uses a style from an imported CSS module. Here's what the module looks
like:

button.primaryContained {
 margin: 16px;
 padding: 16px 32px;
}

Be careful with CSS modules and inline styles. These approaches work fine, but since
they're not tightly integrated with the Material-UI styling and theming mechanisms, they
require more work to ensure that your styles fit with the rest of the Material-UI
components.

See also
Material-UI style overrides documentation: https:/ /material- ui.com/
customization/ overrides/ .
Material-UI JSS documentation: https:/ / material- ui. com/ css- in-js/ api/ .

https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/customization/overrides/
https://material-ui.com/css-in-js/api/
https://material-ui.com/css-in-js/api/
https://material-ui.com/css-in-js/api/
https://material-ui.com/css-in-js/api/
https://material-ui.com/css-in-js/api/
https://material-ui.com/css-in-js/api/
https://material-ui.com/css-in-js/api/
https://material-ui.com/css-in-js/api/
https://material-ui.com/css-in-js/api/
https://material-ui.com/css-in-js/api/
https://material-ui.com/css-in-js/api/
https://material-ui.com/css-in-js/api/
https://material-ui.com/css-in-js/api/
https://material-ui.com/css-in-js/api/
https://material-ui.com/css-in-js/api/
https://material-ui.com/css-in-js/api/
https://material-ui.com/css-in-js/api/
https://material-ui.com/css-in-js/api/

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

React Cookbook
Carlos Santana Roldan

ISBN: 9781783980727

Gain the ability to wield complex topics such as Webpack and server-side
rendering
Implement an API using Node.js, Firebase, and GraphQL
Learn to maximize the performance of React applications
Create a mobile application using React Native
Deploy a React application on Digital Ocean
Get to know the best practices when organizing and testing a large React
application

https://www.packtpub.com/web-development/react-cookbook

Other Books You May Enjoy

[498]

React and React Native
Adam Boduch

ISBN: 9781786465658

Craft reusable React components
Control navigation using the React Router to help keep your UI in sync with
URLs
Build isomorphic web applications using Node.js
Use the Flexbox layout model to create responsive mobile designs
Leverage the native APIs of Android and iOS to build engaging applications
with React Native
Respond to gestures in a way that’s intuitive for the user
Use Relay to build a unified data architecture for your React UIs

https://www.packtpub.com/web-development/react-and-react-native

Other Books You May Enjoy

[499]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
abstraction, for checkbox groups
 creating 323, 325, 327
abstraction, for radio button groups
 creating 333
actions
 confirming 384
 performing 209, 211, 213
alert dialogs
 about 387
 working 389
alerts
 displaying 387, 389
API driven autocomplete 314, 316
API integration
 about 391
 performing 391, 394
 working 395
AppBar integration 91, 93, 94
AppBar interaction 82, 85, 86, 87, 89
autocomplete component
 autocomplete component 310
 building 303, 305
 clear option indicator 308
 IndicatorSeparator 308
 individual option 307
 menu indicator, displaying 309
 no options 306
 options menu 306
 placeholder text 307
 SingleValue 308
 styles 309
 text input control 305
 ValueContainer 308
autocomplete suggestions
 selecting 312, 313

B
basic component styles
 about 481
 applying 481, 482, 483, 484
breakpoint
 about 7, 11
 working 9
button emphasis
 about 252, 256, 258, 260
 references 260
button sizes 270, 272
button variants
 about 250
 references 252

C
CardHeader component 206, 208
checkbox groups
 abstracting 322, 325, 326
checkbox items
 customizing 328, 330, 331, 332
checkboxes
 replacing, with switches 342, 344, 346
CollectingFormInput component 382
color palette
 about 462
 using 462, 463, 465, 466
 working 467
color property 444
column direction 25, 28, 30
component styles
 extending 488, 490, 491
component theme settings
 about 477
 working 479
confirmation dialog

[501]

 about 385
 working 386
containers
 abstracting 18, 19

D
date and time components
 combining 371, 372, 373, 374
date and time packages
 integrating 374, 377
date pickers
 using 358, 359, 360, 362
 working 361
dialog component
 about 378
 working 382
dialog content
 scrolling 401, 403, 405
DialogContentText component 386
Document Object Model (DOM) 164
drawer item navigation 65, 68, 72, 74
drawer item state 59, 62, 64
drawer sections 74, 77, 80, 81
drawer types
 about 54, 56, 58
 permanent 54
 persistent 54
 temporary 54

E
error boundaries 237, 239, 240
error display 281, 284, 285
error snackbars 237, 239, 240
expandable cards 217, 220, 221
expansion panel headers
 formatting 121, 123

F
filtering rows 184, 188
fixed column layout 21, 23, 25
fixed position 31, 33, 35
floating actions 264, 266
form input
 collecting 378, 379, 381
fullscreen dialogs

 about 396
 creating 396, 399
 working 400

H
helper text 278, 280

I
icon buttons 267, 269
icons
 about 442
 coloring 442, 443, 444
 installing 459, 460
 loading dynamically 449, 450, 451, 452
 scaling 446
 themed icons 453
initial date and time values
 setting 366, 367, 369
input adornments
 about 293, 295
 references 297
input masking 297, 300
input
 controlling, with state 274, 276
items
 abstracting 18, 19

J
JavaScript Style Sheets (JSS) 481
JavaScript XML (JSX) 105

L
lazy loading panel content 130, 132, 134
light and dark themes
 comparing 468, 470, 471
link buttons 260, 263
list avatars 144, 147, 148
list controls 158, 160, 163
list icons 140, 141, 143
list items
 rendering, state used 136, 138
list sections 149, 151
list text 144, 147, 148

[502]

M
main content 203, 205
Material-UI applications
 Material-UI theme 461
 styling options 495
Material-UI components 480
media
 presenting 213, 215
menu items
 customizing 419, 420, 421, 422
 working with 422
menu scrolling options
 about 413, 415, 416
 working 416
menu transitions
 using 417
 working 419
menus
 composing, with state 406, 407, 408, 410, 412
multiline input 290, 292
multiple items
 selecting 353, 355, 356

N
nested grid items 12
nested lists 152, 155, 157

P
password fields 287, 289
placeholder 278, 280

R
radio button groups
 about 333
 abstracting 333, 335, 337, 338
radio button types
 about 338, 341
 creating 339, 340
row actions 197, 201
rows
 selecting 189, 194, 196

S
scoped component styles
 about 484
 applying 485, 486, 487
scrollable panel content 125, 128, 129
scrolling lists 164, 167
search results
 highlighting 317
selections
 making, from choices 322
selects
 controlling, with state 346, 349, 350, 351, 352
size options, icons
 default value 447
 inherit value 448
 large value 449
 small value 448
Snackbar component
 content 224
 positioning 232, 235, 236
 queuing 244, 247, 248
 transitions 228, 231
 visibility, controlling with state 226, 227
 with actions 241, 243, 244
sortable columns 176, 180, 182, 183
space
 filling 12, 14, 15, 17
standalone chip input 319, 321
state
 used, to render list items 137, 138
stateful expansion panels
 about 115, 118, 119
 references 120
stateful tables 169, 172, 175
styles
 moving, to themes 492, 493, 494
styling options 495, 496

T
tab alignment 95, 97, 99
tab content
 abstracting 105, 106, 108
tab navigation
 with routes 109, 112, 114

tab
 rendering, on state 100, 102, 104
text, Typography component
 aligning 434, 436
 wrapping 437, 439, 441
theme colors
 using 428, 429
 working 430
themed icons
 exploring 454, 456
themes
 nesting 474, 476
time pickers
 using 364, 365
 working 366
toolbar abstraction
 about 41, 44, 46
 navigation 47, 50
 navigation, working 51, 53

Typography component
 about 424
 theme colors, using 428
 types 425
Typography variants
 about 425, 426, 427
 working 427
typography
 customizing 472, 473

U
user interactions
 form input, collecting 378
user
 hiding 36, 39, 40
 scrolling 36, 39, 40

V
validation 281, 284, 285

	Cover
	Title Page
	Copyright and Credits
	Dedication
	About Packt
	Contributors
	Table of Contents
	Preface
	Chapter 1: Grids - Placing Components on the Page
	Introduction
	Applying breakpoints
	How to do it...
	How it works...
	There's more...
	See also

	Filling space
	How to do it...
	How it works...
	There's more...
	See also

	Abstracting containers and items
	How to do it...
	How it works...
	There's more...
	See also

	Fixed column layout
	How to do it...
	How it works...
	There's more...
	See also

	Changing column direction
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 2: App Bars - The Top Level of Every Page
	Introduction
	Fixed position
	How to do it...
	How it works...
	There's more...
	See also

	Hide on scroll
	How to do it...
	How it works...
	There's more...
	See also

	Toolbar abstraction
	How to do it...
	How it works...
	There's more...
	See also

	With navigation
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 3: Drawers - A Place for Navigation Controls
	Introduction
	Drawer types
	How to do it...
	How it works...
	There's more...
	See also

	Drawer item state
	How to do it...
	How it works...
	There's more...
	See also

	Drawer item navigation
	How to do it...
	How it works...
	There's more...
	See also

	Drawer sections
	How to do it...
	How it works...
	There's more...
	See also

	AppBar interaction
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 4: Tabs - Grouping Content into Tab Sections
	Introduction
	AppBar integration
	How to do it...
	How it works...
	There's more...
	See also

	Tab alignment
	How to do it...
	How it works...
	There's more...
	See also

	Rendering tabs based on state
	How to do it...
	How it works...
	There's more...
	See also

	Abstracting tab content
	How to do it...
	How it works...
	There's more...
	See also

	Tab navigation with routes
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 5: Expansion Panels - Group Content into Panel Sections
	Introduction
	Stateful expansion panels
	How to do it...
	How it works...
	There's more...
	See also

	Formatting panel headers
	How to do it...
	How it works...
	There's more...
	See also

	Scrollable panel content
	How to do it...
	How it works...
	See also

	Lazy loading panel content
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 6: Lists - Display Simple Collection Data
	Introduction
	Using state to render list items
	How to do it...
	How it works...
	There's more...
	See also

	List icons
	How to do it...
	How it works...
	There's more...
	See also

	List avatars and text
	How to do it...
	How it works...
	There's more...
	See also

	List sections
	How to do it...
	How it works...
	There's more...
	See also

	Nested lists
	How to do it...
	How it works...
	There's more...
	See also

	List controls
	How to do it...
	How it works...
	There's more...
	See also

	Scrolling lists
	How to do it...
	How it works...
	See also

	Chapter 7: Tables - Display Complex Collection Data
	Introduction
	Stateful tables
	How to do it...
	How it works...
	There's more...
	See also

	Sortable columns
	How to do it...
	How it works...
	There's more...
	See also

	Filtering rows
	How to do it...
	How it works...
	See also

	Selecting rows
	How to do it...
	How it works...
	See also

	Row actions
	How to do it...
	How it works...
	See also

	Chapter 8: Cards - Display Detailed Information
	Introduction
	Main content
	How to do it...
	How it works...
	See also

	Card header
	How to do it...
	How it works...
	There's more...
	See also

	Performing actions
	How to do it...
	How it works...
	There's more...
	See also

	Presenting media
	How to do it...
	How it works...
	There's more...
	See also

	Expandable cards
	How to do it...
	How it works...
	See also

	Chapter 9: Snackbars - Temporary Messages
	Introduction
	Snackbar content
	How to do it...
	How it works...
	There's more...
	See also

	Controlling visibility with state
	How to do it...
	How it works...
	There's more...
	See also

	Snackbar transitions
	How to do it...
	How it works...
	See also

	Positioning snackbars
	How to do it...
	How it works...
	There's more...
	See also

	Error boundaries and error snackbars
	How to do it...
	How it works...
	There's more...
	See also

	Snackbars with actions
	How to do it...
	How it works...
	There's more...
	See also

	Queuing snackbars
	How to do it...
	How it works...
	See also

	Chapter 10: Buttons - Initiating Actions
	Introduction
	Button variants
	How to do it...
	How it works...
	See also

	Button emphasis
	How to do it...
	How it works...
	There's more...
	See also

	Link buttons
	How to do it...
	How it works...
	There's more...
	See also

	Floating actions
	How to do it...
	How it works...
	There's more...
	See also

	Icon buttons
	How to do it...
	How it works...
	See also

	Button sizes
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 11: Text - Collecting Text Input
	Introduction
	Controlling input with state
	How to do it...
	How it works...
	There's more...
	See also

	Placeholder and helper text
	How to do it...
	How it works...
	See also

	Validation and error display
	How to do it...
	How it works...
	There's more...
	See also

	Password fields
	How to do it...
	How it works...
	There's more...
	See also

	Multiline input
	How to do it...
	How it works...
	There's more...
	See also

	Input adornments
	How to do it...
	How it works...
	There's more...
	See also

	Input masking
	How to do it...
	How it works...
	See also

	Chapter 12: Autocomplete and Chips - Text Input Suggestions for Multiple Items
	Introduction
	Building an Autocomplete component
	How to do it...
	How it works...
	Text input control
	Options menu
	No options available
	Individual option
	Placeholder text
	SingleValue
	ValueContainer
	IndicatorSeparator
	Clear option indicator
	Show menu indicator
	Styles
	The Autocomplete

	See also

	Selecting autocomplete suggestions
	How to do it...
	How it works...
	See also

	API-driven Autocomplete
	How to do it...
	How it works...
	See also

	Highlighting search results
	How to do it...
	How it works...
	See also

	Standalone chip input
	How to do it...
	How it works...
	See also

	Chapter 13: Selection - Make Selections from Choices
	Introduction
	Abstracting checkbox groups
	How to do it...
	How it works...
	There's more...
	See also

	Customizing checkbox items
	How to do it...
	How it works...
	There's more...
	See also

	Abstracting radio button groups
	How it works...
	How it works...
	There's more...
	See also

	Radio button types
	How to do it...
	How it works...
	See also

	Replacing checkboxes with switches
	How to do it...
	How it works...
	There's more...
	See also

	Controlling selects with state
	How to do it...
	How it works...
	See Also

	Selecting multiple items
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 14: Pickers - Selecting Dates and Times
	Introduction
	Using date pickers
	How to do it...
	How it works...
	There's more...
	See also

	Using time pickers
	How to do it...
	How it works...
	See also

	Setting initial date and time values
	How to do it...
	How it works...
	See also

	Combining date and time components
	How to do it...
	How it works...
	See also

	Integrating other date and time packages
	How to do it...
	How it works...
	See also

	Chapter 15: Dialogs - Modal Screens for User Interactions
	Introduction
	Collecting form input
	How to do it...
	How it works...
	See also

	Confirming actions
	How to do it...
	How it works...
	See also

	Displaying alerts
	How to do it...
	How it works...
	There's more...
	See also

	API integration
	How to do it...
	How it works...
	See also

	Creating fullscreen dialogs
	How to do it...
	How it works...
	See also

	Scrolling dialog content
	How to do it...
	How it works...
	See also

	Chapter 16: Menus - Display Actions That Pop Out
	Introduction
	Composing menus with state
	How to do it...
	How it works...
	There's more...
	See also

	Menu scrolling options
	How to do it...
	How it works...
	See also

	Using menu transitions
	How to do it...
	How it works...
	See also

	Customizing menu items
	How to do it...
	How it works...
	See also

	Chapter 17: Typography - Control Font Look and Feel
	Introduction
	Types of typography
	How to do it...
	How it works...
	There's more...
	See also

	Using theme colors
	How to do it...
	How it works...
	See also

	Aligning text
	How to do it...
	How it works...
	See also

	Wrapping text
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 18: Icons - Enhance Icons to Match Your Look and Feel
	Introduction
	Coloring icons
	How to do it...
	How it works...
	See also

	Scaling icons
	How to do it...
	How it works...
	Default
	Inherit
	Small
	Large

	See also

	Dynamically loading icons
	How to do it...
	How it works...
	See also

	Themed icons
	How to do it...
	How it works...
	See also

	Installing more icons
	How to do it...
	How it works...
	See also

	Chapter 19: Themes - Centralize the Look and Feel of Your App
	Introduction
	Understanding the palette
	How to do it...
	How it works...
	See also

	Comparing light and dark themes
	How to do it...
	How it works...
	See also

	Customizing typography
	How to do it...
	How it works...
	See also

	Nesting themes
	How to do it...
	How it works...
	See also

	Understanding component theme settings
	How to do it
	How it works...
	See also

	Chapter 20: Styles - Applying Styles to Components
	Introduction
	Basic component styles
	How to do it...
	How it works...
	There's more...
	See also

	Scoped component styles
	How to do it...
	How it works...
	There's more...
	See also

	Extending component styles
	How to do it...
	How it works...
	See also

	Moving styles to themes
	How to do it...
	How it works...
	See also

	Other styling options
	How to do it...
	How it works...
	See also

	Other Books You May Enjoy
	Index

